]> code.delx.au - gnu-emacs/blob - src/alloc.c
-
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25 #include <signal.h> /* For SIGABRT, SIGDANGER. */
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 #include "lisp.h"
32 #include "dispextern.h"
33 #include "intervals.h"
34 #include "puresize.h"
35 #include "sheap.h"
36 #include "systime.h"
37 #include "character.h"
38 #include "buffer.h"
39 #include "window.h"
40 #include "keyboard.h"
41 #include "frame.h"
42 #include "blockinput.h"
43 #include "termhooks.h" /* For struct terminal. */
44 #ifdef HAVE_WINDOW_SYSTEM
45 #include TERM_HEADER
46 #endif /* HAVE_WINDOW_SYSTEM */
47
48 #include <verify.h>
49 #include <execinfo.h> /* For backtrace. */
50
51 #ifdef HAVE_LINUX_SYSINFO
52 #include <sys/sysinfo.h>
53 #endif
54
55 #ifdef MSDOS
56 #include "dosfns.h" /* For dos_memory_info. */
57 #endif
58
59 #ifdef HAVE_MALLOC_H
60 # include <malloc.h>
61 #endif
62
63 #if (defined ENABLE_CHECKING \
64 && defined HAVE_VALGRIND_VALGRIND_H \
65 && !defined USE_VALGRIND)
66 # define USE_VALGRIND 1
67 #endif
68
69 #if USE_VALGRIND
70 #include <valgrind/valgrind.h>
71 #include <valgrind/memcheck.h>
72 static bool valgrind_p;
73 #endif
74
75 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
76
77 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
78 memory. Can do this only if using gmalloc.c and if not checking
79 marked objects. */
80
81 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
82 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
83 #undef GC_MALLOC_CHECK
84 #endif
85
86 #include <unistd.h>
87 #include <fcntl.h>
88
89 #ifdef USE_GTK
90 # include "gtkutil.h"
91 #endif
92 #ifdef WINDOWSNT
93 #include "w32.h"
94 #include "w32heap.h" /* for sbrk */
95 #endif
96
97 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
98 /* The address where the heap starts. */
99 void *
100 my_heap_start (void)
101 {
102 static void *start;
103 if (! start)
104 start = sbrk (0);
105 return start;
106 }
107 #endif
108
109 #ifdef DOUG_LEA_MALLOC
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Restore the dumped malloc state. Because malloc can be invoked
121 even before main (e.g. by the dynamic linker), the dumped malloc
122 state must be restored as early as possible using this special hook. */
123 static void
124 malloc_initialize_hook (void)
125 {
126 static bool malloc_using_checking;
127
128 if (! initialized)
129 {
130 my_heap_start ();
131 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
132 }
133 else
134 {
135 if (!malloc_using_checking)
136 {
137 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
138 ignored if the heap to be restored was constructed without
139 malloc checking. Can't use unsetenv, since that calls malloc. */
140 char **p = environ;
141 if (p)
142 for (; *p; p++)
143 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
144 {
145 do
146 *p = p[1];
147 while (*++p);
148
149 break;
150 }
151 }
152
153 malloc_set_state (malloc_state_ptr);
154 # ifndef XMALLOC_OVERRUN_CHECK
155 alloc_unexec_post ();
156 # endif
157 }
158 }
159
160 /* Declare the malloc initialization hook, which runs before 'main' starts.
161 EXTERNALLY_VISIBLE works around Bug#22522. */
162 # ifndef __MALLOC_HOOK_VOLATILE
163 # define __MALLOC_HOOK_VOLATILE
164 # endif
165 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
166 = malloc_initialize_hook;
167
168 #endif
169
170 /* Allocator-related actions to do just before and after unexec. */
171
172 void
173 alloc_unexec_pre (void)
174 {
175 #ifdef DOUG_LEA_MALLOC
176 malloc_state_ptr = malloc_get_state ();
177 #endif
178 #ifdef HYBRID_MALLOC
179 bss_sbrk_did_unexec = true;
180 #endif
181 }
182
183 void
184 alloc_unexec_post (void)
185 {
186 #ifdef DOUG_LEA_MALLOC
187 free (malloc_state_ptr);
188 #endif
189 #ifdef HYBRID_MALLOC
190 bss_sbrk_did_unexec = false;
191 #endif
192 }
193
194 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
195 to a struct Lisp_String. */
196
197 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
198 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
199 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
200
201 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
202 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
203 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
204
205 /* Default value of gc_cons_threshold (see below). */
206
207 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
208
209 /* Global variables. */
210 struct emacs_globals globals;
211
212 /* Number of bytes of consing done since the last gc. */
213
214 EMACS_INT consing_since_gc;
215
216 /* Similar minimum, computed from Vgc_cons_percentage. */
217
218 EMACS_INT gc_relative_threshold;
219
220 /* Minimum number of bytes of consing since GC before next GC,
221 when memory is full. */
222
223 EMACS_INT memory_full_cons_threshold;
224
225 /* True during GC. */
226
227 bool gc_in_progress;
228
229 /* True means abort if try to GC.
230 This is for code which is written on the assumption that
231 no GC will happen, so as to verify that assumption. */
232
233 bool abort_on_gc;
234
235 /* Number of live and free conses etc. */
236
237 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
238 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
239 static EMACS_INT total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block, or to see
248 whether this much is available when malloc fails on a larger request. */
249
250 #define SPARE_MEMORY (1 << 14)
251
252 /* Initialize it to a nonzero value to force it into data space
253 (rather than bss space). That way unexec will remap it into text
254 space (pure), on some systems. We have not implemented the
255 remapping on more recent systems because this is less important
256 nowadays than in the days of small memories and timesharing. */
257
258 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
259 #define PUREBEG (char *) pure
260
261 /* Pointer to the pure area, and its size. */
262
263 static char *purebeg;
264 static ptrdiff_t pure_size;
265
266 /* Number of bytes of pure storage used before pure storage overflowed.
267 If this is non-zero, this implies that an overflow occurred. */
268
269 static ptrdiff_t pure_bytes_used_before_overflow;
270
271 /* Index in pure at which next pure Lisp object will be allocated.. */
272
273 static ptrdiff_t pure_bytes_used_lisp;
274
275 /* Number of bytes allocated for non-Lisp objects in pure storage. */
276
277 static ptrdiff_t pure_bytes_used_non_lisp;
278
279 /* If nonzero, this is a warning delivered by malloc and not yet
280 displayed. */
281
282 const char *pending_malloc_warning;
283
284 #if 0 /* Normally, pointer sanity only on request... */
285 #ifdef ENABLE_CHECKING
286 #define SUSPICIOUS_OBJECT_CHECKING 1
287 #endif
288 #endif
289
290 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
291 bug is unresolved. */
292 #define SUSPICIOUS_OBJECT_CHECKING 1
293
294 #ifdef SUSPICIOUS_OBJECT_CHECKING
295 struct suspicious_free_record
296 {
297 void *suspicious_object;
298 void *backtrace[128];
299 };
300 static void *suspicious_objects[32];
301 static int suspicious_object_index;
302 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
303 static int suspicious_free_history_index;
304 /* Find the first currently-monitored suspicious pointer in range
305 [begin,end) or NULL if no such pointer exists. */
306 static void *find_suspicious_object_in_range (void *begin, void *end);
307 static void detect_suspicious_free (void *ptr);
308 #else
309 # define find_suspicious_object_in_range(begin, end) NULL
310 # define detect_suspicious_free(ptr) (void)
311 #endif
312
313 /* Maximum amount of C stack to save when a GC happens. */
314
315 #ifndef MAX_SAVE_STACK
316 #define MAX_SAVE_STACK 16000
317 #endif
318
319 /* Buffer in which we save a copy of the C stack at each GC. */
320
321 #if MAX_SAVE_STACK > 0
322 static char *stack_copy;
323 static ptrdiff_t stack_copy_size;
324
325 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
326 avoiding any address sanitization. */
327
328 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
329 no_sanitize_memcpy (void *dest, void const *src, size_t size)
330 {
331 if (! ADDRESS_SANITIZER)
332 return memcpy (dest, src, size);
333 else
334 {
335 size_t i;
336 char *d = dest;
337 char const *s = src;
338 for (i = 0; i < size; i++)
339 d[i] = s[i];
340 return dest;
341 }
342 }
343
344 #endif /* MAX_SAVE_STACK > 0 */
345
346 static void mark_terminals (void);
347 static void gc_sweep (void);
348 static Lisp_Object make_pure_vector (ptrdiff_t);
349 static void mark_buffer (struct buffer *);
350
351 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
352 static void refill_memory_reserve (void);
353 #endif
354 static void compact_small_strings (void);
355 static void free_large_strings (void);
356 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
357
358 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
359 what memory allocated via lisp_malloc and lisp_align_malloc is intended
360 for what purpose. This enumeration specifies the type of memory. */
361
362 enum mem_type
363 {
364 MEM_TYPE_NON_LISP,
365 MEM_TYPE_BUFFER,
366 MEM_TYPE_CONS,
367 MEM_TYPE_STRING,
368 MEM_TYPE_MISC,
369 MEM_TYPE_SYMBOL,
370 MEM_TYPE_FLOAT,
371 /* Since all non-bool pseudovectors are small enough to be
372 allocated from vector blocks, this memory type denotes
373 large regular vectors and large bool pseudovectors. */
374 MEM_TYPE_VECTORLIKE,
375 /* Special type to denote vector blocks. */
376 MEM_TYPE_VECTOR_BLOCK,
377 /* Special type to denote reserved memory. */
378 MEM_TYPE_SPARE
379 };
380
381 /* A unique object in pure space used to make some Lisp objects
382 on free lists recognizable in O(1). */
383
384 static Lisp_Object Vdead;
385 #define DEADP(x) EQ (x, Vdead)
386
387 #ifdef GC_MALLOC_CHECK
388
389 enum mem_type allocated_mem_type;
390
391 #endif /* GC_MALLOC_CHECK */
392
393 /* A node in the red-black tree describing allocated memory containing
394 Lisp data. Each such block is recorded with its start and end
395 address when it is allocated, and removed from the tree when it
396 is freed.
397
398 A red-black tree is a balanced binary tree with the following
399 properties:
400
401 1. Every node is either red or black.
402 2. Every leaf is black.
403 3. If a node is red, then both of its children are black.
404 4. Every simple path from a node to a descendant leaf contains
405 the same number of black nodes.
406 5. The root is always black.
407
408 When nodes are inserted into the tree, or deleted from the tree,
409 the tree is "fixed" so that these properties are always true.
410
411 A red-black tree with N internal nodes has height at most 2
412 log(N+1). Searches, insertions and deletions are done in O(log N).
413 Please see a text book about data structures for a detailed
414 description of red-black trees. Any book worth its salt should
415 describe them. */
416
417 struct mem_node
418 {
419 /* Children of this node. These pointers are never NULL. When there
420 is no child, the value is MEM_NIL, which points to a dummy node. */
421 struct mem_node *left, *right;
422
423 /* The parent of this node. In the root node, this is NULL. */
424 struct mem_node *parent;
425
426 /* Start and end of allocated region. */
427 void *start, *end;
428
429 /* Node color. */
430 enum {MEM_BLACK, MEM_RED} color;
431
432 /* Memory type. */
433 enum mem_type type;
434 };
435
436 /* Base address of stack. Set in main. */
437
438 Lisp_Object *stack_base;
439
440 /* Root of the tree describing allocated Lisp memory. */
441
442 static struct mem_node *mem_root;
443
444 /* Lowest and highest known address in the heap. */
445
446 static void *min_heap_address, *max_heap_address;
447
448 /* Sentinel node of the tree. */
449
450 static struct mem_node mem_z;
451 #define MEM_NIL &mem_z
452
453 static struct mem_node *mem_insert (void *, void *, enum mem_type);
454 static void mem_insert_fixup (struct mem_node *);
455 static void mem_rotate_left (struct mem_node *);
456 static void mem_rotate_right (struct mem_node *);
457 static void mem_delete (struct mem_node *);
458 static void mem_delete_fixup (struct mem_node *);
459 static struct mem_node *mem_find (void *);
460
461 #ifndef DEADP
462 # define DEADP(x) 0
463 #endif
464
465 /* Addresses of staticpro'd variables. Initialize it to a nonzero
466 value; otherwise some compilers put it into BSS. */
467
468 enum { NSTATICS = 2048 };
469 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
470
471 /* Index of next unused slot in staticvec. */
472
473 static int staticidx;
474
475 static void *pure_alloc (size_t, int);
476
477 /* Return X rounded to the next multiple of Y. Arguments should not
478 have side effects, as they are evaluated more than once. Assume X
479 + Y - 1 does not overflow. Tune for Y being a power of 2. */
480
481 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
482 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
483 : ((x) + (y) - 1) & ~ ((y) - 1))
484
485 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
486
487 static void *
488 ALIGN (void *ptr, int alignment)
489 {
490 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
491 }
492
493 /* Extract the pointer hidden within A, if A is not a symbol.
494 If A is a symbol, extract the hidden pointer's offset from lispsym,
495 converted to void *. */
496
497 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
498 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
499
500 /* Extract the pointer hidden within A. */
501
502 #define macro_XPNTR(a) \
503 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
504 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
505
506 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
507 functions, as functions are cleaner and can be used in debuggers.
508 Also, define them as macros if being compiled with GCC without
509 optimization, for performance in that case. The macro_* names are
510 private to this section of code. */
511
512 static ATTRIBUTE_UNUSED void *
513 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
514 {
515 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
516 }
517 static ATTRIBUTE_UNUSED void *
518 XPNTR (Lisp_Object a)
519 {
520 return macro_XPNTR (a);
521 }
522
523 #if DEFINE_KEY_OPS_AS_MACROS
524 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
525 # define XPNTR(a) macro_XPNTR (a)
526 #endif
527
528 static void
529 XFLOAT_INIT (Lisp_Object f, double n)
530 {
531 XFLOAT (f)->u.data = n;
532 }
533
534 #ifdef DOUG_LEA_MALLOC
535 static bool
536 pointers_fit_in_lispobj_p (void)
537 {
538 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
539 }
540
541 static bool
542 mmap_lisp_allowed_p (void)
543 {
544 /* If we can't store all memory addresses in our lisp objects, it's
545 risky to let the heap use mmap and give us addresses from all
546 over our address space. We also can't use mmap for lisp objects
547 if we might dump: unexec doesn't preserve the contents of mmapped
548 regions. */
549 return pointers_fit_in_lispobj_p () && !might_dump;
550 }
551 #endif
552
553 /* Head of a circularly-linked list of extant finalizers. */
554 static struct Lisp_Finalizer finalizers;
555
556 /* Head of a circularly-linked list of finalizers that must be invoked
557 because we deemed them unreachable. This list must be global, and
558 not a local inside garbage_collect_1, in case we GC again while
559 running finalizers. */
560 static struct Lisp_Finalizer doomed_finalizers;
561
562 \f
563 /************************************************************************
564 Malloc
565 ************************************************************************/
566
567 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
568
569 /* Function malloc calls this if it finds we are near exhausting storage. */
570
571 void
572 malloc_warning (const char *str)
573 {
574 pending_malloc_warning = str;
575 }
576
577 #endif
578
579 /* Display an already-pending malloc warning. */
580
581 void
582 display_malloc_warning (void)
583 {
584 call3 (intern ("display-warning"),
585 intern ("alloc"),
586 build_string (pending_malloc_warning),
587 intern ("emergency"));
588 pending_malloc_warning = 0;
589 }
590 \f
591 /* Called if we can't allocate relocatable space for a buffer. */
592
593 void
594 buffer_memory_full (ptrdiff_t nbytes)
595 {
596 /* If buffers use the relocating allocator, no need to free
597 spare_memory, because we may have plenty of malloc space left
598 that we could get, and if we don't, the malloc that fails will
599 itself cause spare_memory to be freed. If buffers don't use the
600 relocating allocator, treat this like any other failing
601 malloc. */
602
603 #ifndef REL_ALLOC
604 memory_full (nbytes);
605 #else
606 /* This used to call error, but if we've run out of memory, we could
607 get infinite recursion trying to build the string. */
608 xsignal (Qnil, Vmemory_signal_data);
609 #endif
610 }
611
612 /* A common multiple of the positive integers A and B. Ideally this
613 would be the least common multiple, but there's no way to do that
614 as a constant expression in C, so do the best that we can easily do. */
615 #define COMMON_MULTIPLE(a, b) \
616 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
617
618 #ifndef XMALLOC_OVERRUN_CHECK
619 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
620 #else
621
622 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
623 around each block.
624
625 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
626 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
627 block size in little-endian order. The trailer consists of
628 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
629
630 The header is used to detect whether this block has been allocated
631 through these functions, as some low-level libc functions may
632 bypass the malloc hooks. */
633
634 #define XMALLOC_OVERRUN_CHECK_SIZE 16
635 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
636 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
637
638 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
639 hold a size_t value and (2) the header size is a multiple of the
640 alignment that Emacs needs for C types and for USE_LSB_TAG. */
641 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
642
643 #define XMALLOC_HEADER_ALIGNMENT \
644 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
645 #define XMALLOC_OVERRUN_SIZE_SIZE \
646 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
647 + XMALLOC_HEADER_ALIGNMENT - 1) \
648 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
649 - XMALLOC_OVERRUN_CHECK_SIZE)
650
651 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
652 { '\x9a', '\x9b', '\xae', '\xaf',
653 '\xbf', '\xbe', '\xce', '\xcf',
654 '\xea', '\xeb', '\xec', '\xed',
655 '\xdf', '\xde', '\x9c', '\x9d' };
656
657 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
658 { '\xaa', '\xab', '\xac', '\xad',
659 '\xba', '\xbb', '\xbc', '\xbd',
660 '\xca', '\xcb', '\xcc', '\xcd',
661 '\xda', '\xdb', '\xdc', '\xdd' };
662
663 /* Insert and extract the block size in the header. */
664
665 static void
666 xmalloc_put_size (unsigned char *ptr, size_t size)
667 {
668 int i;
669 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
670 {
671 *--ptr = size & ((1 << CHAR_BIT) - 1);
672 size >>= CHAR_BIT;
673 }
674 }
675
676 static size_t
677 xmalloc_get_size (unsigned char *ptr)
678 {
679 size_t size = 0;
680 int i;
681 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
683 {
684 size <<= CHAR_BIT;
685 size += *ptr++;
686 }
687 return size;
688 }
689
690
691 /* Like malloc, but wraps allocated block with header and trailer. */
692
693 static void *
694 overrun_check_malloc (size_t size)
695 {
696 register unsigned char *val;
697 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
698 emacs_abort ();
699
700 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 if (val)
702 {
703 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
704 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
705 xmalloc_put_size (val, size);
706 memcpy (val + size, xmalloc_overrun_check_trailer,
707 XMALLOC_OVERRUN_CHECK_SIZE);
708 }
709 return val;
710 }
711
712
713 /* Like realloc, but checks old block for overrun, and wraps new block
714 with header and trailer. */
715
716 static void *
717 overrun_check_realloc (void *block, size_t size)
718 {
719 register unsigned char *val = (unsigned char *) block;
720 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
721 emacs_abort ();
722
723 if (val
724 && memcmp (xmalloc_overrun_check_header,
725 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
726 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
727 {
728 size_t osize = xmalloc_get_size (val);
729 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
730 XMALLOC_OVERRUN_CHECK_SIZE))
731 emacs_abort ();
732 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
733 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
734 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
735 }
736
737 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
738
739 if (val)
740 {
741 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
742 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
743 xmalloc_put_size (val, size);
744 memcpy (val + size, xmalloc_overrun_check_trailer,
745 XMALLOC_OVERRUN_CHECK_SIZE);
746 }
747 return val;
748 }
749
750 /* Like free, but checks block for overrun. */
751
752 static void
753 overrun_check_free (void *block)
754 {
755 unsigned char *val = (unsigned char *) block;
756
757 if (val
758 && memcmp (xmalloc_overrun_check_header,
759 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
760 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
761 {
762 size_t osize = xmalloc_get_size (val);
763 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
764 XMALLOC_OVERRUN_CHECK_SIZE))
765 emacs_abort ();
766 #ifdef XMALLOC_CLEAR_FREE_MEMORY
767 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
768 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
769 #else
770 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
771 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
772 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
773 #endif
774 }
775
776 free (val);
777 }
778
779 #undef malloc
780 #undef realloc
781 #undef free
782 #define malloc overrun_check_malloc
783 #define realloc overrun_check_realloc
784 #define free overrun_check_free
785 #endif
786
787 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
788 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
789 If that variable is set, block input while in one of Emacs's memory
790 allocation functions. There should be no need for this debugging
791 option, since signal handlers do not allocate memory, but Emacs
792 formerly allocated memory in signal handlers and this compile-time
793 option remains as a way to help debug the issue should it rear its
794 ugly head again. */
795 #ifdef XMALLOC_BLOCK_INPUT_CHECK
796 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
797 static void
798 malloc_block_input (void)
799 {
800 if (block_input_in_memory_allocators)
801 block_input ();
802 }
803 static void
804 malloc_unblock_input (void)
805 {
806 if (block_input_in_memory_allocators)
807 unblock_input ();
808 }
809 # define MALLOC_BLOCK_INPUT malloc_block_input ()
810 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
811 #else
812 # define MALLOC_BLOCK_INPUT ((void) 0)
813 # define MALLOC_UNBLOCK_INPUT ((void) 0)
814 #endif
815
816 #define MALLOC_PROBE(size) \
817 do { \
818 if (profiler_memory_running) \
819 malloc_probe (size); \
820 } while (0)
821
822 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
823 static void *lrealloc (void *, size_t);
824
825 /* Like malloc but check for no memory and block interrupt input. */
826
827 void *
828 xmalloc (size_t size)
829 {
830 void *val;
831
832 MALLOC_BLOCK_INPUT;
833 val = lmalloc (size);
834 MALLOC_UNBLOCK_INPUT;
835
836 if (!val && size)
837 memory_full (size);
838 MALLOC_PROBE (size);
839 return val;
840 }
841
842 /* Like the above, but zeroes out the memory just allocated. */
843
844 void *
845 xzalloc (size_t size)
846 {
847 void *val;
848
849 MALLOC_BLOCK_INPUT;
850 val = lmalloc (size);
851 MALLOC_UNBLOCK_INPUT;
852
853 if (!val && size)
854 memory_full (size);
855 memset (val, 0, size);
856 MALLOC_PROBE (size);
857 return val;
858 }
859
860 /* Like realloc but check for no memory and block interrupt input.. */
861
862 void *
863 xrealloc (void *block, size_t size)
864 {
865 void *val;
866
867 MALLOC_BLOCK_INPUT;
868 /* We must call malloc explicitly when BLOCK is 0, since some
869 reallocs don't do this. */
870 if (! block)
871 val = lmalloc (size);
872 else
873 val = lrealloc (block, size);
874 MALLOC_UNBLOCK_INPUT;
875
876 if (!val && size)
877 memory_full (size);
878 MALLOC_PROBE (size);
879 return val;
880 }
881
882
883 /* Like free but block interrupt input. */
884
885 void
886 xfree (void *block)
887 {
888 if (!block)
889 return;
890 MALLOC_BLOCK_INPUT;
891 free (block);
892 MALLOC_UNBLOCK_INPUT;
893 /* We don't call refill_memory_reserve here
894 because in practice the call in r_alloc_free seems to suffice. */
895 }
896
897
898 /* Other parts of Emacs pass large int values to allocator functions
899 expecting ptrdiff_t. This is portable in practice, but check it to
900 be safe. */
901 verify (INT_MAX <= PTRDIFF_MAX);
902
903
904 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
905 Signal an error on memory exhaustion, and block interrupt input. */
906
907 void *
908 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
909 {
910 eassert (0 <= nitems && 0 < item_size);
911 ptrdiff_t nbytes;
912 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
913 memory_full (SIZE_MAX);
914 return xmalloc (nbytes);
915 }
916
917
918 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
919 Signal an error on memory exhaustion, and block interrupt input. */
920
921 void *
922 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
923 {
924 eassert (0 <= nitems && 0 < item_size);
925 ptrdiff_t nbytes;
926 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
927 memory_full (SIZE_MAX);
928 return xrealloc (pa, nbytes);
929 }
930
931
932 /* Grow PA, which points to an array of *NITEMS items, and return the
933 location of the reallocated array, updating *NITEMS to reflect its
934 new size. The new array will contain at least NITEMS_INCR_MIN more
935 items, but will not contain more than NITEMS_MAX items total.
936 ITEM_SIZE is the size of each item, in bytes.
937
938 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
939 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
940 infinity.
941
942 If PA is null, then allocate a new array instead of reallocating
943 the old one.
944
945 Block interrupt input as needed. If memory exhaustion occurs, set
946 *NITEMS to zero if PA is null, and signal an error (i.e., do not
947 return).
948
949 Thus, to grow an array A without saving its old contents, do
950 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
951 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
952 and signals an error, and later this code is reexecuted and
953 attempts to free A. */
954
955 void *
956 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
957 ptrdiff_t nitems_max, ptrdiff_t item_size)
958 {
959 ptrdiff_t n0 = *nitems;
960 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
961
962 /* The approximate size to use for initial small allocation
963 requests. This is the largest "small" request for the GNU C
964 library malloc. */
965 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
966
967 /* If the array is tiny, grow it to about (but no greater than)
968 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
969 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
970 NITEMS_MAX, and what the C language can represent safely. */
971
972 ptrdiff_t n, nbytes;
973 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
974 n = PTRDIFF_MAX;
975 if (0 <= nitems_max && nitems_max < n)
976 n = nitems_max;
977
978 ptrdiff_t adjusted_nbytes
979 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
980 ? min (PTRDIFF_MAX, SIZE_MAX)
981 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
982 if (adjusted_nbytes)
983 {
984 n = adjusted_nbytes / item_size;
985 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
986 }
987
988 if (! pa)
989 *nitems = 0;
990 if (n - n0 < nitems_incr_min
991 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
992 || (0 <= nitems_max && nitems_max < n)
993 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
994 memory_full (SIZE_MAX);
995 pa = xrealloc (pa, nbytes);
996 *nitems = n;
997 return pa;
998 }
999
1000
1001 /* Like strdup, but uses xmalloc. */
1002
1003 char *
1004 xstrdup (const char *s)
1005 {
1006 ptrdiff_t size;
1007 eassert (s);
1008 size = strlen (s) + 1;
1009 return memcpy (xmalloc (size), s, size);
1010 }
1011
1012 /* Like above, but duplicates Lisp string to C string. */
1013
1014 char *
1015 xlispstrdup (Lisp_Object string)
1016 {
1017 ptrdiff_t size = SBYTES (string) + 1;
1018 return memcpy (xmalloc (size), SSDATA (string), size);
1019 }
1020
1021 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1022 pointed to. If STRING is null, assign it without copying anything.
