]> code.delx.au - gnu-emacs/blob - src/alloc.c
Simplify USE_ALIGNED_ALLOC
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25 #include <signal.h> /* For SIGABRT, SIGDANGER. */
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 #include "lisp.h"
32 #include "dispextern.h"
33 #include "intervals.h"
34 #include "puresize.h"
35 #include "sheap.h"
36 #include "systime.h"
37 #include "character.h"
38 #include "buffer.h"
39 #include "window.h"
40 #include "keyboard.h"
41 #include "frame.h"
42 #include "blockinput.h"
43 #include "termhooks.h" /* For struct terminal. */
44 #ifdef HAVE_WINDOW_SYSTEM
45 #include TERM_HEADER
46 #endif /* HAVE_WINDOW_SYSTEM */
47
48 #include <verify.h>
49 #include <execinfo.h> /* For backtrace. */
50
51 #ifdef HAVE_LINUX_SYSINFO
52 #include <sys/sysinfo.h>
53 #endif
54
55 #ifdef MSDOS
56 #include "dosfns.h" /* For dos_memory_info. */
57 #endif
58
59 #ifdef HAVE_MALLOC_H
60 # include <malloc.h>
61 #endif
62
63 #if (defined ENABLE_CHECKING \
64 && defined HAVE_VALGRIND_VALGRIND_H \
65 && !defined USE_VALGRIND)
66 # define USE_VALGRIND 1
67 #endif
68
69 #if USE_VALGRIND
70 #include <valgrind/valgrind.h>
71 #include <valgrind/memcheck.h>
72 static bool valgrind_p;
73 #endif
74
75 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
76
77 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
78 memory. Can do this only if using gmalloc.c and if not checking
79 marked objects. */
80
81 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
82 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
83 #undef GC_MALLOC_CHECK
84 #endif
85
86 #include <unistd.h>
87 #include <fcntl.h>
88
89 #ifdef USE_GTK
90 # include "gtkutil.h"
91 #endif
92 #ifdef WINDOWSNT
93 #include "w32.h"
94 #include "w32heap.h" /* for sbrk */
95 #endif
96
97 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
98 /* The address where the heap starts. */
99 void *
100 my_heap_start (void)
101 {
102 static void *start;
103 if (! start)
104 start = sbrk (0);
105 return start;
106 }
107 #endif
108
109 #ifdef DOUG_LEA_MALLOC
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Restore the dumped malloc state. Because malloc can be invoked
121 even before main (e.g. by the dynamic linker), the dumped malloc
122 state must be restored as early as possible using this special hook. */
123 static void
124 malloc_initialize_hook (void)
125 {
126 static bool malloc_using_checking;
127
128 if (! initialized)
129 {
130 my_heap_start ();
131 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
132 }
133 else
134 {
135 if (!malloc_using_checking)
136 {
137 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
138 ignored if the heap to be restored was constructed without
139 malloc checking. Can't use unsetenv, since that calls malloc. */
140 char **p = environ;
141 if (p)
142 for (; *p; p++)
143 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
144 {
145 do
146 *p = p[1];
147 while (*++p);
148
149 break;
150 }
151 }
152
153 malloc_set_state (malloc_state_ptr);
154 # ifndef XMALLOC_OVERRUN_CHECK
155 alloc_unexec_post ();
156 # endif
157 }
158 }
159
160 /* Declare the malloc initialization hook, which runs before 'main' starts.
161 EXTERNALLY_VISIBLE works around Bug#22522. */
162 # ifndef __MALLOC_HOOK_VOLATILE
163 # define __MALLOC_HOOK_VOLATILE
164 # endif
165 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
166 = malloc_initialize_hook;
167
168 #endif
169
170 /* Allocator-related actions to do just before and after unexec. */
171
172 void
173 alloc_unexec_pre (void)
174 {
175 #ifdef DOUG_LEA_MALLOC
176 malloc_state_ptr = malloc_get_state ();
177 #endif
178 #ifdef HYBRID_MALLOC
179 bss_sbrk_did_unexec = true;
180 #endif
181 }
182
183 void
184 alloc_unexec_post (void)
185 {
186 #ifdef DOUG_LEA_MALLOC
187 free (malloc_state_ptr);
188 #endif
189 #ifdef HYBRID_MALLOC
190 bss_sbrk_did_unexec = false;
191 #endif
192 }
193
194 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
195 to a struct Lisp_String. */
196
197 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
198 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
199 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
200
201 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
202 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
203 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
204
205 /* Default value of gc_cons_threshold (see below). */
206
207 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
208
209 /* Global variables. */
210 struct emacs_globals globals;
211
212 /* Number of bytes of consing done since the last gc. */
213
214 EMACS_INT consing_since_gc;
215
216 /* Similar minimum, computed from Vgc_cons_percentage. */
217
218 EMACS_INT gc_relative_threshold;
219
220 /* Minimum number of bytes of consing since GC before next GC,
221 when memory is full. */
222
223 EMACS_INT memory_full_cons_threshold;
224
225 /* True during GC. */
226
227 bool gc_in_progress;
228
229 /* True means abort if try to GC.
230 This is for code which is written on the assumption that
231 no GC will happen, so as to verify that assumption. */
232
233 bool abort_on_gc;
234
235 /* Number of live and free conses etc. */
236
237 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
238 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
239 static EMACS_INT total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block, or to see
248 whether this much is available when malloc fails on a larger request. */
249
250 #define SPARE_MEMORY (1 << 14)
251
252 /* Initialize it to a nonzero value to force it into data space
253 (rather than bss space). That way unexec will remap it into text
254 space (pure), on some systems. We have not implemented the
255 remapping on more recent systems because this is less important
256 nowadays than in the days of small memories and timesharing. */
257
258 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
259 #define PUREBEG (char *) pure
260
261 /* Pointer to the pure area, and its size. */
262
263 static char *purebeg;
264 static ptrdiff_t pure_size;
265
266 /* Number of bytes of pure storage used before pure storage overflowed.
267 If this is non-zero, this implies that an overflow occurred. */
268
269 static ptrdiff_t pure_bytes_used_before_overflow;
270
271 /* Index in pure at which next pure Lisp object will be allocated.. */
272
273 static ptrdiff_t pure_bytes_used_lisp;
274
275 /* Number of bytes allocated for non-Lisp objects in pure storage. */
276
277 static ptrdiff_t pure_bytes_used_non_lisp;
278
279 /* If nonzero, this is a warning delivered by malloc and not yet
280 displayed. */
281
282 const char *pending_malloc_warning;
283
284 #if 0 /* Normally, pointer sanity only on request... */
285 #ifdef ENABLE_CHECKING
286 #define SUSPICIOUS_OBJECT_CHECKING 1
287 #endif
288 #endif
289
290 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
291 bug is unresolved. */
292 #define SUSPICIOUS_OBJECT_CHECKING 1
293
294 #ifdef SUSPICIOUS_OBJECT_CHECKING
295 struct suspicious_free_record
296 {
297 void *suspicious_object;
298 void *backtrace[128];
299 };
300 static void *suspicious_objects[32];
301 static int suspicious_object_index;
302 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
303 static int suspicious_free_history_index;
304 /* Find the first currently-monitored suspicious pointer in range
305 [begin,end) or NULL if no such pointer exists. */
306 static void *find_suspicious_object_in_range (void *begin, void *end);
307 static void detect_suspicious_free (void *ptr);
308 #else
309 # define find_suspicious_object_in_range(begin, end) NULL
310 # define detect_suspicious_free(ptr) (void)
311 #endif
312
313 /* Maximum amount of C stack to save when a GC happens. */
314
315 #ifndef MAX_SAVE_STACK
316 #define MAX_SAVE_STACK 16000
317 #endif
318
319 /* Buffer in which we save a copy of the C stack at each GC. */
320
321 #if MAX_SAVE_STACK > 0
322 static char *stack_copy;
323 static ptrdiff_t stack_copy_size;
324
325 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
326 avoiding any address sanitization. */
327
328 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
329 no_sanitize_memcpy (void *dest, void const *src, size_t size)
330 {
331 if (! ADDRESS_SANITIZER)
332 return memcpy (dest, src, size);
333 else
334 {
335 size_t i;
336 char *d = dest;
337 char const *s = src;
338 for (i = 0; i < size; i++)
339 d[i] = s[i];
340 return dest;
341 }
342 }
343
344 #endif /* MAX_SAVE_STACK > 0 */
345
346 static void mark_terminals (void);
347 static void gc_sweep (void);
348 static Lisp_Object make_pure_vector (ptrdiff_t);
349 static void mark_buffer (struct buffer *);
350
351 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
352 static void refill_memory_reserve (void);
353 #endif
354 static void compact_small_strings (void);
355 static void free_large_strings (void);
356 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
357
358 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
359 what memory allocated via lisp_malloc and lisp_align_malloc is intended
360 for what purpose. This enumeration specifies the type of memory. */
361
362 enum mem_type
363 {
364 MEM_TYPE_NON_LISP,
365 MEM_TYPE_BUFFER,
366 MEM_TYPE_CONS,
367 MEM_TYPE_STRING,
368 MEM_TYPE_MISC,
369 MEM_TYPE_SYMBOL,
370 MEM_TYPE_FLOAT,
371 /* Since all non-bool pseudovectors are small enough to be
372 allocated from vector blocks, this memory type denotes
373 large regular vectors and large bool pseudovectors. */
374 MEM_TYPE_VECTORLIKE,
375 /* Special type to denote vector blocks. */
376 MEM_TYPE_VECTOR_BLOCK,
377 /* Special type to denote reserved memory. */
378 MEM_TYPE_SPARE
379 };
380
381 /* A unique object in pure space used to make some Lisp objects
382 on free lists recognizable in O(1). */
383
384 static Lisp_Object Vdead;
385 #define DEADP(x) EQ (x, Vdead)
386
387 #ifdef GC_MALLOC_CHECK
388
389 enum mem_type allocated_mem_type;
390
391 #endif /* GC_MALLOC_CHECK */
392
393 /* A node in the red-black tree describing allocated memory containing
394 Lisp data. Each such block is recorded with its start and end
395 address when it is allocated, and removed from the tree when it
396 is freed.
397
398 A red-black tree is a balanced binary tree with the following
399 properties:
400
401 1. Every node is either red or black.
402 2. Every leaf is black.
403 3. If a node is red, then both of its children are black.
404 4. Every simple path from a node to a descendant leaf contains
405 the same number of black nodes.
406 5. The root is always black.
407
408 When nodes are inserted into the tree, or deleted from the tree,
409 the tree is "fixed" so that these properties are always true.
410
411 A red-black tree with N internal nodes has height at most 2
412 log(N+1). Searches, insertions and deletions are done in O(log N).
413 Please see a text book about data structures for a detailed
414 description of red-black trees. Any book worth its salt should
415 describe them. */
416
417 struct mem_node
418 {
419 /* Children of this node. These pointers are never NULL. When there
420 is no child, the value is MEM_NIL, which points to a dummy node. */
421 struct mem_node *left, *right;
422
423 /* The parent of this node. In the root node, this is NULL. */
424 struct mem_node *parent;
425
426 /* Start and end of allocated region. */
427 void *start, *end;
428
429 /* Node color. */
430 enum {MEM_BLACK, MEM_RED} color;
431
432 /* Memory type. */
433 enum mem_type type;
434 };
435
436 /* Base address of stack. Set in main. */
437
438 Lisp_Object *stack_base;
439
440 /* Root of the tree describing allocated Lisp memory. */
441
442 static struct mem_node *mem_root;
443
444 /* Lowest and highest known address in the heap. */
445
446 static void *min_heap_address, *max_heap_address;
447
448 /* Sentinel node of the tree. */
449
450 static struct mem_node mem_z;
451 #define MEM_NIL &mem_z
452
453 static struct mem_node *mem_insert (void *, void *, enum mem_type);
454 static void mem_insert_fixup (struct mem_node *);
455 static void mem_rotate_left (struct mem_node *);
456 static void mem_rotate_right (struct mem_node *);
457 static void mem_delete (struct mem_node *);
458 static void mem_delete_fixup (struct mem_node *);
459 static struct mem_node *mem_find (void *);
460
461 #ifndef DEADP
462 # define DEADP(x) 0
463 #endif
464
465 /* Addresses of staticpro'd variables. Initialize it to a nonzero
466 value; otherwise some compilers put it into BSS. */
467
468 enum { NSTATICS = 2048 };
469 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
470
471 /* Index of next unused slot in staticvec. */
472
473 static int staticidx;
474
475 static void *pure_alloc (size_t, int);
476
477 /* Return X rounded to the next multiple of Y. Arguments should not
478 have side effects, as they are evaluated more than once. Assume X
479 + Y - 1 does not overflow. Tune for Y being a power of 2. */
480
481 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
482 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
483 : ((x) + (y) - 1) & ~ ((y) - 1))
484
485 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
486
487 static void *
488 ALIGN (void *ptr, int alignment)
489 {
490 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
491 }
492
493 /* Extract the pointer hidden within A, if A is not a symbol.
494 If A is a symbol, extract the hidden pointer's offset from lispsym,
495 converted to void *. */
496
497 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
498 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
499
500 /* Extract the pointer hidden within A. */
501
502 #define macro_XPNTR(a) \
503 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
504 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
505
506 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
507 functions, as functions are cleaner and can be used in debuggers.
508 Also, define them as macros if being compiled with GCC without
509 optimization, for performance in that case. The macro_* names are
510 private to this section of code. */
511
512 static ATTRIBUTE_UNUSED void *
513 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
514 {
515 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
516 }
517 static ATTRIBUTE_UNUSED void *
518 XPNTR (Lisp_Object a)
519 {
520 return macro_XPNTR (a);
521 }
522
523 #if DEFINE_KEY_OPS_AS_MACROS
524 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
525 # define XPNTR(a) macro_XPNTR (a)
526 #endif
527
528 static void
529 XFLOAT_INIT (Lisp_Object f, double n)
530 {
531 XFLOAT (f)->u.data = n;
532 }
533
534 #ifdef DOUG_LEA_MALLOC
535 static bool
536 pointers_fit_in_lispobj_p (void)
537 {
538 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
539 }
540
541 static bool
542 mmap_lisp_allowed_p (void)
543 {
544 /* If we can't store all memory addresses in our lisp objects, it's
545 risky to let the heap use mmap and give us addresses from all
546 over our address space. We also can't use mmap for lisp objects
547 if we might dump: unexec doesn't preserve the contents of mmapped
548 regions. */
549 return pointers_fit_in_lispobj_p () && !might_dump;
550 }
551 #endif
552
553 /* Head of a circularly-linked list of extant finalizers. */
554 static struct Lisp_Finalizer finalizers;
555
556 /* Head of a circularly-linked list of finalizers that must be invoked
557 because we deemed them unreachable. This list must be global, and
558 not a local inside garbage_collect_1, in case we GC again while
559 running finalizers. */
560 static struct Lisp_Finalizer doomed_finalizers;
561
562 \f
563 /************************************************************************
564 Malloc
565 ************************************************************************/
566
567 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
568
569 /* Function malloc calls this if it finds we are near exhausting storage. */
570
571 void
572 malloc_warning (const char *str)
573 {
574 pending_malloc_warning = str;
575 }
576
577 #endif
578
579 /* Display an already-pending malloc warning. */
580
581 void
582 display_malloc_warning (void)
583 {
584 call3 (intern ("display-warning"),
585 intern ("alloc"),
586 build_string (pending_malloc_warning),
587 intern ("emergency"));
588 pending_malloc_warning = 0;
589 }
590 \f
591 /* Called if we can't allocate relocatable space for a buffer. */
592
593 void
594 buffer_memory_full (ptrdiff_t nbytes)
595 {
596 /* If buffers use the relocating allocator, no need to free
597 spare_memory, because we may have plenty of malloc space left
598 that we could get, and if we don't, the malloc that fails will
599 itself cause spare_memory to be freed. If buffers don't use the
600 relocating allocator, treat this like any other failing
601 malloc. */
602
603 #ifndef REL_ALLOC
604 memory_full (nbytes);
605 #else
606 /* This used to call error, but if we've run out of memory, we could
607 get infinite recursion trying to build the string. */
608 xsignal (Qnil, Vmemory_signal_data);
609 #endif
610 }
611
612 /* A common multiple of the positive integers A and B. Ideally this
613 would be the least common multiple, but there's no way to do that
614 as a constant expression in C, so do the best that we can easily do. */
615 #define COMMON_MULTIPLE(a, b) \
616 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
617
618 #ifndef XMALLOC_OVERRUN_CHECK
619 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
620 #else
621
622 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
623 around each block.
624
625 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
626 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
627 block size in little-endian order. The trailer consists of
628 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
629
630 The header is used to detect whether this block has been allocated
631 through these functions, as some low-level libc functions may
632 bypass the malloc hooks. */
633
634 #define XMALLOC_OVERRUN_CHECK_SIZE 16
635 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
636 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
637
638 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
639 hold a size_t value and (2) the header size is a multiple of the
640 alignment that Emacs needs for C types and for USE_LSB_TAG. */
641 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
642
643 #define XMALLOC_HEADER_ALIGNMENT \
644 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
645 #define XMALLOC_OVERRUN_SIZE_SIZE \
646 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
647 + XMALLOC_HEADER_ALIGNMENT - 1) \
648 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
649 - XMALLOC_OVERRUN_CHECK_SIZE)
650
651 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
652 { '\x9a', '\x9b', '\xae', '\xaf',
653 '\xbf', '\xbe', '\xce', '\xcf',
654 '\xea', '\xeb', '\xec', '\xed',
655 '\xdf', '\xde', '\x9c', '\x9d' };
656
657 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
658 { '\xaa', '\xab', '\xac', '\xad',
659 '\xba', '\xbb', '\xbc', '\xbd',
660 '\xca', '\xcb', '\xcc', '\xcd',
661 '\xda', '\xdb', '\xdc', '\xdd' };
662
663 /* Insert and extract the block size in the header. */
664
665 static void
666 xmalloc_put_size (unsigned char *ptr, size_t size)
667 {
668 int i;
669 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
670 {
671 *--ptr = size & ((1 << CHAR_BIT) - 1);
672 size >>= CHAR_BIT;
673 }
674 }
675
676 static size_t
677 xmalloc_get_size (unsigned char *ptr)
678 {
679 size_t size = 0;
680 int i;
681 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
683 {
684 size <<= CHAR_BIT;
685 size += *ptr++;
686 }
687 return size;
688 }
689
690
691 /* Like malloc, but wraps allocated block with header and trailer. */
692
693 static void *
694 overrun_check_malloc (size_t size)
695 {
696 register unsigned char *val;
697 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
698 emacs_abort ();
699
700 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 if (val)
702 {
703 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
704 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
705 xmalloc_put_size (val, size);
706 memcpy (val + size, xmalloc_overrun_check_trailer,
707 XMALLOC_OVERRUN_CHECK_SIZE);
708 }
709 return val;
710 }
711
712
713 /* Like realloc, but checks old block for overrun, and wraps new block
714 with header and trailer. */
715
716 static void *
717 overrun_check_realloc (void *block, size_t size)
718 {
719 register unsigned char *val = (unsigned char *) block;
720 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
721 emacs_abort ();
722
723 if (val
724 && memcmp (xmalloc_overrun_check_header,
725 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
726 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
727 {
728 size_t osize = xmalloc_get_size (val);
729 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
730 XMALLOC_OVERRUN_CHECK_SIZE))
731 emacs_abort ();
732 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
733 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
734 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
735 }
736
737 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
738
739 if (val)
740 {
741 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
742 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
743 xmalloc_put_size (val, size);
744 memcpy (val + size, xmalloc_overrun_check_trailer,
745 XMALLOC_OVERRUN_CHECK_SIZE);
746 }
747 return val;
748 }
749
750 /* Like free, but checks block for overrun. */
751
752 static void
753 overrun_check_free (void *block)
754 {
755 unsigned char *val = (unsigned char *) block;
756
757 if (val
758 && memcmp (xmalloc_overrun_check_header,
759 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
760 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
761 {
762 size_t osize = xmalloc_get_size (val);
763 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
764 XMALLOC_OVERRUN_CHECK_SIZE))
765 emacs_abort ();
766 #ifdef XMALLOC_CLEAR_FREE_MEMORY
767 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
768 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
769 #else
770 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
771 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
772 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
773 #endif
774 }
775
776 free (val);
777 }
778
779 #undef malloc
780 #undef realloc
781 #undef free
782 #define malloc overrun_check_malloc
783 #define realloc overrun_check_realloc
784 #define free overrun_check_free
785 #endif
786
787 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
788 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
789 If that variable is set, block input while in one of Emacs's memory
790 allocation functions. There should be no need for this debugging
791 option, since signal handlers do not allocate memory, but Emacs
792 formerly allocated memory in signal handlers and this compile-time
793 option remains as a way to help debug the issue should it rear its
794 ugly head again. */
795 #ifdef XMALLOC_BLOCK_INPUT_CHECK
796 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
797 static void
798 malloc_block_input (void)
799 {
800 if (block_input_in_memory_allocators)
801 block_input ();
802 }
803 static void
804 malloc_unblock_input (void)
805 {
806 if (block_input_in_memory_allocators)
807 unblock_input ();
808 }
809 # define MALLOC_BLOCK_INPUT malloc_block_input ()
810 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
811 #else
812 # define MALLOC_BLOCK_INPUT ((void) 0)
813 # define MALLOC_UNBLOCK_INPUT ((void) 0)
814 #endif
815
816 #define MALLOC_PROBE(size) \
817 do { \
818 if (profiler_memory_running) \
819 malloc_probe (size); \
820 } while (0)
821
822
823 /* Like malloc but check for no memory and block interrupt input.. */
824
825 void *
826 xmalloc (size_t size)
827 {
828 void *val;
829
830 MALLOC_BLOCK_INPUT;
831 val = malloc (size);
832 MALLOC_UNBLOCK_INPUT;
833
834 if (!val && size)
835 memory_full (size);
836 MALLOC_PROBE (size);
837 return val;
838 }
839
840 /* Like the above, but zeroes out the memory just allocated. */
841
842 void *
843 xzalloc (size_t size)
844 {
845 void *val;
846
847 MALLOC_BLOCK_INPUT;
848 val = malloc (size);
849 MALLOC_UNBLOCK_INPUT;
850
851 if (!val && size)
852 memory_full (size);
853 memset (val, 0, size);
854 MALLOC_PROBE (size);
855 return val;
856 }
857
858 /* Like realloc but check for no memory and block interrupt input.. */
859
860 void *
861 xrealloc (void *block, size_t size)
862 {
863 void *val;
864
865 MALLOC_BLOCK_INPUT;
866 /* We must call malloc explicitly when BLOCK is 0, since some
867 reallocs don't do this. */
868 if (! block)
869 val = malloc (size);
870 else
871 val = realloc (block, size);
872 MALLOC_UNBLOCK_INPUT;
873
874 if (!val && size)
875 memory_full (size);
876 MALLOC_PROBE (size);
877 return val;
878 }
879
880
881 /* Like free but block interrupt input. */
882
883 void
884 xfree (void *block)
885 {
886 if (!block)
887 return;
888 MALLOC_BLOCK_INPUT;
889 free (block);
890 MALLOC_UNBLOCK_INPUT;
891 /* We don't call refill_memory_reserve here
892 because in practice the call in r_alloc_free seems to suffice. */
893 }
894
895
896 /* Other parts of Emacs pass large int values to allocator functions
897 expecting ptrdiff_t. This is portable in practice, but check it to
898 be safe. */
899 verify (INT_MAX <= PTRDIFF_MAX);
900
901
902 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
903 Signal an error on memory exhaustion, and block interrupt input. */
904
905 void *
906 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
907 {
908 eassert (0 <= nitems && 0 < item_size);
909 ptrdiff_t nbytes;
910 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
911 memory_full (SIZE_MAX);
912 return xmalloc (nbytes);
913 }
914
915
916 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
917 Signal an error on memory exhaustion, and block interrupt input. */
918
919 void *
920 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
921 {
922 eassert (0 <= nitems && 0 < item_size);
923 ptrdiff_t nbytes;
924 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
925 memory_full (SIZE_MAX);
926 return xrealloc (pa, nbytes);
927 }
928
929
930 /* Grow PA, which points to an array of *NITEMS items, and return the
931 location of the reallocated array, updating *NITEMS to reflect its
932 new size. The new array will contain at least NITEMS_INCR_MIN more
933 items, but will not contain more than NITEMS_MAX items total.
934 ITEM_SIZE is the size of each item, in bytes.
935
936 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
937 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
938 infinity.
939
940 If PA is null, then allocate a new array instead of reallocating
941 the old one.
942
943 Block interrupt input as needed. If memory exhaustion occurs, set
944 *NITEMS to zero if PA is null, and signal an error (i.e., do not
945 return).
946
947 Thus, to grow an array A without saving its old contents, do
948 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
949 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
950 and signals an error, and later this code is reexecuted and
951 attempts to free A. */
952
953 void *
954 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
955 ptrdiff_t nitems_max, ptrdiff_t item_size)
956 {
957 ptrdiff_t n0 = *nitems;
958 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
959
960 /* The approximate size to use for initial small allocation
961 requests. This is the largest "small" request for the GNU C
962 library malloc. */
963 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
964
965 /* If the array is tiny, grow it to about (but no greater than)
966 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
967 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
968 NITEMS_MAX, and what the C language can represent safely. */
969
970 ptrdiff_t n, nbytes;
971 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
972 n = PTRDIFF_MAX;
973 if (0 <= nitems_max && nitems_max < n)
974 n = nitems_max;
975
976 ptrdiff_t adjusted_nbytes
977 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
978 ? min (PTRDIFF_MAX, SIZE_MAX)
979 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
980 if (adjusted_nbytes)
981 {
982 n = adjusted_nbytes / item_size;
983 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
984 }
985
986 if (! pa)
987 *nitems = 0;
988 if (n - n0 < nitems_incr_min
989 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
990 || (0 <= nitems_max && nitems_max < n)
991 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
992 memory_full (SIZE_MAX);
993 pa = xrealloc (pa, nbytes);
994 *nitems = n;
995 return pa;
996 }
997
998
999 /* Like strdup, but uses xmalloc. */
1000
1001 char *
1002 xstrdup (const char *s)
1003 {
1004 ptrdiff_t size;
1005 eassert (s);
1006 size = strlen (s) + 1;
1007 return memcpy (xmalloc (size), s, size);
1008 }
1009
1010 /* Like above, but duplicates Lisp string to C string. */
1011
1012 char *
1013 xlispstrdup (Lisp_Object string)
1014 {
1015 ptrdiff_t size = SBYTES (string) + 1;
1016 return memcpy (xmalloc (size), SSDATA (string), size);
1017 }
1018
1019 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1020 pointed to. If STRING is null, assign it without copying anything.
