]> code.delx.au - gnu-emacs/blob - test/etags/c-src/emacs/src/lisp.h
Update copyright year to 2016
[gnu-emacs] / test / etags / c-src / emacs / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2016 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 Lisp_Misc_Finalizer,
492 /* Currently floats are not a misc type,
493 but let's define this in case we want to change that. */
494 Lisp_Misc_Float,
495 /* This is not a type code. It is for range checking. */
496 Lisp_Misc_Limit
497 };
498
499 /* These are the types of forwarding objects used in the value slot
500 of symbols for special built-in variables whose value is stored in
501 C variables. */
502 enum Lisp_Fwd_Type
503 {
504 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
505 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
506 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
507 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
508 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
509 };
510
511 /* If you want to define a new Lisp data type, here are some
512 instructions. See the thread at
513 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
514 for more info.
515
516 First, there are already a couple of Lisp types that can be used if
517 your new type does not need to be exposed to Lisp programs nor
518 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
519 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
520 is suitable for temporarily stashing away pointers and integers in
521 a Lisp object. The latter is useful for vector-like Lisp objects
522 that need to be used as part of other objects, but which are never
523 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
524 an example).
525
526 These two types don't look pretty when printed, so they are
527 unsuitable for Lisp objects that can be exposed to users.
528
529 To define a new data type, add one more Lisp_Misc subtype or one
530 more pseudovector subtype. Pseudovectors are more suitable for
531 objects with several slots that need to support fast random access,
532 while Lisp_Misc types are for everything else. A pseudovector object
533 provides one or more slots for Lisp objects, followed by struct
534 members that are accessible only from C. A Lisp_Misc object is a
535 wrapper for a C struct that can contain anything you like.
536
537 Explicit freeing is discouraged for Lisp objects in general. But if
538 you really need to exploit this, use Lisp_Misc (check free_misc in
539 alloc.c to see why). There is no way to free a vectorlike object.
540
541 To add a new pseudovector type, extend the pvec_type enumeration;
542 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
543
544 For a Lisp_Misc, you will also need to add your entry to union
545 Lisp_Misc (but make sure the first word has the same structure as
546 the others, starting with a 16-bit member of the Lisp_Misc_Type
547 enumeration and a 1-bit GC markbit) and make sure the overall size
548 of the union is not increased by your addition.
549
550 For a new pseudovector, it's highly desirable to limit the size
551 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
552 Otherwise you will need to change sweep_vectors (also in alloc.c).
553
554 Then you will need to add switch branches in print.c (in
555 print_object, to print your object, and possibly also in
556 print_preprocess) and to alloc.c, to mark your object (in
557 mark_object) and to free it (in gc_sweep). The latter is also the
558 right place to call any code specific to your data type that needs
559 to run when the object is recycled -- e.g., free any additional
560 resources allocated for it that are not Lisp objects. You can even
561 make a pointer to the function that frees the resources a slot in
562 your object -- this way, the same object could be used to represent
563 several disparate C structures. */
564
565 #ifdef CHECK_LISP_OBJECT_TYPE
566
567 typedef struct { EMACS_INT i; } Lisp_Object;
568
569 #define LISP_INITIALLY(i) {i}
570
571 #undef CHECK_LISP_OBJECT_TYPE
572 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
573 #else /* CHECK_LISP_OBJECT_TYPE */
574
575 /* If a struct type is not wanted, define Lisp_Object as just a number. */
576
577 typedef EMACS_INT Lisp_Object;
578 #define LISP_INITIALLY(i) (i)
579 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
580 #endif /* CHECK_LISP_OBJECT_TYPE */
581
582 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
583 \f
584 /* Forward declarations. */
585
586 /* Defined in this file. */
587 union Lisp_Fwd;
588 INLINE bool BOOL_VECTOR_P (Lisp_Object);
589 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
590 INLINE bool BUFFERP (Lisp_Object);
591 INLINE bool CHAR_TABLE_P (Lisp_Object);
592 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
593 INLINE bool (CONSP) (Lisp_Object);
594 INLINE bool (FLOATP) (Lisp_Object);
595 INLINE bool functionp (Lisp_Object);
596 INLINE bool (INTEGERP) (Lisp_Object);
597 INLINE bool (MARKERP) (Lisp_Object);
598 INLINE bool (MISCP) (Lisp_Object);
599 INLINE bool (NILP) (Lisp_Object);
600 INLINE bool OVERLAYP (Lisp_Object);
601 INLINE bool PROCESSP (Lisp_Object);
602 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
603 INLINE bool SAVE_VALUEP (Lisp_Object);
604 INLINE bool FINALIZERP (Lisp_Object);
605 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
606 Lisp_Object);
607 INLINE bool STRINGP (Lisp_Object);
608 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
609 INLINE bool SUBRP (Lisp_Object);
610 INLINE bool (SYMBOLP) (Lisp_Object);
611 INLINE bool (VECTORLIKEP) (Lisp_Object);
612 INLINE bool WINDOWP (Lisp_Object);
613 INLINE bool TERMINALP (Lisp_Object);
614 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
615 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
616 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
617 INLINE void *(XUNTAG) (Lisp_Object, int);
618
619 /* Defined in chartab.c. */
620 extern Lisp_Object char_table_ref (Lisp_Object, int);
621 extern void char_table_set (Lisp_Object, int, Lisp_Object);
622
623 /* Defined in data.c. */
624 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
625 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
626
627 /* Defined in emacs.c. */
628 extern bool might_dump;
629 /* True means Emacs has already been initialized.
630 Used during startup to detect startup of dumped Emacs. */
631 extern bool initialized;
632
633 /* Defined in floatfns.c. */
634 extern double extract_float (Lisp_Object);
635
636 \f
637 /* Interned state of a symbol. */
638
639 enum symbol_interned
640 {
641 SYMBOL_UNINTERNED = 0,
642 SYMBOL_INTERNED = 1,
643 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
644 };
645
646 enum symbol_redirect
647 {
648 SYMBOL_PLAINVAL = 4,
649 SYMBOL_VARALIAS = 1,
650 SYMBOL_LOCALIZED = 2,
651 SYMBOL_FORWARDED = 3
652 };
653
654 struct Lisp_Symbol
655 {
656 bool_bf gcmarkbit : 1;
657
658 /* Indicates where the value can be found:
659 0 : it's a plain var, the value is in the `value' field.
660 1 : it's a varalias, the value is really in the `alias' symbol.
661 2 : it's a localized var, the value is in the `blv' object.
662 3 : it's a forwarding variable, the value is in `forward'. */
663 ENUM_BF (symbol_redirect) redirect : 3;
664
665 /* Non-zero means symbol is constant, i.e. changing its value
666 should signal an error. If the value is 3, then the var
667 can be changed, but only by `defconst'. */
668 unsigned constant : 2;
669
670 /* Interned state of the symbol. This is an enumerator from
671 enum symbol_interned. */
672 unsigned interned : 2;
673
674 /* True means that this variable has been explicitly declared
675 special (with `defvar' etc), and shouldn't be lexically bound. */
676 bool_bf declared_special : 1;
677
678 /* True if pointed to from purespace and hence can't be GC'd. */
679 bool_bf pinned : 1;
680
681 /* The symbol's name, as a Lisp string. */
682 Lisp_Object name;
683
684 /* Value of the symbol or Qunbound if unbound. Which alternative of the
685 union is used depends on the `redirect' field above. */
686 union {
687 Lisp_Object value;
688 struct Lisp_Symbol *alias;
689 struct Lisp_Buffer_Local_Value *blv;
690 union Lisp_Fwd *fwd;
691 } val;
692
693 /* Function value of the symbol or Qnil if not fboundp. */
694 Lisp_Object function;
695
696 /* The symbol's property list. */
697 Lisp_Object plist;
698
699 /* Next symbol in obarray bucket, if the symbol is interned. */
700 struct Lisp_Symbol *next;
701 };
702
703 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
704 meaning as in the DEFUN macro, and is used to construct a prototype. */
705 /* We can use the same trick as in the DEFUN macro to generate the
706 appropriate prototype. */
707 #define EXFUN(fnname, maxargs) \
708 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
709
710 /* Note that the weird token-substitution semantics of ANSI C makes
711 this work for MANY and UNEVALLED. */
712 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
713 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
714 #define DEFUN_ARGS_0 (void)
715 #define DEFUN_ARGS_1 (Lisp_Object)
716 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
717 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
718 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
719 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object)
721 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object)
723 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
724 Lisp_Object, Lisp_Object, Lisp_Object)
725 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
726 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
727
728 /* Yield an integer that contains TAG along with PTR. */
729 #define TAG_PTR(tag, ptr) \
730 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
731
732 /* Yield an integer that contains a symbol tag along with OFFSET.
733 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
734 #define TAG_SYMOFFSET(offset) \
735 TAG_PTR (Lisp_Symbol, \
736 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
737
738 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
739 XLI (builtin_lisp_symbol (Qwhatever)),
740 except the former expands to an integer constant expression. */
741 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
742
743 /* Declare extern constants for Lisp symbols. These can be helpful
744 when using a debugger like GDB, on older platforms where the debug
745 format does not represent C macros. */
746 #define DEFINE_LISP_SYMBOL(name) \
747 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
748 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
749
750 /* By default, define macros for Qt, etc., as this leads to a bit
751 better performance in the core Emacs interpreter. A plugin can
752 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
753 other Emacs instances that assign different values to Qt, etc. */
754 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
755 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
756 #endif
757
758 #include "globals.h"
759
760 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
761 At the machine level, these operations are no-ops. */
762 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
763 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
764
765 /* In the size word of a vector, this bit means the vector has been marked. */
766
767 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
768 # define ARRAY_MARK_FLAG PTRDIFF_MIN
769 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
770
771 /* In the size word of a struct Lisp_Vector, this bit means it's really
772 some other vector-like object. */
773 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
774 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
775 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
776
777 /* In a pseudovector, the size field actually contains a word with one
778 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
779 with PVEC_TYPE_MASK to indicate the actual type. */
780 enum pvec_type
781 {
782 PVEC_NORMAL_VECTOR,
783 PVEC_FREE,
784 PVEC_PROCESS,
785 PVEC_FRAME,
786 PVEC_WINDOW,
787 PVEC_BOOL_VECTOR,
788 PVEC_BUFFER,
789 PVEC_HASH_TABLE,
790 PVEC_TERMINAL,
791 PVEC_WINDOW_CONFIGURATION,
792 PVEC_SUBR,
793 PVEC_OTHER,
794 /* These should be last, check internal_equal to see why. */
795 PVEC_COMPILED,
796 PVEC_CHAR_TABLE,
797 PVEC_SUB_CHAR_TABLE,
798 PVEC_FONT /* Should be last because it's used for range checking. */
799 };
800
801 enum More_Lisp_Bits
802 {
803 /* For convenience, we also store the number of elements in these bits.