1023 Allocate before freeing, to avoid a dangling pointer if allocation
1024 fails. */
1025
1026 void
1027 dupstring (char **ptr, char const *string)
1028 {
1029 char *old = *ptr;
1030 *ptr = string ? xstrdup (string) : 0;
1031 xfree (old);
1032 }
1033
1034
1035 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1036 argument is a const pointer. */
1037
1038 void
1039 xputenv (char const *string)
1040 {
1041 if (putenv ((char *) string) != 0)
1042 memory_full (0);
1043 }
1044
1045 /* Return a newly allocated memory block of SIZE bytes, remembering
1046 to free it when unwinding. */
1047 void *
1048 record_xmalloc (size_t size)
1049 {
1050 void *p = xmalloc (size);
1051 record_unwind_protect_ptr (xfree, p);
1052 return p;
1053 }
1054
1055
1056 /* Like malloc but used for allocating Lisp data. NBYTES is the
1057 number of bytes to allocate, TYPE describes the intended use of the
1058 allocated memory block (for strings, for conses, ...). */
1059
1060 #if ! USE_LSB_TAG
1061 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1062 #endif
1063
1064 static void *
1065 lisp_malloc (size_t nbytes, enum mem_type type)
1066 {
1067 register void *val;
1068
1069 MALLOC_BLOCK_INPUT;
1070
1071 #ifdef GC_MALLOC_CHECK
1072 allocated_mem_type = type;
1073 #endif
1074
1075 val = lmalloc (nbytes);
1076
1077 #if ! USE_LSB_TAG
1078 /* If the memory just allocated cannot be addressed thru a Lisp
1079 object's pointer, and it needs to be,
1080 that's equivalent to running out of memory. */
1081 if (val && type != MEM_TYPE_NON_LISP)
1082 {
1083 Lisp_Object tem;
1084 XSETCONS (tem, (char *) val + nbytes - 1);
1085 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1086 {
1087 lisp_malloc_loser = val;
1088 free (val);
1089 val = 0;
1090 }
1091 }
1092 #endif
1093
1094 #ifndef GC_MALLOC_CHECK
1095 if (val && type != MEM_TYPE_NON_LISP)
1096 mem_insert (val, (char *) val + nbytes, type);
1097 #endif
1098
1099 MALLOC_UNBLOCK_INPUT;
1100 if (!val && nbytes)
1101 memory_full (nbytes);
1102 MALLOC_PROBE (nbytes);
1103 return val;
1104 }
1105
1106 /* Free BLOCK. This must be called to free memory allocated with a
1107 call to lisp_malloc. */
1108
1109 static void
1110 lisp_free (void *block)
1111 {
1112 MALLOC_BLOCK_INPUT;
1113 free (block);
1114 #ifndef GC_MALLOC_CHECK
1115 mem_delete (mem_find (block));
1116 #endif
1117 MALLOC_UNBLOCK_INPUT;
1118 }
1119
1120 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1121
1122 /* The entry point is lisp_align_malloc which returns blocks of at most
1123 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1124
1125 /* Use aligned_alloc if it or a simple substitute is available.
1126 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1127 clang 3.3 anyway. Aligned allocation is incompatible with
1128 unexmacosx.c, so don't use it on Darwin. */
1129
1130 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1131 # if (defined HAVE_ALIGNED_ALLOC \
1132 || (defined HYBRID_MALLOC \
1133 ? defined HAVE_POSIX_MEMALIGN \
1134 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1135 # define USE_ALIGNED_ALLOC 1
1136 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1137 # define USE_ALIGNED_ALLOC 1
1138 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1139 static void *
1140 aligned_alloc (size_t alignment, size_t size)
1141 {
1142 void *p;
1143 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1144 }
1145 # endif
1146 #endif
1147
1148 /* BLOCK_ALIGN has to be a power of 2. */
1149 #define BLOCK_ALIGN (1 << 10)
1150
1151 /* Padding to leave at the end of a malloc'd block. This is to give
1152 malloc a chance to minimize the amount of memory wasted to alignment.
1153 It should be tuned to the particular malloc library used.
1154 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1155 aligned_alloc on the other hand would ideally prefer a value of 4
1156 because otherwise, there's 1020 bytes wasted between each ablocks.
1157 In Emacs, testing shows that those 1020 can most of the time be
1158 efficiently used by malloc to place other objects, so a value of 0 can
1159 still preferable unless you have a lot of aligned blocks and virtually
1160 nothing else. */
1161 #define BLOCK_PADDING 0
1162 #define BLOCK_BYTES \
1163 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1164
1165 /* Internal data structures and constants. */
1166
1167 #define ABLOCKS_SIZE 16
1168
1169 /* An aligned block of memory. */
1170 struct ablock
1171 {
1172 union
1173 {
1174 char payload[BLOCK_BYTES];
1175 struct ablock *next_free;
1176 } x;
1177 /* `abase' is the aligned base of the ablocks. */
1178 /* It is overloaded to hold the virtual `busy' field that counts
1179 the number of used ablock in the parent ablocks.
1180 The first ablock has the `busy' field, the others have the `abase'
1181 field. To tell the difference, we assume that pointers will have
1182 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1183 is used to tell whether the real base of the parent ablocks is `abase'
1184 (if not, the word before the first ablock holds a pointer to the
1185 real base). */
1186 struct ablocks *abase;
1187 /* The padding of all but the last ablock is unused. The padding of
1188 the last ablock in an ablocks is not allocated. */
1189 #if BLOCK_PADDING
1190 char padding[BLOCK_PADDING];
1191 #endif
1192 };
1193
1194 /* A bunch of consecutive aligned blocks. */
1195 struct ablocks
1196 {
1197 struct ablock blocks[ABLOCKS_SIZE];
1198 };
1199
1200 /* Size of the block requested from malloc or aligned_alloc. */
1201 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1202
1203 #define ABLOCK_ABASE(block) \
1204 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1205 ? (struct ablocks *)(block) \
1206 : (block)->abase)
1207
1208 /* Virtual `busy' field. */
1209 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1210
1211 /* Pointer to the (not necessarily aligned) malloc block. */
1212 #ifdef USE_ALIGNED_ALLOC
1213 #define ABLOCKS_BASE(abase) (abase)
1214 #else
1215 #define ABLOCKS_BASE(abase) \
1216 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1217 #endif
1218
1219 /* The list of free ablock. */
1220 static struct ablock *free_ablock;
1221
1222 /* Allocate an aligned block of nbytes.
1223 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1224 smaller or equal to BLOCK_BYTES. */
1225 static void *
1226 lisp_align_malloc (size_t nbytes, enum mem_type type)
1227 {
1228 void *base, *val;
1229 struct ablocks *abase;
1230
1231 eassert (nbytes <= BLOCK_BYTES);
1232
1233 MALLOC_BLOCK_INPUT;
1234
1235 #ifdef GC_MALLOC_CHECK
1236 allocated_mem_type = type;
1237 #endif
1238
1239 if (!free_ablock)
1240 {
1241 int i;
1242 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1243
1244 #ifdef DOUG_LEA_MALLOC
1245 if (!mmap_lisp_allowed_p ())
1246 mallopt (M_MMAP_MAX, 0);
1247 #endif
1248
1249 #ifdef USE_ALIGNED_ALLOC
1250 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1251 #else
1252 base = malloc (ABLOCKS_BYTES);
1253 abase = ALIGN (base, BLOCK_ALIGN);
1254 #endif
1255
1256 if (base == 0)
1257 {
1258 MALLOC_UNBLOCK_INPUT;
1259 memory_full (ABLOCKS_BYTES);
1260 }
1261
1262 aligned = (base == abase);
1263 if (!aligned)
1264 ((void **) abase)[-1] = base;
1265
1266 #ifdef DOUG_LEA_MALLOC
1267 if (!mmap_lisp_allowed_p ())
1268 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1269 #endif
1270
1271 #if ! USE_LSB_TAG
1272 /* If the memory just allocated cannot be addressed thru a Lisp
1273 object's pointer, and it needs to be, that's equivalent to
1274 running out of memory. */
1275 if (type != MEM_TYPE_NON_LISP)
1276 {
1277 Lisp_Object tem;
1278 char *end = (char *) base + ABLOCKS_BYTES - 1;
1279 XSETCONS (tem, end);
1280 if ((char *) XCONS (tem) != end)
1281 {
1282 lisp_malloc_loser = base;
1283 free (base);
1284 MALLOC_UNBLOCK_INPUT;
1285 memory_full (SIZE_MAX);
1286 }
1287 }
1288 #endif
1289
1290 /* Initialize the blocks and put them on the free list.
1291 If `base' was not properly aligned, we can't use the last block. */
1292 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1293 {
1294 abase->blocks[i].abase = abase;
1295 abase->blocks[i].x.next_free = free_ablock;
1296 free_ablock = &abase->blocks[i];
1297 }
1298 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1299
1300 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1301 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1302 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1303 eassert (ABLOCKS_BASE (abase) == base);
1304 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1305 }
1306
1307 abase = ABLOCK_ABASE (free_ablock);
1308 ABLOCKS_BUSY (abase)
1309 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1310 val = free_ablock;
1311 free_ablock = free_ablock->x.next_free;
1312
1313 #ifndef GC_MALLOC_CHECK
1314 if (type != MEM_TYPE_NON_LISP)
1315 mem_insert (val, (char *) val + nbytes, type);
1316 #endif
1317
1318 MALLOC_UNBLOCK_INPUT;
1319
1320 MALLOC_PROBE (nbytes);
1321
1322 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1323 return val;
1324 }
1325
1326 static void
1327 lisp_align_free (void *block)
1328 {
1329 struct ablock *ablock = block;
1330 struct ablocks *abase = ABLOCK_ABASE (ablock);
1331
1332 MALLOC_BLOCK_INPUT;
1333 #ifndef GC_MALLOC_CHECK
1334 mem_delete (mem_find (block));
1335 #endif
1336 /* Put on free list. */
1337 ablock->x.next_free = free_ablock;
1338 free_ablock = ablock;
1339 /* Update busy count. */
1340 ABLOCKS_BUSY (abase)
1341 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1342
1343 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1344 { /* All the blocks are free. */
1345 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1346 struct ablock **tem = &free_ablock;
1347 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1348
1349 while (*tem)
1350 {
1351 if (*tem >= (struct ablock *) abase && *tem < atop)
1352 {
1353 i++;
1354 *tem = (*tem)->x.next_free;
1355 }
1356 else
1357 tem = &(*tem)->x.next_free;
1358 }
1359 eassert ((aligned & 1) == aligned);
1360 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1361 #ifdef USE_POSIX_MEMALIGN
1362 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1363 #endif
1364 free (ABLOCKS_BASE (abase));
1365 }
1366 MALLOC_UNBLOCK_INPUT;
1367 }
1368
1369 #if !defined __GNUC__ && !defined __alignof__
1370 # define __alignof__(type) alignof (type)
1371 #endif
1372
1373 /* True if malloc returns a multiple of GCALIGNMENT. In practice this
1374 holds if __alignof__ (max_align_t) is a multiple. Use __alignof__
1375 if available, as otherwise this check would fail with GCC x86.
1376 This is a macro, not an enum constant, for portability to HP-UX
1377 10.20 cc and AIX 3.2.5 xlc. */
1378 #define MALLOC_IS_GC_ALIGNED (__alignof__ (max_align_t) % GCALIGNMENT == 0)
1379
1380 /* True if P is suitably aligned for SIZE, where Lisp alignment may be
1381 needed if SIZE is Lisp-aligned. */
1382
1383 static bool
1384 laligned (void *p, size_t size)
1385 {
1386 return (MALLOC_IS_GC_ALIGNED || size % GCALIGNMENT != 0
1387 || (intptr_t) p % GCALIGNMENT == 0);
1388 }
1389
1390 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1391 sure the result is too. */
1392
1393 static void *
1394 lmalloc (size_t size)
1395 {
1396 #if USE_ALIGNED_ALLOC
1397 if (! MALLOC_IS_GC_ALIGNED)
1398 return aligned_alloc (GCALIGNMENT, size);
1399 #endif
1400
1401 void *p;
1402 while (true)
1403 {
1404 p = malloc (size);
1405 if (laligned (p, size))
1406 break;
1407 free (p);
1408 }
1409
1410 eassert ((intptr_t) p % GCALIGNMENT == 0);
1411 return p;
1412 }
1413
1414 static void *
1415 lrealloc (void *p, size_t size)
1416 {
1417 do
1418 p = realloc (p, size);
1419 while (! laligned (p, size));
1420
1421 eassert ((intptr_t) p % GCALIGNMENT == 0);
1422 return p;
1423 }
1424
1425 \f
1426 /***********************************************************************
1427 Interval Allocation
1428 ***********************************************************************/
1429
1430 /* Number of intervals allocated in an interval_block structure.
1431 The 1020 is 1024 minus malloc overhead. */
1432
1433 #define INTERVAL_BLOCK_SIZE \
1434 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1435
1436 /* Intervals are allocated in chunks in the form of an interval_block
1437 structure. */
1438
1439 struct interval_block
1440 {
1441 /* Place `intervals' first, to preserve alignment. */
1442 struct interval intervals[INTERVAL_BLOCK_SIZE];
1443 struct interval_block *next;
1444 };
1445
1446 /* Current interval block. Its `next' pointer points to older
1447 blocks. */
1448
1449 static struct interval_block *interval_block;
1450
1451 /* Index in interval_block above of the next unused interval
1452 structure. */
1453
1454 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1455
1456 /* Number of free and live intervals. */
1457
1458 static EMACS_INT total_free_intervals, total_intervals;
1459
1460 /* List of free intervals. */
1461
1462 static INTERVAL interval_free_list;
1463
1464 /* Return a new interval. */
1465
1466 INTERVAL
1467 make_interval (void)
1468 {
1469 INTERVAL val;
1470
1471 MALLOC_BLOCK_INPUT;
1472
1473 if (interval_free_list)
1474 {
1475 val = interval_free_list;
1476 interval_free_list = INTERVAL_PARENT (interval_free_list);
1477 }
1478 else
1479 {
1480 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1481 {
1482 struct interval_block *newi
1483 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1484
1485 newi->next = interval_block;
1486 interval_block = newi;
1487 interval_block_index = 0;
1488 total_free_intervals += INTERVAL_BLOCK_SIZE;
1489 }
1490 val = &interval_block->intervals[interval_block_index++];
1491 }
1492
1493 MALLOC_UNBLOCK_INPUT;
1494
1495 consing_since_gc += sizeof (struct interval);
1496 intervals_consed++;
1497 total_free_intervals--;
1498 RESET_INTERVAL (val);
1499 val->gcmarkbit = 0;
1500 return val;
1501 }
1502
1503
1504 /* Mark Lisp objects in interval I. */
1505
1506 static void
1507 mark_interval (register INTERVAL i, Lisp_Object dummy)
1508 {
1509 /* Intervals should never be shared. So, if extra internal checking is
1510 enabled, GC aborts if it seems to have visited an interval twice. */
1511 eassert (!i->gcmarkbit);
1512 i->gcmarkbit = 1;
1513 mark_object (i->plist);
1514 }
1515
1516 /* Mark the interval tree rooted in I. */
1517
1518 #define MARK_INTERVAL_TREE(i) \
1519 do { \
1520 if (i && !i->gcmarkbit) \
1521 traverse_intervals_noorder (i, mark_interval, Qnil); \
1522 } while (0)
1523
1524 /***********************************************************************
1525 String Allocation
1526 ***********************************************************************/
1527
1528 /* Lisp_Strings are allocated in string_block structures. When a new
1529 string_block is allocated, all the Lisp_Strings it contains are
1530 added to a free-list string_free_list. When a new Lisp_String is
1531 needed, it is taken from that list. During the sweep phase of GC,
1532 string_blocks that are entirely free are freed, except two which
1533 we keep.
1534
1535 String data is allocated from sblock structures. Strings larger
1536 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1537 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1538
1539 Sblocks consist internally of sdata structures, one for each
1540 Lisp_String. The sdata structure points to the Lisp_String it
1541 belongs to. The Lisp_String points back to the `u.data' member of
1542 its sdata structure.
1543
1544 When a Lisp_String is freed during GC, it is put back on
1545 string_free_list, and its `data' member and its sdata's `string'
1546 pointer is set to null. The size of the string is recorded in the
1547 `n.nbytes' member of the sdata. So, sdata structures that are no
1548 longer used, can be easily recognized, and it's easy to compact the
1549 sblocks of small strings which we do in compact_small_strings. */
1550
1551 /* Size in bytes of an sblock structure used for small strings. This
1552 is 8192 minus malloc overhead. */
1553
1554 #define SBLOCK_SIZE 8188
1555
1556 /* Strings larger than this are considered large strings. String data
1557 for large strings is allocated from individual sblocks. */
1558
1559 #define LARGE_STRING_BYTES 1024
1560
1561 /* The SDATA typedef is a struct or union describing string memory
1562 sub-allocated from an sblock. This is where the contents of Lisp
1563 strings are stored. */
1564
1565 struct sdata
1566 {
1567 /* Back-pointer to the string this sdata belongs to. If null, this
1568 structure is free, and NBYTES (in this structure or in the union below)
1569 contains the string's byte size (the same value that STRING_BYTES
1570 would return if STRING were non-null). If non-null, STRING_BYTES
1571 (STRING) is the size of the data, and DATA contains the string's
1572 contents. */
1573 struct Lisp_String *string;
1574
1575 #ifdef GC_CHECK_STRING_BYTES
1576 ptrdiff_t nbytes;
1577 #endif
1578
1579 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1580 };
1581
1582 #ifdef GC_CHECK_STRING_BYTES
1583
1584 typedef struct sdata sdata;
1585 #define SDATA_NBYTES(S) (S)->nbytes
1586 #define SDATA_DATA(S) (S)->data
1587
1588 #else
1589
1590 typedef union
1591 {
1592 struct Lisp_String *string;
1593
1594 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1595 which has a flexible array member. However, if implemented by
1596 giving this union a member of type 'struct sdata', the union
1597 could not be the last (flexible) member of 'struct sblock',
1598 because C99 prohibits a flexible array member from having a type
1599 that is itself a flexible array. So, comment this member out here,
1600 but remember that the option's there when using this union. */
1601 #if 0
1602 struct sdata u;
1603 #endif
1604
1605 /* When STRING is null. */
1606 struct
1607 {
1608 struct Lisp_String *string;
1609 ptrdiff_t nbytes;
1610 } n;
1611 } sdata;
1612
1613 #define SDATA_NBYTES(S) (S)->n.nbytes
1614 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1615
1616 #endif /* not GC_CHECK_STRING_BYTES */
1617
1618 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1619
1620 /* Structure describing a block of memory which is sub-allocated to
1621 obtain string data memory for strings. Blocks for small strings
1622 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1623 as large as needed. */
1624
1625 struct sblock
1626 {
1627 /* Next in list. */
1628 struct sblock *next;
1629
1630 /* Pointer to the next free sdata block. This points past the end
1631 of the sblock if there isn't any space left in this block. */
1632 sdata *next_free;
1633
1634 /* String data. */
1635 sdata data[FLEXIBLE_ARRAY_MEMBER];
1636 };
1637
1638 /* Number of Lisp strings in a string_block structure. The 1020 is
1639 1024 minus malloc overhead. */
1640
1641 #define STRING_BLOCK_SIZE \
1642 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1643
1644 /* Structure describing a block from which Lisp_String structures
1645 are allocated. */
1646
1647 struct string_block
1648 {
1649 /* Place `strings' first, to preserve alignment. */
1650 struct Lisp_String strings[STRING_BLOCK_SIZE];
1651 struct string_block *next;
1652 };
1653
1654 /* Head and tail of the list of sblock structures holding Lisp string
1655 data. We always allocate from current_sblock. The NEXT pointers
1656 in the sblock structures go from oldest_sblock to current_sblock. */
1657
1658 static struct sblock *oldest_sblock, *current_sblock;
1659
1660 /* List of sblocks for large strings. */
1661
1662 static struct sblock *large_sblocks;
1663
1664 /* List of string_block structures. */
1665
1666 static struct string_block *string_blocks;
1667
1668 /* Free-list of Lisp_Strings. */
1669
1670 static struct Lisp_String *string_free_list;
1671
1672 /* Number of live and free Lisp_Strings. */
1673
1674 static EMACS_INT total_strings, total_free_strings;
1675
1676 /* Number of bytes used by live strings. */
1677
1678 static EMACS_INT total_string_bytes;
1679
1680 /* Given a pointer to a Lisp_String S which is on the free-list
1681 string_free_list, return a pointer to its successor in the
1682 free-list. */
1683
1684 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1685
1686 /* Return a pointer to the sdata structure belonging to Lisp string S.
1687 S must be live, i.e. S->data must not be null. S->data is actually
1688 a pointer to the `u.data' member of its sdata structure; the
1689 structure starts at a constant offset in front of that. */
1690
1691 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1692
1693
1694 #ifdef GC_CHECK_STRING_OVERRUN
1695
1696 /* We check for overrun in string data blocks by appending a small
1697 "cookie" after each allocated string data block, and check for the
1698 presence of this cookie during GC. */
1699
1700 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1701 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1702 { '\xde', '\xad', '\xbe', '\xef' };
1703
1704 #else
1705 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1706 #endif
1707
1708 /* Value is the size of an sdata structure large enough to hold NBYTES
1709 bytes of string data. The value returned includes a terminating
1710 NUL byte, the size of the sdata structure, and padding. */
1711
1712 #ifdef GC_CHECK_STRING_BYTES
1713
1714 #define SDATA_SIZE(NBYTES) \
1715 ((SDATA_DATA_OFFSET \
1716 + (NBYTES) + 1 \
1717 + sizeof (ptrdiff_t) - 1) \
1718 & ~(sizeof (ptrdiff_t) - 1))
1719
1720 #else /* not GC_CHECK_STRING_BYTES */
1721
1722 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1723 less than the size of that member. The 'max' is not needed when
1724 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1725 alignment code reserves enough space. */
1726
1727 #define SDATA_SIZE(NBYTES) \
1728 ((SDATA_DATA_OFFSET \
1729 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1730 ? NBYTES \
1731 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1732 + 1 \
1733 + sizeof (ptrdiff_t) - 1) \
1734 & ~(sizeof (ptrdiff_t) - 1))
1735
1736 #endif /* not GC_CHECK_STRING_BYTES */
1737
1738 /* Extra bytes to allocate for each string. */
1739
1740 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1741
1742 /* Exact bound on the number of bytes in a string, not counting the
1743 terminating null. A string cannot contain more bytes than
1744 STRING_BYTES_BOUND, nor can it be so long that the size_t
1745 arithmetic in allocate_string_data would overflow while it is
1746 calculating a value to be passed to malloc. */
1747 static ptrdiff_t const STRING_BYTES_MAX =
1748 min (STRING_BYTES_BOUND,
1749 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1750 - GC_STRING_EXTRA
1751 - offsetof (struct sblock, data)
1752 - SDATA_DATA_OFFSET)
1753 & ~(sizeof (EMACS_INT) - 1)));
1754
1755 /* Initialize string allocation. Called from init_alloc_once. */
1756
1757 static void
1758 init_strings (void)
1759 {
1760 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1761 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1762 }
1763
1764
1765 #ifdef GC_CHECK_STRING_BYTES
1766
1767 static int check_string_bytes_count;
1768
1769 /* Like STRING_BYTES, but with debugging check. Can be
1770 called during GC, so pay attention to the mark bit. */
1771
1772 ptrdiff_t
1773 string_bytes (struct Lisp_String *s)
1774 {
1775 ptrdiff_t nbytes =
1776 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1777
1778 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1779 emacs_abort ();
1780 return nbytes;
1781 }
1782
1783 /* Check validity of Lisp strings' string_bytes member in B. */
1784
1785 static void
1786 check_sblock (struct sblock *b)
1787 {
1788 sdata *from, *end, *from_end;
1789
1790 end = b->next_free;
1791
1792 for (from = b->data; from < end; from = from_end)
1793 {
1794 /* Compute the next FROM here because copying below may
1795 overwrite data we need to compute it. */
1796 ptrdiff_t nbytes;
1797
1798 /* Check that the string size recorded in the string is the
1799 same as the one recorded in the sdata structure. */
1800 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1801 : SDATA_NBYTES (from));
1802 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1803 }
1804 }
1805
1806
1807 /* Check validity of Lisp strings' string_bytes member. ALL_P
1808 means check all strings, otherwise check only most
1809 recently allocated strings. Used for hunting a bug. */
1810
1811 static void
1812 check_string_bytes (bool all_p)
1813 {
1814 if (all_p)
1815 {
1816 struct sblock *b;
1817
1818 for (b = large_sblocks; b; b = b->next)
1819 {
1820 struct Lisp_String *s = b->data[0].string;
1821 if (s)
1822 string_bytes (s);
1823 }
1824
1825 for (b = oldest_sblock; b; b = b->next)
1826 check_sblock (b);
1827 }
1828 else if (current_sblock)
1829 check_sblock (current_sblock);
1830 }
1831
1832 #else /* not GC_CHECK_STRING_BYTES */
1833
1834 #define check_string_bytes(all) ((void) 0)
1835
1836 #endif /* GC_CHECK_STRING_BYTES */
1837
1838 #ifdef GC_CHECK_STRING_FREE_LIST
1839
1840 /* Walk through the string free list looking for bogus next pointers.
