]> code.delx.au - gnu-emacs/blob - src/unexmacosx.c
28e04979a4c893abe4e75b670c3e1f1dd1d80e9b
[gnu-emacs] / src / unexmacosx.c
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Andrew Choi (akochoi@mac.com). */
21
22 /* Documentation note.
23
24 Consult the following documents/files for a description of the
25 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
26 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
27 mach header (-h option) and the load commands (-l option) in a
28 Mach-O file. The tool nm on Mac OS X displays the symbol table in
29 a Mach-O file. For examples of unexec for the Mach-O format, see
30 the file unexnext.c in the GNU Emacs distribution, the file
31 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
32 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
33 contains the source code for malloc_freezedry and malloc_jumpstart.
34 Read that to see what they do. This file was written completely
35 from scratch, making use of information from the above sources. */
36
37 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
38 memory allocator. All calls to malloc, realloc, and free in Emacs
39 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
40 this file. When temacs is run, all memory requests are handled in
41 the zone EmacsZone. The Darwin memory allocator library calls
42 maintain the data structures to manage this zone. Dumping writes
43 its contents to data segments of the executable file. When emacs
44 is run, the loader recreates the contents of the zone in memory.
45 However since the initialization routine of the zone memory
46 allocator is run again, this `zone' can no longer be used as a
47 heap. That is why emacs uses the ordinary malloc system call to
48 allocate memory. Also, when a block of memory needs to be
49 reallocated and the new size is larger than the old one, a new
50 block must be obtained by malloc and the old contents copied to
51 it. */
52
53 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
54 (possible causes of future bugs if changed).
55
56 The file offset of the start of the __TEXT segment is zero. Since
57 the Mach header and load commands are located at the beginning of a
58 Mach-O file, copying the contents of the __TEXT segment from the
59 input file overwrites them in the output file. Despite this,
60 unexec works fine as written below because the segment load command
61 for __TEXT appears, and is therefore processed, before all other
62 load commands except the segment load command for __PAGEZERO, which
63 remains unchanged.
64
65 Although the file offset of the start of the __TEXT segment is
66 zero, none of the sections it contains actually start there. In
67 fact, the earliest one starts a few hundred bytes beyond the end of
68 the last load command. The linker option -headerpad controls the
69 minimum size of this padding. Its setting can be changed in
70 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
71 load commands for the newly created __DATA segments (at 56 bytes
72 each). Unexec fails if there is not enough room for these new
73 segments.
74
75 The __TEXT segment contains the sections __text, __cstring,
76 __picsymbol_stub, and __const and the __DATA segment contains the
77 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
78 and __common. The other segments do not contain any sections.
79 These sections are copied from the input file to the output file,
80 except for __data, __bss, and __common, which are dumped from
81 memory. The types of the sections __bss and __common are changed
82 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
83 their relative order in the input and output files remain
84 unchanged. Otherwise all n_sect fields in the nlist records in the
85 symbol table (specified by the LC_SYMTAB load command) will have to
86 be changed accordingly.
87 */
88
89 /* config.h #define:s malloc/realloc/free and then includes stdlib.h.
90 We want the undefined versions, but if config.h includes stdlib.h
91 with the #define:s in place, the prototypes will be wrong and we get
92 warnings. To prevent that, include stdlib.h before config.h. */
93
94 #include <stdlib.h>
95 #include <config.h>
96 #undef malloc
97 #undef realloc
98 #undef free
99 #include <stdio.h>
100 #include <fcntl.h>
101 #include <stdarg.h>
102 #include <sys/types.h>
103 #include <unistd.h>
104 #include <mach/mach.h>
105 #include <mach-o/loader.h>
106 #include <mach-o/reloc.h>
107 #if defined (__ppc__)
108 #include <mach-o/ppc/reloc.h>
109 #endif
110 #ifdef HAVE_MALLOC_MALLOC_H
111 #include <malloc/malloc.h>
112 #else
113 #include <objc/malloc.h>
114 #endif
115
116 #include <assert.h>
117
118 #ifdef _LP64
119 #define mach_header mach_header_64
120 #define segment_command segment_command_64
121 #undef VM_REGION_BASIC_INFO_COUNT
122 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
123 #undef VM_REGION_BASIC_INFO
124 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
125 #undef LC_SEGMENT
126 #define LC_SEGMENT LC_SEGMENT_64
127 #define vm_region vm_region_64
128 #define section section_64
129 #undef MH_MAGIC
130 #define MH_MAGIC MH_MAGIC_64
131 #endif
132
133 #define VERBOSE 1
134
135 /* Size of buffer used to copy data from the input file to the output
136 file in function unexec_copy. */
137 #define UNEXEC_COPY_BUFSZ 1024
138
139 /* Regions with memory addresses above this value are assumed to be
140 mapped to dynamically loaded libraries and will not be dumped. */
141 #define VM_DATA_TOP (20 * 1024 * 1024)
142
143 /* Type of an element on the list of regions to be dumped. */
144 struct region_t {
145 vm_address_t address;
146 vm_size_t size;
147 vm_prot_t protection;
148 vm_prot_t max_protection;
149
150 struct region_t *next;
151 };
152
153 /* Head and tail of the list of regions to be dumped. */
154 static struct region_t *region_list_head = 0;
155 static struct region_t *region_list_tail = 0;
156
157 /* Pointer to array of load commands. */
158 static struct load_command **lca;
159
160 /* Number of load commands. */
161 static int nlc;
162
163 /* The highest VM address of segments loaded by the input file.