804 Note that this size is not necessarily the memory-footprint size, but
805 only the number of Lisp_Object fields (that need to be traced by GC).
806 The distinction is used, e.g., by Lisp_Process, which places extra
807 non-Lisp_Object fields at the end of the structure. */
808 PSEUDOVECTOR_SIZE_BITS = 12,
809 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
810
811 /* To calculate the memory footprint of the pseudovector, it's useful
812 to store the size of non-Lisp area in word_size units here. */
813 PSEUDOVECTOR_REST_BITS = 12,
814 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
815 << PSEUDOVECTOR_SIZE_BITS),
816
817 /* Used to extract pseudovector subtype information. */
818 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
819 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
820 };
821 \f
822 /* These functions extract various sorts of values from a Lisp_Object.
823 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
824 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
825 that cons. */
826
827 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
828 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
829 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
830 DEFINE_GDB_SYMBOL_END (VALMASK)
831
832 /* Largest and smallest representable fixnum values. These are the C
833 values. They are macros for use in static initializers. */
834 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
835 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
836
837 #if USE_LSB_TAG
838
839 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
840 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
841 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
842 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
843 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
844 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
845
846 #else /* ! USE_LSB_TAG */
847
848 /* Although compiled only if ! USE_LSB_TAG, the following functions
849 also work when USE_LSB_TAG; this is to aid future maintenance when
850 the lisp_h_* macros are eventually removed. */
851
852 /* Make a Lisp integer representing the value of the low order
853 bits of N. */
854 INLINE Lisp_Object
855 make_number (EMACS_INT n)
856 {
857 EMACS_INT int0 = Lisp_Int0;
858 if (USE_LSB_TAG)
859 {
860 EMACS_UINT u = n;
861 n = u << INTTYPEBITS;
862 n += int0;
863 }
864 else
865 {
866 n &= INTMASK;
867 n += (int0 << VALBITS);
868 }
869 return XIL (n);
870 }
871
872 /* Extract A's value as a signed integer. */
873 INLINE EMACS_INT
874 XINT (Lisp_Object a)
875 {
876 EMACS_INT i = XLI (a);
877 if (! USE_LSB_TAG)
878 {
879 EMACS_UINT u = i;
880 i = u << INTTYPEBITS;
881 }
882 return i >> INTTYPEBITS;
883 }
884
885 /* Like XINT (A), but may be faster. A must be nonnegative.
886 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
887 integers have zero-bits in their tags. */
888 INLINE EMACS_INT
889 XFASTINT (Lisp_Object a)
890 {
891 EMACS_INT int0 = Lisp_Int0;
892 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
893 eassert (0 <= n);
894 return n;
895 }
896
897 /* Extract A's value as a symbol. */
898 INLINE struct Lisp_Symbol *
899 XSYMBOL (Lisp_Object a)
900 {
901 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
902 if (! USE_LSB_TAG)
903 i <<= GCTYPEBITS;
904 void *p = (char *) lispsym + i;
905 return p;
906 }
907
908 /* Extract A's type. */
909 INLINE enum Lisp_Type
910 XTYPE (Lisp_Object a)
911 {
912 EMACS_UINT i = XLI (a);
913 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
914 }
915
916 /* Extract A's pointer value, assuming A's type is TYPE. */
917 INLINE void *
918 XUNTAG (Lisp_Object a, int type)
919 {
920 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
921 return (void *) i;
922 }
923
924 #endif /* ! USE_LSB_TAG */
925
926 /* Extract the pointer hidden within A. */
927 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
928
929 /* Extract A's value as an unsigned integer. */
930 INLINE EMACS_UINT
931 XUINT (Lisp_Object a)
932 {
933 EMACS_UINT i = XLI (a);
934 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
935 }
936
937 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
938 right now, but XUINT should only be applied to objects we know are
939 integers. */
940 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
941
942 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
943 INLINE Lisp_Object
944 make_natnum (EMACS_INT n)
945 {
946 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
947 EMACS_INT int0 = Lisp_Int0;
948 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
949 }
950
951 /* Return true if X and Y are the same object. */
952 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
953
954 /* Value is true if I doesn't fit into a Lisp fixnum. It is
955 written this way so that it also works if I is of unsigned
956 type or if I is a NaN. */
957
958 #define FIXNUM_OVERFLOW_P(i) \
959 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
960
961 INLINE ptrdiff_t
962 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
963 {
964 return num < lower ? lower : num <= upper ? num : upper;
965 }
966 \f
967
968 /* Extract a value or address from a Lisp_Object. */
969
970 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
971
972 INLINE struct Lisp_Vector *
973 XVECTOR (Lisp_Object a)
974 {
975 eassert (VECTORLIKEP (a));
976 return XUNTAG (a, Lisp_Vectorlike);
977 }
978
979 INLINE struct Lisp_String *
980 XSTRING (Lisp_Object a)
981 {
982 eassert (STRINGP (a));
983 return XUNTAG (a, Lisp_String);
984 }
985
986 /* The index of the C-defined Lisp symbol SYM.
987 This can be used in a static initializer. */
988 #define SYMBOL_INDEX(sym) i##sym
989
990 INLINE struct Lisp_Float *
991 XFLOAT (Lisp_Object a)
992 {
993 eassert (FLOATP (a));
994 return XUNTAG (a, Lisp_Float);
995 }
996
997 /* Pseudovector types. */
998
999 INLINE struct Lisp_Process *
1000 XPROCESS (Lisp_Object a)
1001 {
1002 eassert (PROCESSP (a));
1003 return XUNTAG (a, Lisp_Vectorlike);
1004 }
1005
1006 INLINE struct window *
1007 XWINDOW (Lisp_Object a)
1008 {
1009 eassert (WINDOWP (a));
1010 return XUNTAG (a, Lisp_Vectorlike);
1011 }
1012
1013 INLINE struct terminal *
1014 XTERMINAL (Lisp_Object a)
1015 {
1016 eassert (TERMINALP (a));
1017 return XUNTAG (a, Lisp_Vectorlike);
1018 }
1019
1020 INLINE struct Lisp_Subr *
1021 XSUBR (Lisp_Object a)
1022 {
1023 eassert (SUBRP (a));
1024 return XUNTAG (a, Lisp_Vectorlike);
1025 }
1026
1027 INLINE struct buffer *
1028 XBUFFER (Lisp_Object a)
1029 {
1030 eassert (BUFFERP (a));
1031 return XUNTAG (a, Lisp_Vectorlike);
1032 }
1033
1034 INLINE struct Lisp_Char_Table *
1035 XCHAR_TABLE (Lisp_Object a)
1036 {
1037 eassert (CHAR_TABLE_P (a));
1038 return XUNTAG (a, Lisp_Vectorlike);
1039 }
1040
1041 INLINE struct Lisp_Sub_Char_Table *
1042 XSUB_CHAR_TABLE (Lisp_Object a)
1043 {
1044 eassert (SUB_CHAR_TABLE_P (a));
1045 return XUNTAG (a, Lisp_Vectorlike);
1046 }
1047
1048 INLINE struct Lisp_Bool_Vector *
1049 XBOOL_VECTOR (Lisp_Object a)
1050 {
1051 eassert (BOOL_VECTOR_P (a));
1052 return XUNTAG (a, Lisp_Vectorlike);
1053 }
1054
1055 /* Construct a Lisp_Object from a value or address. */
1056
1057 INLINE Lisp_Object
1058 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1059 {
1060 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1061 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1062 return a;
1063 }
1064
1065 INLINE Lisp_Object
1066 make_lisp_symbol (struct Lisp_Symbol *sym)
1067 {
1068 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1069 eassert (XSYMBOL (a) == sym);
1070 return a;
1071 }
1072
1073 INLINE Lisp_Object
1074 builtin_lisp_symbol (int index)
1075 {
1076 return make_lisp_symbol (lispsym + index);
1077 }
1078
1079 #define XSETINT(a, b) ((a) = make_number (b))
1080 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1081 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1082 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1083 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1084 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1085 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1086 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1087
1088 /* Pseudovector types. */
1089
1090 #define XSETPVECTYPE(v, code) \
1091 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1092 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1093 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1094 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1095 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1096 | (lispsize)))
1097
1098 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1099 #define XSETPSEUDOVECTOR(a, b, code) \
1100 XSETTYPED_PSEUDOVECTOR (a, b, \
1101 (((struct vectorlike_header *) \
1102 XUNTAG (a, Lisp_Vectorlike)) \
1103 ->size), \
1104 code)
1105 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1106 (XSETVECTOR (a, b), \
1107 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1108 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1109
1110 #define XSETWINDOW_CONFIGURATION(a, b) \
1111 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1112 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1113 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1114 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1115 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1116 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1117 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1118 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1119 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1120 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1121
1122 /* Efficiently convert a pointer to a Lisp object and back. The
1123 pointer is represented as a Lisp integer, so the garbage collector
1124 does not know about it. The pointer should not have both Lisp_Int1
1125 bits set, which makes this conversion inherently unportable. */
1126
1127 INLINE void *
1128 XINTPTR (Lisp_Object a)
1129 {
1130 return XUNTAG (a, Lisp_Int0);
1131 }
1132
1133 INLINE Lisp_Object
1134 make_pointer_integer (void *p)
1135 {
1136 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1137 eassert (INTEGERP (a) && XINTPTR (a) == p);
1138 return a;
1139 }
1140
1141 /* Type checking. */
1142
1143 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1144 (int ok, Lisp_Object predicate, Lisp_Object x),
1145 (ok, predicate, x))
1146
1147 /* See the macros in intervals.h. */
1148
1149 typedef struct interval *INTERVAL;
1150
1151 struct GCALIGNED Lisp_Cons
1152 {
1153 /* Car of this cons cell. */
1154 Lisp_Object car;
1155
1156 union
1157 {
1158 /* Cdr of this cons cell. */
1159 Lisp_Object cdr;
1160
1161 /* Used to chain conses on a free list. */
1162 struct Lisp_Cons *chain;
1163 } u;
1164 };
1165
1166 /* Take the car or cdr of something known to be a cons cell. */
1167 /* The _addr functions shouldn't be used outside of the minimal set
1168 of code that has to know what a cons cell looks like. Other code not
1169 part of the basic lisp implementation should assume that the car and cdr
1170 fields are not accessible. (What if we want to switch to
1171 a copying collector someday? Cached cons cell field addresses may be
1172 invalidated at arbitrary points.) */
1173 INLINE Lisp_Object *
1174 xcar_addr (Lisp_Object c)
1175 {
1176 return &XCONS (c)->car;
1177 }
1178 INLINE Lisp_Object *
1179 xcdr_addr (Lisp_Object c)
1180 {
1181 return &XCONS (c)->u.cdr;
1182 }
1183
1184 /* Use these from normal code. */
1185 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1186 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1187
1188 /* Use these to set the fields of a cons cell.