1021 Allocate before freeing, to avoid a dangling pointer if allocation
1022 fails. */
1023
1024 void
1025 dupstring (char **ptr, char const *string)
1026 {
1027 char *old = *ptr;
1028 *ptr = string ? xstrdup (string) : 0;
1029 xfree (old);
1030 }
1031
1032
1033 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1034 argument is a const pointer. */
1035
1036 void
1037 xputenv (char const *string)
1038 {
1039 if (putenv ((char *) string) != 0)
1040 memory_full (0);
1041 }
1042
1043 /* Return a newly allocated memory block of SIZE bytes, remembering
1044 to free it when unwinding. */
1045 void *
1046 record_xmalloc (size_t size)
1047 {
1048 void *p = xmalloc (size);
1049 record_unwind_protect_ptr (xfree, p);
1050 return p;
1051 }
1052
1053
1054 /* Like malloc but used for allocating Lisp data. NBYTES is the
1055 number of bytes to allocate, TYPE describes the intended use of the
1056 allocated memory block (for strings, for conses, ...). */
1057
1058 #if ! USE_LSB_TAG
1059 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1060 #endif
1061
1062 static void *
1063 lisp_malloc (size_t nbytes, enum mem_type type)
1064 {
1065 register void *val;
1066
1067 MALLOC_BLOCK_INPUT;
1068
1069 #ifdef GC_MALLOC_CHECK
1070 allocated_mem_type = type;
1071 #endif
1072
1073 val = malloc (nbytes);
1074
1075 #if ! USE_LSB_TAG
1076 /* If the memory just allocated cannot be addressed thru a Lisp
1077 object's pointer, and it needs to be,
1078 that's equivalent to running out of memory. */
1079 if (val && type != MEM_TYPE_NON_LISP)
1080 {
1081 Lisp_Object tem;
1082 XSETCONS (tem, (char *) val + nbytes - 1);
1083 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1084 {
1085 lisp_malloc_loser = val;
1086 free (val);
1087 val = 0;
1088 }
1089 }
1090 #endif
1091
1092 #ifndef GC_MALLOC_CHECK
1093 if (val && type != MEM_TYPE_NON_LISP)
1094 mem_insert (val, (char *) val + nbytes, type);
1095 #endif
1096
1097 MALLOC_UNBLOCK_INPUT;
1098 if (!val && nbytes)
1099 memory_full (nbytes);
1100 MALLOC_PROBE (nbytes);
1101 return val;
1102 }
1103
1104 /* Free BLOCK. This must be called to free memory allocated with a
1105 call to lisp_malloc. */
1106
1107 static void
1108 lisp_free (void *block)
1109 {
1110 MALLOC_BLOCK_INPUT;
1111 free (block);
1112 #ifndef GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 MALLOC_UNBLOCK_INPUT;
1116 }
1117
1118 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1119
1120 /* The entry point is lisp_align_malloc which returns blocks of at most
1121 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1122
1123 /* Use aligned_alloc if it or a simple substitute is available.
1124 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1125 clang 3.3 anyway. Aligned allocation is incompatible with
1126 unexmacosx.c, so don't use it on Darwin. */
1127
1128 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1129 # if (defined HAVE_ALIGNED_ALLOC \
1130 || (defined HYBRID_MALLOC \
1131 ? defined HAVE_POSIX_MEMALIGN \
1132 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1133 # define USE_ALIGNED_ALLOC 1
1134 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1135 # define USE_ALIGNED_ALLOC 1
1136 static void *
1137 aligned_alloc (size_t alignment, size_t size)
1138 {
1139 void *p;
1140 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1141 }
1142 # endif
1143 #endif
1144
1145 /* BLOCK_ALIGN has to be a power of 2. */
1146 #define BLOCK_ALIGN (1 << 10)
1147
1148 /* Padding to leave at the end of a malloc'd block. This is to give
1149 malloc a chance to minimize the amount of memory wasted to alignment.
1150 It should be tuned to the particular malloc library used.
1151 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1152 aligned_alloc on the other hand would ideally prefer a value of 4
1153 because otherwise, there's 1020 bytes wasted between each ablocks.
1154 In Emacs, testing shows that those 1020 can most of the time be
1155 efficiently used by malloc to place other objects, so a value of 0 can
1156 still preferable unless you have a lot of aligned blocks and virtually
1157 nothing else. */
1158 #define BLOCK_PADDING 0
1159 #define BLOCK_BYTES \
1160 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1161
1162 /* Internal data structures and constants. */
1163
1164 #define ABLOCKS_SIZE 16
1165
1166 /* An aligned block of memory. */
1167 struct ablock
1168 {
1169 union
1170 {
1171 char payload[BLOCK_BYTES];
1172 struct ablock *next_free;
1173 } x;
1174 /* `abase' is the aligned base of the ablocks. */
1175 /* It is overloaded to hold the virtual `busy' field that counts
1176 the number of used ablock in the parent ablocks.
1177 The first ablock has the `busy' field, the others have the `abase'
1178 field. To tell the difference, we assume that pointers will have
1179 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1180 is used to tell whether the real base of the parent ablocks is `abase'
1181 (if not, the word before the first ablock holds a pointer to the
1182 real base). */
1183 struct ablocks *abase;
1184 /* The padding of all but the last ablock is unused. The padding of
1185 the last ablock in an ablocks is not allocated. */
1186 #if BLOCK_PADDING
1187 char padding[BLOCK_PADDING];
1188 #endif
1189 };
1190
1191 /* A bunch of consecutive aligned blocks. */
1192 struct ablocks
1193 {
1194 struct ablock blocks[ABLOCKS_SIZE];
1195 };
1196
1197 /* Size of the block requested from malloc or aligned_alloc. */
1198 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1199
1200 #define ABLOCK_ABASE(block) \
1201 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1202 ? (struct ablocks *)(block) \
1203 : (block)->abase)
1204
1205 /* Virtual `busy' field. */
1206 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1207
1208 /* Pointer to the (not necessarily aligned) malloc block. */
1209 #ifdef USE_ALIGNED_ALLOC
1210 #define ABLOCKS_BASE(abase) (abase)
1211 #else
1212 #define ABLOCKS_BASE(abase) \
1213 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1214 #endif
1215
1216 /* The list of free ablock. */
1217 static struct ablock *free_ablock;
1218
1219 /* Allocate an aligned block of nbytes.
1220 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1221 smaller or equal to BLOCK_BYTES. */
1222 static void *
1223 lisp_align_malloc (size_t nbytes, enum mem_type type)
1224 {
1225 void *base, *val;
1226 struct ablocks *abase;
1227
1228 eassert (nbytes <= BLOCK_BYTES);
1229
1230 MALLOC_BLOCK_INPUT;
1231
1232 #ifdef GC_MALLOC_CHECK
1233 allocated_mem_type = type;
1234 #endif
1235
1236 if (!free_ablock)
1237 {
1238 int i;
1239 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1240
1241 #ifdef DOUG_LEA_MALLOC
1242 if (!mmap_lisp_allowed_p ())
1243 mallopt (M_MMAP_MAX, 0);
1244 #endif
1245
1246 #ifdef USE_ALIGNED_ALLOC
1247 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1248 #else
1249 base = malloc (ABLOCKS_BYTES);
1250 abase = ALIGN (base, BLOCK_ALIGN);
1251 #endif
1252
1253 if (base == 0)
1254 {
1255 MALLOC_UNBLOCK_INPUT;
1256 memory_full (ABLOCKS_BYTES);
1257 }
1258
1259 aligned = (base == abase);
1260 if (!aligned)
1261 ((void **) abase)[-1] = base;
1262
1263 #ifdef DOUG_LEA_MALLOC
1264 if (!mmap_lisp_allowed_p ())
1265 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1266 #endif
1267
1268 #if ! USE_LSB_TAG
1269 /* If the memory just allocated cannot be addressed thru a Lisp
1270 object's pointer, and it needs to be, that's equivalent to
1271 running out of memory. */
1272 if (type != MEM_TYPE_NON_LISP)
1273 {
1274 Lisp_Object tem;
1275 char *end = (char *) base + ABLOCKS_BYTES - 1;
1276 XSETCONS (tem, end);
1277 if ((char *) XCONS (tem) != end)
1278 {
1279 lisp_malloc_loser = base;
1280 free (base);
1281 MALLOC_UNBLOCK_INPUT;
1282 memory_full (SIZE_MAX);
1283 }
1284 }
1285 #endif
1286
1287 /* Initialize the blocks and put them on the free list.
1288 If `base' was not properly aligned, we can't use the last block. */
1289 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1290 {
1291 abase->blocks[i].abase = abase;
1292 abase->blocks[i].x.next_free = free_ablock;
1293 free_ablock = &abase->blocks[i];
1294 }
1295 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1296
1297 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1298 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1299 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1300 eassert (ABLOCKS_BASE (abase) == base);
1301 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1302 }
1303
1304 abase = ABLOCK_ABASE (free_ablock);
1305 ABLOCKS_BUSY (abase)
1306 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1307 val = free_ablock;
1308 free_ablock = free_ablock->x.next_free;
1309
1310 #ifndef GC_MALLOC_CHECK
1311 if (type != MEM_TYPE_NON_LISP)
1312 mem_insert (val, (char *) val + nbytes, type);
1313 #endif
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 MALLOC_PROBE (nbytes);
1318
1319 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1320 return val;
1321 }
1322
1323 static void
1324 lisp_align_free (void *block)
1325 {
1326 struct ablock *ablock = block;
1327 struct ablocks *abase = ABLOCK_ABASE (ablock);
1328
1329 MALLOC_BLOCK_INPUT;
1330 #ifndef GC_MALLOC_CHECK
1331 mem_delete (mem_find (block));
1332 #endif
1333 /* Put on free list. */
1334 ablock->x.next_free = free_ablock;
1335 free_ablock = ablock;
1336 /* Update busy count. */
1337 ABLOCKS_BUSY (abase)
1338 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1339
1340 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1341 { /* All the blocks are free. */
1342 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1343 struct ablock **tem = &free_ablock;
1344 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1345
1346 while (*tem)
1347 {
1348 if (*tem >= (struct ablock *) abase && *tem < atop)
1349 {
1350 i++;
1351 *tem = (*tem)->x.next_free;
1352 }
1353 else
1354 tem = &(*tem)->x.next_free;
1355 }
1356 eassert ((aligned & 1) == aligned);
1357 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1358 #ifdef USE_POSIX_MEMALIGN
1359 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1360 #endif
1361 free (ABLOCKS_BASE (abase));
1362 }
1363 MALLOC_UNBLOCK_INPUT;
1364 }
1365
1366 \f
1367 /***********************************************************************
1368 Interval Allocation
1369 ***********************************************************************/
1370
1371 /* Number of intervals allocated in an interval_block structure.
1372 The 1020 is 1024 minus malloc overhead. */
1373
1374 #define INTERVAL_BLOCK_SIZE \
1375 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1376
1377 /* Intervals are allocated in chunks in the form of an interval_block
1378 structure. */
1379
1380 struct interval_block
1381 {
1382 /* Place `intervals' first, to preserve alignment. */
1383 struct interval intervals[INTERVAL_BLOCK_SIZE];
1384 struct interval_block *next;
1385 };
1386
1387 /* Current interval block. Its `next' pointer points to older
1388 blocks. */
1389
1390 static struct interval_block *interval_block;
1391
1392 /* Index in interval_block above of the next unused interval
1393 structure. */
1394
1395 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1396
1397 /* Number of free and live intervals. */
1398
1399 static EMACS_INT total_free_intervals, total_intervals;
1400
1401 /* List of free intervals. */
1402
1403 static INTERVAL interval_free_list;
1404
1405 /* Return a new interval. */
1406
1407 INTERVAL
1408 make_interval (void)
1409 {
1410 INTERVAL val;
1411
1412 MALLOC_BLOCK_INPUT;
1413
1414 if (interval_free_list)
1415 {
1416 val = interval_free_list;
1417 interval_free_list = INTERVAL_PARENT (interval_free_list);
1418 }
1419 else
1420 {
1421 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1422 {
1423 struct interval_block *newi
1424 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1425
1426 newi->next = interval_block;
1427 interval_block = newi;
1428 interval_block_index = 0;
1429 total_free_intervals += INTERVAL_BLOCK_SIZE;
1430 }
1431 val = &interval_block->intervals[interval_block_index++];
1432 }
1433
1434 MALLOC_UNBLOCK_INPUT;
1435
1436 consing_since_gc += sizeof (struct interval);
1437 intervals_consed++;
1438 total_free_intervals--;
1439 RESET_INTERVAL (val);
1440 val->gcmarkbit = 0;
1441 return val;
1442 }
1443
1444
1445 /* Mark Lisp objects in interval I. */
1446
1447 static void
1448 mark_interval (register INTERVAL i, Lisp_Object dummy)
1449 {
1450 /* Intervals should never be shared. So, if extra internal checking is
1451 enabled, GC aborts if it seems to have visited an interval twice. */
1452 eassert (!i->gcmarkbit);
1453 i->gcmarkbit = 1;
1454 mark_object (i->plist);
1455 }
1456
1457 /* Mark the interval tree rooted in I. */
1458
1459 #define MARK_INTERVAL_TREE(i) \
1460 do { \
1461 if (i && !i->gcmarkbit) \
1462 traverse_intervals_noorder (i, mark_interval, Qnil); \
1463 } while (0)
1464
1465 /***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1468
1469 /* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
1471 added to a free-list string_free_list. When a new Lisp_String is
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
1475
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
1484
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `n.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
1491
1492 /* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
1494
1495 #define SBLOCK_SIZE 8188
1496
1497 /* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
1499
1500 #define LARGE_STRING_BYTES 1024
1501
1502 /* The SDATA typedef is a struct or union describing string memory
1503 sub-allocated from an sblock. This is where the contents of Lisp
1504 strings are stored. */
1505
1506 struct sdata
1507 {
1508 /* Back-pointer to the string this sdata belongs to. If null, this
1509 structure is free, and NBYTES (in this structure or in the union below)
1510 contains the string's byte size (the same value that STRING_BYTES
1511 would return if STRING were non-null). If non-null, STRING_BYTES
1512 (STRING) is the size of the data, and DATA contains the string's
1513 contents. */
1514 struct Lisp_String *string;
1515
1516 #ifdef GC_CHECK_STRING_BYTES
1517 ptrdiff_t nbytes;
1518 #endif
1519
1520 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1521 };
1522
1523 #ifdef GC_CHECK_STRING_BYTES
1524
1525 typedef struct sdata sdata;
1526 #define SDATA_NBYTES(S) (S)->nbytes
1527 #define SDATA_DATA(S) (S)->data
1528
1529 #else
1530
1531 typedef union
1532 {
1533 struct Lisp_String *string;
1534
1535 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1536 which has a flexible array member. However, if implemented by
1537 giving this union a member of type 'struct sdata', the union
1538 could not be the last (flexible) member of 'struct sblock',
1539 because C99 prohibits a flexible array member from having a type
1540 that is itself a flexible array. So, comment this member out here,
1541 but remember that the option's there when using this union. */
1542 #if 0
1543 struct sdata u;
1544 #endif
1545
1546 /* When STRING is null. */
1547 struct
1548 {
1549 struct Lisp_String *string;
1550 ptrdiff_t nbytes;
1551 } n;
1552 } sdata;
1553
1554 #define SDATA_NBYTES(S) (S)->n.nbytes
1555 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1556
1557 #endif /* not GC_CHECK_STRING_BYTES */
1558
1559 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1560
1561 /* Structure describing a block of memory which is sub-allocated to
1562 obtain string data memory for strings. Blocks for small strings
1563 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1564 as large as needed. */
1565
1566 struct sblock
1567 {
1568 /* Next in list. */
1569 struct sblock *next;
1570
1571 /* Pointer to the next free sdata block. This points past the end
1572 of the sblock if there isn't any space left in this block. */
1573 sdata *next_free;
1574
1575 /* String data. */
1576 sdata data[FLEXIBLE_ARRAY_MEMBER];
1577 };
1578
1579 /* Number of Lisp strings in a string_block structure. The 1020 is
1580 1024 minus malloc overhead. */
1581
1582 #define STRING_BLOCK_SIZE \
1583 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1584
1585 /* Structure describing a block from which Lisp_String structures
1586 are allocated. */
1587
1588 struct string_block
1589 {
1590 /* Place `strings' first, to preserve alignment. */
1591 struct Lisp_String strings[STRING_BLOCK_SIZE];
1592 struct string_block *next;
1593 };
1594
1595 /* Head and tail of the list of sblock structures holding Lisp string
1596 data. We always allocate from current_sblock. The NEXT pointers
1597 in the sblock structures go from oldest_sblock to current_sblock. */
1598
1599 static struct sblock *oldest_sblock, *current_sblock;
1600
1601 /* List of sblocks for large strings. */
1602
1603 static struct sblock *large_sblocks;
1604
1605 /* List of string_block structures. */
1606
1607 static struct string_block *string_blocks;
1608
1609 /* Free-list of Lisp_Strings. */
1610
1611 static struct Lisp_String *string_free_list;
1612
1613 /* Number of live and free Lisp_Strings. */
1614
1615 static EMACS_INT total_strings, total_free_strings;
1616
1617 /* Number of bytes used by live strings. */
1618
1619 static EMACS_INT total_string_bytes;
1620
1621 /* Given a pointer to a Lisp_String S which is on the free-list
1622 string_free_list, return a pointer to its successor in the
1623 free-list. */
1624
1625 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1626
1627 /* Return a pointer to the sdata structure belonging to Lisp string S.
1628 S must be live, i.e. S->data must not be null. S->data is actually
1629 a pointer to the `u.data' member of its sdata structure; the
1630 structure starts at a constant offset in front of that. */
1631
1632 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1633
1634
1635 #ifdef GC_CHECK_STRING_OVERRUN
1636
1637 /* We check for overrun in string data blocks by appending a small
1638 "cookie" after each allocated string data block, and check for the
1639 presence of this cookie during GC. */
1640
1641 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1642 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1643 { '\xde', '\xad', '\xbe', '\xef' };
1644
1645 #else
1646 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1647 #endif
1648
1649 /* Value is the size of an sdata structure large enough to hold NBYTES
1650 bytes of string data. The value returned includes a terminating
1651 NUL byte, the size of the sdata structure, and padding. */
1652
1653 #ifdef GC_CHECK_STRING_BYTES
1654
1655 #define SDATA_SIZE(NBYTES) \
1656 ((SDATA_DATA_OFFSET \
1657 + (NBYTES) + 1 \
1658 + sizeof (ptrdiff_t) - 1) \
1659 & ~(sizeof (ptrdiff_t) - 1))
1660
1661 #else /* not GC_CHECK_STRING_BYTES */
1662
1663 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1664 less than the size of that member. The 'max' is not needed when
1665 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1666 alignment code reserves enough space. */
1667
1668 #define SDATA_SIZE(NBYTES) \
1669 ((SDATA_DATA_OFFSET \
1670 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1671 ? NBYTES \
1672 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1673 + 1 \
1674 + sizeof (ptrdiff_t) - 1) \
1675 & ~(sizeof (ptrdiff_t) - 1))
1676
1677 #endif /* not GC_CHECK_STRING_BYTES */
1678
1679 /* Extra bytes to allocate for each string. */
1680
1681 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1682
1683 /* Exact bound on the number of bytes in a string, not counting the
1684 terminating null. A string cannot contain more bytes than
1685 STRING_BYTES_BOUND, nor can it be so long that the size_t
1686 arithmetic in allocate_string_data would overflow while it is
1687 calculating a value to be passed to malloc. */
1688 static ptrdiff_t const STRING_BYTES_MAX =
1689 min (STRING_BYTES_BOUND,
1690 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1691 - GC_STRING_EXTRA
1692 - offsetof (struct sblock, data)
1693 - SDATA_DATA_OFFSET)
1694 & ~(sizeof (EMACS_INT) - 1)));
1695
1696 /* Initialize string allocation. Called from init_alloc_once. */
1697
1698 static void
1699 init_strings (void)
1700 {
1701 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1702 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1703 }
1704
1705
1706 #ifdef GC_CHECK_STRING_BYTES
1707
1708 static int check_string_bytes_count;
1709
1710 /* Like STRING_BYTES, but with debugging check. Can be
1711 called during GC, so pay attention to the mark bit. */
1712
1713 ptrdiff_t
1714 string_bytes (struct Lisp_String *s)
1715 {
1716 ptrdiff_t nbytes =
1717 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1718
1719 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1720 emacs_abort ();
1721 return nbytes;
1722 }
1723
1724 /* Check validity of Lisp strings' string_bytes member in B. */
1725
1726 static void
1727 check_sblock (struct sblock *b)
1728 {
1729 sdata *from, *end, *from_end;
1730
1731 end = b->next_free;
1732
1733 for (from = b->data; from < end; from = from_end)
1734 {
1735 /* Compute the next FROM here because copying below may
1736 overwrite data we need to compute it. */
1737 ptrdiff_t nbytes;
1738
1739 /* Check that the string size recorded in the string is the
1740 same as the one recorded in the sdata structure. */
1741 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1742 : SDATA_NBYTES (from));
1743 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1744 }
1745 }
1746
1747
1748 /* Check validity of Lisp strings' string_bytes member. ALL_P
1749 means check all strings, otherwise check only most
1750 recently allocated strings. Used for hunting a bug. */
1751
1752 static void
1753 check_string_bytes (bool all_p)
1754 {
1755 if (all_p)
1756 {
1757 struct sblock *b;
1758
1759 for (b = large_sblocks; b; b = b->next)
1760 {
1761 struct Lisp_String *s = b->data[0].string;
1762 if (s)
1763 string_bytes (s);
1764 }
1765
1766 for (b = oldest_sblock; b; b = b->next)
1767 check_sblock (b);
1768 }
1769 else if (current_sblock)
1770 check_sblock (current_sblock);
1771 }
1772
1773 #else /* not GC_CHECK_STRING_BYTES */
1774
1775 #define check_string_bytes(all) ((void) 0)
1776
1777 #endif /* GC_CHECK_STRING_BYTES */
1778
1779 #ifdef GC_CHECK_STRING_FREE_LIST
1780
1781 /* Walk through the string free list looking for bogus next pointers.
