;;; thingatpt.el --- get the `thing' at point ;; Copyright (C) 1991-1998, 2000-2013 Free Software Foundation, Inc. ;; Author: Mike Williams ;; Maintainer: FSF ;; Keywords: extensions, matching, mouse ;; Created: Thu Mar 28 13:48:23 1991 ;; This file is part of GNU Emacs. ;; GNU Emacs is free software: you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU Emacs. If not, see . ;;; Commentary: ;; This file provides routines for getting the "thing" at the location of ;; point, whatever that "thing" happens to be. The "thing" is defined by ;; its beginning and end positions in the buffer. ;; ;; The function bounds-of-thing-at-point finds the beginning and end ;; positions by moving first forward to the end of the "thing", and then ;; backwards to the beginning. By default, it uses the corresponding ;; forward-"thing" operator (eg. forward-word, forward-line). ;; ;; Special cases are allowed for using properties associated with the named ;; "thing": ;; ;; forward-op Function to call to skip forward over a "thing" (or ;; with a negative argument, backward). ;; ;; beginning-op Function to call to skip to the beginning of a "thing". ;; end-op Function to call to skip to the end of a "thing". ;; ;; Reliance on existing operators means that many `things' can be accessed ;; without further code: eg. ;; (thing-at-point 'line) ;; (thing-at-point 'page) ;;; Code: (provide 'thingatpt) ;; Basic movement ;;;###autoload (defun forward-thing (thing &optional n) "Move forward to the end of the Nth next THING. THING should be a symbol specifying a type of syntactic entity. Possibilities include `symbol', `list', `sexp', `defun', `filename', `url', `email', `word', `sentence', `whitespace', `line', and `page'." (let ((forward-op (or (get thing 'forward-op) (intern-soft (format "forward-%s" thing))))) (if (functionp forward-op) (funcall forward-op (or n 1)) (error "Can't determine how to move over a %s" thing)))) ;; General routines ;;;###autoload (defun bounds-of-thing-at-point (thing) "Determine the start and end buffer locations for the THING at point. THING should be a symbol specifying a type of syntactic entity. Possibilities include `symbol', `list', `sexp', `defun', `filename', `url', `email', `word', `sentence', `whitespace', `line', and `page'. See the file `thingatpt.el' for documentation on how to define a valid THING. Return a cons cell (START . END) giving the start and end positions of the thing found." (if (get thing 'bounds-of-thing-at-point) (funcall (get thing 'bounds-of-thing-at-point)) (let ((orig (point))) (condition-case nil (save-excursion ;; Try moving forward, then back. (funcall ;; First move to end. (or (get thing 'end-op) (lambda () (forward-thing thing 1)))) (funcall ;; Then move to beg. (or (get thing 'beginning-op) (lambda () (forward-thing thing -1)))) (let ((beg (point))) (if (<= beg orig) ;; If that brings us all the way back to ORIG, ;; it worked. But END may not be the real end. ;; So find the real end that corresponds to BEG. ;; FIXME: in which cases can `real-end' differ from `end'? (let ((real-end (progn (funcall (or (get thing 'end-op) (lambda () (forward-thing thing 1)))) (point)))) (when (and (<= orig real-end) (< beg real-end)) (cons beg real-end))) (goto-char orig) ;; Try a second time, moving backward first and then forward, ;; so that we can find a thing that ends at ORIG. (funcall ;; First, move to beg. (or (get thing 'beginning-op) (lambda () (forward-thing thing -1)))) (funcall ;; Then move to end. (or (get thing 'end-op) (lambda () (forward-thing thing 1)))) (let ((end (point)) (real-beg (progn (funcall (or (get thing 'beginning-op) (lambda () (forward-thing thing -1)))) (point)))) (if (and (<= real-beg orig) (<= orig end) (< real-beg end)) (cons real-beg end)))))) (error nil))))) ;;;###autoload (defun thing-at-point (thing) "Return the THING at point. THING should be a symbol specifying a type of syntactic entity. Possibilities include `symbol', `list', `sexp', `defun', `filename', `url', `email', `word', `sentence', `whitespace', `line', `number', and `page'. See the file `thingatpt.el' for documentation on how to