164 Regions with addresses beyond this are assumed to be allocated
165 dynamically and thus require dumping. */
166 static vm_address_t infile_lc_highest_addr = 0;
167
168 /* The lowest file offset used by the all sections in the __TEXT
169 segments. This leaves room at the beginning of the file to store
170 the Mach-O header. Check this value against header size to ensure
171 the added load commands for the new __DATA segments did not
172 overwrite any of the sections in the __TEXT segment. */
173 static unsigned long text_seg_lowest_offset = 0x10000000;
174
175 /* Mach header. */
176 static struct mach_header mh;
177
178 /* Offset at which the next load command should be written. */
179 static unsigned long curr_header_offset = sizeof (struct mach_header);
180
181 /* Offset at which the next segment should be written. */
182 static unsigned long curr_file_offset = 0;
183
184 static unsigned long pagesize;
185 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
186
187 static int infd, outfd;
188
189 static int in_dumped_exec = 0;
190
191 static malloc_zone_t *emacs_zone;
192
193 /* file offset of input file's data segment */
194 static off_t data_segment_old_fileoff = 0;
195
196 static struct segment_command *data_segment_scp;
197
198 static void unexec_error (const char *format, ...) NO_RETURN;
199
200 /* Read N bytes from infd into memory starting at address DEST.
201 Return true if successful, false otherwise. */
202 static int
203 unexec_read (void *dest, size_t n)
204 {
205 return n == read (infd, dest, n);
206 }
207
208 /* Write COUNT bytes from memory starting at address SRC to outfd
209 starting at offset DEST. Return true if successful, false
210 otherwise. */
211 static int
212 unexec_write (off_t dest, const void *src, size_t count)
213 {
214 if (lseek (outfd, dest, SEEK_SET) != dest)
215 return 0;
216
217 return write (outfd, src, count) == count;
218 }
219
220 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
221 Return true if successful, false otherwise. */
222 static int
223 unexec_write_zero (off_t dest, size_t count)
224 {
225 char buf[UNEXEC_COPY_BUFSZ];
226 ssize_t bytes;
227
228 memset (buf, 0, UNEXEC_COPY_BUFSZ);
229 if (lseek (outfd, dest, SEEK_SET) != dest)
230 return 0;
231
232 while (count > 0)
233 {
234 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
235 if (write (outfd, buf, bytes) != bytes)
236 return 0;
237 count -= bytes;
238 }
239
240 return 1;
241 }
242
243 /* Copy COUNT bytes from starting offset SRC in infd to starting
244 offset DEST in outfd. Return true if successful, false
245 otherwise. */
246 static int
247 unexec_copy (off_t dest, off_t src, ssize_t count)
248 {
249 ssize_t bytes_read;
250 ssize_t bytes_to_read;
251
252 char buf[UNEXEC_COPY_BUFSZ];
253
254 if (lseek (infd, src, SEEK_SET) != src)
255 return 0;
256
257 if (lseek (outfd, dest, SEEK_SET) != dest)
258 return 0;
259
260 while (count > 0)
261 {
262 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
263 bytes_read = read (infd, buf, bytes_to_read);
264 if (bytes_read <= 0)
265 return 0;
266 if (write (outfd, buf, bytes_read) != bytes_read)
267 return 0;
268 count -= bytes_read;
269 }
270
271 return 1;
272 }
273
274 /* Debugging and informational messages routines. */
275
276 static void
277 unexec_error (const char *format, ...)