1782 This may catch buffer overrun from a previous string. */
1783
1784 static void
1785 check_string_free_list (void)
1786 {
1787 struct Lisp_String *s;
1788
1789 /* Pop a Lisp_String off the free-list. */
1790 s = string_free_list;
1791 while (s != NULL)
1792 {
1793 if ((uintptr_t) s < 1024)
1794 emacs_abort ();
1795 s = NEXT_FREE_LISP_STRING (s);
1796 }
1797 }
1798 #else
1799 #define check_string_free_list()
1800 #endif
1801
1802 /* Return a new Lisp_String. */
1803
1804 static struct Lisp_String *
1805 allocate_string (void)
1806 {
1807 struct Lisp_String *s;
1808
1809 MALLOC_BLOCK_INPUT;
1810
1811 /* If the free-list is empty, allocate a new string_block, and
1812 add all the Lisp_Strings in it to the free-list. */
1813 if (string_free_list == NULL)
1814 {
1815 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1816 int i;
1817
1818 b->next = string_blocks;
1819 string_blocks = b;
1820
1821 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1822 {
1823 s = b->strings + i;
1824 /* Every string on a free list should have NULL data pointer. */
1825 s->data = NULL;
1826 NEXT_FREE_LISP_STRING (s) = string_free_list;
1827 string_free_list = s;
1828 }
1829
1830 total_free_strings += STRING_BLOCK_SIZE;
1831 }
1832
1833 check_string_free_list ();
1834
1835 /* Pop a Lisp_String off the free-list. */
1836 s = string_free_list;
1837 string_free_list = NEXT_FREE_LISP_STRING (s);
1838
1839 MALLOC_UNBLOCK_INPUT;
1840
1841 --total_free_strings;
1842 ++total_strings;
1843 ++strings_consed;
1844 consing_since_gc += sizeof *s;
1845
1846 #ifdef GC_CHECK_STRING_BYTES
1847 if (!noninteractive)
1848 {
1849 if (++check_string_bytes_count == 200)
1850 {
1851 check_string_bytes_count = 0;
1852 check_string_bytes (1);
1853 }
1854 else
1855 check_string_bytes (0);
1856 }
1857 #endif /* GC_CHECK_STRING_BYTES */
1858
1859 return s;
1860 }
1861
1862
1863 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1864 plus a NUL byte at the end. Allocate an sdata structure for S, and
1865 set S->data to its `u.data' member. Store a NUL byte at the end of
1866 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1867 S->data if it was initially non-null. */
1868
1869 void
1870 allocate_string_data (struct Lisp_String *s,
1871 EMACS_INT nchars, EMACS_INT nbytes)
1872 {
1873 sdata *data, *old_data;
1874 struct sblock *b;
1875 ptrdiff_t needed, old_nbytes;
1876
1877 if (STRING_BYTES_MAX < nbytes)
1878 string_overflow ();
1879
1880 /* Determine the number of bytes needed to store NBYTES bytes
1881 of string data. */
1882 needed = SDATA_SIZE (nbytes);
1883 if (s->data)
1884 {
1885 old_data = SDATA_OF_STRING (s);
1886 old_nbytes = STRING_BYTES (s);
1887 }
1888 else
1889 old_data = NULL;
1890
1891 MALLOC_BLOCK_INPUT;
1892
1893 if (nbytes > LARGE_STRING_BYTES)
1894 {
1895 size_t size = offsetof (struct sblock, data) + needed;
1896
1897 #ifdef DOUG_LEA_MALLOC
1898 if (!mmap_lisp_allowed_p ())
1899 mallopt (M_MMAP_MAX, 0);
1900 #endif
1901
1902 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1903
1904 #ifdef DOUG_LEA_MALLOC
1905 if (!mmap_lisp_allowed_p ())
1906 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1907 #endif
1908
1909 b->next_free = b->data;
1910 b->data[0].string = NULL;
1911 b->next = large_sblocks;
1912 large_sblocks = b;
1913 }
1914 else if (current_sblock == NULL
1915 || (((char *) current_sblock + SBLOCK_SIZE
1916 - (char *) current_sblock->next_free)
1917 < (needed + GC_STRING_EXTRA)))
1918 {
1919 /* Not enough room in the current sblock. */
1920 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1921 b->next_free = b->data;
1922 b->data[0].string = NULL;
1923 b->next = NULL;
1924
1925 if (current_sblock)
1926 current_sblock->next = b;
1927 else
1928 oldest_sblock = b;
1929 current_sblock = b;
1930 }
1931 else
1932 b = current_sblock;
1933
1934 data = b->next_free;
1935 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1936
1937 MALLOC_UNBLOCK_INPUT;
1938
1939 data->string = s;
1940 s->data = SDATA_DATA (data);
1941 #ifdef GC_CHECK_STRING_BYTES
1942 SDATA_NBYTES (data) = nbytes;
1943 #endif
1944 s->size = nchars;
1945 s->size_byte = nbytes;
1946 s->data[nbytes] = '\0';
1947 #ifdef GC_CHECK_STRING_OVERRUN
1948 memcpy ((char *) data + needed, string_overrun_cookie,
1949 GC_STRING_OVERRUN_COOKIE_SIZE);
1950 #endif
1951
1952 /* Note that Faset may call to this function when S has already data
1953 assigned. In this case, mark data as free by setting it's string
1954 back-pointer to null, and record the size of the data in it. */
1955 if (old_data)
1956 {
1957 SDATA_NBYTES (old_data) = old_nbytes;
1958 old_data->string = NULL;
1959 }
1960
1961 consing_since_gc += needed;
1962 }
1963
1964
1965 /* Sweep and compact strings. */
1966
1967 NO_INLINE /* For better stack traces */
1968 static void
1969 sweep_strings (void)
1970 {
1971 struct string_block *b, *next;
1972 struct string_block *live_blocks = NULL;
1973
1974 string_free_list = NULL;
1975 total_strings = total_free_strings = 0;
1976 total_string_bytes = 0;
1977
1978 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1979 for (b = string_blocks; b; b = next)
1980 {
1981 int i, nfree = 0;
1982 struct Lisp_String *free_list_before = string_free_list;
1983
1984 next = b->next;
1985
1986 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1987 {
1988 struct Lisp_String *s = b->strings + i;
1989
1990 if (s->data)
1991 {
1992 /* String was not on free-list before. */
1993 if (STRING_MARKED_P (s))
1994 {
1995 /* String is live; unmark it and its intervals. */
1996 UNMARK_STRING (s);
1997
1998 /* Do not use string_(set|get)_intervals here. */
1999 s->intervals = balance_intervals (s->intervals);
2000
2001 ++total_strings;
2002 total_string_bytes += STRING_BYTES (s);
2003 }
2004 else
2005 {
2006 /* String is dead. Put it on the free-list. */
2007 sdata *data = SDATA_OF_STRING (s);
2008
2009 /* Save the size of S in its sdata so that we know
2010 how large that is. Reset the sdata's string
2011 back-pointer so that we know it's free. */
2012 #ifdef GC_CHECK_STRING_BYTES
2013 if (string_bytes (s) != SDATA_NBYTES (data))
2014 emacs_abort ();
2015 #else
2016 data->n.nbytes = STRING_BYTES (s);
2017 #endif
2018 data->string = NULL;
2019
2020 /* Reset the strings's `data' member so that we
2021 know it's free. */
2022 s->data = NULL;
2023
2024 /* Put the string on the free-list. */
2025 NEXT_FREE_LISP_STRING (s) = string_free_list;
2026 string_free_list = s;
2027 ++nfree;
2028 }
2029 }
2030 else
2031 {
2032 /* S was on the free-list before. Put it there again. */
2033 NEXT_FREE_LISP_STRING (s) = string_free_list;
2034 string_free_list = s;
2035 ++nfree;
2036 }
2037 }
2038
2039 /* Free blocks that contain free Lisp_Strings only, except
2040 the first two of them. */
2041 if (nfree == STRING_BLOCK_SIZE
2042 && total_free_strings > STRING_BLOCK_SIZE)
2043 {
2044 lisp_free (b);
2045 string_free_list = free_list_before;
2046 }
2047 else
2048 {
2049 total_free_strings += nfree;
2050 b->next = live_blocks;
2051 live_blocks = b;
2052 }
2053 }
2054
2055 check_string_free_list ();
2056
2057 string_blocks = live_blocks;
2058 free_large_strings ();
2059 compact_small_strings ();
2060
2061 check_string_free_list ();
2062 }
2063
2064
2065 /* Free dead large strings. */
2066
2067 static void
2068 free_large_strings (void)
2069 {
2070 struct sblock *b, *next;
2071 struct sblock *live_blocks = NULL;
2072
2073 for (b = large_sblocks; b; b = next)
2074 {
2075 next = b->next;
2076
2077 if (b->data[0].string == NULL)
2078 lisp_free (b);
2079 else
2080 {
2081 b->next = live_blocks;
2082 live_blocks = b;
2083 }
2084 }
2085
2086 large_sblocks = live_blocks;
2087 }
2088
2089
2090 /* Compact data of small strings. Free sblocks that don't contain
2091 data of live strings after compaction. */
2092
2093 static void
2094 compact_small_strings (void)
2095 {
2096 struct sblock *b, *tb, *next;
2097 sdata *from, *to, *end, *tb_end;
2098 sdata *to_end, *from_end;
2099
2100 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2101 to, and TB_END is the end of TB. */
2102 tb = oldest_sblock;
2103 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2104 to = tb->data;
2105
2106 /* Step through the blocks from the oldest to the youngest. We
2107 expect that old blocks will stabilize over time, so that less
2108 copying will happen this way. */
2109 for (b = oldest_sblock; b; b = b->next)
2110 {
2111 end = b->next_free;
2112 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2113
2114 for (from = b->data; from < end; from = from_end)
2115 {
2116 /* Compute the next FROM here because copying below may
2117 overwrite data we need to compute it. */
2118 ptrdiff_t nbytes;
2119 struct Lisp_String *s = from->string;
2120
2121 #ifdef GC_CHECK_STRING_BYTES
2122 /* Check that the string size recorded in the string is the
2123 same as the one recorded in the sdata structure. */
2124 if (s && string_bytes (s) != SDATA_NBYTES (from))
2125 emacs_abort ();
2126 #endif /* GC_CHECK_STRING_BYTES */
2127
2128 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2129 eassert (nbytes <= LARGE_STRING_BYTES);
2130
2131 nbytes = SDATA_SIZE (nbytes);
2132 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2133
2134 #ifdef GC_CHECK_STRING_OVERRUN
2135 if (memcmp (string_overrun_cookie,
2136 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2137 GC_STRING_OVERRUN_COOKIE_SIZE))
2138 emacs_abort ();
2139 #endif
2140
2141 /* Non-NULL S means it's alive. Copy its data. */
2142 if (s)
2143 {
2144 /* If TB is full, proceed with the next sblock. */
2145 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2146 if (to_end > tb_end)
2147 {
2148 tb->next_free = to;
2149 tb = tb->next;
2150 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2151 to = tb->data;
2152 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2153 }
2154
2155 /* Copy, and update the string's `data' pointer. */
2156 if (from != to)
2157 {
2158 eassert (tb != b || to < from);
2159 memmove (to, from, nbytes + GC_STRING_EXTRA);
2160 to->string->data = SDATA_DATA (to);
2161 }
2162
2163 /* Advance past the sdata we copied to. */
2164 to = to_end;
2165 }
2166 }
2167 }
2168
2169 /* The rest of the sblocks following TB don't contain live data, so
2170 we can free them. */
2171 for (b = tb->next; b; b = next)
2172 {
2173 next = b->next;
2174 lisp_free (b);
2175 }
2176
2177 tb->next_free = to;
2178 tb->next = NULL;
2179 current_sblock = tb;
2180 }
2181
2182 void
2183 string_overflow (void)
2184 {
2185 error ("Maximum string size exceeded");
2186 }
2187
2188 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2189 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2190 LENGTH must be an integer.
2191 INIT must be an integer that represents a character. */)
2192 (Lisp_Object length, Lisp_Object init)
2193 {
2194 register Lisp_Object val;
2195 int c;
2196 EMACS_INT nbytes;
2197
2198 CHECK_NATNUM (length);
2199 CHECK_CHARACTER (init);
2200
2201 c = XFASTINT (init);
2202 if (ASCII_CHAR_P (c))
2203 {
2204 nbytes = XINT (length);
2205 val = make_uninit_string (nbytes);
2206 if (nbytes)
2207 {
2208 memset (SDATA (val), c, nbytes);
2209 SDATA (val)[nbytes] = 0;
2210 }
2211 }
2212 else
2213 {
2214 unsigned char str[MAX_MULTIBYTE_LENGTH];
2215 ptrdiff_t len = CHAR_STRING (c, str);
2216 EMACS_INT string_len = XINT (length);
2217 unsigned char *p, *beg, *end;
2218
2219 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2220 string_overflow ();
2221 val = make_uninit_multibyte_string (string_len, nbytes);
2222 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2223 {
2224 /* First time we just copy `str' to the data of `val'. */
2225 if (p == beg)
2226 memcpy (p, str, len);
2227 else
2228 {
2229 /* Next time we copy largest possible chunk from
2230 initialized to uninitialized part of `val'. */
2231 len = min (p - beg, end - p);
2232 memcpy (p, beg, len);
2233 }
2234 }
2235 if (nbytes)
2236 *p = 0;
2237 }
2238
2239 return val;
2240 }
2241
2242 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2243 Return A. */
2244
2245 Lisp_Object
2246 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2247 {
2248 EMACS_INT nbits = bool_vector_size (a);
2249 if (0 < nbits)
2250 {
2251 unsigned char *data = bool_vector_uchar_data (a);
2252 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2253 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2254 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2255 memset (data, pattern, nbytes - 1);
2256 data[nbytes - 1] = pattern & last_mask;
2257 }
2258 return a;
2259 }
2260
2261 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2262
2263 Lisp_Object
2264 make_uninit_bool_vector (EMACS_INT nbits)
2265 {
2266 Lisp_Object val;
2267 EMACS_INT words = bool_vector_words (nbits);
2268 EMACS_INT word_bytes = words * sizeof (bits_word);
2269 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2270 + word_size - 1)
2271 / word_size);
2272 struct Lisp_Bool_Vector *p
2273 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2274 XSETVECTOR (val, p);
2275 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2276 p->size = nbits;
2277
2278 /* Clear padding at the end. */
2279 if (words)
2280 p->data[words - 1] = 0;
2281
2282 return val;
2283 }
2284
2285 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2286 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2287 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2288 (Lisp_Object length, Lisp_Object init)
2289 {
2290 Lisp_Object val;
2291
2292 CHECK_NATNUM (length);
2293 val = make_uninit_bool_vector (XFASTINT (length));
2294 return bool_vector_fill (val, init);
2295 }
2296
2297 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2298 doc: /* Return a new bool-vector with specified arguments as elements.
2299 Any number of arguments, even zero arguments, are allowed.
2300 usage: (bool-vector &rest OBJECTS) */)
2301 (ptrdiff_t nargs, Lisp_Object *args)
2302 {
2303 ptrdiff_t i;
2304 Lisp_Object vector;
2305
2306 vector = make_uninit_bool_vector (nargs);
2307 for (i = 0; i < nargs; i++)
2308 bool_vector_set (vector, i, !NILP (args[i]));
2309
2310 return vector;
2311 }
2312
2313 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2314 of characters from the contents. This string may be unibyte or
2315 multibyte, depending on the contents. */
2316
2317 Lisp_Object
2318 make_string (const char *contents, ptrdiff_t nbytes)
2319 {
2320 register Lisp_Object val;
2321 ptrdiff_t nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2324 &nchars, &multibyte_nbytes);
2325 if (nbytes == nchars || nbytes != multibyte_nbytes)
2326 /* CONTENTS contains no multibyte sequences or contains an invalid
2327 multibyte sequence. We must make unibyte string. */
2328 val = make_unibyte_string (contents, nbytes);
2329 else
2330 val = make_multibyte_string (contents, nchars, nbytes);
2331 return val;
2332 }
2333
2334 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2335
2336 Lisp_Object
2337 make_unibyte_string (const char *contents, ptrdiff_t length)
2338 {
2339 register Lisp_Object val;
2340 val = make_uninit_string (length);
2341 memcpy (SDATA (val), contents, length);
2342 return val;
2343 }
2344
2345
2346 /* Make a multibyte string from NCHARS characters occupying NBYTES
2347 bytes at CONTENTS. */
2348
2349 Lisp_Object
2350 make_multibyte_string (const char *contents,
2351 ptrdiff_t nchars, ptrdiff_t nbytes)
2352 {
2353 register Lisp_Object val;
2354 val = make_uninit_multibyte_string (nchars, nbytes);
2355 memcpy (SDATA (val), contents, nbytes);
2356 return val;
2357 }
2358
2359
2360 /* Make a string from NCHARS characters occupying NBYTES bytes at
2361 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2362
2363 Lisp_Object
2364 make_string_from_bytes (const char *contents,
2365 ptrdiff_t nchars, ptrdiff_t nbytes)
2366 {
2367 register Lisp_Object val;
2368 val = make_uninit_multibyte_string (nchars, nbytes);
2369 memcpy (SDATA (val), contents, nbytes);
2370 if (SBYTES (val) == SCHARS (val))
2371 STRING_SET_UNIBYTE (val);
2372 return val;
2373 }
2374
2375
2376 /* Make a string from NCHARS characters occupying NBYTES bytes at
2377 CONTENTS. The argument MULTIBYTE controls whether to label the
2378 string as multibyte. If NCHARS is negative, it counts the number of
2379 characters by itself. */
2380
2381 Lisp_Object
2382 make_specified_string (const char *contents,
2383 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2384 {
2385 Lisp_Object val;
2386
2387 if (nchars < 0)
2388 {
2389 if (multibyte)
2390 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2391 nbytes);
2392 else
2393 nchars = nbytes;
2394 }
2395 val = make_uninit_multibyte_string (nchars, nbytes);
2396 memcpy (SDATA (val), contents, nbytes);
2397 if (!multibyte)
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2404 occupying LENGTH bytes. */
2405
2406 Lisp_Object
2407 make_uninit_string (EMACS_INT length)
2408 {
2409 Lisp_Object val;
2410
2411 if (!length)
2412 return empty_unibyte_string;
2413 val = make_uninit_multibyte_string (length, length);
2414 STRING_SET_UNIBYTE (val);
2415 return val;
2416 }
2417
2418
2419 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2420 which occupy NBYTES bytes. */
2421
2422 Lisp_Object
2423 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2424 {
2425 Lisp_Object string;
2426 struct Lisp_String *s;
2427
2428 if (nchars < 0)
2429 emacs_abort ();
2430 if (!nbytes)
2431 return empty_multibyte_string;
2432
2433 s = allocate_string ();
2434 s->intervals = NULL;
2435 allocate_string_data (s, nchars, nbytes);
2436 XSETSTRING (string, s);
2437 string_chars_consed += nbytes;
2438 return string;
2439 }
2440
2441 /* Print arguments to BUF according to a FORMAT, then return
2442 a Lisp_String initialized with the data from BUF. */
2443
2444 Lisp_Object
2445 make_formatted_string (char *buf, const char *format, ...)
2446 {
2447 va_list ap;
2448 int length;
2449
2450 va_start (ap, format);
2451 length = vsprintf (buf, format, ap);
2452 va_end (ap);
2453 return make_string (buf, length);
2454 }
2455
2456 \f
2457 /***********************************************************************
2458 Float Allocation
2459 ***********************************************************************/
2460
2461 /* We store float cells inside of float_blocks, allocating a new
2462 float_block with malloc whenever necessary. Float cells reclaimed
2463 by GC are put on a free list to be reallocated before allocating
2464 any new float cells from the latest float_block. */
2465
2466 #define FLOAT_BLOCK_SIZE \
2467 (((BLOCK_BYTES - sizeof (struct float_block *) \
2468 /* The compiler might add padding at the end. */ \
2469 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2470 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2471
2472 #define GETMARKBIT(block,n) \
2473 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2474 >> ((n) % BITS_PER_BITS_WORD)) \
2475 & 1)
2476
2477 #define SETMARKBIT(block,n) \
2478 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2479 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2480
2481 #define UNSETMARKBIT(block,n) \
2482 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2483 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2484
2485 #define FLOAT_BLOCK(fptr) \
2486 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2487
2488 #define FLOAT_INDEX(fptr) \
2489 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2490
2491 struct float_block
2492 {
2493 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2494 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2495 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2496 struct float_block *next;
2497 };
2498
2499 #define FLOAT_MARKED_P(fptr) \
2500 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2501
2502 #define FLOAT_MARK(fptr) \
2503 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2504
2505 #define FLOAT_UNMARK(fptr) \
2506 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2507
2508 /* Current float_block. */
2509
2510 static struct float_block *float_block;
2511
2512 /* Index of first unused Lisp_Float in the current float_block. */
2513
2514 static int float_block_index = FLOAT_BLOCK_SIZE;
2515
2516 /* Free-list of Lisp_Floats. */
2517
2518 static struct Lisp_Float *float_free_list;
2519
2520 /* Return a new float object with value FLOAT_VALUE. */
2521
2522 Lisp_Object
2523 make_float (double float_value)
2524 {
2525 register Lisp_Object val;
2526
2527 MALLOC_BLOCK_INPUT;
2528
2529 if (float_free_list)
2530 {
2531 /* We use the data field for chaining the free list
2532 so that we won't use the same field that has the mark bit. */
2533 XSETFLOAT (val, float_free_list);
2534 float_free_list = float_free_list->u.chain;
2535 }
2536 else
2537 {
2538 if (float_block_index == FLOAT_BLOCK_SIZE)
2539 {
2540 struct float_block *new
2541 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2542 new->next = float_block;
2543 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2544 float_block = new;
2545 float_block_index = 0;
2546 total_free_floats += FLOAT_BLOCK_SIZE;
2547 }
2548 XSETFLOAT (val, &float_block->floats[float_block_index]);
2549 float_block_index++;
2550 }
2551
2552 MALLOC_UNBLOCK_INPUT;
2553
2554 XFLOAT_INIT (val, float_value);
2555 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2556 consing_since_gc += sizeof (struct Lisp_Float);
2557 floats_consed++;
2558 total_free_floats--;
2559 return val;
2560 }
2561
2562
2563 \f
2564 /***********************************************************************
2565 Cons Allocation
2566 ***********************************************************************/
2567
2568 /* We store cons cells inside of cons_blocks, allocating a new
2569 cons_block with malloc whenever necessary. Cons cells reclaimed by
2570 GC are put on a free list to be reallocated before allocating
2571 any new cons cells from the latest cons_block. */
2572
2573 #define CONS_BLOCK_SIZE \
2574 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2575 /* The compiler might add padding at the end. */ \
2576 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2577 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2578
2579 #define CONS_BLOCK(fptr) \
2580 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2581
2582 #define CONS_INDEX(fptr) \
2583 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2584
2585 struct cons_block
2586 {
2587 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2588 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2589 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2590 struct cons_block *next;
2591 };
2592
2593 #define CONS_MARKED_P(fptr) \
2594 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2595
2596 #define CONS_MARK(fptr) \
2597 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2598
2599 #define CONS_UNMARK(fptr) \
2600 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2601
2602 /* Current cons_block. */
2603
2604 static struct cons_block *cons_block;
2605
2606 /* Index of first unused Lisp_Cons in the current block. */
2607
2608 static int cons_block_index = CONS_BLOCK_SIZE;
2609
2610 /* Free-list of Lisp_Cons structures. */
2611
2612 static struct Lisp_Cons *cons_free_list;
2613
2614 /* Explicitly free a cons cell by putting it on the free-list. */
2615
2616 void
2617 free_cons (struct Lisp_Cons *ptr)
2618 {
2619 ptr->u.chain = cons_free_list;
2620 ptr->car = Vdead;
2621 cons_free_list = ptr;
2622 consing_since_gc -= sizeof *ptr;
2623 total_free_conses++;
2624 }
2625
2626 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2627 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2628 (Lisp_Object car, Lisp_Object cdr)
2629 {
2630 register Lisp_Object val;
2631
2632 MALLOC_BLOCK_INPUT;
2633
2634 if (cons_free_list)
2635 {
2636 /* We use the cdr for chaining the free list
2637 so that we won't use the same field that has the mark bit. */
2638 XSETCONS (val, cons_free_list);
2639 cons_free_list = cons_free_list->u.chain;
2640 }
2641 else
2642 {
2643 if (cons_block_index == CONS_BLOCK_SIZE)
2644 {
2645 struct cons_block *new
2646 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2647 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2648 new->next = cons_block;
2649 cons_block = new;
2650 cons_block_index = 0;
2651 total_free_conses += CONS_BLOCK_SIZE;
2652 }
2653 XSETCONS (val, &cons_block->conses[cons_block_index]);
2654 cons_block_index++;
2655 }
2656
2657 MALLOC_UNBLOCK_INPUT;
2658
2659 XSETCAR (val, car);
2660 XSETCDR (val, cdr);
2661 eassert (!CONS_MARKED_P (XCONS (val)));
2662 consing_since_gc += sizeof (struct Lisp_Cons);
2663 total_free_conses--;
2664 cons_cells_consed++;
2665 return val;
2666 }
2667
2668 #ifdef GC_CHECK_CONS_LIST
2669 /* Get an error now if there's any junk in the cons free list. */
2670 void
2671 check_cons_list (void)
2672 {
2673 struct Lisp_Cons *tail = cons_free_list;
2674
2675 while (tail)
2676 tail = tail->u.chain;
2677 }
2678 #endif
2679
2680 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2681
2682 Lisp_Object
2683 list1 (Lisp_Object arg1)
2684 {
2685 return Fcons (arg1, Qnil);
2686 }
2687
2688 Lisp_Object
2689 list2 (Lisp_Object arg1, Lisp_Object arg2)
2690 {
2691 return Fcons (arg1, Fcons (arg2, Qnil));
2692 }
2693
2694
2695 Lisp_Object
2696 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2697 {
2698 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2699 }
2700
2701
2702 Lisp_Object
2703 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2704 {
2705 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2706 }
2707
2708
2709 Lisp_Object
2710 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2711 {
2712 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2713 Fcons (arg5, Qnil)))));
2714 }
2715
2716 /* Make a list of COUNT Lisp_Objects, where ARG is the
2717 first one. Allocate conses from pure space if TYPE
2718 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2719
2720 Lisp_Object
2721 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2722 {
2723 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2724 switch (type)
2725 {
2726 case CONSTYPE_PURE: cons = pure_cons; break;
2727 case CONSTYPE_HEAP: cons = Fcons; break;
2728 default: emacs_abort ();
2729 }
2730
2731 eassume (0 < count);
2732 Lisp_Object val = cons (arg, Qnil);
2733 Lisp_Object tail = val;
2734
2735 va_list ap;
2736 va_start (ap, arg);
2737 for (ptrdiff_t i = 1; i < count; i++)
2738 {
2739 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2740 XSETCDR (tail, elem);
2741 tail = elem;
2742 }
2743 va_end (ap);
2744
2745 return val;
2746 }
2747
2748 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2749 doc: /* Return a newly created list with specified arguments as elements.
2750 Any number of arguments, even zero arguments, are allowed.
2751 usage: (list &rest OBJECTS) */)
2752 (ptrdiff_t nargs, Lisp_Object *args)
2753 {
2754 register Lisp_Object val;
2755 val = Qnil;
2756
2757 while (nargs > 0)
2758 {
2759 nargs--;
2760 val = Fcons (args[nargs], val);
2761 }
2762 return val;
2763 }
2764
2765
2766 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2767 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2768 (register Lisp_Object length, Lisp_Object init)
2769 {
2770 register Lisp_Object val;
2771 register EMACS_INT size;
2772
2773 CHECK_NATNUM (length);
2774 size = XFASTINT (length);
2775
2776 val = Qnil;
2777 while (size > 0)
2778 {
2779 val = Fcons (init, val);
2780 --size;
2781
2782 if (size > 0)
2783 {
2784 val = Fcons (init, val);
2785 --size;
2786
2787 if (size > 0)
2788 {
2789 val = Fcons (init, val);
2790 --size;
2791
2792 if (size > 0)
2793 {
2794 val = Fcons (init, val);
2795 --size;
2796
2797 if (size > 0)
2798 {
2799 val = Fcons (init, val);
2800 --size;
2801 }
2802 }
2803 }
2804 }
2805
2806 QUIT;
2807 }
2808
2809 return val;
2810 }
2811
2812
2813 \f
2814 /***********************************************************************
2815 Vector Allocation
2816 ***********************************************************************/
2817
2818 /* Sometimes a vector's contents are merely a pointer internally used
2819 in vector allocation code. On the rare platforms where a null
2820 pointer cannot be tagged, represent it with a Lisp 0.
2821 Usually you don't want to touch this. */
2822
2823 static struct Lisp_Vector *
2824 next_vector (struct Lisp_Vector *v)
2825 {
2826 return XUNTAG (v->contents[0], Lisp_Int0);
2827 }
2828
2829 static void
2830 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2831 {
2832 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2833 }
2834
2835 /* This value is balanced well enough to avoid too much internal overhead
2836 for the most common cases; it's not required to be a power of two, but
2837 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2838
2839 #define VECTOR_BLOCK_SIZE 4096
2840
2841 enum
2842 {
2843 /* Alignment of struct Lisp_Vector objects. */
2844 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2845 GCALIGNMENT),
2846
2847 /* Vector size requests are a multiple of this. */
2848 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2849 };
2850
2851 /* Verify assumptions described above. */
2852 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2853 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2854
2855 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2856 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2857 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2858 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2859
2860 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2861
2862 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2863
2864 /* Size of the minimal vector allocated from block. */
2865
2866 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2867
2868 /* Size of the largest vector allocated from block. */
2869
2870 #define VBLOCK_BYTES_MAX \
2871 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2872
2873 /* We maintain one free list for each possible block-allocated
2874 vector size, and this is the number of free lists we have. */
2875
2876 #define VECTOR_MAX_FREE_LIST_INDEX \
2877 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2878
2879 /* Common shortcut to advance vector pointer over a block data. */
2880
2881 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2882
2883 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2884
2885 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2886
2887 /* Common shortcut to setup vector on a free list. */
2888
2889 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2890 do { \
2891 (tmp) = ((nbytes - header_size) / word_size); \
2892 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2893 eassert ((nbytes) % roundup_size == 0); \
2894 (tmp) = VINDEX (nbytes); \
2895 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2896 set_next_vector (v, vector_free_lists[tmp]); \
2897 vector_free_lists[tmp] = (v); \
2898 total_free_vector_slots += (nbytes) / word_size; \
2899 } while (0)
2900
2901 /* This internal type is used to maintain the list of large vectors
2902 which are allocated at their own, e.g. outside of vector blocks.