define a symbol as a valid THING." (if (get thing 'thing-at-point) (funcall (get thing 'thing-at-point)) (let ((bounds (bounds-of-thing-at-point thing))) (if bounds (buffer-substring (car bounds) (cdr bounds)))))) ;; Go to beginning/end (defun beginning-of-thing (thing) "Move point to the beginning of THING. The bounds of THING are determined by `bounds-of-thing-at-point'." (let ((bounds (bounds-of-thing-at-point thing))) (or bounds (error "No %s here" thing)) (goto-char (car bounds)))) (defun end-of-thing (thing) "Move point to the end of THING. The bounds of THING are determined by `bounds-of-thing-at-point'." (let ((bounds (bounds-of-thing-at-point thing))) (or bounds (error "No %s here" thing)) (goto-char (cdr bounds)))) ;; Special cases ;; Lines ;; bolp will be false when you click on the last line in the buffer ;; and it has no final newline. (put 'line 'beginning-op (lambda () (if (bolp) (forward-line -1) (beginning-of-line)))) ;; Sexps (defun in-string-p () "Return non-nil if point is in a string. \[This is an internal function.]" (let ((orig (point))) (save-excursion (beginning-of-defun) (nth 3 (parse-partial-sexp (point) orig))))) (defun end-of-sexp () "Move point to the end of the current sexp. \[This is an internal function.]" (let ((char-syntax (char-syntax (char-after)))) (if (or (eq char-syntax ?\)) (and (eq char-syntax ?\") (in-string-p))) (forward-char 1) (forward-sexp 1)))) (put 'sexp 'end-op 'end-of-sexp) (defun beginning-of-sexp () "Move point to the beginning of the current sexp. \[This is an internal function.]" (let ((char-syntax (char-syntax (char-before)))) (if (or (eq char-syntax ?\() (and (eq char-syntax ?\") (in-string-p))) (forward-char -1) (forward-sexp -1)))) (put 'sexp 'beginning-op 'beginning-of-sexp) ;; Lists (put 'list 'bounds-of-thing-at-point 'thing-at-point-bounds-of-list-at-point) (defun thing-at-point-bounds-of-list-at-point () "Return the bounds of the list at point. \[Internal function used by `bounds-of-thing-at-point'.]" (save-excursion (let ((opoint (point)) (beg (condition-case nil (progn (up-list -1) (point)) (error nil)))) (condition-case nil (if beg (progn (forward-sexp) (cons beg (point))) ;; Are we are at the beginning of a top-level sexp? (forward-sexp) (let ((end (point))) (backward-sexp) (if (>= opoint (point)) (cons opoint end)))) (error nil))))) ;; Defuns (put 'defun 'beginning-op 'beginning-of-defun) (put 'defun 'end-op 'end-of-defun) (put 'defun 'forward-op 'end-of-defun) ;; Filenames (defvar thing-at-point-file-name-chars "-~/[:alnum:]_.${}#%,:" "Characters allowable in filenames.") (put 'filename 'end-op (lambda () (re-search-forward (concat "\\=[" thing-at-point-file-name-chars "]*") nil t))) (put 'filename 'beginning-op (lambda () (if (re-search-backward (concat "[^" thing-at-point-file-name-chars "]") nil t) (forward-char) (goto-char (point-min))))) ;; URIs (defvar thing-at-point-beginning-of-url-regexp nil "Regexp matching the beginning of a well-formed URI. If nil, construct the regexp from `thing-at-point-uri-schemes'.") (defvar thing-at-point-url-path-regexp "[^]\t\n \"'<>[^`{}]*[^]\t\n \"'<>[^`{}.,;]+" "Regexp matching the host and filename or e-mail part of a URL.") (defvar thing-at-point-short-url-regexp (concat "[-A-Za-z0-9]+\\.[-A-Za-z0-9.]+" thing-at-point-url-path-regexp) "Regexp matching a URI without a scheme component.") (defvar thing-at-point-uri-schemes ;; Officials from http://www.iana.org/assignments/uri-schemes.html '("aaa://" "about:" "acap://" "apt:" "bzr://" "bzr+ssh://" "attachment:/" "chrome://" "cid:" "content://" "crid://" "cvs://" "data:" "dav:" "dict://" "doi:" "dns:" "dtn:" "feed:" "file:/" "finger://" "fish://" "ftp://" "geo:" "git://" "go:" "gopher://" "h323:" "http://" "https://" "im:" "imap://" "info:" "ipp:" "irc://" "irc6://" "ircs://" "iris.beep:" "jar:" "ldap://" "ldaps://" "mailto:" "mid:" "mtqp://" "mupdate://" "news:" "nfs://" "nntp://" "opaquelocktoken:" "pop://" "pres:" "resource://" "rmi://" "rsync://" "rtsp://" "rtspu://" "service:" "sftp://" "sip:" "sips:" "smb://" "sms:" "snmp://" "soap.beep://" "soap.beeps://" "ssh://" "svn://" "svn+ssh://" "tag:" "tel:" "telnet://" "tftp://" "tip://" "tn3270://" "udp://" "urn:" "uuid:" "vemmi://" "webcal://" "xri://" "xmlrpc.beep://" "xmlrpc.beeps://" "z39.50r://" "z39.50s://" "xmpp:" ;; Compatibility "fax:" "mms://" "mmsh://" "modem:" "prospero:" "snews:" "wais://") "List of URI schemes recognized by `thing-at-point-url-at-point'. Each string in this list should correspond to the start of a URI's scheme component, up to and including the trailing // if the scheme calls for that to be present.") (defvar thing-at-point-markedup-url-regexp "\n]+\\)>" "Regexp matching a URL marked up per RFC1738. This kind of markup was formerly recommended as a way to indicate URIs, but as of RFC 3986 it is no longer recommended. Subexpression 1 should contain the delimited URL.") (defvar thing-at-point-newsgroup-regexp "\\`[[:lower:]]+\\.[-+[:lower:]_0-9.]+\\'" "Regexp matching a newsgroup name.") (defvar thing-at-point-newsgroup-heads '("alt" "comp" "gnu" "misc" "news" "sci" "soc" "talk") "Used by `thing-at-point-newsgroup-p' if gnus is not running.") (defvar thing-at-point-default-mail-uri-scheme "mailto" "Default scheme for ill-formed URIs that look like . If nil, do not give such URIs a scheme.") (put 'url 'bounds-of-thing-at-point 'thing-at-point-bounds-of-url-at-point) (defun thing-at-point-bounds-of-url-at-point (&optional lax) "Return a cons cell containing the start and end of the URI at point. Try to find a URI using `thing-at-point-markedup-url-regexp'. If that fails, try with `thing-at-point-beginning-of-url-regexp'. If that also fails, and optional argument LAX is non-nil, return the bounds of a possible ill-formed URI (one lacking a scheme)." ;; Look for the old markup. If found, use it. (or (thing-at-point--bounds-of-markedup-url) ;; Otherwise, find the bounds within which a URI may exist. The ;; method is similar to `ffap-string-at-point'. Note that URIs ;; may contain parentheses but may not contain spaces (RFC3986). (let* ((allowed-chars "--:=&?$+@-Z_[:alpha:]~#,%;*()!'") (skip-before "^[0-9a-zA-Z]") (skip-after ":;.,!?") (pt (point)) (beg (save-excursion (skip-chars-backward allowed-chars) (skip-chars-forward skip-before pt) (point))) (end (save-excursion (skip-chars-forward allowed-chars) (skip-chars-backward skip-after pt) (point)))) (or (thing-at-point--bounds-of-well-formed-url beg end pt) (if lax (cons beg end)))))) (defun thing-at-point--bounds-of-markedup-url () (when thing-at-point-markedup-url-regexp (let ((case-fold-search t) (pt (point)) (beg (line-beginning-position)) (end (line-end-position)) found) (save-excursion (goto-char beg) (while (and (not found) (<= (point) pt) (< (point) end)) (and (re-search-forward thing-at-point-markedup-url-regexp end 1) (> (point) pt) (setq found t)))) (if found (cons (match-beginning 1) (match-end 1)))))) (defun thing-at-point--bounds-of-well-formed-url (beg end pt) (save-excursion (goto-char beg) (let (url-beg paren-end regexp) (save-restriction (narrow-to-region beg end) ;; The scheme component must either match at BEG, or have no ;; other alphanumerical ASCII characters before it. (setq regexp (concat "\\(?:\\`\\|[^a-zA-Z0-9]\\)\\(" (or thing-at-point-beginning-of-url-regexp (regexp-opt thing-at-point-uri-schemes)) "\\)")) (and (re-search-forward regexp end t) ;; URI must have non-empty contents. (< (point) end) (setq url-beg (match-beginning 1)))) (when url-beg ;; If there is an open paren before the URI, truncate to the ;; matching close paren. (and (> url-beg (point-min)) (eq (car-safe (syntax-after (1- url-beg))) 4) (save-restriction (narrow-to-region (1- url-beg) (min end (point-max))) (setq paren-end (ignore-errors (scan-lists (1- url-beg) 1 0)))) (not (blink-matching-check-mismatch (1- url-beg) paren-end)) (setq end (1- paren-end))) (cons url-beg end))))) (put 'url 'thing-at-point 'thing-at-point-url-at-point) (defun thing-at-point-url-at-point (&optional lax bounds) "Return the URL around or before point. If no URL is found, return nil. If optional argument LAX is non-nil, look for URLs that are not well-formed, such as foo@bar or . If optional arguments BOUNDS are non-nil, it should be a cons