]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/cl-loaddefs.el
Merge from emacs-24; up to 2012-12-06T01:39:03Z!monnier@iro.umontreal.ca
[gnu-emacs] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl--do-remf cl--set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl--set-frame-visible-p
11 ;;;;;; cl--map-overlays cl--map-intervals cl--map-keymap-recursively
12 ;;;;;; cl-notevery cl-notany cl-every cl-some cl-mapcon cl-mapcan
13 ;;;;;; cl-mapl cl-mapc cl-maplist cl-map cl--mapcar-many cl-equalp
14 ;;;;;; cl-coerce) "cl-extra" "cl-extra.el" "c5730f2a706cb1efc5fec0a790d3ca72")
15 ;;; Generated autoloads from cl-extra.el
16
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
20
21 \(fn OBJECT TYPE)" nil nil)
22
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
28
29 \(fn X Y)" nil nil)
30
31 (autoload 'cl--mapcar-many "cl-extra" "\
32
33
34 \(fn CL-FUNC CL-SEQS)" nil nil)
35
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
39
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `cl-mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
46
47 \(fn FUNCTION LIST...)" nil nil)
48
49 (autoload 'cl-mapc "cl-extra" "\
50 Like `cl-mapcar', but does not accumulate values returned by the function.
51
52 \(fn FUNCTION SEQUENCE...)" nil nil)
53
54 (autoload 'cl-mapl "cl-extra" "\
55 Like `cl-maplist', but does not accumulate values returned by the function.
56
57 \(fn FUNCTION LIST...)" nil nil)
58
59 (autoload 'cl-mapcan "cl-extra" "\
60 Like `cl-mapcar', but nconc's together the values returned by the function.
61
62 \(fn FUNCTION SEQUENCE...)" nil nil)
63
64 (autoload 'cl-mapcon "cl-extra" "\
65 Like `cl-maplist', but nconc's together the values returned by the function.
66
67 \(fn FUNCTION LIST...)" nil nil)
68
69 (autoload 'cl-some "cl-extra" "\
70 Return true if PREDICATE is true of any element of SEQ or SEQs.
71 If so, return the true (non-nil) value returned by PREDICATE.
72
73 \(fn PREDICATE SEQ...)" nil nil)
74
75 (autoload 'cl-every "cl-extra" "\
76 Return true if PREDICATE is true of every element of SEQ or SEQs.
77
78 \(fn PREDICATE SEQ...)" nil nil)
79
80 (autoload 'cl-notany "cl-extra" "\
81 Return true if PREDICATE is false of every element of SEQ or SEQs.
82
83 \(fn PREDICATE SEQ...)" nil nil)
84
85 (autoload 'cl-notevery "cl-extra" "\
86 Return true if PREDICATE is false of some element of SEQ or SEQs.
87
88 \(fn PREDICATE SEQ...)" nil nil)
89
90 (autoload 'cl--map-keymap-recursively "cl-extra" "\
91
92
93 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
94
95 (autoload 'cl--map-intervals "cl-extra" "\
96
97
98 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
99
100 (autoload 'cl--map-overlays "cl-extra" "\
101
102
103 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
104
105 (autoload 'cl--set-frame-visible-p "cl-extra" "\
106
107
108 \(fn FRAME VAL)" nil nil)
109
110 (autoload 'cl-gcd "cl-extra" "\
111 Return the greatest common divisor of the arguments.
112
113 \(fn &rest ARGS)" nil nil)
114
115 (autoload 'cl-lcm "cl-extra" "\
116 Return the least common multiple of the arguments.
117
118 \(fn &rest ARGS)" nil nil)
119
120 (autoload 'cl-isqrt "cl-extra" "\
121 Return the integer square root of the argument.
122
123 \(fn X)" nil nil)
124
125 (autoload 'cl-floor "cl-extra" "\
126 Return a list of the floor of X and the fractional part of X.
127 With two arguments, return floor and remainder of their quotient.
128
129 \(fn X &optional Y)" nil nil)
130
131 (autoload 'cl-ceiling "cl-extra" "\
132 Return a list of the ceiling of X and the fractional part of X.
133 With two arguments, return ceiling and remainder of their quotient.
134
135 \(fn X &optional Y)" nil nil)
136
137 (autoload 'cl-truncate "cl-extra" "\
138 Return a list of the integer part of X and the fractional part of X.
139 With two arguments, return truncation and remainder of their quotient.
140
141 \(fn X &optional Y)" nil nil)
142
143 (autoload 'cl-round "cl-extra" "\
144 Return a list of X rounded to the nearest integer and the remainder.
145 With two arguments, return rounding and remainder of their quotient.
146
147 \(fn X &optional Y)" nil nil)
148
149 (autoload 'cl-mod "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as Y.
151
152 \(fn X Y)" nil nil)
153
154 (autoload 'cl-rem "cl-extra" "\
155 The remainder of X divided by Y, with the same sign as X.
156
157 \(fn X Y)" nil nil)
158
159 (autoload 'cl-signum "cl-extra" "\
160 Return 1 if X is positive, -1 if negative, 0 if zero.
161
162 \(fn X)" nil nil)
163
164 (autoload 'cl-random "cl-extra" "\
165 Return a random nonnegative number less than LIM, an integer or float.
166 Optional second arg STATE is a random-state object.
167
168 \(fn LIM &optional STATE)" nil nil)
169
170 (autoload 'cl-make-random-state "cl-extra" "\
171 Return a copy of random-state STATE, or of the internal state if omitted.
172 If STATE is t, return a new state object seeded from the time of day.
173
174 \(fn &optional STATE)" nil nil)
175
176 (autoload 'cl-random-state-p "cl-extra" "\
177 Return t if OBJECT is a random-state object.
178
179 \(fn OBJECT)" nil nil)
180
181 (autoload 'cl-float-limits "cl-extra" "\
182 Initialize the Common Lisp floating-point parameters.
183 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
184 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
185 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
186 `cl-least-negative-normalized-float'.