1189
1190 Note that both arguments may refer to the same object, so 'n'
1191 should not be read after 'c' is first modified. */
1192 INLINE void
1193 XSETCAR (Lisp_Object c, Lisp_Object n)
1194 {
1195 *xcar_addr (c) = n;
1196 }
1197 INLINE void
1198 XSETCDR (Lisp_Object c, Lisp_Object n)
1199 {
1200 *xcdr_addr (c) = n;
1201 }
1202
1203 /* Take the car or cdr of something whose type is not known. */
1204 INLINE Lisp_Object
1205 CAR (Lisp_Object c)
1206 {
1207 return (CONSP (c) ? XCAR (c)
1208 : NILP (c) ? Qnil
1209 : wrong_type_argument (Qlistp, c));
1210 }
1211 INLINE Lisp_Object
1212 CDR (Lisp_Object c)
1213 {
1214 return (CONSP (c) ? XCDR (c)
1215 : NILP (c) ? Qnil
1216 : wrong_type_argument (Qlistp, c));
1217 }
1218
1219 /* Take the car or cdr of something whose type is not known. */
1220 INLINE Lisp_Object
1221 CAR_SAFE (Lisp_Object c)
1222 {
1223 return CONSP (c) ? XCAR (c) : Qnil;
1224 }
1225 INLINE Lisp_Object
1226 CDR_SAFE (Lisp_Object c)
1227 {
1228 return CONSP (c) ? XCDR (c) : Qnil;
1229 }
1230
1231 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1232
1233 struct GCALIGNED Lisp_String
1234 {
1235 ptrdiff_t size;
1236 ptrdiff_t size_byte;
1237 INTERVAL intervals; /* Text properties in this string. */
1238 unsigned char *data;
1239 };
1240
1241 /* True if STR is a multibyte string. */
1242 INLINE bool
1243 STRING_MULTIBYTE (Lisp_Object str)
1244 {
1245 return 0 <= XSTRING (str)->size_byte;
1246 }
1247
1248 /* An upper bound on the number of bytes in a Lisp string, not
1249 counting the terminating null. This a tight enough bound to
1250 prevent integer overflow errors that would otherwise occur during
1251 string size calculations. A string cannot contain more bytes than
1252 a fixnum can represent, nor can it be so long that C pointer
1253 arithmetic stops working on the string plus its terminating null.
1254 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1255 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1256 would expose alloc.c internal details that we'd rather keep
1257 private.
1258
1259 This is a macro for use in static initializers. The cast to
1260 ptrdiff_t ensures that the macro is signed. */
1261 #define STRING_BYTES_BOUND \
1262 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1263
1264 /* Mark STR as a unibyte string. */
1265 #define STRING_SET_UNIBYTE(STR) \
1266 do { \
1267 if (EQ (STR, empty_multibyte_string)) \
1268 (STR) = empty_unibyte_string; \
1269 else \
1270 XSTRING (STR)->size_byte = -1; \
1271 } while (false)
1272
1273 /* Mark STR as a multibyte string. Assure that STR contains only
1274 ASCII characters in advance. */
1275 #define STRING_SET_MULTIBYTE(STR) \
1276 do { \
1277 if (EQ (STR, empty_unibyte_string)) \
1278 (STR) = empty_multibyte_string; \
1279 else \
1280 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1281 } while (false)
1282
1283 /* Convenience functions for dealing with Lisp strings. */
1284
1285 INLINE unsigned char *
1286 SDATA (Lisp_Object string)
1287 {
1288 return XSTRING (string)->data;
1289 }
1290 INLINE char *
1291 SSDATA (Lisp_Object string)
1292 {
1293 /* Avoid "differ in sign" warnings. */
1294 return (char *) SDATA (string);
1295 }
1296 INLINE unsigned char
1297 SREF (Lisp_Object string, ptrdiff_t index)
1298 {
1299 return SDATA (string)[index];
1300 }
1301 INLINE void
1302 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1303 {
1304 SDATA (string)[index] = new;
1305 }
1306 INLINE ptrdiff_t
1307 SCHARS (Lisp_Object string)
1308 {
1309 return XSTRING (string)->size;
1310 }
1311
1312 #ifdef GC_CHECK_STRING_BYTES
1313 extern ptrdiff_t string_bytes (struct Lisp_String *);
1314 #endif
1315 INLINE ptrdiff_t
1316 STRING_BYTES (struct Lisp_String *s)
1317 {
1318 #ifdef GC_CHECK_STRING_BYTES
1319 return string_bytes (s);
1320 #else
1321 return s->size_byte < 0 ? s->size : s->size_byte;
1322 #endif
1323 }
1324
1325 INLINE ptrdiff_t
1326 SBYTES (Lisp_Object string)
1327 {
1328 return STRING_BYTES (XSTRING (string));
1329 }
1330 INLINE void
1331 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1332 {
1333 XSTRING (string)->size = newsize;
1334 }
1335
1336 /* Header of vector-like objects. This documents the layout constraints on
1337 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1338 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1339 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1340 because when two such pointers potentially alias, a compiler won't
1341 incorrectly reorder loads and stores to their size fields. See
1342 Bug#8546. */
1343 struct vectorlike_header
1344 {
1345 /* The only field contains various pieces of information:
1346 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1347 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1348 vector (0) or a pseudovector (1).
1349 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1350 of slots) of the vector.
1351 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1352 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1353 - b) number of Lisp_Objects slots at the beginning of the object
1354 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1355 traced by the GC;
1356 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1357 measured in word_size units. Rest fields may also include
1358 Lisp_Objects, but these objects usually needs some special treatment
1359 during GC.
1360 There are some exceptions. For PVEC_FREE, b) is always zero. For
1361 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1362 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1363 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1364 ptrdiff_t size;
1365 };
1366
1367 /* A regular vector is just a header plus an array of Lisp_Objects. */
1368
1369 struct Lisp_Vector
1370 {
1371 struct vectorlike_header header;
1372 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1373 };
1374
1375 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1376 enum
1377 {
1378 ALIGNOF_STRUCT_LISP_VECTOR
1379 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1380 };
1381
1382 /* A boolvector is a kind of vectorlike, with contents like a string. */
1383
1384 struct Lisp_Bool_Vector
1385 {
1386 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1387 just the subtype information. */
1388 struct vectorlike_header header;
1389 /* This is the size in bits. */
1390 EMACS_INT size;
1391 /* The actual bits, packed into bytes.
1392 Zeros fill out the last word if needed.
1393 The bits are in little-endian order in the bytes, and
1394 the bytes are in little-endian order in the words. */
1395 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1396 };
1397
1398 INLINE EMACS_INT
1399 bool_vector_size (Lisp_Object a)
1400 {
1401 EMACS_INT size = XBOOL_VECTOR (a)->size;
1402 eassume (0 <= size);
1403 return size;
1404 }
1405
1406 INLINE bits_word *
1407 bool_vector_data (Lisp_Object a)
1408 {
1409 return XBOOL_VECTOR (a)->data;
1410 }
1411
1412 INLINE unsigned char *
1413 bool_vector_uchar_data (Lisp_Object a)
1414 {
1415 return (unsigned char *) bool_vector_data (a);
1416 }
1417
1418 /* The number of data words and bytes in a bool vector with SIZE bits. */
1419
1420 INLINE EMACS_INT
1421 bool_vector_words (EMACS_INT size)
1422 {
1423 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1424 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1425 }
1426
1427 INLINE EMACS_INT
1428 bool_vector_bytes (EMACS_INT size)
1429 {
1430 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1431 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1432 }
1433
1434 /* True if A's Ith bit is set. */
1435
1436 INLINE bool
1437 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1438 {
1439 eassume (0 <= i && i < bool_vector_size (a));
1440 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1441 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1442 }
1443
1444 INLINE Lisp_Object
1445 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1446 {
1447 return bool_vector_bitref (a, i) ? Qt : Qnil;
1448 }
1449
1450 /* Set A's Ith bit to B. */
1451
1452 INLINE void
1453 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1454 {
1455 unsigned char *addr;
1456
1457 eassume (0 <= i && i < bool_vector_size (a));
1458 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1459
1460 if (b)
1461 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1462 else
1463 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1464 }
1465
1466 /* Some handy constants for calculating sizes
1467 and offsets, mostly of vectorlike objects. */
1468
1469 enum
1470 {
1471 header_size = offsetof (struct Lisp_Vector, contents),
1472 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1473 word_size = sizeof (Lisp_Object)
1474 };
1475
1476 /* Conveniences for dealing with Lisp arrays. */
1477
1478 INLINE Lisp_Object
1479 AREF (Lisp_Object array, ptrdiff_t idx)
1480 {
1481 return XVECTOR (array)->contents[idx];
1482 }
1483
1484 INLINE Lisp_Object *
1485 aref_addr (Lisp_Object array, ptrdiff_t idx)
1486 {
1487 return & XVECTOR (array)->contents[idx];
1488 }
1489
1490 INLINE ptrdiff_t
1491 ASIZE (Lisp_Object array)
1492 {
1493 return XVECTOR (array)->header.size;
1494 }
1495
1496 INLINE void
1497 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1498 {
1499 eassert (0 <= idx && idx < ASIZE (array));
1500 XVECTOR (array)->contents[idx] = val;
1501 }
1502
1503 INLINE void
1504 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1505 {
1506 /* Like ASET, but also can be used in the garbage collector:
1507 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1508 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1509 XVECTOR (array)->contents[idx] = val;
1510 }
1511
1512 /* True, since Qnil's representation is zero. Every place in the code
1513 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1514 to find such assumptions later if we change Qnil to be nonzero. */
1515 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1516
1517 /* Clear the object addressed by P, with size NBYTES, so that all its
1518 bytes are zero and all its Lisp values are nil. */
1519 INLINE void
1520 memclear (void *p, ptrdiff_t nbytes)
1521 {
1522 eassert (0 <= nbytes);
1523 verify (NIL_IS_ZERO);
1524 /* Since Qnil is zero, memset suffices. */
1525 memset (p, 0, nbytes);
1526 }
1527
1528 /* If a struct is made to look like a vector, this macro returns the length
1529 of the shortest vector that would hold that struct. */
1530
1531 #define VECSIZE(type) \
1532 ((sizeof (type) - header_size + word_size - 1) / word_size)
1533
1534 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1535 at the end and we need to compute the number of Lisp_Object fields (the
1536 ones that the GC needs to trace). */
1537
1538 #define PSEUDOVECSIZE(type, nonlispfield) \
1539 ((offsetof (type, nonlispfield) - header_size) / word_size)
1540
1541 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1542 should be integer expressions. This is not the same as
1543 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1544 returns true. For efficiency, prefer plain unsigned comparison if A
1545 and B's sizes both fit (after integer promotion). */
1546 #define UNSIGNED_CMP(a, op, b) \
1547 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1548 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1549 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1550
1551 /* True iff C is an ASCII character. */
1552 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1553
1554 /* A char-table is a kind of vectorlike, with contents are like a
1555 vector but with a few other slots. For some purposes, it makes
1556 sense to handle a char-table with type struct Lisp_Vector. An
1557 element of a char table can be any Lisp objects, but if it is a sub
1558 char-table, we treat it a table that contains information of a
1559 specific range of characters. A sub char-table is like a vector but
1560 with two integer fields between the header and Lisp data, which means
1561 that it has to be marked with some precautions (see mark_char_table
1562 in alloc.c). A sub char-table appears only in an element of a char-table,
1563 and there's no way to access it directly from Emacs Lisp program. */
1564
1565 enum CHARTAB_SIZE_BITS
1566 {
1567 CHARTAB_SIZE_BITS_0 = 6,
1568 CHARTAB_SIZE_BITS_1 = 4,
1569 CHARTAB_SIZE_BITS_2 = 5,
1570 CHARTAB_SIZE_BITS_3 = 7
1571 };
1572
1573 extern const int chartab_size[4];
1574
1575 struct Lisp_Char_Table
1576 {
1577 /* HEADER.SIZE is the vector's size field, which also holds the
1578 pseudovector type information. It holds the size, too.
