]> code.delx.au - gnu-emacs/blob - src/intervals.c
Merge from emacs-24; up to 2012-12-24T06:24:08Z!eggert@cs.ucla.edu
[gnu-emacs] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2013 Free Software
3 Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38 */
39
40
41 #include <config.h>
42
43 #define INTERVALS_INLINE EXTERN_INLINE
44
45 #include <intprops.h>
46 #include "lisp.h"
47 #include "intervals.h"
48 #include "character.h"
49 #include "buffer.h"
50 #include "puresize.h"
51 #include "keyboard.h"
52 #include "keymap.h"
53
54 /* Test for membership, allowing for t (actually any non-cons) to mean the
55 universal set. */
56
57 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
58
59 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
60 static INTERVAL merge_interval_right (INTERVAL);
61 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
62 \f
63 /* Utility functions for intervals. */
64
65 /* Use these functions to set Lisp_Object
66 or pointer slots of struct interval. */
67
68 static void
69 set_interval_object (INTERVAL i, Lisp_Object obj)
70 {
71 eassert (BUFFERP (obj) || STRINGP (obj));
72 i->up_obj = 1;
73 i->up.obj = obj;
74 }
75
76 static void
77 set_interval_left (INTERVAL i, INTERVAL left)
78 {
79 i->left = left;
80 }
81
82 static void
83 set_interval_right (INTERVAL i, INTERVAL right)
84 {
85 i->right = right;
86 }
87
88 /* Make the parent of D be whatever the parent of S is, regardless
89 of the type. This is used when balancing an interval tree. */
90
91 static void
92 copy_interval_parent (INTERVAL d, INTERVAL s)
93 {
94 d->up = s->up;
95 d->up_obj = s->up_obj;
96 }
97
98 /* Create the root interval of some object, a buffer or string. */
99
100 INTERVAL
101 create_root_interval (Lisp_Object parent)
102 {
103 INTERVAL new;
104
105 CHECK_IMPURE (parent);
106
107 new = make_interval ();
108
109 if (BUFFERP (parent))
110 {
111 new->total_length = (BUF_Z (XBUFFER (parent))
112 - BUF_BEG (XBUFFER (parent)));
113 eassert (0 <= TOTAL_LENGTH (new));
114 set_buffer_intervals (XBUFFER (parent), new);
115 new->position = BEG;
116 }
117 else if (STRINGP (parent))
118 {
119 new->total_length = SCHARS (parent);
120 eassert (0 <= TOTAL_LENGTH (new));
121 set_string_intervals (parent, new);
122 new->position = 0;
123 }
124
125 set_interval_object (new, parent);
126
127 return new;
128 }
129
130 /* Make the interval TARGET have exactly the properties of SOURCE */
131
132 void
133 copy_properties (register INTERVAL source, register INTERVAL target)
134 {
135 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
136 return;
137
138 COPY_INTERVAL_CACHE (source, target);
139 set_interval_plist (target, Fcopy_sequence (source->plist));
140 }
141
142 /* Merge the properties of interval SOURCE into the properties
143 of interval TARGET. That is to say, each property in SOURCE
144 is added to TARGET if TARGET has no such property as yet. */
145
146 static void
147 merge_properties (register INTERVAL source, register INTERVAL target)
148 {
149 register Lisp_Object o, sym, val;
150
151 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
152 return;
153
154 MERGE_INTERVAL_CACHE (source, target);
155
156 o = source->plist;
157 while (CONSP (o))
158 {
159 sym = XCAR (o);
160 o = XCDR (o);
161 CHECK_CONS (o);
162
163 val = target->plist;
164 while (CONSP (val) && !EQ (XCAR (val), sym))
165 {
166 val = XCDR (val);
167 if (!CONSP (val))
168 break;
169 val = XCDR (val);
170 }
171
172 if (NILP (val))
173 {
174 val = XCAR (o);
175 set_interval_plist (target, Fcons (sym, Fcons (val, target->plist)));
176 }
177 o = XCDR (o);
178 }
179 }
180
181 /* Return true if the two intervals have the same properties. */
182
183 bool
184 intervals_equal (INTERVAL i0, INTERVAL i1)
185 {
186 Lisp_Object i0_cdr, i0_sym;
187 Lisp_Object i1_cdr, i1_val;
188
189 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
190 return 1;
191
192 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
193 return 0;
194
195 i0_cdr = i0->plist;
196 i1_cdr = i1->plist;
197 while (CONSP (i0_cdr) && CONSP (i1_cdr))
198 {
199 i0_sym = XCAR (i0_cdr);
200 i0_cdr = XCDR (i0_cdr);
201 if (!CONSP (i0_cdr))
202 return 0;
203 i1_val = i1->plist;
204 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
205 {
206 i1_val = XCDR (i1_val);
207 if (!CONSP (i1_val))
208 return 0;
209 i1_val = XCDR (i1_val);
210 }
211
212 /* i0 has something i1 doesn't. */
213 if (EQ (i1_val, Qnil))
214 return 0;
215
216 /* i0 and i1 both have sym, but it has different values in each. */
217 if (!CONSP (i1_val)
218 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
219 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
220 return 0;
221
222 i0_cdr = XCDR (i0_cdr);
223
224 i1_cdr = XCDR (i1_cdr);
225 if (!CONSP (i1_cdr))
226 return 0;
227 i1_cdr = XCDR (i1_cdr);
228 }
229
230 /* Lengths of the two plists were equal. */
231 return (NILP (i0_cdr) && NILP (i1_cdr));
232 }
233 \f
234
235 /* Traverse an interval tree TREE, performing FUNCTION on each node.
236 No guarantee is made about the order of traversal.
237 Pass FUNCTION two args: an interval, and ARG. */
238
239 void
240 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
241 {
242 /* Minimize stack usage. */
243 while (tree)
244 {
245 (*function) (tree, arg);
246 if (!tree->right)
247 tree = tree->left;
248 else
249 {
250 traverse_intervals_noorder (tree->left, function, arg);
251 tree = tree->right;
252 }
253 }
254 }
255
256 /* Traverse an interval tree TREE, performing FUNCTION on each node.
257 Pass FUNCTION two args: an interval, and ARG. */
258
259 void
260 traverse_intervals (INTERVAL tree, ptrdiff_t position,
261 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
262 {
263 while (tree)
264 {
265 traverse_intervals (tree->left, position, function, arg);
266 position += LEFT_TOTAL_LENGTH (tree);
267 tree->position = position;
268 (*function) (tree, arg);
269 position += LENGTH (tree); tree = tree->right;
270 }
271 }
272 \f
273 #if 0
274
275 static int icount;
276 static int idepth;
277 static int zero_length;
278
279 /* These functions are temporary, for debugging purposes only. */
280
281 INTERVAL search_interval, found_interval;
282
283 void
284 check_for_interval (INTERVAL i)
285 {
286 if (i == search_interval)
287 {
288 found_interval = i;
289 icount++;
290 }
291 }
292
293 INTERVAL
294 search_for_interval (INTERVAL i, INTERVAL tree)
295 {
296 icount = 0;
297 search_interval = i;
298 found_interval = NULL;
299 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
300 return found_interval;
301 }
302
303 static void
304 inc_interval_count (INTERVAL i)
305 {
306 icount++;
307 if (LENGTH (i) == 0)
308 zero_length++;
309 if (depth > idepth)
310 idepth = depth;
311 }
312
313 int
314 count_intervals (INTERVAL i)
315 {
316 icount = 0;
317 idepth = 0;
318 zero_length = 0;
319 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
320
321 return icount;
322 }
323
324 static INTERVAL
325 root_interval (INTERVAL interval)
326 {
327 register INTERVAL i = interval;
328
329 while (! ROOT_INTERVAL_P (i))
330 i = INTERVAL_PARENT (i);
331
332 return i;
333 }
334 #endif
335 \f
336 /* Assuming that a left child exists, perform the following operation:
337
338 A B
339 / \ / \
340 B => A
341 / \ / \
342 c c
343 */
344
345 static INTERVAL
346 rotate_right (INTERVAL interval)
347 {
348 INTERVAL i;
349 INTERVAL B = interval->left;
350 ptrdiff_t old_total = interval->total_length;
351
352 /* Deal with any Parent of A; make it point to B. */
353 if (! ROOT_INTERVAL_P (interval))
354 {
355 if (AM_LEFT_CHILD (interval))
356 set_interval_left (INTERVAL_PARENT (interval), B);
357 else
358 set_interval_right (INTERVAL_PARENT (interval), B);
359 }
360 copy_interval_parent (B, interval);
361
362 /* Make B the parent of A */
363 i = B->right;
364 set_interval_right (B, interval);
365 set_interval_parent (interval, B);
366
367 /* Make A point to c */
368 set_interval_left (interval, i);
369 if (i)
370 set_interval_parent (i, interval);
371
372 /* A's total length is decreased by the length of B and its left child. */
373 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
374 eassert (0 <= TOTAL_LENGTH (interval));
375
376 /* B must have the same total length of A. */
377 B->total_length = old_total;
378 eassert (0 <= TOTAL_LENGTH (B));
379
380 return B;
381 }
382
383 /* Assuming that a right child exists, perform the following operation:
384
385 A B
386 / \ / \
387 B => A
388 / \ / \
389 c c
390 */
391
392 static INTERVAL
393 rotate_left (INTERVAL interval)
394 {
395 INTERVAL i;
396 INTERVAL B = interval->right;
397 ptrdiff_t old_total = interval->total_length;
398
399 /* Deal with any parent of A; make it point to B. */
400 if (! ROOT_INTERVAL_P (interval))
401 {
402 if (AM_LEFT_CHILD (interval))