187
188 \(fn)" nil nil)
189
190 (autoload 'cl-subseq "cl-extra" "\
191 Return the subsequence of SEQ from START to END.
192 If END is omitted, it defaults to the length of the sequence.
193 If START or END is negative, it counts from the end.
194
195 \(fn SEQ START &optional END)" nil nil)
196
197 (autoload 'cl-concatenate "cl-extra" "\
198 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
199
200 \(fn TYPE SEQUENCE...)" nil nil)
201
202 (autoload 'cl-revappend "cl-extra" "\
203 Equivalent to (append (reverse X) Y).
204
205 \(fn X Y)" nil nil)
206
207 (autoload 'cl-nreconc "cl-extra" "\
208 Equivalent to (nconc (nreverse X) Y).
209
210 \(fn X Y)" nil nil)
211
212 (autoload 'cl-list-length "cl-extra" "\
213 Return the length of list X. Return nil if list is circular.
214
215 \(fn X)" nil nil)
216
217 (autoload 'cl-tailp "cl-extra" "\
218 Return true if SUBLIST is a tail of LIST.
219
220 \(fn SUBLIST LIST)" nil nil)
221
222 (autoload 'cl-get "cl-extra" "\
223 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
224
225 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
226
227 (eval-and-compile (put 'cl-get 'compiler-macro #'cl--compiler-macro-get))
228
229 (autoload 'cl-getf "cl-extra" "\
230 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
231 PROPLIST is a list of the sort returned by `symbol-plist'.
232
233 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
234
235 (autoload 'cl--set-getf "cl-extra" "\
236
237
238 \(fn PLIST TAG VAL)" nil nil)
239
240 (autoload 'cl--do-remf "cl-extra" "\
241
242
243 \(fn PLIST TAG)" nil nil)
244
245 (autoload 'cl-remprop "cl-extra" "\
246 Remove from SYMBOL's plist the property PROPNAME and its value.
247
248 \(fn SYMBOL PROPNAME)" nil nil)
249
250 (autoload 'cl-prettyexpand "cl-extra" "\
251 Expand macros in FORM and insert the pretty-printed result.
252 Optional argument FULL non-nil means to expand all macros,
253 including `cl-block' and `cl-eval-when'.
254
255 \(fn FORM &optional FULL)" nil nil)
256
257 ;;;***
258 \f
259 ;;;### (autoloads (cl--compiler-macro-adjoin cl-defsubst cl-compiler-macroexpand
260 ;;;;;; cl-define-compiler-macro cl-assert cl-check-type cl-typep
261 ;;;;;; cl-deftype cl-defstruct cl-callf2 cl-callf cl-letf* cl-letf
262 ;;;;;; cl-rotatef cl-shiftf cl-remf cl-psetf cl-declare cl-the cl-locally
263 ;;;;;; cl-multiple-value-setq cl-multiple-value-bind cl-symbol-macrolet
264 ;;;;;; cl-macrolet cl-labels cl-flet* cl-flet cl-progv cl-psetq
265 ;;;;;; cl-do-all-symbols cl-do-symbols cl-tagbody cl-dotimes cl-dolist
266 ;;;;;; cl-do* cl-do cl-loop cl-return-from cl-return cl-block cl-etypecase
267 ;;;;;; cl-typecase cl-ecase cl-case cl-load-time-value cl-eval-when
268 ;;;;;; cl-destructuring-bind cl-function cl-defmacro cl-defun cl-gentemp
269 ;;;;;; cl-gensym cl--compiler-macro-cXXr cl--compiler-macro-list*)
270 ;;;;;; "cl-macs" "cl-macs.el" "3b4d4e869f81f0b07ab3aa08f5478c2e")
271 ;;; Generated autoloads from cl-macs.el
272
273 (autoload 'cl--compiler-macro-list* "cl-macs" "\
274
275
276 \(fn FORM ARG &rest OTHERS)" nil nil)
277
278 (autoload 'cl--compiler-macro-cXXr "cl-macs" "\
279
280
281 \(fn FORM X)" nil nil)
282
283 (autoload 'cl-gensym "cl-macs" "\
284 Generate a new uninterned symbol.
285 The name is made by appending a number to PREFIX, default \"G\".
286
287 \(fn &optional PREFIX)" nil nil)
288
289 (autoload 'cl-gentemp "cl-macs" "\
290 Generate a new interned symbol with a unique name.
291 The name is made by appending a number to PREFIX, default \"G\".
292
293 \(fn &optional PREFIX)" nil nil)
294
295 (autoload 'cl-defun "cl-macs" "\
296 Define NAME as a function.
297 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
298 and BODY is implicitly surrounded by (cl-block NAME ...).