1841 This may catch buffer overrun from a previous string. */
1842
1843 static void
1844 check_string_free_list (void)
1845 {
1846 struct Lisp_String *s;
1847
1848 /* Pop a Lisp_String off the free-list. */
1849 s = string_free_list;
1850 while (s != NULL)
1851 {
1852 if ((uintptr_t) s < 1024)
1853 emacs_abort ();
1854 s = NEXT_FREE_LISP_STRING (s);
1855 }
1856 }
1857 #else
1858 #define check_string_free_list()
1859 #endif
1860
1861 /* Return a new Lisp_String. */
1862
1863 static struct Lisp_String *
1864 allocate_string (void)
1865 {
1866 struct Lisp_String *s;
1867
1868 MALLOC_BLOCK_INPUT;
1869
1870 /* If the free-list is empty, allocate a new string_block, and
1871 add all the Lisp_Strings in it to the free-list. */
1872 if (string_free_list == NULL)
1873 {
1874 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1875 int i;
1876
1877 b->next = string_blocks;
1878 string_blocks = b;
1879
1880 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1881 {
1882 s = b->strings + i;
1883 /* Every string on a free list should have NULL data pointer. */
1884 s->data = NULL;
1885 NEXT_FREE_LISP_STRING (s) = string_free_list;
1886 string_free_list = s;
1887 }
1888
1889 total_free_strings += STRING_BLOCK_SIZE;
1890 }
1891
1892 check_string_free_list ();
1893
1894 /* Pop a Lisp_String off the free-list. */
1895 s = string_free_list;
1896 string_free_list = NEXT_FREE_LISP_STRING (s);
1897
1898 MALLOC_UNBLOCK_INPUT;
1899
1900 --total_free_strings;
1901 ++total_strings;
1902 ++strings_consed;
1903 consing_since_gc += sizeof *s;
1904
1905 #ifdef GC_CHECK_STRING_BYTES
1906 if (!noninteractive)
1907 {
1908 if (++check_string_bytes_count == 200)
1909 {
1910 check_string_bytes_count = 0;
1911 check_string_bytes (1);
1912 }
1913 else
1914 check_string_bytes (0);
1915 }
1916 #endif /* GC_CHECK_STRING_BYTES */
1917
1918 return s;
1919 }
1920
1921
1922 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1923 plus a NUL byte at the end. Allocate an sdata structure for S, and
1924 set S->data to its `u.data' member. Store a NUL byte at the end of
1925 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1926 S->data if it was initially non-null. */
1927
1928 void
1929 allocate_string_data (struct Lisp_String *s,
1930 EMACS_INT nchars, EMACS_INT nbytes)
1931 {
1932 sdata *data, *old_data;
1933 struct sblock *b;
1934 ptrdiff_t needed, old_nbytes;
1935
1936 if (STRING_BYTES_MAX < nbytes)
1937 string_overflow ();
1938
1939 /* Determine the number of bytes needed to store NBYTES bytes
1940 of string data. */
1941 needed = SDATA_SIZE (nbytes);
1942 if (s->data)
1943 {
1944 old_data = SDATA_OF_STRING (s);
1945 old_nbytes = STRING_BYTES (s);
1946 }
1947 else
1948 old_data = NULL;
1949
1950 MALLOC_BLOCK_INPUT;
1951
1952 if (nbytes > LARGE_STRING_BYTES)
1953 {
1954 size_t size = offsetof (struct sblock, data) + needed;
1955
1956 #ifdef DOUG_LEA_MALLOC
1957 if (!mmap_lisp_allowed_p ())
1958 mallopt (M_MMAP_MAX, 0);
1959 #endif
1960
1961 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1962
1963 #ifdef DOUG_LEA_MALLOC
1964 if (!mmap_lisp_allowed_p ())
1965 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1966 #endif
1967
1968 b->next_free = b->data;
1969 b->data[0].string = NULL;
1970 b->next = large_sblocks;
1971 large_sblocks = b;
1972 }
1973 else if (current_sblock == NULL
1974 || (((char *) current_sblock + SBLOCK_SIZE
1975 - (char *) current_sblock->next_free)
1976 < (needed + GC_STRING_EXTRA)))
1977 {
1978 /* Not enough room in the current sblock. */
1979 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1980 b->next_free = b->data;
1981 b->data[0].string = NULL;
1982 b->next = NULL;
1983
1984 if (current_sblock)
1985 current_sblock->next = b;
1986 else
1987 oldest_sblock = b;
1988 current_sblock = b;
1989 }
1990 else
1991 b = current_sblock;
1992
1993 data = b->next_free;
1994 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1995
1996 MALLOC_UNBLOCK_INPUT;
1997
1998 data->string = s;
1999 s->data = SDATA_DATA (data);
2000 #ifdef GC_CHECK_STRING_BYTES
2001 SDATA_NBYTES (data) = nbytes;
2002 #endif
2003 s->size = nchars;
2004 s->size_byte = nbytes;
2005 s->data[nbytes] = '\0';
2006 #ifdef GC_CHECK_STRING_OVERRUN
2007 memcpy ((char *) data + needed, string_overrun_cookie,
2008 GC_STRING_OVERRUN_COOKIE_SIZE);
2009 #endif
2010
2011 /* Note that Faset may call to this function when S has already data
2012 assigned. In this case, mark data as free by setting it's string
2013 back-pointer to null, and record the size of the data in it. */
2014 if (old_data)
2015 {
2016 SDATA_NBYTES (old_data) = old_nbytes;
2017 old_data->string = NULL;
2018 }
2019
2020 consing_since_gc += needed;
2021 }
2022
2023
2024 /* Sweep and compact strings. */
2025
2026 NO_INLINE /* For better stack traces */
2027 static void
2028 sweep_strings (void)
2029 {
2030 struct string_block *b, *next;
2031 struct string_block *live_blocks = NULL;
2032
2033 string_free_list = NULL;
2034 total_strings = total_free_strings = 0;
2035 total_string_bytes = 0;
2036
2037 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2038 for (b = string_blocks; b; b = next)
2039 {
2040 int i, nfree = 0;
2041 struct Lisp_String *free_list_before = string_free_list;
2042
2043 next = b->next;
2044
2045 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2046 {
2047 struct Lisp_String *s = b->strings + i;
2048
2049 if (s->data)
2050 {
2051 /* String was not on free-list before. */
2052 if (STRING_MARKED_P (s))
2053 {
2054 /* String is live; unmark it and its intervals. */
2055 UNMARK_STRING (s);
2056
2057 /* Do not use string_(set|get)_intervals here. */
2058 s->intervals = balance_intervals (s->intervals);
2059
2060 ++total_strings;
2061 total_string_bytes += STRING_BYTES (s);
2062 }
2063 else
2064 {
2065 /* String is dead. Put it on the free-list. */
2066 sdata *data = SDATA_OF_STRING (s);
2067
2068 /* Save the size of S in its sdata so that we know
2069 how large that is. Reset the sdata's string
2070 back-pointer so that we know it's free. */
2071 #ifdef GC_CHECK_STRING_BYTES
2072 if (string_bytes (s) != SDATA_NBYTES (data))
2073 emacs_abort ();
2074 #else
2075 data->n.nbytes = STRING_BYTES (s);
2076 #endif
2077 data->string = NULL;
2078
2079 /* Reset the strings's `data' member so that we
2080 know it's free. */
2081 s->data = NULL;
2082
2083 /* Put the string on the free-list. */
2084 NEXT_FREE_LISP_STRING (s) = string_free_list;
2085 string_free_list = s;
2086 ++nfree;
2087 }
2088 }
2089 else
2090 {
2091 /* S was on the free-list before. Put it there again. */
2092 NEXT_FREE_LISP_STRING (s) = string_free_list;
2093 string_free_list = s;
2094 ++nfree;
2095 }
2096 }
2097
2098 /* Free blocks that contain free Lisp_Strings only, except
2099 the first two of them. */
2100 if (nfree == STRING_BLOCK_SIZE
2101 && total_free_strings > STRING_BLOCK_SIZE)
2102 {
2103 lisp_free (b);
2104 string_free_list = free_list_before;
2105 }
2106 else
2107 {
2108 total_free_strings += nfree;
2109 b->next = live_blocks;
2110 live_blocks = b;
2111 }
2112 }
2113
2114 check_string_free_list ();
2115
2116 string_blocks = live_blocks;
2117 free_large_strings ();
2118 compact_small_strings ();
2119
2120 check_string_free_list ();
2121 }
2122
2123
2124 /* Free dead large strings. */
2125
2126 static void
2127 free_large_strings (void)
2128 {
2129 struct sblock *b, *next;
2130 struct sblock *live_blocks = NULL;
2131
2132 for (b = large_sblocks; b; b = next)
2133 {
2134 next = b->next;
2135
2136 if (b->data[0].string == NULL)
2137 lisp_free (b);
2138 else
2139 {
2140 b->next = live_blocks;
2141 live_blocks = b;
2142 }
2143 }
2144
2145 large_sblocks = live_blocks;
2146 }
2147
2148
2149 /* Compact data of small strings. Free sblocks that don't contain
2150 data of live strings after compaction. */
2151
2152 static void
2153 compact_small_strings (void)
2154 {
2155 struct sblock *b, *tb, *next;
2156 sdata *from, *to, *end, *tb_end;
2157 sdata *to_end, *from_end;
2158
2159 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2160 to, and TB_END is the end of TB. */
2161 tb = oldest_sblock;
2162 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2163 to = tb->data;
2164
2165 /* Step through the blocks from the oldest to the youngest. We
2166 expect that old blocks will stabilize over time, so that less
2167 copying will happen this way. */
2168 for (b = oldest_sblock; b; b = b->next)
2169 {
2170 end = b->next_free;
2171 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2172
2173 for (from = b->data; from < end; from = from_end)
2174 {
2175 /* Compute the next FROM here because copying below may
2176 overwrite data we need to compute it. */
2177 ptrdiff_t nbytes;
2178 struct Lisp_String *s = from->string;
2179
2180 #ifdef GC_CHECK_STRING_BYTES
2181 /* Check that the string size recorded in the string is the
2182 same as the one recorded in the sdata structure. */
2183 if (s && string_bytes (s) != SDATA_NBYTES (from))
2184 emacs_abort ();
2185 #endif /* GC_CHECK_STRING_BYTES */
2186
2187 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2188 eassert (nbytes <= LARGE_STRING_BYTES);
2189
2190 nbytes = SDATA_SIZE (nbytes);
2191 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2192
2193 #ifdef GC_CHECK_STRING_OVERRUN
2194 if (memcmp (string_overrun_cookie,
2195 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2196 GC_STRING_OVERRUN_COOKIE_SIZE))
2197 emacs_abort ();
2198 #endif
2199
2200 /* Non-NULL S means it's alive. Copy its data. */
2201 if (s)
2202 {
2203 /* If TB is full, proceed with the next sblock. */
2204 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2205 if (to_end > tb_end)
2206 {
2207 tb->next_free = to;
2208 tb = tb->next;
2209 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2210 to = tb->data;
2211 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2212 }
2213
2214 /* Copy, and update the string's `data' pointer. */
2215 if (from != to)
2216 {
2217 eassert (tb != b || to < from);
2218 memmove (to, from, nbytes + GC_STRING_EXTRA);
2219 to->string->data = SDATA_DATA (to);
2220 }
2221
2222 /* Advance past the sdata we copied to. */
2223 to = to_end;
2224 }
2225 }
2226 }
2227
2228 /* The rest of the sblocks following TB don't contain live data, so
2229 we can free them. */
2230 for (b = tb->next; b; b = next)
2231 {
2232 next = b->next;
2233 lisp_free (b);
2234 }
2235
2236 tb->next_free = to;
2237 tb->next = NULL;
2238 current_sblock = tb;
2239 }
2240
2241 void
2242 string_overflow (void)
2243 {
2244 error ("Maximum string size exceeded");
2245 }
2246
2247 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2248 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2249 LENGTH must be an integer.
2250 INIT must be an integer that represents a character. */)
2251 (Lisp_Object length, Lisp_Object init)
2252 {
2253 register Lisp_Object val;
2254 int c;
2255 EMACS_INT nbytes;
2256
2257 CHECK_NATNUM (length);
2258 CHECK_CHARACTER (init);
2259
2260 c = XFASTINT (init);
2261 if (ASCII_CHAR_P (c))
2262 {
2263 nbytes = XINT (length);
2264 val = make_uninit_string (nbytes);
2265 if (nbytes)
2266 {
2267 memset (SDATA (val), c, nbytes);
2268 SDATA (val)[nbytes] = 0;
2269 }
2270 }
2271 else
2272 {
2273 unsigned char str[MAX_MULTIBYTE_LENGTH];
2274 ptrdiff_t len = CHAR_STRING (c, str);
2275 EMACS_INT string_len = XINT (length);
2276 unsigned char *p, *beg, *end;
2277
2278 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2279 string_overflow ();
2280 val = make_uninit_multibyte_string (string_len, nbytes);
2281 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2282 {
2283 /* First time we just copy `str' to the data of `val'. */
2284 if (p == beg)
2285 memcpy (p, str, len);
2286 else
2287 {
2288 /* Next time we copy largest possible chunk from
2289 initialized to uninitialized part of `val'. */
2290 len = min (p - beg, end - p);
2291 memcpy (p, beg, len);
2292 }
2293 }
2294 if (nbytes)
2295 *p = 0;
2296 }
2297
2298 return val;
2299 }
2300
2301 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2302 Return A. */
2303
2304 Lisp_Object
2305 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2306 {
2307 EMACS_INT nbits = bool_vector_size (a);
2308 if (0 < nbits)
2309 {
2310 unsigned char *data = bool_vector_uchar_data (a);
2311 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2312 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2313 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2314 memset (data, pattern, nbytes - 1);
2315 data[nbytes - 1] = pattern & last_mask;
2316 }
2317 return a;
2318 }
2319
2320 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2321
2322 Lisp_Object
2323 make_uninit_bool_vector (EMACS_INT nbits)
2324 {
2325 Lisp_Object val;
2326 EMACS_INT words = bool_vector_words (nbits);
2327 EMACS_INT word_bytes = words * sizeof (bits_word);
2328 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2329 + word_size - 1)
2330 / word_size);
2331 struct Lisp_Bool_Vector *p
2332 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2333 XSETVECTOR (val, p);
2334 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2335 p->size = nbits;
2336
2337 /* Clear padding at the end. */
2338 if (words)
2339 p->data[words - 1] = 0;
2340
2341 return val;
2342 }
2343
2344 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2345 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2346 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2347 (Lisp_Object length, Lisp_Object init)
2348 {
2349 Lisp_Object val;
2350
2351 CHECK_NATNUM (length);
2352 val = make_uninit_bool_vector (XFASTINT (length));
2353 return bool_vector_fill (val, init);
2354 }
2355
2356 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2357 doc: /* Return a new bool-vector with specified arguments as elements.
2358 Any number of arguments, even zero arguments, are allowed.
2359 usage: (bool-vector &rest OBJECTS) */)
2360 (ptrdiff_t nargs, Lisp_Object *args)
2361 {
2362 ptrdiff_t i;
2363 Lisp_Object vector;
2364
2365 vector = make_uninit_bool_vector (nargs);
2366 for (i = 0; i < nargs; i++)
2367 bool_vector_set (vector, i, !NILP (args[i]));
2368
2369 return vector;
2370 }
2371
2372 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2373 of characters from the contents. This string may be unibyte or
2374 multibyte, depending on the contents. */
2375
2376 Lisp_Object
2377 make_string (const char *contents, ptrdiff_t nbytes)
2378 {
2379 register Lisp_Object val;
2380 ptrdiff_t nchars, multibyte_nbytes;
2381
2382 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2383 &nchars, &multibyte_nbytes);
2384 if (nbytes == nchars || nbytes != multibyte_nbytes)
2385 /* CONTENTS contains no multibyte sequences or contains an invalid
2386 multibyte sequence. We must make unibyte string. */
2387 val = make_unibyte_string (contents, nbytes);
2388 else
2389 val = make_multibyte_string (contents, nchars, nbytes);
2390 return val;
2391 }
2392
2393 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2394
2395 Lisp_Object
2396 make_unibyte_string (const char *contents, ptrdiff_t length)
2397 {
2398 register Lisp_Object val;
2399 val = make_uninit_string (length);
2400 memcpy (SDATA (val), contents, length);
2401 return val;
2402 }
2403
2404
2405 /* Make a multibyte string from NCHARS characters occupying NBYTES
2406 bytes at CONTENTS. */
2407
2408 Lisp_Object
2409 make_multibyte_string (const char *contents,
2410 ptrdiff_t nchars, ptrdiff_t nbytes)
2411 {
2412 register Lisp_Object val;
2413 val = make_uninit_multibyte_string (nchars, nbytes);
2414 memcpy (SDATA (val), contents, nbytes);
2415 return val;
2416 }
2417
2418
2419 /* Make a string from NCHARS characters occupying NBYTES bytes at
2420 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2421
2422 Lisp_Object
2423 make_string_from_bytes (const char *contents,
2424 ptrdiff_t nchars, ptrdiff_t nbytes)
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 memcpy (SDATA (val), contents, nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (const char *contents,
2442 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2443 {
2444 Lisp_Object val;
2445
2446 if (nchars < 0)
2447 {
2448 if (multibyte)
2449 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2450 nbytes);
2451 else
2452 nchars = nbytes;
2453 }
2454 val = make_uninit_multibyte_string (nchars, nbytes);
2455 memcpy (SDATA (val), contents, nbytes);
2456 if (!multibyte)
2457 STRING_SET_UNIBYTE (val);
2458 return val;
2459 }
2460
2461
2462 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2463 occupying LENGTH bytes. */
2464
2465 Lisp_Object
2466 make_uninit_string (EMACS_INT length)
2467 {
2468 Lisp_Object val;
2469
2470 if (!length)
2471 return empty_unibyte_string;
2472 val = make_uninit_multibyte_string (length, length);
2473 STRING_SET_UNIBYTE (val);
2474 return val;
2475 }
2476
2477
2478 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2479 which occupy NBYTES bytes. */
2480
2481 Lisp_Object
2482 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2483 {
2484 Lisp_Object string;
2485 struct Lisp_String *s;
2486
2487 if (nchars < 0)
2488 emacs_abort ();
2489 if (!nbytes)
2490 return empty_multibyte_string;
2491
2492 s = allocate_string ();
2493 s->intervals = NULL;
2494 allocate_string_data (s, nchars, nbytes);
2495 XSETSTRING (string, s);
2496 string_chars_consed += nbytes;
2497 return string;
2498 }
2499
2500 /* Print arguments to BUF according to a FORMAT, then return
2501 a Lisp_String initialized with the data from BUF. */
2502
2503 Lisp_Object
2504 make_formatted_string (char *buf, const char *format, ...)
2505 {
2506 va_list ap;
2507 int length;
2508
2509 va_start (ap, format);
2510 length = vsprintf (buf, format, ap);
2511 va_end (ap);
2512 return make_string (buf, length);
2513 }
2514
2515 \f
2516 /***********************************************************************
2517 Float Allocation
2518 ***********************************************************************/
2519
2520 /* We store float cells inside of float_blocks, allocating a new
2521 float_block with malloc whenever necessary. Float cells reclaimed
2522 by GC are put on a free list to be reallocated before allocating
2523 any new float cells from the latest float_block. */
2524
2525 #define FLOAT_BLOCK_SIZE \
2526 (((BLOCK_BYTES - sizeof (struct float_block *) \
2527 /* The compiler might add padding at the end. */ \
2528 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2529 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2530
2531 #define GETMARKBIT(block,n) \
2532 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2533 >> ((n) % BITS_PER_BITS_WORD)) \
2534 & 1)
2535
2536 #define SETMARKBIT(block,n) \
2537 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2538 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2539
2540 #define UNSETMARKBIT(block,n) \
2541 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2542 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2543
2544 #define FLOAT_BLOCK(fptr) \
2545 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2546
2547 #define FLOAT_INDEX(fptr) \
2548 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2549
2550 struct float_block
2551 {
2552 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2553 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2554 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2555 struct float_block *next;
2556 };
2557
2558 #define FLOAT_MARKED_P(fptr) \
2559 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
2561 #define FLOAT_MARK(fptr) \
2562 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2563
2564 #define FLOAT_UNMARK(fptr) \
2565 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2566
2567 /* Current float_block. */
2568
2569 static struct float_block *float_block;
2570
2571 /* Index of first unused Lisp_Float in the current float_block. */
2572
2573 static int float_block_index = FLOAT_BLOCK_SIZE;
2574
2575 /* Free-list of Lisp_Floats. */
2576
2577 static struct Lisp_Float *float_free_list;
2578
2579 /* Return a new float object with value FLOAT_VALUE. */
2580
2581 Lisp_Object
2582 make_float (double float_value)
2583 {
2584 register Lisp_Object val;
2585
2586 MALLOC_BLOCK_INPUT;
2587
2588 if (float_free_list)
2589 {
2590 /* We use the data field for chaining the free list
2591 so that we won't use the same field that has the mark bit. */
2592 XSETFLOAT (val, float_free_list);
2593 float_free_list = float_free_list->u.chain;
2594 }
2595 else
2596 {
2597 if (float_block_index == FLOAT_BLOCK_SIZE)
2598 {
2599 struct float_block *new
2600 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2601 new->next = float_block;
2602 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2603 float_block = new;
2604 float_block_index = 0;
2605 total_free_floats += FLOAT_BLOCK_SIZE;
2606 }
2607 XSETFLOAT (val, &float_block->floats[float_block_index]);
2608 float_block_index++;
2609 }
2610
2611 MALLOC_UNBLOCK_INPUT;
2612
2613 XFLOAT_INIT (val, float_value);
2614 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2615 consing_since_gc += sizeof (struct Lisp_Float);
2616 floats_consed++;
2617 total_free_floats--;
2618 return val;
2619 }
2620
2621
2622 \f
2623 /***********************************************************************
2624 Cons Allocation
2625 ***********************************************************************/
2626
2627 /* We store cons cells inside of cons_blocks, allocating a new
2628 cons_block with malloc whenever necessary. Cons cells reclaimed by
2629 GC are put on a free list to be reallocated before allocating
2630 any new cons cells from the latest cons_block. */
2631
2632 #define CONS_BLOCK_SIZE \
2633 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2634 /* The compiler might add padding at the end. */ \
2635 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2636 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2637
2638 #define CONS_BLOCK(fptr) \
2639 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2640
2641 #define CONS_INDEX(fptr) \
2642 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2643
2644 struct cons_block
2645 {
2646 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2647 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2648 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2649 struct cons_block *next;
2650 };
2651
2652 #define CONS_MARKED_P(fptr) \
2653 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2654
2655 #define CONS_MARK(fptr) \
2656 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2657
2658 #define CONS_UNMARK(fptr) \
2659 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2660
2661 /* Current cons_block. */
2662
2663 static struct cons_block *cons_block;
2664
2665 /* Index of first unused Lisp_Cons in the current block. */
2666
2667 static int cons_block_index = CONS_BLOCK_SIZE;
2668
2669 /* Free-list of Lisp_Cons structures. */
2670
2671 static struct Lisp_Cons *cons_free_list;
2672
2673 /* Explicitly free a cons cell by putting it on the free-list. */
2674
2675 void
2676 free_cons (struct Lisp_Cons *ptr)
2677 {
2678 ptr->u.chain = cons_free_list;
2679 ptr->car = Vdead;
2680 cons_free_list = ptr;
2681 consing_since_gc -= sizeof *ptr;
2682 total_free_conses++;
2683 }
2684
2685 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2686 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2687 (Lisp_Object car, Lisp_Object cdr)
2688 {
2689 register Lisp_Object val;
2690
2691 MALLOC_BLOCK_INPUT;
2692
2693 if (cons_free_list)
2694 {
2695 /* We use the cdr for chaining the free list
2696 so that we won't use the same field that has the mark bit. */
2697 XSETCONS (val, cons_free_list);
2698 cons_free_list = cons_free_list->u.chain;
2699 }
2700 else
2701 {
2702 if (cons_block_index == CONS_BLOCK_SIZE)
2703 {
2704 struct cons_block *new
2705 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2706 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2707 new->next = cons_block;
2708 cons_block = new;
2709 cons_block_index = 0;
2710 total_free_conses += CONS_BLOCK_SIZE;
2711 }
2712 XSETCONS (val, &cons_block->conses[cons_block_index]);
2713 cons_block_index++;
2714 }
2715
2716 MALLOC_UNBLOCK_INPUT;
2717
2718 XSETCAR (val, car);
2719 XSETCDR (val, cdr);
2720 eassert (!CONS_MARKED_P (XCONS (val)));
2721 consing_since_gc += sizeof (struct Lisp_Cons);
2722 total_free_conses--;
2723 cons_cells_consed++;
2724 return val;
2725 }
2726
2727 #ifdef GC_CHECK_CONS_LIST
2728 /* Get an error now if there's any junk in the cons free list. */
2729 void
2730 check_cons_list (void)
2731 {
2732 struct Lisp_Cons *tail = cons_free_list;
2733
2734 while (tail)
2735 tail = tail->u.chain;
2736 }
2737 #endif
2738
2739 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2740
2741 Lisp_Object
2742 list1 (Lisp_Object arg1)
2743 {
2744 return Fcons (arg1, Qnil);
2745 }
2746
2747 Lisp_Object
2748 list2 (Lisp_Object arg1, Lisp_Object arg2)
2749 {
2750 return Fcons (arg1, Fcons (arg2, Qnil));
2751 }
2752
2753
2754 Lisp_Object
2755 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2756 {
2757 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2758 }
2759
2760
2761 Lisp_Object
2762 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2763 {
2764 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2765 }
2766
2767
2768 Lisp_Object
2769 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2770 {
2771 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2772 Fcons (arg5, Qnil)))));
2773 }
2774
2775 /* Make a list of COUNT Lisp_Objects, where ARG is the
2776 first one. Allocate conses from pure space if TYPE
2777 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2778
2779 Lisp_Object
2780 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2781 {
2782 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2783 switch (type)
2784 {
2785 case CONSTYPE_PURE: cons = pure_cons; break;
2786 case CONSTYPE_HEAP: cons = Fcons; break;
2787 default: emacs_abort ();
2788 }
2789
2790 eassume (0 < count);
2791 Lisp_Object val = cons (arg, Qnil);
2792 Lisp_Object tail = val;
2793
2794 va_list ap;
2795 va_start (ap, arg);
2796 for (ptrdiff_t i = 1; i < count; i++)
2797 {
2798 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2799 XSETCDR (tail, elem);
2800 tail = elem;
2801 }
2802 va_end (ap);
2803
2804 return val;
2805 }
2806
2807 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2808 doc: /* Return a newly created list with specified arguments as elements.
2809 Any number of arguments, even zero arguments, are allowed.
2810 usage: (list &rest OBJECTS) */)
2811 (ptrdiff_t nargs, Lisp_Object *args)
2812 {
2813 register Lisp_Object val;
2814 val = Qnil;
2815
2816 while (nargs > 0)
2817 {
2818 nargs--;
2819 val = Fcons (args[nargs], val);
2820 }
2821 return val;
2822 }
2823
2824
2825 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2826 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2827 (register Lisp_Object length, Lisp_Object init)
2828 {
2829 register Lisp_Object val;
2830 register EMACS_INT size;
2831
2832 CHECK_NATNUM (length);
2833 size = XFASTINT (length);
2834
2835 val = Qnil;
2836 while (size > 0)
2837 {
2838 val = Fcons (init, val);
2839 --size;
2840
2841 if (size > 0)
2842 {
2843 val = Fcons (init, val);
2844 --size;
2845
2846 if (size > 0)
2847 {
2848 val = Fcons (init, val);
2849 --size;
2850
2851 if (size > 0)
2852 {
2853 val = Fcons (init, val);
2854 --size;
2855
2856 if (size > 0)
2857 {
2858 val = Fcons (init, val);
2859 --size;
2860 }
2861 }
2862 }
2863 }
2864
2865 QUIT;
2866 }
2867
2868 return val;
2869 }
2870
2871
2872 \f
2873 /***********************************************************************
2874 Vector Allocation
2875 ***********************************************************************/
2876
2877 /* Sometimes a vector's contents are merely a pointer internally used
2878 in vector allocation code. On the rare platforms where a null
2879 pointer cannot be tagged, represent it with a Lisp 0.