403 set_interval_left (INTERVAL_PARENT (interval), B);
404 else
405 set_interval_right (INTERVAL_PARENT (interval), B);
406 }
407 copy_interval_parent (B, interval);
408
409 /* Make B the parent of A */
410 i = B->left;
411 set_interval_left (B, interval);
412 set_interval_parent (interval, B);
413
414 /* Make A point to c */
415 set_interval_right (interval, i);
416 if (i)
417 set_interval_parent (i, interval);
418
419 /* A's total length is decreased by the length of B and its right child. */
420 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
421 eassert (0 <= TOTAL_LENGTH (interval));
422
423 /* B must have the same total length of A. */
424 B->total_length = old_total;
425 eassert (0 <= TOTAL_LENGTH (B));
426
427 return B;
428 }
429 \f
430 /* Balance an interval tree with the assumption that the subtrees
431 themselves are already balanced. */
432
433 static INTERVAL
434 balance_an_interval (INTERVAL i)
435 {
436 register ptrdiff_t old_diff, new_diff;
437
438 while (1)
439 {
440 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
441 if (old_diff > 0)
442 {
443 /* Since the left child is longer, there must be one. */
444 new_diff = i->total_length - i->left->total_length
445 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
446 if (eabs (new_diff) >= old_diff)
447 break;
448 i = rotate_right (i);
449 balance_an_interval (i->right);
450 }
451 else if (old_diff < 0)
452 {
453 /* Since the right child is longer, there must be one. */
454 new_diff = i->total_length - i->right->total_length
455 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
456 if (eabs (new_diff) >= -old_diff)
457 break;
458 i = rotate_left (i);
459 balance_an_interval (i->left);
460 }
461 else
462 break;
463 }
464 return i;
465 }
466
467 /* Balance INTERVAL, potentially stuffing it back into its parent
468 Lisp Object. */
469
470 static INTERVAL
471 balance_possible_root_interval (INTERVAL interval)
472 {
473 Lisp_Object parent;
474 bool have_parent = 0;
475
476 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
477 return interval;
478
479 if (INTERVAL_HAS_OBJECT (interval))
480 {
481 have_parent = 1;
482 GET_INTERVAL_OBJECT (parent, interval);
483 }
484 interval = balance_an_interval (interval);
485
486 if (have_parent)
487 {
488 if (BUFFERP (parent))
489 set_buffer_intervals (XBUFFER (parent), interval);
490 else if (STRINGP (parent))
491 set_string_intervals (parent, interval);
492 }
493
494 return interval;
495 }
496
497 /* Balance the interval tree TREE. Balancing is by weight
498 (the amount of text). */
499
500 static INTERVAL
501 balance_intervals_internal (register INTERVAL tree)
502 {
503 /* Balance within each side. */
504 if (tree->left)
505 balance_intervals_internal (tree->left);
506 if (tree->right)
507 balance_intervals_internal (tree->right);
508 return balance_an_interval (tree);
509 }
510
511 /* Advertised interface to balance intervals. */
512
513 INTERVAL
514 balance_intervals (INTERVAL tree)
515 {
516 return tree ? balance_intervals_internal (tree) : NULL;
517 }
518
519 /* Rebalance text properties of B. */
520
521 static void
522 buffer_balance_intervals (struct buffer *b)
523 {
524 INTERVAL i;
525
526 eassert (b != NULL);
527 i = buffer_intervals (b);
528 if (i)
529 set_buffer_intervals (b, balance_an_interval (i));
530 }
531
532 /* Split INTERVAL into two pieces, starting the second piece at
533 character position OFFSET (counting from 0), relative to INTERVAL.
534 INTERVAL becomes the left-hand piece, and the right-hand piece
535 (second, lexicographically) is returned.
536
537 The size and position fields of the two intervals are set based upon
538 those of the original interval. The property list of the new interval
539 is reset, thus it is up to the caller to do the right thing with the
540 result.
541
542 Note that this does not change the position of INTERVAL; if it is a root,
543 it is still a root after this operation. */
544
545 INTERVAL
546 split_interval_right (INTERVAL interval, ptrdiff_t offset)
547 {
548 INTERVAL new = make_interval ();
549 ptrdiff_t position = interval->position;
550 ptrdiff_t new_length = LENGTH (interval) - offset;
551
552 new->position = position + offset;
553 set_interval_parent (new, interval);
554
555 if (NULL_RIGHT_CHILD (interval))
556 {
557 set_interval_right (interval, new);
558 new->total_length = new_length;
559 eassert (0 <= TOTAL_LENGTH (new));
560 }
561 else
562 {
563 /* Insert the new node between INTERVAL and its right child. */
564 set_interval_right (new, interval->right);
565 set_interval_parent (interval->right, new);
566 set_interval_right (interval, new);
567 new->total_length = new_length + new->right->total_length;
568 eassert (0 <= TOTAL_LENGTH (new));
569 balance_an_interval (new);
570 }
571
572 balance_possible_root_interval (interval);
573
574 return new;
575 }
576
577 /* Split INTERVAL into two pieces, starting the second piece at
578 character position OFFSET (counting from 0), relative to INTERVAL.
579 INTERVAL becomes the right-hand piece, and the left-hand piece
580 (first, lexicographically) is returned.
581
582 The size and position fields of the two intervals are set based upon
583 those of the original interval. The property list of the new interval
584 is reset, thus it is up to the caller to do the right thing with the
585 result.
586
587 Note that this does not change the position of INTERVAL; if it is a root,
588 it is still a root after this operation. */
589
590 INTERVAL
591 split_interval_left (INTERVAL interval, ptrdiff_t offset)
592 {
593 INTERVAL new = make_interval ();
594 ptrdiff_t new_length = offset;
595
596 new->position = interval->position;
597 interval->position = interval->position + offset;
598 set_interval_parent (new, interval);
599
600 if (NULL_LEFT_CHILD (interval))
601 {
602 set_interval_left (interval, new);
603 new->total_length = new_length;
604 eassert (0 <= TOTAL_LENGTH (new));
605 }
606 else
607 {
608 /* Insert the new node between INTERVAL and its left child. */
609 set_interval_left (new, interval->left);
610 set_interval_parent (new->left, new);
611 set_interval_left (interval, new);
612 new->total_length = new_length + new->left->total_length;
613 eassert (0 <= TOTAL_LENGTH (new));
614 balance_an_interval (new);
615 }
616
617 balance_possible_root_interval (interval);
618
619 return new;
620 }
621 \f
622 /* Return the proper position for the first character
623 described by the interval tree SOURCE.
624 This is 1 if the parent is a buffer,
625 0 if the parent is a string or if there is no parent.
626
627 Don't use this function on an interval which is the child
628 of another interval! */
629
630 static int
631 interval_start_pos (INTERVAL source)
632 {
633 Lisp_Object parent;
634
635 if (!source)
636 return 0;
637
638 if (! INTERVAL_HAS_OBJECT (source))
639 return 0;
640 GET_INTERVAL_OBJECT (parent, source);
641 if (BUFFERP (parent))
642 return BUF_BEG (XBUFFER (parent));
643 return 0;
644 }
645
646 /* Find the interval containing text position POSITION in the text
647 represented by the interval tree TREE. POSITION is a buffer
648 position (starting from 1) or a string index (starting from 0).
649 If POSITION is at the end of the buffer or string,
650 return the interval containing the last character.
651
652 The `position' field, which is a cache of an interval's position,
653 is updated in the interval found. Other functions (e.g., next_interval)
654 will update this cache based on the result of find_interval. */
655
656 INTERVAL
657 find_interval (register INTERVAL tree, register ptrdiff_t position)
658 {
659 /* The distance from the left edge of the subtree at TREE
660 to POSITION. */
661 register ptrdiff_t relative_position;
662
663 if (!tree)
664 return NULL;
665
666 relative_position = position;
667 if (INTERVAL_HAS_OBJECT (tree))
668 {
669 Lisp_Object parent;
670 GET_INTERVAL_OBJECT (parent, tree);
671 if (BUFFERP (parent))
672 relative_position -= BUF_BEG (XBUFFER (parent));
673 }
674
675 eassert (relative_position <= TOTAL_LENGTH (tree));
676
677 tree = balance_possible_root_interval (tree);
678
679 while (1)
680 {
681 if (relative_position < LEFT_TOTAL_LENGTH (tree))
682 {
683 tree = tree->left;
684 }
685 else if (! NULL_RIGHT_CHILD (tree)
686 && relative_position >= (TOTAL_LENGTH (tree)
687 - RIGHT_TOTAL_LENGTH (tree)))
688 {
689 relative_position -= (TOTAL_LENGTH (tree)
690 - RIGHT_TOTAL_LENGTH (tree));
691 tree = tree->right;
692 }
693 else
694 {
695 tree->position
696 = (position - relative_position /* left edge of *tree. */
697 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
698
699 return tree;
700 }
701 }
702 }
703 \f
704 /* Find the succeeding interval (lexicographically) to INTERVAL.