299
300 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
301
302 (put 'cl-defun 'doc-string-elt '3)
303
304 (put 'cl-defun 'lisp-indent-function '2)
305
306 (autoload 'cl-defmacro "cl-macs" "\
307 Define NAME as a macro.
308 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
309 and BODY is implicitly surrounded by (cl-block NAME ...).
310
311 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
312
313 (put 'cl-defmacro 'doc-string-elt '3)
314
315 (put 'cl-defmacro 'lisp-indent-function '2)
316
317 (autoload 'cl-function "cl-macs" "\
318 Introduce a function.
319 Like normal `function', except that if argument is a lambda form,
320 its argument list allows full Common Lisp conventions.
321
322 \(fn FUNC)" nil t)
323
324 (autoload 'cl-destructuring-bind "cl-macs" "\
325 Bind the variables in ARGS to the result of EXPR and execute BODY.
326
327 \(fn ARGS EXPR &rest BODY)" nil t)
328
329 (put 'cl-destructuring-bind 'lisp-indent-function '2)
330
331 (autoload 'cl-eval-when "cl-macs" "\
332 Control when BODY is evaluated.
333 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
334 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
335 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
336
337 \(fn (WHEN...) BODY...)" nil t)
338
339 (put 'cl-eval-when 'lisp-indent-function '1)
340
341 (autoload 'cl-load-time-value "cl-macs" "\
342 Like `progn', but evaluates the body at load time.
343 The result of the body appears to the compiler as a quoted constant.
344
345 \(fn FORM &optional READ-ONLY)" nil t)
346
347 (autoload 'cl-case "cl-macs" "\
348 Eval EXPR and choose among clauses on that value.
349 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
350 against each key in each KEYLIST; the corresponding BODY is evaluated.
351 If no clause succeeds, cl-case returns nil. A single atom may be used in
352 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
353 allowed only in the final clause, and matches if no other keys match.
354 Key values are compared by `eql'.
355
356 \(fn EXPR (KEYLIST BODY...)...)" nil t)
357
358 (put 'cl-case 'lisp-indent-function '1)
359
360 (autoload 'cl-ecase "cl-macs" "\
361 Like `cl-case', but error if no case fits.
362 `otherwise'-clauses are not allowed.
363
364 \(fn EXPR (KEYLIST BODY...)...)" nil t)
365
366 (put 'cl-ecase 'lisp-indent-function '1)
367
368 (autoload 'cl-typecase "cl-macs" "\
369 Evals EXPR, chooses among clauses on that value.
370 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
371 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
372 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
373 final clause, and matches if no other keys match.
374
375 \(fn EXPR (TYPE BODY...)...)" nil t)
376
377 (put 'cl-typecase 'lisp-indent-function '1)
378
379 (autoload 'cl-etypecase "cl-macs" "\
380 Like `cl-typecase', but error if no case fits.
381 `otherwise'-clauses are not allowed.
382
383 \(fn EXPR (TYPE BODY...)...)" nil t)
384
385 (put 'cl-etypecase 'lisp-indent-function '1)
386
387 (autoload 'cl-block "cl-macs" "\
388 Define a lexically-scoped block named NAME.
389 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
390 to jump prematurely out of the block. This differs from `catch' and `throw'
391 in two respects: First, the NAME is an unevaluated symbol rather than a
392 quoted symbol or other form; and second, NAME is lexically rather than
393 dynamically scoped: Only references to it within BODY will work. These
394 references may appear inside macro expansions, but not inside functions
395 called from BODY.
396
397 \(fn NAME &rest BODY)" nil t)
398
399 (put 'cl-block 'lisp-indent-function '1)
400
401 (autoload 'cl-return "cl-macs" "\
402 Return from the block named nil.
403 This is equivalent to `(cl-return-from nil RESULT)'.
404
405 \(fn &optional RESULT)" nil t)
406
407 (autoload 'cl-return-from "cl-macs" "\
408 Return from the block named NAME.
409 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
410 returning RESULT from that form (or nil if RESULT is omitted).
411 This is compatible with Common Lisp, but note that `defun' and
412 `defmacro' do not create implicit blocks as they do in Common Lisp.
413
414 \(fn NAME &optional RESULT)" nil t)
415
416 (put 'cl-return-from 'lisp-indent-function '1)
417
418 (autoload 'cl-loop "cl-macs" "\
419 The Common Lisp `loop' macro.
420 Valid clauses are:
421 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
422 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
423 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
424 always COND, never COND, thereis COND, collect EXPR into VAR,
425 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
426 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
427 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
428 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
429 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
430 finally return EXPR, named NAME.
431
432 \(fn CLAUSE...)" nil t)
433
434 (autoload 'cl-do "cl-macs" "\
435 The Common Lisp `do' loop.
436
437 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
438
439 (put 'cl-do 'lisp-indent-function '2)
440
441 (autoload 'cl-do* "cl-macs" "\
442 The Common Lisp `do*' loop.
443
444 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
445
446 (put 'cl-do* 'lisp-indent-function '2)
447
448 (autoload 'cl-dolist "cl-macs" "\
449 Loop over a list.
450 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
451 Then evaluate RESULT to get return value, default nil.
452 An implicit nil block is established around the loop.
453
454 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
455
456 (put 'cl-dolist 'lisp-indent-function '1)
457
458 (autoload 'cl-dotimes "cl-macs" "\
459 Loop a certain number of times.
460 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
461 to COUNT, exclusive. Then evaluate RESULT to get return value, default
462 nil.