2903
2904 struct large_vector itself cannot contain a struct Lisp_Vector, as
2905 the latter contains a flexible array member and C99 does not allow
2906 such structs to be nested. Instead, each struct large_vector
2907 object LV is followed by a struct Lisp_Vector, which is at offset
2908 large_vector_offset from LV, and whose address is therefore
2909 large_vector_vec (&LV). */
2910
2911 struct large_vector
2912 {
2913 struct large_vector *next;
2914 };
2915
2916 enum
2917 {
2918 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2919 };
2920
2921 static struct Lisp_Vector *
2922 large_vector_vec (struct large_vector *p)
2923 {
2924 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2925 }
2926
2927 /* This internal type is used to maintain an underlying storage
2928 for small vectors. */
2929
2930 struct vector_block
2931 {
2932 char data[VECTOR_BLOCK_BYTES];
2933 struct vector_block *next;
2934 };
2935
2936 /* Chain of vector blocks. */
2937
2938 static struct vector_block *vector_blocks;
2939
2940 /* Vector free lists, where NTH item points to a chain of free
2941 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2942
2943 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2944
2945 /* Singly-linked list of large vectors. */
2946
2947 static struct large_vector *large_vectors;
2948
2949 /* The only vector with 0 slots, allocated from pure space. */
2950
2951 Lisp_Object zero_vector;
2952
2953 /* Number of live vectors. */
2954
2955 static EMACS_INT total_vectors;
2956
2957 /* Total size of live and free vectors, in Lisp_Object units. */
2958
2959 static EMACS_INT total_vector_slots, total_free_vector_slots;
2960
2961 /* Get a new vector block. */
2962
2963 static struct vector_block *
2964 allocate_vector_block (void)
2965 {
2966 struct vector_block *block = xmalloc (sizeof *block);
2967
2968 #ifndef GC_MALLOC_CHECK
2969 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2970 MEM_TYPE_VECTOR_BLOCK);
2971 #endif
2972
2973 block->next = vector_blocks;
2974 vector_blocks = block;
2975 return block;
2976 }
2977
2978 /* Called once to initialize vector allocation. */
2979
2980 static void
2981 init_vectors (void)
2982 {
2983 zero_vector = make_pure_vector (0);
2984 }
2985
2986 /* Allocate vector from a vector block. */
2987
2988 static struct Lisp_Vector *
2989 allocate_vector_from_block (size_t nbytes)
2990 {
2991 struct Lisp_Vector *vector;
2992 struct vector_block *block;
2993 size_t index, restbytes;
2994
2995 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2996 eassert (nbytes % roundup_size == 0);
2997
2998 /* First, try to allocate from a free list
2999 containing vectors of the requested size. */
3000 index = VINDEX (nbytes);
3001 if (vector_free_lists[index])
3002 {
3003 vector = vector_free_lists[index];
3004 vector_free_lists[index] = next_vector (vector);
3005 total_free_vector_slots -= nbytes / word_size;
3006 return vector;
3007 }
3008
3009 /* Next, check free lists containing larger vectors. Since
3010 we will split the result, we should have remaining space
3011 large enough to use for one-slot vector at least. */
3012 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3013 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3014 if (vector_free_lists[index])
3015 {
3016 /* This vector is larger than requested. */
3017 vector = vector_free_lists[index];
3018 vector_free_lists[index] = next_vector (vector);
3019 total_free_vector_slots -= nbytes / word_size;
3020
3021 /* Excess bytes are used for the smaller vector,
3022 which should be set on an appropriate free list. */
3023 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3024 eassert (restbytes % roundup_size == 0);
3025 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3026 return vector;
3027 }
3028
3029 /* Finally, need a new vector block. */
3030 block = allocate_vector_block ();
3031
3032 /* New vector will be at the beginning of this block. */
3033 vector = (struct Lisp_Vector *) block->data;
3034
3035 /* If the rest of space from this block is large enough
3036 for one-slot vector at least, set up it on a free list. */
3037 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3038 if (restbytes >= VBLOCK_BYTES_MIN)
3039 {
3040 eassert (restbytes % roundup_size == 0);
3041 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3042 }
3043 return vector;
3044 }
3045
3046 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3047
3048 #define VECTOR_IN_BLOCK(vector, block) \
3049 ((char *) (vector) <= (block)->data \
3050 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3051
3052 /* Return the memory footprint of V in bytes. */
3053
3054 static ptrdiff_t
3055 vector_nbytes (struct Lisp_Vector *v)
3056 {
3057 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3058 ptrdiff_t nwords;
3059
3060 if (size & PSEUDOVECTOR_FLAG)
3061 {
3062 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3063 {
3064 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3065 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3066 * sizeof (bits_word));
3067 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3068 verify (header_size <= bool_header_size);
3069 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3070 }
3071 else
3072 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3073 + ((size & PSEUDOVECTOR_REST_MASK)
3074 >> PSEUDOVECTOR_SIZE_BITS));
3075 }
3076 else
3077 nwords = size;
3078 return vroundup (header_size + word_size * nwords);
3079 }
3080
3081 /* Release extra resources still in use by VECTOR, which may be any
3082 vector-like object. For now, this is used just to free data in
3083 font objects. */
3084
3085 static void
3086 cleanup_vector (struct Lisp_Vector *vector)
3087 {
3088 detect_suspicious_free (vector);
3089 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3090 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3091 == FONT_OBJECT_MAX))
3092 {
3093 struct font_driver *drv = ((struct font *) vector)->driver;
3094
3095 /* The font driver might sometimes be NULL, e.g. if Emacs was
3096 interrupted before it had time to set it up. */
3097 if (drv)
3098 {
3099 /* Attempt to catch subtle bugs like Bug#16140. */
3100 eassert (valid_font_driver (drv));
3101 drv->close ((struct font *) vector);
3102 }
3103 }
3104 }
3105
3106 /* Reclaim space used by unmarked vectors. */
3107
3108 NO_INLINE /* For better stack traces */
3109 static void
3110 sweep_vectors (void)
3111 {
3112 struct vector_block *block, **bprev = &vector_blocks;
3113 struct large_vector *lv, **lvprev = &large_vectors;
3114 struct Lisp_Vector *vector, *next;
3115
3116 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3117 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3118
3119 /* Looking through vector blocks. */
3120
3121 for (block = vector_blocks; block; block = *bprev)
3122 {
3123 bool free_this_block = 0;
3124 ptrdiff_t nbytes;
3125
3126 for (vector = (struct Lisp_Vector *) block->data;
3127 VECTOR_IN_BLOCK (vector, block); vector = next)
3128 {
3129 if (VECTOR_MARKED_P (vector))
3130 {
3131 VECTOR_UNMARK (vector);
3132 total_vectors++;
3133 nbytes = vector_nbytes (vector);
3134 total_vector_slots += nbytes / word_size;
3135 next = ADVANCE (vector, nbytes);
3136 }
3137 else
3138 {
3139 ptrdiff_t total_bytes;
3140
3141 cleanup_vector (vector);
3142 nbytes = vector_nbytes (vector);
3143 total_bytes = nbytes;
3144 next = ADVANCE (vector, nbytes);
3145
3146 /* While NEXT is not marked, try to coalesce with VECTOR,
3147 thus making VECTOR of the largest possible size. */
3148
3149 while (VECTOR_IN_BLOCK (next, block))
3150 {
3151 if (VECTOR_MARKED_P (next))
3152 break;
3153 cleanup_vector (next);
3154 nbytes = vector_nbytes (next);
3155 total_bytes += nbytes;
3156 next = ADVANCE (next, nbytes);
3157 }
3158
3159 eassert (total_bytes % roundup_size == 0);
3160
3161 if (vector == (struct Lisp_Vector *) block->data
3162 && !VECTOR_IN_BLOCK (next, block))
3163 /* This block should be freed because all of its
3164 space was coalesced into the only free vector. */
3165 free_this_block = 1;
3166 else
3167 {
3168 size_t tmp;
3169 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3170 }
3171 }
3172 }
3173
3174 if (free_this_block)
3175 {
3176 *bprev = block->next;
3177 #ifndef GC_MALLOC_CHECK
3178 mem_delete (mem_find (block->data));
3179 #endif
3180 xfree (block);
3181 }
3182 else
3183 bprev = &block->next;
3184 }
3185
3186 /* Sweep large vectors. */
3187
3188 for (lv = large_vectors; lv; lv = *lvprev)
3189 {
3190 vector = large_vector_vec (lv);
3191 if (VECTOR_MARKED_P (vector))
3192 {
3193 VECTOR_UNMARK (vector);
3194 total_vectors++;
3195 if (vector->header.size & PSEUDOVECTOR_FLAG)
3196 {
3197 /* All non-bool pseudovectors are small enough to be allocated
3198 from vector blocks. This code should be redesigned if some
3199 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3200 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3201 total_vector_slots += vector_nbytes (vector) / word_size;
3202 }
3203 else
3204 total_vector_slots
3205 += header_size / word_size + vector->header.size;
3206 lvprev = &lv->next;
3207 }
3208 else
3209 {
3210 *lvprev = lv->next;
3211 lisp_free (lv);
3212 }
3213 }
3214 }
3215
3216 /* Value is a pointer to a newly allocated Lisp_Vector structure
3217 with room for LEN Lisp_Objects. */
3218
3219 static struct Lisp_Vector *
3220 allocate_vectorlike (ptrdiff_t len)
3221 {
3222 struct Lisp_Vector *p;
3223
3224 MALLOC_BLOCK_INPUT;
3225
3226 if (len == 0)
3227 p = XVECTOR (zero_vector);
3228 else
3229 {
3230 size_t nbytes = header_size + len * word_size;
3231
3232 #ifdef DOUG_LEA_MALLOC
3233 if (!mmap_lisp_allowed_p ())
3234 mallopt (M_MMAP_MAX, 0);
3235 #endif
3236
3237 if (nbytes <= VBLOCK_BYTES_MAX)
3238 p = allocate_vector_from_block (vroundup (nbytes));
3239 else
3240 {
3241 struct large_vector *lv
3242 = lisp_malloc ((large_vector_offset + header_size
3243 + len * word_size),
3244 MEM_TYPE_VECTORLIKE);
3245 lv->next = large_vectors;
3246 large_vectors = lv;
3247 p = large_vector_vec (lv);
3248 }
3249
3250 #ifdef DOUG_LEA_MALLOC
3251 if (!mmap_lisp_allowed_p ())
3252 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3253 #endif
3254
3255 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3256 emacs_abort ();
3257
3258 consing_since_gc += nbytes;
3259 vector_cells_consed += len;
3260 }
3261
3262 MALLOC_UNBLOCK_INPUT;
3263
3264 return p;
3265 }
3266
3267
3268 /* Allocate a vector with LEN slots. */
3269
3270 struct Lisp_Vector *
3271 allocate_vector (EMACS_INT len)
3272 {
3273 struct Lisp_Vector *v;
3274 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3275
3276 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3277 memory_full (SIZE_MAX);
3278 v = allocate_vectorlike (len);
3279 if (len)
3280 v->header.size = len;
3281 return v;
3282 }
3283
3284
3285 /* Allocate other vector-like structures. */
3286
3287 struct Lisp_Vector *
3288 allocate_pseudovector (int memlen, int lisplen,
3289 int zerolen, enum pvec_type tag)
3290 {
3291 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3292
3293 /* Catch bogus values. */
3294 eassert (0 <= tag && tag <= PVEC_FONT);
3295 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3296 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3297 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3298
3299 /* Only the first LISPLEN slots will be traced normally by the GC. */
3300 memclear (v->contents, zerolen * word_size);
3301 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3302 return v;
3303 }
3304
3305 struct buffer *
3306 allocate_buffer (void)
3307 {
3308 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3309
3310 BUFFER_PVEC_INIT (b);
3311 /* Put B on the chain of all buffers including killed ones. */
3312 b->next = all_buffers;
3313 all_buffers = b;
3314 /* Note that the rest fields of B are not initialized. */
3315 return b;
3316 }
3317
3318 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3319 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3320 See also the function `vector'. */)
3321 (register Lisp_Object length, Lisp_Object init)
3322 {
3323 Lisp_Object vector;
3324 register ptrdiff_t sizei;
3325 register ptrdiff_t i;
3326 register struct Lisp_Vector *p;
3327
3328 CHECK_NATNUM (length);
3329
3330 p = allocate_vector (XFASTINT (length));
3331 sizei = XFASTINT (length);
3332 for (i = 0; i < sizei; i++)
3333 p->contents[i] = init;
3334
3335 XSETVECTOR (vector, p);
3336 return vector;
3337 }
3338
3339 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3340 doc: /* Return a newly created vector with specified arguments as elements.
3341 Any number of arguments, even zero arguments, are allowed.
3342 usage: (vector &rest OBJECTS) */)
3343 (ptrdiff_t nargs, Lisp_Object *args)
3344 {
3345 ptrdiff_t i;
3346 register Lisp_Object val = make_uninit_vector (nargs);
3347 register struct Lisp_Vector *p = XVECTOR (val);
3348
3349 for (i = 0; i < nargs; i++)
3350 p->contents[i] = args[i];
3351 return val;
3352 }
3353
3354 void
3355 make_byte_code (struct Lisp_Vector *v)
3356 {
3357 /* Don't allow the global zero_vector to become a byte code object. */
3358 eassert (0 < v->header.size);
3359
3360 if (v->header.size > 1 && STRINGP (v->contents[1])
3361 && STRING_MULTIBYTE (v->contents[1]))
3362 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3363 earlier because they produced a raw 8-bit string for byte-code
3364 and now such a byte-code string is loaded as multibyte while
3365 raw 8-bit characters converted to multibyte form. Thus, now we
3366 must convert them back to the original unibyte form. */
3367 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3368 XSETPVECTYPE (v, PVEC_COMPILED);
3369 }
3370
3371 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3372 doc: /* Create a byte-code object with specified arguments as elements.
3373 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3374 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3375 and (optional) INTERACTIVE-SPEC.
3376 The first four arguments are required; at most six have any
3377 significance.
3378 The ARGLIST can be either like the one of `lambda', in which case the arguments
3379 will be dynamically bound before executing the byte code, or it can be an
3380 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3381 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3382 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3383 argument to catch the left-over arguments. If such an integer is used, the
3384 arguments will not be dynamically bound but will be instead pushed on the
3385 stack before executing the byte-code.
3386 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3387 (ptrdiff_t nargs, Lisp_Object *args)
3388 {
3389 ptrdiff_t i;
3390 register Lisp_Object val = make_uninit_vector (nargs);
3391 register struct Lisp_Vector *p = XVECTOR (val);
3392
3393 /* We used to purecopy everything here, if purify-flag was set. This worked
3394 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3395 dangerous, since make-byte-code is used during execution to build
3396 closures, so any closure built during the preload phase would end up
3397 copied into pure space, including its free variables, which is sometimes
3398 just wasteful and other times plainly wrong (e.g. those free vars may want
3399 to be setcar'd). */
3400
3401 for (i = 0; i < nargs; i++)
3402 p->contents[i] = args[i];
3403 make_byte_code (p);
3404 XSETCOMPILED (val, p);
3405 return val;
3406 }
3407
3408
3409 \f
3410 /***********************************************************************
3411 Symbol Allocation
3412 ***********************************************************************/
3413
3414 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3415 of the required alignment. */
3416
3417 union aligned_Lisp_Symbol
3418 {
3419 struct Lisp_Symbol s;
3420 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3421 & -GCALIGNMENT];
3422 };
3423
3424 /* Each symbol_block is just under 1020 bytes long, since malloc
3425 really allocates in units of powers of two and uses 4 bytes for its
3426 own overhead. */
3427
3428 #define SYMBOL_BLOCK_SIZE \
3429 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3430
3431 struct symbol_block
3432 {
3433 /* Place `symbols' first, to preserve alignment. */
3434 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3435 struct symbol_block *next;
3436 };
3437
3438 /* Current symbol block and index of first unused Lisp_Symbol
3439 structure in it. */
3440
3441 static struct symbol_block *symbol_block;
3442 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3443 /* Pointer to the first symbol_block that contains pinned symbols.
3444 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3445 10K of which are pinned (and all but 250 of them are interned in obarray),
3446 whereas a "typical session" has in the order of 30K symbols.
3447 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3448 than 30K to find the 10K symbols we need to mark. */
3449 static struct symbol_block *symbol_block_pinned;
3450
3451 /* List of free symbols. */
3452
3453 static struct Lisp_Symbol *symbol_free_list;
3454
3455 static void
3456 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3457 {
3458 XSYMBOL (sym)->name = name;
3459 }
3460
3461 void
3462 init_symbol (Lisp_Object val, Lisp_Object name)
3463 {
3464 struct Lisp_Symbol *p = XSYMBOL (val);
3465 set_symbol_name (val, name);
3466 set_symbol_plist (val, Qnil);
3467 p->redirect = SYMBOL_PLAINVAL;
3468 SET_SYMBOL_VAL (p, Qunbound);
3469 set_symbol_function (val, Qnil);
3470 set_symbol_next (val, NULL);
3471 p->gcmarkbit = false;
3472 p->interned = SYMBOL_UNINTERNED;
3473 p->constant = 0;
3474 p->declared_special = false;
3475 p->pinned = false;
3476 }
3477
3478 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3479 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3480 Its value is void, and its function definition and property list are nil. */)
3481 (Lisp_Object name)
3482 {
3483 Lisp_Object val;
3484
3485 CHECK_STRING (name);
3486
3487 MALLOC_BLOCK_INPUT;
3488
3489 if (symbol_free_list)
3490 {
3491 XSETSYMBOL (val, symbol_free_list);
3492 symbol_free_list = symbol_free_list->next;
3493 }
3494 else
3495 {
3496 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3497 {
3498 struct symbol_block *new
3499 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3500 new->next = symbol_block;
3501 symbol_block = new;
3502 symbol_block_index = 0;
3503 total_free_symbols += SYMBOL_BLOCK_SIZE;
3504 }
3505 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3506 symbol_block_index++;
3507 }
3508
3509 MALLOC_UNBLOCK_INPUT;
3510
3511 init_symbol (val, name);
3512 consing_since_gc += sizeof (struct Lisp_Symbol);
3513 symbols_consed++;
3514 total_free_symbols--;
3515 return val;
3516 }
3517
3518
3519 \f
3520 /***********************************************************************
3521 Marker (Misc) Allocation
3522 ***********************************************************************/
3523
3524 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3525 the required alignment. */
3526
3527 union aligned_Lisp_Misc
3528 {
3529 union Lisp_Misc m;
3530 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3531 & -GCALIGNMENT];
3532 };
3533
3534 /* Allocation of markers and other objects that share that structure.
3535 Works like allocation of conses. */
3536
3537 #define MARKER_BLOCK_SIZE \
3538 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3539
3540 struct marker_block
3541 {
3542 /* Place `markers' first, to preserve alignment. */
3543 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3544 struct marker_block *next;
3545 };
3546
3547 static struct marker_block *marker_block;
3548 static int marker_block_index = MARKER_BLOCK_SIZE;
3549
3550 static union Lisp_Misc *marker_free_list;
3551
3552 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3553
3554 static Lisp_Object
3555 allocate_misc (enum Lisp_Misc_Type type)
3556 {
3557 Lisp_Object val;
3558
3559 MALLOC_BLOCK_INPUT;
3560
3561 if (marker_free_list)
3562 {
3563 XSETMISC (val, marker_free_list);
3564 marker_free_list = marker_free_list->u_free.chain;
3565 }
3566 else
3567 {
3568 if (marker_block_index == MARKER_BLOCK_SIZE)
3569 {
3570 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3571 new->next = marker_block;
3572 marker_block = new;
3573 marker_block_index = 0;
3574 total_free_markers += MARKER_BLOCK_SIZE;
3575 }
3576 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3577 marker_block_index++;
3578 }
3579
3580 MALLOC_UNBLOCK_INPUT;
3581
3582 --total_free_markers;
3583 consing_since_gc += sizeof (union Lisp_Misc);
3584 misc_objects_consed++;
3585 XMISCANY (val)->type = type;
3586 XMISCANY (val)->gcmarkbit = 0;
3587 return val;
3588 }
3589
3590 /* Free a Lisp_Misc object. */
3591
3592 void
3593 free_misc (Lisp_Object misc)
3594 {
3595 XMISCANY (misc)->type = Lisp_Misc_Free;
3596 XMISC (misc)->u_free.chain = marker_free_list;
3597 marker_free_list = XMISC (misc);
3598 consing_since_gc -= sizeof (union Lisp_Misc);
3599 total_free_markers++;
3600 }
3601
3602 /* Verify properties of Lisp_Save_Value's representation
3603 that are assumed here and elsewhere. */
3604
3605 verify (SAVE_UNUSED == 0);
3606 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3607 >> SAVE_SLOT_BITS)
3608 == 0);
3609
3610 /* Return Lisp_Save_Value objects for the various combinations
3611 that callers need. */
3612
3613 Lisp_Object
3614 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3615 {
3616 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3617 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3618 p->save_type = SAVE_TYPE_INT_INT_INT;
3619 p->data[0].integer = a;
3620 p->data[1].integer = b;
3621 p->data[2].integer = c;
3622 return val;
3623 }
3624
3625 Lisp_Object
3626 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3627 Lisp_Object d)
3628 {
3629 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3630 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3631 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3632 p->data[0].object = a;
3633 p->data[1].object = b;
3634 p->data[2].object = c;
3635 p->data[3].object = d;
3636 return val;
3637 }
3638
3639 Lisp_Object
3640 make_save_ptr (void *a)
3641 {
3642 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3643 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3644 p->save_type = SAVE_POINTER;
3645 p->data[0].pointer = a;
3646 return val;
3647 }
3648
3649 Lisp_Object
3650 make_save_ptr_int (void *a, ptrdiff_t b)
3651 {
3652 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3653 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3654 p->save_type = SAVE_TYPE_PTR_INT;
3655 p->data[0].pointer = a;
3656 p->data[1].integer = b;
3657 return val;
3658 }
3659
3660 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3661 Lisp_Object
3662 make_save_ptr_ptr (void *a, void *b)
3663 {
3664 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3665 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3666 p->save_type = SAVE_TYPE_PTR_PTR;
3667 p->data[0].pointer = a;
3668 p->data[1].pointer = b;
3669 return val;
3670 }
3671 #endif
3672
3673 Lisp_Object
3674 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3675 {
3676 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3677 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3678 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3679 p->data[0].funcpointer = a;
3680 p->data[1].pointer = b;
3681 p->data[2].object = c;
3682 return val;
3683 }
3684
3685 /* Return a Lisp_Save_Value object that represents an array A
3686 of N Lisp objects. */
3687
3688 Lisp_Object
3689 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3690 {
3691 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3692 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3693 p->save_type = SAVE_TYPE_MEMORY;
3694 p->data[0].pointer = a;
3695 p->data[1].integer = n;
3696 return val;
3697 }
3698
3699 /* Free a Lisp_Save_Value object. Do not use this function
3700 if SAVE contains pointer other than returned by xmalloc. */
3701
3702 void
3703 free_save_value (Lisp_Object save)
3704 {
3705 xfree (XSAVE_POINTER (save, 0));
3706 free_misc (save);
3707 }
3708
3709 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3710
3711 Lisp_Object
3712 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3713 {
3714 register Lisp_Object overlay;
3715
3716 overlay = allocate_misc (Lisp_Misc_Overlay);
3717 OVERLAY_START (overlay) = start;
3718 OVERLAY_END (overlay) = end;
3719 set_overlay_plist (overlay, plist);
3720 XOVERLAY (overlay)->next = NULL;
3721 return overlay;
3722 }
3723
3724 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3725 doc: /* Return a newly allocated marker which does not point at any place. */)
3726 (void)
3727 {
3728 register Lisp_Object val;
3729 register struct Lisp_Marker *p;
3730
3731 val = allocate_misc (Lisp_Misc_Marker);
3732 p = XMARKER (val);
3733 p->buffer = 0;
3734 p->bytepos = 0;
3735 p->charpos = 0;
3736 p->next = NULL;
3737 p->insertion_type = 0;
3738 p->need_adjustment = 0;
3739 return val;
3740 }
3741
3742 /* Return a newly allocated marker which points into BUF
3743 at character position CHARPOS and byte position BYTEPOS. */
3744
3745 Lisp_Object
3746 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3747 {
3748 Lisp_Object obj;
3749 struct Lisp_Marker *m;
3750
3751 /* No dead buffers here. */
3752 eassert (BUFFER_LIVE_P (buf));
3753
3754 /* Every character is at least one byte. */
3755 eassert (charpos <= bytepos);
3756
3757 obj = allocate_misc (Lisp_Misc_Marker);
3758 m = XMARKER (obj);
3759 m->buffer = buf;
3760 m->charpos = charpos;
3761 m->bytepos = bytepos;
3762 m->insertion_type = 0;
3763 m->need_adjustment = 0;
3764 m->next = BUF_MARKERS (buf);
3765 BUF_MARKERS (buf) = m;
3766 return obj;
3767 }
3768
3769 /* Put MARKER back on the free list after using it temporarily. */
3770
3771 void
3772 free_marker (Lisp_Object marker)
3773 {
3774 unchain_marker (XMARKER (marker));
3775 free_misc (marker);
3776 }
3777
3778 \f
3779 /* Return a newly created vector or string with specified arguments as
3780 elements. If all the arguments are characters that can fit
3781 in a string of events, make a string; otherwise, make a vector.