705 Sets the `position' field based on that of INTERVAL (see
706 find_interval). */
707
708 INTERVAL
709 next_interval (register INTERVAL interval)
710 {
711 register INTERVAL i = interval;
712 register ptrdiff_t next_position;
713
714 if (!i)
715 return NULL;
716 next_position = interval->position + LENGTH (interval);
717
718 if (! NULL_RIGHT_CHILD (i))
719 {
720 i = i->right;
721 while (! NULL_LEFT_CHILD (i))
722 i = i->left;
723
724 i->position = next_position;
725 return i;
726 }
727
728 while (! NULL_PARENT (i))
729 {
730 if (AM_LEFT_CHILD (i))
731 {
732 i = INTERVAL_PARENT (i);
733 i->position = next_position;
734 return i;
735 }
736
737 i = INTERVAL_PARENT (i);
738 }
739
740 return NULL;
741 }
742
743 /* Find the preceding interval (lexicographically) to INTERVAL.
744 Sets the `position' field based on that of INTERVAL (see
745 find_interval). */
746
747 INTERVAL
748 previous_interval (register INTERVAL interval)
749 {
750 register INTERVAL i;
751
752 if (!interval)
753 return NULL;
754
755 if (! NULL_LEFT_CHILD (interval))
756 {
757 i = interval->left;
758 while (! NULL_RIGHT_CHILD (i))
759 i = i->right;
760
761 i->position = interval->position - LENGTH (i);
762 return i;
763 }
764
765 i = interval;
766 while (! NULL_PARENT (i))
767 {
768 if (AM_RIGHT_CHILD (i))
769 {
770 i = INTERVAL_PARENT (i);
771
772 i->position = interval->position - LENGTH (i);
773 return i;
774 }
775 i = INTERVAL_PARENT (i);
776 }
777
778 return NULL;
779 }
780
781 /* Find the interval containing POS given some non-NULL INTERVAL
782 in the same tree. Note that we need to update interval->position
783 if we go down the tree.
784 To speed up the process, we assume that the ->position of
785 I and all its parents is already uptodate. */
786 INTERVAL
787 update_interval (register INTERVAL i, ptrdiff_t pos)
788 {
789 if (!i)
790 return NULL;
791
792 while (1)
793 {
794 if (pos < i->position)
795 {
796 /* Move left. */
797 if (pos >= i->position - TOTAL_LENGTH (i->left))
798 {
799 i->left->position = i->position - TOTAL_LENGTH (i->left)
800 + LEFT_TOTAL_LENGTH (i->left);
801 i = i->left; /* Move to the left child */
802 }
803 else if (NULL_PARENT (i))
804 error ("Point before start of properties");
805 else
806 i = INTERVAL_PARENT (i);
807 continue;
808 }
809 else if (pos >= INTERVAL_LAST_POS (i))
810 {
811 /* Move right. */
812 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
813 {
814 i->right->position = INTERVAL_LAST_POS (i)
815 + LEFT_TOTAL_LENGTH (i->right);
816 i = i->right; /* Move to the right child */
817 }
818 else if (NULL_PARENT (i))
819 error ("Point %"pD"d after end of properties", pos);
820 else
821 i = INTERVAL_PARENT (i);
822 continue;
823 }
824 else
825 return i;
826 }
827 }
828
829 /* Effect an adjustment corresponding to the addition of LENGTH characters
830 of text. Do this by finding the interval containing POSITION in the
831 interval tree TREE, and then adjusting all of its ancestors by adding
832 LENGTH to them.
833
834 If POSITION is the first character of an interval, meaning that point
835 is actually between the two intervals, make the new text belong to
836 the interval which is "sticky".
837
838 If both intervals are "sticky", then make them belong to the left-most
839 interval. Another possibility would be to create a new interval for
840 this text, and make it have the merged properties of both ends. */
841
842 static INTERVAL
843 adjust_intervals_for_insertion (INTERVAL tree,
844 ptrdiff_t position, ptrdiff_t length)
845 {
846 INTERVAL i;
847 INTERVAL temp;
848 bool eobp = 0;
849 Lisp_Object parent;
850 ptrdiff_t offset;
851
852 eassert (TOTAL_LENGTH (tree) > 0);
853
854 GET_INTERVAL_OBJECT (parent, tree);
855 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
856
857 /* If inserting at point-max of a buffer, that position will be out
858 of range. Remember that buffer positions are 1-based. */
859 if (position >= TOTAL_LENGTH (tree) + offset)
860 {
861 position = TOTAL_LENGTH (tree) + offset;
862 eobp = 1;
863 }
864
865 i = find_interval (tree, position);
866
867 /* If in middle of an interval which is not sticky either way,
868 we must not just give its properties to the insertion.
869 So split this interval at the insertion point.
870
871 Originally, the if condition here was this:
872 (! (position == i->position || eobp)
873 && END_NONSTICKY_P (i)
874 && FRONT_NONSTICKY_P (i))
875 But, these macros are now unreliable because of introduction of
876 Vtext_property_default_nonsticky. So, we always check properties
877 one by one if POSITION is in middle of an interval. */
878 if (! (position == i->position || eobp))
879 {
880 Lisp_Object tail;
881 Lisp_Object front, rear;
882
883 tail = i->plist;
884
885 /* Properties font-sticky and rear-nonsticky override
886 Vtext_property_default_nonsticky. So, if they are t, we can
887 skip one by one checking of properties. */
888 rear = textget (i->plist, Qrear_nonsticky);
889 if (! CONSP (rear) && ! NILP (rear))
890 {
891 /* All properties are nonsticky. We split the interval. */
892 goto check_done;
893 }
894 front = textget (i->plist, Qfront_sticky);
895 if (! CONSP (front) && ! NILP (front))
896 {
897 /* All properties are sticky. We don't split the interval. */
898 tail = Qnil;
899 goto check_done;
900 }
901
902 /* Does any actual property pose an actual problem? We break
903 the loop if we find a nonsticky property. */
904 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
905 {
906 Lisp_Object prop, tmp;
907 prop = XCAR (tail);
908
909 /* Is this particular property front-sticky? */
910 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
911 continue;
912
913 /* Is this particular property rear-nonsticky? */
914 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
915 break;
916
917 /* Is this particular property recorded as sticky or
918 nonsticky in Vtext_property_default_nonsticky? */
919 tmp = Fassq (prop, Vtext_property_default_nonsticky);
920 if (CONSP (tmp))
921 {
922 if (NILP (tmp))
923 continue;
924 break;
925 }
926
927 /* By default, a text property is rear-sticky, thus we
928 continue the loop. */
929 }
930
931 check_done:
932 /* If any property is a real problem, split the interval. */
933 if (! NILP (tail))
934 {
935 temp = split_interval_right (i, position - i->position);
936 copy_properties (i, temp);
937 i = temp;
938 }
939 }
940
941 /* If we are positioned between intervals, check the stickiness of
942 both of them. We have to do this too, if we are at BEG or Z. */
943 if (position == i->position || eobp)
944 {
945 register INTERVAL prev;
946
947 if (position == BEG)
948 prev = 0;
949 else if (eobp)
950 {
951 prev = i;
952 i = 0;
953 }
954 else
955 prev = previous_interval (i);
956
957 /* Even if we are positioned between intervals, we default
958 to the left one if it exists. We extend it now and split
959 off a part later, if stickiness demands it. */
960 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
961 {
962 temp->total_length += length;
963 eassert (0 <= TOTAL_LENGTH (temp));
964 temp = balance_possible_root_interval (temp);
965 }
966
967 /* If at least one interval has sticky properties,
968 we check the stickiness property by property.
969
970 Originally, the if condition here was this:
971 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
972 But, these macros are now unreliable because of introduction
973 of Vtext_property_default_nonsticky. So, we always have to
974 check stickiness of properties one by one. If cache of
975 stickiness is implemented in the future, we may be able to
976 use those macros again. */
977 if (1)
978 {
979 Lisp_Object pleft, pright;
980 struct interval newi;
981
982 RESET_INTERVAL (&newi);
983 pleft = prev ? prev->plist : Qnil;
984 pright = i ? i->plist : Qnil;
985 set_interval_plist (&newi, merge_properties_sticky (pleft, pright));
986
987 if (! prev) /* i.e. position == BEG */
988 {
989 if (! intervals_equal (i, &newi))
990 {
991 i = split_interval_left (i, length);
992 set_interval_plist (i, newi.plist);
993 }
994 }
995 else if (! intervals_equal (prev, &newi))
996 {
997 prev = split_interval_right (prev, position - prev->position);
998 set_interval_plist (prev, newi.plist);
999 if (i && intervals_equal (prev, i))
1000 merge_interval_right (prev);
1001 }
1002
1003 /* We will need to update the cache here later. */
1004 }
1005 else if (! prev && ! NILP (i->plist))
1006 {
1007 /* Just split off a new interval at the left.
1008 Since I wasn't front-sticky, the empty plist is ok. */
1009 i = split_interval_left (i, length);
1010 }
1011 }
1012
1013 /* Otherwise just extend the interval. */
1014 else
1015 {
1016 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1017 {
1018 temp->total_length += length;
1019 eassert (0 <= TOTAL_LENGTH (temp));
1020 temp = balance_possible_root_interval (temp);
1021 }
1022 }
1023
1024 return tree;
1025 }
1026
1027 /* Any property might be front-sticky on the left, rear-sticky on the left,
1028 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1029 can be arranged in a matrix with rows denoting the left conditions and
1030 columns denoting the right conditions:
1031 _ __ _
1032 _ FR FR FR FR
1033 FR__ 0 1 2 3
1034 _FR 4 5 6 7
1035 FR 8 9 A B
1036 FR C D E F
1037
1038 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1039 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1040 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1041 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1042 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1043 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1044 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1045 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1046
1047 We inherit from whoever has a sticky side facing us. If both sides
1048 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1049 non-nil value for the current property. If both sides do, then we take
1050 from the left.