278 {
279 va_list ap;
280
281 va_start (ap, format);
282 fprintf (stderr, "unexec: ");
283 vfprintf (stderr, format, ap);
284 fprintf (stderr, "\n");
285 va_end (ap);
286 exit (1);
287 }
288
289 static void
290 print_prot (vm_prot_t prot)
291 {
292 if (prot == VM_PROT_NONE)
293 printf ("none");
294 else
295 {
296 putchar (prot & VM_PROT_READ ? 'r' : ' ');
297 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
298 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
299 putchar (' ');
300 }
301 }
302
303 static void
304 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
305 vm_prot_t max_prot)
306 {
307 printf ("%#10lx %#8lx ", (long) address, (long) size);
308 print_prot (prot);
309 putchar (' ');
310 print_prot (max_prot);
311 putchar ('\n');
312 }
313
314 static void
315 print_region_list (void)
316 {
317 struct region_t *r;
318
319 printf (" address size prot maxp\n");
320
321 for (r = region_list_head; r; r = r->next)
322 print_region (r->address, r->size, r->protection, r->max_protection);
323 }
324
325 static void
326 print_regions (void)
327 {
328 task_t target_task = mach_task_self ();
329 vm_address_t address = (vm_address_t) 0;
330 vm_size_t size;
331 struct vm_region_basic_info info;
332 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
333 mach_port_t object_name;
334
335 printf (" address size prot maxp\n");
336
337 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
338 (vm_region_info_t) &info, &info_count, &object_name)
339 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
340 {
341 print_region (address, size, info.protection, info.max_protection);
342
343 if (object_name != MACH_PORT_NULL)
344 mach_port_deallocate (target_task, object_name);
345
346 address += size;
347 }
348 }
349
350 /* Build the list of regions that need to be dumped. Regions with
351 addresses above VM_DATA_TOP are omitted. Adjacent regions with
352 identical protection are merged. Note that non-writable regions
353 cannot be omitted because they some regions created at run time are
354 read-only. */
355 static void
356 build_region_list (void)
357 {
358 task_t target_task = mach_task_self ();
359 vm_address_t address = (vm_address_t) 0;
360 vm_size_t size;
361 struct vm_region_basic_info info;
362 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
363 mach_port_t object_name;
364 struct region_t *r;
365
366 #if VERBOSE
367 printf ("--- List of All Regions ---\n");
368 printf (" address size prot maxp\n");
369 #endif
370
371 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
372 (vm_region_info_t) &info, &info_count, &object_name)
373 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
374 {
375 /* Done when we reach addresses of shared libraries, which are
376 loaded in high memory. */
377 if (address >= VM_DATA_TOP)
378 break;
379
380 #if VERBOSE
381 print_region (address, size, info.protection, info.max_protection);
382 #endif
383
384 /* If a region immediately follows the previous one (the one
385 most recently added to the list) and has identical
386 protection, merge it with the latter. Otherwise create a
387 new list element for it. */
388 if (region_list_tail
389 && info.protection == region_list_tail->protection
390 && info.max_protection == region_list_tail->max_protection
391 && region_list_tail->address + region_list_tail->size == address)
392 {
393 region_list_tail->size += size;
394 }
395 else
396 {
397 r = (struct region_t *) malloc (sizeof (struct region_t));
398
399 if (!r)
400 unexec_error ("cannot allocate region structure");
401
402 r->address = address;
403 r->size = size;
404 r->protection = info.protection;
405 r->max_protection = info.max_protection;
406
407 r->next = 0;
408 if (region_list_head == 0)
409 {
410 region_list_head = r;
411 region_list_tail = r;
412 }
413 else
414 {
415 region_list_tail->next = r;
416 region_list_tail = r;
417 }
418
419 /* Deallocate (unused) object name returned by
420 vm_region. */
421 if (object_name != MACH_PORT_NULL)
422 mach_port_deallocate (target_task, object_name);
423 }
424
425 address += size;
426 }
427
428 printf ("--- List of Regions to be Dumped ---\n");
429 print_region_list ();
430 }
431
432
433 #define MAX_UNEXEC_REGIONS 400
434
435 static int num_unexec_regions;
436 typedef struct {
437 vm_range_t range;
438 vm_size_t filesize;
439 } unexec_region_info;
440 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
441
442 static void
443 unexec_regions_recorder (task_t task, void *rr, unsigned type,
444 vm_range_t *ranges, unsigned num)
445 {
446 vm_address_t p;
447 vm_size_t filesize;
448
449 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
450 {
451 /* Subtract the size of trailing null bytes from filesize. It
452 can be smaller than vmsize in segment commands. In such a
453 case, trailing bytes are initialized with zeros. */
454 for (p = ranges->address + ranges->size; p > ranges->address; p--)
455 if (*(((char *) p)-1))
456 break;
457 filesize = p - ranges->address;
458
459 unexec_regions[num_unexec_regions].filesize = filesize;
460 unexec_regions[num_unexec_regions++].range = *ranges;
461 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
462 (long) filesize, (long) (ranges->size));
463 ranges++; num--;
464 }
465 }
466
467 static kern_return_t
468 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
469 {
470 *ptr = (void *) address;
471 return KERN_SUCCESS;
472 }
473
474 static void
475 find_emacs_zone_regions (void)
476 {
477 num_unexec_regions = 0;
478
479 emacs_zone->introspect->enumerator (mach_task_self(), 0,
480 MALLOC_PTR_REGION_RANGE_TYPE
481 | MALLOC_ADMIN_REGION_RANGE_TYPE,
482 (vm_address_t) emacs_zone,
483 unexec_reader,
484 unexec_regions_recorder);
485
486 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
487 unexec_error ("find_emacs_zone_regions: too many regions");
488 }
489
490 static int
491 unexec_regions_sort_compare (const void *a, const void *b)
492 {
493 vm_address_t aa = ((unexec_region_info *) a)->range.address;
494 vm_address_t bb = ((unexec_region_info *) b)->range.address;
495
496 if (aa < bb)