1579 The size counts the defalt, parent, purpose, ascii,
1580 contents, and extras slots. */
1581 struct vectorlike_header header;
1582
1583 /* This holds a default value,
1584 which is used whenever the value for a specific character is nil. */
1585 Lisp_Object defalt;
1586
1587 /* This points to another char table, which we inherit from when the
1588 value for a specific character is nil. The `defalt' slot takes
1589 precedence over this. */
1590 Lisp_Object parent;
1591
1592 /* This is a symbol which says what kind of use this char-table is
1593 meant for. */
1594 Lisp_Object purpose;
1595
1596 /* The bottom sub char-table for characters of the range 0..127. It
1597 is nil if none of ASCII character has a specific value. */
1598 Lisp_Object ascii;
1599
1600 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1601
1602 /* These hold additional data. It is a vector. */
1603 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1604 };
1605
1606 struct Lisp_Sub_Char_Table
1607 {
1608 /* HEADER.SIZE is the vector's size field, which also holds the
1609 pseudovector type information. It holds the size, too. */
1610 struct vectorlike_header header;
1611
1612 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1613 char-table of depth 1 contains 16 elements, and each element
1614 covers 4096 (128*32) characters. A sub char-table of depth 2
1615 contains 32 elements, and each element covers 128 characters. A
1616 sub char-table of depth 3 contains 128 elements, and each element
1617 is for one character. */
1618 int depth;
1619
1620 /* Minimum character covered by the sub char-table. */
1621 int min_char;
1622
1623 /* Use set_sub_char_table_contents to set this. */
1624 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1625 };
1626
1627 INLINE Lisp_Object
1628 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1629 {
1630 struct Lisp_Char_Table *tbl = NULL;
1631 Lisp_Object val;
1632 do
1633 {
1634 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1635 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1636 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1637 if (NILP (val))
1638 val = tbl->defalt;
1639 }
1640 while (NILP (val) && ! NILP (tbl->parent));
1641
1642 return val;
1643 }
1644
1645 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1646 characters. Do not check validity of CT. */
1647 INLINE Lisp_Object
1648 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1649 {
1650 return (ASCII_CHAR_P (idx)
1651 ? CHAR_TABLE_REF_ASCII (ct, idx)
1652 : char_table_ref (ct, idx));
1653 }
1654
1655 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1656 8-bit European characters. Do not check validity of CT. */
1657 INLINE void
1658 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1659 {
1660 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1661 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1662 else
1663 char_table_set (ct, idx, val);
1664 }
1665
1666 /* This structure describes a built-in function.
1667 It is generated by the DEFUN macro only.
1668 defsubr makes it into a Lisp object. */
1669
1670 struct Lisp_Subr
1671 {
1672 struct vectorlike_header header;
1673 union {
1674 Lisp_Object (*a0) (void);
1675 Lisp_Object (*a1) (Lisp_Object);
1676 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1677 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1678 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1679 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1680 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1681 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1682 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1683 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1684 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1685 } function;
1686 short min_args, max_args;
1687 const char *symbol_name;
1688 const char *intspec;
1689 const char *doc;
1690 };
1691
1692 enum char_table_specials
1693 {
1694 /* This is the number of slots that every char table must have. This
1695 counts the ordinary slots and the top, defalt, parent, and purpose
1696 slots. */
1697 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1698
1699 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1700 when the latter is treated as an ordinary Lisp_Vector. */
1701 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1702 };
1703
1704 /* Return the number of "extra" slots in the char table CT. */
1705
1706 INLINE int
1707 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1708 {
1709 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1710 - CHAR_TABLE_STANDARD_SLOTS);
1711 }
1712
1713 /* Make sure that sub char-table contents slot is where we think it is. */
1714 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1715 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1716
1717 /***********************************************************************
1718 Symbols
1719 ***********************************************************************/
1720
1721 /* Value is name of symbol. */
1722
1723 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1724
1725 INLINE struct Lisp_Symbol *
1726 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1727 {
1728 eassert (sym->redirect == SYMBOL_VARALIAS);
1729 return sym->val.alias;
1730 }
1731 INLINE struct Lisp_Buffer_Local_Value *
1732 SYMBOL_BLV (struct Lisp_Symbol *sym)
1733 {
1734 eassert (sym->redirect == SYMBOL_LOCALIZED);
1735 return sym->val.blv;
1736 }
1737 INLINE union Lisp_Fwd *
1738 SYMBOL_FWD (struct Lisp_Symbol *sym)
1739 {
1740 eassert (sym->redirect == SYMBOL_FORWARDED);
1741 return sym->val.fwd;
1742 }
1743
1744 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1745 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1746
1747 INLINE void
1748 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1749 {
1750 eassert (sym->redirect == SYMBOL_VARALIAS);
1751 sym->val.alias = v;
1752 }
1753 INLINE void
1754 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1755 {
1756 eassert (sym->redirect == SYMBOL_LOCALIZED);
1757 sym->val.blv = v;
1758 }
1759 INLINE void
1760 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1761 {
1762 eassert (sym->redirect == SYMBOL_FORWARDED);
1763 sym->val.fwd = v;
1764 }
1765
1766 INLINE Lisp_Object
1767 SYMBOL_NAME (Lisp_Object sym)
1768 {
1769 return XSYMBOL (sym)->name;
1770 }
1771
1772 /* Value is true if SYM is an interned symbol. */
1773
1774 INLINE bool
1775 SYMBOL_INTERNED_P (Lisp_Object sym)
1776 {
1777 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1778 }
1779
1780 /* Value is true if SYM is interned in initial_obarray. */
1781
1782 INLINE bool
1783 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1784 {
1785 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1786 }
1787
1788 /* Value is non-zero if symbol is considered a constant, i.e. its
1789 value cannot be changed (there is an exception for keyword symbols,
1790 whose value can be set to the keyword symbol itself). */
1791
1792 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1793
1794 /* Placeholder for make-docfile to process. The actual symbol
1795 definition is done by lread.c's defsym. */
1796 #define DEFSYM(sym, name) /* empty */
1797
1798 \f
1799 /***********************************************************************
1800 Hash Tables
1801 ***********************************************************************/
1802
1803 /* The structure of a Lisp hash table. */
1804
1805 struct hash_table_test
1806 {
1807 /* Name of the function used to compare keys. */
1808 Lisp_Object name;
1809
1810 /* User-supplied hash function, or nil. */
1811 Lisp_Object user_hash_function;
1812
1813 /* User-supplied key comparison function, or nil. */
1814 Lisp_Object user_cmp_function;
1815
1816 /* C function to compare two keys. */
1817 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1818
1819 /* C function to compute hash code. */
1820 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1821 };
1822
1823 struct Lisp_Hash_Table
1824 {
1825 /* This is for Lisp; the hash table code does not refer to it. */
1826 struct vectorlike_header header;
1827
1828 /* Nil if table is non-weak. Otherwise a symbol describing the
1829 weakness of the table. */
1830 Lisp_Object weak;
1831
1832 /* When the table is resized, and this is an integer, compute the
1833 new size by adding this to the old size. If a float, compute the
1834 new size by multiplying the old size with this factor. */
1835 Lisp_Object rehash_size;
1836
1837 /* Resize hash table when number of entries/ table size is >= this
1838 ratio, a float. */
1839 Lisp_Object rehash_threshold;
1840
1841 /* Vector of hash codes. If hash[I] is nil, this means that the
1842 I-th entry is unused. */
1843 Lisp_Object hash;
1844
1845 /* Vector used to chain entries. If entry I is free, next[I] is the
1846 entry number of the next free item. If entry I is non-free,
1847 next[I] is the index of the next entry in the collision chain. */
1848 Lisp_Object next;
1849
1850 /* Index of first free entry in free list. */
1851 Lisp_Object next_free;
1852
1853 /* Bucket vector. A non-nil entry is the index of the first item in
1854 a collision chain. This vector's size can be larger than the
1855 hash table size to reduce collisions. */
1856 Lisp_Object index;
1857
1858 /* Only the fields above are traced normally by the GC. The ones below
1859 `count' are special and are either ignored by the GC or traced in
1860 a special way (e.g. because of weakness). */
1861
1862 /* Number of key/value entries in the table. */
1863 ptrdiff_t count;
1864
1865 /* Vector of keys and values. The key of item I is found at index
1866 2 * I, the value is found at index 2 * I + 1.