1051
1052 When we inherit a property, we get its stickiness as well as its value.
1053 So, when we merge the above two lists, we expect to get this:
1054
1055 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1056 rear-nonsticky (p6 pa)
1057 p0 L p1 L p2 L p3 L p6 R p7 R
1058 pa R pb R pc L pd L pe L pf L)
1059
1060 The optimizable special cases are:
1061 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1062 left rear-nonsticky = t, right front-sticky = t (inherit right)
1063 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1064 */
1065
1066 static Lisp_Object
1067 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1068 {
1069 Lisp_Object props, front, rear;
1070 Lisp_Object lfront, lrear, rfront, rrear;
1071 Lisp_Object tail1, tail2, sym, lval, rval, cat;
1072 bool use_left, use_right, lpresent;
1073
1074 props = Qnil;
1075 front = Qnil;
1076 rear = Qnil;
1077 lfront = textget (pleft, Qfront_sticky);
1078 lrear = textget (pleft, Qrear_nonsticky);
1079 rfront = textget (pright, Qfront_sticky);
1080 rrear = textget (pright, Qrear_nonsticky);
1081
1082 /* Go through each element of PRIGHT. */
1083 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1084 {
1085 Lisp_Object tmp;
1086
1087 sym = XCAR (tail1);
1088
1089 /* Sticky properties get special treatment. */
1090 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1091 continue;
1092
1093 rval = Fcar (XCDR (tail1));
1094 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1095 if (EQ (sym, XCAR (tail2)))
1096 break;
1097
1098 /* Indicate whether the property is explicitly defined on the left.
1099 (We know it is defined explicitly on the right
1100 because otherwise we don't get here.) */
1101 lpresent = ! NILP (tail2);
1102 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1103
1104 /* Even if lrear or rfront say nothing about the stickiness of
1105 SYM, Vtext_property_default_nonsticky may give default
1106 stickiness to SYM. */
1107 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1108 use_left = (lpresent
1109 && ! (TMEM (sym, lrear)
1110 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1111 use_right = (TMEM (sym, rfront)
1112 || (CONSP (tmp) && NILP (XCDR (tmp))));
1113 if (use_left && use_right)
1114 {
1115 if (NILP (lval))
1116 use_left = 0;
1117 else if (NILP (rval))
1118 use_right = 0;
1119 }
1120 if (use_left)
1121 {
1122 /* We build props as (value sym ...) rather than (sym value ...)
1123 because we plan to nreverse it when we're done. */
1124 props = Fcons (lval, Fcons (sym, props));
1125 if (TMEM (sym, lfront))
1126 front = Fcons (sym, front);
1127 if (TMEM (sym, lrear))
1128 rear = Fcons (sym, rear);
1129 }
1130 else if (use_right)
1131 {
1132 props = Fcons (rval, Fcons (sym, props));
1133 if (TMEM (sym, rfront))
1134 front = Fcons (sym, front);
1135 if (TMEM (sym, rrear))
1136 rear = Fcons (sym, rear);
1137 }
1138 }
1139
1140 /* Now go through each element of PLEFT. */
1141 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1142 {
1143 Lisp_Object tmp;
1144
1145 sym = XCAR (tail2);
1146
1147 /* Sticky properties get special treatment. */
1148 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1149 continue;
1150
1151 /* If sym is in PRIGHT, we've already considered it. */
1152 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1153 if (EQ (sym, XCAR (tail1)))
1154 break;
1155 if (! NILP (tail1))
1156 continue;
1157
1158 lval = Fcar (XCDR (tail2));
1159
1160 /* Even if lrear or rfront say nothing about the stickiness of
1161 SYM, Vtext_property_default_nonsticky may give default
1162 stickiness to SYM. */
1163 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1164
1165 /* Since rval is known to be nil in this loop, the test simplifies. */
1166 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1167 {
1168 props = Fcons (lval, Fcons (sym, props));
1169 if (TMEM (sym, lfront))
1170 front = Fcons (sym, front);
1171 }
1172 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1173 {
1174 /* The value is nil, but we still inherit the stickiness
1175 from the right. */
1176 front = Fcons (sym, front);
1177 if (TMEM (sym, rrear))
1178 rear = Fcons (sym, rear);
1179 }
1180 }
1181 props = Fnreverse (props);
1182 if (! NILP (rear))
1183 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1184
1185 cat = textget (props, Qcategory);
1186 if (! NILP (front)
1187 &&
1188 /* If we have inherited a front-stick category property that is t,
1189 we don't need to set up a detailed one. */
1190 ! (! NILP (cat) && SYMBOLP (cat)
1191 && EQ (Fget (cat, Qfront_sticky), Qt)))
1192 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1193 return props;
1194 }
1195
1196 \f
1197 /* Delete a node I from its interval tree by merging its subtrees
1198 into one subtree which is then returned. Caller is responsible for
1199 storing the resulting subtree into its parent. */
1200
1201 static INTERVAL
1202 delete_node (register INTERVAL i)
1203 {
1204 register INTERVAL migrate, this;
1205 register ptrdiff_t migrate_amt;
1206
1207 if (!i->left)
1208 return i->right;
1209 if (!i->right)
1210 return i->left;
1211
1212 migrate = i->left;
1213 migrate_amt = i->left->total_length;
1214 this = i->right;
1215 this->total_length += migrate_amt;
1216 while (this->left)
1217 {
1218 this = this->left;
1219 this->total_length += migrate_amt;
1220 }
1221 eassert (0 <= TOTAL_LENGTH (this));
1222 set_interval_left (this, migrate);
1223 set_interval_parent (migrate, this);
1224
1225 return i->right;
1226 }
1227
1228 /* Delete interval I from its tree by calling `delete_node'
1229 and properly connecting the resultant subtree.
1230
1231 I is presumed to be empty; that is, no adjustments are made
1232 for the length of I. */
1233
1234 static void
1235 delete_interval (register INTERVAL i)
1236 {
1237 register INTERVAL parent;
1238 ptrdiff_t amt = LENGTH (i);
1239
1240 eassert (amt == 0); /* Only used on zero-length intervals now. */
1241
1242 if (ROOT_INTERVAL_P (i))
1243 {
1244 Lisp_Object owner;
1245 GET_INTERVAL_OBJECT (owner, i);
1246 parent = delete_node (i);
1247 if (parent)
1248 set_interval_object (parent, owner);
1249
1250 if (BUFFERP (owner))
1251 set_buffer_intervals (XBUFFER (owner), parent);
1252 else if (STRINGP (owner))
1253 set_string_intervals (owner, parent);
1254 else
1255 emacs_abort ();
1256
1257 return;
1258 }
1259
1260 parent = INTERVAL_PARENT (i);
1261 if (AM_LEFT_CHILD (i))
1262 {
1263 set_interval_left (parent, delete_node (i));
1264 if (parent->left)
1265 set_interval_parent (parent->left, parent);
1266 }
1267 else
1268 {
1269 set_interval_right (parent, delete_node (i));
1270 if (parent->right)
1271 set_interval_parent (parent->right, parent);
1272 }
1273 }
1274 \f
1275 /* Find the interval in TREE corresponding to the relative position
1276 FROM and delete as much as possible of AMOUNT from that interval.
1277 Return the amount actually deleted, and if the interval was
1278 zeroed-out, delete that interval node from the tree.
1279
1280 Note that FROM is actually origin zero, aka relative to the
1281 leftmost edge of tree. This is appropriate since we call ourselves
1282 recursively on subtrees.