497 return -1;
498 else if (aa > bb)
499 return 1;
500 else
501 return 0;
502 }
503
504 static void
505 unexec_regions_merge (void)
506 {
507 int i, n;
508 unexec_region_info r;
509 vm_size_t padsize;
510
511 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
512 &unexec_regions_sort_compare);
513 n = 0;
514 r = unexec_regions[0];
515 padsize = r.range.address & (pagesize - 1);
516 if (padsize)
517 {
518 r.range.address -= padsize;
519 r.range.size += padsize;
520 r.filesize += padsize;
521 }
522 for (i = 1; i < num_unexec_regions; i++)
523 {
524 if (r.range.address + r.range.size == unexec_regions[i].range.address
525 && r.range.size - r.filesize < 2 * pagesize)
526 {
527 r.filesize = r.range.size + unexec_regions[i].filesize;
528 r.range.size += unexec_regions[i].range.size;
529 }
530 else
531 {
532 unexec_regions[n++] = r;
533 r = unexec_regions[i];
534 padsize = r.range.address & (pagesize - 1);
535 if (padsize)
536 {
537 if ((unexec_regions[n-1].range.address
538 + unexec_regions[n-1].range.size) == r.range.address)
539 unexec_regions[n-1].range.size -= padsize;
540
541 r.range.address -= padsize;
542 r.range.size += padsize;
543 r.filesize += padsize;
544 }
545 }
546 }
547 unexec_regions[n++] = r;
548 num_unexec_regions = n;
549 }
550
551
552 /* More informational messages routines. */
553
554 static void
555 print_load_command_name (int lc)
556 {
557 switch (lc)
558 {
559 case LC_SEGMENT:
560 #ifndef _LP64
561 printf ("LC_SEGMENT ");
562 #else
563 printf ("LC_SEGMENT_64 ");
564 #endif
565 break;
566 case LC_LOAD_DYLINKER:
567 printf ("LC_LOAD_DYLINKER ");
568 break;
569 case LC_LOAD_DYLIB:
570 printf ("LC_LOAD_DYLIB ");
571 break;
572 case LC_SYMTAB:
573 printf ("LC_SYMTAB ");
574 break;
575 case LC_DYSYMTAB:
576 printf ("LC_DYSYMTAB ");
577 break;
578 case LC_UNIXTHREAD:
579 printf ("LC_UNIXTHREAD ");
580 break;
581 case LC_PREBOUND_DYLIB:
582 printf ("LC_PREBOUND_DYLIB");
583 break;
584 case LC_TWOLEVEL_HINTS:
585 printf ("LC_TWOLEVEL_HINTS");
586 break;
587 #ifdef LC_UUID
588 case LC_UUID:
589 printf ("LC_UUID ");
590 break;
591 #endif
592 #ifdef LC_DYLD_INFO
593 case LC_DYLD_INFO:
594 printf ("LC_DYLD_INFO ");
595 break;
596 case LC_DYLD_INFO_ONLY:
597 printf ("LC_DYLD_INFO_ONLY");
598 break;
599 #endif
600 default:
601 printf ("unknown ");
602 }
603 }
604
605 static void
606 print_load_command (struct load_command *lc)
607 {
608 print_load_command_name (lc->cmd);
609 printf ("%8d", lc->cmdsize);
610
611 if (lc->cmd == LC_SEGMENT)
612 {
613 struct segment_command *scp;
614 struct section *sectp;
615 int j;
616
617 scp = (struct segment_command *) lc;
618 printf (" %-16.16s %#10lx %#8lx\n",
619 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
620
621 sectp = (struct section *) (scp + 1);
622 for (j = 0; j < scp->nsects; j++)
623 {
624 printf (" %-16.16s %#10lx %#8lx\n",
625 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
626 sectp++;
627 }
628 }
629 else
630 printf ("\n");
631 }
632
633 /* Read header and load commands from input file. Store the latter in
634 the global array lca. Store the total number of load commands in
635 global variable nlc. */
636 static void
637 read_load_commands (void)
638 {
639 int i;
640
641 if (!unexec_read (&mh, sizeof (struct mach_header)))
642 unexec_error ("cannot read mach-o header");
643
644 if (mh.magic != MH_MAGIC)
645 unexec_error ("input file not in Mach-O format");
646
647 if (mh.filetype != MH_EXECUTE)
648 unexec_error ("input Mach-O file is not an executable object file");
649
650 #if VERBOSE
651 printf ("--- Header Information ---\n");
652 printf ("Magic = 0x%08x\n", mh.magic);
653 printf ("CPUType = %d\n", mh.cputype);
654 printf ("CPUSubType = %d\n", mh.cpusubtype);
655 printf ("FileType = 0x%x\n", mh.filetype);
656 printf ("NCmds = %d\n", mh.ncmds);
657 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
658 printf ("Flags = 0x%08x\n", mh.flags);
659 #endif
660
661 nlc = mh.ncmds;
662 lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
663
664 for (i = 0; i < nlc; i++)
665 {
666 struct load_command lc;
667 /* Load commands are variable-size: so read the command type and
668 size first and then read the rest. */
669 if (!unexec_read (&lc, sizeof (struct load_command)))
670 unexec_error ("cannot read load command");
671 lca[i] = (struct load_command *) malloc (lc.cmdsize);
672 memcpy (lca[i], &lc, sizeof (struct load_command));
673 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
674 unexec_error ("cannot read content of load command");
675 if (lc.cmd == LC_SEGMENT)
676 {
677 struct segment_command *scp = (struct segment_command *) lca[i];
678
679 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
680 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
681
682 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
683 {
684 struct section *sectp = (struct section *) (scp + 1);
685 int j;
686
687 for (j = 0; j < scp->nsects; j++)
688 if (sectp->offset < text_seg_lowest_offset)
689 text_seg_lowest_offset = sectp->offset;
690 }
691 }
692 }
693
694 printf ("Highest address of load commands in input file: %#8lx\n",
695 (unsigned long)infile_lc_highest_addr);
696
697 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
698 text_seg_lowest_offset);
699
700 printf ("--- List of Load Commands in Input File ---\n");
701 printf ("# cmd cmdsize name address size\n");
702
703 for (i = 0; i < nlc; i++)
704 {
705 printf ("%1d ", i);
706 print_load_command (lca[i]);
707 }
708 }
709
710 /* Copy a LC_SEGMENT load command other than the __DATA segment from
711 the input file to the output file, adjusting the file offset of the
712 segment and the file offsets of sections contained in it. */
713 static void
714 copy_segment (struct load_command *lc)
715 {
716 struct segment_command *scp = (struct segment_command *) lc;
717 unsigned long old_fileoff = scp->fileoff;
718 struct section *sectp;
719 int j;
720
721 scp->fileoff = curr_file_offset;
722
723 sectp = (struct section *) (scp + 1);
724 for (j = 0; j < scp->nsects; j++)
725 {
726 sectp->offset += curr_file_offset - old_fileoff;