1867 This is gc_marked specially if the table is weak. */
1868 Lisp_Object key_and_value;
1869
1870 /* The comparison and hash functions. */
1871 struct hash_table_test test;
1872
1873 /* Next weak hash table if this is a weak hash table. The head
1874 of the list is in weak_hash_tables. */
1875 struct Lisp_Hash_Table *next_weak;
1876 };
1877
1878
1879 INLINE struct Lisp_Hash_Table *
1880 XHASH_TABLE (Lisp_Object a)
1881 {
1882 return XUNTAG (a, Lisp_Vectorlike);
1883 }
1884
1885 #define XSET_HASH_TABLE(VAR, PTR) \
1886 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1887
1888 INLINE bool
1889 HASH_TABLE_P (Lisp_Object a)
1890 {
1891 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1892 }
1893
1894 /* Value is the key part of entry IDX in hash table H. */
1895 INLINE Lisp_Object
1896 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1897 {
1898 return AREF (h->key_and_value, 2 * idx);
1899 }
1900
1901 /* Value is the value part of entry IDX in hash table H. */
1902 INLINE Lisp_Object
1903 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1904 {
1905 return AREF (h->key_and_value, 2 * idx + 1);
1906 }
1907
1908 /* Value is the index of the next entry following the one at IDX
1909 in hash table H. */
1910 INLINE Lisp_Object
1911 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1912 {
1913 return AREF (h->next, idx);
1914 }
1915
1916 /* Value is the hash code computed for entry IDX in hash table H. */
1917 INLINE Lisp_Object
1918 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1919 {
1920 return AREF (h->hash, idx);
1921 }
1922
1923 /* Value is the index of the element in hash table H that is the
1924 start of the collision list at index IDX in the index vector of H. */
1925 INLINE Lisp_Object
1926 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1927 {
1928 return AREF (h->index, idx);
1929 }
1930
1931 /* Value is the size of hash table H. */
1932 INLINE ptrdiff_t
1933 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1934 {
1935 return ASIZE (h->next);
1936 }
1937
1938 /* Default size for hash tables if not specified. */
1939
1940 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1941
1942 /* Default threshold specifying when to resize a hash table. The
1943 value gives the ratio of current entries in the hash table and the
1944 size of the hash table. */
1945
1946 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1947
1948 /* Default factor by which to increase the size of a hash table. */
1949
1950 static double const DEFAULT_REHASH_SIZE = 1.5;
1951
1952 /* Combine two integers X and Y for hashing. The result might not fit
1953 into a Lisp integer. */
1954
1955 INLINE EMACS_UINT
1956 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1957 {
1958 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1959 }
1960
1961 /* Hash X, returning a value that fits into a fixnum. */
1962
1963 INLINE EMACS_UINT
1964 SXHASH_REDUCE (EMACS_UINT x)
1965 {
1966 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1967 }
1968
1969 /* These structures are used for various misc types. */
1970
1971 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1972 {
1973 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1974 bool_bf gcmarkbit : 1;
1975 unsigned spacer : 15;
1976 };
1977
1978 struct Lisp_Marker
1979 {
1980 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1981 bool_bf gcmarkbit : 1;
1982 unsigned spacer : 13;
1983 /* This flag is temporarily used in the functions
1984 decode/encode_coding_object to record that the marker position
1985 must be adjusted after the conversion. */
1986 bool_bf need_adjustment : 1;
1987 /* True means normal insertion at the marker's position
1988 leaves the marker after the inserted text. */
1989 bool_bf insertion_type : 1;
1990 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1991 Note: a chain of markers can contain markers pointing into different
1992 buffers (the chain is per buffer_text rather than per buffer, so it's
1993 shared between indirect buffers). */
1994 /* This is used for (other than NULL-checking):
1995 - Fmarker_buffer
1996 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
1997 - unchain_marker: to find the list from which to unchain.
1998 - Fkill_buffer: to only unchain the markers of current indirect buffer.
1999 */
2000 struct buffer *buffer;
2001
2002 /* The remaining fields are meaningless in a marker that
2003 does not point anywhere. */
2004
2005 /* For markers that point somewhere,
2006 this is used to chain of all the markers in a given buffer. */
2007 /* We could remove it and use an array in buffer_text instead.
2008 That would also allow to preserve it ordered. */
2009 struct Lisp_Marker *next;
2010 /* This is the char position where the marker points. */
2011 ptrdiff_t charpos;
2012 /* This is the byte position.
2013 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2014 used to implement the functionality of markers, but rather to (ab)use
2015 markers as a cache for char<->byte mappings). */
2016 ptrdiff_t bytepos;
2017 };
2018
2019 /* START and END are markers in the overlay's buffer, and
2020 PLIST is the overlay's property list. */
2021 struct Lisp_Overlay
2022 /* An overlay's real data content is:
2023 - plist
2024 - buffer (really there are two buffer pointers, one per marker,
2025 and both points to the same buffer)
2026 - insertion type of both ends (per-marker fields)
2027 - start & start byte (of start marker)
2028 - end & end byte (of end marker)
2029 - next (singly linked list of overlays)
2030 - next fields of start and end markers (singly linked list of markers).
2031 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2032 */
2033 {
2034 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2035 bool_bf gcmarkbit : 1;
2036 unsigned spacer : 15;
2037 struct Lisp_Overlay *next;
2038 Lisp_Object start;
2039 Lisp_Object end;
2040 Lisp_Object plist;
2041 };
2042
2043 /* Types of data which may be saved in a Lisp_Save_Value. */
2044
2045 enum
2046 {
2047 SAVE_UNUSED,
2048 SAVE_INTEGER,
2049 SAVE_FUNCPOINTER,
2050 SAVE_POINTER,
2051 SAVE_OBJECT
2052 };
2053
2054 /* Number of bits needed to store one of the above values. */
2055 enum { SAVE_SLOT_BITS = 3 };
2056
2057 /* Number of slots in a save value where save_type is nonzero. */
2058 enum { SAVE_VALUE_SLOTS = 4 };
2059
2060 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2061
2062 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2063
2064 enum Lisp_Save_Type
2065 {
2066 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2067 SAVE_TYPE_INT_INT_INT
2068 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2069 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2070 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2071 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2072 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2073 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2074 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2075 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2076 SAVE_TYPE_FUNCPTR_PTR_OBJ
2077 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2078
2079 /* This has an extra bit indicating it's raw memory. */
2080 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2081 };
2082
2083 /* Special object used to hold a different values for later use.
2084
2085 This is mostly used to package C integers and pointers to call
2086 record_unwind_protect when two or more values need to be saved.
2087 For example:
2088
2089 ...
2090 struct my_data *md = get_my_data ();
2091 ptrdiff_t mi = get_my_integer ();
2092 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2093 ...
2094
2095 Lisp_Object my_unwind (Lisp_Object arg)
2096 {
2097 struct my_data *md = XSAVE_POINTER (arg, 0);
2098 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2099 ...
2100 }
2101
2102 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2103 saved objects and raise eassert if type of the saved object doesn't match
2104 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2105 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2106 slot 0 is a pointer. */
2107
2108 typedef void (*voidfuncptr) (void);
2109
2110 struct Lisp_Save_Value
2111 {
2112 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2113 bool_bf gcmarkbit : 1;
2114 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2115
2116 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2117 V's data entries are determined by V->save_type. E.g., if
2118 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2119 V->data[1] is an integer, and V's other data entries are unused.
2120
2121 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2122 a memory area containing V->data[1].integer potential Lisp_Objects. */
2123 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2124 union {
2125 void *pointer;
2126 voidfuncptr funcpointer;
2127 ptrdiff_t integer;
2128 Lisp_Object object;
2129 } data[SAVE_VALUE_SLOTS];
2130 };
2131
2132 /* Return the type of V's Nth saved value. */
2133 INLINE int
2134 save_type (struct Lisp_Save_Value *v, int n)
2135 {
2136 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2137 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2138 }
2139
2140 /* Get and set the Nth saved pointer. */
2141
2142 INLINE void *
2143 XSAVE_POINTER (Lisp_Object obj, int n)
2144 {
2145 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2146 return XSAVE_VALUE (obj)->data[n].pointer;
2147 }
2148 INLINE void
2149 set_save_pointer (Lisp_Object obj, int n, void *val)
2150 {
2151 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2152 XSAVE_VALUE (obj)->data[n].pointer = val;
2153 }
2154 INLINE voidfuncptr
2155 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2156 {
2157 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2158 return XSAVE_VALUE (obj)->data[n].funcpointer;
2159 }
2160
2161 /* Likewise for the saved integer. */
2162
2163 INLINE ptrdiff_t
2164 XSAVE_INTEGER (Lisp_Object obj, int n)
2165 {
2166 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2167 return XSAVE_VALUE (obj)->data[n].integer;
2168 }
2169 INLINE void
2170 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2171 {
2172 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2173 XSAVE_VALUE (obj)->data[n].integer = val;
2174 }
2175
2176 /* Extract Nth saved object. */
2177
2178 INLINE Lisp_Object
2179 XSAVE_OBJECT (Lisp_Object obj, int n)
2180 {
2181 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2182 return XSAVE_VALUE (obj)->data[n].object;
2183 }
2184
2185 /* A finalizer sentinel. */
2186 struct Lisp_Finalizer
2187 {
2188 struct Lisp_Misc_Any base;
2189
2190 /* Circular list of all active weak references. */
2191 struct Lisp_Finalizer *prev;
2192 struct Lisp_Finalizer *next;
2193
2194 /* Call FUNCTION when the finalizer becomes unreachable, even if
2195 FUNCTION contains a reference to the finalizer; i.e., call
2196 FUNCTION when it is reachable _only_ through finalizers. */
2197 Lisp_Object function;
2198 };
2199
2200 /* A miscellaneous object, when it's on the free list. */
2201 struct Lisp_Free
2202 {
2203 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2204 bool_bf gcmarkbit : 1;
2205 unsigned spacer : 15;
2206 union Lisp_Misc *chain;
2207 };
2208
2209 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2210 It uses one of these struct subtypes to get the type field. */
2211
2212 union Lisp_Misc
2213 {
2214 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2215 struct Lisp_Free u_free;
2216 struct Lisp_Marker u_marker;
2217 struct Lisp_Overlay u_overlay;
2218 struct Lisp_Save_Value u_save_value;
2219 struct Lisp_Finalizer u_finalizer;
2220 };
2221
2222 INLINE union Lisp_Misc *
2223 XMISC (Lisp_Object a)
2224 {
2225 return XUNTAG (a, Lisp_Misc);
2226 }
2227
2228 INLINE struct Lisp_Misc_Any *
2229 XMISCANY (Lisp_Object a)
2230 {
2231 eassert (MISCP (a));
2232 return & XMISC (a)->u_any;
2233 }
2234
2235 INLINE enum Lisp_Misc_Type
2236 XMISCTYPE (Lisp_Object a)
2237 {
2238 return XMISCANY (a)->type;
2239 }
2240
2241 INLINE struct Lisp_Marker *
2242 XMARKER (Lisp_Object a)
2243 {
2244 eassert (MARKERP (a));
2245 return & XMISC (a)->u_marker;
2246 }
2247
2248 INLINE struct Lisp_Overlay *
2249 XOVERLAY (Lisp_Object a)
2250 {
2251 eassert (OVERLAYP (a));
2252 return & XMISC (a)->u_overlay;
2253 }
2254
2255 INLINE struct Lisp_Save_Value *
2256 XSAVE_VALUE (Lisp_Object a)
2257 {
2258 eassert (SAVE_VALUEP (a));
2259 return & XMISC (a)->u_save_value;
2260 }
2261
2262 INLINE struct Lisp_Finalizer *
2263 XFINALIZER (Lisp_Object a)
2264 {
2265 eassert (FINALIZERP (a));
2266 return & XMISC (a)->u_finalizer;
2267 }
2268
2269 \f
2270 /* Forwarding pointer to an int variable.