1283
1284 Do this by recursing down TREE to the interval in question, and
1285 deleting the appropriate amount of text. */
1286
1287 static ptrdiff_t
1288 interval_deletion_adjustment (register INTERVAL tree, register ptrdiff_t from,
1289 register ptrdiff_t amount)
1290 {
1291 register ptrdiff_t relative_position = from;
1292
1293 if (!tree)
1294 return 0;
1295
1296 /* Left branch. */
1297 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1298 {
1299 ptrdiff_t subtract = interval_deletion_adjustment (tree->left,
1300 relative_position,
1301 amount);
1302 tree->total_length -= subtract;
1303 eassert (0 <= TOTAL_LENGTH (tree));
1304 return subtract;
1305 }
1306 /* Right branch. */
1307 else if (relative_position >= (TOTAL_LENGTH (tree)
1308 - RIGHT_TOTAL_LENGTH (tree)))
1309 {
1310 ptrdiff_t subtract;
1311
1312 relative_position -= (tree->total_length
1313 - RIGHT_TOTAL_LENGTH (tree));
1314 subtract = interval_deletion_adjustment (tree->right,
1315 relative_position,
1316 amount);
1317 tree->total_length -= subtract;
1318 eassert (0 <= TOTAL_LENGTH (tree));
1319 return subtract;
1320 }
1321 /* Here -- this node. */
1322 else
1323 {
1324 /* How much can we delete from this interval? */
1325 ptrdiff_t my_amount = ((tree->total_length
1326 - RIGHT_TOTAL_LENGTH (tree))
1327 - relative_position);
1328
1329 if (amount > my_amount)
1330 amount = my_amount;
1331
1332 tree->total_length -= amount;
1333 eassert (0 <= TOTAL_LENGTH (tree));
1334 if (LENGTH (tree) == 0)
1335 delete_interval (tree);
1336
1337 return amount;
1338 }
1339
1340 /* Never reach here. */
1341 }
1342
1343 /* Effect the adjustments necessary to the interval tree of BUFFER to
1344 correspond to the deletion of LENGTH characters from that buffer
1345 text. The deletion is effected at position START (which is a
1346 buffer position, i.e. origin 1). */
1347
1348 static void
1349 adjust_intervals_for_deletion (struct buffer *buffer,
1350 ptrdiff_t start, ptrdiff_t length)
1351 {
1352 ptrdiff_t left_to_delete = length;
1353 INTERVAL tree = buffer_intervals (buffer);
1354 Lisp_Object parent;
1355 ptrdiff_t offset;
1356
1357 GET_INTERVAL_OBJECT (parent, tree);
1358 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1359
1360 if (!tree)
1361 return;
1362
1363 eassert (start <= offset + TOTAL_LENGTH (tree)
1364 && start + length <= offset + TOTAL_LENGTH (tree));
1365
1366 if (length == TOTAL_LENGTH (tree))
1367 {
1368 set_buffer_intervals (buffer, NULL);
1369 return;
1370 }
1371
1372 if (ONLY_INTERVAL_P (tree))
1373 {
1374 tree->total_length -= length;
1375 eassert (0 <= TOTAL_LENGTH (tree));
1376 return;
1377 }
1378
1379 if (start > offset + TOTAL_LENGTH (tree))
1380 start = offset + TOTAL_LENGTH (tree);
1381 while (left_to_delete > 0)
1382 {
1383 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1384 left_to_delete);
1385 tree = buffer_intervals (buffer);
1386 if (left_to_delete == tree->total_length)
1387 {
1388 set_buffer_intervals (buffer, NULL);
1389 return;
1390 }
1391 }
1392 }
1393 \f
1394 /* Make the adjustments necessary to the interval tree of BUFFER to
1395 represent an addition or deletion of LENGTH characters starting
1396 at position START. Addition or deletion is indicated by the sign
1397 of LENGTH. */
1398
1399 void
1400 offset_intervals (struct buffer *buffer, ptrdiff_t start, ptrdiff_t length)
1401 {
1402 if (!buffer_intervals (buffer) || length == 0)
1403 return;
1404
1405 if (length > 0)
1406 adjust_intervals_for_insertion (buffer_intervals (buffer),
1407 start, length);
1408 else
1409 {
1410 lint_assume (- TYPE_MAXIMUM (ptrdiff_t) <= length);
1411 adjust_intervals_for_deletion (buffer, start, -length);
1412 }
1413 }
1414 \f
1415 /* Merge interval I with its lexicographic successor. The resulting
1416 interval is returned, and has the properties of the original
1417 successor. The properties of I are lost. I is removed from the
1418 interval tree.
1419
1420 IMPORTANT:
1421 The caller must verify that this is not the last (rightmost)
1422 interval. */
1423
1424 static INTERVAL
1425 merge_interval_right (register INTERVAL i)
1426 {
1427 register ptrdiff_t absorb = LENGTH (i);
1428 register INTERVAL successor;
1429
1430 /* Find the succeeding interval. */
1431 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1432 as we descend. */
1433 {
1434 successor = i->right;
1435 while (! NULL_LEFT_CHILD (successor))
1436 {
1437 successor->total_length += absorb;
1438 eassert (0 <= TOTAL_LENGTH (successor));
1439 successor = successor->left;
1440 }
1441
1442 successor->total_length += absorb;
1443 eassert (0 <= TOTAL_LENGTH (successor));
1444 delete_interval (i);
1445 return successor;
1446 }
1447
1448 /* Zero out this interval. */
1449 i->total_length -= absorb;
1450 eassert (0 <= TOTAL_LENGTH (i));
1451
1452 successor = i;
1453 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1454 we ascend. */
1455 {
1456 if (AM_LEFT_CHILD (successor))
1457 {
1458 successor = INTERVAL_PARENT (successor);
1459 delete_interval (i);
1460 return successor;
1461 }
1462
1463 successor = INTERVAL_PARENT (successor);
1464 successor->total_length -= absorb;
1465 eassert (0 <= TOTAL_LENGTH (successor));
1466 }
1467
1468 /* This must be the rightmost or last interval and cannot
1469 be merged right. The caller should have known. */
1470 emacs_abort ();
1471 }
1472 \f
1473 /* Merge interval I with its lexicographic predecessor. The resulting
1474 interval is returned, and has the properties of the original predecessor.
1475 The properties of I are lost. Interval node I is removed from the tree.
1476
1477 IMPORTANT:
1478 The caller must verify that this is not the first (leftmost) interval. */
1479
1480 INTERVAL
1481 merge_interval_left (register INTERVAL i)
1482 {
1483 register ptrdiff_t absorb = LENGTH (i);
1484 register INTERVAL predecessor;
1485
1486 /* Find the preceding interval. */
1487 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1488 adding ABSORB as we go. */
1489 {
1490 predecessor = i->left;
1491 while (! NULL_RIGHT_CHILD (predecessor))
1492 {
1493 predecessor->total_length += absorb;
1494 eassert (0 <= TOTAL_LENGTH (predecessor));
1495 predecessor = predecessor->right;
1496 }
1497
1498 predecessor->total_length += absorb;
1499 eassert (0 <= TOTAL_LENGTH (predecessor));
1500 delete_interval (i);
1501 return predecessor;
1502 }
1503
1504 /* Zero out this interval. */
1505 i->total_length -= absorb;
1506 eassert (0 <= TOTAL_LENGTH (i));
1507
1508 predecessor = i;
1509 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1510 subtracting ABSORB. */
1511 {
1512 if (AM_RIGHT_CHILD (predecessor))
1513 {
1514 predecessor = INTERVAL_PARENT (predecessor);
1515 delete_interval (i);
1516 return predecessor;
1517 }
1518
1519 predecessor = INTERVAL_PARENT (predecessor);
1520 predecessor->total_length -= absorb;
1521 eassert (0 <= TOTAL_LENGTH (predecessor));
1522 }
1523
1524 /* This must be the leftmost or first interval and cannot
1525 be merged left. The caller should have known. */
1526 emacs_abort ();
1527 }
1528 \f
1529 /* Create a copy of SOURCE but with the default value of UP. */
1530
1531 static INTERVAL
1532 reproduce_interval (INTERVAL source)
1533 {
1534 register INTERVAL target = make_interval ();
1535
1536 target->total_length = source->total_length;
1537 target->position = source->position;
1538
1539 copy_properties (source, target);
1540
1541 if (! NULL_LEFT_CHILD (source))
1542 set_interval_left (target, reproduce_tree (source->left, target));
1543 if (! NULL_RIGHT_CHILD (source))
1544 set_interval_right (target, reproduce_tree (source->right, target));
1545
1546 return target;
1547 }
1548
1549 /* Make an exact copy of interval tree SOURCE which descends from
1550 PARENT. This is done by recursing through SOURCE, copying
1551 the current interval and its properties, and then adjusting
1552 the pointers of the copy. */
1553
1554 static INTERVAL
1555 reproduce_tree (INTERVAL source, INTERVAL parent)
1556 {
1557 INTERVAL target = reproduce_interval (source);
1558 set_interval_parent (target, parent);
1559 return target;
1560 }
1561
1562 static INTERVAL
1563 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1564 {
1565 INTERVAL target = reproduce_interval (source);
1566 set_interval_object (target, parent);
1567 return target;
1568 }
1569 \f
1570 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1571 LENGTH is the length of the text in SOURCE.
1572
1573 The `position' field of the SOURCE intervals is assumed to be
1574 consistent with its parent; therefore, SOURCE must be an
1575 interval tree made with copy_interval or must be the whole
1576 tree of a buffer or a string.
1577
1578 This is used in insdel.c when inserting Lisp_Strings into the
1579 buffer. The text corresponding to SOURCE is already in the buffer
1580 when this is called. The intervals of new tree are a copy of those
1581 belonging to the string being inserted; intervals are never
1582 shared.
1583
1584 If the inserted text had no intervals associated, and we don't
1585 want to inherit the surrounding text's properties, this function
1586 simply returns -- offset_intervals should handle placing the
1587 text in the correct interval, depending on the sticky bits.
1588
1589 If the inserted text had properties (intervals), then there are two
1590 cases -- either insertion happened in the middle of some interval,
1591 or between two intervals.
1592
1593 If the text goes into the middle of an interval, then new intervals
1594 are created in the middle, and new text has the union of its properties
1595 and those of the text into which it was inserted.
1596
1597 If the text goes between two intervals, then if neither interval
1598 had its appropriate sticky property set (front_sticky, rear_sticky),
1599 the new text has only its properties. If one of the sticky properties
1600 is set, then the new text "sticks" to that region and its properties
1601 depend on merging as above. If both the preceding and succeeding
1602 intervals to the new text are "sticky", then the new text retains
1603 only its properties, as if neither sticky property were set. Perhaps
1604 we should consider merging all three sets of properties onto the new
1605 text... */
1606
1607 void
1608 graft_intervals_into_buffer (INTERVAL source, ptrdiff_t position,
1609 ptrdiff_t length, struct buffer *buffer,
1610 bool inherit)
1611 {
1612 INTERVAL tree = buffer_intervals (buffer);
1613 INTERVAL under, over, this;
1614 ptrdiff_t over_used;
1615
1616 /* If the new text has no properties, then with inheritance it
1617 becomes part of whatever interval it was inserted into.