727 sectp++;
728 }
729
730 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
731 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
732 (long) (scp->vmsize), (long) (scp->vmaddr));
733
734 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
735 unexec_error ("cannot copy segment from input to output file");
736 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
737
738 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
739 unexec_error ("cannot write load command to header");
740
741 curr_header_offset += lc->cmdsize;
742 }
743
744 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
745 file to the output file. We assume that only one such segment load
746 command exists in the input file and it contains the sections
747 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
748 __dyld. The first three of these should be dumped from memory and
749 the rest should be copied from the input file. Note that the
750 sections __bss and __common contain no data in the input file
751 because their flag fields have the value S_ZEROFILL. Dumping these
752 from memory makes it necessary to adjust file offset fields in
753 subsequently dumped load commands. Then, create new __DATA segment
754 load commands for regions on the region list other than the one
755 corresponding to the __DATA segment in the input file. */
756 static void
757 copy_data_segment (struct load_command *lc)
758 {
759 struct segment_command *scp = (struct segment_command *) lc;
760 struct section *sectp;
761 int j;
762 unsigned long header_offset, old_file_offset;
763
764 /* The new filesize of the segment is set to its vmsize because data
765 blocks for segments must start at region boundaries. Note that
766 this may leave unused locations at the end of the segment data
767 block because the total of the sizes of all sections in the
768 segment is generally smaller than vmsize. */
769 scp->filesize = scp->vmsize;
770
771 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
772 scp->segname, curr_file_offset, (long)(scp->filesize),
773 (long)(scp->vmsize), (long) (scp->vmaddr));
774
775 /* Offsets in the output file for writing the next section structure
776 and segment data block, respectively. */
777 header_offset = curr_header_offset + sizeof (struct segment_command);
778
779 sectp = (struct section *) (scp + 1);
780 for (j = 0; j < scp->nsects; j++)
781 {
782 old_file_offset = sectp->offset;
783 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
784 /* The __data section is dumped from memory. The __bss and
785 __common sections are also dumped from memory but their flag
786 fields require changing (from S_ZEROFILL to S_REGULAR). The
787 other three kinds of sections are just copied from the input
788 file. */
789 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
790 {
791 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
792 unexec_error ("cannot write section %s", SECT_DATA);
793 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
794 unexec_error ("cannot write section %s's header", SECT_DATA);
795 }
796 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
797 {
798 sectp->flags = S_REGULAR;
799 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
800 unexec_error ("cannot write section %s", sectp->sectname);
801 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
802 unexec_error ("cannot write section %s's header", sectp->sectname);
803 }
804 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
805 {
806 extern char *my_endbss_static;
807 unsigned long my_size;
808
809 sectp->flags = S_REGULAR;
810
811 /* Clear uninitialized local variables in statically linked
812 libraries. In particular, function pointers stored by
813 libSystemStub.a, which is introduced in Mac OS X 10.4 for
814 binary compatibility with respect to long double, are
815 cleared so that they will be reinitialized when the
816 dumped binary is executed on other versions of OS. */
817 my_size = (unsigned long)my_endbss_static - sectp->addr;
818 if (!(sectp->addr <= (unsigned long)my_endbss_static
819 && my_size <= sectp->size))
820 unexec_error ("my_endbss_static is not in section %s",
821 sectp->sectname);
822 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
823 unexec_error ("cannot write section %s", sectp->sectname);
824 if (!unexec_write_zero (sectp->offset + my_size,
825 sectp->size - my_size))
826 unexec_error ("cannot write section %s", sectp->sectname);
827 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
828 unexec_error ("cannot write section %s's header", sectp->sectname);
829 }
830 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
831 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
832 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
833 || strncmp (sectp->sectname, "__dyld", 16) == 0
834 || strncmp (sectp->sectname, "__const", 16) == 0
835 || strncmp (sectp->sectname, "__cfstring", 16) == 0
836 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
837 || strncmp (sectp->sectname, "__program_vars", 16) == 0
838 || strncmp (sectp->sectname, "__objc_", 7) == 0)
839 {
840 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
841 unexec_error ("cannot copy section %s", sectp->sectname);
842 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
843 unexec_error ("cannot write section %s's header", sectp->sectname);
844 }
845 else
846 unexec_error ("unrecognized section name in __DATA segment");
847
848 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
849 sectp->sectname, (long) (sectp->offset),
850 (long) (sectp->offset + sectp->size), (long) (sectp->size));
851
852 header_offset += sizeof (struct section);
853 sectp++;
854 }
855
856 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
857
858 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
859 unexec_error ("cannot write header of __DATA segment");
860 curr_header_offset += lc->cmdsize;
861
862 /* Create new __DATA segment load commands for regions on the region
863 list that do not corresponding to any segment load commands in
864 the input file.