2271 This is allowed only in the value cell of a symbol,
2272 and it means that the symbol's value really lives in the
2273 specified int variable. */
2274 struct Lisp_Intfwd
2275 {
2276 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2277 EMACS_INT *intvar;
2278 };
2279
2280 /* Boolean forwarding pointer to an int variable.
2281 This is like Lisp_Intfwd except that the ostensible
2282 "value" of the symbol is t if the bool variable is true,
2283 nil if it is false. */
2284 struct Lisp_Boolfwd
2285 {
2286 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2287 bool *boolvar;
2288 };
2289
2290 /* Forwarding pointer to a Lisp_Object variable.
2291 This is allowed only in the value cell of a symbol,
2292 and it means that the symbol's value really lives in the
2293 specified variable. */
2294 struct Lisp_Objfwd
2295 {
2296 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2297 Lisp_Object *objvar;
2298 };
2299
2300 /* Like Lisp_Objfwd except that value lives in a slot in the
2301 current buffer. Value is byte index of slot within buffer. */
2302 struct Lisp_Buffer_Objfwd
2303 {
2304 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2305 int offset;
2306 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2307 Lisp_Object predicate;
2308 };
2309
2310 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2311 the symbol has buffer-local or frame-local bindings. (Exception:
2312 some buffer-local variables are built-in, with their values stored
2313 in the buffer structure itself. They are handled differently,
2314 using struct Lisp_Buffer_Objfwd.)
2315
2316 The `realvalue' slot holds the variable's current value, or a
2317 forwarding pointer to where that value is kept. This value is the
2318 one that corresponds to the loaded binding. To read or set the
2319 variable, you must first make sure the right binding is loaded;
2320 then you can access the value in (or through) `realvalue'.
2321
2322 `buffer' and `frame' are the buffer and frame for which the loaded
2323 binding was found. If those have changed, to make sure the right
2324 binding is loaded it is necessary to find which binding goes with
2325 the current buffer and selected frame, then load it. To load it,
2326 first unload the previous binding, then copy the value of the new
2327 binding into `realvalue' (or through it). Also update
2328 LOADED-BINDING to point to the newly loaded binding.
2329
2330 `local_if_set' indicates that merely setting the variable creates a
2331 local binding for the current buffer. Otherwise the latter, setting
2332 the variable does not do that; only make-local-variable does that. */
2333
2334 struct Lisp_Buffer_Local_Value
2335 {
2336 /* True means that merely setting the variable creates a local
2337 binding for the current buffer. */
2338 bool_bf local_if_set : 1;
2339 /* True means this variable can have frame-local bindings, otherwise, it is
2340 can have buffer-local bindings. The two cannot be combined. */
2341 bool_bf frame_local : 1;
2342 /* True means that the binding now loaded was found.
2343 Presumably equivalent to (defcell!=valcell). */
2344 bool_bf found : 1;
2345 /* If non-NULL, a forwarding to the C var where it should also be set. */
2346 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2347 /* The buffer or frame for which the loaded binding was found. */
2348 Lisp_Object where;
2349 /* A cons cell that holds the default value. It has the form
2350 (SYMBOL . DEFAULT-VALUE). */
2351 Lisp_Object defcell;
2352 /* The cons cell from `where's parameter alist.
2353 It always has the form (SYMBOL . VALUE)
2354 Note that if `forward' is non-nil, VALUE may be out of date.
2355 Also if the currently loaded binding is the default binding, then
2356 this is `eq'ual to defcell. */
2357 Lisp_Object valcell;
2358 };
2359
2360 /* Like Lisp_Objfwd except that value lives in a slot in the
2361 current kboard. */
2362 struct Lisp_Kboard_Objfwd
2363 {
2364 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2365 int offset;
2366 };
2367
2368 union Lisp_Fwd
2369 {
2370 struct Lisp_Intfwd u_intfwd;
2371 struct Lisp_Boolfwd u_boolfwd;
2372 struct Lisp_Objfwd u_objfwd;
2373 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2374 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2375 };
2376
2377 INLINE enum Lisp_Fwd_Type
2378 XFWDTYPE (union Lisp_Fwd *a)
2379 {
2380 return a->u_intfwd.type;
2381 }
2382
2383 INLINE struct Lisp_Buffer_Objfwd *
2384 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2385 {
2386 eassert (BUFFER_OBJFWDP (a));
2387 return &a->u_buffer_objfwd;
2388 }
2389 \f
2390 /* Lisp floating point type. */
2391 struct Lisp_Float
2392 {
2393 union
2394 {
2395 double data;
2396 struct Lisp_Float *chain;
2397 } u;
2398 };
2399
2400 INLINE double
2401 XFLOAT_DATA (Lisp_Object f)
2402 {
2403 return XFLOAT (f)->u.data;
2404 }
2405
2406 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2407 representations, have infinities and NaNs, and do not trap on
2408 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2409 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2410 wanted here, but is not quite right because Emacs does not require
2411 all the features of C11 Annex F (and does not require C11 at all,
2412 for that matter). */
2413 enum
2414 {
2415 IEEE_FLOATING_POINT
2416 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2417 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2418 };
2419
2420 /* A character, declared with the following typedef, is a member
2421 of some character set associated with the current buffer. */
2422 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2423 #define _UCHAR_T
2424 typedef unsigned char UCHAR;
2425 #endif
2426
2427 /* Meanings of slots in a Lisp_Compiled: */
2428
2429 enum Lisp_Compiled
2430 {
2431 COMPILED_ARGLIST = 0,
2432 COMPILED_BYTECODE = 1,
2433 COMPILED_CONSTANTS = 2,
2434 COMPILED_STACK_DEPTH = 3,
2435 COMPILED_DOC_STRING = 4,
2436 COMPILED_INTERACTIVE = 5
2437 };
2438
2439 /* Flag bits in a character. These also get used in termhooks.h.
2440 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2441 (MUlti-Lingual Emacs) might need 22 bits for the character value
2442 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2443 enum char_bits
2444 {
2445 CHAR_ALT = 0x0400000,
2446 CHAR_SUPER = 0x0800000,
2447 CHAR_HYPER = 0x1000000,
2448 CHAR_SHIFT = 0x2000000,
2449 CHAR_CTL = 0x4000000,
2450 CHAR_META = 0x8000000,
2451
2452 CHAR_MODIFIER_MASK =
2453 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2454
2455 /* Actually, the current Emacs uses 22 bits for the character value
2456 itself. */
2457 CHARACTERBITS = 22
2458 };
2459 \f
2460 /* Data type checking. */
2461
2462 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2463
2464 INLINE bool
2465 NUMBERP (Lisp_Object x)
2466 {
2467 return INTEGERP (x) || FLOATP (x);
2468 }
2469 INLINE bool
2470 NATNUMP (Lisp_Object x)
2471 {
2472 return INTEGERP (x) && 0 <= XINT (x);
2473 }
2474
2475 INLINE bool
2476 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2477 {
2478 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2479 }
2480
2481 #define TYPE_RANGED_INTEGERP(type, x) \
2482 (INTEGERP (x) \
2483 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2484 && XINT (x) <= TYPE_MAXIMUM (type))
2485
2486 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2487 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2488 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2489 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2490 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2491 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2492 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2493
2494 INLINE bool
2495 STRINGP (Lisp_Object x)
2496 {
2497 return XTYPE (x) == Lisp_String;
2498 }
2499 INLINE bool
2500 VECTORP (Lisp_Object x)
2501 {
2502 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2503 }
2504 INLINE bool
2505 OVERLAYP (Lisp_Object x)
2506 {
2507 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2508 }
2509 INLINE bool
2510 SAVE_VALUEP (Lisp_Object x)
2511 {
2512 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2513 }
2514
2515 INLINE bool
2516 FINALIZERP (Lisp_Object x)
2517 {
2518 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2519 }
2520
2521 INLINE bool
2522 AUTOLOADP (Lisp_Object x)
2523 {
2524 return CONSP (x) && EQ (Qautoload, XCAR (x));
2525 }
2526
2527 INLINE bool
2528 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2529 {
2530 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2531 }
2532
2533 INLINE bool
2534 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2535 {
2536 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2537 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2538 }
2539
2540 /* True if A is a pseudovector whose code is CODE. */
2541 INLINE bool
2542 PSEUDOVECTORP (Lisp_Object a, int code)
2543 {
2544 if (! VECTORLIKEP (a))
2545 return false;
2546 else
2547 {
2548 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2549 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2550 return PSEUDOVECTOR_TYPEP (h, code);
2551 }
2552 }
2553
2554
2555 /* Test for specific pseudovector types. */
2556
2557 INLINE bool
2558 WINDOW_CONFIGURATIONP (Lisp_Object a)
2559 {
2560 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2561 }
2562
2563 INLINE bool
2564 PROCESSP (Lisp_Object a)
2565 {
2566 return PSEUDOVECTORP (a, PVEC_PROCESS);
2567 }
2568
2569 INLINE bool
2570 WINDOWP (Lisp_Object a)
2571 {
2572 return PSEUDOVECTORP (a, PVEC_WINDOW);
2573 }
2574
2575 INLINE bool
2576 TERMINALP (Lisp_Object a)
2577 {
2578 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2579 }
2580
2581 INLINE bool
2582 SUBRP (Lisp_Object a)
2583 {
2584 return PSEUDOVECTORP (a, PVEC_SUBR);
2585 }
2586
2587 INLINE bool
2588 COMPILEDP (Lisp_Object a)
2589 {
2590 return PSEUDOVECTORP (a, PVEC_COMPILED);
2591 }
2592
2593 INLINE bool
2594 BUFFERP (Lisp_Object a)
2595 {
2596 return PSEUDOVECTORP (a, PVEC_BUFFER);
2597 }
2598
2599 INLINE bool
2600 CHAR_TABLE_P (Lisp_Object a)
2601 {
2602 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2603 }
2604
2605 INLINE bool
2606 SUB_CHAR_TABLE_P (Lisp_Object a)
2607 {
2608 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2609 }
2610
2611 INLINE bool
2612 BOOL_VECTOR_P (Lisp_Object a)
2613 {
2614 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2615 }