463
464 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
465
466 (put 'cl-dotimes 'lisp-indent-function '1)
467
468 (autoload 'cl-tagbody "cl-macs" "\
469 Execute statements while providing for control transfers to labels.
470 Each element of LABELS-OR-STMTS can be either a label (integer or symbol)
471 or a `cons' cell, in which case it's taken to be a statement.
472 This distinction is made before performing macroexpansion.
473 Statements are executed in sequence left to right, discarding any return value,
474 stopping only when reaching the end of LABELS-OR-STMTS.
475 Any statement can transfer control at any time to the statements that follow
476 one of the labels with the special form (go LABEL).
477 Labels have lexical scope and dynamic extent.
478
479 \(fn &rest LABELS-OR-STMTS)" nil t)
480
481 (autoload 'cl-do-symbols "cl-macs" "\
482 Loop over all symbols.
483 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
484 from OBARRAY.
485
486 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
487
488 (put 'cl-do-symbols 'lisp-indent-function '1)
489
490 (autoload 'cl-do-all-symbols "cl-macs" "\
491 Like `cl-do-symbols', but use the default obarray.
492
493 \(fn (VAR [RESULT]) BODY...)" nil t)
494
495 (put 'cl-do-all-symbols 'lisp-indent-function '1)
496
497 (autoload 'cl-psetq "cl-macs" "\
498 Set SYMs to the values VALs in parallel.
499 This is like `setq', except that all VAL forms are evaluated (in order)
500 before assigning any symbols SYM to the corresponding values.
501
502 \(fn SYM VAL SYM VAL ...)" nil t)
503
504 (autoload 'cl-progv "cl-macs" "\
505 Bind SYMBOLS to VALUES dynamically in BODY.
506 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
507 Each symbol in the first list is bound to the corresponding value in the
508 second list (or to nil if VALUES is shorter than SYMBOLS); then the
509 BODY forms are executed and their result is returned. This is much like
510 a `let' form, except that the list of symbols can be computed at run-time.
511
512 \(fn SYMBOLS VALUES &rest BODY)" nil t)
513
514 (put 'cl-progv 'lisp-indent-function '2)
515
516 (autoload 'cl-flet "cl-macs" "\
517 Make local function definitions.
518 Like `cl-labels' but the definitions are not recursive.
519
520 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
521
522 (put 'cl-flet 'lisp-indent-function '1)
523
524 (autoload 'cl-flet* "cl-macs" "\
525 Make local function definitions.
526 Like `cl-flet' but the definitions can refer to previous ones.
527
528 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
529
530 (put 'cl-flet* 'lisp-indent-function '1)
531
532 (autoload 'cl-labels "cl-macs" "\
533 Make temporary function bindings.
534 The bindings can be recursive and the scoping is lexical, but capturing them
535 in closures will only work if `lexical-binding' is in use.
536
537 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
538
539 (put 'cl-labels 'lisp-indent-function '1)
540
541 (autoload 'cl-macrolet "cl-macs" "\
542 Make temporary macro definitions.
543 This is like `cl-flet', but for macros instead of functions.
544
545 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
546
547 (put 'cl-macrolet 'lisp-indent-function '1)
548
549 (autoload 'cl-symbol-macrolet "cl-macs" "\
550 Make symbol macro definitions.
551 Within the body FORMs, references to the variable NAME will be replaced
552 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
553
554 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
555
556 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
557
558 (autoload 'cl-multiple-value-bind "cl-macs" "\
559 Collect multiple return values.
560 FORM must return a list; the BODY is then executed with the first N elements
561 of this list bound (`let'-style) to each of the symbols SYM in turn. This
562 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
563 simulate true multiple return values. For compatibility, (cl-values A B C) is
564 a synonym for (list A B C).
565
566 \(fn (SYM...) FORM BODY)" nil t)
567
568 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
569
570 (autoload 'cl-multiple-value-setq "cl-macs" "\
571 Collect multiple return values.
572 FORM must return a list; the first N elements of this list are stored in
573 each of the symbols SYM in turn. This is analogous to the Common Lisp
574 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
575 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
576
577 \(fn (SYM...) FORM)" nil t)
578
579 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
580
581 (autoload 'cl-locally "cl-macs" "\
582 Equivalent to `progn'.
583
584 \(fn &rest BODY)" nil t)
585
586 (autoload 'cl-the "cl-macs" "\
587 At present this ignores _TYPE and is simply equivalent to FORM.
588
589 \(fn TYPE FORM)" nil t)
590
591 (put 'cl-the 'lisp-indent-function '1)
592
593 (autoload 'cl-declare "cl-macs" "\
594 Declare SPECS about the current function while compiling.
595 For instance
596
597 (cl-declare (warn 0))
598
599 will turn off byte-compile warnings in the function.
600 See Info node `(cl)Declarations' for details.
601
602 \(fn &rest SPECS)" nil t)
603
604 (autoload 'cl-psetf "cl-macs" "\
605 Set PLACEs to the values VALs in parallel.
606 This is like `setf', except that all VAL forms are evaluated (in order)
607 before assigning any PLACEs to the corresponding values.