1618 To prevent inheritance, we must clear out the properties
1619 of the newly inserted text. */
1620 if (!source)
1621 {
1622 Lisp_Object buf;
1623 if (!inherit && tree && length > 0)
1624 {
1625 XSETBUFFER (buf, buffer);
1626 set_text_properties_1 (make_number (position),
1627 make_number (position + length),
1628 Qnil, buf,
1629 find_interval (tree, position));
1630 }
1631 /* Shouldn't be necessary. --Stef */
1632 buffer_balance_intervals (buffer);
1633 return;
1634 }
1635
1636 eassert (length == TOTAL_LENGTH (source));
1637
1638 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == length)
1639 {
1640 /* The inserted text constitutes the whole buffer, so
1641 simply copy over the interval structure. */
1642 Lisp_Object buf;
1643
1644 XSETBUFFER (buf, buffer);
1645 set_buffer_intervals (buffer, reproduce_tree_obj (source, buf));
1646 buffer_intervals (buffer)->position = BUF_BEG (buffer);
1647 eassert (buffer_intervals (buffer)->up_obj == 1);
1648 return;
1649 }
1650 else if (!tree)
1651 {
1652 /* Create an interval tree in which to place a copy
1653 of the intervals of the inserted string. */
1654 Lisp_Object buf;
1655
1656 XSETBUFFER (buf, buffer);
1657 tree = create_root_interval (buf);
1658 }
1659 /* Paranoia -- the text has already been added, so
1660 this buffer should be of non-zero length. */
1661 eassert (TOTAL_LENGTH (tree) > 0);
1662
1663 this = under = find_interval (tree, position);
1664 eassert (under);
1665 over = find_interval (source, interval_start_pos (source));
1666
1667 /* Here for insertion in the middle of an interval.
1668 Split off an equivalent interval to the right,
1669 then don't bother with it any more. */
1670
1671 if (position > under->position)
1672 {
1673 INTERVAL end_unchanged
1674 = split_interval_left (this, position - under->position);
1675 copy_properties (under, end_unchanged);
1676 under->position = position;
1677 }
1678 else
1679 {
1680 /* This call may have some effect because previous_interval may
1681 update `position' fields of intervals. Thus, don't ignore it
1682 for the moment. Someone please tell me the truth (K.Handa). */
1683 INTERVAL prev = previous_interval (under);
1684 (void) prev;
1685 #if 0
1686 /* But, this code surely has no effect. And, anyway,
1687 END_NONSTICKY_P is unreliable now. */
1688 if (prev && !END_NONSTICKY_P (prev))
1689 prev = 0;
1690 #endif /* 0 */
1691 }
1692
1693 /* Insertion is now at beginning of UNDER. */
1694
1695 /* The inserted text "sticks" to the interval `under',
1696 which means it gets those properties.
1697 The properties of under are the result of
1698 adjust_intervals_for_insertion, so stickiness has
1699 already been taken care of. */
1700
1701 /* OVER is the interval we are copying from next.
1702 OVER_USED says how many characters' worth of OVER
1703 have already been copied into target intervals.
1704 UNDER is the next interval in the target. */
1705 over_used = 0;
1706 while (over)
1707 {
1708 /* If UNDER is longer than OVER, split it. */
1709 if (LENGTH (over) - over_used < LENGTH (under))
1710 {
1711 this = split_interval_left (under, LENGTH (over) - over_used);
1712 copy_properties (under, this);
1713 }
1714 else
1715 this = under;
1716
1717 /* THIS is now the interval to copy or merge into.
1718 OVER covers all of it. */
1719 if (inherit)
1720 merge_properties (over, this);
1721 else
1722 copy_properties (over, this);
1723
1724 /* If THIS and OVER end at the same place,
1725 advance OVER to a new source interval. */
1726 if (LENGTH (this) == LENGTH (over) - over_used)
1727 {
1728 over = next_interval (over);
1729 over_used = 0;
1730 }
1731 else
1732 /* Otherwise just record that more of OVER has been used. */
1733 over_used += LENGTH (this);
1734
1735 /* Always advance to a new target interval. */
1736 under = next_interval (this);
1737 }
1738
1739 buffer_balance_intervals (buffer);
1740 }
1741
1742 /* Get the value of property PROP from PLIST,
1743 which is the plist of an interval.
1744 We check for direct properties, for categories with property PROP,
1745 and for PROP appearing on the default-text-properties list. */
1746
1747 Lisp_Object
1748 textget (Lisp_Object plist, register Lisp_Object prop)
1749 {
1750 return lookup_char_property (plist, prop, 1);
1751 }
1752
1753 Lisp_Object
1754 lookup_char_property (Lisp_Object plist, Lisp_Object prop, bool textprop)
1755 {
1756 Lisp_Object tail, fallback = Qnil;
1757
1758 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1759 {
1760 register Lisp_Object tem;
1761 tem = XCAR (tail);
1762 if (EQ (prop, tem))
1763 return Fcar (XCDR (tail));
1764 if (EQ (tem, Qcategory))
1765 {
1766 tem = Fcar (XCDR (tail));
1767 if (SYMBOLP (tem))
1768 fallback = Fget (tem, prop);
1769 }
1770 }
1771
1772 if (! NILP (fallback))
1773 return fallback;
1774 /* Check for alternative properties */
1775 tail = Fassq (prop, Vchar_property_alias_alist);
1776 if (! NILP (tail))
1777 {
1778 tail = XCDR (tail);
1779 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1780 fallback = Fplist_get (plist, XCAR (tail));
1781 }
1782
1783 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1784 fallback = Fplist_get (Vdefault_text_properties, prop);
1785 return fallback;
1786 }
1787
1788 \f
1789 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1790 byte position BYTEPOS. */
1791
1792 void
1793 temp_set_point_both (struct buffer *buffer,
1794 ptrdiff_t charpos, ptrdiff_t bytepos)
1795 {
1796 /* In a single-byte buffer, the two positions must be equal. */
1797 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer))
1798 eassert (charpos == bytepos);
1799
1800 eassert (charpos <= bytepos);
1801 eassert (charpos <= BUF_ZV (buffer) || BUF_BEGV (buffer) <= charpos);
1802
1803 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1804 }
1805
1806 /* Set point "temporarily", without checking any text properties. */
1807
1808 void
1809 temp_set_point (struct buffer *buffer, ptrdiff_t charpos)
1810 {
1811 temp_set_point_both (buffer, charpos,
1812 buf_charpos_to_bytepos (buffer, charpos));
1813 }
1814
1815 /* Set point in BUFFER to CHARPOS. If the target position is
1816 before an intangible character, move to an ok place. */
1817
1818 void
1819 set_point (ptrdiff_t charpos)
1820 {
1821 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1822 }
1823
1824 /* If there's an invisible character at position POS + TEST_OFFS in the
1825 current buffer, and the invisible property has a `stickiness' such that
1826 inserting a character at position POS would inherit the property it,
1827 return POS + ADJ, otherwise return POS. If TEST_INTANG, intangibility
1828 is required as well as invisibility.
1829
1830 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1831
1832 Note that `stickiness' is determined by overlay marker insertion types,
1833 if the invisible property comes from an overlay. */
1834
1835 static ptrdiff_t
1836 adjust_for_invis_intang (ptrdiff_t pos, ptrdiff_t test_offs, ptrdiff_t adj,
1837 bool test_intang)
1838 {
1839 Lisp_Object invis_propval, invis_overlay;
1840 Lisp_Object test_pos;
1841
1842 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1843 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1844 return pos;
1845
1846 test_pos = make_number (pos + test_offs);
1847
1848 invis_propval
1849 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1850 &invis_overlay);
1851
1852 if ((!test_intang
1853 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1854 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1855 /* This next test is true if the invisible property has a stickiness
1856 such that an insertion at POS would inherit it. */
1857 && (NILP (invis_overlay)
1858 /* Invisible property is from a text-property. */
1859 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1860 == (test_offs == 0 ? 1 : -1))
1861 /* Invisible property is from an overlay. */
1862 : (test_offs == 0
1863 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1864 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1865 pos += adj;
1866
1867 return pos;
1868 }
1869
1870 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1871 position BYTEPOS. If the target position is
1872 before an intangible character, move to an ok place. */
1873
1874 void
1875 set_point_both (ptrdiff_t charpos, ptrdiff_t bytepos)
1876 {
1877 register INTERVAL to, from, toprev, fromprev;
1878 ptrdiff_t buffer_point;
1879 ptrdiff_t old_position = PT;
1880 /* This ensures that we move forward past intangible text when the
1881 initial position is the same as the destination, in the rare
1882 instances where this is important, e.g. in line-move-finish
1883 (simple.el). */
1884 bool backwards = charpos < old_position;
1885 bool have_overlays;
1886 ptrdiff_t original_position;
1887
1888 bset_point_before_scroll (current_buffer, Qnil);
1889
1890 if (charpos == PT)
1891 return;
1892
1893 /* In a single-byte buffer, the two positions must be equal. */
1894 eassert (ZV != ZV_BYTE || charpos == bytepos);
1895
1896 /* Check this now, before checking if the buffer has any intervals.