865 */
866 for (j = 0; j < num_unexec_regions; j++)
867 {
868 struct segment_command sc;
869
870 sc.cmd = LC_SEGMENT;
871 sc.cmdsize = sizeof (struct segment_command);
872 strncpy (sc.segname, SEG_DATA, 16);
873 sc.vmaddr = unexec_regions[j].range.address;
874 sc.vmsize = unexec_regions[j].range.size;
875 sc.fileoff = curr_file_offset;
876 sc.filesize = unexec_regions[j].filesize;
877 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
878 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
879 sc.nsects = 0;
880 sc.flags = 0;
881
882 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
883 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
884 (long) (sc.vmsize), (long) (sc.vmaddr));
885
886 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
887 unexec_error ("cannot write new __DATA segment");
888 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
889
890 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
891 unexec_error ("cannot write new __DATA segment's header");
892 curr_header_offset += sc.cmdsize;
893 mh.ncmds++;
894 }
895 }
896
897 /* Copy a LC_SYMTAB load command from the input file to the output
898 file, adjusting the file offset fields. */
899 static void
900 copy_symtab (struct load_command *lc, long delta)
901 {
902 struct symtab_command *stp = (struct symtab_command *) lc;
903
904 stp->symoff += delta;
905 stp->stroff += delta;
906
907 printf ("Writing LC_SYMTAB command\n");
908
909 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
910 unexec_error ("cannot write symtab command to header");
911
912 curr_header_offset += lc->cmdsize;
913 }
914
915 /* Fix up relocation entries. */
916 static void
917 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
918 {
919 int i, unreloc_count;
920 struct relocation_info reloc_info;
921 struct scattered_relocation_info *sc_reloc_info
922 = (struct scattered_relocation_info *) &reloc_info;
923 vm_address_t location;
924
925 for (unreloc_count = 0, i = 0; i < nrel; i++)
926 {
927 if (lseek (infd, reloff, L_SET) != reloff)
928 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
929 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
930 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
931 reloff += sizeof (reloc_info);
932
933 if (sc_reloc_info->r_scattered == 0)
934 switch (reloc_info.r_type)
935 {
936 case GENERIC_RELOC_VANILLA:
937 location = base + reloc_info.r_address;
938 if (location >= data_segment_scp->vmaddr
939 && location < (data_segment_scp->vmaddr
940 + data_segment_scp->vmsize))
941 {
942 off_t src_off = data_segment_old_fileoff
943 + (location - data_segment_scp->vmaddr);
944 off_t dst_off = data_segment_scp->fileoff
945 + (location - data_segment_scp->vmaddr);
946
947 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
948 unexec_error ("unrelocate: %s:%d cannot copy original value",
949 name, i);
950 unreloc_count++;
951 }
952 break;
953 default:
954 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
955 name, i, reloc_info.r_type);
956 }
957 else
958 switch (sc_reloc_info->r_type)
959 {
960 #if defined (__ppc__)
961 case PPC_RELOC_PB_LA_PTR:
962 /* nothing to do for prebound lazy pointer */
963 break;
964 #endif
965 default:
966 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
967 name, i, sc_reloc_info->r_type);
968 }
969 }
970
971 if (nrel > 0)
972 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
973 unreloc_count, nrel, name);
974 }
975
976 #if __ppc64__
977 /* Rebase r_address in the relocation table. */
978 static void
979 rebase_reloc_address (off_t reloff, int nrel, long linkedit_delta, long diff)
980 {
981 int i;
982 struct relocation_info reloc_info;
983 struct scattered_relocation_info *sc_reloc_info
984 = (struct scattered_relocation_info *) &reloc_info;
985
986 for (i = 0; i < nrel; i++, reloff += sizeof (reloc_info))
987 {
988 if (lseek (infd, reloff - linkedit_delta, L_SET)
989 != reloff - linkedit_delta)
990 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
991 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
992 unexec_error ("rebase_reloc_table: cannot read reloc_info");
993
994 if (sc_reloc_info->r_scattered == 0
995 && reloc_info.r_type == GENERIC_RELOC_VANILLA)
996 {
997 reloc_info.r_address -= diff;
998 if (!unexec_write (reloff, &reloc_info, sizeof (reloc_info)))
999 unexec_error ("rebase_reloc_table: cannot write reloc_info");
1000 }
1001 }
1002 }
1003 #endif
1004
1005 /* Copy a LC_DYSYMTAB load command from the input file to the output
1006 file, adjusting the file offset fields. */
1007 static void
1008 copy_dysymtab (struct load_command *lc, long delta)
1009 {