2880 Usually you don't want to touch this. */
2881
2882 static struct Lisp_Vector *
2883 next_vector (struct Lisp_Vector *v)
2884 {
2885 return XUNTAG (v->contents[0], Lisp_Int0);
2886 }
2887
2888 static void
2889 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2890 {
2891 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2892 }
2893
2894 /* This value is balanced well enough to avoid too much internal overhead
2895 for the most common cases; it's not required to be a power of two, but
2896 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2897
2898 #define VECTOR_BLOCK_SIZE 4096
2899
2900 enum
2901 {
2902 /* Alignment of struct Lisp_Vector objects. */
2903 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2904 GCALIGNMENT),
2905
2906 /* Vector size requests are a multiple of this. */
2907 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2908 };
2909
2910 /* Verify assumptions described above. */
2911 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2912 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2913
2914 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2915 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2916 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2917 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2918
2919 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2920
2921 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2922
2923 /* Size of the minimal vector allocated from block. */
2924
2925 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2926
2927 /* Size of the largest vector allocated from block. */
2928
2929 #define VBLOCK_BYTES_MAX \
2930 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2931
2932 /* We maintain one free list for each possible block-allocated
2933 vector size, and this is the number of free lists we have. */
2934
2935 #define VECTOR_MAX_FREE_LIST_INDEX \
2936 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2937
2938 /* Common shortcut to advance vector pointer over a block data. */
2939
2940 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2941
2942 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2943
2944 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2945
2946 /* Common shortcut to setup vector on a free list. */
2947
2948 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2949 do { \
2950 (tmp) = ((nbytes - header_size) / word_size); \
2951 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2952 eassert ((nbytes) % roundup_size == 0); \
2953 (tmp) = VINDEX (nbytes); \
2954 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2955 set_next_vector (v, vector_free_lists[tmp]); \
2956 vector_free_lists[tmp] = (v); \
2957 total_free_vector_slots += (nbytes) / word_size; \
2958 } while (0)
2959
2960 /* This internal type is used to maintain the list of large vectors
2961 which are allocated at their own, e.g. outside of vector blocks.
2962
2963 struct large_vector itself cannot contain a struct Lisp_Vector, as
2964 the latter contains a flexible array member and C99 does not allow
2965 such structs to be nested. Instead, each struct large_vector
2966 object LV is followed by a struct Lisp_Vector, which is at offset
2967 large_vector_offset from LV, and whose address is therefore
2968 large_vector_vec (&LV). */
2969
2970 struct large_vector
2971 {
2972 struct large_vector *next;
2973 };
2974
2975 enum
2976 {
2977 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2978 };
2979
2980 static struct Lisp_Vector *
2981 large_vector_vec (struct large_vector *p)
2982 {
2983 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2984 }
2985
2986 /* This internal type is used to maintain an underlying storage
2987 for small vectors. */
2988
2989 struct vector_block
2990 {
2991 char data[VECTOR_BLOCK_BYTES];
2992 struct vector_block *next;
2993 };
2994
2995 /* Chain of vector blocks. */
2996
2997 static struct vector_block *vector_blocks;
2998
2999 /* Vector free lists, where NTH item points to a chain of free
3000 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3001
3002 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3003
3004 /* Singly-linked list of large vectors. */
3005
3006 static struct large_vector *large_vectors;
3007
3008 /* The only vector with 0 slots, allocated from pure space. */
3009
3010 Lisp_Object zero_vector;
3011
3012 /* Number of live vectors. */
3013
3014 static EMACS_INT total_vectors;
3015
3016 /* Total size of live and free vectors, in Lisp_Object units. */
3017
3018 static EMACS_INT total_vector_slots, total_free_vector_slots;
3019
3020 /* Get a new vector block. */
3021
3022 static struct vector_block *
3023 allocate_vector_block (void)
3024 {
3025 struct vector_block *block = xmalloc (sizeof *block);
3026
3027 #ifndef GC_MALLOC_CHECK
3028 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3029 MEM_TYPE_VECTOR_BLOCK);
3030 #endif
3031
3032 block->next = vector_blocks;
3033 vector_blocks = block;
3034 return block;
3035 }
3036
3037 /* Called once to initialize vector allocation. */
3038
3039 static void
3040 init_vectors (void)
3041 {
3042 zero_vector = make_pure_vector (0);
3043 }
3044
3045 /* Allocate vector from a vector block. */
3046
3047 static struct Lisp_Vector *
3048 allocate_vector_from_block (size_t nbytes)
3049 {
3050 struct Lisp_Vector *vector;
3051 struct vector_block *block;
3052 size_t index, restbytes;
3053
3054 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3055 eassert (nbytes % roundup_size == 0);
3056
3057 /* First, try to allocate from a free list
3058 containing vectors of the requested size. */
3059 index = VINDEX (nbytes);
3060 if (vector_free_lists[index])
3061 {
3062 vector = vector_free_lists[index];
3063 vector_free_lists[index] = next_vector (vector);
3064 total_free_vector_slots -= nbytes / word_size;
3065 return vector;
3066 }
3067
3068 /* Next, check free lists containing larger vectors. Since
3069 we will split the result, we should have remaining space
3070 large enough to use for one-slot vector at least. */
3071 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3072 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3073 if (vector_free_lists[index])
3074 {
3075 /* This vector is larger than requested. */
3076 vector = vector_free_lists[index];
3077 vector_free_lists[index] = next_vector (vector);
3078 total_free_vector_slots -= nbytes / word_size;
3079
3080 /* Excess bytes are used for the smaller vector,
3081 which should be set on an appropriate free list. */
3082 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3083 eassert (restbytes % roundup_size == 0);
3084 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3085 return vector;
3086 }
3087
3088 /* Finally, need a new vector block. */
3089 block = allocate_vector_block ();
3090
3091 /* New vector will be at the beginning of this block. */
3092 vector = (struct Lisp_Vector *) block->data;
3093
3094 /* If the rest of space from this block is large enough
3095 for one-slot vector at least, set up it on a free list. */
3096 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3097 if (restbytes >= VBLOCK_BYTES_MIN)
3098 {
3099 eassert (restbytes % roundup_size == 0);
3100 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3101 }
3102 return vector;
3103 }
3104
3105 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3106
3107 #define VECTOR_IN_BLOCK(vector, block) \
3108 ((char *) (vector) <= (block)->data \
3109 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3110
3111 /* Return the memory footprint of V in bytes. */
3112
3113 static ptrdiff_t
3114 vector_nbytes (struct Lisp_Vector *v)
3115 {
3116 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3117 ptrdiff_t nwords;
3118
3119 if (size & PSEUDOVECTOR_FLAG)
3120 {
3121 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3122 {
3123 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3124 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3125 * sizeof (bits_word));
3126 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3127 verify (header_size <= bool_header_size);
3128 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3129 }
3130 else
3131 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3132 + ((size & PSEUDOVECTOR_REST_MASK)
3133 >> PSEUDOVECTOR_SIZE_BITS));
3134 }
3135 else
3136 nwords = size;
3137 return vroundup (header_size + word_size * nwords);
3138 }
3139
3140 /* Release extra resources still in use by VECTOR, which may be any
3141 vector-like object. For now, this is used just to free data in
3142 font objects. */
3143
3144 static void
3145 cleanup_vector (struct Lisp_Vector *vector)
3146 {
3147 detect_suspicious_free (vector);
3148 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3149 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3150 == FONT_OBJECT_MAX))
3151 {
3152 struct font_driver *drv = ((struct font *) vector)->driver;
3153
3154 /* The font driver might sometimes be NULL, e.g. if Emacs was
3155 interrupted before it had time to set it up. */
3156 if (drv)
3157 {
3158 /* Attempt to catch subtle bugs like Bug#16140. */
3159 eassert (valid_font_driver (drv));
3160 drv->close ((struct font *) vector);
3161 }
3162 }
3163 }
3164
3165 /* Reclaim space used by unmarked vectors. */
3166
3167 NO_INLINE /* For better stack traces */
3168 static void
3169 sweep_vectors (void)
3170 {
3171 struct vector_block *block, **bprev = &vector_blocks;
3172 struct large_vector *lv, **lvprev = &large_vectors;
3173 struct Lisp_Vector *vector, *next;
3174
3175 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3176 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3177
3178 /* Looking through vector blocks. */
3179
3180 for (block = vector_blocks; block; block = *bprev)
3181 {
3182 bool free_this_block = 0;
3183 ptrdiff_t nbytes;
3184
3185 for (vector = (struct Lisp_Vector *) block->data;
3186 VECTOR_IN_BLOCK (vector, block); vector = next)
3187 {
3188 if (VECTOR_MARKED_P (vector))
3189 {
3190 VECTOR_UNMARK (vector);
3191 total_vectors++;
3192 nbytes = vector_nbytes (vector);
3193 total_vector_slots += nbytes / word_size;
3194 next = ADVANCE (vector, nbytes);
3195 }
3196 else
3197 {
3198 ptrdiff_t total_bytes;
3199
3200 cleanup_vector (vector);
3201 nbytes = vector_nbytes (vector);
3202 total_bytes = nbytes;
3203 next = ADVANCE (vector, nbytes);
3204
3205 /* While NEXT is not marked, try to coalesce with VECTOR,
3206 thus making VECTOR of the largest possible size. */
3207
3208 while (VECTOR_IN_BLOCK (next, block))
3209 {
3210 if (VECTOR_MARKED_P (next))
3211 break;
3212 cleanup_vector (next);
3213 nbytes = vector_nbytes (next);
3214 total_bytes += nbytes;
3215 next = ADVANCE (next, nbytes);
3216 }
3217
3218 eassert (total_bytes % roundup_size == 0);
3219
3220 if (vector == (struct Lisp_Vector *) block->data
3221 && !VECTOR_IN_BLOCK (next, block))
3222 /* This block should be freed because all of its
3223 space was coalesced into the only free vector. */
3224 free_this_block = 1;
3225 else
3226 {
3227 size_t tmp;
3228 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3229 }
3230 }
3231 }
3232
3233 if (free_this_block)
3234 {
3235 *bprev = block->next;
3236 #ifndef GC_MALLOC_CHECK
3237 mem_delete (mem_find (block->data));
3238 #endif
3239 xfree (block);
3240 }
3241 else
3242 bprev = &block->next;
3243 }
3244
3245 /* Sweep large vectors. */
3246
3247 for (lv = large_vectors; lv; lv = *lvprev)
3248 {
3249 vector = large_vector_vec (lv);
3250 if (VECTOR_MARKED_P (vector))
3251 {
3252 VECTOR_UNMARK (vector);
3253 total_vectors++;
3254 if (vector->header.size & PSEUDOVECTOR_FLAG)
3255 {
3256 /* All non-bool pseudovectors are small enough to be allocated
3257 from vector blocks. This code should be redesigned if some
3258 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3259 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3260 total_vector_slots += vector_nbytes (vector) / word_size;
3261 }
3262 else
3263 total_vector_slots
3264 += header_size / word_size + vector->header.size;
3265 lvprev = &lv->next;
3266 }
3267 else
3268 {
3269 *lvprev = lv->next;
3270 lisp_free (lv);
3271 }
3272 }
3273 }
3274
3275 /* Value is a pointer to a newly allocated Lisp_Vector structure
3276 with room for LEN Lisp_Objects. */
3277
3278 static struct Lisp_Vector *
3279 allocate_vectorlike (ptrdiff_t len)
3280 {
3281 struct Lisp_Vector *p;
3282
3283 MALLOC_BLOCK_INPUT;
3284
3285 if (len == 0)
3286 p = XVECTOR (zero_vector);
3287 else
3288 {
3289 size_t nbytes = header_size + len * word_size;
3290
3291 #ifdef DOUG_LEA_MALLOC
3292 if (!mmap_lisp_allowed_p ())
3293 mallopt (M_MMAP_MAX, 0);
3294 #endif
3295
3296 if (nbytes <= VBLOCK_BYTES_MAX)
3297 p = allocate_vector_from_block (vroundup (nbytes));
3298 else
3299 {
3300 struct large_vector *lv
3301 = lisp_malloc ((large_vector_offset + header_size
3302 + len * word_size),
3303 MEM_TYPE_VECTORLIKE);
3304 lv->next = large_vectors;
3305 large_vectors = lv;
3306 p = large_vector_vec (lv);
3307 }
3308
3309 #ifdef DOUG_LEA_MALLOC
3310 if (!mmap_lisp_allowed_p ())
3311 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3312 #endif
3313
3314 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3315 emacs_abort ();
3316
3317 consing_since_gc += nbytes;
3318 vector_cells_consed += len;
3319 }
3320
3321 MALLOC_UNBLOCK_INPUT;
3322
3323 return p;
3324 }
3325
3326
3327 /* Allocate a vector with LEN slots. */
3328
3329 struct Lisp_Vector *
3330 allocate_vector (EMACS_INT len)
3331 {
3332 struct Lisp_Vector *v;
3333 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3334
3335 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3336 memory_full (SIZE_MAX);
3337 v = allocate_vectorlike (len);
3338 if (len)
3339 v->header.size = len;
3340 return v;
3341 }
3342
3343
3344 /* Allocate other vector-like structures. */
3345
3346 struct Lisp_Vector *
3347 allocate_pseudovector (int memlen, int lisplen,
3348 int zerolen, enum pvec_type tag)
3349 {
3350 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3351
3352 /* Catch bogus values. */
3353 eassert (0 <= tag && tag <= PVEC_FONT);
3354 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3355 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3356 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3357
3358 /* Only the first LISPLEN slots will be traced normally by the GC. */
3359 memclear (v->contents, zerolen * word_size);
3360 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3361 return v;
3362 }
3363
3364 struct buffer *
3365 allocate_buffer (void)
3366 {
3367 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3368
3369 BUFFER_PVEC_INIT (b);
3370 /* Put B on the chain of all buffers including killed ones. */
3371 b->next = all_buffers;
3372 all_buffers = b;
3373 /* Note that the rest fields of B are not initialized. */
3374 return b;
3375 }
3376
3377 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3378 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3379 See also the function `vector'. */)
3380 (Lisp_Object length, Lisp_Object init)
3381 {
3382 CHECK_NATNUM (length);
3383 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3384 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3385 p->contents[i] = init;
3386 return make_lisp_ptr (p, Lisp_Vectorlike);
3387 }
3388
3389 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3390 doc: /* Return a newly created vector with specified arguments as elements.
3391 Any number of arguments, even zero arguments, are allowed.
3392 usage: (vector &rest OBJECTS) */)
3393 (ptrdiff_t nargs, Lisp_Object *args)
3394 {
3395 Lisp_Object val = make_uninit_vector (nargs);
3396 struct Lisp_Vector *p = XVECTOR (val);
3397 memcpy (p->contents, args, nargs * sizeof *args);
3398 return val;
3399 }
3400
3401 void
3402 make_byte_code (struct Lisp_Vector *v)
3403 {
3404 /* Don't allow the global zero_vector to become a byte code object. */
3405 eassert (0 < v->header.size);
3406
3407 if (v->header.size > 1 && STRINGP (v->contents[1])
3408 && STRING_MULTIBYTE (v->contents[1]))
3409 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3410 earlier because they produced a raw 8-bit string for byte-code
3411 and now such a byte-code string is loaded as multibyte while
3412 raw 8-bit characters converted to multibyte form. Thus, now we
3413 must convert them back to the original unibyte form. */
3414 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3415 XSETPVECTYPE (v, PVEC_COMPILED);
3416 }
3417
3418 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3419 doc: /* Create a byte-code object with specified arguments as elements.
3420 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3421 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3422 and (optional) INTERACTIVE-SPEC.
3423 The first four arguments are required; at most six have any
3424 significance.
3425 The ARGLIST can be either like the one of `lambda', in which case the arguments
3426 will be dynamically bound before executing the byte code, or it can be an
3427 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3428 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3429 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3430 argument to catch the left-over arguments. If such an integer is used, the
3431 arguments will not be dynamically bound but will be instead pushed on the
3432 stack before executing the byte-code.
3433 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3434 (ptrdiff_t nargs, Lisp_Object *args)
3435 {
3436 Lisp_Object val = make_uninit_vector (nargs);
3437 struct Lisp_Vector *p = XVECTOR (val);
3438
3439 /* We used to purecopy everything here, if purify-flag was set. This worked
3440 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3441 dangerous, since make-byte-code is used during execution to build
3442 closures, so any closure built during the preload phase would end up
3443 copied into pure space, including its free variables, which is sometimes
3444 just wasteful and other times plainly wrong (e.g. those free vars may want
3445 to be setcar'd). */
3446
3447 memcpy (p->contents, args, nargs * sizeof *args);
3448 make_byte_code (p);
3449 XSETCOMPILED (val, p);
3450 return val;
3451 }
3452
3453
3454 \f
3455 /***********************************************************************
3456 Symbol Allocation
3457 ***********************************************************************/
3458
3459 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3460 of the required alignment. */
3461
3462 union aligned_Lisp_Symbol
3463 {
3464 struct Lisp_Symbol s;
3465 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3466 & -GCALIGNMENT];
3467 };
3468
3469 /* Each symbol_block is just under 1020 bytes long, since malloc
3470 really allocates in units of powers of two and uses 4 bytes for its
3471 own overhead. */
3472
3473 #define SYMBOL_BLOCK_SIZE \
3474 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3475
3476 struct symbol_block
3477 {
3478 /* Place `symbols' first, to preserve alignment. */
3479 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3480 struct symbol_block *next;
3481 };
3482
3483 /* Current symbol block and index of first unused Lisp_Symbol
3484 structure in it. */
3485
3486 static struct symbol_block *symbol_block;
3487 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3488 /* Pointer to the first symbol_block that contains pinned symbols.
3489 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3490 10K of which are pinned (and all but 250 of them are interned in obarray),
3491 whereas a "typical session" has in the order of 30K symbols.
3492 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3493 than 30K to find the 10K symbols we need to mark. */
3494 static struct symbol_block *symbol_block_pinned;
3495
3496 /* List of free symbols. */
3497
3498 static struct Lisp_Symbol *symbol_free_list;
3499
3500 static void
3501 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3502 {
3503 XSYMBOL (sym)->name = name;
3504 }
3505
3506 void
3507 init_symbol (Lisp_Object val, Lisp_Object name)
3508 {
3509 struct Lisp_Symbol *p = XSYMBOL (val);
3510 set_symbol_name (val, name);
3511 set_symbol_plist (val, Qnil);
3512 p->redirect = SYMBOL_PLAINVAL;
3513 SET_SYMBOL_VAL (p, Qunbound);
3514 set_symbol_function (val, Qnil);
3515 set_symbol_next (val, NULL);
3516 p->gcmarkbit = false;
3517 p->interned = SYMBOL_UNINTERNED;
3518 p->constant = 0;
3519 p->declared_special = false;
3520 p->pinned = false;
3521 }
3522
3523 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3524 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3525 Its value is void, and its function definition and property list are nil. */)
3526 (Lisp_Object name)
3527 {
3528 Lisp_Object val;
3529
3530 CHECK_STRING (name);
3531
3532 MALLOC_BLOCK_INPUT;
3533
3534 if (symbol_free_list)
3535 {
3536 XSETSYMBOL (val, symbol_free_list);
3537 symbol_free_list = symbol_free_list->next;
3538 }
3539 else
3540 {
3541 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3542 {
3543 struct symbol_block *new
3544 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3545 new->next = symbol_block;
3546 symbol_block = new;
3547 symbol_block_index = 0;
3548 total_free_symbols += SYMBOL_BLOCK_SIZE;
3549 }
3550 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3551 symbol_block_index++;
3552 }
3553
3554 MALLOC_UNBLOCK_INPUT;
3555
3556 init_symbol (val, name);
3557 consing_since_gc += sizeof (struct Lisp_Symbol);
3558 symbols_consed++;
3559 total_free_symbols--;
3560 return val;
3561 }
3562
3563
3564 \f
3565 /***********************************************************************
3566 Marker (Misc) Allocation
3567 ***********************************************************************/
3568
3569 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3570 the required alignment. */
3571
3572 union aligned_Lisp_Misc
3573 {
3574 union Lisp_Misc m;
3575 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3576 & -GCALIGNMENT];
3577 };
3578
3579 /* Allocation of markers and other objects that share that structure.
3580 Works like allocation of conses. */
3581
3582 #define MARKER_BLOCK_SIZE \
3583 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3584
3585 struct marker_block
3586 {
3587 /* Place `markers' first, to preserve alignment. */
3588 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3589 struct marker_block *next;
3590 };
3591
3592 static struct marker_block *marker_block;
3593 static int marker_block_index = MARKER_BLOCK_SIZE;
3594
3595 static union Lisp_Misc *marker_free_list;
3596
3597 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3598
3599 static Lisp_Object
3600 allocate_misc (enum Lisp_Misc_Type type)
3601 {
3602 Lisp_Object val;
3603
3604 MALLOC_BLOCK_INPUT;
3605
3606 if (marker_free_list)
3607 {
3608 XSETMISC (val, marker_free_list);
3609 marker_free_list = marker_free_list->u_free.chain;
3610 }
3611 else
3612 {
3613 if (marker_block_index == MARKER_BLOCK_SIZE)
3614 {
3615 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3616 new->next = marker_block;
3617 marker_block = new;
3618 marker_block_index = 0;
3619 total_free_markers += MARKER_BLOCK_SIZE;
3620 }
3621 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3622 marker_block_index++;
3623 }
3624
3625 MALLOC_UNBLOCK_INPUT;
3626
3627 --total_free_markers;
3628 consing_since_gc += sizeof (union Lisp_Misc);
3629 misc_objects_consed++;
3630 XMISCANY (val)->type = type;
3631 XMISCANY (val)->gcmarkbit = 0;
3632 return val;
3633 }
3634
3635 /* Free a Lisp_Misc object. */
3636
3637 void
3638 free_misc (Lisp_Object misc)
3639 {
3640 XMISCANY (misc)->type = Lisp_Misc_Free;
3641 XMISC (misc)->u_free.chain = marker_free_list;
3642 marker_free_list = XMISC (misc);
3643 consing_since_gc -= sizeof (union Lisp_Misc);
3644 total_free_markers++;
3645 }
3646
3647 /* Verify properties of Lisp_Save_Value's representation
3648 that are assumed here and elsewhere. */
3649
3650 verify (SAVE_UNUSED == 0);
3651 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3652 >> SAVE_SLOT_BITS)
3653 == 0);
3654
3655 /* Return Lisp_Save_Value objects for the various combinations
3656 that callers need. */
3657
3658 Lisp_Object
3659 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3660 {
3661 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3662 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3663 p->save_type = SAVE_TYPE_INT_INT_INT;
3664 p->data[0].integer = a;
3665 p->data[1].integer = b;
3666 p->data[2].integer = c;
3667 return val;
3668 }
3669
3670 Lisp_Object
3671 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3672 Lisp_Object d)
3673 {
3674 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3675 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3676 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3677 p->data[0].object = a;
3678 p->data[1].object = b;
3679 p->data[2].object = c;
3680 p->data[3].object = d;
3681 return val;
3682 }
3683
3684 Lisp_Object
3685 make_save_ptr (void *a)
3686 {
3687 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3688 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3689 p->save_type = SAVE_POINTER;
3690 p->data[0].pointer = a;
3691 return val;
3692 }
3693
3694 Lisp_Object
3695 make_save_ptr_int (void *a, ptrdiff_t b)
3696 {
3697 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3698 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3699 p->save_type = SAVE_TYPE_PTR_INT;
3700 p->data[0].pointer = a;
3701 p->data[1].integer = b;
3702 return val;
3703 }
3704
3705 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3706 Lisp_Object
3707 make_save_ptr_ptr (void *a, void *b)
3708 {
3709 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3710 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3711 p->save_type = SAVE_TYPE_PTR_PTR;
3712 p->data[0].pointer = a;
3713 p->data[1].pointer = b;
3714 return val;
3715 }
3716 #endif
3717
3718 Lisp_Object
3719 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3720 {
3721 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3722 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3723 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3724 p->data[0].funcpointer = a;
3725 p->data[1].pointer = b;
3726 p->data[2].object = c;
3727 return val;
3728 }
3729
3730 /* Return a Lisp_Save_Value object that represents an array A
3731 of N Lisp objects. */
3732
3733 Lisp_Object
3734 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3735 {
3736 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3737 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3738 p->save_type = SAVE_TYPE_MEMORY;
3739 p->data[0].pointer = a;
3740 p->data[1].integer = n;
3741 return val;
3742 }
3743
3744 /* Free a Lisp_Save_Value object. Do not use this function
3745 if SAVE contains pointer other than returned by xmalloc. */
3746
3747 void
3748 free_save_value (Lisp_Object save)
3749 {
3750 xfree (XSAVE_POINTER (save, 0));
3751 free_misc (save);
3752 }
3753
3754 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3755
3756 Lisp_Object
3757 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3758 {
3759 register Lisp_Object overlay;
3760
3761 overlay = allocate_misc (Lisp_Misc_Overlay);
3762 OVERLAY_START (overlay) = start;
3763 OVERLAY_END (overlay) = end;
3764 set_overlay_plist (overlay, plist);
3765 XOVERLAY (overlay)->next = NULL;
3766 return overlay;
3767 }
3768
3769 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3770 doc: /* Return a newly allocated marker which does not point at any place. */)
3771 (void)
3772 {
3773 register Lisp_Object val;
3774 register struct Lisp_Marker *p;
3775
3776 val = allocate_misc (Lisp_Misc_Marker);
3777 p = XMARKER (val);
3778 p->buffer = 0;
3779 p->bytepos = 0;
3780 p->charpos = 0;
3781 p->next = NULL;
3782 p->insertion_type = 0;
3783 p->need_adjustment = 0;
3784 return val;
3785 }
3786
3787 /* Return a newly allocated marker which points into BUF
3788 at character position CHARPOS and byte position BYTEPOS. */
3789
3790 Lisp_Object
3791 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3792 {
3793 Lisp_Object obj;
3794 struct Lisp_Marker *m;
3795
3796 /* No dead buffers here. */
3797 eassert (BUFFER_LIVE_P (buf));
3798
3799 /* Every character is at least one byte. */
3800 eassert (charpos <= bytepos);
3801
3802 obj = allocate_misc (Lisp_Misc_Marker);
3803 m = XMARKER (obj);
3804 m->buffer = buf;
3805 m->charpos = charpos;
3806 m->bytepos = bytepos;
3807 m->insertion_type = 0;
3808 m->need_adjustment = 0;
3809 m->next = BUF_MARKERS (buf);
3810 BUF_MARKERS (buf) = m;
3811 return obj;
3812 }
3813
3814 /* Put MARKER back on the free list after using it temporarily. */
3815
3816 void
3817 free_marker (Lisp_Object marker)
3818 {
3819 unchain_marker (XMARKER (marker));
3820 free_misc (marker);
3821 }
3822
3823 \f
3824 /* Return a newly created vector or string with specified arguments as
3825 elements. If all the arguments are characters that can fit
3826 in a string of events, make a string; otherwise, make a vector.