608
609 \(fn PLACE VAL PLACE VAL ...)" nil t)
610
611 (autoload 'cl-remf "cl-macs" "\
612 Remove TAG from property list PLACE.
613 PLACE may be a symbol, or any generalized variable allowed by `setf'.
614 The form returns true if TAG was found and removed, nil otherwise.
615
616 \(fn PLACE TAG)" nil t)
617
618 (autoload 'cl-shiftf "cl-macs" "\
619 Shift left among PLACEs.
620 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
621 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
622
623 \(fn PLACE... VAL)" nil t)
624
625 (autoload 'cl-rotatef "cl-macs" "\
626 Rotate left among PLACEs.
627 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
628 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
629
630 \(fn PLACE...)" nil t)
631
632 (autoload 'cl-letf "cl-macs" "\
633 Temporarily bind to PLACEs.
634 This is the analogue of `let', but with generalized variables (in the
635 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
636 VALUE, then the BODY forms are executed. On exit, either normally or
637 because of a `throw' or error, the PLACEs are set back to their original
638 values. Note that this macro is *not* available in Common Lisp.
639 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
640 the PLACE is not modified before executing BODY.
641
642 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
643
644 (put 'cl-letf 'lisp-indent-function '1)
645
646 (autoload 'cl-letf* "cl-macs" "\
647 Temporarily bind to PLACEs.
648 Like `cl-letf' but where the bindings are performed one at a time,
649 rather than all at the end (i.e. like `let*' rather than like `let').
650
651 \(fn BINDINGS &rest BODY)" nil t)
652
653 (put 'cl-letf* 'lisp-indent-function '1)
654
655 (autoload 'cl-callf "cl-macs" "\
656 Set PLACE to (FUNC PLACE ARGS...).
657 FUNC should be an unquoted function name. PLACE may be a symbol,
658 or any generalized variable allowed by `setf'.
659
660 \(fn FUNC PLACE &rest ARGS)" nil t)
661
662 (put 'cl-callf 'lisp-indent-function '2)
663
664 (autoload 'cl-callf2 "cl-macs" "\
665 Set PLACE to (FUNC ARG1 PLACE ARGS...).
666 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
667
668 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
669
670 (put 'cl-callf2 'lisp-indent-function '3)
671
672 (autoload 'cl-defstruct "cl-macs" "\
673 Define a struct type.
674 This macro defines a new data type called NAME that stores data
675 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
676 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
677 You can use the accessors to set the corresponding slots, via `setf'.
678
679 NAME may instead take the form (NAME OPTIONS...), where each
680 OPTION is either a single keyword or (KEYWORD VALUE) where
681 KEYWORD can be one of :conc-name, :constructor, :copier, :predicate,
682 :type, :named, :initial-offset, :print-function, or :include.
683
684 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
685 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
686 one keyword is supported, `:read-only'. If this has a non-nil
687 value, that slot cannot be set via `setf'.
688
689 \(fn NAME SLOTS...)" nil t)
690
691 (put 'cl-defstruct 'doc-string-elt '2)
692
693 (put 'cl-defstruct 'lisp-indent-function '1)
694
695 (autoload 'cl-deftype "cl-macs" "\
696 Define NAME as a new data type.
697 The type name can then be used in `cl-typecase', `cl-check-type', etc.
698
699 \(fn NAME ARGLIST &rest BODY)" nil t)
700
701 (put 'cl-deftype 'doc-string-elt '3)
702
703 (autoload 'cl-typep "cl-macs" "\
704 Check that OBJECT is of type TYPE.
705 TYPE is a Common Lisp-style type specifier.
706
707 \(fn OBJECT TYPE)" nil nil)
708
709 (autoload 'cl-check-type "cl-macs" "\
710 Verify that FORM is of type TYPE; signal an error if not.
711 STRING is an optional description of the desired type.
712
713 \(fn FORM TYPE &optional STRING)" nil t)
714
715 (autoload 'cl-assert "cl-macs" "\
716 Verify that FORM returns non-nil; signal an error if not.
717 Second arg SHOW-ARGS means to include arguments of FORM in message.
718 Other args STRING and ARGS... are arguments to be passed to `error'.
719 They are not evaluated unless the assertion fails. If STRING is
720 omitted, a default message listing FORM itself is used.
721
722 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
723
724 (autoload 'cl-define-compiler-macro "cl-macs" "\
725 Define a compiler-only macro.
726 This is like `defmacro', but macro expansion occurs only if the call to
727 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
728 for optimizing the way calls to FUNC are compiled; the form returned by
729 BODY should do the same thing as a call to the normal function called
730 FUNC, though possibly more efficiently. Note that, like regular macros,
731 compiler macros are expanded repeatedly until no further expansions are
732 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
733 original function call alone by declaring an initial `&whole foo' parameter
734 and then returning foo.
735
736 \(fn FUNC ARGS &rest BODY)" nil t)
737
738 (autoload 'cl-compiler-macroexpand "cl-macs" "\
739 Like `macroexpand', but for compiler macros.
740 Expands FORM repeatedly until no further expansion is possible.
741 Returns FORM unchanged if it has no compiler macro, or if it has a
742 macro that returns its `&whole' argument.
743
744 \(fn FORM)" nil nil)
745
746 (autoload 'cl-defsubst "cl-macs" "\
747 Define NAME as a function.
748 Like `defun', except the function is automatically declared `inline',
749 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
750 surrounded by (cl-block NAME ...).