3782
3783 Any number of arguments, even zero arguments, are allowed. */
3784
3785 Lisp_Object
3786 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3787 {
3788 ptrdiff_t i;
3789
3790 for (i = 0; i < nargs; i++)
3791 /* The things that fit in a string
3792 are characters that are in 0...127,
3793 after discarding the meta bit and all the bits above it. */
3794 if (!INTEGERP (args[i])
3795 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3796 return Fvector (nargs, args);
3797
3798 /* Since the loop exited, we know that all the things in it are
3799 characters, so we can make a string. */
3800 {
3801 Lisp_Object result;
3802
3803 result = Fmake_string (make_number (nargs), make_number (0));
3804 for (i = 0; i < nargs; i++)
3805 {
3806 SSET (result, i, XINT (args[i]));
3807 /* Move the meta bit to the right place for a string char. */
3808 if (XINT (args[i]) & CHAR_META)
3809 SSET (result, i, SREF (result, i) | 0x80);
3810 }
3811
3812 return result;
3813 }
3814 }
3815
3816 #ifdef HAVE_MODULES
3817 /* Create a new module user ptr object. */
3818 Lisp_Object
3819 make_user_ptr (void (*finalizer) (void *), void *p)
3820 {
3821 Lisp_Object obj;
3822 struct Lisp_User_Ptr *uptr;
3823
3824 obj = allocate_misc (Lisp_Misc_User_Ptr);
3825 uptr = XUSER_PTR (obj);
3826 uptr->finalizer = finalizer;
3827 uptr->p = p;
3828 return obj;
3829 }
3830
3831 #endif
3832
3833 static void
3834 init_finalizer_list (struct Lisp_Finalizer *head)
3835 {
3836 head->prev = head->next = head;
3837 }
3838
3839 /* Insert FINALIZER before ELEMENT. */
3840
3841 static void
3842 finalizer_insert (struct Lisp_Finalizer *element,
3843 struct Lisp_Finalizer *finalizer)
3844 {
3845 eassert (finalizer->prev == NULL);
3846 eassert (finalizer->next == NULL);
3847 finalizer->next = element;
3848 finalizer->prev = element->prev;
3849 finalizer->prev->next = finalizer;
3850 element->prev = finalizer;
3851 }
3852
3853 static void
3854 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3855 {
3856 if (finalizer->prev != NULL)
3857 {
3858 eassert (finalizer->next != NULL);
3859 finalizer->prev->next = finalizer->next;
3860 finalizer->next->prev = finalizer->prev;
3861 finalizer->prev = finalizer->next = NULL;
3862 }
3863 }
3864
3865 static void
3866 mark_finalizer_list (struct Lisp_Finalizer *head)
3867 {
3868 for (struct Lisp_Finalizer *finalizer = head->next;
3869 finalizer != head;
3870 finalizer = finalizer->next)
3871 {
3872 finalizer->base.gcmarkbit = true;
3873 mark_object (finalizer->function);
3874 }
3875 }
3876
3877 /* Move doomed finalizers to list DEST from list SRC. A doomed
3878 finalizer is one that is not GC-reachable and whose
3879 finalizer->function is non-nil. */
3880
3881 static void
3882 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3883 struct Lisp_Finalizer *src)
3884 {
3885 struct Lisp_Finalizer *finalizer = src->next;
3886 while (finalizer != src)
3887 {
3888 struct Lisp_Finalizer *next = finalizer->next;
3889 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3890 {
3891 unchain_finalizer (finalizer);
3892 finalizer_insert (dest, finalizer);
3893 }
3894
3895 finalizer = next;
3896 }
3897 }
3898
3899 static Lisp_Object
3900 run_finalizer_handler (Lisp_Object args)
3901 {
3902 add_to_log ("finalizer failed: %S", args);
3903 return Qnil;
3904 }
3905
3906 static void
3907 run_finalizer_function (Lisp_Object function)
3908 {
3909 ptrdiff_t count = SPECPDL_INDEX ();
3910
3911 specbind (Qinhibit_quit, Qt);
3912 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3913 unbind_to (count, Qnil);
3914 }
3915
3916 static void
3917 run_finalizers (struct Lisp_Finalizer *finalizers)
3918 {
3919 struct Lisp_Finalizer *finalizer;
3920 Lisp_Object function;
3921
3922 while (finalizers->next != finalizers)
3923 {
3924 finalizer = finalizers->next;
3925 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3926 unchain_finalizer (finalizer);
3927 function = finalizer->function;
3928 if (!NILP (function))
3929 {
3930 finalizer->function = Qnil;
3931 run_finalizer_function (function);
3932 }
3933 }
3934 }
3935
3936 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3937 doc: /* Make a finalizer that will run FUNCTION.
3938 FUNCTION will be called after garbage collection when the returned
3939 finalizer object becomes unreachable. If the finalizer object is
3940 reachable only through references from finalizer objects, it does not
3941 count as reachable for the purpose of deciding whether to run
3942 FUNCTION. FUNCTION will be run once per finalizer object. */)
3943 (Lisp_Object function)
3944 {
3945 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3946 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3947 finalizer->function = function;
3948 finalizer->prev = finalizer->next = NULL;
3949 finalizer_insert (&finalizers, finalizer);
3950 return val;
3951 }
3952
3953 \f
3954 /************************************************************************
3955 Memory Full Handling
3956 ************************************************************************/
3957
3958
3959 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3960 there may have been size_t overflow so that malloc was never
3961 called, or perhaps malloc was invoked successfully but the
3962 resulting pointer had problems fitting into a tagged EMACS_INT. In
3963 either case this counts as memory being full even though malloc did
3964 not fail. */
3965
3966 void
3967 memory_full (size_t nbytes)
3968 {
3969 /* Do not go into hysterics merely because a large request failed. */
3970 bool enough_free_memory = 0;
3971 if (SPARE_MEMORY < nbytes)
3972 {
3973 void *p;
3974
3975 MALLOC_BLOCK_INPUT;
3976 p = malloc (SPARE_MEMORY);
3977 if (p)
3978 {
3979 free (p);
3980 enough_free_memory = 1;
3981 }
3982 MALLOC_UNBLOCK_INPUT;
3983 }
3984
3985 if (! enough_free_memory)
3986 {
3987 int i;
3988
3989 Vmemory_full = Qt;
3990
3991 memory_full_cons_threshold = sizeof (struct cons_block);
3992
3993 /* The first time we get here, free the spare memory. */
3994 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3995 if (spare_memory[i])
3996 {
3997 if (i == 0)
3998 free (spare_memory[i]);
3999 else if (i >= 1 && i <= 4)
4000 lisp_align_free (spare_memory[i]);
4001 else
4002 lisp_free (spare_memory[i]);
4003 spare_memory[i] = 0;
4004 }
4005 }
4006
4007 /* This used to call error, but if we've run out of memory, we could
4008 get infinite recursion trying to build the string. */
4009 xsignal (Qnil, Vmemory_signal_data);
4010 }
4011
4012 /* If we released our reserve (due to running out of memory),
4013 and we have a fair amount free once again,
4014 try to set aside another reserve in case we run out once more.
4015
4016 This is called when a relocatable block is freed in ralloc.c,
4017 and also directly from this file, in case we're not using ralloc.c. */
4018
4019 void
4020 refill_memory_reserve (void)
4021 {
4022 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4023 if (spare_memory[0] == 0)
4024 spare_memory[0] = malloc (SPARE_MEMORY);
4025 if (spare_memory[1] == 0)
4026 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4027 MEM_TYPE_SPARE);
4028 if (spare_memory[2] == 0)
4029 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4030 MEM_TYPE_SPARE);
4031 if (spare_memory[3] == 0)
4032 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4033 MEM_TYPE_SPARE);
4034 if (spare_memory[4] == 0)
4035 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4036 MEM_TYPE_SPARE);
4037 if (spare_memory[5] == 0)
4038 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4039 MEM_TYPE_SPARE);
4040 if (spare_memory[6] == 0)
4041 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4042 MEM_TYPE_SPARE);
4043 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4044 Vmemory_full = Qnil;
4045 #endif
4046 }
4047 \f
4048 /************************************************************************
4049 C Stack Marking
4050 ************************************************************************/
4051
4052 /* Conservative C stack marking requires a method to identify possibly
4053 live Lisp objects given a pointer value. We do this by keeping
4054 track of blocks of Lisp data that are allocated in a red-black tree
4055 (see also the comment of mem_node which is the type of nodes in
4056 that tree). Function lisp_malloc adds information for an allocated
4057 block to the red-black tree with calls to mem_insert, and function
4058 lisp_free removes it with mem_delete. Functions live_string_p etc
4059 call mem_find to lookup information about a given pointer in the
4060 tree, and use that to determine if the pointer points to a Lisp
4061 object or not. */
4062
4063 /* Initialize this part of alloc.c. */
4064
4065 static void
4066 mem_init (void)
4067 {
4068 mem_z.left = mem_z.right = MEM_NIL;
4069 mem_z.parent = NULL;
4070 mem_z.color = MEM_BLACK;
4071 mem_z.start = mem_z.end = NULL;
4072 mem_root = MEM_NIL;
4073 }
4074
4075
4076 /* Value is a pointer to the mem_node containing START. Value is
4077 MEM_NIL if there is no node in the tree containing START. */
4078
4079 static struct mem_node *
4080 mem_find (void *start)
4081 {
4082 struct mem_node *p;
4083
4084 if (start < min_heap_address || start > max_heap_address)
4085 return MEM_NIL;
4086
4087 /* Make the search always successful to speed up the loop below. */
4088 mem_z.start = start;
4089 mem_z.end = (char *) start + 1;
4090
4091 p = mem_root;
4092 while (start < p->start || start >= p->end)
4093 p = start < p->start ? p->left : p->right;
4094 return p;
4095 }
4096
4097
4098 /* Insert a new node into the tree for a block of memory with start
4099 address START, end address END, and type TYPE. Value is a
4100 pointer to the node that was inserted. */
4101
4102 static struct mem_node *
4103 mem_insert (void *start, void *end, enum mem_type type)
4104 {
4105 struct mem_node *c, *parent, *x;
4106
4107 if (min_heap_address == NULL || start < min_heap_address)
4108 min_heap_address = start;
4109 if (max_heap_address == NULL || end > max_heap_address)
4110 max_heap_address = end;
4111
4112 /* See where in the tree a node for START belongs. In this
4113 particular application, it shouldn't happen that a node is already
4114 present. For debugging purposes, let's check that. */
4115 c = mem_root;
4116 parent = NULL;
4117
4118 while (c != MEM_NIL)
4119 {
4120 parent = c;
4121 c = start < c->start ? c->left : c->right;
4122 }
4123
4124 /* Create a new node. */
4125 #ifdef GC_MALLOC_CHECK
4126 x = malloc (sizeof *x);
4127 if (x == NULL)
4128 emacs_abort ();
4129 #else
4130 x = xmalloc (sizeof *x);
4131 #endif
4132 x->start = start;
4133 x->end = end;
4134 x->type = type;
4135 x->parent = parent;
4136 x->left = x->right = MEM_NIL;
4137 x->color = MEM_RED;
4138
4139 /* Insert it as child of PARENT or install it as root. */
4140 if (parent)
4141 {
4142 if (start < parent->start)
4143 parent->left = x;
4144 else
4145 parent->right = x;
4146 }
4147 else
4148 mem_root = x;
4149
4150 /* Re-establish red-black tree properties. */
4151 mem_insert_fixup (x);
4152
4153 return x;
4154 }
4155
4156
4157 /* Re-establish the red-black properties of the tree, and thereby
4158 balance the tree, after node X has been inserted; X is always red. */
4159
4160 static void
4161 mem_insert_fixup (struct mem_node *x)
4162 {
4163 while (x != mem_root && x->parent->color == MEM_RED)
4164 {
4165 /* X is red and its parent is red. This is a violation of
4166 red-black tree property #3. */
4167
4168 if (x->parent == x->parent->parent->left)
4169 {
4170 /* We're on the left side of our grandparent, and Y is our
4171 "uncle". */
4172 struct mem_node *y = x->parent->parent->right;
4173
4174 if (y->color == MEM_RED)
4175 {
4176 /* Uncle and parent are red but should be black because
4177 X is red. Change the colors accordingly and proceed
4178 with the grandparent. */
4179 x->parent->color = MEM_BLACK;
4180 y->color = MEM_BLACK;
4181 x->parent->parent->color = MEM_RED;
4182 x = x->parent->parent;
4183 }
4184 else
4185 {
4186 /* Parent and uncle have different colors; parent is
4187 red, uncle is black. */
4188 if (x == x->parent->right)
4189 {
4190 x = x->parent;
4191 mem_rotate_left (x);
4192 }
4193
4194 x->parent->color = MEM_BLACK;
4195 x->parent->parent->color = MEM_RED;
4196 mem_rotate_right (x->parent->parent);
4197 }
4198 }
4199 else
4200 {
4201 /* This is the symmetrical case of above. */
4202 struct mem_node *y = x->parent->parent->left;
4203
4204 if (y->color == MEM_RED)
4205 {
4206 x->parent->color = MEM_BLACK;
4207 y->color = MEM_BLACK;
4208 x->parent->parent->color = MEM_RED;
4209 x = x->parent->parent;
4210 }
4211 else
4212 {
4213 if (x == x->parent->left)
4214 {
4215 x = x->parent;
4216 mem_rotate_right (x);
4217 }
4218
4219 x->parent->color = MEM_BLACK;
4220 x->parent->parent->color = MEM_RED;
4221 mem_rotate_left (x->parent->parent);
4222 }
4223 }
4224 }
4225
4226 /* The root may have been changed to red due to the algorithm. Set
4227 it to black so that property #5 is satisfied. */
4228 mem_root->color = MEM_BLACK;
4229 }
4230
4231
4232 /* (x) (y)
4233 / \ / \
4234 a (y) ===> (x) c
4235 / \ / \
4236 b c a b */
4237
4238 static void
4239 mem_rotate_left (struct mem_node *x)
4240 {
4241 struct mem_node *y;
4242
4243 /* Turn y's left sub-tree into x's right sub-tree. */
4244 y = x->right;
4245 x->right = y->left;
4246 if (y->left != MEM_NIL)
4247 y->left->parent = x;
4248
4249 /* Y's parent was x's parent. */
4250 if (y != MEM_NIL)
4251 y->parent = x->parent;
4252
4253 /* Get the parent to point to y instead of x. */
4254 if (x->parent)
4255 {
4256 if (x == x->parent->left)
4257 x->parent->left = y;
4258 else
4259 x->parent->right = y;
4260 }
4261 else
4262 mem_root = y;
4263
4264 /* Put x on y's left. */
4265 y->left = x;
4266 if (x != MEM_NIL)
4267 x->parent = y;
4268 }
4269
4270
4271 /* (x) (Y)
4272 / \ / \
4273 (y) c ===> a (x)
4274 / \ / \
4275 a b b c */
4276
4277 static void
4278 mem_rotate_right (struct mem_node *x)
4279 {
4280 struct mem_node *y = x->left;
4281
4282 x->left = y->right;
4283 if (y->right != MEM_NIL)
4284 y->right->parent = x;
4285
4286 if (y != MEM_NIL)
4287 y->parent = x->parent;
4288 if (x->parent)
4289 {
4290 if (x == x->parent->right)
4291 x->parent->right = y;
4292 else
4293 x->parent->left = y;
4294 }
4295 else
4296 mem_root = y;
4297
4298 y->right = x;
4299 if (x != MEM_NIL)
4300 x->parent = y;
4301 }
4302
4303
4304 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4305
4306 static void
4307 mem_delete (struct mem_node *z)
4308 {
4309 struct mem_node *x, *y;
4310
4311 if (!z || z == MEM_NIL)
4312 return;
4313
4314 if (z->left == MEM_NIL || z->right == MEM_NIL)
4315 y = z;
4316 else
4317 {
4318 y = z->right;
4319 while (y->left != MEM_NIL)
4320 y = y->left;
4321 }
4322
4323 if (y->left != MEM_NIL)
4324 x = y->left;
4325 else
4326 x = y->right;
4327
4328 x->parent = y->parent;
4329 if (y->parent)
4330 {
4331 if (y == y->parent->left)
4332 y->parent->left = x;
4333 else
4334 y->parent->right = x;
4335 }
4336 else
4337 mem_root = x;
4338
4339 if (y != z)
4340 {
4341 z->start = y->start;
4342 z->end = y->end;
4343 z->type = y->type;
4344 }
4345
4346 if (y->color == MEM_BLACK)
4347 mem_delete_fixup (x);
4348
4349 #ifdef GC_MALLOC_CHECK
4350 free (y);
4351 #else
4352 xfree (y);
4353 #endif
4354 }
4355
4356
4357 /* Re-establish the red-black properties of the tree, after a
4358 deletion. */
4359
4360 static void
4361 mem_delete_fixup (struct mem_node *x)
4362 {
4363 while (x != mem_root && x->color == MEM_BLACK)
4364 {
4365 if (x == x->parent->left)
4366 {
4367 struct mem_node *w = x->parent->right;
4368
4369 if (w->color == MEM_RED)
4370 {
4371 w->color = MEM_BLACK;
4372 x->parent->color = MEM_RED;
4373 mem_rotate_left (x->parent);
4374 w = x->parent->right;
4375 }
4376
4377 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4378 {
4379 w->color = MEM_RED;
4380 x = x->parent;
4381 }
4382 else
4383 {
4384 if (w->right->color == MEM_BLACK)
4385 {
4386 w->left->color = MEM_BLACK;
4387 w->color = MEM_RED;
4388 mem_rotate_right (w);
4389 w = x->parent->right;
4390 }
4391 w->color = x->parent->color;
4392 x->parent->color = MEM_BLACK;
4393 w->right->color = MEM_BLACK;
4394 mem_rotate_left (x->parent);
4395 x = mem_root;
4396 }
4397 }
4398 else
4399 {
4400 struct mem_node *w = x->parent->left;
4401
4402 if (w->color == MEM_RED)
4403 {
4404 w->color = MEM_BLACK;
4405 x->parent->color = MEM_RED;
4406 mem_rotate_right (x->parent);
4407 w = x->parent->left;
4408 }
4409
4410 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4411 {
4412 w->color = MEM_RED;
4413 x = x->parent;
4414 }
4415 else
4416 {
4417 if (w->left->color == MEM_BLACK)
4418 {
4419 w->right->color = MEM_BLACK;
4420 w->color = MEM_RED;
4421 mem_rotate_left (w);
4422 w = x->parent->left;
4423 }
4424
4425 w->color = x->parent->color;
4426 x->parent->color = MEM_BLACK;
4427 w->left->color = MEM_BLACK;
4428 mem_rotate_right (x->parent);
4429 x = mem_root;
4430 }
4431 }
4432 }
4433
4434 x->color = MEM_BLACK;
4435 }
4436
4437
4438 /* Value is non-zero if P is a pointer to a live Lisp string on
4439 the heap. M is a pointer to the mem_block for P. */
4440
4441 static bool
4442 live_string_p (struct mem_node *m, void *p)
4443 {
4444 if (m->type == MEM_TYPE_STRING)
4445 {
4446 struct string_block *b = m->start;
4447 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4448
4449 /* P must point to the start of a Lisp_String structure, and it
4450 must not be on the free-list. */
4451 return (offset >= 0
4452 && offset % sizeof b->strings[0] == 0
4453 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4454 && ((struct Lisp_String *) p)->data != NULL);
4455 }
4456 else
4457 return 0;
4458 }
4459
4460
4461 /* Value is non-zero if P is a pointer to a live Lisp cons on
4462 the heap. M is a pointer to the mem_block for P. */
4463
4464 static bool
4465 live_cons_p (struct mem_node *m, void *p)
4466 {
4467 if (m->type == MEM_TYPE_CONS)
4468 {
4469 struct cons_block *b = m->start;
4470 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4471
4472 /* P must point to the start of a Lisp_Cons, not be
4473 one of the unused cells in the current cons block,
4474 and not be on the free-list. */
4475 return (offset >= 0
4476 && offset % sizeof b->conses[0] == 0
4477 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4478 && (b != cons_block
4479 || offset / sizeof b->conses[0] < cons_block_index)
4480 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4481 }
4482 else
4483 return 0;
4484 }
4485
4486
4487 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4488 the heap. M is a pointer to the mem_block for P. */
4489
4490 static bool
4491 live_symbol_p (struct mem_node *m, void *p)
4492 {
4493 if (m->type == MEM_TYPE_SYMBOL)
4494 {
4495 struct symbol_block *b = m->start;
4496 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4497
4498 /* P must point to the start of a Lisp_Symbol, not be
4499 one of the unused cells in the current symbol block,
4500 and not be on the free-list. */
4501 return (offset >= 0
4502 && offset % sizeof b->symbols[0] == 0
4503 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4504 && (b != symbol_block
4505 || offset / sizeof b->symbols[0] < symbol_block_index)
4506 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4507 }
4508 else
4509 return 0;
4510 }
4511
4512
4513 /* Value is non-zero if P is a pointer to a live Lisp float on
4514 the heap. M is a pointer to the mem_block for P. */
4515
4516 static bool
4517 live_float_p (struct mem_node *m, void *p)
4518 {
4519 if (m->type == MEM_TYPE_FLOAT)
4520 {
4521 struct float_block *b = m->start;
4522 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4523
4524 /* P must point to the start of a Lisp_Float and not be
4525 one of the unused cells in the current float block. */
4526 return (offset >= 0
4527 && offset % sizeof b->floats[0] == 0
4528 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4529 && (b != float_block
4530 || offset / sizeof b->floats[0] < float_block_index));
4531 }
4532 else
4533 return 0;
4534 }
4535
4536
4537 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4538 the heap. M is a pointer to the mem_block for P. */
4539
4540 static bool
4541 live_misc_p (struct mem_node *m, void *p)
4542 {
4543 if (m->type == MEM_TYPE_MISC)
4544 {
4545 struct marker_block *b = m->start;
4546 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4547
4548 /* P must point to the start of a Lisp_Misc, not be
4549 one of the unused cells in the current misc block,
4550 and not be on the free-list. */
4551 return (offset >= 0
4552 && offset % sizeof b->markers[0] == 0
4553 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4554 && (b != marker_block
4555 || offset / sizeof b->markers[0] < marker_block_index)
4556 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4557 }
4558 else
4559 return 0;
4560 }
4561
4562
4563 /* Value is non-zero if P is a pointer to a live vector-like object.
4564 M is a pointer to the mem_block for P. */
4565
4566 static bool
4567 live_vector_p (struct mem_node *m, void *p)
4568 {
4569 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4570 {
4571 /* This memory node corresponds to a vector block. */
4572 struct vector_block *block = m->start;
4573 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4574
4575 /* P is in the block's allocation range. Scan the block
4576 up to P and see whether P points to the start of some
4577 vector which is not on a free list. FIXME: check whether
4578 some allocation patterns (probably a lot of short vectors)
4579 may cause a substantial overhead of this loop. */
4580 while (VECTOR_IN_BLOCK (vector, block)
4581 && vector <= (struct Lisp_Vector *) p)
4582 {
4583 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4584 return 1;
4585 else
4586 vector = ADVANCE (vector, vector_nbytes (vector));
4587 }
4588 }
4589 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4590 /* This memory node corresponds to a large vector. */
4591 return 1;
4592 return 0;
4593 }
4594
4595
4596 /* Value is non-zero if P is a pointer to a live buffer. M is a
4597 pointer to the mem_block for P. */
4598
4599 static bool
4600 live_buffer_p (struct mem_node *m, void *p)
4601 {
4602 /* P must point to the start of the block, and the buffer
4603 must not have been killed. */
4604 return (m->type == MEM_TYPE_BUFFER
4605 && p == m->start
4606 && !NILP (((struct buffer *) p)->name_));
4607 }
4608
4609 /* Mark OBJ if we can prove it's a Lisp_Object. */
4610
4611 static void
4612 mark_maybe_object (Lisp_Object obj)
4613 {
4614 #if USE_VALGRIND
4615 if (valgrind_p)
4616 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4617 #endif
4618
4619 if (INTEGERP (obj))
4620 return;
4621
4622 void *po = XPNTR (obj);
4623 struct mem_node *m = mem_find (po);
4624
4625 if (m != MEM_NIL)
4626 {
4627 bool mark_p = false;
4628
4629 switch (XTYPE (obj))
4630 {
4631 case Lisp_String:
4632 mark_p = (live_string_p (m, po)
4633 && !STRING_MARKED_P ((struct Lisp_String *) po));
4634 break;
4635
4636 case Lisp_Cons:
4637 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4638 break;
4639
4640 case Lisp_Symbol:
4641 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4642 break;
4643
4644 case Lisp_Float:
4645 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4646 break;
4647
4648 case Lisp_Vectorlike:
4649 /* Note: can't check BUFFERP before we know it's a
4650 buffer because checking that dereferences the pointer
4651 PO which might point anywhere. */
4652 if (live_vector_p (m, po))
4653 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4654 else if (live_buffer_p (m, po))
4655 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4656 break;
4657
4658 case Lisp_Misc:
4659 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4660 break;
4661
4662 default:
4663 break;
4664 }
4665
4666 if (mark_p)
4667 mark_object (obj);
4668 }
4669 }
4670
4671 /* Return true if P can point to Lisp data, and false otherwise.