2616
2617 INLINE bool
2618 FRAMEP (Lisp_Object a)
2619 {
2620 return PSEUDOVECTORP (a, PVEC_FRAME);
2621 }
2622
2623 /* Test for image (image . spec) */
2624 INLINE bool
2625 IMAGEP (Lisp_Object x)
2626 {
2627 return CONSP (x) && EQ (XCAR (x), Qimage);
2628 }
2629
2630 /* Array types. */
2631 INLINE bool
2632 ARRAYP (Lisp_Object x)
2633 {
2634 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2635 }
2636 \f
2637 INLINE void
2638 CHECK_LIST (Lisp_Object x)
2639 {
2640 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2641 }
2642
2643 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2644 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2645 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2646
2647 INLINE void
2648 CHECK_STRING (Lisp_Object x)
2649 {
2650 CHECK_TYPE (STRINGP (x), Qstringp, x);
2651 }
2652 INLINE void
2653 CHECK_STRING_CAR (Lisp_Object x)
2654 {
2655 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2656 }
2657 INLINE void
2658 CHECK_CONS (Lisp_Object x)
2659 {
2660 CHECK_TYPE (CONSP (x), Qconsp, x);
2661 }
2662 INLINE void
2663 CHECK_VECTOR (Lisp_Object x)
2664 {
2665 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2666 }
2667 INLINE void
2668 CHECK_BOOL_VECTOR (Lisp_Object x)
2669 {
2670 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2671 }
2672 /* This is a bit special because we always need size afterwards. */
2673 INLINE ptrdiff_t
2674 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2675 {
2676 if (VECTORP (x))
2677 return ASIZE (x);
2678 if (STRINGP (x))
2679 return SCHARS (x);
2680 wrong_type_argument (Qarrayp, x);
2681 }
2682 INLINE void
2683 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2684 {
2685 CHECK_TYPE (ARRAYP (x), predicate, x);
2686 }
2687 INLINE void
2688 CHECK_BUFFER (Lisp_Object x)
2689 {
2690 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2691 }
2692 INLINE void
2693 CHECK_WINDOW (Lisp_Object x)
2694 {
2695 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2696 }
2697 #ifdef subprocesses
2698 INLINE void
2699 CHECK_PROCESS (Lisp_Object x)
2700 {
2701 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2702 }
2703 #endif
2704 INLINE void
2705 CHECK_NATNUM (Lisp_Object x)
2706 {
2707 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2708 }
2709
2710 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2711 do { \
2712 CHECK_NUMBER (x); \
2713 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2714 args_out_of_range_3 \
2715 (x, \
2716 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2717 ? MOST_NEGATIVE_FIXNUM \
2718 : (lo)), \
2719 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2720 } while (false)
2721 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2722 do { \
2723 if (TYPE_SIGNED (type)) \
2724 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2725 else \
2726 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2727 } while (false)
2728
2729 #define CHECK_NUMBER_COERCE_MARKER(x) \
2730 do { \
2731 if (MARKERP ((x))) \
2732 XSETFASTINT (x, marker_position (x)); \
2733 else \
2734 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2735 } while (false)
2736
2737 INLINE double
2738 XFLOATINT (Lisp_Object n)
2739 {
2740 return extract_float (n);
2741 }
2742
2743 INLINE void
2744 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2745 {
2746 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2747 }
2748
2749 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2750 do { \
2751 if (MARKERP (x)) \
2752 XSETFASTINT (x, marker_position (x)); \
2753 else \
2754 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2755 } while (false)
2756
2757 /* Since we can't assign directly to the CAR or CDR fields of a cons
2758 cell, use these when checking that those fields contain numbers. */
2759 INLINE void
2760 CHECK_NUMBER_CAR (Lisp_Object x)
2761 {
2762 Lisp_Object tmp = XCAR (x);
2763 CHECK_NUMBER (tmp);
2764 XSETCAR (x, tmp);
2765 }
2766
2767 INLINE void
2768 CHECK_NUMBER_CDR (Lisp_Object x)
2769 {
2770 Lisp_Object tmp = XCDR (x);
2771 CHECK_NUMBER (tmp);
2772 XSETCDR (x, tmp);
2773 }
2774 \f
2775 /* Define a built-in function for calling from Lisp.
2776 `lname' should be the name to give the function in Lisp,
2777 as a null-terminated C string.
2778 `fnname' should be the name of the function in C.
2779 By convention, it starts with F.
2780 `sname' should be the name for the C constant structure
2781 that records information on this function for internal use.
2782 By convention, it should be the same as `fnname' but with S instead of F.
2783 It's too bad that C macros can't compute this from `fnname'.
2784 `minargs' should be a number, the minimum number of arguments allowed.
2785 `maxargs' should be a number, the maximum number of arguments allowed,
2786 or else MANY or UNEVALLED.
2787 MANY means pass a vector of evaluated arguments,
2788 in the form of an integer number-of-arguments
2789 followed by the address of a vector of Lisp_Objects
2790 which contains the argument values.
2791 UNEVALLED means pass the list of unevaluated arguments
2792 `intspec' says how interactive arguments are to be fetched.
2793 If the string starts with a `(', `intspec' is evaluated and the resulting
2794 list is the list of arguments.
2795 If it's a string that doesn't start with `(', the value should follow
2796 the one of the doc string for `interactive'.
2797 A null string means call interactively with no arguments.
2798 `doc' is documentation for the user. */
2799
2800 /* This version of DEFUN declares a function prototype with the right
2801 arguments, so we can catch errors with maxargs at compile-time. */
2802 #ifdef _MSC_VER
2803 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2804 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2805 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2806 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2807 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2808 { (Lisp_Object (__cdecl *)(void))fnname }, \
2809 minargs, maxargs, lname, intspec, 0}; \
2810 Lisp_Object fnname
2811 #else /* not _MSC_VER */
2812 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2813 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2814 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2815 { .a ## maxargs = fnname }, \
2816 minargs, maxargs, lname, intspec, 0}; \
2817 Lisp_Object fnname
2818 #endif
2819
2820 /* True if OBJ is a Lisp function. */
2821 INLINE bool
2822 FUNCTIONP (Lisp_Object obj)
2823 {
2824 return functionp (obj);
2825 }
2826
2827 /* defsubr (Sname);
2828 is how we define the symbol for function `name' at start-up time. */
2829 extern void defsubr (struct Lisp_Subr *);
2830
2831 enum maxargs
2832 {
2833 MANY = -2,
2834 UNEVALLED = -1
2835 };
2836
2837 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2838 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2839
2840 /* Call a function F that accepts many args, passing it the remaining args,
2841 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2842 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2843 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2844 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2845
2846 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2847 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2848 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2849 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2850 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2851
2852 /* Macros we use to define forwarded Lisp variables.
2853 These are used in the syms_of_FILENAME functions.
2854
2855 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2856 lisp variable is actually a field in `struct emacs_globals'. The
2857 field's name begins with "f_", which is a convention enforced by
2858 these macros. Each such global has a corresponding #define in
2859 globals.h; the plain name should be used in the code.
2860
2861 E.g., the global "cons_cells_consed" is declared as "int
2862 f_cons_cells_consed" in globals.h, but there is a define:
2863
2864 #define cons_cells_consed globals.f_cons_cells_consed
2865
2866 All C code uses the `cons_cells_consed' name. This is all done
2867 this way to support indirection for multi-threaded Emacs. */
2868
2869 #define DEFVAR_LISP(lname, vname, doc) \
2870 do { \
2871 static struct Lisp_Objfwd o_fwd; \
2872 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2873 } while (false)
2874 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2875 do { \
2876 static struct Lisp_Objfwd o_fwd; \
2877 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2878 } while (false)
2879 #define DEFVAR_BOOL(lname, vname, doc) \
2880 do { \
2881 static struct Lisp_Boolfwd b_fwd; \
2882 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2883 } while (false)
2884 #define DEFVAR_INT(lname, vname, doc) \
2885 do { \
2886 static struct Lisp_Intfwd i_fwd; \
2887 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2888 } while (false)
2889
2890 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2891 do { \
2892 static struct Lisp_Objfwd o_fwd; \
2893 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2894 } while (false)
2895
2896 #define DEFVAR_KBOARD(lname, vname, doc) \
2897 do { \
2898 static struct Lisp_Kboard_Objfwd ko_fwd; \
2899 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2900 } while (false)
2901 \f
2902 /* Save and restore the instruction and environment pointers,
2903 without affecting the signal mask. */
2904
2905 #ifdef HAVE__SETJMP
2906 typedef jmp_buf sys_jmp_buf;
2907 # define sys_setjmp(j) _setjmp (j)
2908 # define sys_longjmp(j, v) _longjmp (j, v)
2909 #elif defined HAVE_SIGSETJMP
2910 typedef sigjmp_buf sys_jmp_buf;
2911 # define sys_setjmp(j) sigsetjmp (j, 0)
2912 # define sys_longjmp(j, v) siglongjmp (j, v)
2913 #else
2914 /* A platform that uses neither _longjmp nor siglongjmp; assume
2915 longjmp does not affect the sigmask. */
2916 typedef jmp_buf sys_jmp_buf;
2917 # define sys_setjmp(j) setjmp (j)
2918 # define sys_longjmp(j, v) longjmp (j, v)
2919 #endif
2920
2921 \f
2922 /* Elisp uses several stacks:
2923 - the C stack.
2924 - the bytecode stack: used internally by the bytecode interpreter.
2925 Allocated from the C stack.
2926 - The specpdl stack: keeps track of active unwind-protect and
2927 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2928 managed stack.