751
752 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
753
754 (put 'cl-defsubst 'lisp-indent-function '2)
755
756 (autoload 'cl--compiler-macro-adjoin "cl-macs" "\
757
758
759 \(fn FORM A LIST &rest KEYS)" nil nil)
760
761 ;;;***
762 \f
763 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
764 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
765 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
766 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
767 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
768 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
769 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
770 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
771 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
772 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
773 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
774 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
775 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "51a70dea9cbc225165a50135956609aa")
776 ;;; Generated autoloads from cl-seq.el
777
778 (autoload 'cl-reduce "cl-seq" "\
779 Reduce two-argument FUNCTION across SEQ.
780
781 Keywords supported: :start :end :from-end :initial-value :key
782
783 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
784
785 (autoload 'cl-fill "cl-seq" "\
786 Fill the elements of SEQ with ITEM.
787
788 Keywords supported: :start :end
789
790 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
791
792 (autoload 'cl-replace "cl-seq" "\
793 Replace the elements of SEQ1 with the elements of SEQ2.
794 SEQ1 is destructively modified, then returned.
795
796 Keywords supported: :start1 :end1 :start2 :end2
797
798 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
799
800 (autoload 'cl-remove "cl-seq" "\
801 Remove all occurrences of ITEM in SEQ.
802 This is a non-destructive function; it makes a copy of SEQ if necessary
803 to avoid corrupting the original SEQ.
804
805 Keywords supported: :test :test-not :key :count :start :end :from-end
806
807 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
808
809 (autoload 'cl-remove-if "cl-seq" "\
810 Remove all items satisfying PREDICATE in SEQ.
811 This is a non-destructive function; it makes a copy of SEQ if necessary
812 to avoid corrupting the original SEQ.
813
814 Keywords supported: :key :count :start :end :from-end
815
816 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
817
818 (autoload 'cl-remove-if-not "cl-seq" "\
819 Remove all items not satisfying PREDICATE in SEQ.
820 This is a non-destructive function; it makes a copy of SEQ if necessary
821 to avoid corrupting the original SEQ.
822
823 Keywords supported: :key :count :start :end :from-end
824
825 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
826
827 (autoload 'cl-delete "cl-seq" "\
828 Remove all occurrences of ITEM in SEQ.
829 This is a destructive function; it reuses the storage of SEQ whenever possible.
830
831 Keywords supported: :test :test-not :key :count :start :end :from-end
832
833 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
834
835 (autoload 'cl-delete-if "cl-seq" "\
836 Remove all items satisfying PREDICATE in SEQ.
837 This is a destructive function; it reuses the storage of SEQ whenever possible.
838
839 Keywords supported: :key :count :start :end :from-end
840
841 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
842
843 (autoload 'cl-delete-if-not "cl-seq" "\
844 Remove all items not satisfying PREDICATE in SEQ.
845 This is a destructive function; it reuses the storage of SEQ whenever possible.
846
847 Keywords supported: :key :count :start :end :from-end
848
849 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
850
851 (autoload 'cl-remove-duplicates "cl-seq" "\
852 Return a copy of SEQ with all duplicate elements removed.
853
854 Keywords supported: :test :test-not :key :start :end :from-end
855
856 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
857
858 (autoload 'cl-delete-duplicates "cl-seq" "\
859 Remove all duplicate elements from SEQ (destructively).
860
861 Keywords supported: :test :test-not :key :start :end :from-end
862
863 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
864
865 (autoload 'cl-substitute "cl-seq" "\
866 Substitute NEW for OLD in SEQ.
867 This is a non-destructive function; it makes a copy of SEQ if necessary
868 to avoid corrupting the original SEQ.
869
870 Keywords supported: :test :test-not :key :count :start :end :from-end
871
872 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
873
874 (autoload 'cl-substitute-if "cl-seq" "\
875 Substitute NEW for all items satisfying PREDICATE in SEQ.
876 This is a non-destructive function; it makes a copy of SEQ if necessary
877 to avoid corrupting the original SEQ.
878
879 Keywords supported: :key :count :start :end :from-end
880
881 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
882
883 (autoload 'cl-substitute-if-not "cl-seq" "\
884 Substitute NEW for all items not satisfying PREDICATE in SEQ.
885 This is a non-destructive function; it makes a copy of SEQ if necessary
886 to avoid corrupting the original SEQ.