4672 Symbols are implemented via offsets not pointers, but the offsets
4673 are also multiples of GCALIGNMENT. */
4674
4675 static bool
4676 maybe_lisp_pointer (void *p)
4677 {
4678 return (uintptr_t) p % GCALIGNMENT == 0;
4679 }
4680
4681 #ifndef HAVE_MODULES
4682 enum { HAVE_MODULES = false };
4683 #endif
4684
4685 /* If P points to Lisp data, mark that as live if it isn't already
4686 marked. */
4687
4688 static void
4689 mark_maybe_pointer (void *p)
4690 {
4691 struct mem_node *m;
4692
4693 #if USE_VALGRIND
4694 if (valgrind_p)
4695 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4696 #endif
4697
4698 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4699 {
4700 if (!maybe_lisp_pointer (p))
4701 return;
4702 }
4703 else
4704 {
4705 /* For the wide-int case, also mark emacs_value tagged pointers,
4706 which can be generated by emacs-module.c's value_to_lisp. */
4707 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4708 }
4709
4710 m = mem_find (p);
4711 if (m != MEM_NIL)
4712 {
4713 Lisp_Object obj = Qnil;
4714
4715 switch (m->type)
4716 {
4717 case MEM_TYPE_NON_LISP:
4718 case MEM_TYPE_SPARE:
4719 /* Nothing to do; not a pointer to Lisp memory. */
4720 break;
4721
4722 case MEM_TYPE_BUFFER:
4723 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4724 XSETVECTOR (obj, p);
4725 break;
4726
4727 case MEM_TYPE_CONS:
4728 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4729 XSETCONS (obj, p);
4730 break;
4731
4732 case MEM_TYPE_STRING:
4733 if (live_string_p (m, p)
4734 && !STRING_MARKED_P ((struct Lisp_String *) p))
4735 XSETSTRING (obj, p);
4736 break;
4737
4738 case MEM_TYPE_MISC:
4739 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4740 XSETMISC (obj, p);
4741 break;
4742
4743 case MEM_TYPE_SYMBOL:
4744 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4745 XSETSYMBOL (obj, p);
4746 break;
4747
4748 case MEM_TYPE_FLOAT:
4749 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4750 XSETFLOAT (obj, p);
4751 break;
4752
4753 case MEM_TYPE_VECTORLIKE:
4754 case MEM_TYPE_VECTOR_BLOCK:
4755 if (live_vector_p (m, p))
4756 {
4757 Lisp_Object tem;
4758 XSETVECTOR (tem, p);
4759 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4760 obj = tem;
4761 }
4762 break;
4763
4764 default:
4765 emacs_abort ();
4766 }
4767
4768 if (!NILP (obj))
4769 mark_object (obj);
4770 }
4771 }
4772
4773
4774 /* Alignment of pointer values. Use alignof, as it sometimes returns
4775 a smaller alignment than GCC's __alignof__ and mark_memory might
4776 miss objects if __alignof__ were used. */
4777 #define GC_POINTER_ALIGNMENT alignof (void *)
4778
4779 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4780 or END+OFFSET..START. */
4781
4782 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4783 mark_memory (void *start, void *end)
4784 {
4785 char *pp;
4786
4787 /* Make START the pointer to the start of the memory region,
4788 if it isn't already. */
4789 if (end < start)
4790 {
4791 void *tem = start;
4792 start = end;
4793 end = tem;
4794 }
4795
4796 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4797
4798 /* Mark Lisp data pointed to. This is necessary because, in some
4799 situations, the C compiler optimizes Lisp objects away, so that
4800 only a pointer to them remains. Example:
4801
4802 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4803 ()
4804 {
4805 Lisp_Object obj = build_string ("test");
4806 struct Lisp_String *s = XSTRING (obj);
4807 Fgarbage_collect ();
4808 fprintf (stderr, "test '%s'\n", s->data);
4809 return Qnil;
4810 }
4811
4812 Here, `obj' isn't really used, and the compiler optimizes it
4813 away. The only reference to the life string is through the
4814 pointer `s'. */
4815
4816 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4817 {
4818 mark_maybe_pointer (*(void **) pp);
4819 mark_maybe_object (*(Lisp_Object *) pp);
4820 }
4821 }
4822
4823 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4824
4825 static bool setjmp_tested_p;
4826 static int longjmps_done;
4827
4828 #define SETJMP_WILL_LIKELY_WORK "\
4829 \n\
4830 Emacs garbage collector has been changed to use conservative stack\n\
4831 marking. Emacs has determined that the method it uses to do the\n\
4832 marking will likely work on your system, but this isn't sure.\n\
4833 \n\
4834 If you are a system-programmer, or can get the help of a local wizard\n\
4835 who is, please take a look at the function mark_stack in alloc.c, and\n\
4836 verify that the methods used are appropriate for your system.\n\
4837 \n\
4838 Please mail the result to <emacs-devel@gnu.org>.\n\
4839 "
4840
4841 #define SETJMP_WILL_NOT_WORK "\
4842 \n\
4843 Emacs garbage collector has been changed to use conservative stack\n\
4844 marking. Emacs has determined that the default method it uses to do the\n\
4845 marking will not work on your system. We will need a system-dependent\n\
4846 solution for your system.\n\
4847 \n\
4848 Please take a look at the function mark_stack in alloc.c, and\n\
4849 try to find a way to make it work on your system.\n\
4850 \n\
4851 Note that you may get false negatives, depending on the compiler.\n\
4852 In particular, you need to use -O with GCC for this test.\n\
4853 \n\
4854 Please mail the result to <emacs-devel@gnu.org>.\n\
4855 "
4856
4857
4858 /* Perform a quick check if it looks like setjmp saves registers in a
4859 jmp_buf. Print a message to stderr saying so. When this test
4860 succeeds, this is _not_ a proof that setjmp is sufficient for
4861 conservative stack marking. Only the sources or a disassembly
4862 can prove that. */
4863
4864 static void
4865 test_setjmp (void)
4866 {
4867 char buf[10];
4868 register int x;
4869 sys_jmp_buf jbuf;
4870
4871 /* Arrange for X to be put in a register. */
4872 sprintf (buf, "1");
4873 x = strlen (buf);
4874 x = 2 * x - 1;
4875
4876 sys_setjmp (jbuf);
4877 if (longjmps_done == 1)
4878 {
4879 /* Came here after the longjmp at the end of the function.
4880
4881 If x == 1, the longjmp has restored the register to its
4882 value before the setjmp, and we can hope that setjmp
4883 saves all such registers in the jmp_buf, although that
4884 isn't sure.
4885
4886 For other values of X, either something really strange is
4887 taking place, or the setjmp just didn't save the register. */
4888
4889 if (x == 1)
4890 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4891 else
4892 {
4893 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4894 exit (1);
4895 }
4896 }
4897
4898 ++longjmps_done;
4899 x = 2;
4900 if (longjmps_done == 1)
4901 sys_longjmp (jbuf, 1);
4902 }
4903
4904 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4905
4906
4907 /* Mark live Lisp objects on the C stack.
4908
4909 There are several system-dependent problems to consider when
4910 porting this to new architectures:
4911
4912 Processor Registers
4913
4914 We have to mark Lisp objects in CPU registers that can hold local
4915 variables or are used to pass parameters.
4916
4917 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4918 something that either saves relevant registers on the stack, or
4919 calls mark_maybe_object passing it each register's contents.
4920
4921 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4922 implementation assumes that calling setjmp saves registers we need
4923 to see in a jmp_buf which itself lies on the stack. This doesn't
4924 have to be true! It must be verified for each system, possibly
4925 by taking a look at the source code of setjmp.
4926
4927 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4928 can use it as a machine independent method to store all registers
4929 to the stack. In this case the macros described in the previous
4930 two paragraphs are not used.
4931
4932 Stack Layout
4933
4934 Architectures differ in the way their processor stack is organized.
4935 For example, the stack might look like this
4936
4937 +----------------+
4938 | Lisp_Object | size = 4
4939 +----------------+
4940 | something else | size = 2
4941 +----------------+
4942 | Lisp_Object | size = 4
4943 +----------------+
4944 | ... |
4945
4946 In such a case, not every Lisp_Object will be aligned equally. To
4947 find all Lisp_Object on the stack it won't be sufficient to walk
4948 the stack in steps of 4 bytes. Instead, two passes will be
4949 necessary, one starting at the start of the stack, and a second
4950 pass starting at the start of the stack + 2. Likewise, if the
4951 minimal alignment of Lisp_Objects on the stack is 1, four passes
4952 would be necessary, each one starting with one byte more offset
4953 from the stack start. */
4954
4955 static void
4956 mark_stack (void *end)
4957 {
4958
4959 /* This assumes that the stack is a contiguous region in memory. If
4960 that's not the case, something has to be done here to iterate
4961 over the stack segments. */
4962 mark_memory (stack_base, end);
4963
4964 /* Allow for marking a secondary stack, like the register stack on the
4965 ia64. */
4966 #ifdef GC_MARK_SECONDARY_STACK
4967 GC_MARK_SECONDARY_STACK ();
4968 #endif
4969 }
4970
4971 static bool
4972 c_symbol_p (struct Lisp_Symbol *sym)
4973 {
4974 char *lispsym_ptr = (char *) lispsym;
4975 char *sym_ptr = (char *) sym;
4976 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4977 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4978 }
4979
4980 /* Determine whether it is safe to access memory at address P. */
4981 static int
4982 valid_pointer_p (void *p)
4983 {
4984 #ifdef WINDOWSNT
4985 return w32_valid_pointer_p (p, 16);
4986 #else
4987
4988 if (ADDRESS_SANITIZER)
4989 return p ? -1 : 0;
4990
4991 int fd[2];
4992
4993 /* Obviously, we cannot just access it (we would SEGV trying), so we
4994 trick the o/s to tell us whether p is a valid pointer.
4995 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4996 not validate p in that case. */
4997
4998 if (emacs_pipe (fd) == 0)
4999 {
5000 bool valid = emacs_write (fd[1], p, 16) == 16;
5001 emacs_close (fd[1]);
5002 emacs_close (fd[0]);
5003 return valid;
5004 }
5005
5006 return -1;
5007 #endif
5008 }
5009
5010 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5011 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5012 cannot validate OBJ. This function can be quite slow, so its primary
5013 use is the manual debugging. The only exception is print_object, where
5014 we use it to check whether the memory referenced by the pointer of
5015 Lisp_Save_Value object contains valid objects. */
5016
5017 int
5018 valid_lisp_object_p (Lisp_Object obj)
5019 {
5020 if (INTEGERP (obj))
5021 return 1;
5022
5023 void *p = XPNTR (obj);
5024 if (PURE_P (p))
5025 return 1;
5026
5027 if (SYMBOLP (obj) && c_symbol_p (p))
5028 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5029
5030 if (p == &buffer_defaults || p == &buffer_local_symbols)
5031 return 2;
5032
5033 struct mem_node *m = mem_find (p);
5034
5035 if (m == MEM_NIL)
5036 {
5037 int valid = valid_pointer_p (p);
5038 if (valid <= 0)
5039 return valid;
5040
5041 if (SUBRP (obj))
5042 return 1;
5043
5044 return 0;
5045 }
5046
5047 switch (m->type)
5048 {
5049 case MEM_TYPE_NON_LISP:
5050 case MEM_TYPE_SPARE:
5051 return 0;
5052
5053 case MEM_TYPE_BUFFER:
5054 return live_buffer_p (m, p) ? 1 : 2;
5055
5056 case MEM_TYPE_CONS:
5057 return live_cons_p (m, p);
5058
5059 case MEM_TYPE_STRING:
5060 return live_string_p (m, p);
5061
5062 case MEM_TYPE_MISC:
5063 return live_misc_p (m, p);
5064
5065 case MEM_TYPE_SYMBOL:
5066 return live_symbol_p (m, p);
5067
5068 case MEM_TYPE_FLOAT:
5069 return live_float_p (m, p);
5070
5071 case MEM_TYPE_VECTORLIKE:
5072 case MEM_TYPE_VECTOR_BLOCK:
5073 return live_vector_p (m, p);
5074
5075 default:
5076 break;
5077 }
5078
5079 return 0;
5080 }
5081
5082 /***********************************************************************
5083 Pure Storage Management
5084 ***********************************************************************/
5085
5086 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5087 pointer to it. TYPE is the Lisp type for which the memory is
5088 allocated. TYPE < 0 means it's not used for a Lisp object. */
5089
5090 static void *
5091 pure_alloc (size_t size, int type)
5092 {
5093 void *result;
5094
5095 again:
5096 if (type >= 0)
5097 {
5098 /* Allocate space for a Lisp object from the beginning of the free
5099 space with taking account of alignment. */
5100 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5101 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5102 }
5103 else
5104 {
5105 /* Allocate space for a non-Lisp object from the end of the free
5106 space. */
5107 pure_bytes_used_non_lisp += size;
5108 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5109 }
5110 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5111
5112 if (pure_bytes_used <= pure_size)
5113 return result;
5114
5115 /* Don't allocate a large amount here,
5116 because it might get mmap'd and then its address
5117 might not be usable. */
5118 purebeg = xmalloc (10000);
5119 pure_size = 10000;
5120 pure_bytes_used_before_overflow += pure_bytes_used - size;
5121 pure_bytes_used = 0;
5122 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5123 goto again;
5124 }
5125
5126
5127 /* Print a warning if PURESIZE is too small. */
5128
5129 void
5130 check_pure_size (void)
5131 {
5132 if (pure_bytes_used_before_overflow)
5133 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5134 " bytes needed)"),
5135 pure_bytes_used + pure_bytes_used_before_overflow);
5136 }
5137
5138
5139 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5140 the non-Lisp data pool of the pure storage, and return its start
5141 address. Return NULL if not found. */
5142
5143 static char *
5144 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5145 {
5146 int i;
5147 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5148 const unsigned char *p;
5149 char *non_lisp_beg;
5150
5151 if (pure_bytes_used_non_lisp <= nbytes)
5152 return NULL;
5153
5154 /* Set up the Boyer-Moore table. */
5155 skip = nbytes + 1;
5156 for (i = 0; i < 256; i++)
5157 bm_skip[i] = skip;
5158
5159 p = (const unsigned char *) data;
5160 while (--skip > 0)
5161 bm_skip[*p++] = skip;
5162
5163 last_char_skip = bm_skip['\0'];
5164
5165 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5166 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5167
5168 /* See the comments in the function `boyer_moore' (search.c) for the
5169 use of `infinity'. */
5170 infinity = pure_bytes_used_non_lisp + 1;
5171 bm_skip['\0'] = infinity;
5172
5173 p = (const unsigned char *) non_lisp_beg + nbytes;
5174 start = 0;
5175 do
5176 {
5177 /* Check the last character (== '\0'). */
5178 do
5179 {
5180 start += bm_skip[*(p + start)];
5181 }
5182 while (start <= start_max);
5183
5184 if (start < infinity)
5185 /* Couldn't find the last character. */
5186 return NULL;
5187
5188 /* No less than `infinity' means we could find the last
5189 character at `p[start - infinity]'. */
5190 start -= infinity;
5191
5192 /* Check the remaining characters. */
5193 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5194 /* Found. */
5195 return non_lisp_beg + start;
5196
5197 start += last_char_skip;
5198 }
5199 while (start <= start_max);
5200
5201 return NULL;
5202 }
5203
5204
5205 /* Return a string allocated in pure space. DATA is a buffer holding
5206 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5207 means make the result string multibyte.
5208
5209 Must get an error if pure storage is full, since if it cannot hold
5210 a large string it may be able to hold conses that point to that
5211 string; then the string is not protected from gc. */
5212
5213 Lisp_Object
5214 make_pure_string (const char *data,
5215 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5216 {
5217 Lisp_Object string;
5218 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5219 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5220 if (s->data == NULL)
5221 {
5222 s->data = pure_alloc (nbytes + 1, -1);
5223 memcpy (s->data, data, nbytes);
5224 s->data[nbytes] = '\0';
5225 }
5226 s->size = nchars;
5227 s->size_byte = multibyte ? nbytes : -1;
5228 s->intervals = NULL;
5229 XSETSTRING (string, s);
5230 return string;
5231 }
5232
5233 /* Return a string allocated in pure space. Do not
5234 allocate the string data, just point to DATA. */
5235
5236 Lisp_Object
5237 make_pure_c_string (const char *data, ptrdiff_t nchars)
5238 {
5239 Lisp_Object string;
5240 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5241 s->size = nchars;
5242 s->size_byte = -1;
5243 s->data = (unsigned char *) data;
5244 s->intervals = NULL;
5245 XSETSTRING (string, s);
5246 return string;
5247 }
5248
5249 static Lisp_Object purecopy (Lisp_Object obj);
5250
5251 /* Return a cons allocated from pure space. Give it pure copies
5252 of CAR as car and CDR as cdr. */
5253
5254 Lisp_Object
5255 pure_cons (Lisp_Object car, Lisp_Object cdr)
5256 {
5257 Lisp_Object new;
5258 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5259 XSETCONS (new, p);
5260 XSETCAR (new, purecopy (car));
5261 XSETCDR (new, purecopy (cdr));
5262 return new;
5263 }
5264
5265
5266 /* Value is a float object with value NUM allocated from pure space. */
5267
5268 static Lisp_Object
5269 make_pure_float (double num)
5270 {
5271 Lisp_Object new;
5272 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5273 XSETFLOAT (new, p);
5274 XFLOAT_INIT (new, num);
5275 return new;
5276 }
5277
5278
5279 /* Return a vector with room for LEN Lisp_Objects allocated from
5280 pure space. */
5281
5282 static Lisp_Object
5283 make_pure_vector (ptrdiff_t len)
5284 {
5285 Lisp_Object new;
5286 size_t size = header_size + len * word_size;
5287 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5288 XSETVECTOR (new, p);
5289 XVECTOR (new)->header.size = len;
5290 return new;
5291 }
5292
5293 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5294 doc: /* Make a copy of object OBJ in pure storage.
5295 Recursively copies contents of vectors and cons cells.
5296 Does not copy symbols. Copies strings without text properties. */)
5297 (register Lisp_Object obj)
5298 {
5299 if (NILP (Vpurify_flag))
5300 return obj;
5301 else if (MARKERP (obj) || OVERLAYP (obj)
5302 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5303 /* Can't purify those. */
5304 return obj;
5305 else
5306 return purecopy (obj);
5307 }
5308
5309 static Lisp_Object
5310 purecopy (Lisp_Object obj)
5311 {
5312 if (INTEGERP (obj)
5313 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5314 || SUBRP (obj))
5315 return obj; /* Already pure. */
5316
5317 if (STRINGP (obj) && XSTRING (obj)->intervals)
5318 message_with_string ("Dropping text-properties while making string `%s' pure",
5319 obj, true);
5320
5321 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5322 {
5323 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5324 if (!NILP (tmp))
5325 return tmp;
5326 }
5327
5328 if (CONSP (obj))
5329 obj = pure_cons (XCAR (obj), XCDR (obj));
5330 else if (FLOATP (obj))
5331 obj = make_pure_float (XFLOAT_DATA (obj));
5332 else if (STRINGP (obj))
5333 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5334 SBYTES (obj),
5335 STRING_MULTIBYTE (obj));
5336 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5337 {
5338 struct Lisp_Vector *objp = XVECTOR (obj);
5339 ptrdiff_t nbytes = vector_nbytes (objp);
5340 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5341 register ptrdiff_t i;
5342 ptrdiff_t size = ASIZE (obj);
5343 if (size & PSEUDOVECTOR_FLAG)
5344 size &= PSEUDOVECTOR_SIZE_MASK;
5345 memcpy (vec, objp, nbytes);
5346 for (i = 0; i < size; i++)
5347 vec->contents[i] = purecopy (vec->contents[i]);
5348 XSETVECTOR (obj, vec);
5349 }
5350 else if (SYMBOLP (obj))
5351 {
5352 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5353 { /* We can't purify them, but they appear in many pure objects.
5354 Mark them as `pinned' so we know to mark them at every GC cycle. */
5355 XSYMBOL (obj)->pinned = true;
5356 symbol_block_pinned = symbol_block;
5357 }
5358 /* Don't hash-cons it. */
5359 return obj;
5360 }
5361 else
5362 {
5363 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5364 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5365 }
5366
5367 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5368 Fputhash (obj, obj, Vpurify_flag);
5369
5370 return obj;
5371 }
5372
5373
5374 \f
5375 /***********************************************************************
5376 Protection from GC
5377 ***********************************************************************/
5378
5379 /* Put an entry in staticvec, pointing at the variable with address
5380 VARADDRESS. */
5381
5382 void
5383 staticpro (Lisp_Object *varaddress)
5384 {
5385 if (staticidx >= NSTATICS)
5386 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5387 staticvec[staticidx++] = varaddress;
5388 }
5389
5390 \f
5391 /***********************************************************************
5392 Protection from GC
5393 ***********************************************************************/
5394
5395 /* Temporarily prevent garbage collection. */
5396
5397 ptrdiff_t
5398 inhibit_garbage_collection (void)
5399 {
5400 ptrdiff_t count = SPECPDL_INDEX ();
5401
5402 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5403 return count;
5404 }
5405
5406 /* Used to avoid possible overflows when
5407 converting from C to Lisp integers. */
5408
5409 static Lisp_Object
5410 bounded_number (EMACS_INT number)
5411 {
5412 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5413 }
5414
5415 /* Calculate total bytes of live objects. */
5416
5417 static size_t
5418 total_bytes_of_live_objects (void)
5419 {
5420 size_t tot = 0;
5421 tot += total_conses * sizeof (struct Lisp_Cons);
5422 tot += total_symbols * sizeof (struct Lisp_Symbol);
5423 tot += total_markers * sizeof (union Lisp_Misc);
5424 tot += total_string_bytes;
5425 tot += total_vector_slots * word_size;
5426 tot += total_floats * sizeof (struct Lisp_Float);
5427 tot += total_intervals * sizeof (struct interval);
5428 tot += total_strings * sizeof (struct Lisp_String);
5429 return tot;
5430 }
5431
5432 #ifdef HAVE_WINDOW_SYSTEM
5433
5434 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5435 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5436
5437 static Lisp_Object
5438 compact_font_cache_entry (Lisp_Object entry)
5439 {
5440 Lisp_Object tail, *prev = &entry;
5441
5442 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5443 {
5444 bool drop = 0;
5445 Lisp_Object obj = XCAR (tail);
5446
5447 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5448 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5449 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5450 /* Don't use VECTORP here, as that calls ASIZE, which could
5451 hit assertion violation during GC. */
5452 && (VECTORLIKEP (XCDR (obj))
5453 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5454 {
5455 ptrdiff_t i, size = gc_asize (XCDR (obj));
5456 Lisp_Object obj_cdr = XCDR (obj);
5457
5458 /* If font-spec is not marked, most likely all font-entities
5459 are not marked too. But we must be sure that nothing is
5460 marked within OBJ before we really drop it. */
5461 for (i = 0; i < size; i++)
5462 {
5463 Lisp_Object objlist;
5464
5465 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5466 break;
5467
5468 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5469 for (; CONSP (objlist); objlist = XCDR (objlist))
5470 {
5471 Lisp_Object val = XCAR (objlist);
5472 struct font *font = GC_XFONT_OBJECT (val);
5473
5474 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5475 && VECTOR_MARKED_P(font))
5476 break;
5477 }
5478 if (CONSP (objlist))
5479 {
5480 /* Found a marked font, bail out. */
5481 break;
5482 }
5483 }
5484
5485 if (i == size)
5486 {
5487 /* No marked fonts were found, so this entire font
5488 entity can be dropped. */
5489 drop = 1;
5490 }
5491 }
5492 if (drop)
5493 *prev = XCDR (tail);
5494 else
5495 prev = xcdr_addr (tail);
5496 }
5497 return entry;
5498 }
5499
5500 /* Compact font caches on all terminals and mark
5501 everything which is still here after compaction. */
5502
5503 static void
5504 compact_font_caches (void)
5505 {
5506 struct terminal *t;
5507
5508 for (t = terminal_list; t; t = t->next_terminal)
5509 {
5510 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5511 if (CONSP (cache))
5512 {
5513 Lisp_Object entry;
5514
5515 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5516 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5517 }
5518 mark_object (cache);
5519 }
5520 }
5521
5522 #else /* not HAVE_WINDOW_SYSTEM */
5523
5524 #define compact_font_caches() (void)(0)
5525
5526 #endif /* HAVE_WINDOW_SYSTEM */
5527
5528 /* Remove (MARKER . DATA) entries with unmarked MARKER
5529 from buffer undo LIST and return changed list. */
5530
5531 static Lisp_Object
5532 compact_undo_list (Lisp_Object list)
5533 {
5534 Lisp_Object tail, *prev = &list;
5535
5536 for (tail = list; CONSP (tail); tail = XCDR (tail))
5537 {
5538 if (CONSP (XCAR (tail))
5539 && MARKERP (XCAR (XCAR (tail)))
5540 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5541 *prev = XCDR (tail);
5542 else
5543 prev = xcdr_addr (tail);
5544 }
5545 return list;
5546 }
5547
5548 static void
5549 mark_pinned_symbols (void)
5550 {
5551 struct symbol_block *sblk;
5552 int lim = (symbol_block_pinned == symbol_block
5553 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5554
5555 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5556 {
5557 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5558 for (; sym < end; ++sym)
5559 if (sym->s.pinned)
5560 mark_object (make_lisp_symbol (&sym->s));
5561
5562 lim = SYMBOL_BLOCK_SIZE;
5563 }
5564 }
5565
5566 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5567 separate function so that we could limit mark_stack in searching
5568 the stack frames below this function, thus avoiding the rare cases
5569 where mark_stack finds values that look like live Lisp objects on
5570 portions of stack that couldn't possibly contain such live objects.
5571 For more details of this, see the discussion at
5572 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5573 static Lisp_Object
5574 garbage_collect_1 (void *end)
5575 {
5576 struct buffer *nextb;
5577 char stack_top_variable;
5578 ptrdiff_t i;
5579 bool message_p;
5580 ptrdiff_t count = SPECPDL_INDEX ();
5581 struct timespec start;
5582 Lisp_Object retval = Qnil;
5583 size_t tot_before = 0;
5584
5585 if (abort_on_gc)
5586 emacs_abort ();
5587
5588 /* Can't GC if pure storage overflowed because we can't determine
5589 if something is a pure object or not. */
5590 if (pure_bytes_used_before_overflow)
5591 return Qnil;
5592
5593 /* Record this function, so it appears on the profiler's backtraces. */
5594 record_in_backtrace (Qautomatic_gc, 0, 0);
5595
5596 check_cons_list ();
5597
5598 /* Don't keep undo information around forever.