3827
3828 Any number of arguments, even zero arguments, are allowed. */
3829
3830 Lisp_Object
3831 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3832 {
3833 ptrdiff_t i;
3834
3835 for (i = 0; i < nargs; i++)
3836 /* The things that fit in a string
3837 are characters that are in 0...127,
3838 after discarding the meta bit and all the bits above it. */
3839 if (!INTEGERP (args[i])
3840 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3841 return Fvector (nargs, args);
3842
3843 /* Since the loop exited, we know that all the things in it are
3844 characters, so we can make a string. */
3845 {
3846 Lisp_Object result;
3847
3848 result = Fmake_string (make_number (nargs), make_number (0));
3849 for (i = 0; i < nargs; i++)
3850 {
3851 SSET (result, i, XINT (args[i]));
3852 /* Move the meta bit to the right place for a string char. */
3853 if (XINT (args[i]) & CHAR_META)
3854 SSET (result, i, SREF (result, i) | 0x80);
3855 }
3856
3857 return result;
3858 }
3859 }
3860
3861 #ifdef HAVE_MODULES
3862 /* Create a new module user ptr object. */
3863 Lisp_Object
3864 make_user_ptr (void (*finalizer) (void *), void *p)
3865 {
3866 Lisp_Object obj;
3867 struct Lisp_User_Ptr *uptr;
3868
3869 obj = allocate_misc (Lisp_Misc_User_Ptr);
3870 uptr = XUSER_PTR (obj);
3871 uptr->finalizer = finalizer;
3872 uptr->p = p;
3873 return obj;
3874 }
3875
3876 #endif
3877
3878 static void
3879 init_finalizer_list (struct Lisp_Finalizer *head)
3880 {
3881 head->prev = head->next = head;
3882 }
3883
3884 /* Insert FINALIZER before ELEMENT. */
3885
3886 static void
3887 finalizer_insert (struct Lisp_Finalizer *element,
3888 struct Lisp_Finalizer *finalizer)
3889 {
3890 eassert (finalizer->prev == NULL);
3891 eassert (finalizer->next == NULL);
3892 finalizer->next = element;
3893 finalizer->prev = element->prev;
3894 finalizer->prev->next = finalizer;
3895 element->prev = finalizer;
3896 }
3897
3898 static void
3899 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3900 {
3901 if (finalizer->prev != NULL)
3902 {
3903 eassert (finalizer->next != NULL);
3904 finalizer->prev->next = finalizer->next;
3905 finalizer->next->prev = finalizer->prev;
3906 finalizer->prev = finalizer->next = NULL;
3907 }
3908 }
3909
3910 static void
3911 mark_finalizer_list (struct Lisp_Finalizer *head)
3912 {
3913 for (struct Lisp_Finalizer *finalizer = head->next;
3914 finalizer != head;
3915 finalizer = finalizer->next)
3916 {
3917 finalizer->base.gcmarkbit = true;
3918 mark_object (finalizer->function);
3919 }
3920 }
3921
3922 /* Move doomed finalizers to list DEST from list SRC. A doomed
3923 finalizer is one that is not GC-reachable and whose
3924 finalizer->function is non-nil. */
3925
3926 static void
3927 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3928 struct Lisp_Finalizer *src)
3929 {
3930 struct Lisp_Finalizer *finalizer = src->next;
3931 while (finalizer != src)
3932 {
3933 struct Lisp_Finalizer *next = finalizer->next;
3934 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3935 {
3936 unchain_finalizer (finalizer);
3937 finalizer_insert (dest, finalizer);
3938 }
3939
3940 finalizer = next;
3941 }
3942 }
3943
3944 static Lisp_Object
3945 run_finalizer_handler (Lisp_Object args)
3946 {
3947 add_to_log ("finalizer failed: %S", args);
3948 return Qnil;
3949 }
3950
3951 static void
3952 run_finalizer_function (Lisp_Object function)
3953 {
3954 ptrdiff_t count = SPECPDL_INDEX ();
3955
3956 specbind (Qinhibit_quit, Qt);
3957 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3958 unbind_to (count, Qnil);
3959 }
3960
3961 static void
3962 run_finalizers (struct Lisp_Finalizer *finalizers)
3963 {
3964 struct Lisp_Finalizer *finalizer;
3965 Lisp_Object function;
3966
3967 while (finalizers->next != finalizers)
3968 {
3969 finalizer = finalizers->next;
3970 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3971 unchain_finalizer (finalizer);
3972 function = finalizer->function;
3973 if (!NILP (function))
3974 {
3975 finalizer->function = Qnil;
3976 run_finalizer_function (function);
3977 }
3978 }
3979 }
3980
3981 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3982 doc: /* Make a finalizer that will run FUNCTION.
3983 FUNCTION will be called after garbage collection when the returned
3984 finalizer object becomes unreachable. If the finalizer object is
3985 reachable only through references from finalizer objects, it does not
3986 count as reachable for the purpose of deciding whether to run
3987 FUNCTION. FUNCTION will be run once per finalizer object. */)
3988 (Lisp_Object function)
3989 {
3990 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3991 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3992 finalizer->function = function;
3993 finalizer->prev = finalizer->next = NULL;
3994 finalizer_insert (&finalizers, finalizer);
3995 return val;
3996 }
3997
3998 \f
3999 /************************************************************************
4000 Memory Full Handling
4001 ************************************************************************/
4002
4003
4004 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4005 there may have been size_t overflow so that malloc was never
4006 called, or perhaps malloc was invoked successfully but the
4007 resulting pointer had problems fitting into a tagged EMACS_INT. In
4008 either case this counts as memory being full even though malloc did
4009 not fail. */
4010
4011 void
4012 memory_full (size_t nbytes)
4013 {
4014 /* Do not go into hysterics merely because a large request failed. */
4015 bool enough_free_memory = 0;
4016 if (SPARE_MEMORY < nbytes)
4017 {
4018 void *p;
4019
4020 MALLOC_BLOCK_INPUT;
4021 p = malloc (SPARE_MEMORY);
4022 if (p)
4023 {
4024 free (p);
4025 enough_free_memory = 1;
4026 }
4027 MALLOC_UNBLOCK_INPUT;
4028 }
4029
4030 if (! enough_free_memory)
4031 {
4032 int i;
4033
4034 Vmemory_full = Qt;
4035
4036 memory_full_cons_threshold = sizeof (struct cons_block);
4037
4038 /* The first time we get here, free the spare memory. */
4039 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4040 if (spare_memory[i])
4041 {
4042 if (i == 0)
4043 free (spare_memory[i]);
4044 else if (i >= 1 && i <= 4)
4045 lisp_align_free (spare_memory[i]);
4046 else
4047 lisp_free (spare_memory[i]);
4048 spare_memory[i] = 0;
4049 }
4050 }
4051
4052 /* This used to call error, but if we've run out of memory, we could
4053 get infinite recursion trying to build the string. */
4054 xsignal (Qnil, Vmemory_signal_data);
4055 }
4056
4057 /* If we released our reserve (due to running out of memory),
4058 and we have a fair amount free once again,
4059 try to set aside another reserve in case we run out once more.
4060
4061 This is called when a relocatable block is freed in ralloc.c,
4062 and also directly from this file, in case we're not using ralloc.c. */
4063
4064 void
4065 refill_memory_reserve (void)
4066 {
4067 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4068 if (spare_memory[0] == 0)
4069 spare_memory[0] = malloc (SPARE_MEMORY);
4070 if (spare_memory[1] == 0)
4071 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4072 MEM_TYPE_SPARE);
4073 if (spare_memory[2] == 0)
4074 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4075 MEM_TYPE_SPARE);
4076 if (spare_memory[3] == 0)
4077 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4078 MEM_TYPE_SPARE);
4079 if (spare_memory[4] == 0)
4080 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4081 MEM_TYPE_SPARE);
4082 if (spare_memory[5] == 0)
4083 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4084 MEM_TYPE_SPARE);
4085 if (spare_memory[6] == 0)
4086 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4087 MEM_TYPE_SPARE);
4088 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4089 Vmemory_full = Qnil;
4090 #endif
4091 }
4092 \f
4093 /************************************************************************
4094 C Stack Marking
4095 ************************************************************************/
4096
4097 /* Conservative C stack marking requires a method to identify possibly
4098 live Lisp objects given a pointer value. We do this by keeping
4099 track of blocks of Lisp data that are allocated in a red-black tree
4100 (see also the comment of mem_node which is the type of nodes in
4101 that tree). Function lisp_malloc adds information for an allocated
4102 block to the red-black tree with calls to mem_insert, and function
4103 lisp_free removes it with mem_delete. Functions live_string_p etc
4104 call mem_find to lookup information about a given pointer in the
4105 tree, and use that to determine if the pointer points to a Lisp
4106 object or not. */
4107
4108 /* Initialize this part of alloc.c. */
4109
4110 static void
4111 mem_init (void)
4112 {
4113 mem_z.left = mem_z.right = MEM_NIL;
4114 mem_z.parent = NULL;
4115 mem_z.color = MEM_BLACK;
4116 mem_z.start = mem_z.end = NULL;
4117 mem_root = MEM_NIL;
4118 }
4119
4120
4121 /* Value is a pointer to the mem_node containing START. Value is
4122 MEM_NIL if there is no node in the tree containing START. */
4123
4124 static struct mem_node *
4125 mem_find (void *start)
4126 {
4127 struct mem_node *p;
4128
4129 if (start < min_heap_address || start > max_heap_address)
4130 return MEM_NIL;
4131
4132 /* Make the search always successful to speed up the loop below. */
4133 mem_z.start = start;
4134 mem_z.end = (char *) start + 1;
4135
4136 p = mem_root;
4137 while (start < p->start || start >= p->end)
4138 p = start < p->start ? p->left : p->right;
4139 return p;
4140 }
4141
4142
4143 /* Insert a new node into the tree for a block of memory with start
4144 address START, end address END, and type TYPE. Value is a
4145 pointer to the node that was inserted. */
4146
4147 static struct mem_node *
4148 mem_insert (void *start, void *end, enum mem_type type)
4149 {
4150 struct mem_node *c, *parent, *x;
4151
4152 if (min_heap_address == NULL || start < min_heap_address)
4153 min_heap_address = start;
4154 if (max_heap_address == NULL || end > max_heap_address)
4155 max_heap_address = end;
4156
4157 /* See where in the tree a node for START belongs. In this
4158 particular application, it shouldn't happen that a node is already
4159 present. For debugging purposes, let's check that. */
4160 c = mem_root;
4161 parent = NULL;
4162
4163 while (c != MEM_NIL)
4164 {
4165 parent = c;
4166 c = start < c->start ? c->left : c->right;
4167 }
4168
4169 /* Create a new node. */
4170 #ifdef GC_MALLOC_CHECK
4171 x = malloc (sizeof *x);
4172 if (x == NULL)
4173 emacs_abort ();
4174 #else
4175 x = xmalloc (sizeof *x);
4176 #endif
4177 x->start = start;
4178 x->end = end;
4179 x->type = type;
4180 x->parent = parent;
4181 x->left = x->right = MEM_NIL;
4182 x->color = MEM_RED;
4183
4184 /* Insert it as child of PARENT or install it as root. */
4185 if (parent)
4186 {
4187 if (start < parent->start)
4188 parent->left = x;
4189 else
4190 parent->right = x;
4191 }
4192 else
4193 mem_root = x;
4194
4195 /* Re-establish red-black tree properties. */
4196 mem_insert_fixup (x);
4197
4198 return x;
4199 }
4200
4201
4202 /* Re-establish the red-black properties of the tree, and thereby
4203 balance the tree, after node X has been inserted; X is always red. */
4204
4205 static void
4206 mem_insert_fixup (struct mem_node *x)
4207 {
4208 while (x != mem_root && x->parent->color == MEM_RED)
4209 {
4210 /* X is red and its parent is red. This is a violation of
4211 red-black tree property #3. */
4212
4213 if (x->parent == x->parent->parent->left)
4214 {
4215 /* We're on the left side of our grandparent, and Y is our
4216 "uncle". */
4217 struct mem_node *y = x->parent->parent->right;
4218
4219 if (y->color == MEM_RED)
4220 {
4221 /* Uncle and parent are red but should be black because
4222 X is red. Change the colors accordingly and proceed
4223 with the grandparent. */
4224 x->parent->color = MEM_BLACK;
4225 y->color = MEM_BLACK;
4226 x->parent->parent->color = MEM_RED;
4227 x = x->parent->parent;
4228 }
4229 else
4230 {
4231 /* Parent and uncle have different colors; parent is
4232 red, uncle is black. */
4233 if (x == x->parent->right)
4234 {
4235 x = x->parent;
4236 mem_rotate_left (x);
4237 }
4238
4239 x->parent->color = MEM_BLACK;
4240 x->parent->parent->color = MEM_RED;
4241 mem_rotate_right (x->parent->parent);
4242 }
4243 }
4244 else
4245 {
4246 /* This is the symmetrical case of above. */
4247 struct mem_node *y = x->parent->parent->left;
4248
4249 if (y->color == MEM_RED)
4250 {
4251 x->parent->color = MEM_BLACK;
4252 y->color = MEM_BLACK;
4253 x->parent->parent->color = MEM_RED;
4254 x = x->parent->parent;
4255 }
4256 else
4257 {
4258 if (x == x->parent->left)
4259 {
4260 x = x->parent;
4261 mem_rotate_right (x);
4262 }
4263
4264 x->parent->color = MEM_BLACK;
4265 x->parent->parent->color = MEM_RED;
4266 mem_rotate_left (x->parent->parent);
4267 }
4268 }
4269 }
4270
4271 /* The root may have been changed to red due to the algorithm. Set
4272 it to black so that property #5 is satisfied. */
4273 mem_root->color = MEM_BLACK;
4274 }
4275
4276
4277 /* (x) (y)
4278 / \ / \
4279 a (y) ===> (x) c
4280 / \ / \
4281 b c a b */
4282
4283 static void
4284 mem_rotate_left (struct mem_node *x)
4285 {
4286 struct mem_node *y;
4287
4288 /* Turn y's left sub-tree into x's right sub-tree. */
4289 y = x->right;
4290 x->right = y->left;
4291 if (y->left != MEM_NIL)
4292 y->left->parent = x;
4293
4294 /* Y's parent was x's parent. */
4295 if (y != MEM_NIL)
4296 y->parent = x->parent;
4297
4298 /* Get the parent to point to y instead of x. */
4299 if (x->parent)
4300 {
4301 if (x == x->parent->left)
4302 x->parent->left = y;
4303 else
4304 x->parent->right = y;
4305 }
4306 else
4307 mem_root = y;
4308
4309 /* Put x on y's left. */
4310 y->left = x;
4311 if (x != MEM_NIL)
4312 x->parent = y;
4313 }
4314
4315
4316 /* (x) (Y)
4317 / \ / \
4318 (y) c ===> a (x)
4319 / \ / \
4320 a b b c */
4321
4322 static void
4323 mem_rotate_right (struct mem_node *x)
4324 {
4325 struct mem_node *y = x->left;
4326
4327 x->left = y->right;
4328 if (y->right != MEM_NIL)
4329 y->right->parent = x;
4330
4331 if (y != MEM_NIL)
4332 y->parent = x->parent;
4333 if (x->parent)
4334 {
4335 if (x == x->parent->right)
4336 x->parent->right = y;
4337 else
4338 x->parent->left = y;
4339 }
4340 else
4341 mem_root = y;
4342
4343 y->right = x;
4344 if (x != MEM_NIL)
4345 x->parent = y;
4346 }
4347
4348
4349 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4350
4351 static void
4352 mem_delete (struct mem_node *z)
4353 {
4354 struct mem_node *x, *y;
4355
4356 if (!z || z == MEM_NIL)
4357 return;
4358
4359 if (z->left == MEM_NIL || z->right == MEM_NIL)
4360 y = z;
4361 else
4362 {
4363 y = z->right;
4364 while (y->left != MEM_NIL)
4365 y = y->left;
4366 }
4367
4368 if (y->left != MEM_NIL)
4369 x = y->left;
4370 else
4371 x = y->right;
4372
4373 x->parent = y->parent;
4374 if (y->parent)
4375 {
4376 if (y == y->parent->left)
4377 y->parent->left = x;
4378 else
4379 y->parent->right = x;
4380 }
4381 else
4382 mem_root = x;
4383
4384 if (y != z)
4385 {
4386 z->start = y->start;
4387 z->end = y->end;
4388 z->type = y->type;
4389 }
4390
4391 if (y->color == MEM_BLACK)
4392 mem_delete_fixup (x);
4393
4394 #ifdef GC_MALLOC_CHECK
4395 free (y);
4396 #else
4397 xfree (y);
4398 #endif
4399 }
4400
4401
4402 /* Re-establish the red-black properties of the tree, after a
4403 deletion. */
4404
4405 static void
4406 mem_delete_fixup (struct mem_node *x)
4407 {
4408 while (x != mem_root && x->color == MEM_BLACK)
4409 {
4410 if (x == x->parent->left)
4411 {
4412 struct mem_node *w = x->parent->right;
4413
4414 if (w->color == MEM_RED)
4415 {
4416 w->color = MEM_BLACK;
4417 x->parent->color = MEM_RED;
4418 mem_rotate_left (x->parent);
4419 w = x->parent->right;
4420 }
4421
4422 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4423 {
4424 w->color = MEM_RED;
4425 x = x->parent;
4426 }
4427 else
4428 {
4429 if (w->right->color == MEM_BLACK)
4430 {
4431 w->left->color = MEM_BLACK;
4432 w->color = MEM_RED;
4433 mem_rotate_right (w);
4434 w = x->parent->right;
4435 }
4436 w->color = x->parent->color;
4437 x->parent->color = MEM_BLACK;
4438 w->right->color = MEM_BLACK;
4439 mem_rotate_left (x->parent);
4440 x = mem_root;
4441 }
4442 }
4443 else
4444 {
4445 struct mem_node *w = x->parent->left;
4446
4447 if (w->color == MEM_RED)
4448 {
4449 w->color = MEM_BLACK;
4450 x->parent->color = MEM_RED;
4451 mem_rotate_right (x->parent);
4452 w = x->parent->left;
4453 }
4454
4455 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4456 {
4457 w->color = MEM_RED;
4458 x = x->parent;
4459 }
4460 else
4461 {
4462 if (w->left->color == MEM_BLACK)
4463 {
4464 w->right->color = MEM_BLACK;
4465 w->color = MEM_RED;
4466 mem_rotate_left (w);
4467 w = x->parent->left;
4468 }
4469
4470 w->color = x->parent->color;
4471 x->parent->color = MEM_BLACK;
4472 w->left->color = MEM_BLACK;
4473 mem_rotate_right (x->parent);
4474 x = mem_root;
4475 }
4476 }
4477 }
4478
4479 x->color = MEM_BLACK;
4480 }
4481
4482
4483 /* Value is non-zero if P is a pointer to a live Lisp string on
4484 the heap. M is a pointer to the mem_block for P. */
4485
4486 static bool
4487 live_string_p (struct mem_node *m, void *p)
4488 {
4489 if (m->type == MEM_TYPE_STRING)
4490 {
4491 struct string_block *b = m->start;
4492 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4493
4494 /* P must point to the start of a Lisp_String structure, and it
4495 must not be on the free-list. */
4496 return (offset >= 0
4497 && offset % sizeof b->strings[0] == 0
4498 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4499 && ((struct Lisp_String *) p)->data != NULL);
4500 }
4501 else
4502 return 0;
4503 }
4504
4505
4506 /* Value is non-zero if P is a pointer to a live Lisp cons on
4507 the heap. M is a pointer to the mem_block for P. */
4508
4509 static bool
4510 live_cons_p (struct mem_node *m, void *p)
4511 {
4512 if (m->type == MEM_TYPE_CONS)
4513 {
4514 struct cons_block *b = m->start;
4515 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4516
4517 /* P must point to the start of a Lisp_Cons, not be
4518 one of the unused cells in the current cons block,
4519 and not be on the free-list. */
4520 return (offset >= 0
4521 && offset % sizeof b->conses[0] == 0
4522 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4523 && (b != cons_block
4524 || offset / sizeof b->conses[0] < cons_block_index)
4525 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4526 }
4527 else
4528 return 0;
4529 }
4530
4531
4532 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4533 the heap. M is a pointer to the mem_block for P. */
4534
4535 static bool
4536 live_symbol_p (struct mem_node *m, void *p)
4537 {
4538 if (m->type == MEM_TYPE_SYMBOL)
4539 {
4540 struct symbol_block *b = m->start;
4541 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4542
4543 /* P must point to the start of a Lisp_Symbol, not be
4544 one of the unused cells in the current symbol block,
4545 and not be on the free-list. */
4546 return (offset >= 0
4547 && offset % sizeof b->symbols[0] == 0
4548 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4549 && (b != symbol_block
4550 || offset / sizeof b->symbols[0] < symbol_block_index)
4551 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4552 }
4553 else
4554 return 0;
4555 }
4556
4557
4558 /* Value is non-zero if P is a pointer to a live Lisp float on
4559 the heap. M is a pointer to the mem_block for P. */
4560
4561 static bool
4562 live_float_p (struct mem_node *m, void *p)
4563 {
4564 if (m->type == MEM_TYPE_FLOAT)
4565 {
4566 struct float_block *b = m->start;
4567 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4568
4569 /* P must point to the start of a Lisp_Float and not be
4570 one of the unused cells in the current float block. */
4571 return (offset >= 0
4572 && offset % sizeof b->floats[0] == 0
4573 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4574 && (b != float_block
4575 || offset / sizeof b->floats[0] < float_block_index));
4576 }
4577 else
4578 return 0;
4579 }
4580
4581
4582 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4583 the heap. M is a pointer to the mem_block for P. */
4584
4585 static bool
4586 live_misc_p (struct mem_node *m, void *p)
4587 {
4588 if (m->type == MEM_TYPE_MISC)
4589 {
4590 struct marker_block *b = m->start;
4591 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4592
4593 /* P must point to the start of a Lisp_Misc, not be
4594 one of the unused cells in the current misc block,
4595 and not be on the free-list. */
4596 return (offset >= 0
4597 && offset % sizeof b->markers[0] == 0
4598 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4599 && (b != marker_block
4600 || offset / sizeof b->markers[0] < marker_block_index)
4601 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4602 }
4603 else
4604 return 0;
4605 }
4606
4607
4608 /* Value is non-zero if P is a pointer to a live vector-like object.
4609 M is a pointer to the mem_block for P. */
4610
4611 static bool
4612 live_vector_p (struct mem_node *m, void *p)
4613 {
4614 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4615 {
4616 /* This memory node corresponds to a vector block. */
4617 struct vector_block *block = m->start;
4618 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4619
4620 /* P is in the block's allocation range. Scan the block
4621 up to P and see whether P points to the start of some
4622 vector which is not on a free list. FIXME: check whether
4623 some allocation patterns (probably a lot of short vectors)
4624 may cause a substantial overhead of this loop. */
4625 while (VECTOR_IN_BLOCK (vector, block)
4626 && vector <= (struct Lisp_Vector *) p)
4627 {
4628 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4629 return 1;
4630 else
4631 vector = ADVANCE (vector, vector_nbytes (vector));
4632 }
4633 }
4634 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4635 /* This memory node corresponds to a large vector. */
4636 return 1;
4637 return 0;
4638 }
4639
4640
4641 /* Value is non-zero if P is a pointer to a live buffer. M is a
4642 pointer to the mem_block for P. */
4643
4644 static bool
4645 live_buffer_p (struct mem_node *m, void *p)
4646 {
4647 /* P must point to the start of the block, and the buffer
4648 must not have been killed. */
4649 return (m->type == MEM_TYPE_BUFFER
4650 && p == m->start
4651 && !NILP (((struct buffer *) p)->name_));
4652 }
4653
4654 /* Mark OBJ if we can prove it's a Lisp_Object. */
4655
4656 static void
4657 mark_maybe_object (Lisp_Object obj)
4658 {
4659 #if USE_VALGRIND
4660 if (valgrind_p)
4661 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4662 #endif
4663
4664 if (INTEGERP (obj))
4665 return;
4666
4667 void *po = XPNTR (obj);
4668 struct mem_node *m = mem_find (po);
4669
4670 if (m != MEM_NIL)
4671 {
4672 bool mark_p = false;
4673
4674 switch (XTYPE (obj))
4675 {
4676 case Lisp_String:
4677 mark_p = (live_string_p (m, po)
4678 && !STRING_MARKED_P ((struct Lisp_String *) po));
4679 break;
4680
4681 case Lisp_Cons:
4682 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4683 break;
4684
4685 case Lisp_Symbol:
4686 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4687 break;
4688
4689 case Lisp_Float:
4690 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4691 break;
4692
4693 case Lisp_Vectorlike:
4694 /* Note: can't check BUFFERP before we know it's a
4695 buffer because checking that dereferences the pointer
4696 PO which might point anywhere. */
4697 if (live_vector_p (m, po))
4698 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4699 else if (live_buffer_p (m, po))
4700 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4701 break;
4702
4703 case Lisp_Misc:
4704 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4705 break;
4706
4707 default:
4708 break;
4709 }
4710
4711 if (mark_p)
4712 mark_object (obj);
4713 }
4714 }
4715
4716 /* Return true if P can point to Lisp data, and false otherwise.