887
888 Keywords supported: :key :count :start :end :from-end
889
890 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
891
892 (autoload 'cl-nsubstitute "cl-seq" "\
893 Substitute NEW for OLD in SEQ.
894 This is a destructive function; it reuses the storage of SEQ whenever possible.
895
896 Keywords supported: :test :test-not :key :count :start :end :from-end
897
898 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
899
900 (autoload 'cl-nsubstitute-if "cl-seq" "\
901 Substitute NEW for all items satisfying PREDICATE in SEQ.
902 This is a destructive function; it reuses the storage of SEQ whenever possible.
903
904 Keywords supported: :key :count :start :end :from-end
905
906 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
907
908 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
909 Substitute NEW for all items not satisfying PREDICATE in SEQ.
910 This is a destructive function; it reuses the storage of SEQ whenever possible.
911
912 Keywords supported: :key :count :start :end :from-end
913
914 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
915
916 (autoload 'cl-find "cl-seq" "\
917 Find the first occurrence of ITEM in SEQ.
918 Return the matching ITEM, or nil if not found.
919
920 Keywords supported: :test :test-not :key :start :end :from-end
921
922 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
923
924 (autoload 'cl-find-if "cl-seq" "\
925 Find the first item satisfying PREDICATE in SEQ.
926 Return the matching item, or nil if not found.
927
928 Keywords supported: :key :start :end :from-end
929
930 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
931
932 (autoload 'cl-find-if-not "cl-seq" "\
933 Find the first item not satisfying PREDICATE in SEQ.
934 Return the matching item, or nil if not found.
935
936 Keywords supported: :key :start :end :from-end
937
938 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
939
940 (autoload 'cl-position "cl-seq" "\
941 Find the first occurrence of ITEM in SEQ.
942 Return the index of the matching item, or nil if not found.
943
944 Keywords supported: :test :test-not :key :start :end :from-end
945
946 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
947
948 (autoload 'cl-position-if "cl-seq" "\
949 Find the first item satisfying PREDICATE in SEQ.
950 Return the index of the matching item, or nil if not found.
951
952 Keywords supported: :key :start :end :from-end
953
954 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
955
956 (autoload 'cl-position-if-not "cl-seq" "\
957 Find the first item not satisfying PREDICATE in SEQ.
958 Return the index of the matching item, or nil if not found.
959
960 Keywords supported: :key :start :end :from-end
961
962 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
963
964 (autoload 'cl-count "cl-seq" "\
965 Count the number of occurrences of ITEM in SEQ.
966
967 Keywords supported: :test :test-not :key :start :end
968
969 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
970
971 (autoload 'cl-count-if "cl-seq" "\
972 Count the number of items satisfying PREDICATE in SEQ.
973
974 Keywords supported: :key :start :end
975
976 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
977
978 (autoload 'cl-count-if-not "cl-seq" "\
979 Count the number of items not satisfying PREDICATE in SEQ.
980
981 Keywords supported: :key :start :end
982
983 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
984
985 (autoload 'cl-mismatch "cl-seq" "\
986 Compare SEQ1 with SEQ2, return index of first mismatching element.
987 Return nil if the sequences match. If one sequence is a prefix of the
988 other, the return value indicates the end of the shorter sequence.
989
990 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
991
992 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
993
994 (autoload 'cl-search "cl-seq" "\
995 Search for SEQ1 as a subsequence of SEQ2.
996 Return the index of the leftmost element of the first match found;
997 return nil if there are no matches.
998
999 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1000
1001 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1002
1003 (autoload 'cl-sort "cl-seq" "\
1004 Sort the argument SEQ according to PREDICATE.
1005 This is a destructive function; it reuses the storage of SEQ if possible.
1006
1007 Keywords supported: :key
1008
1009 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1010
1011 (autoload 'cl-stable-sort "cl-seq" "\
1012 Sort the argument SEQ stably according to PREDICATE.
1013 This is a destructive function; it reuses the storage of SEQ if possible.
1014
1015 Keywords supported: :key
1016
1017 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1018
1019 (autoload 'cl-merge "cl-seq" "\
1020 Destructively merge the two sequences to produce a new sequence.
1021 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1022 sequences, and PREDICATE is a `less-than' predicate on the elements.
1023
1024 Keywords supported: :key
1025
1026 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1027
1028 (autoload 'cl-member "cl-seq" "\
1029 Find the first occurrence of ITEM in LIST.
1030 Return the sublist of LIST whose car is ITEM.
1031
1032 Keywords supported: :test :test-not :key
1033
1034 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1035
1036 (eval-and-compile (put 'cl-member 'compiler-macro #'cl--compiler-macro-member))
1037
1038 (autoload 'cl-member-if "cl-seq" "\
1039 Find the first item satisfying PREDICATE in LIST.
1040 Return the sublist of LIST whose car matches.
1041
1042 Keywords supported: :key
1043
1044 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1045
1046 (autoload 'cl-member-if-not "cl-seq" "\
1047 Find the first item not satisfying PREDICATE in LIST.
1048 Return the sublist of LIST whose car matches.
1049
1050 Keywords supported: :key
1051
1052 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1053
1054 (autoload 'cl--adjoin "cl-seq" "\
1055
1056
1057 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1058
1059 (autoload 'cl-assoc "cl-seq" "\
1060 Find the first item whose car matches ITEM in LIST.
1061
1062 Keywords supported: :test :test-not :key
1063
1064 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1065
1066 (eval-and-compile (put 'cl-assoc 'compiler-macro #'cl--compiler-macro-assoc))
1067
1068 (autoload 'cl-assoc-if "cl-seq" "\
1069 Find the first item whose car satisfies PREDICATE in LIST.
1070
1071 Keywords supported: :key
1072
1073 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1074
1075 (autoload 'cl-assoc-if-not "cl-seq" "\
1076 Find the first item whose car does not satisfy PREDICATE in LIST.
1077
1078 Keywords supported: :key
1079
1080 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1081
1082 (autoload 'cl-rassoc "cl-seq" "\
1083 Find the first item whose cdr matches ITEM in LIST.
1084
1085 Keywords supported: :test :test-not :key
1086
1087 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1088
1089 (autoload 'cl-rassoc-if "cl-seq" "\
1090 Find the first item whose cdr satisfies PREDICATE in LIST.
1091
1092 Keywords supported: :key
1093
1094 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1095
1096 (autoload 'cl-rassoc-if-not "cl-seq" "\
1097 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1098
1099 Keywords supported: :key
1100
1101 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1102
1103 (autoload 'cl-union "cl-seq" "\
1104 Combine LIST1 and LIST2 using a set-union operation.
1105 The resulting list contains all items that appear in either LIST1 or LIST2.
1106 This is a non-destructive function; it makes a copy of the data if necessary
1107 to avoid corrupting the original LIST1 and LIST2.