5599 Do this early on, so it is no problem if the user quits. */
5600 FOR_EACH_BUFFER (nextb)
5601 compact_buffer (nextb);
5602
5603 if (profiler_memory_running)
5604 tot_before = total_bytes_of_live_objects ();
5605
5606 start = current_timespec ();
5607
5608 /* In case user calls debug_print during GC,
5609 don't let that cause a recursive GC. */
5610 consing_since_gc = 0;
5611
5612 /* Save what's currently displayed in the echo area. Don't do that
5613 if we are GC'ing because we've run out of memory, since
5614 push_message will cons, and we might have no memory for that. */
5615 if (NILP (Vmemory_full))
5616 {
5617 message_p = push_message ();
5618 record_unwind_protect_void (pop_message_unwind);
5619 }
5620 else
5621 message_p = false;
5622
5623 /* Save a copy of the contents of the stack, for debugging. */
5624 #if MAX_SAVE_STACK > 0
5625 if (NILP (Vpurify_flag))
5626 {
5627 char *stack;
5628 ptrdiff_t stack_size;
5629 if (&stack_top_variable < stack_bottom)
5630 {
5631 stack = &stack_top_variable;
5632 stack_size = stack_bottom - &stack_top_variable;
5633 }
5634 else
5635 {
5636 stack = stack_bottom;
5637 stack_size = &stack_top_variable - stack_bottom;
5638 }
5639 if (stack_size <= MAX_SAVE_STACK)
5640 {
5641 if (stack_copy_size < stack_size)
5642 {
5643 stack_copy = xrealloc (stack_copy, stack_size);
5644 stack_copy_size = stack_size;
5645 }
5646 no_sanitize_memcpy (stack_copy, stack, stack_size);
5647 }
5648 }
5649 #endif /* MAX_SAVE_STACK > 0 */
5650
5651 if (garbage_collection_messages)
5652 message1_nolog ("Garbage collecting...");
5653
5654 block_input ();
5655
5656 shrink_regexp_cache ();
5657
5658 gc_in_progress = 1;
5659
5660 /* Mark all the special slots that serve as the roots of accessibility. */
5661
5662 mark_buffer (&buffer_defaults);
5663 mark_buffer (&buffer_local_symbols);
5664
5665 for (i = 0; i < ARRAYELTS (lispsym); i++)
5666 mark_object (builtin_lisp_symbol (i));
5667
5668 for (i = 0; i < staticidx; i++)
5669 mark_object (*staticvec[i]);
5670
5671 mark_pinned_symbols ();
5672 mark_specpdl ();
5673 mark_terminals ();
5674 mark_kboards ();
5675
5676 #ifdef USE_GTK
5677 xg_mark_data ();
5678 #endif
5679
5680 mark_stack (end);
5681
5682 {
5683 struct handler *handler;
5684 for (handler = handlerlist; handler; handler = handler->next)
5685 {
5686 mark_object (handler->tag_or_ch);
5687 mark_object (handler->val);
5688 }
5689 }
5690 #ifdef HAVE_WINDOW_SYSTEM
5691 mark_fringe_data ();
5692 #endif
5693
5694 /* Everything is now marked, except for the data in font caches,
5695 undo lists, and finalizers. The first two are compacted by
5696 removing an items which aren't reachable otherwise. */
5697
5698 compact_font_caches ();
5699
5700 FOR_EACH_BUFFER (nextb)
5701 {
5702 if (!EQ (BVAR (nextb, undo_list), Qt))
5703 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5704 /* Now that we have stripped the elements that need not be
5705 in the undo_list any more, we can finally mark the list. */
5706 mark_object (BVAR (nextb, undo_list));
5707 }
5708
5709 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5710 to doomed_finalizers so we can run their associated functions
5711 after GC. It's important to scan finalizers at this stage so
5712 that we can be sure that unmarked finalizers are really
5713 unreachable except for references from their associated functions
5714 and from other finalizers. */
5715
5716 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5717 mark_finalizer_list (&doomed_finalizers);
5718
5719 gc_sweep ();
5720
5721 relocate_byte_stack ();
5722
5723 /* Clear the mark bits that we set in certain root slots. */
5724 VECTOR_UNMARK (&buffer_defaults);
5725 VECTOR_UNMARK (&buffer_local_symbols);
5726
5727 check_cons_list ();
5728
5729 gc_in_progress = 0;
5730
5731 unblock_input ();
5732
5733 consing_since_gc = 0;
5734 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5735 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5736
5737 gc_relative_threshold = 0;
5738 if (FLOATP (Vgc_cons_percentage))
5739 { /* Set gc_cons_combined_threshold. */
5740 double tot = total_bytes_of_live_objects ();
5741
5742 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5743 if (0 < tot)
5744 {
5745 if (tot < TYPE_MAXIMUM (EMACS_INT))
5746 gc_relative_threshold = tot;
5747 else
5748 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5749 }
5750 }
5751
5752 if (garbage_collection_messages && NILP (Vmemory_full))
5753 {
5754 if (message_p || minibuf_level > 0)
5755 restore_message ();
5756 else
5757 message1_nolog ("Garbage collecting...done");
5758 }
5759
5760 unbind_to (count, Qnil);
5761
5762 Lisp_Object total[] = {
5763 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5764 bounded_number (total_conses),
5765 bounded_number (total_free_conses)),
5766 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5767 bounded_number (total_symbols),
5768 bounded_number (total_free_symbols)),
5769 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5770 bounded_number (total_markers),
5771 bounded_number (total_free_markers)),
5772 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5773 bounded_number (total_strings),
5774 bounded_number (total_free_strings)),
5775 list3 (Qstring_bytes, make_number (1),
5776 bounded_number (total_string_bytes)),
5777 list3 (Qvectors,
5778 make_number (header_size + sizeof (Lisp_Object)),
5779 bounded_number (total_vectors)),
5780 list4 (Qvector_slots, make_number (word_size),
5781 bounded_number (total_vector_slots),
5782 bounded_number (total_free_vector_slots)),
5783 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5784 bounded_number (total_floats),
5785 bounded_number (total_free_floats)),
5786 list4 (Qintervals, make_number (sizeof (struct interval)),
5787 bounded_number (total_intervals),
5788 bounded_number (total_free_intervals)),
5789 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5790 bounded_number (total_buffers)),
5791
5792 #ifdef DOUG_LEA_MALLOC
5793 list4 (Qheap, make_number (1024),
5794 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5795 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5796 #endif
5797 };
5798 retval = CALLMANY (Flist, total);
5799
5800 /* GC is complete: now we can run our finalizer callbacks. */
5801 run_finalizers (&doomed_finalizers);
5802
5803 if (!NILP (Vpost_gc_hook))
5804 {
5805 ptrdiff_t gc_count = inhibit_garbage_collection ();
5806 safe_run_hooks (Qpost_gc_hook);
5807 unbind_to (gc_count, Qnil);
5808 }
5809
5810 /* Accumulate statistics. */
5811 if (FLOATP (Vgc_elapsed))
5812 {
5813 struct timespec since_start = timespec_sub (current_timespec (), start);
5814 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5815 + timespectod (since_start));
5816 }
5817
5818 gcs_done++;
5819
5820 /* Collect profiling data. */
5821 if (profiler_memory_running)
5822 {
5823 size_t swept = 0;
5824 size_t tot_after = total_bytes_of_live_objects ();
5825 if (tot_before > tot_after)
5826 swept = tot_before - tot_after;
5827 malloc_probe (swept);
5828 }
5829
5830 return retval;
5831 }
5832
5833 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5834 doc: /* Reclaim storage for Lisp objects no longer needed.
5835 Garbage collection happens automatically if you cons more than
5836 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5837 `garbage-collect' normally returns a list with info on amount of space in use,
5838 where each entry has the form (NAME SIZE USED FREE), where:
5839 - NAME is a symbol describing the kind of objects this entry represents,
5840 - SIZE is the number of bytes used by each one,
5841 - USED is the number of those objects that were found live in the heap,
5842 - FREE is the number of those objects that are not live but that Emacs
5843 keeps around for future allocations (maybe because it does not know how
5844 to return them to the OS).
5845 However, if there was overflow in pure space, `garbage-collect'
5846 returns nil, because real GC can't be done.
5847 See Info node `(elisp)Garbage Collection'. */)
5848 (void)
5849 {
5850 void *end;
5851
5852 #ifdef HAVE___BUILTIN_UNWIND_INIT
5853 /* Force callee-saved registers and register windows onto the stack.
5854 This is the preferred method if available, obviating the need for
5855 machine dependent methods. */
5856 __builtin_unwind_init ();
5857 end = &end;
5858 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5859 #ifndef GC_SAVE_REGISTERS_ON_STACK
5860 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5861 union aligned_jmpbuf {
5862 Lisp_Object o;
5863 sys_jmp_buf j;
5864 } j;
5865 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5866 #endif
5867 /* This trick flushes the register windows so that all the state of
5868 the process is contained in the stack. */
5869 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5870 needed on ia64 too. See mach_dep.c, where it also says inline
5871 assembler doesn't work with relevant proprietary compilers. */
5872 #ifdef __sparc__
5873 #if defined (__sparc64__) && defined (__FreeBSD__)
5874 /* FreeBSD does not have a ta 3 handler. */
5875 asm ("flushw");
5876 #else
5877 asm ("ta 3");
5878 #endif
5879 #endif
5880
5881 /* Save registers that we need to see on the stack. We need to see
5882 registers used to hold register variables and registers used to
5883 pass parameters. */
5884 #ifdef GC_SAVE_REGISTERS_ON_STACK
5885 GC_SAVE_REGISTERS_ON_STACK (end);
5886 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5887
5888 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5889 setjmp will definitely work, test it
5890 and print a message with the result
5891 of the test. */
5892 if (!setjmp_tested_p)
5893 {
5894 setjmp_tested_p = 1;
5895 test_setjmp ();
5896 }
5897 #endif /* GC_SETJMP_WORKS */
5898
5899 sys_setjmp (j.j);
5900 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5901 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5902 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5903 return garbage_collect_1 (end);
5904 }
5905
5906 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5907 only interesting objects referenced from glyphs are strings. */
5908
5909 static void
5910 mark_glyph_matrix (struct glyph_matrix *matrix)
5911 {
5912 struct glyph_row *row = matrix->rows;
5913 struct glyph_row *end = row + matrix->nrows;
5914
5915 for (; row < end; ++row)
5916 if (row->enabled_p)
5917 {
5918 int area;
5919 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5920 {
5921 struct glyph *glyph = row->glyphs[area];
5922 struct glyph *end_glyph = glyph + row->used[area];
5923
5924 for (; glyph < end_glyph; ++glyph)
5925 if (STRINGP (glyph->object)
5926 && !STRING_MARKED_P (XSTRING (glyph->object)))
5927 mark_object (glyph->object);
5928 }
5929 }
5930 }
5931
5932 /* Mark reference to a Lisp_Object.
5933 If the object referred to has not been seen yet, recursively mark
5934 all the references contained in it. */
5935
5936 #define LAST_MARKED_SIZE 500
5937 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5938 static int last_marked_index;
5939
5940 /* For debugging--call abort when we cdr down this many
5941 links of a list, in mark_object. In debugging,
5942 the call to abort will hit a breakpoint.
5943 Normally this is zero and the check never goes off. */
5944 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5945
5946 static void
5947 mark_vectorlike (struct Lisp_Vector *ptr)
5948 {
5949 ptrdiff_t size = ptr->header.size;
5950 ptrdiff_t i;
5951
5952 eassert (!VECTOR_MARKED_P (ptr));
5953 VECTOR_MARK (ptr); /* Else mark it. */
5954 if (size & PSEUDOVECTOR_FLAG)
5955 size &= PSEUDOVECTOR_SIZE_MASK;
5956
5957 /* Note that this size is not the memory-footprint size, but only
5958 the number of Lisp_Object fields that we should trace.
5959 The distinction is used e.g. by Lisp_Process which places extra
5960 non-Lisp_Object fields at the end of the structure... */
5961 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5962 mark_object (ptr->contents[i]);
5963 }
5964
5965 /* Like mark_vectorlike but optimized for char-tables (and
5966 sub-char-tables) assuming that the contents are mostly integers or
5967 symbols. */
5968
5969 static void
5970 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5971 {
5972 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5973 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5974 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5975
5976 eassert (!VECTOR_MARKED_P (ptr));
5977 VECTOR_MARK (ptr);
5978 for (i = idx; i < size; i++)
5979 {
5980 Lisp_Object val = ptr->contents[i];
5981
5982 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5983 continue;
5984 if (SUB_CHAR_TABLE_P (val))
5985 {
5986 if (! VECTOR_MARKED_P (XVECTOR (val)))
5987 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5988 }
5989 else
5990 mark_object (val);
5991 }
5992 }
5993
5994 NO_INLINE /* To reduce stack depth in mark_object. */
5995 static Lisp_Object
5996 mark_compiled (struct Lisp_Vector *ptr)
5997 {
5998 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5999
6000 VECTOR_MARK (ptr);
6001 for (i = 0; i < size; i++)
6002 if (i != COMPILED_CONSTANTS)
6003 mark_object (ptr->contents[i]);
6004 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6005 }
6006
6007 /* Mark the chain of overlays starting at PTR. */
6008
6009 static void
6010 mark_overlay (struct Lisp_Overlay *ptr)
6011 {
6012 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6013 {
6014 ptr->gcmarkbit = 1;
6015 /* These two are always markers and can be marked fast. */
6016 XMARKER (ptr->start)->gcmarkbit = 1;
6017 XMARKER (ptr->end)->gcmarkbit = 1;
6018 mark_object (ptr->plist);
6019 }
6020 }
6021
6022 /* Mark Lisp_Objects and special pointers in BUFFER. */
6023
6024 static void
6025 mark_buffer (struct buffer *buffer)
6026 {
6027 /* This is handled much like other pseudovectors... */
6028 mark_vectorlike ((struct Lisp_Vector *) buffer);
6029
6030 /* ...but there are some buffer-specific things. */
6031
6032 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6033
6034 /* For now, we just don't mark the undo_list. It's done later in
6035 a special way just before the sweep phase, and after stripping
6036 some of its elements that are not needed any more. */
6037
6038 mark_overlay (buffer->overlays_before);
6039 mark_overlay (buffer->overlays_after);
6040
6041 /* If this is an indirect buffer, mark its base buffer. */
6042 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6043 mark_buffer (buffer->base_buffer);
6044 }
6045
6046 /* Mark Lisp faces in the face cache C. */
6047
6048 NO_INLINE /* To reduce stack depth in mark_object. */
6049 static void
6050 mark_face_cache (struct face_cache *c)
6051 {
6052 if (c)
6053 {
6054 int i, j;
6055 for (i = 0; i < c->used; ++i)
6056 {
6057 struct face *face = FACE_FROM_ID (c->f, i);
6058
6059 if (face)
6060 {
6061 if (face->font && !VECTOR_MARKED_P (face->font))
6062 mark_vectorlike ((struct Lisp_Vector *) face->font);
6063
6064 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6065 mark_object (face->lface[j]);
6066 }
6067 }
6068 }
6069 }
6070
6071 NO_INLINE /* To reduce stack depth in mark_object. */
6072 static void
6073 mark_localized_symbol (struct Lisp_Symbol *ptr)
6074 {
6075 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6076 Lisp_Object where = blv->where;
6077 /* If the value is set up for a killed buffer or deleted
6078 frame, restore its global binding. If the value is
6079 forwarded to a C variable, either it's not a Lisp_Object
6080 var, or it's staticpro'd already. */
6081 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6082 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6083 swap_in_global_binding (ptr);
6084 mark_object (blv->where);
6085 mark_object (blv->valcell);
6086 mark_object (blv->defcell);
6087 }
6088
6089 NO_INLINE /* To reduce stack depth in mark_object. */
6090 static void
6091 mark_save_value (struct Lisp_Save_Value *ptr)
6092 {
6093 /* If `save_type' is zero, `data[0].pointer' is the address
6094 of a memory area containing `data[1].integer' potential
6095 Lisp_Objects. */
6096 if (ptr->save_type == SAVE_TYPE_MEMORY)
6097 {
6098 Lisp_Object *p = ptr->data[0].pointer;
6099 ptrdiff_t nelt;
6100 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6101 mark_maybe_object (*p);
6102 }
6103 else
6104 {
6105 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6106 int i;
6107 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6108 if (save_type (ptr, i) == SAVE_OBJECT)
6109 mark_object (ptr->data[i].object);
6110 }
6111 }
6112
6113 /* Remove killed buffers or items whose car is a killed buffer from
6114 LIST, and mark other items. Return changed LIST, which is marked. */
6115
6116 static Lisp_Object
6117 mark_discard_killed_buffers (Lisp_Object list)
6118 {
6119 Lisp_Object tail, *prev = &list;
6120
6121 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6122 tail = XCDR (tail))
6123 {
6124 Lisp_Object tem = XCAR (tail);
6125 if (CONSP (tem))
6126 tem = XCAR (tem);
6127 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6128 *prev = XCDR (tail);
6129 else
6130 {
6131 CONS_MARK (XCONS (tail));
6132 mark_object (XCAR (tail));
6133 prev = xcdr_addr (tail);
6134 }
6135 }
6136 mark_object (tail);
6137 return list;
6138 }
6139
6140 /* Determine type of generic Lisp_Object and mark it accordingly.
6141
6142 This function implements a straightforward depth-first marking
6143 algorithm and so the recursion depth may be very high (a few
6144 tens of thousands is not uncommon). To minimize stack usage,
6145 a few cold paths are moved out to NO_INLINE functions above.
6146 In general, inlining them doesn't help you to gain more speed. */
6147
6148 void
6149 mark_object (Lisp_Object arg)
6150 {
6151 register Lisp_Object obj;
6152 void *po;
6153 #ifdef GC_CHECK_MARKED_OBJECTS
6154 struct mem_node *m;
6155 #endif
6156 ptrdiff_t cdr_count = 0;
6157
6158 obj = arg;
6159 loop:
6160
6161 po = XPNTR (obj);
6162 if (PURE_P (po))
6163 return;
6164
6165 last_marked[last_marked_index++] = obj;
6166 if (last_marked_index == LAST_MARKED_SIZE)
6167 last_marked_index = 0;
6168
6169 /* Perform some sanity checks on the objects marked here. Abort if
6170 we encounter an object we know is bogus. This increases GC time
6171 by ~80%. */
6172 #ifdef GC_CHECK_MARKED_OBJECTS
6173
6174 /* Check that the object pointed to by PO is known to be a Lisp
6175 structure allocated from the heap. */
6176 #define CHECK_ALLOCATED() \
6177 do { \
6178 m = mem_find (po); \
6179 if (m == MEM_NIL) \
6180 emacs_abort (); \
6181 } while (0)
6182
6183 /* Check that the object pointed to by PO is live, using predicate
6184 function LIVEP. */
6185 #define CHECK_LIVE(LIVEP) \
6186 do { \
6187 if (!LIVEP (m, po)) \
6188 emacs_abort (); \
6189 } while (0)
6190
6191 /* Check both of the above conditions, for non-symbols. */
6192 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6193 do { \
6194 CHECK_ALLOCATED (); \
6195 CHECK_LIVE (LIVEP); \
6196 } while (0) \
6197
6198 /* Check both of the above conditions, for symbols. */
6199 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6200 do { \
6201 if (!c_symbol_p (ptr)) \
6202 { \
6203 CHECK_ALLOCATED (); \
6204 CHECK_LIVE (live_symbol_p); \
6205 } \
6206 } while (0) \
6207
6208 #else /* not GC_CHECK_MARKED_OBJECTS */
6209
6210 #define CHECK_LIVE(LIVEP) ((void) 0)
6211 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6212 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6213
6214 #endif /* not GC_CHECK_MARKED_OBJECTS */
6215
6216 switch (XTYPE (obj))
6217 {
6218 case Lisp_String:
6219 {
6220 register struct Lisp_String *ptr = XSTRING (obj);
6221 if (STRING_MARKED_P (ptr))
6222 break;
6223 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6224 MARK_STRING (ptr);
6225 MARK_INTERVAL_TREE (ptr->intervals);
6226 #ifdef GC_CHECK_STRING_BYTES
6227 /* Check that the string size recorded in the string is the
6228 same as the one recorded in the sdata structure. */
6229 string_bytes (ptr);
6230 #endif /* GC_CHECK_STRING_BYTES */
6231 }
6232 break;
6233
6234 case Lisp_Vectorlike:
6235 {
6236 register struct Lisp_Vector *ptr = XVECTOR (obj);
6237 register ptrdiff_t pvectype;
6238
6239 if (VECTOR_MARKED_P (ptr))
6240 break;
6241
6242 #ifdef GC_CHECK_MARKED_OBJECTS
6243 m = mem_find (po);
6244 if (m == MEM_NIL && !SUBRP (obj))
6245 emacs_abort ();
6246 #endif /* GC_CHECK_MARKED_OBJECTS */
6247
6248 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6249 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6250 >> PSEUDOVECTOR_AREA_BITS);
6251 else
6252 pvectype = PVEC_NORMAL_VECTOR;
6253
6254 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6255 CHECK_LIVE (live_vector_p);
6256
6257 switch (pvectype)
6258 {
6259 case PVEC_BUFFER:
6260 #ifdef GC_CHECK_MARKED_OBJECTS
6261 {
6262 struct buffer *b;
6263 FOR_EACH_BUFFER (b)
6264 if (b == po)
6265 break;
6266 if (b == NULL)
6267 emacs_abort ();
6268 }
6269 #endif /* GC_CHECK_MARKED_OBJECTS */
6270 mark_buffer ((struct buffer *) ptr);
6271 break;
6272
6273 case PVEC_COMPILED:
6274 /* Although we could treat this just like a vector, mark_compiled
6275 returns the COMPILED_CONSTANTS element, which is marked at the
6276 next iteration of goto-loop here. This is done to avoid a few
6277 recursive calls to mark_object. */
6278 obj = mark_compiled (ptr);
6279 if (!NILP (obj))
6280 goto loop;
6281 break;
6282
6283 case PVEC_FRAME:
6284 {
6285 struct frame *f = (struct frame *) ptr;
6286
6287 mark_vectorlike (ptr);
6288 mark_face_cache (f->face_cache);
6289 #ifdef HAVE_WINDOW_SYSTEM
6290 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6291 {
6292 struct font *font = FRAME_FONT (f);
6293
6294 if (font && !VECTOR_MARKED_P (font))
6295 mark_vectorlike ((struct Lisp_Vector *) font);
6296 }
6297 #endif
6298 }
6299 break;
6300
6301 case PVEC_WINDOW:
6302 {
6303 struct window *w = (struct window *) ptr;
6304
6305 mark_vectorlike (ptr);
6306
6307 /* Mark glyph matrices, if any. Marking window
6308 matrices is sufficient because frame matrices
6309 use the same glyph memory. */
6310 if (w->current_matrix)
6311 {
6312 mark_glyph_matrix (w->current_matrix);
6313 mark_glyph_matrix (w->desired_matrix);
6314 }
6315
6316 /* Filter out killed buffers from both buffer lists
6317 in attempt to help GC to reclaim killed buffers faster.
6318 We can do it elsewhere for live windows, but this is the
6319 best place to do it for dead windows. */
6320 wset_prev_buffers
6321 (w, mark_discard_killed_buffers (w->prev_buffers));
6322 wset_next_buffers
6323 (w, mark_discard_killed_buffers (w->next_buffers));
6324 }
6325 break;
6326
6327 case PVEC_HASH_TABLE:
6328 {
6329 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6330
6331 mark_vectorlike (ptr);
6332 mark_object (h->test.name);
6333 mark_object (h->test.user_hash_function);
6334 mark_object (h->test.user_cmp_function);
6335 /* If hash table is not weak, mark all keys and values.
6336 For weak tables, mark only the vector. */
6337 if (NILP (h->weak))
6338 mark_object (h->key_and_value);
6339 else
6340 VECTOR_MARK (XVECTOR (h->key_and_value));
6341 }
6342 break;
6343
6344 case PVEC_CHAR_TABLE:
6345 case PVEC_SUB_CHAR_TABLE:
6346 mark_char_table (ptr, (enum pvec_type) pvectype);
6347 break;
6348
6349 case PVEC_BOOL_VECTOR:
6350 /* No Lisp_Objects to mark in a bool vector. */
6351 VECTOR_MARK (ptr);
6352 break;
6353
6354 case PVEC_SUBR:
6355 break;
6356
6357 case PVEC_FREE:
6358 emacs_abort ();
6359
6360 default:
6361 mark_vectorlike (ptr);
6362 }
6363 }
6364 break;
6365
6366 case Lisp_Symbol:
6367 {
6368 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6369 nextsym:
6370 if (ptr->gcmarkbit)
6371 break;
6372 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6373 ptr->gcmarkbit = 1;
6374 /* Attempt to catch bogus objects. */
6375 eassert (valid_lisp_object_p (ptr->function));
6376 mark_object (ptr->function);
6377 mark_object (ptr->plist);
6378 switch (ptr->redirect)
6379 {
6380 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6381 case SYMBOL_VARALIAS:
6382 {
6383 Lisp_Object tem;
6384 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6385 mark_object (tem);
6386 break;
6387 }
6388 case SYMBOL_LOCALIZED:
6389 mark_localized_symbol (ptr);
6390 break;
6391 case SYMBOL_FORWARDED:
6392 /* If the value is forwarded to a buffer or keyboard field,
6393 these are marked when we see the corresponding object.
6394 And if it's forwarded to a C variable, either it's not
6395 a Lisp_Object var, or it's staticpro'd already. */
6396 break;
6397 default: emacs_abort ();
6398 }
6399 if (!PURE_P (XSTRING (ptr->name)))
6400 MARK_STRING (XSTRING (ptr->name));
6401 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6402 /* Inner loop to mark next symbol in this bucket, if any. */
6403 po = ptr = ptr->next;
6404 if (ptr)
6405 goto nextsym;
6406 }
6407 break;
6408
6409 case Lisp_Misc:
6410 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6411
6412 if (XMISCANY (obj)->gcmarkbit)
6413 break;
6414
6415 switch (XMISCTYPE (obj))
6416 {
6417 case Lisp_Misc_Marker:
6418 /* DO NOT mark thru the marker's chain.
6419 The buffer's markers chain does not preserve markers from gc;
6420 instead, markers are removed from the chain when freed by gc. */
6421 XMISCANY (obj)->gcmarkbit = 1;
6422 break;
6423
6424 case Lisp_Misc_Save_Value:
6425 XMISCANY (obj)->gcmarkbit = 1;
6426 mark_save_value (XSAVE_VALUE (obj));
6427 break;
6428
6429 case Lisp_Misc_Overlay:
6430 mark_overlay (XOVERLAY (obj));
6431 break;
6432
6433 case Lisp_Misc_Finalizer:
6434 XMISCANY (obj)->gcmarkbit = true;
6435 mark_object (XFINALIZER (obj)->function);
6436 break;
6437
6438 #ifdef HAVE_MODULES
6439 case Lisp_Misc_User_Ptr:
6440 XMISCANY (obj)->gcmarkbit = true;
6441 break;
6442 #endif
6443
6444 default:
6445 emacs_abort ();
6446 }
6447 break;
6448
6449 case Lisp_Cons:
6450 {
6451 register struct Lisp_Cons *ptr = XCONS (obj);
6452 if (CONS_MARKED_P (ptr))
6453 break;
6454 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6455 CONS_MARK (ptr);
6456 /* If the cdr is nil, avoid recursion for the car. */
6457 if (EQ (ptr->u.cdr, Qnil))
6458 {
6459 obj = ptr->car;
6460 cdr_count = 0;
6461 goto loop;
6462 }
6463 mark_object (ptr->car);
6464 obj = ptr->u.cdr;
6465 cdr_count++;
6466 if (cdr_count == mark_object_loop_halt)
6467 emacs_abort ();
6468 goto loop;
6469 }
6470
6471 case Lisp_Float:
6472 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6473 FLOAT_MARK (XFLOAT (obj));
6474 break;
6475
6476 case_Lisp_Int:
6477 break;
6478
6479 default:
6480 emacs_abort ();
6481 }
6482
6483 #undef CHECK_LIVE
6484 #undef CHECK_ALLOCATED
6485 #undef CHECK_ALLOCATED_AND_LIVE
6486 }
6487 /* Mark the Lisp pointers in the terminal objects.