1010 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1011 vm_address_t base;
1012
1013 #ifdef _LP64
1014 #if __ppc64__
1015 {
1016 int i;
1017
1018 base = 0;
1019 for (i = 0; i < nlc; i++)
1020 if (lca[i]->cmd == LC_SEGMENT)
1021 {
1022 struct segment_command *scp = (struct segment_command *) lca[i];
1023
1024 if (scp->vmaddr + scp->vmsize > 0x100000000
1025 && (scp->initprot & VM_PROT_WRITE) != 0)
1026 {
1027 base = data_segment_scp->vmaddr;
1028 break;
1029 }
1030 }
1031 }
1032 #else
1033 /* First writable segment address. */
1034 base = data_segment_scp->vmaddr;
1035 #endif
1036 #else
1037 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1038 base = 0;
1039 #endif
1040
1041 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1042 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1043
1044 if (dstp->nextrel > 0) {
1045 dstp->extreloff += delta;
1046 }
1047
1048 if (dstp->nlocrel > 0) {
1049 dstp->locreloff += delta;
1050 }
1051
1052 if (dstp->nindirectsyms > 0)
1053 dstp->indirectsymoff += delta;
1054
1055 printf ("Writing LC_DYSYMTAB command\n");
1056
1057 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1058 unexec_error ("cannot write symtab command to header");
1059
1060 curr_header_offset += lc->cmdsize;
1061
1062 #if __ppc64__
1063 /* Check if the relocation base needs to be changed. */
1064 if (base == 0)
1065 {
1066 vm_address_t newbase = 0;
1067 int i;
1068
1069 for (i = 0; i < num_unexec_regions; i++)
1070 if (unexec_regions[i].range.address + unexec_regions[i].range.size
1071 > 0x100000000)
1072 {
1073 newbase = data_segment_scp->vmaddr;
1074 break;
1075 }
1076
1077 if (newbase)
1078 {
1079 rebase_reloc_address (dstp->locreloff, dstp->nlocrel, delta, newbase);
1080 rebase_reloc_address (dstp->extreloff, dstp->nextrel, delta, newbase);
1081 }
1082 }
1083 #endif
1084 }
1085
1086 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1087 file, adjusting the file offset fields. */
1088 static void
1089 copy_twolevelhints (struct load_command *lc, long delta)
1090 {
1091 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1092
1093 if (tlhp->nhints > 0) {
1094 tlhp->offset += delta;
1095 }
1096
1097 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1098
1099 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1100 unexec_error ("cannot write two level hint command to header");
1101
1102 curr_header_offset += lc->cmdsize;
1103 }
1104
1105 #ifdef LC_DYLD_INFO
1106 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1107 file, adjusting the file offset fields. */
1108 static void
1109 copy_dyld_info (struct load_command *lc, long delta)
1110 {
1111 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1112
1113 if (dip->rebase_off > 0)
1114 dip->rebase_off += delta;
1115 if (dip->bind_off > 0)
1116 dip->bind_off += delta;
1117 if (dip->weak_bind_off > 0)
1118 dip->weak_bind_off += delta;
1119 if (dip->lazy_bind_off > 0)
1120 dip->lazy_bind_off += delta;
1121 if (dip->export_off > 0)
1122 dip->export_off += delta;
1123
1124 printf ("Writing ");
1125 print_load_command_name (lc->cmd);
1126 printf (" command\n");
1127
1128 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1129 unexec_error ("cannot write dyld info command to header");
1130
1131 curr_header_offset += lc->cmdsize;
1132 }
1133 #endif
1134
1135 /* Copy other kinds of load commands from the input file to the output
1136 file, ones that do not require adjustments of file offsets. */
1137 static void
1138 copy_other (struct load_command *lc)
1139 {
1140 printf ("Writing ");
1141 print_load_command_name (lc->cmd);
1142 printf (" command\n");
1143
1144 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1145 unexec_error ("cannot write symtab command to header");
1146
1147 curr_header_offset += lc->cmdsize;
1148 }
1149
1150 /* Loop through all load commands and dump them. Then write the Mach
1151 header. */
1152 static void
1153 dump_it (void)
1154 {
1155 int i;
1156 long linkedit_delta = 0;
1157
1158 printf ("--- Load Commands written to Output File ---\n");
1159
1160 for (i = 0; i < nlc; i++)
1161 switch (lca[i]->cmd)
1162 {
1163 case LC_SEGMENT:
1164 {
1165 struct segment_command *scp = (struct segment_command *) lca[i];
1166 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1167 {
1168 /* save data segment file offset and segment_command for
1169 unrelocate */
1170 if (data_segment_old_fileoff)
1171 unexec_error ("cannot handle multiple DATA segments"
1172 " in input file");
1173 data_segment_old_fileoff = scp->fileoff;
1174 data_segment_scp = scp;
1175
1176 copy_data_segment (lca[i]);
1177 }
1178 else
1179 {
1180 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1181 {