1108
1109 Keywords supported: :test :test-not :key
1110
1111 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1112
1113 (autoload 'cl-nunion "cl-seq" "\
1114 Combine LIST1 and LIST2 using a set-union operation.
1115 The resulting list contains all items that appear in either LIST1 or LIST2.
1116 This is a destructive function; it reuses the storage of LIST1 and LIST2
1117 whenever possible.
1118
1119 Keywords supported: :test :test-not :key
1120
1121 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1122
1123 (autoload 'cl-intersection "cl-seq" "\
1124 Combine LIST1 and LIST2 using a set-intersection operation.
1125 The resulting list contains all items that appear in both LIST1 and LIST2.
1126 This is a non-destructive function; it makes a copy of the data if necessary
1127 to avoid corrupting the original LIST1 and LIST2.
1128
1129 Keywords supported: :test :test-not :key
1130
1131 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1132
1133 (autoload 'cl-nintersection "cl-seq" "\
1134 Combine LIST1 and LIST2 using a set-intersection operation.
1135 The resulting list contains all items that appear in both LIST1 and LIST2.
1136 This is a destructive function; it reuses the storage of LIST1 and LIST2
1137 whenever possible.
1138
1139 Keywords supported: :test :test-not :key
1140
1141 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1142
1143 (autoload 'cl-set-difference "cl-seq" "\
1144 Combine LIST1 and LIST2 using a set-difference operation.
1145 The resulting list contains all items that appear in LIST1 but not LIST2.
1146 This is a non-destructive function; it makes a copy of the data if necessary
1147 to avoid corrupting the original LIST1 and LIST2.
1148
1149 Keywords supported: :test :test-not :key
1150
1151 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1152
1153 (autoload 'cl-nset-difference "cl-seq" "\
1154 Combine LIST1 and LIST2 using a set-difference operation.
1155 The resulting list contains all items that appear in LIST1 but not LIST2.
1156 This is a destructive function; it reuses the storage of LIST1 and LIST2
1157 whenever possible.
1158
1159 Keywords supported: :test :test-not :key
1160
1161 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1162
1163 (autoload 'cl-set-exclusive-or "cl-seq" "\
1164 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1165 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1166 This is a non-destructive function; it makes a copy of the data if necessary
1167 to avoid corrupting the original LIST1 and LIST2.
1168
1169 Keywords supported: :test :test-not :key
1170
1171 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1172
1173 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1174 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1175 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1176 This is a destructive function; it reuses the storage of LIST1 and LIST2
1177 whenever possible.
1178
1179 Keywords supported: :test :test-not :key
1180
1181 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1182
1183 (autoload 'cl-subsetp "cl-seq" "\
1184 Return true if LIST1 is a subset of LIST2.
1185 I.e., if every element of LIST1 also appears in LIST2.
1186
1187 Keywords supported: :test :test-not :key
1188
1189 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1190
1191 (autoload 'cl-subst-if "cl-seq" "\
1192 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1193 Return a copy of TREE with all matching elements replaced by NEW.
1194
1195 Keywords supported: :key
1196
1197 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1198
1199 (autoload 'cl-subst-if-not "cl-seq" "\
1200 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1201 Return a copy of TREE with all non-matching elements replaced by NEW.
1202
1203 Keywords supported: :key
1204
1205 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1206
1207 (autoload 'cl-nsubst "cl-seq" "\
1208 Substitute NEW for OLD everywhere in TREE (destructively).
1209 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1210 to `setcar').
1211
1212 Keywords supported: :test :test-not :key
1213
1214 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1215
1216 (autoload 'cl-nsubst-if "cl-seq" "\
1217 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1218 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1219
1220 Keywords supported: :key
1221
1222 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1223
1224 (autoload 'cl-nsubst-if-not "cl-seq" "\
1225 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1226 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1227
1228 Keywords supported: :key
1229
1230 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1231
1232 (autoload 'cl-sublis "cl-seq" "\
1233 Perform substitutions indicated by ALIST in TREE (non-destructively).
1234 Return a copy of TREE with all matching elements replaced.
1235
1236 Keywords supported: :test :test-not :key
1237
1238 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1239
1240 (autoload 'cl-nsublis "cl-seq" "\
1241 Perform substitutions indicated by ALIST in TREE (destructively).
1242 Any matching element of TREE is changed via a call to `setcar'.
1243
1244 Keywords supported: :test :test-not :key
1245
1246 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1247
1248 (autoload 'cl-tree-equal "cl-seq" "\
1249 Return t if trees TREE1 and TREE2 have `eql' leaves.
1250 Atoms are compared by `eql'; cons cells are compared recursively.
1251
1252 Keywords supported: :test :test-not :key
1253
1254 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1255
1256 ;;;***
1257 \f
1258 ;; Local Variables:
1259 ;; version-control: never
1260 ;; no-byte-compile: t
1261 ;; no-update-autoloads: t
1262 ;; coding: utf-8
1263 ;; End:
1264 ;;; cl-loaddefs.el ends here