4717 Symbols are implemented via offsets not pointers, but the offsets
4718 are also multiples of GCALIGNMENT. */
4719
4720 static bool
4721 maybe_lisp_pointer (void *p)
4722 {
4723 return (uintptr_t) p % GCALIGNMENT == 0;
4724 }
4725
4726 #ifndef HAVE_MODULES
4727 enum { HAVE_MODULES = false };
4728 #endif
4729
4730 /* If P points to Lisp data, mark that as live if it isn't already
4731 marked. */
4732
4733 static void
4734 mark_maybe_pointer (void *p)
4735 {
4736 struct mem_node *m;
4737
4738 #if USE_VALGRIND
4739 if (valgrind_p)
4740 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4741 #endif
4742
4743 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4744 {
4745 if (!maybe_lisp_pointer (p))
4746 return;
4747 }
4748 else
4749 {
4750 /* For the wide-int case, also mark emacs_value tagged pointers,
4751 which can be generated by emacs-module.c's value_to_lisp. */
4752 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4753 }
4754
4755 m = mem_find (p);
4756 if (m != MEM_NIL)
4757 {
4758 Lisp_Object obj = Qnil;
4759
4760 switch (m->type)
4761 {
4762 case MEM_TYPE_NON_LISP:
4763 case MEM_TYPE_SPARE:
4764 /* Nothing to do; not a pointer to Lisp memory. */
4765 break;
4766
4767 case MEM_TYPE_BUFFER:
4768 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4769 XSETVECTOR (obj, p);
4770 break;
4771
4772 case MEM_TYPE_CONS:
4773 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4774 XSETCONS (obj, p);
4775 break;
4776
4777 case MEM_TYPE_STRING:
4778 if (live_string_p (m, p)
4779 && !STRING_MARKED_P ((struct Lisp_String *) p))
4780 XSETSTRING (obj, p);
4781 break;
4782
4783 case MEM_TYPE_MISC:
4784 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4785 XSETMISC (obj, p);
4786 break;
4787
4788 case MEM_TYPE_SYMBOL:
4789 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4790 XSETSYMBOL (obj, p);
4791 break;
4792
4793 case MEM_TYPE_FLOAT:
4794 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4795 XSETFLOAT (obj, p);
4796 break;
4797
4798 case MEM_TYPE_VECTORLIKE:
4799 case MEM_TYPE_VECTOR_BLOCK:
4800 if (live_vector_p (m, p))
4801 {
4802 Lisp_Object tem;
4803 XSETVECTOR (tem, p);
4804 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4805 obj = tem;
4806 }
4807 break;
4808
4809 default:
4810 emacs_abort ();
4811 }
4812
4813 if (!NILP (obj))
4814 mark_object (obj);
4815 }
4816 }
4817
4818
4819 /* Alignment of pointer values. Use alignof, as it sometimes returns
4820 a smaller alignment than GCC's __alignof__ and mark_memory might
4821 miss objects if __alignof__ were used. */
4822 #define GC_POINTER_ALIGNMENT alignof (void *)
4823
4824 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4825 or END+OFFSET..START. */
4826
4827 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4828 mark_memory (void *start, void *end)
4829 {
4830 char *pp;
4831
4832 /* Make START the pointer to the start of the memory region,
4833 if it isn't already. */
4834 if (end < start)
4835 {
4836 void *tem = start;
4837 start = end;
4838 end = tem;
4839 }
4840
4841 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4842
4843 /* Mark Lisp data pointed to. This is necessary because, in some
4844 situations, the C compiler optimizes Lisp objects away, so that
4845 only a pointer to them remains. Example:
4846
4847 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4848 ()
4849 {
4850 Lisp_Object obj = build_string ("test");
4851 struct Lisp_String *s = XSTRING (obj);
4852 Fgarbage_collect ();
4853 fprintf (stderr, "test '%s'\n", s->data);
4854 return Qnil;
4855 }
4856
4857 Here, `obj' isn't really used, and the compiler optimizes it
4858 away. The only reference to the life string is through the
4859 pointer `s'. */
4860
4861 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4862 {
4863 mark_maybe_pointer (*(void **) pp);
4864 mark_maybe_object (*(Lisp_Object *) pp);
4865 }
4866 }
4867
4868 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4869
4870 static bool setjmp_tested_p;
4871 static int longjmps_done;
4872
4873 #define SETJMP_WILL_LIKELY_WORK "\
4874 \n\
4875 Emacs garbage collector has been changed to use conservative stack\n\
4876 marking. Emacs has determined that the method it uses to do the\n\
4877 marking will likely work on your system, but this isn't sure.\n\
4878 \n\
4879 If you are a system-programmer, or can get the help of a local wizard\n\
4880 who is, please take a look at the function mark_stack in alloc.c, and\n\
4881 verify that the methods used are appropriate for your system.\n\
4882 \n\
4883 Please mail the result to <emacs-devel@gnu.org>.\n\
4884 "
4885
4886 #define SETJMP_WILL_NOT_WORK "\
4887 \n\
4888 Emacs garbage collector has been changed to use conservative stack\n\
4889 marking. Emacs has determined that the default method it uses to do the\n\
4890 marking will not work on your system. We will need a system-dependent\n\
4891 solution for your system.\n\
4892 \n\
4893 Please take a look at the function mark_stack in alloc.c, and\n\
4894 try to find a way to make it work on your system.\n\
4895 \n\
4896 Note that you may get false negatives, depending on the compiler.\n\
4897 In particular, you need to use -O with GCC for this test.\n\
4898 \n\
4899 Please mail the result to <emacs-devel@gnu.org>.\n\
4900 "
4901
4902
4903 /* Perform a quick check if it looks like setjmp saves registers in a
4904 jmp_buf. Print a message to stderr saying so. When this test
4905 succeeds, this is _not_ a proof that setjmp is sufficient for
4906 conservative stack marking. Only the sources or a disassembly
4907 can prove that. */
4908
4909 static void
4910 test_setjmp (void)
4911 {
4912 char buf[10];
4913 register int x;
4914 sys_jmp_buf jbuf;
4915
4916 /* Arrange for X to be put in a register. */
4917 sprintf (buf, "1");
4918 x = strlen (buf);
4919 x = 2 * x - 1;
4920
4921 sys_setjmp (jbuf);
4922 if (longjmps_done == 1)
4923 {
4924 /* Came here after the longjmp at the end of the function.
4925
4926 If x == 1, the longjmp has restored the register to its
4927 value before the setjmp, and we can hope that setjmp
4928 saves all such registers in the jmp_buf, although that
4929 isn't sure.
4930
4931 For other values of X, either something really strange is
4932 taking place, or the setjmp just didn't save the register. */
4933
4934 if (x == 1)
4935 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4936 else
4937 {
4938 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4939 exit (1);
4940 }
4941 }
4942
4943 ++longjmps_done;
4944 x = 2;
4945 if (longjmps_done == 1)
4946 sys_longjmp (jbuf, 1);
4947 }
4948
4949 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4950
4951
4952 /* Mark live Lisp objects on the C stack.
4953
4954 There are several system-dependent problems to consider when
4955 porting this to new architectures:
4956
4957 Processor Registers
4958
4959 We have to mark Lisp objects in CPU registers that can hold local
4960 variables or are used to pass parameters.
4961
4962 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4963 something that either saves relevant registers on the stack, or
4964 calls mark_maybe_object passing it each register's contents.
4965
4966 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4967 implementation assumes that calling setjmp saves registers we need
4968 to see in a jmp_buf which itself lies on the stack. This doesn't
4969 have to be true! It must be verified for each system, possibly
4970 by taking a look at the source code of setjmp.
4971
4972 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4973 can use it as a machine independent method to store all registers
4974 to the stack. In this case the macros described in the previous
4975 two paragraphs are not used.
4976
4977 Stack Layout
4978
4979 Architectures differ in the way their processor stack is organized.
4980 For example, the stack might look like this
4981
4982 +----------------+
4983 | Lisp_Object | size = 4
4984 +----------------+
4985 | something else | size = 2
4986 +----------------+
4987 | Lisp_Object | size = 4
4988 +----------------+
4989 | ... |
4990
4991 In such a case, not every Lisp_Object will be aligned equally. To
4992 find all Lisp_Object on the stack it won't be sufficient to walk
4993 the stack in steps of 4 bytes. Instead, two passes will be
4994 necessary, one starting at the start of the stack, and a second
4995 pass starting at the start of the stack + 2. Likewise, if the
4996 minimal alignment of Lisp_Objects on the stack is 1, four passes
4997 would be necessary, each one starting with one byte more offset
4998 from the stack start. */
4999
5000 static void
5001 mark_stack (void *end)
5002 {
5003
5004 /* This assumes that the stack is a contiguous region in memory. If
5005 that's not the case, something has to be done here to iterate
5006 over the stack segments. */
5007 mark_memory (stack_base, end);
5008
5009 /* Allow for marking a secondary stack, like the register stack on the
5010 ia64. */
5011 #ifdef GC_MARK_SECONDARY_STACK
5012 GC_MARK_SECONDARY_STACK ();
5013 #endif
5014 }
5015
5016 static bool
5017 c_symbol_p (struct Lisp_Symbol *sym)
5018 {
5019 char *lispsym_ptr = (char *) lispsym;
5020 char *sym_ptr = (char *) sym;
5021 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5022 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5023 }
5024
5025 /* Determine whether it is safe to access memory at address P. */
5026 static int
5027 valid_pointer_p (void *p)
5028 {
5029 #ifdef WINDOWSNT
5030 return w32_valid_pointer_p (p, 16);
5031 #else
5032
5033 if (ADDRESS_SANITIZER)
5034 return p ? -1 : 0;
5035
5036 int fd[2];
5037
5038 /* Obviously, we cannot just access it (we would SEGV trying), so we
5039 trick the o/s to tell us whether p is a valid pointer.
5040 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5041 not validate p in that case. */
5042
5043 if (emacs_pipe (fd) == 0)
5044 {
5045 bool valid = emacs_write (fd[1], p, 16) == 16;
5046 emacs_close (fd[1]);
5047 emacs_close (fd[0]);
5048 return valid;
5049 }
5050
5051 return -1;
5052 #endif
5053 }
5054
5055 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5056 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5057 cannot validate OBJ. This function can be quite slow, so its primary
5058 use is the manual debugging. The only exception is print_object, where
5059 we use it to check whether the memory referenced by the pointer of
5060 Lisp_Save_Value object contains valid objects. */
5061
5062 int
5063 valid_lisp_object_p (Lisp_Object obj)
5064 {
5065 if (INTEGERP (obj))
5066 return 1;
5067
5068 void *p = XPNTR (obj);
5069 if (PURE_P (p))
5070 return 1;
5071
5072 if (SYMBOLP (obj) && c_symbol_p (p))
5073 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5074
5075 if (p == &buffer_defaults || p == &buffer_local_symbols)
5076 return 2;
5077
5078 struct mem_node *m = mem_find (p);
5079
5080 if (m == MEM_NIL)
5081 {
5082 int valid = valid_pointer_p (p);
5083 if (valid <= 0)
5084 return valid;
5085
5086 if (SUBRP (obj))
5087 return 1;
5088
5089 return 0;
5090 }
5091
5092 switch (m->type)
5093 {
5094 case MEM_TYPE_NON_LISP:
5095 case MEM_TYPE_SPARE:
5096 return 0;
5097
5098 case MEM_TYPE_BUFFER:
5099 return live_buffer_p (m, p) ? 1 : 2;
5100
5101 case MEM_TYPE_CONS:
5102 return live_cons_p (m, p);
5103
5104 case MEM_TYPE_STRING:
5105 return live_string_p (m, p);
5106
5107 case MEM_TYPE_MISC:
5108 return live_misc_p (m, p);
5109
5110 case MEM_TYPE_SYMBOL:
5111 return live_symbol_p (m, p);
5112
5113 case MEM_TYPE_FLOAT:
5114 return live_float_p (m, p);
5115
5116 case MEM_TYPE_VECTORLIKE:
5117 case MEM_TYPE_VECTOR_BLOCK:
5118 return live_vector_p (m, p);
5119
5120 default:
5121 break;
5122 }
5123
5124 return 0;
5125 }
5126
5127 /***********************************************************************
5128 Pure Storage Management
5129 ***********************************************************************/
5130
5131 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5132 pointer to it. TYPE is the Lisp type for which the memory is
5133 allocated. TYPE < 0 means it's not used for a Lisp object. */
5134
5135 static void *
5136 pure_alloc (size_t size, int type)
5137 {
5138 void *result;
5139
5140 again:
5141 if (type >= 0)
5142 {
5143 /* Allocate space for a Lisp object from the beginning of the free
5144 space with taking account of alignment. */
5145 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5146 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5147 }
5148 else
5149 {
5150 /* Allocate space for a non-Lisp object from the end of the free
5151 space. */
5152 pure_bytes_used_non_lisp += size;
5153 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5154 }
5155 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5156
5157 if (pure_bytes_used <= pure_size)
5158 return result;
5159
5160 /* Don't allocate a large amount here,
5161 because it might get mmap'd and then its address
5162 might not be usable. */
5163 purebeg = xmalloc (10000);
5164 pure_size = 10000;
5165 pure_bytes_used_before_overflow += pure_bytes_used - size;
5166 pure_bytes_used = 0;
5167 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5168 goto again;
5169 }
5170
5171
5172 /* Print a warning if PURESIZE is too small. */
5173
5174 void
5175 check_pure_size (void)
5176 {
5177 if (pure_bytes_used_before_overflow)
5178 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5179 " bytes needed)"),
5180 pure_bytes_used + pure_bytes_used_before_overflow);
5181 }
5182
5183
5184 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5185 the non-Lisp data pool of the pure storage, and return its start
5186 address. Return NULL if not found. */
5187
5188 static char *
5189 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5190 {
5191 int i;
5192 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5193 const unsigned char *p;
5194 char *non_lisp_beg;
5195
5196 if (pure_bytes_used_non_lisp <= nbytes)
5197 return NULL;
5198
5199 /* Set up the Boyer-Moore table. */
5200 skip = nbytes + 1;
5201 for (i = 0; i < 256; i++)
5202 bm_skip[i] = skip;
5203
5204 p = (const unsigned char *) data;
5205 while (--skip > 0)
5206 bm_skip[*p++] = skip;
5207
5208 last_char_skip = bm_skip['\0'];
5209
5210 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5211 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5212
5213 /* See the comments in the function `boyer_moore' (search.c) for the
5214 use of `infinity'. */
5215 infinity = pure_bytes_used_non_lisp + 1;
5216 bm_skip['\0'] = infinity;
5217
5218 p = (const unsigned char *) non_lisp_beg + nbytes;
5219 start = 0;
5220 do
5221 {
5222 /* Check the last character (== '\0'). */
5223 do
5224 {
5225 start += bm_skip[*(p + start)];
5226 }
5227 while (start <= start_max);
5228
5229 if (start < infinity)
5230 /* Couldn't find the last character. */
5231 return NULL;
5232
5233 /* No less than `infinity' means we could find the last
5234 character at `p[start - infinity]'. */
5235 start -= infinity;
5236
5237 /* Check the remaining characters. */
5238 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5239 /* Found. */
5240 return non_lisp_beg + start;
5241
5242 start += last_char_skip;
5243 }
5244 while (start <= start_max);
5245
5246 return NULL;
5247 }
5248
5249
5250 /* Return a string allocated in pure space. DATA is a buffer holding
5251 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5252 means make the result string multibyte.
5253
5254 Must get an error if pure storage is full, since if it cannot hold
5255 a large string it may be able to hold conses that point to that
5256 string; then the string is not protected from gc. */
5257
5258 Lisp_Object
5259 make_pure_string (const char *data,
5260 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5261 {
5262 Lisp_Object string;
5263 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5264 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5265 if (s->data == NULL)
5266 {
5267 s->data = pure_alloc (nbytes + 1, -1);
5268 memcpy (s->data, data, nbytes);
5269 s->data[nbytes] = '\0';
5270 }
5271 s->size = nchars;
5272 s->size_byte = multibyte ? nbytes : -1;
5273 s->intervals = NULL;
5274 XSETSTRING (string, s);
5275 return string;
5276 }
5277
5278 /* Return a string allocated in pure space. Do not
5279 allocate the string data, just point to DATA. */
5280
5281 Lisp_Object
5282 make_pure_c_string (const char *data, ptrdiff_t nchars)
5283 {
5284 Lisp_Object string;
5285 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5286 s->size = nchars;
5287 s->size_byte = -1;
5288 s->data = (unsigned char *) data;
5289 s->intervals = NULL;
5290 XSETSTRING (string, s);
5291 return string;
5292 }
5293
5294 static Lisp_Object purecopy (Lisp_Object obj);
5295
5296 /* Return a cons allocated from pure space. Give it pure copies
5297 of CAR as car and CDR as cdr. */
5298
5299 Lisp_Object
5300 pure_cons (Lisp_Object car, Lisp_Object cdr)
5301 {
5302 Lisp_Object new;
5303 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5304 XSETCONS (new, p);
5305 XSETCAR (new, purecopy (car));
5306 XSETCDR (new, purecopy (cdr));
5307 return new;
5308 }
5309
5310
5311 /* Value is a float object with value NUM allocated from pure space. */
5312
5313 static Lisp_Object
5314 make_pure_float (double num)
5315 {
5316 Lisp_Object new;
5317 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5318 XSETFLOAT (new, p);
5319 XFLOAT_INIT (new, num);
5320 return new;
5321 }
5322
5323
5324 /* Return a vector with room for LEN Lisp_Objects allocated from
5325 pure space. */
5326
5327 static Lisp_Object
5328 make_pure_vector (ptrdiff_t len)
5329 {
5330 Lisp_Object new;
5331 size_t size = header_size + len * word_size;
5332 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5333 XSETVECTOR (new, p);
5334 XVECTOR (new)->header.size = len;
5335 return new;
5336 }
5337
5338 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5339 doc: /* Make a copy of object OBJ in pure storage.
5340 Recursively copies contents of vectors and cons cells.
5341 Does not copy symbols. Copies strings without text properties. */)
5342 (register Lisp_Object obj)
5343 {
5344 if (NILP (Vpurify_flag))
5345 return obj;
5346 else if (MARKERP (obj) || OVERLAYP (obj)
5347 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5348 /* Can't purify those. */
5349 return obj;
5350 else
5351 return purecopy (obj);
5352 }
5353
5354 static Lisp_Object
5355 purecopy (Lisp_Object obj)
5356 {
5357 if (INTEGERP (obj)
5358 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5359 || SUBRP (obj))
5360 return obj; /* Already pure. */
5361
5362 if (STRINGP (obj) && XSTRING (obj)->intervals)
5363 message_with_string ("Dropping text-properties while making string `%s' pure",
5364 obj, true);
5365
5366 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5367 {
5368 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5369 if (!NILP (tmp))
5370 return tmp;
5371 }
5372
5373 if (CONSP (obj))
5374 obj = pure_cons (XCAR (obj), XCDR (obj));
5375 else if (FLOATP (obj))
5376 obj = make_pure_float (XFLOAT_DATA (obj));
5377 else if (STRINGP (obj))
5378 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5379 SBYTES (obj),
5380 STRING_MULTIBYTE (obj));
5381 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5382 {
5383 struct Lisp_Vector *objp = XVECTOR (obj);
5384 ptrdiff_t nbytes = vector_nbytes (objp);
5385 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5386 register ptrdiff_t i;
5387 ptrdiff_t size = ASIZE (obj);
5388 if (size & PSEUDOVECTOR_FLAG)
5389 size &= PSEUDOVECTOR_SIZE_MASK;
5390 memcpy (vec, objp, nbytes);
5391 for (i = 0; i < size; i++)
5392 vec->contents[i] = purecopy (vec->contents[i]);
5393 XSETVECTOR (obj, vec);
5394 }
5395 else if (SYMBOLP (obj))
5396 {
5397 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5398 { /* We can't purify them, but they appear in many pure objects.
5399 Mark them as `pinned' so we know to mark them at every GC cycle. */
5400 XSYMBOL (obj)->pinned = true;
5401 symbol_block_pinned = symbol_block;
5402 }
5403 /* Don't hash-cons it. */
5404 return obj;
5405 }
5406 else
5407 {
5408 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5409 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5410 }
5411
5412 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5413 Fputhash (obj, obj, Vpurify_flag);
5414
5415 return obj;
5416 }
5417
5418
5419 \f
5420 /***********************************************************************
5421 Protection from GC
5422 ***********************************************************************/
5423
5424 /* Put an entry in staticvec, pointing at the variable with address
5425 VARADDRESS. */
5426
5427 void
5428 staticpro (Lisp_Object *varaddress)
5429 {
5430 if (staticidx >= NSTATICS)
5431 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5432 staticvec[staticidx++] = varaddress;
5433 }
5434
5435 \f
5436 /***********************************************************************
5437 Protection from GC
5438 ***********************************************************************/
5439
5440 /* Temporarily prevent garbage collection. */
5441
5442 ptrdiff_t
5443 inhibit_garbage_collection (void)
5444 {
5445 ptrdiff_t count = SPECPDL_INDEX ();
5446
5447 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5448 return count;
5449 }
5450
5451 /* Used to avoid possible overflows when
5452 converting from C to Lisp integers. */
5453
5454 static Lisp_Object
5455 bounded_number (EMACS_INT number)
5456 {
5457 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5458 }
5459
5460 /* Calculate total bytes of live objects. */
5461
5462 static size_t
5463 total_bytes_of_live_objects (void)
5464 {
5465 size_t tot = 0;
5466 tot += total_conses * sizeof (struct Lisp_Cons);
5467 tot += total_symbols * sizeof (struct Lisp_Symbol);
5468 tot += total_markers * sizeof (union Lisp_Misc);
5469 tot += total_string_bytes;
5470 tot += total_vector_slots * word_size;
5471 tot += total_floats * sizeof (struct Lisp_Float);
5472 tot += total_intervals * sizeof (struct interval);
5473 tot += total_strings * sizeof (struct Lisp_String);
5474 return tot;
5475 }
5476
5477 #ifdef HAVE_WINDOW_SYSTEM
5478
5479 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5480 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5481
5482 static Lisp_Object
5483 compact_font_cache_entry (Lisp_Object entry)
5484 {
5485 Lisp_Object tail, *prev = &entry;
5486
5487 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5488 {
5489 bool drop = 0;
5490 Lisp_Object obj = XCAR (tail);
5491
5492 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5493 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5494 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5495 /* Don't use VECTORP here, as that calls ASIZE, which could
5496 hit assertion violation during GC. */
5497 && (VECTORLIKEP (XCDR (obj))
5498 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5499 {
5500 ptrdiff_t i, size = gc_asize (XCDR (obj));
5501 Lisp_Object obj_cdr = XCDR (obj);
5502
5503 /* If font-spec is not marked, most likely all font-entities
5504 are not marked too. But we must be sure that nothing is
5505 marked within OBJ before we really drop it. */
5506 for (i = 0; i < size; i++)
5507 {
5508 Lisp_Object objlist;
5509
5510 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5511 break;
5512
5513 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5514 for (; CONSP (objlist); objlist = XCDR (objlist))
5515 {
5516 Lisp_Object val = XCAR (objlist);
5517 struct font *font = GC_XFONT_OBJECT (val);
5518
5519 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5520 && VECTOR_MARKED_P(font))
5521 break;
5522 }
5523 if (CONSP (objlist))
5524 {
5525 /* Found a marked font, bail out. */
5526 break;
5527 }
5528 }
5529
5530 if (i == size)
5531 {
5532 /* No marked fonts were found, so this entire font
5533 entity can be dropped. */
5534 drop = 1;
5535 }
5536 }
5537 if (drop)
5538 *prev = XCDR (tail);
5539 else
5540 prev = xcdr_addr (tail);
5541 }
5542 return entry;
5543 }
5544
5545 /* Compact font caches on all terminals and mark
5546 everything which is still here after compaction. */
5547
5548 static void
5549 compact_font_caches (void)
5550 {
5551 struct terminal *t;
5552
5553 for (t = terminal_list; t; t = t->next_terminal)
5554 {
5555 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5556 if (CONSP (cache))
5557 {
5558 Lisp_Object entry;
5559
5560 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5561 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5562 }
5563 mark_object (cache);
5564 }
5565 }
5566
5567 #else /* not HAVE_WINDOW_SYSTEM */
5568
5569 #define compact_font_caches() (void)(0)
5570
5571 #endif /* HAVE_WINDOW_SYSTEM */
5572
5573 /* Remove (MARKER . DATA) entries with unmarked MARKER
5574 from buffer undo LIST and return changed list. */
5575
5576 static Lisp_Object
5577 compact_undo_list (Lisp_Object list)
5578 {
5579 Lisp_Object tail, *prev = &list;
5580
5581 for (tail = list; CONSP (tail); tail = XCDR (tail))
5582 {
5583 if (CONSP (XCAR (tail))
5584 && MARKERP (XCAR (XCAR (tail)))
5585 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5586 *prev = XCDR (tail);
5587 else
5588 prev = xcdr_addr (tail);
5589 }
5590 return list;
5591 }
5592
5593 static void
5594 mark_pinned_symbols (void)
5595 {
5596 struct symbol_block *sblk;
5597 int lim = (symbol_block_pinned == symbol_block
5598 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5599
5600 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5601 {
5602 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5603 for (; sym < end; ++sym)
5604 if (sym->s.pinned)
5605 mark_object (make_lisp_symbol (&sym->s));
5606
5607 lim = SYMBOL_BLOCK_SIZE;
5608 }
5609 }
5610
5611 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5612 separate function so that we could limit mark_stack in searching
5613 the stack frames below this function, thus avoiding the rare cases
5614 where mark_stack finds values that look like live Lisp objects on
5615 portions of stack that couldn't possibly contain such live objects.
5616 For more details of this, see the discussion at
5617 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5618 static Lisp_Object
5619 garbage_collect_1 (void *end)
5620 {
5621 struct buffer *nextb;
5622 char stack_top_variable;
5623 ptrdiff_t i;
5624 bool message_p;
5625 ptrdiff_t count = SPECPDL_INDEX ();
5626 struct timespec start;
5627 Lisp_Object retval = Qnil;
5628 size_t tot_before = 0;
5629
5630 if (abort_on_gc)
5631 emacs_abort ();
5632
5633 /* Can't GC if pure storage overflowed because we can't determine
5634 if something is a pure object or not. */
5635 if (pure_bytes_used_before_overflow)
5636 return Qnil;
5637
5638 /* Record this function, so it appears on the profiler's backtraces. */
5639 record_in_backtrace (Qautomatic_gc, 0, 0);
5640
5641 check_cons_list ();
5642
5643 /* Don't keep undo information around forever.