1182 if (linkedit_delta)
1183 unexec_error ("cannot handle multiple LINKEDIT segments"
1184 " in input file");
1185 linkedit_delta = curr_file_offset - scp->fileoff;
1186 }
1187
1188 copy_segment (lca[i]);
1189 }
1190 }
1191 break;
1192 case LC_SYMTAB:
1193 copy_symtab (lca[i], linkedit_delta);
1194 break;
1195 case LC_DYSYMTAB:
1196 copy_dysymtab (lca[i], linkedit_delta);
1197 break;
1198 case LC_TWOLEVEL_HINTS:
1199 copy_twolevelhints (lca[i], linkedit_delta);
1200 break;
1201 #ifdef LC_DYLD_INFO
1202 case LC_DYLD_INFO:
1203 case LC_DYLD_INFO_ONLY:
1204 copy_dyld_info (lca[i], linkedit_delta);
1205 break;
1206 #endif
1207 default:
1208 copy_other (lca[i]);
1209 break;
1210 }
1211
1212 if (curr_header_offset > text_seg_lowest_offset)
1213 unexec_error ("not enough room for load commands for new __DATA segments");
1214
1215 printf ("%ld unused bytes follow Mach-O header\n",
1216 text_seg_lowest_offset - curr_header_offset);
1217
1218 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1219 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1220 unexec_error ("cannot write final header contents");
1221 }
1222
1223 /* Take a snapshot of Emacs and make a Mach-O format executable file
1224 from it. The file names of the output and input files are outfile
1225 and infile, respectively. The three other parameters are
1226 ignored. */
1227 int
1228 unexec (const char *outfile, const char *infile)
1229 {
1230 if (in_dumped_exec)
1231 unexec_error ("Unexec from a dumped executable is not supported.");
1232
1233 pagesize = getpagesize ();
1234 infd = open (infile, O_RDONLY, 0);
1235 if (infd < 0)
1236 {
1237 unexec_error ("cannot open input file `%s'", infile);
1238 }
1239
1240 outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
1241 if (outfd < 0)
1242 {
1243 close (infd);
1244 unexec_error ("cannot open output file `%s'", outfile);
1245 }
1246
1247 build_region_list ();
1248 read_load_commands ();
1249
1250 find_emacs_zone_regions ();
1251 unexec_regions_merge ();
1252
1253 in_dumped_exec = 1;
1254
1255 dump_it ();
1256
1257 close (outfd);
1258 return 0;
1259 }
1260
1261
1262 void
1263 unexec_init_emacs_zone (void)
1264 {
1265 emacs_zone = malloc_create_zone (0, 0);
1266 malloc_set_zone_name (emacs_zone, "EmacsZone");
1267 }
1268
1269 #ifndef MACOSX_MALLOC_MULT16
1270 #define MACOSX_MALLOC_MULT16 1
1271 #endif
1272
1273 typedef struct unexec_malloc_header {
1274 union {
1275 char c[8];
1276 size_t size;
1277 } u;
1278 } unexec_malloc_header_t;
1279
1280 #if MACOSX_MALLOC_MULT16
1281
1282 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1283
1284 #else
1285
1286 int
1287 ptr_in_unexec_regions (void *ptr)
1288 {
1289 int i;
1290
1291 for (i = 0; i < num_unexec_regions; i++)
1292 if ((vm_address_t) ptr - unexec_regions[i].range.address
1293 < unexec_regions[i].range.size)
1294 return 1;
1295
1296 return 0;
1297 }
1298
1299 #endif
1300
1301 void *
1302 unexec_malloc (size_t size)
1303 {
1304 if (in_dumped_exec)
1305 {
1306 void *p;
1307
1308 p = malloc (size);
1309 #if MACOSX_MALLOC_MULT16
1310 assert (((vm_address_t) p % 16) == 0);
1311 #endif
1312 return p;
1313 }
1314 else
1315 {
1316 unexec_malloc_header_t *ptr;
1317
1318 ptr = (unexec_malloc_header_t *)
1319 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1320 ptr->u.size = size;
1321 ptr++;
1322 #if MACOSX_MALLOC_MULT16
1323 assert (((vm_address_t) ptr % 16) == 8);
1324 #endif
1325 return (void *) ptr;
1326 }
1327 }
1328
1329 void *
1330 unexec_realloc (void *old_ptr, size_t new_size)
1331 {
1332 if (in_dumped_exec)
1333 {
1334 void *p;
1335
1336 if (ptr_in_unexec_regions (old_ptr))
1337 {
1338 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1339 size_t size = new_size > old_size ? old_size : new_size;
1340
1341 p = (size_t *) malloc (new_size);
1342 if (size)
1343 memcpy (p, old_ptr, size);
1344 }
1345 else
1346 {
1347 p = realloc (old_ptr, new_size);
1348 }
1349 #if MACOSX_MALLOC_MULT16
1350 assert (((vm_address_t) p % 16) == 0);
1351 #endif
1352 return p;
1353 }
1354 else
1355 {
1356 unexec_malloc_header_t *ptr;
1357
1358 ptr = (unexec_malloc_header_t *)
1359 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1360 new_size + sizeof (unexec_malloc_header_t));
1361 ptr->u.size = new_size;
1362 ptr++;
1363 #if MACOSX_MALLOC_MULT16
1364 assert (((vm_address_t) ptr % 16) == 8);
1365 #endif
1366 return (void *) ptr;
1367 }
1368 }
1369
1370 void
1371 unexec_free (void *ptr)
1372 {
1373 if (ptr == NULL)
1374 return;
1375 if (in_dumped_exec)
1376 {
1377 if (!ptr_in_unexec_regions (ptr))
1378 free (ptr);
1379 }
1380 else
1381 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1382 }
1383