1897 That way, we can catch conditions which break this sanity check
1898 whether or not there are intervals in the buffer. */
1899 eassert (charpos <= ZV && charpos >= BEGV);
1900
1901 have_overlays = buffer_has_overlays ();
1902
1903 /* If we have no text properties and overlays,
1904 then we can do it quickly. */
1905 if (!buffer_intervals (current_buffer) && ! have_overlays)
1906 {
1907 temp_set_point_both (current_buffer, charpos, bytepos);
1908 return;
1909 }
1910
1911 /* Set TO to the interval containing the char after CHARPOS,
1912 and TOPREV to the interval containing the char before CHARPOS.
1913 Either one may be null. They may be equal. */
1914 to = find_interval (buffer_intervals (current_buffer), charpos);
1915 if (charpos == BEGV)
1916 toprev = 0;
1917 else if (to && to->position == charpos)
1918 toprev = previous_interval (to);
1919 else
1920 toprev = to;
1921
1922 buffer_point = (PT == ZV ? ZV - 1 : PT);
1923
1924 /* Set FROM to the interval containing the char after PT,
1925 and FROMPREV to the interval containing the char before PT.
1926 Either one may be null. They may be equal. */
1927 /* We could cache this and save time. */
1928 from = find_interval (buffer_intervals (current_buffer), buffer_point);
1929 if (buffer_point == BEGV)
1930 fromprev = 0;
1931 else if (from && from->position == PT)
1932 fromprev = previous_interval (from);
1933 else if (buffer_point != PT)
1934 fromprev = from, from = 0;
1935 else
1936 fromprev = from;
1937
1938 /* Moving within an interval. */
1939 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1940 && ! have_overlays)
1941 {
1942 temp_set_point_both (current_buffer, charpos, bytepos);
1943 return;
1944 }
1945
1946 original_position = charpos;
1947
1948 /* If the new position is between two intangible characters
1949 with the same intangible property value,
1950 move forward or backward until a change in that property. */
1951 if (NILP (Vinhibit_point_motion_hooks)
1952 && ((to && toprev)
1953 || have_overlays)
1954 /* Intangibility never stops us from positioning at the beginning
1955 or end of the buffer, so don't bother checking in that case. */
1956 && charpos != BEGV && charpos != ZV)
1957 {
1958 Lisp_Object pos;
1959 Lisp_Object intangible_propval;
1960
1961 if (backwards)
1962 {
1963 /* If the preceding character is both intangible and invisible,
1964 and the invisible property is `rear-sticky', perturb it so
1965 that the search starts one character earlier -- this ensures
1966 that point can never move to the end of an invisible/
1967 intangible/rear-sticky region. */
1968 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
1969
1970 XSETINT (pos, charpos);
1971
1972 /* If following char is intangible,
1973 skip back over all chars with matching intangible property. */
1974
1975 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
1976
1977 if (! NILP (intangible_propval))
1978 {
1979 while (XINT (pos) > BEGV
1980 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1981 Qintangible, Qnil),
1982 intangible_propval))
1983 pos = Fprevious_char_property_change (pos, Qnil);
1984
1985 /* Set CHARPOS from POS, and if the final intangible character
1986 that we skipped over is also invisible, and the invisible
1987 property is `front-sticky', perturb it to be one character
1988 earlier -- this ensures that point can never move to the
1989 beginning of an invisible/intangible/front-sticky region. */
1990 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
1991 }
1992 }
1993 else
1994 {
1995 /* If the following character is both intangible and invisible,
1996 and the invisible property is `front-sticky', perturb it so
1997 that the search starts one character later -- this ensures
1998 that point can never move to the beginning of an
1999 invisible/intangible/front-sticky region. */
2000 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2001
2002 XSETINT (pos, charpos);
2003
2004 /* If preceding char is intangible,
2005 skip forward over all chars with matching intangible property. */
2006
2007 intangible_propval = Fget_char_property (make_number (charpos - 1),
2008 Qintangible, Qnil);
2009
2010 if (! NILP (intangible_propval))
2011 {
2012 while (XINT (pos) < ZV
2013 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2014 intangible_propval))
2015 pos = Fnext_char_property_change (pos, Qnil);
2016
2017 /* Set CHARPOS from POS, and if the final intangible character
2018 that we skipped over is also invisible, and the invisible
2019 property is `rear-sticky', perturb it to be one character
2020 later -- this ensures that point can never move to the
2021 end of an invisible/intangible/rear-sticky region. */
2022 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2023 }
2024 }
2025
2026 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2027 }
2028
2029 if (charpos != original_position)
2030 {
2031 /* Set TO to the interval containing the char after CHARPOS,
2032 and TOPREV to the interval containing the char before CHARPOS.
2033 Either one may be null. They may be equal. */
2034 to = find_interval (buffer_intervals (current_buffer), charpos);
2035 if (charpos == BEGV)
2036 toprev = 0;
2037 else if (to && to->position == charpos)
2038 toprev = previous_interval (to);
2039 else
2040 toprev = to;
2041 }
2042
2043 /* Here TO is the interval after the stopping point
2044 and TOPREV is the interval before the stopping point.
2045 One or the other may be null. */
2046
2047 temp_set_point_both (current_buffer, charpos, bytepos);
2048
2049 /* We run point-left and point-entered hooks here, if the
2050 two intervals are not equivalent. These hooks take
2051 (old_point, new_point) as arguments. */
2052 if (NILP (Vinhibit_point_motion_hooks)
2053 && (! intervals_equal (from, to)
2054 || ! intervals_equal (fromprev, toprev)))
2055 {
2056 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2057
2058 if (fromprev)
2059 leave_before = textget (fromprev->plist, Qpoint_left);
2060 else
2061 leave_before = Qnil;
2062
2063 if (from)
2064 leave_after = textget (from->plist, Qpoint_left);
2065 else
2066 leave_after = Qnil;
2067
2068 if (toprev)
2069 enter_before = textget (toprev->plist, Qpoint_entered);
2070 else
2071 enter_before = Qnil;
2072
2073 if (to)
2074 enter_after = textget (to->plist, Qpoint_entered);
2075 else
2076 enter_after = Qnil;
2077
2078 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2079 call2 (leave_before, make_number (old_position),
2080 make_number (charpos));
2081 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2082 call2 (leave_after, make_number (old_position),
2083 make_number (charpos));
2084
2085 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2086 call2 (enter_before, make_number (old_position),
2087 make_number (charpos));
2088 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2089 call2 (enter_after, make_number (old_position),
2090 make_number (charpos));
2091 }
2092 }
2093 \f
2094 /* Move point to POSITION, unless POSITION is inside an intangible
2095 segment that reaches all the way to point. */
2096
2097 void
2098 move_if_not_intangible (ptrdiff_t position)
2099 {
2100 Lisp_Object pos;
2101 Lisp_Object intangible_propval;
2102
2103 XSETINT (pos, position);
2104
2105 if (! NILP (Vinhibit_point_motion_hooks))
2106 /* If intangible is inhibited, always move point to POSITION. */
2107 ;
2108 else if (PT < position && XINT (pos) < ZV)
2109 {
2110 /* We want to move forward, so check the text before POSITION. */
2111
2112 intangible_propval = Fget_char_property (pos,
2113 Qintangible, Qnil);
2114
2115 /* If following char is intangible,
2116 skip back over all chars with matching intangible property. */
2117 if (! NILP (intangible_propval))
2118 while (XINT (pos) > BEGV
2119 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2120 Qintangible, Qnil),
2121 intangible_propval))
2122 pos = Fprevious_char_property_change (pos, Qnil);
2123 }
2124 else if (XINT (pos) > BEGV)
2125 {
2126 /* We want to move backward, so check the text after POSITION. */
2127
2128 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2129 Qintangible, Qnil);
2130
2131 /* If following char is intangible,
2132 skip forward over all chars with matching intangible property. */
2133 if (! NILP (intangible_propval))
2134 while (XINT (pos) < ZV
2135 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2136 intangible_propval))
2137 pos = Fnext_char_property_change (pos, Qnil);
2138
2139 }
2140 else if (position < BEGV)
2141 position = BEGV;
2142 else if (position > ZV)
2143 position = ZV;
2144
2145 /* If the whole stretch between PT and POSITION isn't intangible,
2146 try moving to POSITION (which means we actually move farther
2147 if POSITION is inside of intangible text). */
2148
2149 if (XINT (pos) != PT)
2150 SET_PT (position);
2151 }
2152 \f
2153 /* If text at position POS has property PROP, set *VAL to the property
2154 value, *START and *END to the beginning and end of a region that
2155 has the same property, and return true. Otherwise return false.
2156
2157 OBJECT is the string or buffer to look for the property in;
2158 nil means the current buffer. */
2159
2160 bool
2161 get_property_and_range (ptrdiff_t pos, Lisp_Object prop, Lisp_Object *val,
2162 ptrdiff_t *start, ptrdiff_t *end, Lisp_Object object)
2163 {
2164 INTERVAL i, prev, next;
2165
2166 if (NILP (object))
2167 i = find_interval (buffer_intervals (current_buffer), pos);
2168 else if (BUFFERP (object))
2169 i = find_interval (buffer_intervals (XBUFFER (object)), pos);
2170 else if (STRINGP (object))
2171 i = find_interval (string_intervals (object), pos);
2172 else
2173 emacs_abort ();
2174
2175 if (!i || (i->position + LENGTH (i) <= pos))
2176 return 0;
2177 *val = textget (i->plist, prop);
2178 if (NILP (*val))
2179 return 0;
2180
2181 next = i; /* remember it in advance */
2182 prev = previous_interval (i);
2183 while (prev
2184 && EQ (*val, textget (prev->plist, prop)))
2185 i = prev, prev = previous_interval (prev);
2186 *start = i->position;
2187
2188 next = next_interval (i);
2189 while (next && EQ (*val, textget (next->plist, prop)))
2190 i = next, next = next_interval (next);
2191 *end = i->position + LENGTH (i);
2192
2193 return 1;
2194 }
2195 \f
2196 /* Return the proper local keymap TYPE for position POSITION in
2197 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2198 specified by the PROP property, if any. Otherwise, if TYPE is
2199 `local-map' use BUFFER's local map.