5644 Do this early on, so it is no problem if the user quits. */
5645 FOR_EACH_BUFFER (nextb)
5646 compact_buffer (nextb);
5647
5648 if (profiler_memory_running)
5649 tot_before = total_bytes_of_live_objects ();
5650
5651 start = current_timespec ();
5652
5653 /* In case user calls debug_print during GC,
5654 don't let that cause a recursive GC. */
5655 consing_since_gc = 0;
5656
5657 /* Save what's currently displayed in the echo area. Don't do that
5658 if we are GC'ing because we've run out of memory, since
5659 push_message will cons, and we might have no memory for that. */
5660 if (NILP (Vmemory_full))
5661 {
5662 message_p = push_message ();
5663 record_unwind_protect_void (pop_message_unwind);
5664 }
5665 else
5666 message_p = false;
5667
5668 /* Save a copy of the contents of the stack, for debugging. */
5669 #if MAX_SAVE_STACK > 0
5670 if (NILP (Vpurify_flag))
5671 {
5672 char *stack;
5673 ptrdiff_t stack_size;
5674 if (&stack_top_variable < stack_bottom)
5675 {
5676 stack = &stack_top_variable;
5677 stack_size = stack_bottom - &stack_top_variable;
5678 }
5679 else
5680 {
5681 stack = stack_bottom;
5682 stack_size = &stack_top_variable - stack_bottom;
5683 }
5684 if (stack_size <= MAX_SAVE_STACK)
5685 {
5686 if (stack_copy_size < stack_size)
5687 {
5688 stack_copy = xrealloc (stack_copy, stack_size);
5689 stack_copy_size = stack_size;
5690 }
5691 no_sanitize_memcpy (stack_copy, stack, stack_size);
5692 }
5693 }
5694 #endif /* MAX_SAVE_STACK > 0 */
5695
5696 if (garbage_collection_messages)
5697 message1_nolog ("Garbage collecting...");
5698
5699 block_input ();
5700
5701 shrink_regexp_cache ();
5702
5703 gc_in_progress = 1;
5704
5705 /* Mark all the special slots that serve as the roots of accessibility. */
5706
5707 mark_buffer (&buffer_defaults);
5708 mark_buffer (&buffer_local_symbols);
5709
5710 for (i = 0; i < ARRAYELTS (lispsym); i++)
5711 mark_object (builtin_lisp_symbol (i));
5712
5713 for (i = 0; i < staticidx; i++)
5714 mark_object (*staticvec[i]);
5715
5716 mark_pinned_symbols ();
5717 mark_specpdl ();
5718 mark_terminals ();
5719 mark_kboards ();
5720
5721 #ifdef USE_GTK
5722 xg_mark_data ();
5723 #endif
5724
5725 mark_stack (end);
5726
5727 {
5728 struct handler *handler;
5729 for (handler = handlerlist; handler; handler = handler->next)
5730 {
5731 mark_object (handler->tag_or_ch);
5732 mark_object (handler->val);
5733 }
5734 }
5735 #ifdef HAVE_WINDOW_SYSTEM
5736 mark_fringe_data ();
5737 #endif
5738
5739 /* Everything is now marked, except for the data in font caches,
5740 undo lists, and finalizers. The first two are compacted by
5741 removing an items which aren't reachable otherwise. */
5742
5743 compact_font_caches ();
5744
5745 FOR_EACH_BUFFER (nextb)
5746 {
5747 if (!EQ (BVAR (nextb, undo_list), Qt))
5748 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5749 /* Now that we have stripped the elements that need not be
5750 in the undo_list any more, we can finally mark the list. */
5751 mark_object (BVAR (nextb, undo_list));
5752 }
5753
5754 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5755 to doomed_finalizers so we can run their associated functions
5756 after GC. It's important to scan finalizers at this stage so
5757 that we can be sure that unmarked finalizers are really
5758 unreachable except for references from their associated functions
5759 and from other finalizers. */
5760
5761 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5762 mark_finalizer_list (&doomed_finalizers);
5763
5764 gc_sweep ();
5765
5766 relocate_byte_stack ();
5767
5768 /* Clear the mark bits that we set in certain root slots. */
5769 VECTOR_UNMARK (&buffer_defaults);
5770 VECTOR_UNMARK (&buffer_local_symbols);
5771
5772 check_cons_list ();
5773
5774 gc_in_progress = 0;
5775
5776 unblock_input ();
5777
5778 consing_since_gc = 0;
5779 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5780 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5781
5782 gc_relative_threshold = 0;
5783 if (FLOATP (Vgc_cons_percentage))
5784 { /* Set gc_cons_combined_threshold. */
5785 double tot = total_bytes_of_live_objects ();
5786
5787 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5788 if (0 < tot)
5789 {
5790 if (tot < TYPE_MAXIMUM (EMACS_INT))
5791 gc_relative_threshold = tot;
5792 else
5793 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5794 }
5795 }
5796
5797 if (garbage_collection_messages && NILP (Vmemory_full))
5798 {
5799 if (message_p || minibuf_level > 0)
5800 restore_message ();
5801 else
5802 message1_nolog ("Garbage collecting...done");
5803 }
5804
5805 unbind_to (count, Qnil);
5806
5807 Lisp_Object total[] = {
5808 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5809 bounded_number (total_conses),
5810 bounded_number (total_free_conses)),
5811 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5812 bounded_number (total_symbols),
5813 bounded_number (total_free_symbols)),
5814 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5815 bounded_number (total_markers),
5816 bounded_number (total_free_markers)),
5817 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5818 bounded_number (total_strings),
5819 bounded_number (total_free_strings)),
5820 list3 (Qstring_bytes, make_number (1),
5821 bounded_number (total_string_bytes)),
5822 list3 (Qvectors,
5823 make_number (header_size + sizeof (Lisp_Object)),
5824 bounded_number (total_vectors)),
5825 list4 (Qvector_slots, make_number (word_size),
5826 bounded_number (total_vector_slots),
5827 bounded_number (total_free_vector_slots)),
5828 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5829 bounded_number (total_floats),
5830 bounded_number (total_free_floats)),
5831 list4 (Qintervals, make_number (sizeof (struct interval)),
5832 bounded_number (total_intervals),
5833 bounded_number (total_free_intervals)),
5834 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5835 bounded_number (total_buffers)),
5836
5837 #ifdef DOUG_LEA_MALLOC
5838 list4 (Qheap, make_number (1024),
5839 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5840 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5841 #endif
5842 };
5843 retval = CALLMANY (Flist, total);
5844
5845 /* GC is complete: now we can run our finalizer callbacks. */
5846 run_finalizers (&doomed_finalizers);
5847
5848 if (!NILP (Vpost_gc_hook))
5849 {
5850 ptrdiff_t gc_count = inhibit_garbage_collection ();
5851 safe_run_hooks (Qpost_gc_hook);
5852 unbind_to (gc_count, Qnil);
5853 }
5854
5855 /* Accumulate statistics. */
5856 if (FLOATP (Vgc_elapsed))
5857 {
5858 struct timespec since_start = timespec_sub (current_timespec (), start);
5859 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5860 + timespectod (since_start));
5861 }
5862
5863 gcs_done++;
5864
5865 /* Collect profiling data. */
5866 if (profiler_memory_running)
5867 {
5868 size_t swept = 0;
5869 size_t tot_after = total_bytes_of_live_objects ();
5870 if (tot_before > tot_after)
5871 swept = tot_before - tot_after;
5872 malloc_probe (swept);
5873 }
5874
5875 return retval;
5876 }
5877
5878 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5879 doc: /* Reclaim storage for Lisp objects no longer needed.
5880 Garbage collection happens automatically if you cons more than
5881 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5882 `garbage-collect' normally returns a list with info on amount of space in use,
5883 where each entry has the form (NAME SIZE USED FREE), where:
5884 - NAME is a symbol describing the kind of objects this entry represents,
5885 - SIZE is the number of bytes used by each one,
5886 - USED is the number of those objects that were found live in the heap,
5887 - FREE is the number of those objects that are not live but that Emacs
5888 keeps around for future allocations (maybe because it does not know how
5889 to return them to the OS).
5890 However, if there was overflow in pure space, `garbage-collect'
5891 returns nil, because real GC can't be done.
5892 See Info node `(elisp)Garbage Collection'. */)
5893 (void)
5894 {
5895 void *end;
5896
5897 #ifdef HAVE___BUILTIN_UNWIND_INIT
5898 /* Force callee-saved registers and register windows onto the stack.
5899 This is the preferred method if available, obviating the need for
5900 machine dependent methods. */
5901 __builtin_unwind_init ();
5902 end = &end;
5903 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5904 #ifndef GC_SAVE_REGISTERS_ON_STACK
5905 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5906 union aligned_jmpbuf {
5907 Lisp_Object o;
5908 sys_jmp_buf j;
5909 } j;
5910 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5911 #endif
5912 /* This trick flushes the register windows so that all the state of
5913 the process is contained in the stack. */
5914 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5915 needed on ia64 too. See mach_dep.c, where it also says inline
5916 assembler doesn't work with relevant proprietary compilers. */
5917 #ifdef __sparc__
5918 #if defined (__sparc64__) && defined (__FreeBSD__)
5919 /* FreeBSD does not have a ta 3 handler. */
5920 asm ("flushw");
5921 #else
5922 asm ("ta 3");
5923 #endif
5924 #endif
5925
5926 /* Save registers that we need to see on the stack. We need to see
5927 registers used to hold register variables and registers used to
5928 pass parameters. */
5929 #ifdef GC_SAVE_REGISTERS_ON_STACK
5930 GC_SAVE_REGISTERS_ON_STACK (end);
5931 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5932
5933 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5934 setjmp will definitely work, test it
5935 and print a message with the result
5936 of the test. */
5937 if (!setjmp_tested_p)
5938 {
5939 setjmp_tested_p = 1;
5940 test_setjmp ();
5941 }
5942 #endif /* GC_SETJMP_WORKS */
5943
5944 sys_setjmp (j.j);
5945 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5946 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5947 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5948 return garbage_collect_1 (end);
5949 }
5950
5951 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5952 only interesting objects referenced from glyphs are strings. */
5953
5954 static void
5955 mark_glyph_matrix (struct glyph_matrix *matrix)
5956 {
5957 struct glyph_row *row = matrix->rows;
5958 struct glyph_row *end = row + matrix->nrows;
5959
5960 for (; row < end; ++row)
5961 if (row->enabled_p)
5962 {
5963 int area;
5964 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5965 {
5966 struct glyph *glyph = row->glyphs[area];
5967 struct glyph *end_glyph = glyph + row->used[area];
5968
5969 for (; glyph < end_glyph; ++glyph)
5970 if (STRINGP (glyph->object)
5971 && !STRING_MARKED_P (XSTRING (glyph->object)))
5972 mark_object (glyph->object);
5973 }
5974 }
5975 }
5976
5977 /* Mark reference to a Lisp_Object.
5978 If the object referred to has not been seen yet, recursively mark
5979 all the references contained in it. */
5980
5981 #define LAST_MARKED_SIZE 500
5982 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5983 static int last_marked_index;
5984
5985 /* For debugging--call abort when we cdr down this many
5986 links of a list, in mark_object. In debugging,
5987 the call to abort will hit a breakpoint.
5988 Normally this is zero and the check never goes off. */
5989 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5990
5991 static void
5992 mark_vectorlike (struct Lisp_Vector *ptr)
5993 {
5994 ptrdiff_t size = ptr->header.size;
5995 ptrdiff_t i;
5996
5997 eassert (!VECTOR_MARKED_P (ptr));
5998 VECTOR_MARK (ptr); /* Else mark it. */
5999 if (size & PSEUDOVECTOR_FLAG)
6000 size &= PSEUDOVECTOR_SIZE_MASK;
6001
6002 /* Note that this size is not the memory-footprint size, but only
6003 the number of Lisp_Object fields that we should trace.
6004 The distinction is used e.g. by Lisp_Process which places extra
6005 non-Lisp_Object fields at the end of the structure... */
6006 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6007 mark_object (ptr->contents[i]);
6008 }
6009
6010 /* Like mark_vectorlike but optimized for char-tables (and
6011 sub-char-tables) assuming that the contents are mostly integers or
6012 symbols. */
6013
6014 static void
6015 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6016 {
6017 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6018 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6019 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6020
6021 eassert (!VECTOR_MARKED_P (ptr));
6022 VECTOR_MARK (ptr);
6023 for (i = idx; i < size; i++)
6024 {
6025 Lisp_Object val = ptr->contents[i];
6026
6027 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6028 continue;
6029 if (SUB_CHAR_TABLE_P (val))
6030 {
6031 if (! VECTOR_MARKED_P (XVECTOR (val)))
6032 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6033 }
6034 else
6035 mark_object (val);
6036 }
6037 }
6038
6039 NO_INLINE /* To reduce stack depth in mark_object. */
6040 static Lisp_Object
6041 mark_compiled (struct Lisp_Vector *ptr)
6042 {
6043 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6044
6045 VECTOR_MARK (ptr);
6046 for (i = 0; i < size; i++)
6047 if (i != COMPILED_CONSTANTS)
6048 mark_object (ptr->contents[i]);
6049 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6050 }
6051
6052 /* Mark the chain of overlays starting at PTR. */
6053
6054 static void
6055 mark_overlay (struct Lisp_Overlay *ptr)
6056 {
6057 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6058 {
6059 ptr->gcmarkbit = 1;
6060 /* These two are always markers and can be marked fast. */
6061 XMARKER (ptr->start)->gcmarkbit = 1;
6062 XMARKER (ptr->end)->gcmarkbit = 1;
6063 mark_object (ptr->plist);
6064 }
6065 }
6066
6067 /* Mark Lisp_Objects and special pointers in BUFFER. */
6068
6069 static void
6070 mark_buffer (struct buffer *buffer)
6071 {
6072 /* This is handled much like other pseudovectors... */
6073 mark_vectorlike ((struct Lisp_Vector *) buffer);
6074
6075 /* ...but there are some buffer-specific things. */
6076
6077 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6078
6079 /* For now, we just don't mark the undo_list. It's done later in
6080 a special way just before the sweep phase, and after stripping
6081 some of its elements that are not needed any more. */
6082
6083 mark_overlay (buffer->overlays_before);
6084 mark_overlay (buffer->overlays_after);
6085
6086 /* If this is an indirect buffer, mark its base buffer. */
6087 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6088 mark_buffer (buffer->base_buffer);
6089 }
6090
6091 /* Mark Lisp faces in the face cache C. */
6092
6093 NO_INLINE /* To reduce stack depth in mark_object. */
6094 static void
6095 mark_face_cache (struct face_cache *c)
6096 {
6097 if (c)
6098 {
6099 int i, j;
6100 for (i = 0; i < c->used; ++i)
6101 {
6102 struct face *face = FACE_FROM_ID (c->f, i);
6103
6104 if (face)
6105 {
6106 if (face->font && !VECTOR_MARKED_P (face->font))
6107 mark_vectorlike ((struct Lisp_Vector *) face->font);
6108
6109 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6110 mark_object (face->lface[j]);
6111 }
6112 }
6113 }
6114 }
6115
6116 NO_INLINE /* To reduce stack depth in mark_object. */
6117 static void
6118 mark_localized_symbol (struct Lisp_Symbol *ptr)
6119 {
6120 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6121 Lisp_Object where = blv->where;
6122 /* If the value is set up for a killed buffer or deleted
6123 frame, restore its global binding. If the value is
6124 forwarded to a C variable, either it's not a Lisp_Object
6125 var, or it's staticpro'd already. */
6126 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6127 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6128 swap_in_global_binding (ptr);
6129 mark_object (blv->where);
6130 mark_object (blv->valcell);
6131 mark_object (blv->defcell);
6132 }
6133
6134 NO_INLINE /* To reduce stack depth in mark_object. */
6135 static void
6136 mark_save_value (struct Lisp_Save_Value *ptr)
6137 {
6138 /* If `save_type' is zero, `data[0].pointer' is the address
6139 of a memory area containing `data[1].integer' potential
6140 Lisp_Objects. */
6141 if (ptr->save_type == SAVE_TYPE_MEMORY)
6142 {
6143 Lisp_Object *p = ptr->data[0].pointer;
6144 ptrdiff_t nelt;
6145 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6146 mark_maybe_object (*p);
6147 }
6148 else
6149 {
6150 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6151 int i;
6152 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6153 if (save_type (ptr, i) == SAVE_OBJECT)
6154 mark_object (ptr->data[i].object);
6155 }
6156 }
6157
6158 /* Remove killed buffers or items whose car is a killed buffer from
6159 LIST, and mark other items. Return changed LIST, which is marked. */
6160
6161 static Lisp_Object
6162 mark_discard_killed_buffers (Lisp_Object list)
6163 {
6164 Lisp_Object tail, *prev = &list;
6165
6166 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6167 tail = XCDR (tail))
6168 {
6169 Lisp_Object tem = XCAR (tail);
6170 if (CONSP (tem))
6171 tem = XCAR (tem);
6172 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6173 *prev = XCDR (tail);
6174 else
6175 {
6176 CONS_MARK (XCONS (tail));
6177 mark_object (XCAR (tail));
6178 prev = xcdr_addr (tail);
6179 }
6180 }
6181 mark_object (tail);
6182 return list;
6183 }
6184
6185 /* Determine type of generic Lisp_Object and mark it accordingly.
6186
6187 This function implements a straightforward depth-first marking
6188 algorithm and so the recursion depth may be very high (a few
6189 tens of thousands is not uncommon). To minimize stack usage,
6190 a few cold paths are moved out to NO_INLINE functions above.
6191 In general, inlining them doesn't help you to gain more speed. */
6192
6193 void
6194 mark_object (Lisp_Object arg)
6195 {
6196 register Lisp_Object obj;
6197 void *po;
6198 #ifdef GC_CHECK_MARKED_OBJECTS
6199 struct mem_node *m;
6200 #endif
6201 ptrdiff_t cdr_count = 0;
6202
6203 obj = arg;
6204 loop:
6205
6206 po = XPNTR (obj);
6207 if (PURE_P (po))
6208 return;
6209
6210 last_marked[last_marked_index++] = obj;
6211 if (last_marked_index == LAST_MARKED_SIZE)
6212 last_marked_index = 0;
6213
6214 /* Perform some sanity checks on the objects marked here. Abort if
6215 we encounter an object we know is bogus. This increases GC time
6216 by ~80%. */
6217 #ifdef GC_CHECK_MARKED_OBJECTS
6218
6219 /* Check that the object pointed to by PO is known to be a Lisp
6220 structure allocated from the heap. */
6221 #define CHECK_ALLOCATED() \
6222 do { \
6223 m = mem_find (po); \
6224 if (m == MEM_NIL) \
6225 emacs_abort (); \
6226 } while (0)
6227
6228 /* Check that the object pointed to by PO is live, using predicate
6229 function LIVEP. */
6230 #define CHECK_LIVE(LIVEP) \
6231 do { \
6232 if (!LIVEP (m, po)) \
6233 emacs_abort (); \
6234 } while (0)
6235
6236 /* Check both of the above conditions, for non-symbols. */
6237 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6238 do { \
6239 CHECK_ALLOCATED (); \
6240 CHECK_LIVE (LIVEP); \
6241 } while (0) \
6242
6243 /* Check both of the above conditions, for symbols. */
6244 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6245 do { \
6246 if (!c_symbol_p (ptr)) \
6247 { \
6248 CHECK_ALLOCATED (); \
6249 CHECK_LIVE (live_symbol_p); \
6250 } \
6251 } while (0) \
6252
6253 #else /* not GC_CHECK_MARKED_OBJECTS */
6254
6255 #define CHECK_LIVE(LIVEP) ((void) 0)
6256 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6257 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6258
6259 #endif /* not GC_CHECK_MARKED_OBJECTS */
6260
6261 switch (XTYPE (obj))
6262 {
6263 case Lisp_String:
6264 {
6265 register struct Lisp_String *ptr = XSTRING (obj);
6266 if (STRING_MARKED_P (ptr))
6267 break;
6268 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6269 MARK_STRING (ptr);
6270 MARK_INTERVAL_TREE (ptr->intervals);
6271 #ifdef GC_CHECK_STRING_BYTES
6272 /* Check that the string size recorded in the string is the
6273 same as the one recorded in the sdata structure. */
6274 string_bytes (ptr);
6275 #endif /* GC_CHECK_STRING_BYTES */
6276 }
6277 break;
6278
6279 case Lisp_Vectorlike:
6280 {
6281 register struct Lisp_Vector *ptr = XVECTOR (obj);
6282 register ptrdiff_t pvectype;
6283
6284 if (VECTOR_MARKED_P (ptr))
6285 break;
6286
6287 #ifdef GC_CHECK_MARKED_OBJECTS
6288 m = mem_find (po);
6289 if (m == MEM_NIL && !SUBRP (obj))
6290 emacs_abort ();
6291 #endif /* GC_CHECK_MARKED_OBJECTS */
6292
6293 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6294 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6295 >> PSEUDOVECTOR_AREA_BITS);
6296 else
6297 pvectype = PVEC_NORMAL_VECTOR;
6298
6299 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6300 CHECK_LIVE (live_vector_p);
6301
6302 switch (pvectype)
6303 {
6304 case PVEC_BUFFER:
6305 #ifdef GC_CHECK_MARKED_OBJECTS
6306 {
6307 struct buffer *b;
6308 FOR_EACH_BUFFER (b)
6309 if (b == po)
6310 break;
6311 if (b == NULL)
6312 emacs_abort ();
6313 }
6314 #endif /* GC_CHECK_MARKED_OBJECTS */
6315 mark_buffer ((struct buffer *) ptr);
6316 break;
6317
6318 case PVEC_COMPILED:
6319 /* Although we could treat this just like a vector, mark_compiled
6320 returns the COMPILED_CONSTANTS element, which is marked at the
6321 next iteration of goto-loop here. This is done to avoid a few
6322 recursive calls to mark_object. */
6323 obj = mark_compiled (ptr);
6324 if (!NILP (obj))
6325 goto loop;
6326 break;
6327
6328 case PVEC_FRAME:
6329 {
6330 struct frame *f = (struct frame *) ptr;
6331
6332 mark_vectorlike (ptr);
6333 mark_face_cache (f->face_cache);
6334 #ifdef HAVE_WINDOW_SYSTEM
6335 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6336 {
6337 struct font *font = FRAME_FONT (f);
6338
6339 if (font && !VECTOR_MARKED_P (font))
6340 mark_vectorlike ((struct Lisp_Vector *) font);
6341 }
6342 #endif
6343 }
6344 break;
6345
6346 case PVEC_WINDOW:
6347 {
6348 struct window *w = (struct window *) ptr;
6349
6350 mark_vectorlike (ptr);
6351
6352 /* Mark glyph matrices, if any. Marking window
6353 matrices is sufficient because frame matrices
6354 use the same glyph memory. */
6355 if (w->current_matrix)
6356 {
6357 mark_glyph_matrix (w->current_matrix);
6358 mark_glyph_matrix (w->desired_matrix);
6359 }
6360
6361 /* Filter out killed buffers from both buffer lists
6362 in attempt to help GC to reclaim killed buffers faster.
6363 We can do it elsewhere for live windows, but this is the
6364 best place to do it for dead windows. */
6365 wset_prev_buffers
6366 (w, mark_discard_killed_buffers (w->prev_buffers));
6367 wset_next_buffers
6368 (w, mark_discard_killed_buffers (w->next_buffers));
6369 }
6370 break;
6371
6372 case PVEC_HASH_TABLE:
6373 {
6374 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6375
6376 mark_vectorlike (ptr);
6377 mark_object (h->test.name);
6378 mark_object (h->test.user_hash_function);
6379 mark_object (h->test.user_cmp_function);
6380 /* If hash table is not weak, mark all keys and values.
6381 For weak tables, mark only the vector. */
6382 if (NILP (h->weak))
6383 mark_object (h->key_and_value);
6384 else
6385 VECTOR_MARK (XVECTOR (h->key_and_value));
6386 }
6387 break;
6388
6389 case PVEC_CHAR_TABLE:
6390 case PVEC_SUB_CHAR_TABLE:
6391 mark_char_table (ptr, (enum pvec_type) pvectype);
6392 break;
6393
6394 case PVEC_BOOL_VECTOR:
6395 /* No Lisp_Objects to mark in a bool vector. */
6396 VECTOR_MARK (ptr);
6397 break;
6398
6399 case PVEC_SUBR:
6400 break;
6401
6402 case PVEC_FREE:
6403 emacs_abort ();
6404
6405 default:
6406 mark_vectorlike (ptr);
6407 }
6408 }
6409 break;
6410
6411 case Lisp_Symbol:
6412 {
6413 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6414 nextsym:
6415 if (ptr->gcmarkbit)
6416 break;
6417 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6418 ptr->gcmarkbit = 1;
6419 /* Attempt to catch bogus objects. */
6420 eassert (valid_lisp_object_p (ptr->function));
6421 mark_object (ptr->function);
6422 mark_object (ptr->plist);
6423 switch (ptr->redirect)
6424 {
6425 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6426 case SYMBOL_VARALIAS:
6427 {
6428 Lisp_Object tem;
6429 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6430 mark_object (tem);
6431 break;
6432 }
6433 case SYMBOL_LOCALIZED:
6434 mark_localized_symbol (ptr);
6435 break;
6436 case SYMBOL_FORWARDED:
6437 /* If the value is forwarded to a buffer or keyboard field,
6438 these are marked when we see the corresponding object.
6439 And if it's forwarded to a C variable, either it's not
6440 a Lisp_Object var, or it's staticpro'd already. */
6441 break;
6442 default: emacs_abort ();
6443 }
6444 if (!PURE_P (XSTRING (ptr->name)))
6445 MARK_STRING (XSTRING (ptr->name));
6446 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6447 /* Inner loop to mark next symbol in this bucket, if any. */
6448 po = ptr = ptr->next;
6449 if (ptr)
6450 goto nextsym;
6451 }
6452 break;
6453
6454 case Lisp_Misc:
6455 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6456
6457 if (XMISCANY (obj)->gcmarkbit)
6458 break;
6459
6460 switch (XMISCTYPE (obj))
6461 {
6462 case Lisp_Misc_Marker:
6463 /* DO NOT mark thru the marker's chain.
6464 The buffer's markers chain does not preserve markers from gc;
6465 instead, markers are removed from the chain when freed by gc. */
6466 XMISCANY (obj)->gcmarkbit = 1;
6467 break;
6468
6469 case Lisp_Misc_Save_Value:
6470 XMISCANY (obj)->gcmarkbit = 1;
6471 mark_save_value (XSAVE_VALUE (obj));
6472 break;
6473
6474 case Lisp_Misc_Overlay:
6475 mark_overlay (XOVERLAY (obj));
6476 break;
6477
6478 case Lisp_Misc_Finalizer:
6479 XMISCANY (obj)->gcmarkbit = true;
6480 mark_object (XFINALIZER (obj)->function);
6481 break;
6482
6483 #ifdef HAVE_MODULES
6484 case Lisp_Misc_User_Ptr:
6485 XMISCANY (obj)->gcmarkbit = true;
6486 break;
6487 #endif
6488
6489 default:
6490 emacs_abort ();
6491 }
6492 break;
6493
6494 case Lisp_Cons:
6495 {
6496 register struct Lisp_Cons *ptr = XCONS (obj);
6497 if (CONS_MARKED_P (ptr))
6498 break;
6499 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6500 CONS_MARK (ptr);
6501 /* If the cdr is nil, avoid recursion for the car. */
6502 if (EQ (ptr->u.cdr, Qnil))
6503 {
6504 obj = ptr->car;
6505 cdr_count = 0;
6506 goto loop;
6507 }
6508 mark_object (ptr->car);
6509 obj = ptr->u.cdr;
6510 cdr_count++;
6511 if (cdr_count == mark_object_loop_halt)
6512 emacs_abort ();
6513 goto loop;
6514 }
6515
6516 case Lisp_Float:
6517 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6518 FLOAT_MARK (XFLOAT (obj));
6519 break;
6520
6521 case_Lisp_Int:
6522 break;
6523
6524 default:
6525 emacs_abort ();
6526 }
6527
6528 #undef CHECK_LIVE
6529 #undef CHECK_ALLOCATED
6530 #undef CHECK_ALLOCATED_AND_LIVE
6531 }
6532 /* Mark the Lisp pointers in the terminal objects.