cell of the form (START . END), containing the beginning and end positions of the URI. Otherwise, these positions are detected automatically from the text around point. If the scheme component is absent, either because a URI delimited with lacks one, or because an ill-formed URI was found with LAX or BEG and END, try to add a scheme in the returned URI. The scheme is chosen heuristically: \"mailto:\" if the address looks like an email address, \"ftp://\" if it starts with \"ftp\", etc." (unless bounds (setq bounds (thing-at-point-bounds-of-url-at-point lax))) (when (and bounds (< (car bounds) (cdr bounds))) (let ((str (buffer-substring-no-properties (car bounds) (cdr bounds)))) ;; If there is no scheme component, try to add one. (unless (string-match "\\`[a-zA-Z][-a-zA-Z0-9+.]*:" str) (or ;; If the URI has the form , treat it according to ;; `thing-at-point-default-mail-uri-scheme'. If there are ;; no angle brackets, it must be mailto. (when (string-match "\\`[^:@]+@[-.0-9=&?$+A-Z_a-z~#,%;*]" str) (let ((scheme (if (and (eq (char-before (car bounds)) ?<) (eq (char-after (cdr bounds)) ?>)) thing-at-point-default-mail-uri-scheme "mailto"))) (if scheme (setq str (concat scheme ":" str))))) ;; If the string is like , where FOO is an existing user ;; name on the system, treat that as an email address. (and (string-match "\\`[[:alnum:]]+\\'" str) (eq (char-before (car bounds)) ?<) (eq (char-after (cdr bounds)) ?>) (not (string-match "~" (expand-file-name (concat "~" str)))) (setq str (concat "mailto:" str))) ;; If it looks like news.example.com, treat it as news. (if (thing-at-point-newsgroup-p str) (setq str (concat "news:" str))) ;; If it looks like ftp.example.com. treat it as ftp. (if (string-match "\\`ftp\\." str) (setq str (concat "ftp://" str))) ;; If it looks like www.example.com. treat it as http. (if (string-match "\\`www\\." str) (setq str (concat "http://" str))) ;; Otherwise, it just isn't a URI. (setq str nil))) str))) (defun thing-at-point-newsgroup-p (string) "Return STRING if it looks like a newsgroup name, else nil." (and (string-match thing-at-point-newsgroup-regexp string) (let ((htbs '(gnus-active-hashtb gnus-newsrc-hashtb gnus-killed-hashtb)) (heads thing-at-point-newsgroup-heads) htb ret) (while htbs (setq htb (car htbs) htbs (cdr htbs)) (condition-case nil (progn ;; errs: htb symbol may be unbound, or not a hash-table. ;; gnus-gethash is just a macro for intern-soft. (and (symbol-value htb) (intern-soft string (symbol-value htb)) (setq ret string htbs nil)) ;; If we made it this far, gnus is running, so ignore "heads": (setq heads nil)) (error nil))) (or ret (not heads) (let ((head (string-match "\\`\\([[:lower:]]+\\)\\." string))) (and head (setq head (substring string 0 (match-end 1))) (member head heads) (setq ret string)))) ret))) (put 'url 'end-op (lambda () (end-of-thing 'url))) (put 'url 'beginning-op (lambda () (end-of-thing 'url))) ;; The normal thingatpt mechanism doesn't work for complex regexps. ;; This should work for almost any regexp wherever we are in the ;; match. To do a perfect job for any arbitrary regexp would mean ;; testing every position before point. Regexp searches won't find ;; matches that straddle the start position so we search forwards once ;; and then back repeatedly and then back up a char at a time. (defun thing-at-point-looking-at (regexp) "Return non-nil if point is in or just after a match for REGEXP. Set the match data from the earliest such match ending at or after point." (save-excursion (let ((old-point (point)) match) (and (looking-at regexp) (>= (match-end 0) old-point) (setq match (point))) ;; Search back repeatedly from end of next match. ;; This may fail if next match ends before this match does. (re-search-forward regexp nil 'limit) (while (and (re-search-backward regexp nil t) (or (> (match-beginning 0) old-point) (and (looking-at regexp) ; Extend match-end past search start (>= (match-end 0) old-point) (setq match (point)))))) (if (not match) nil (goto-char match) ;; Back up a char at a time in case search skipped ;; intermediate match straddling search start pos. (while (and (not (bobp)) (progn (backward-char 1) (looking-at regexp)) (>= (match-end 0) old-point) (setq match (point)))) (goto-char match) (looking-at regexp))))) ;; Email addresses (defvar thing-at-point-email-regexp "?" "A regular expression probably matching an email address. This does not match the real name portion, only the address, optionally with angle brackets.") ;; Haven't set 'forward-op on 'email nor defined 'forward-email' because ;; not sure they're actually needed, and URL seems to skip them too. ;; Note that (end-of-thing 'email) and (beginning-of-thing 'email) ;; work automagically, though. (put 'email 'bounds-of-thing-at-point (lambda () (let ((thing (thing-at-point-looking-at thing-at-point-email-regexp))) (if thing (let ((beginning (match-beginning 0)) (end (match-end 0))) (cons beginning end)))))) (put 'email 'thing-at-point (lambda () (let ((boundary-pair (bounds-of-thing-at-point 'email))) (if boundary-pair (buffer-substring-no-properties (car boundary-pair) (cdr boundary-pair)))))) ;; Whitespace (defun forward-whitespace (arg) "Move point to the end of the next sequence of whitespace chars. Each such sequence may be a single newline, or a sequence of consecutive space and/or tab characters. With prefix argument ARG, do it ARG times if positive, or move backwards ARG times if negative." (interactive "p") (if (natnump arg) (re-search-forward "[ \t]+\\|\n" nil 'move arg) (while (< arg 0) (if (re-search-backward "[ \t]+\\|\n" nil 'move) (or (eq (char-after (match-beginning 0)) ?\n) (skip-chars-backward " \t"))) (setq arg (1+ arg))))) ;; Buffer (put 'buffer 'end-op (lambda () (goto-char (point-max)))) (put 'buffer 'beginning-op (lambda () (goto-char (point-min)))) ;; Symbols (defun forward-symbol (arg) "Move point to the next position that is the end of a symbol. A symbol is any sequence of characters that are in either the word constituent or symbol constituent syntax class. With prefix argument ARG, do it ARG times if positive, or move backwards ARG times if negative." (interactive "p") (if (natnump arg) (re-search-forward "\\(\\sw\\|\\s_\\)+" nil 'move arg) (while (< arg 0) (if (re-search-backward "\\(\\sw\\|\\s_\\)+" nil 'move) (skip-syntax-backward "w_")) (setq arg (1+ arg))))) ;; Syntax blocks (defun forward-same-syntax (&optional arg) "Move point past all characters with the same syntax class. With prefix argument ARG, do it ARG times if positive, or move backwards ARG times if negative." (interactive "p") (or arg (setq arg 1)) (while (< arg 0) (skip-syntax-backward (char-to-string (char-syntax (char-before)))) (setq arg (1+ arg))) (while (> arg 0) (skip-syntax-forward (char-to-string (char-syntax (char-after)))) (setq arg (1- arg)))) ;; Aliases (defun word-at-point () "Return the word at point. See `thing-at-point'." (thing-at-point 'word)) (defun sentence-at-point () "Return the sentence at point. See `thing-at-point'." (thing-at-point 'sentence)) (defun read-from-whole-string (str) "Read a Lisp expression from STR. Signal an error if the entire string was not used." (let* ((read-data (read-from-string str)) (more-left (condition-case nil ;; The call to `ignore' suppresses a compiler warning. (progn (ignore (read-from-string (substring str (cdr read-data)))) t) (end-of-file nil)))) (if more-left (error "Can't read whole string") (car read-data)))) (defun form-at-point (&optional thing pred) (let ((sexp (condition-case nil (read-from-whole-string (thing-at-point (or thing 'sexp))) (error nil)))) (if (or (not pred) (funcall pred sexp)) sexp))) ;;;###autoload (defun sexp-at-point () "Return the sexp at point, or nil if none is found." (form-at-point 'sexp)) ;;;###autoload (defun symbol-at-point () "Return the symbol at point, or nil if none is found." (let ((thing (thing-at-point 'symbol))) (if thing (intern thing)))) ;;;###autoload (defun number-at-point () "Return the number at point, or nil if none is found." (form-at-point 'sexp 'numberp)) (put 'number 'thing-at-point 'number-at-point) ;;;###autoload (defun list-at-point () "Return the Lisp list at point, or nil if none is found." (form-at-point 'list 'listp)) ;;; thingatpt.el ends here