2200
2201 POSITION must be in the accessible part of BUFFER. */
2202
2203 Lisp_Object
2204 get_local_map (register ptrdiff_t position, register struct buffer *buffer,
2205 Lisp_Object type)
2206 {
2207 Lisp_Object prop, lispy_position, lispy_buffer;
2208 ptrdiff_t old_begv, old_zv, old_begv_byte, old_zv_byte;
2209
2210 /* Perhaps we should just change `position' to the limit. */
2211 if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
2212 emacs_abort ();
2213
2214 /* Ignore narrowing, so that a local map continues to be valid even if
2215 the visible region contains no characters and hence no properties. */
2216 old_begv = BUF_BEGV (buffer);
2217 old_zv = BUF_ZV (buffer);
2218 old_begv_byte = BUF_BEGV_BYTE (buffer);
2219 old_zv_byte = BUF_ZV_BYTE (buffer);
2220
2221 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2222 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2223
2224 XSETFASTINT (lispy_position, position);
2225 XSETBUFFER (lispy_buffer, buffer);
2226 /* First check if the CHAR has any property. This is because when
2227 we click with the mouse, the mouse pointer is really pointing
2228 to the CHAR after POS. */
2229 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2230 /* If not, look at the POS's properties. This is necessary because when
2231 editing a field with a `local-map' property, we want insertion at the end
2232 to obey the `local-map' property. */
2233 if (NILP (prop))
2234 prop = get_pos_property (lispy_position, type, lispy_buffer);
2235
2236 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2237 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2238
2239 /* Use the local map only if it is valid. */
2240 prop = get_keymap (prop, 0, 0);
2241 if (CONSP (prop))
2242 return prop;
2243
2244 if (EQ (type, Qkeymap))
2245 return Qnil;
2246 else
2247 return BVAR (buffer, keymap);
2248 }
2249 \f
2250 /* Produce an interval tree reflecting the intervals in
2251 TREE from START to START + LENGTH.
2252 The new interval tree has no parent and has a starting-position of 0. */
2253
2254 INTERVAL
2255 copy_intervals (INTERVAL tree, ptrdiff_t start, ptrdiff_t length)
2256 {
2257 register INTERVAL i, new, t;
2258 register ptrdiff_t got, prevlen;
2259
2260 if (!tree || length <= 0)
2261 return NULL;
2262
2263 i = find_interval (tree, start);
2264 eassert (i && LENGTH (i) > 0);
2265
2266 /* If there is only one interval and it's the default, return nil. */
2267 if ((start - i->position + 1 + length) < LENGTH (i)
2268 && DEFAULT_INTERVAL_P (i))
2269 return NULL;
2270
2271 new = make_interval ();
2272 new->position = 0;
2273 got = (LENGTH (i) - (start - i->position));
2274 new->total_length = length;
2275 eassert (0 <= TOTAL_LENGTH (new));
2276 copy_properties (i, new);
2277
2278 t = new;
2279 prevlen = got;
2280 while (got < length)
2281 {
2282 i = next_interval (i);
2283 t = split_interval_right (t, prevlen);
2284 copy_properties (i, t);
2285 prevlen = LENGTH (i);
2286 got += prevlen;
2287 }
2288
2289 return balance_an_interval (new);
2290 }
2291
2292 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2293
2294 void
2295 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2296 ptrdiff_t position, ptrdiff_t length)
2297 {
2298 INTERVAL interval_copy = copy_intervals (buffer_intervals (buffer),
2299 position, length);
2300 if (!interval_copy)
2301 return;
2302
2303 set_interval_object (interval_copy, string);
2304 set_string_intervals (string, interval_copy);
2305 }
2306 \f
2307 /* Return true if strings S1 and S2 have identical properties.
2308 Assume they have identical characters. */
2309
2310 bool
2311 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2312 {
2313 INTERVAL i1, i2;
2314 ptrdiff_t pos = 0;
2315 ptrdiff_t end = SCHARS (s1);
2316
2317 i1 = find_interval (string_intervals (s1), 0);
2318 i2 = find_interval (string_intervals (s2), 0);
2319
2320 while (pos < end)
2321 {
2322 /* Determine how far we can go before we reach the end of I1 or I2. */
2323 ptrdiff_t len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2324 ptrdiff_t len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2325 ptrdiff_t distance = min (len1, len2);
2326
2327 /* If we ever find a mismatch between the strings,
2328 they differ. */
2329 if (! intervals_equal (i1, i2))
2330 return 0;
2331
2332 /* Advance POS till the end of the shorter interval,
2333 and advance one or both interval pointers for the new position. */
2334 pos += distance;
2335 if (len1 == distance)
2336 i1 = next_interval (i1);
2337 if (len2 == distance)
2338 i2 = next_interval (i2);
2339 }
2340 return 1;
2341 }
2342 \f
2343 /* Recursively adjust interval I in the current buffer
2344 for setting enable_multibyte_characters to MULTI_FLAG.
2345 The range of interval I is START ... END in characters,
2346 START_BYTE ... END_BYTE in bytes. */
2347
2348 static void
2349 set_intervals_multibyte_1 (INTERVAL i, bool multi_flag,
2350 ptrdiff_t start, ptrdiff_t start_byte,
2351 ptrdiff_t end, ptrdiff_t end_byte)
2352 {
2353 /* Fix the length of this interval. */
2354 if (multi_flag)
2355 i->total_length = end - start;
2356 else
2357 i->total_length = end_byte - start_byte;
2358 eassert (0 <= TOTAL_LENGTH (i));
2359
2360 if (TOTAL_LENGTH (i) == 0)
2361 {
2362 delete_interval (i);
2363 return;
2364 }
2365
2366 /* Recursively fix the length of the subintervals. */
2367 if (i->left)
2368 {
2369 ptrdiff_t left_end, left_end_byte;
2370
2371 if (multi_flag)
2372 {
2373 ptrdiff_t temp;
2374 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2375 left_end = BYTE_TO_CHAR (left_end_byte);
2376
2377 temp = CHAR_TO_BYTE (left_end);
2378
2379 /* If LEFT_END_BYTE is in the middle of a character,
2380 adjust it and LEFT_END to a char boundary. */
2381 if (left_end_byte > temp)
2382 {
2383 left_end_byte = temp;
2384 }
2385 if (left_end_byte < temp)
2386 {
2387 left_end--;
2388 left_end_byte = CHAR_TO_BYTE (left_end);
2389 }
2390 }
2391 else
2392 {
2393 left_end = start + LEFT_TOTAL_LENGTH (i);
2394 left_end_byte = CHAR_TO_BYTE (left_end);
2395 }
2396
2397 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2398 left_end, left_end_byte);
2399 }
2400 if (i->right)
2401 {
2402 ptrdiff_t right_start_byte, right_start;
2403
2404 if (multi_flag)
2405 {
2406 ptrdiff_t temp;
2407
2408 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2409 right_start = BYTE_TO_CHAR (right_start_byte);
2410
2411 /* If RIGHT_START_BYTE is in the middle of a character,
2412 adjust it and RIGHT_START to a char boundary. */
2413 temp = CHAR_TO_BYTE (right_start);
2414
2415 if (right_start_byte < temp)
2416 {
2417 right_start_byte = temp;
2418 }
2419 if (right_start_byte > temp)
2420 {
2421 right_start++;
2422 right_start_byte = CHAR_TO_BYTE (right_start);
2423 }
2424 }
2425 else
2426 {
2427 right_start = end - RIGHT_TOTAL_LENGTH (i);
2428 right_start_byte = CHAR_TO_BYTE (right_start);
2429 }
2430
2431 set_intervals_multibyte_1 (i->right, multi_flag,
2432 right_start, right_start_byte,
2433 end, end_byte);
2434 }
2435
2436 /* Rounding to char boundaries can theoretically ake this interval
2437 spurious. If so, delete one child, and copy its property list
2438 to this interval. */
2439 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2440 {
2441 if ((i)->left)
2442 {
2443 set_interval_plist (i, i->left->plist);
2444 (i)->left->total_length = 0;
2445 delete_interval ((i)->left);
2446 }
2447 else
2448 {
2449 set_interval_plist (i, i->right->plist);
2450 (i)->right->total_length = 0;
2451 delete_interval ((i)->right);
2452 }
2453 }
2454 }
2455
2456 /* Update the intervals of the current buffer
2457 to fit the contents as multibyte (if MULTI_FLAG)
2458 or to fit them as non-multibyte (if not MULTI_FLAG). */
2459
2460 void
2461 set_intervals_multibyte (bool multi_flag)
2462 {
2463 INTERVAL i = buffer_intervals (current_buffer);
2464
2465 if (i)
2466 set_intervals_multibyte_1 (i, multi_flag, BEG, BEG_BYTE, Z, Z_BYTE);
2467 }