6533 Called by Fgarbage_collect. */
6534
6535 static void
6536 mark_terminals (void)
6537 {
6538 struct terminal *t;
6539 for (t = terminal_list; t; t = t->next_terminal)
6540 {
6541 eassert (t->name != NULL);
6542 #ifdef HAVE_WINDOW_SYSTEM
6543 /* If a terminal object is reachable from a stacpro'ed object,
6544 it might have been marked already. Make sure the image cache
6545 gets marked. */
6546 mark_image_cache (t->image_cache);
6547 #endif /* HAVE_WINDOW_SYSTEM */
6548 if (!VECTOR_MARKED_P (t))
6549 mark_vectorlike ((struct Lisp_Vector *)t);
6550 }
6551 }
6552
6553
6554
6555 /* Value is non-zero if OBJ will survive the current GC because it's
6556 either marked or does not need to be marked to survive. */
6557
6558 bool
6559 survives_gc_p (Lisp_Object obj)
6560 {
6561 bool survives_p;
6562
6563 switch (XTYPE (obj))
6564 {
6565 case_Lisp_Int:
6566 survives_p = 1;
6567 break;
6568
6569 case Lisp_Symbol:
6570 survives_p = XSYMBOL (obj)->gcmarkbit;
6571 break;
6572
6573 case Lisp_Misc:
6574 survives_p = XMISCANY (obj)->gcmarkbit;
6575 break;
6576
6577 case Lisp_String:
6578 survives_p = STRING_MARKED_P (XSTRING (obj));
6579 break;
6580
6581 case Lisp_Vectorlike:
6582 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6583 break;
6584
6585 case Lisp_Cons:
6586 survives_p = CONS_MARKED_P (XCONS (obj));
6587 break;
6588
6589 case Lisp_Float:
6590 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6591 break;
6592
6593 default:
6594 emacs_abort ();
6595 }
6596
6597 return survives_p || PURE_P (XPNTR (obj));
6598 }
6599
6600
6601 \f
6602
6603 NO_INLINE /* For better stack traces */
6604 static void
6605 sweep_conses (void)
6606 {
6607 struct cons_block *cblk;
6608 struct cons_block **cprev = &cons_block;
6609 int lim = cons_block_index;
6610 EMACS_INT num_free = 0, num_used = 0;
6611
6612 cons_free_list = 0;
6613
6614 for (cblk = cons_block; cblk; cblk = *cprev)
6615 {
6616 int i = 0;
6617 int this_free = 0;
6618 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6619
6620 /* Scan the mark bits an int at a time. */
6621 for (i = 0; i < ilim; i++)
6622 {
6623 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6624 {
6625 /* Fast path - all cons cells for this int are marked. */
6626 cblk->gcmarkbits[i] = 0;
6627 num_used += BITS_PER_BITS_WORD;
6628 }
6629 else
6630 {
6631 /* Some cons cells for this int are not marked.
6632 Find which ones, and free them. */
6633 int start, pos, stop;
6634
6635 start = i * BITS_PER_BITS_WORD;
6636 stop = lim - start;
6637 if (stop > BITS_PER_BITS_WORD)
6638 stop = BITS_PER_BITS_WORD;
6639 stop += start;
6640
6641 for (pos = start; pos < stop; pos++)
6642 {
6643 if (!CONS_MARKED_P (&cblk->conses[pos]))
6644 {
6645 this_free++;
6646 cblk->conses[pos].u.chain = cons_free_list;
6647 cons_free_list = &cblk->conses[pos];
6648 cons_free_list->car = Vdead;
6649 }
6650 else
6651 {
6652 num_used++;
6653 CONS_UNMARK (&cblk->conses[pos]);
6654 }
6655 }
6656 }
6657 }
6658
6659 lim = CONS_BLOCK_SIZE;
6660 /* If this block contains only free conses and we have already
6661 seen more than two blocks worth of free conses then deallocate
6662 this block. */
6663 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6664 {
6665 *cprev = cblk->next;
6666 /* Unhook from the free list. */
6667 cons_free_list = cblk->conses[0].u.chain;
6668 lisp_align_free (cblk);
6669 }
6670 else
6671 {
6672 num_free += this_free;
6673 cprev = &cblk->next;
6674 }
6675 }
6676 total_conses = num_used;
6677 total_free_conses = num_free;
6678 }
6679
6680 NO_INLINE /* For better stack traces */
6681 static void
6682 sweep_floats (void)
6683 {
6684 register struct float_block *fblk;
6685 struct float_block **fprev = &float_block;
6686 register int lim = float_block_index;
6687 EMACS_INT num_free = 0, num_used = 0;
6688
6689 float_free_list = 0;
6690
6691 for (fblk = float_block; fblk; fblk = *fprev)
6692 {
6693 register int i;
6694 int this_free = 0;
6695 for (i = 0; i < lim; i++)
6696 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6697 {
6698 this_free++;
6699 fblk->floats[i].u.chain = float_free_list;
6700 float_free_list = &fblk->floats[i];
6701 }
6702 else
6703 {
6704 num_used++;
6705 FLOAT_UNMARK (&fblk->floats[i]);
6706 }
6707 lim = FLOAT_BLOCK_SIZE;
6708 /* If this block contains only free floats and we have already
6709 seen more than two blocks worth of free floats then deallocate
6710 this block. */
6711 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6712 {
6713 *fprev = fblk->next;
6714 /* Unhook from the free list. */
6715 float_free_list = fblk->floats[0].u.chain;
6716 lisp_align_free (fblk);
6717 }
6718 else
6719 {
6720 num_free += this_free;
6721 fprev = &fblk->next;
6722 }
6723 }
6724 total_floats = num_used;
6725 total_free_floats = num_free;
6726 }
6727
6728 NO_INLINE /* For better stack traces */
6729 static void
6730 sweep_intervals (void)
6731 {
6732 register struct interval_block *iblk;
6733 struct interval_block **iprev = &interval_block;
6734 register int lim = interval_block_index;
6735 EMACS_INT num_free = 0, num_used = 0;
6736
6737 interval_free_list = 0;
6738
6739 for (iblk = interval_block; iblk; iblk = *iprev)
6740 {
6741 register int i;
6742 int this_free = 0;
6743
6744 for (i = 0; i < lim; i++)
6745 {
6746 if (!iblk->intervals[i].gcmarkbit)
6747 {
6748 set_interval_parent (&iblk->intervals[i], interval_free_list);
6749 interval_free_list = &iblk->intervals[i];
6750 this_free++;
6751 }
6752 else
6753 {
6754 num_used++;
6755 iblk->intervals[i].gcmarkbit = 0;
6756 }
6757 }
6758 lim = INTERVAL_BLOCK_SIZE;
6759 /* If this block contains only free intervals and we have already
6760 seen more than two blocks worth of free intervals then
6761 deallocate this block. */
6762 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6763 {
6764 *iprev = iblk->next;
6765 /* Unhook from the free list. */
6766 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6767 lisp_free (iblk);
6768 }
6769 else
6770 {
6771 num_free += this_free;
6772 iprev = &iblk->next;
6773 }
6774 }
6775 total_intervals = num_used;
6776 total_free_intervals = num_free;
6777 }
6778
6779 NO_INLINE /* For better stack traces */
6780 static void
6781 sweep_symbols (void)
6782 {
6783 struct symbol_block *sblk;
6784 struct symbol_block **sprev = &symbol_block;
6785 int lim = symbol_block_index;
6786 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6787
6788 symbol_free_list = NULL;
6789
6790 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6791 lispsym[i].gcmarkbit = 0;
6792
6793 for (sblk = symbol_block; sblk; sblk = *sprev)
6794 {
6795 int this_free = 0;
6796 union aligned_Lisp_Symbol *sym = sblk->symbols;
6797 union aligned_Lisp_Symbol *end = sym + lim;
6798
6799 for (; sym < end; ++sym)
6800 {
6801 if (!sym->s.gcmarkbit)
6802 {
6803 if (sym->s.redirect == SYMBOL_LOCALIZED)
6804 xfree (SYMBOL_BLV (&sym->s));
6805 sym->s.next = symbol_free_list;
6806 symbol_free_list = &sym->s;
6807 symbol_free_list->function = Vdead;
6808 ++this_free;
6809 }
6810 else
6811 {
6812 ++num_used;
6813 sym->s.gcmarkbit = 0;
6814 /* Attempt to catch bogus objects. */
6815 eassert (valid_lisp_object_p (sym->s.function));
6816 }
6817 }
6818
6819 lim = SYMBOL_BLOCK_SIZE;
6820 /* If this block contains only free symbols and we have already
6821 seen more than two blocks worth of free symbols then deallocate
6822 this block. */
6823 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6824 {
6825 *sprev = sblk->next;
6826 /* Unhook from the free list. */
6827 symbol_free_list = sblk->symbols[0].s.next;
6828 lisp_free (sblk);
6829 }
6830 else
6831 {
6832 num_free += this_free;
6833 sprev = &sblk->next;
6834 }
6835 }
6836 total_symbols = num_used;
6837 total_free_symbols = num_free;
6838 }
6839
6840 NO_INLINE /* For better stack traces. */
6841 static void
6842 sweep_misc (void)
6843 {
6844 register struct marker_block *mblk;
6845 struct marker_block **mprev = &marker_block;
6846 register int lim = marker_block_index;
6847 EMACS_INT num_free = 0, num_used = 0;
6848
6849 /* Put all unmarked misc's on free list. For a marker, first
6850 unchain it from the buffer it points into. */
6851
6852 marker_free_list = 0;
6853
6854 for (mblk = marker_block; mblk; mblk = *mprev)
6855 {
6856 register int i;
6857 int this_free = 0;
6858
6859 for (i = 0; i < lim; i++)
6860 {
6861 if (!mblk->markers[i].m.u_any.gcmarkbit)
6862 {
6863 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6864 unchain_marker (&mblk->markers[i].m.u_marker);
6865 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6866 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6867 #ifdef HAVE_MODULES
6868 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6869 {
6870 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6871 uptr->finalizer (uptr->p);
6872 }
6873 #endif
6874 /* Set the type of the freed object to Lisp_Misc_Free.
6875 We could leave the type alone, since nobody checks it,
6876 but this might catch bugs faster. */
6877 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6878 mblk->markers[i].m.u_free.chain = marker_free_list;
6879 marker_free_list = &mblk->markers[i].m;
6880 this_free++;
6881 }
6882 else
6883 {
6884 num_used++;
6885 mblk->markers[i].m.u_any.gcmarkbit = 0;
6886 }
6887 }
6888 lim = MARKER_BLOCK_SIZE;
6889 /* If this block contains only free markers and we have already
6890 seen more than two blocks worth of free markers then deallocate
6891 this block. */
6892 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6893 {
6894 *mprev = mblk->next;
6895 /* Unhook from the free list. */
6896 marker_free_list = mblk->markers[0].m.u_free.chain;
6897 lisp_free (mblk);
6898 }
6899 else
6900 {
6901 num_free += this_free;
6902 mprev = &mblk->next;
6903 }
6904 }
6905
6906 total_markers = num_used;
6907 total_free_markers = num_free;
6908 }
6909
6910 NO_INLINE /* For better stack traces */
6911 static void
6912 sweep_buffers (void)
6913 {
6914 register struct buffer *buffer, **bprev = &all_buffers;
6915
6916 total_buffers = 0;
6917 for (buffer = all_buffers; buffer; buffer = *bprev)
6918 if (!VECTOR_MARKED_P (buffer))
6919 {
6920 *bprev = buffer->next;
6921 lisp_free (buffer);
6922 }
6923 else
6924 {
6925 VECTOR_UNMARK (buffer);
6926 /* Do not use buffer_(set|get)_intervals here. */
6927 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6928 total_buffers++;
6929 bprev = &buffer->next;
6930 }
6931 }
6932
6933 /* Sweep: find all structures not marked, and free them. */
6934 static void
6935 gc_sweep (void)
6936 {
6937 /* Remove or mark entries in weak hash tables.
6938 This must be done before any object is unmarked. */
6939 sweep_weak_hash_tables ();
6940
6941 sweep_strings ();
6942 check_string_bytes (!noninteractive);
6943 sweep_conses ();
6944 sweep_floats ();
6945 sweep_intervals ();
6946 sweep_symbols ();
6947 sweep_misc ();
6948 sweep_buffers ();
6949 sweep_vectors ();
6950 check_string_bytes (!noninteractive);
6951 }
6952
6953 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6954 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6955 All values are in Kbytes. If there is no swap space,
6956 last two values are zero. If the system is not supported
6957 or memory information can't be obtained, return nil. */)
6958 (void)
6959 {
6960 #if defined HAVE_LINUX_SYSINFO
6961 struct sysinfo si;
6962 uintmax_t units;
6963
6964 if (sysinfo (&si))
6965 return Qnil;
6966 #ifdef LINUX_SYSINFO_UNIT
6967 units = si.mem_unit;
6968 #else
6969 units = 1;
6970 #endif
6971 return list4i ((uintmax_t) si.totalram * units / 1024,
6972 (uintmax_t) si.freeram * units / 1024,
6973 (uintmax_t) si.totalswap * units / 1024,
6974 (uintmax_t) si.freeswap * units / 1024);
6975 #elif defined WINDOWSNT
6976 unsigned long long totalram, freeram, totalswap, freeswap;
6977
6978 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6979 return list4i ((uintmax_t) totalram / 1024,
6980 (uintmax_t) freeram / 1024,
6981 (uintmax_t) totalswap / 1024,
6982 (uintmax_t) freeswap / 1024);
6983 else
6984 return Qnil;
6985 #elif defined MSDOS
6986 unsigned long totalram, freeram, totalswap, freeswap;
6987
6988 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6989 return list4i ((uintmax_t) totalram / 1024,
6990 (uintmax_t) freeram / 1024,
6991 (uintmax_t) totalswap / 1024,
6992 (uintmax_t) freeswap / 1024);
6993 else
6994 return Qnil;
6995 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6996 /* FIXME: add more systems. */
6997 return Qnil;
6998 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6999 }
7000
7001 /* Debugging aids. */
7002
7003 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7004 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7005 This may be helpful in debugging Emacs's memory usage.
7006 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7007 (void)
7008 {
7009 Lisp_Object end;
7010
7011 #ifdef HAVE_NS
7012 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7013 XSETINT (end, 0);
7014 #else
7015 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7016 #endif
7017
7018 return end;
7019 }
7020
7021 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7022 doc: /* Return a list of counters that measure how much consing there has been.
7023 Each of these counters increments for a certain kind of object.
7024 The counters wrap around from the largest positive integer to zero.
7025 Garbage collection does not decrease them.
7026 The elements of the value are as follows:
7027 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7028 All are in units of 1 = one object consed
7029 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7030 objects consed.
7031 MISCS include overlays, markers, and some internal types.
7032 Frames, windows, buffers, and subprocesses count as vectors
7033 (but the contents of a buffer's text do not count here). */)
7034 (void)
7035 {
7036 return listn (CONSTYPE_HEAP, 8,
7037 bounded_number (cons_cells_consed),
7038 bounded_number (floats_consed),
7039 bounded_number (vector_cells_consed),
7040 bounded_number (symbols_consed),
7041 bounded_number (string_chars_consed),
7042 bounded_number (misc_objects_consed),
7043 bounded_number (intervals_consed),
7044 bounded_number (strings_consed));
7045 }
7046
7047 static bool
7048 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7049 {
7050 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7051 Lisp_Object val = find_symbol_value (symbol);
7052 return (EQ (val, obj)
7053 || EQ (sym->function, obj)
7054 || (!NILP (sym->function)
7055 && COMPILEDP (sym->function)
7056 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7057 || (!NILP (val)
7058 && COMPILEDP (val)
7059 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7060 }
7061
7062 /* Find at most FIND_MAX symbols which have OBJ as their value or
7063 function. This is used in gdbinit's `xwhichsymbols' command. */
7064
7065 Lisp_Object
7066 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7067 {
7068 struct symbol_block *sblk;
7069 ptrdiff_t gc_count = inhibit_garbage_collection ();
7070 Lisp_Object found = Qnil;
7071
7072 if (! DEADP (obj))
7073 {
7074 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7075 {
7076 Lisp_Object sym = builtin_lisp_symbol (i);
7077 if (symbol_uses_obj (sym, obj))
7078 {
7079 found = Fcons (sym, found);
7080 if (--find_max == 0)
7081 goto out;
7082 }
7083 }
7084
7085 for (sblk = symbol_block; sblk; sblk = sblk->next)
7086 {
7087 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7088 int bn;
7089
7090 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7091 {
7092 if (sblk == symbol_block && bn >= symbol_block_index)
7093 break;
7094
7095 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7096 if (symbol_uses_obj (sym, obj))
7097 {
7098 found = Fcons (sym, found);
7099 if (--find_max == 0)
7100 goto out;
7101 }
7102 }
7103 }
7104 }
7105
7106 out:
7107 unbind_to (gc_count, Qnil);
7108 return found;
7109 }
7110
7111 #ifdef SUSPICIOUS_OBJECT_CHECKING
7112
7113 static void *
7114 find_suspicious_object_in_range (void *begin, void *end)
7115 {
7116 char *begin_a = begin;
7117 char *end_a = end;
7118 int i;
7119
7120 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7121 {
7122 char *suspicious_object = suspicious_objects[i];
7123 if (begin_a <= suspicious_object && suspicious_object < end_a)
7124 return suspicious_object;
7125 }
7126
7127 return NULL;
7128 }
7129
7130 static void
7131 note_suspicious_free (void* ptr)
7132 {
7133 struct suspicious_free_record* rec;
7134
7135 rec = &suspicious_free_history[suspicious_free_history_index++];
7136 if (suspicious_free_history_index ==
7137 ARRAYELTS (suspicious_free_history))
7138 {
7139 suspicious_free_history_index = 0;
7140 }
7141
7142 memset (rec, 0, sizeof (*rec));
7143 rec->suspicious_object = ptr;
7144 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7145 }
7146
7147 static void
7148 detect_suspicious_free (void* ptr)
7149 {
7150 int i;
7151
7152 eassert (ptr != NULL);
7153
7154 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7155 if (suspicious_objects[i] == ptr)
7156 {
7157 note_suspicious_free (ptr);
7158 suspicious_objects[i] = NULL;
7159 }
7160 }
7161
7162 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7163
7164 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7165 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7166 If Emacs is compiled with suspicious object checking, capture
7167 a stack trace when OBJ is freed in order to help track down
7168 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7169 (Lisp_Object obj)
7170 {
7171 #ifdef SUSPICIOUS_OBJECT_CHECKING
7172 /* Right now, we care only about vectors. */
7173 if (VECTORLIKEP (obj))
7174 {
7175 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7176 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7177 suspicious_object_index = 0;
7178 }
7179 #endif
7180 return obj;
7181 }
7182
7183 #ifdef ENABLE_CHECKING
7184
7185 bool suppress_checking;
7186
7187 void
7188 die (const char *msg, const char *file, int line)
7189 {
7190 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7191 file, line, msg);
7192 terminate_due_to_signal (SIGABRT, INT_MAX);
7193 }
7194
7195 #endif /* ENABLE_CHECKING */
7196
7197 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7198
7199 /* Debugging check whether STR is ASCII-only. */
7200
7201 const char *
7202 verify_ascii (const char *str)
7203 {
7204 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7205 while (ptr < end)
7206 {
7207 int c = STRING_CHAR_ADVANCE (ptr);
7208 if (!ASCII_CHAR_P (c))
7209 emacs_abort ();
7210 }
7211 return str;
7212 }
7213
7214 /* Stress alloca with inconveniently sized requests and check
7215 whether all allocated areas may be used for Lisp_Object. */
7216
7217 NO_INLINE static void
7218 verify_alloca (void)
7219 {
7220 int i;
7221 enum { ALLOCA_CHECK_MAX = 256 };
7222 /* Start from size of the smallest Lisp object. */
7223 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7224 {
7225 void *ptr = alloca (i);
7226 make_lisp_ptr (ptr, Lisp_Cons);
7227 }
7228 }
7229
7230 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7231
7232 #define verify_alloca() ((void) 0)
7233
7234 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7235
7236 /* Initialization. */
7237
7238 void
7239 init_alloc_once (void)
7240 {
7241 /* Even though Qt's contents are not set up, its address is known. */
7242 Vpurify_flag = Qt;
7243
7244 purebeg = PUREBEG;
7245 pure_size = PURESIZE;
7246
7247 verify_alloca ();
7248 init_finalizer_list (&finalizers);
7249 init_finalizer_list (&doomed_finalizers);
7250
7251 mem_init ();
7252 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7253
7254 #ifdef DOUG_LEA_MALLOC
7255 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7256 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7257 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7258 #endif
7259 init_strings ();
7260 init_vectors ();
7261
7262 refill_memory_reserve ();
7263 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7264 }
7265
7266 void
7267 init_alloc (void)
7268 {
7269 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7270 setjmp_tested_p = longjmps_done = 0;
7271 #endif
7272 Vgc_elapsed = make_float (0.0);
7273 gcs_done = 0;
7274
7275 #if USE_VALGRIND
7276 valgrind_p = RUNNING_ON_VALGRIND != 0;
7277 #endif
7278 }
7279
7280 void
7281 syms_of_alloc (void)
7282 {
7283 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7284 doc: /* Number of bytes of consing between garbage collections.
7285 Garbage collection can happen automatically once this many bytes have been
7286 allocated since the last garbage collection. All data types count.
7287
7288 Garbage collection happens automatically only when `eval' is called.
7289
7290 By binding this temporarily to a large number, you can effectively
7291 prevent garbage collection during a part of the program.
7292 See also `gc-cons-percentage'. */);
7293
7294 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7295 doc: /* Portion of the heap used for allocation.
7296 Garbage collection can happen automatically once this portion of the heap
7297 has been allocated since the last garbage collection.
7298 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7299 Vgc_cons_percentage = make_float (0.1);
7300
7301 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7302 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7303
7304 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7305 doc: /* Number of cons cells that have been consed so far. */);
7306
7307 DEFVAR_INT ("floats-consed", floats_consed,
7308 doc: /* Number of floats that have been consed so far. */);
7309
7310 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7311 doc: /* Number of vector cells that have been consed so far. */);
7312
7313 DEFVAR_INT ("symbols-consed", symbols_consed,
7314 doc: /* Number of symbols that have been consed so far. */);
7315 symbols_consed += ARRAYELTS (lispsym);
7316
7317 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7318 doc: /* Number of string characters that have been consed so far. */);
7319
7320 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7321 doc: /* Number of miscellaneous objects that have been consed so far.
7322 These include markers and overlays, plus certain objects not visible
7323 to users. */);
7324
7325 DEFVAR_INT ("intervals-consed", intervals_consed,
7326 doc: /* Number of intervals that have been consed so far. */);
7327
7328 DEFVAR_INT ("strings-consed", strings_consed,
7329 doc: /* Number of strings that have been consed so far. */);
7330
7331 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7332 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7333 This means that certain objects should be allocated in shared (pure) space.
7334 It can also be set to a hash-table, in which case this table is used to
7335 do hash-consing of the objects allocated to pure space. */);
7336
7337 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7338 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7339 garbage_collection_messages = 0;
7340
7341 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7342 doc: /* Hook run after garbage collection has finished. */);
7343 Vpost_gc_hook = Qnil;
7344 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7345
7346 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7347 doc: /* Precomputed `signal' argument for memory-full error. */);
7348 /* We build this in advance because if we wait until we need it, we might
7349 not be able to allocate the memory to hold it. */
7350 Vmemory_signal_data
7351 = listn (CONSTYPE_PURE, 2, Qerror,
7352 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7353
7354 DEFVAR_LISP ("memory-full", Vmemory_full,
7355 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7356 Vmemory_full = Qnil;
7357
7358 DEFSYM (Qconses, "conses");
7359 DEFSYM (Qsymbols, "symbols");
7360 DEFSYM (Qmiscs, "miscs");
7361 DEFSYM (Qstrings, "strings");
7362 DEFSYM (Qvectors, "vectors");
7363 DEFSYM (Qfloats, "floats");
7364 DEFSYM (Qintervals, "intervals");
7365 DEFSYM (Qbuffers, "buffers");
7366 DEFSYM (Qstring_bytes, "string-bytes");
7367 DEFSYM (Qvector_slots, "vector-slots");
7368 DEFSYM (Qheap, "heap");
7369 DEFSYM (Qautomatic_gc, "Automatic GC");
7370
7371 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7372 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7373
7374 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7375 doc: /* Accumulated time elapsed in garbage collections.
7376 The time is in seconds as a floating point value. */);
7377 DEFVAR_INT ("gcs-done", gcs_done,
7378 doc: /* Accumulated number of garbage collections done. */);
7379
7380 defsubr (&Scons);
7381 defsubr (&Slist);
7382 defsubr (&Svector);
7383 defsubr (&Sbool_vector);
7384 defsubr (&Smake_byte_code);
7385 defsubr (&Smake_list);
7386 defsubr (&Smake_vector);
7387 defsubr (&Smake_string);
7388 defsubr (&Smake_bool_vector);
7389 defsubr (&Smake_symbol);
7390 defsubr (&Smake_marker);
7391 defsubr (&Smake_finalizer);
7392 defsubr (&Spurecopy);
7393 defsubr (&Sgarbage_collect);
7394 defsubr (&Smemory_limit);
7395 defsubr (&Smemory_info);
7396 defsubr (&Smemory_use_counts);
7397 defsubr (&Ssuspicious_object);
7398 }
7399
7400 /* When compiled with GCC, GDB might say "No enum type named
7401 pvec_type" if we don't have at least one symbol with that type, and
7402 then xbacktrace could fail. Similarly for the other enums and
7403 their values. Some non-GCC compilers don't like these constructs. */
7404 #ifdef __GNUC__
7405 union
7406 {
7407 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7408 enum char_table_specials char_table_specials;
7409 enum char_bits char_bits;
7410 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7411 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7412 enum Lisp_Bits Lisp_Bits;
7413 enum Lisp_Compiled Lisp_Compiled;
7414 enum maxargs maxargs;
7415 enum MAX_ALLOCA MAX_ALLOCA;
7416 enum More_Lisp_Bits More_Lisp_Bits;
7417 enum pvec_type pvec_type;
7418 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7419 #endif /* __GNUC__ */