6488 Called by Fgarbage_collect. */
6489
6490 static void
6491 mark_terminals (void)
6492 {
6493 struct terminal *t;
6494 for (t = terminal_list; t; t = t->next_terminal)
6495 {
6496 eassert (t->name != NULL);
6497 #ifdef HAVE_WINDOW_SYSTEM
6498 /* If a terminal object is reachable from a stacpro'ed object,
6499 it might have been marked already. Make sure the image cache
6500 gets marked. */
6501 mark_image_cache (t->image_cache);
6502 #endif /* HAVE_WINDOW_SYSTEM */
6503 if (!VECTOR_MARKED_P (t))
6504 mark_vectorlike ((struct Lisp_Vector *)t);
6505 }
6506 }
6507
6508
6509
6510 /* Value is non-zero if OBJ will survive the current GC because it's
6511 either marked or does not need to be marked to survive. */
6512
6513 bool
6514 survives_gc_p (Lisp_Object obj)
6515 {
6516 bool survives_p;
6517
6518 switch (XTYPE (obj))
6519 {
6520 case_Lisp_Int:
6521 survives_p = 1;
6522 break;
6523
6524 case Lisp_Symbol:
6525 survives_p = XSYMBOL (obj)->gcmarkbit;
6526 break;
6527
6528 case Lisp_Misc:
6529 survives_p = XMISCANY (obj)->gcmarkbit;
6530 break;
6531
6532 case Lisp_String:
6533 survives_p = STRING_MARKED_P (XSTRING (obj));
6534 break;
6535
6536 case Lisp_Vectorlike:
6537 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6538 break;
6539
6540 case Lisp_Cons:
6541 survives_p = CONS_MARKED_P (XCONS (obj));
6542 break;
6543
6544 case Lisp_Float:
6545 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6546 break;
6547
6548 default:
6549 emacs_abort ();
6550 }
6551
6552 return survives_p || PURE_P (XPNTR (obj));
6553 }
6554
6555
6556 \f
6557
6558 NO_INLINE /* For better stack traces */
6559 static void
6560 sweep_conses (void)
6561 {
6562 struct cons_block *cblk;
6563 struct cons_block **cprev = &cons_block;
6564 int lim = cons_block_index;
6565 EMACS_INT num_free = 0, num_used = 0;
6566
6567 cons_free_list = 0;
6568
6569 for (cblk = cons_block; cblk; cblk = *cprev)
6570 {
6571 int i = 0;
6572 int this_free = 0;
6573 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6574
6575 /* Scan the mark bits an int at a time. */
6576 for (i = 0; i < ilim; i++)
6577 {
6578 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6579 {
6580 /* Fast path - all cons cells for this int are marked. */
6581 cblk->gcmarkbits[i] = 0;
6582 num_used += BITS_PER_BITS_WORD;
6583 }
6584 else
6585 {
6586 /* Some cons cells for this int are not marked.
6587 Find which ones, and free them. */
6588 int start, pos, stop;
6589
6590 start = i * BITS_PER_BITS_WORD;
6591 stop = lim - start;
6592 if (stop > BITS_PER_BITS_WORD)
6593 stop = BITS_PER_BITS_WORD;
6594 stop += start;
6595
6596 for (pos = start; pos < stop; pos++)
6597 {
6598 if (!CONS_MARKED_P (&cblk->conses[pos]))
6599 {
6600 this_free++;
6601 cblk->conses[pos].u.chain = cons_free_list;
6602 cons_free_list = &cblk->conses[pos];
6603 cons_free_list->car = Vdead;
6604 }
6605 else
6606 {
6607 num_used++;
6608 CONS_UNMARK (&cblk->conses[pos]);
6609 }
6610 }
6611 }
6612 }
6613
6614 lim = CONS_BLOCK_SIZE;
6615 /* If this block contains only free conses and we have already
6616 seen more than two blocks worth of free conses then deallocate
6617 this block. */
6618 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6619 {
6620 *cprev = cblk->next;
6621 /* Unhook from the free list. */
6622 cons_free_list = cblk->conses[0].u.chain;
6623 lisp_align_free (cblk);
6624 }
6625 else
6626 {
6627 num_free += this_free;
6628 cprev = &cblk->next;
6629 }
6630 }
6631 total_conses = num_used;
6632 total_free_conses = num_free;
6633 }
6634
6635 NO_INLINE /* For better stack traces */
6636 static void
6637 sweep_floats (void)
6638 {
6639 register struct float_block *fblk;
6640 struct float_block **fprev = &float_block;
6641 register int lim = float_block_index;
6642 EMACS_INT num_free = 0, num_used = 0;
6643
6644 float_free_list = 0;
6645
6646 for (fblk = float_block; fblk; fblk = *fprev)
6647 {
6648 register int i;
6649 int this_free = 0;
6650 for (i = 0; i < lim; i++)
6651 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6652 {
6653 this_free++;
6654 fblk->floats[i].u.chain = float_free_list;
6655 float_free_list = &fblk->floats[i];
6656 }
6657 else
6658 {
6659 num_used++;
6660 FLOAT_UNMARK (&fblk->floats[i]);
6661 }
6662 lim = FLOAT_BLOCK_SIZE;
6663 /* If this block contains only free floats and we have already
6664 seen more than two blocks worth of free floats then deallocate
6665 this block. */
6666 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6667 {
6668 *fprev = fblk->next;
6669 /* Unhook from the free list. */
6670 float_free_list = fblk->floats[0].u.chain;
6671 lisp_align_free (fblk);
6672 }
6673 else
6674 {
6675 num_free += this_free;
6676 fprev = &fblk->next;
6677 }
6678 }
6679 total_floats = num_used;
6680 total_free_floats = num_free;
6681 }
6682
6683 NO_INLINE /* For better stack traces */
6684 static void
6685 sweep_intervals (void)
6686 {
6687 register struct interval_block *iblk;
6688 struct interval_block **iprev = &interval_block;
6689 register int lim = interval_block_index;
6690 EMACS_INT num_free = 0, num_used = 0;
6691
6692 interval_free_list = 0;
6693
6694 for (iblk = interval_block; iblk; iblk = *iprev)
6695 {
6696 register int i;
6697 int this_free = 0;
6698
6699 for (i = 0; i < lim; i++)
6700 {
6701 if (!iblk->intervals[i].gcmarkbit)
6702 {
6703 set_interval_parent (&iblk->intervals[i], interval_free_list);
6704 interval_free_list = &iblk->intervals[i];
6705 this_free++;
6706 }
6707 else
6708 {
6709 num_used++;
6710 iblk->intervals[i].gcmarkbit = 0;
6711 }
6712 }
6713 lim = INTERVAL_BLOCK_SIZE;
6714 /* If this block contains only free intervals and we have already
6715 seen more than two blocks worth of free intervals then
6716 deallocate this block. */
6717 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6718 {
6719 *iprev = iblk->next;
6720 /* Unhook from the free list. */
6721 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6722 lisp_free (iblk);
6723 }
6724 else
6725 {
6726 num_free += this_free;
6727 iprev = &iblk->next;
6728 }
6729 }
6730 total_intervals = num_used;
6731 total_free_intervals = num_free;
6732 }
6733
6734 NO_INLINE /* For better stack traces */
6735 static void
6736 sweep_symbols (void)
6737 {
6738 struct symbol_block *sblk;
6739 struct symbol_block **sprev = &symbol_block;
6740 int lim = symbol_block_index;
6741 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6742
6743 symbol_free_list = NULL;
6744
6745 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6746 lispsym[i].gcmarkbit = 0;
6747
6748 for (sblk = symbol_block; sblk; sblk = *sprev)
6749 {
6750 int this_free = 0;
6751 union aligned_Lisp_Symbol *sym = sblk->symbols;
6752 union aligned_Lisp_Symbol *end = sym + lim;
6753
6754 for (; sym < end; ++sym)
6755 {
6756 if (!sym->s.gcmarkbit)
6757 {
6758 if (sym->s.redirect == SYMBOL_LOCALIZED)
6759 xfree (SYMBOL_BLV (&sym->s));
6760 sym->s.next = symbol_free_list;
6761 symbol_free_list = &sym->s;
6762 symbol_free_list->function = Vdead;
6763 ++this_free;
6764 }
6765 else
6766 {
6767 ++num_used;
6768 sym->s.gcmarkbit = 0;
6769 /* Attempt to catch bogus objects. */
6770 eassert (valid_lisp_object_p (sym->s.function));
6771 }
6772 }
6773
6774 lim = SYMBOL_BLOCK_SIZE;
6775 /* If this block contains only free symbols and we have already
6776 seen more than two blocks worth of free symbols then deallocate
6777 this block. */
6778 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6779 {
6780 *sprev = sblk->next;
6781 /* Unhook from the free list. */
6782 symbol_free_list = sblk->symbols[0].s.next;
6783 lisp_free (sblk);
6784 }
6785 else
6786 {
6787 num_free += this_free;
6788 sprev = &sblk->next;
6789 }
6790 }
6791 total_symbols = num_used;
6792 total_free_symbols = num_free;
6793 }
6794
6795 NO_INLINE /* For better stack traces. */
6796 static void
6797 sweep_misc (void)
6798 {
6799 register struct marker_block *mblk;
6800 struct marker_block **mprev = &marker_block;
6801 register int lim = marker_block_index;
6802 EMACS_INT num_free = 0, num_used = 0;
6803
6804 /* Put all unmarked misc's on free list. For a marker, first
6805 unchain it from the buffer it points into. */
6806
6807 marker_free_list = 0;
6808
6809 for (mblk = marker_block; mblk; mblk = *mprev)
6810 {
6811 register int i;
6812 int this_free = 0;
6813
6814 for (i = 0; i < lim; i++)
6815 {
6816 if (!mblk->markers[i].m.u_any.gcmarkbit)
6817 {
6818 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6819 unchain_marker (&mblk->markers[i].m.u_marker);
6820 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6821 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6822 #ifdef HAVE_MODULES
6823 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6824 {
6825 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6826 uptr->finalizer (uptr->p);
6827 }
6828 #endif
6829 /* Set the type of the freed object to Lisp_Misc_Free.
6830 We could leave the type alone, since nobody checks it,
6831 but this might catch bugs faster. */
6832 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6833 mblk->markers[i].m.u_free.chain = marker_free_list;
6834 marker_free_list = &mblk->markers[i].m;
6835 this_free++;
6836 }
6837 else
6838 {
6839 num_used++;
6840 mblk->markers[i].m.u_any.gcmarkbit = 0;
6841 }
6842 }
6843 lim = MARKER_BLOCK_SIZE;
6844 /* If this block contains only free markers and we have already
6845 seen more than two blocks worth of free markers then deallocate
6846 this block. */
6847 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6848 {
6849 *mprev = mblk->next;
6850 /* Unhook from the free list. */
6851 marker_free_list = mblk->markers[0].m.u_free.chain;
6852 lisp_free (mblk);
6853 }
6854 else
6855 {
6856 num_free += this_free;
6857 mprev = &mblk->next;
6858 }
6859 }
6860
6861 total_markers = num_used;
6862 total_free_markers = num_free;
6863 }
6864
6865 NO_INLINE /* For better stack traces */
6866 static void
6867 sweep_buffers (void)
6868 {
6869 register struct buffer *buffer, **bprev = &all_buffers;
6870
6871 total_buffers = 0;
6872 for (buffer = all_buffers; buffer; buffer = *bprev)
6873 if (!VECTOR_MARKED_P (buffer))
6874 {
6875 *bprev = buffer->next;
6876 lisp_free (buffer);
6877 }
6878 else
6879 {
6880 VECTOR_UNMARK (buffer);
6881 /* Do not use buffer_(set|get)_intervals here. */
6882 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6883 total_buffers++;
6884 bprev = &buffer->next;
6885 }
6886 }
6887
6888 /* Sweep: find all structures not marked, and free them. */
6889 static void
6890 gc_sweep (void)
6891 {
6892 /* Remove or mark entries in weak hash tables.
6893 This must be done before any object is unmarked. */
6894 sweep_weak_hash_tables ();
6895
6896 sweep_strings ();
6897 check_string_bytes (!noninteractive);
6898 sweep_conses ();
6899 sweep_floats ();
6900 sweep_intervals ();
6901 sweep_symbols ();
6902 sweep_misc ();
6903 sweep_buffers ();
6904 sweep_vectors ();
6905 check_string_bytes (!noninteractive);
6906 }
6907
6908 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6909 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6910 All values are in Kbytes. If there is no swap space,
6911 last two values are zero. If the system is not supported
6912 or memory information can't be obtained, return nil. */)
6913 (void)
6914 {
6915 #if defined HAVE_LINUX_SYSINFO
6916 struct sysinfo si;
6917 uintmax_t units;
6918
6919 if (sysinfo (&si))
6920 return Qnil;
6921 #ifdef LINUX_SYSINFO_UNIT
6922 units = si.mem_unit;
6923 #else
6924 units = 1;
6925 #endif
6926 return list4i ((uintmax_t) si.totalram * units / 1024,
6927 (uintmax_t) si.freeram * units / 1024,
6928 (uintmax_t) si.totalswap * units / 1024,
6929 (uintmax_t) si.freeswap * units / 1024);
6930 #elif defined WINDOWSNT
6931 unsigned long long totalram, freeram, totalswap, freeswap;
6932
6933 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6934 return list4i ((uintmax_t) totalram / 1024,
6935 (uintmax_t) freeram / 1024,
6936 (uintmax_t) totalswap / 1024,
6937 (uintmax_t) freeswap / 1024);
6938 else
6939 return Qnil;
6940 #elif defined MSDOS
6941 unsigned long totalram, freeram, totalswap, freeswap;
6942
6943 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6944 return list4i ((uintmax_t) totalram / 1024,
6945 (uintmax_t) freeram / 1024,
6946 (uintmax_t) totalswap / 1024,
6947 (uintmax_t) freeswap / 1024);
6948 else
6949 return Qnil;
6950 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6951 /* FIXME: add more systems. */
6952 return Qnil;
6953 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6954 }
6955
6956 /* Debugging aids. */
6957
6958 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6959 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6960 This may be helpful in debugging Emacs's memory usage.
6961 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6962 (void)
6963 {
6964 Lisp_Object end;
6965
6966 #ifdef HAVE_NS
6967 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6968 XSETINT (end, 0);
6969 #else
6970 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6971 #endif
6972
6973 return end;
6974 }
6975
6976 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6977 doc: /* Return a list of counters that measure how much consing there has been.
6978 Each of these counters increments for a certain kind of object.
6979 The counters wrap around from the largest positive integer to zero.
6980 Garbage collection does not decrease them.
6981 The elements of the value are as follows:
6982 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6983 All are in units of 1 = one object consed
6984 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6985 objects consed.
6986 MISCS include overlays, markers, and some internal types.
6987 Frames, windows, buffers, and subprocesses count as vectors
6988 (but the contents of a buffer's text do not count here). */)
6989 (void)
6990 {
6991 return listn (CONSTYPE_HEAP, 8,
6992 bounded_number (cons_cells_consed),
6993 bounded_number (floats_consed),
6994 bounded_number (vector_cells_consed),
6995 bounded_number (symbols_consed),
6996 bounded_number (string_chars_consed),
6997 bounded_number (misc_objects_consed),
6998 bounded_number (intervals_consed),
6999 bounded_number (strings_consed));
7000 }
7001
7002 static bool
7003 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7004 {
7005 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7006 Lisp_Object val = find_symbol_value (symbol);
7007 return (EQ (val, obj)
7008 || EQ (sym->function, obj)
7009 || (!NILP (sym->function)
7010 && COMPILEDP (sym->function)
7011 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7012 || (!NILP (val)
7013 && COMPILEDP (val)
7014 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7015 }
7016
7017 /* Find at most FIND_MAX symbols which have OBJ as their value or
7018 function. This is used in gdbinit's `xwhichsymbols' command. */
7019
7020 Lisp_Object
7021 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7022 {
7023 struct symbol_block *sblk;
7024 ptrdiff_t gc_count = inhibit_garbage_collection ();
7025 Lisp_Object found = Qnil;
7026
7027 if (! DEADP (obj))
7028 {
7029 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7030 {
7031 Lisp_Object sym = builtin_lisp_symbol (i);
7032 if (symbol_uses_obj (sym, obj))
7033 {
7034 found = Fcons (sym, found);
7035 if (--find_max == 0)
7036 goto out;
7037 }
7038 }
7039
7040 for (sblk = symbol_block; sblk; sblk = sblk->next)
7041 {
7042 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7043 int bn;
7044
7045 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7046 {
7047 if (sblk == symbol_block && bn >= symbol_block_index)
7048 break;
7049
7050 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7051 if (symbol_uses_obj (sym, obj))
7052 {
7053 found = Fcons (sym, found);
7054 if (--find_max == 0)
7055 goto out;
7056 }
7057 }
7058 }
7059 }
7060
7061 out:
7062 unbind_to (gc_count, Qnil);
7063 return found;
7064 }
7065
7066 #ifdef SUSPICIOUS_OBJECT_CHECKING
7067
7068 static void *
7069 find_suspicious_object_in_range (void *begin, void *end)
7070 {
7071 char *begin_a = begin;
7072 char *end_a = end;
7073 int i;
7074
7075 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7076 {
7077 char *suspicious_object = suspicious_objects[i];
7078 if (begin_a <= suspicious_object && suspicious_object < end_a)
7079 return suspicious_object;
7080 }
7081
7082 return NULL;
7083 }
7084
7085 static void
7086 note_suspicious_free (void* ptr)
7087 {
7088 struct suspicious_free_record* rec;
7089
7090 rec = &suspicious_free_history[suspicious_free_history_index++];
7091 if (suspicious_free_history_index ==
7092 ARRAYELTS (suspicious_free_history))
7093 {
7094 suspicious_free_history_index = 0;
7095 }
7096
7097 memset (rec, 0, sizeof (*rec));
7098 rec->suspicious_object = ptr;
7099 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7100 }
7101
7102 static void
7103 detect_suspicious_free (void* ptr)
7104 {
7105 int i;
7106
7107 eassert (ptr != NULL);
7108
7109 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7110 if (suspicious_objects[i] == ptr)
7111 {
7112 note_suspicious_free (ptr);
7113 suspicious_objects[i] = NULL;
7114 }
7115 }
7116
7117 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7118
7119 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7120 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7121 If Emacs is compiled with suspicious object checking, capture
7122 a stack trace when OBJ is freed in order to help track down
7123 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7124 (Lisp_Object obj)
7125 {
7126 #ifdef SUSPICIOUS_OBJECT_CHECKING
7127 /* Right now, we care only about vectors. */
7128 if (VECTORLIKEP (obj))
7129 {
7130 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7131 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7132 suspicious_object_index = 0;
7133 }
7134 #endif
7135 return obj;
7136 }
7137
7138 #ifdef ENABLE_CHECKING
7139
7140 bool suppress_checking;
7141
7142 void
7143 die (const char *msg, const char *file, int line)
7144 {
7145 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7146 file, line, msg);
7147 terminate_due_to_signal (SIGABRT, INT_MAX);
7148 }
7149
7150 #endif /* ENABLE_CHECKING */
7151
7152 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7153
7154 /* Debugging check whether STR is ASCII-only. */
7155
7156 const char *
7157 verify_ascii (const char *str)
7158 {
7159 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7160 while (ptr < end)
7161 {
7162 int c = STRING_CHAR_ADVANCE (ptr);
7163 if (!ASCII_CHAR_P (c))
7164 emacs_abort ();
7165 }
7166 return str;
7167 }
7168
7169 /* Stress alloca with inconveniently sized requests and check
7170 whether all allocated areas may be used for Lisp_Object. */
7171
7172 NO_INLINE static void
7173 verify_alloca (void)
7174 {
7175 int i;
7176 enum { ALLOCA_CHECK_MAX = 256 };
7177 /* Start from size of the smallest Lisp object. */
7178 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7179 {
7180 void *ptr = alloca (i);
7181 make_lisp_ptr (ptr, Lisp_Cons);
7182 }
7183 }
7184
7185 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7186
7187 #define verify_alloca() ((void) 0)
7188
7189 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7190
7191 /* Initialization. */
7192
7193 void
7194 init_alloc_once (void)
7195 {
7196 /* Even though Qt's contents are not set up, its address is known. */
7197 Vpurify_flag = Qt;
7198
7199 purebeg = PUREBEG;
7200 pure_size = PURESIZE;
7201
7202 verify_alloca ();
7203 init_finalizer_list (&finalizers);
7204 init_finalizer_list (&doomed_finalizers);
7205
7206 mem_init ();
7207 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7208
7209 #ifdef DOUG_LEA_MALLOC
7210 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7211 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7212 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7213 #endif
7214 init_strings ();
7215 init_vectors ();
7216
7217 refill_memory_reserve ();
7218 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7219 }
7220
7221 void
7222 init_alloc (void)
7223 {
7224 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7225 setjmp_tested_p = longjmps_done = 0;
7226 #endif
7227 Vgc_elapsed = make_float (0.0);
7228 gcs_done = 0;
7229
7230 #if USE_VALGRIND
7231 valgrind_p = RUNNING_ON_VALGRIND != 0;
7232 #endif
7233 }
7234
7235 void
7236 syms_of_alloc (void)
7237 {
7238 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7239 doc: /* Number of bytes of consing between garbage collections.
7240 Garbage collection can happen automatically once this many bytes have been
7241 allocated since the last garbage collection. All data types count.
7242
7243 Garbage collection happens automatically only when `eval' is called.
7244
7245 By binding this temporarily to a large number, you can effectively
7246 prevent garbage collection during a part of the program.
7247 See also `gc-cons-percentage'. */);
7248
7249 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7250 doc: /* Portion of the heap used for allocation.
7251 Garbage collection can happen automatically once this portion of the heap
7252 has been allocated since the last garbage collection.
7253 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7254 Vgc_cons_percentage = make_float (0.1);
7255
7256 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7257 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7258
7259 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7260 doc: /* Number of cons cells that have been consed so far. */);
7261
7262 DEFVAR_INT ("floats-consed", floats_consed,
7263 doc: /* Number of floats that have been consed so far. */);
7264
7265 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7266 doc: /* Number of vector cells that have been consed so far. */);
7267
7268 DEFVAR_INT ("symbols-consed", symbols_consed,
7269 doc: /* Number of symbols that have been consed so far. */);
7270 symbols_consed += ARRAYELTS (lispsym);
7271
7272 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7273 doc: /* Number of string characters that have been consed so far. */);
7274
7275 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7276 doc: /* Number of miscellaneous objects that have been consed so far.
7277 These include markers and overlays, plus certain objects not visible
7278 to users. */);
7279
7280 DEFVAR_INT ("intervals-consed", intervals_consed,
7281 doc: /* Number of intervals that have been consed so far. */);
7282
7283 DEFVAR_INT ("strings-consed", strings_consed,
7284 doc: /* Number of strings that have been consed so far. */);
7285
7286 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7287 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7288 This means that certain objects should be allocated in shared (pure) space.
7289 It can also be set to a hash-table, in which case this table is used to
7290 do hash-consing of the objects allocated to pure space. */);
7291
7292 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7293 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7294 garbage_collection_messages = 0;
7295
7296 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7297 doc: /* Hook run after garbage collection has finished. */);
7298 Vpost_gc_hook = Qnil;
7299 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7300
7301 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7302 doc: /* Precomputed `signal' argument for memory-full error. */);
7303 /* We build this in advance because if we wait until we need it, we might
7304 not be able to allocate the memory to hold it. */
7305 Vmemory_signal_data
7306 = listn (CONSTYPE_PURE, 2, Qerror,
7307 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7308
7309 DEFVAR_LISP ("memory-full", Vmemory_full,
7310 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7311 Vmemory_full = Qnil;
7312
7313 DEFSYM (Qconses, "conses");
7314 DEFSYM (Qsymbols, "symbols");
7315 DEFSYM (Qmiscs, "miscs");
7316 DEFSYM (Qstrings, "strings");
7317 DEFSYM (Qvectors, "vectors");
7318 DEFSYM (Qfloats, "floats");
7319 DEFSYM (Qintervals, "intervals");
7320 DEFSYM (Qbuffers, "buffers");
7321 DEFSYM (Qstring_bytes, "string-bytes");
7322 DEFSYM (Qvector_slots, "vector-slots");
7323 DEFSYM (Qheap, "heap");
7324 DEFSYM (Qautomatic_gc, "Automatic GC");
7325
7326 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7327 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7328
7329 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7330 doc: /* Accumulated time elapsed in garbage collections.
7331 The time is in seconds as a floating point value. */);
7332 DEFVAR_INT ("gcs-done", gcs_done,
7333 doc: /* Accumulated number of garbage collections done. */);
7334
7335 defsubr (&Scons);
7336 defsubr (&Slist);
7337 defsubr (&Svector);
7338 defsubr (&Sbool_vector);
7339 defsubr (&Smake_byte_code);
7340 defsubr (&Smake_list);
7341 defsubr (&Smake_vector);
7342 defsubr (&Smake_string);
7343 defsubr (&Smake_bool_vector);
7344 defsubr (&Smake_symbol);
7345 defsubr (&Smake_marker);
7346 defsubr (&Smake_finalizer);
7347 defsubr (&Spurecopy);
7348 defsubr (&Sgarbage_collect);
7349 defsubr (&Smemory_limit);
7350 defsubr (&Smemory_info);
7351 defsubr (&Smemory_use_counts);
7352 defsubr (&Ssuspicious_object);
7353 }
7354
7355 /* When compiled with GCC, GDB might say "No enum type named
7356 pvec_type" if we don't have at least one symbol with that type, and
7357 then xbacktrace could fail. Similarly for the other enums and
7358 their values. Some non-GCC compilers don't like these constructs. */
7359 #ifdef __GNUC__
7360 union
7361 {
7362 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7363 enum char_table_specials char_table_specials;
7364 enum char_bits char_bits;
7365 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7366 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7367 enum Lisp_Bits Lisp_Bits;
7368 enum Lisp_Compiled Lisp_Compiled;
7369 enum maxargs maxargs;
7370 enum MAX_ALLOCA MAX_ALLOCA;
7371 enum More_Lisp_Bits More_Lisp_Bits;
7372 enum pvec_type pvec_type;
7373 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7374 #endif /* __GNUC__ */