2929 - The handler stack: keeps track of active catch tags and condition-case
2930 handlers. Allocated in a manually managed stack implemented by a
2931 doubly-linked list allocated via xmalloc and never freed. */
2932
2933 /* Structure for recording Lisp call stack for backtrace purposes. */
2934
2935 /* The special binding stack holds the outer values of variables while
2936 they are bound by a function application or a let form, stores the
2937 code to be executed for unwind-protect forms.
2938
2939 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2940 used all over the place, needs to be fast, and needs to know the size of
2941 union specbinding. But only eval.c should access it. */
2942
2943 enum specbind_tag {
2944 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2945 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2946 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2947 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2948 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2949 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2950 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2951 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2952 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2953 };
2954
2955 union specbinding
2956 {
2957 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2958 struct {
2959 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2960 void (*func) (Lisp_Object);
2961 Lisp_Object arg;
2962 } unwind;
2963 struct {
2964 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2965 void (*func) (void *);
2966 void *arg;
2967 } unwind_ptr;
2968 struct {
2969 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2970 void (*func) (int);
2971 int arg;
2972 } unwind_int;
2973 struct {
2974 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2975 void (*func) (void);
2976 } unwind_void;
2977 struct {
2978 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2979 /* `where' is not used in the case of SPECPDL_LET. */
2980 Lisp_Object symbol, old_value, where;
2981 } let;
2982 struct {
2983 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2984 bool_bf debug_on_exit : 1;
2985 Lisp_Object function;
2986 Lisp_Object *args;
2987 ptrdiff_t nargs;
2988 } bt;
2989 };
2990
2991 extern union specbinding *specpdl;
2992 extern union specbinding *specpdl_ptr;
2993 extern ptrdiff_t specpdl_size;
2994
2995 INLINE ptrdiff_t
2996 SPECPDL_INDEX (void)
2997 {
2998 return specpdl_ptr - specpdl;
2999 }
3000
3001 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3002 control structures. A struct handler contains all the information needed to
3003 restore the state of the interpreter after a non-local jump.
3004
3005 handler structures are chained together in a doubly linked list; the `next'
3006 member points to the next outer catchtag and the `nextfree' member points in
3007 the other direction to the next inner element (which is typically the next
3008 free element since we mostly use it on the deepest handler).
3009
3010 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3011 member is TAG, and then unbinds to it. The `val' member is used to
3012 hold VAL while the stack is unwound; `val' is returned as the value
3013 of the catch form.
3014
3015 All the other members are concerned with restoring the interpreter
3016 state.
3017
3018 Members are volatile if their values need to survive _longjmp when
3019 a 'struct handler' is a local variable. */
3020
3021 enum handlertype { CATCHER, CONDITION_CASE };
3022
3023 struct handler
3024 {
3025 enum handlertype type;
3026 Lisp_Object tag_or_ch;
3027 Lisp_Object val;
3028 struct handler *next;
3029 struct handler *nextfree;
3030
3031 /* The bytecode interpreter can have several handlers active at the same
3032 time, so when we longjmp to one of them, it needs to know which handler
3033 this was and what was the corresponding internal state. This is stored
3034 here, and when we longjmp we make sure that handlerlist points to the
3035 proper handler. */
3036 Lisp_Object *bytecode_top;
3037 int bytecode_dest;
3038
3039 /* Most global vars are reset to their value via the specpdl mechanism,
3040 but a few others are handled by storing their value here. */
3041 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
3042 struct gcpro *gcpro;
3043 #endif
3044 sys_jmp_buf jmp;
3045 EMACS_INT lisp_eval_depth;
3046 ptrdiff_t pdlcount;
3047 int poll_suppress_count;
3048 int interrupt_input_blocked;
3049 struct byte_stack *byte_stack;
3050 };
3051
3052 /* Fill in the components of c, and put it on the list. */
3053 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3054 if (handlerlist->nextfree) \
3055 (c) = handlerlist->nextfree; \
3056 else \
3057 { \
3058 (c) = xmalloc (sizeof (struct handler)); \
3059 (c)->nextfree = NULL; \
3060 handlerlist->nextfree = (c); \
3061 } \
3062 (c)->type = (handlertype); \
3063 (c)->tag_or_ch = (tag_ch_val); \
3064 (c)->val = Qnil; \
3065 (c)->next = handlerlist; \
3066 (c)->lisp_eval_depth = lisp_eval_depth; \
3067 (c)->pdlcount = SPECPDL_INDEX (); \
3068 (c)->poll_suppress_count = poll_suppress_count; \
3069 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3070 (c)->gcpro = gcprolist; \
3071 (c)->byte_stack = byte_stack_list; \
3072 handlerlist = (c);
3073
3074
3075 extern Lisp_Object memory_signal_data;
3076
3077 /* An address near the bottom of the stack.
3078 Tells GC how to save a copy of the stack. */
3079 extern char *stack_bottom;
3080
3081 /* Check quit-flag and quit if it is non-nil.
3082 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3083 So the program needs to do QUIT at times when it is safe to quit.
3084 Every loop that might run for a long time or might not exit
3085 ought to do QUIT at least once, at a safe place.
3086 Unless that is impossible, of course.
3087 But it is very desirable to avoid creating loops where QUIT is impossible.
3088
3089 Exception: if you set immediate_quit to true,
3090 then the handler that responds to the C-g does the quit itself.
3091 This is a good thing to do around a loop that has no side effects
3092 and (in particular) cannot call arbitrary Lisp code.
3093
3094 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3095 a request to exit Emacs when it is safe to do. */
3096
3097 extern void process_pending_signals (void);
3098 extern bool volatile pending_signals;
3099
3100 extern void process_quit_flag (void);
3101 #define QUIT \
3102 do { \
3103 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3104 process_quit_flag (); \
3105 else if (pending_signals) \
3106 process_pending_signals (); \
3107 } while (false)
3108
3109
3110 /* True if ought to quit now. */
3111
3112 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3113 \f
3114 extern Lisp_Object Vascii_downcase_table;
3115 extern Lisp_Object Vascii_canon_table;
3116 \f
3117 /* Structure for recording stack slots that need marking. */
3118
3119 /* This is a chain of structures, each of which points at a Lisp_Object
3120 variable whose value should be marked in garbage collection.
3121 Normally every link of the chain is an automatic variable of a function,
3122 and its `val' points to some argument or local variable of the function.
3123 On exit to the function, the chain is set back to the value it had on entry.
3124 This way, no link remains in the chain when the stack frame containing the
3125 link disappears.
3126
3127 Every function that can call Feval must protect in this fashion all
3128 Lisp_Object variables whose contents will be used again. */
3129
3130 extern struct gcpro *gcprolist;
3131
3132 struct gcpro
3133 {
3134 struct gcpro *next;
3135
3136 /* Address of first protected variable. */
3137 volatile Lisp_Object *var;
3138
3139 /* Number of consecutive protected variables. */
3140 ptrdiff_t nvars;
3141
3142 #ifdef DEBUG_GCPRO
3143 /* File name where this record is used. */
3144 const char *name;
3145
3146 /* Line number in this file. */
3147 int lineno;
3148
3149 /* Index in the local chain of records. */
3150 int idx;
3151
3152 /* Nesting level. */
3153 int level;
3154 #endif
3155 };
3156
3157 /* Values of GC_MARK_STACK during compilation:
3158
3159 0 Use GCPRO as before
3160 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3161 2 Mark the stack, and check that everything GCPRO'd is
3162 marked.
3163 3 Mark using GCPRO's, mark stack last, and count how many
3164 dead objects are kept alive.
3165
3166 Formerly, method 0 was used. Currently, method 1 is used unless
3167 otherwise specified by hand when building, e.g.,
3168 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3169 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3170
3171 #define GC_USE_GCPROS_AS_BEFORE 0
3172 #define GC_MAKE_GCPROS_NOOPS 1
3173 #define GC_MARK_STACK_CHECK_GCPROS 2
3174 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3175
3176 #ifndef GC_MARK_STACK
3177 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3178 #endif
3179
3180 /* Whether we do the stack marking manually. */
3181 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3182 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3183
3184
3185 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3186
3187 /* Do something silly with gcproN vars just so gcc shuts up. */
3188 /* You get warnings from MIPSPro... */
3189
3190 #define GCPRO1(varname) ((void) gcpro1)
3191 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3192 #define GCPRO3(varname1, varname2, varname3) \
3193 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3194 #define GCPRO4(varname1, varname2, varname3, varname4) \
3195 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3196 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3197 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3198 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3199 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3200 (void) gcpro1)
3201 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3202 #define UNGCPRO ((void) 0)
3203
3204 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3205
3206 #ifndef DEBUG_GCPRO
3207
3208 #define GCPRO1(a) \
3209 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3210 gcprolist = &gcpro1; }
3211
3212 #define GCPRO2(a, b) \
3213 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3214 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3215 gcprolist = &gcpro2; }
3216
3217 #define GCPRO3(a, b, c) \
3218 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3219 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3220 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3221 gcprolist = &gcpro3; }
3222
3223 #define GCPRO4(a, b, c, d) \
3224 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3225 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3226 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3227 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3228 gcprolist = &gcpro4; }
3229
3230 #define GCPRO5(a, b, c, d, e) \
3231 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3232 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3233 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3234 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3235 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3236 gcprolist = &gcpro5; }
3237
3238 #define GCPRO6(a, b, c, d, e, f) \
3239 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3240 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3241 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3242 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3243 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3244 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3245 gcprolist = &gcpro6; }
3246
3247 #define GCPRO7(a, b, c, d, e, f, g) \
3248 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3249 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3250 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3251 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3252 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3253 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3254 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3255 gcprolist = &gcpro7; }
3256
3257 #define UNGCPRO (gcprolist = gcpro1.next)
3258
3259 #else /* !DEBUG_GCPRO */
3260
3261 extern int gcpro_level;
3262
3263 #define GCPRO1(a) \
3264 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3265 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3266 gcpro1.level = gcpro_level++; \
3267 gcprolist = &gcpro1; }
3268
3269 #define GCPRO2(a, b) \
3270 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3271 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3272 gcpro1.level = gcpro_level; \
3273 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3274 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3275 gcpro2.level = gcpro_level++; \
3276 gcprolist = &gcpro2; }
3277
3278 #define GCPRO3(a, b, c) \
3279 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3280 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3281 gcpro1.level = gcpro_level; \
3282 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3283 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3284 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3285 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3286 gcpro3.level = gcpro_level++; \
3287 gcprolist = &gcpro3; }
3288
3289 #define GCPRO4(a, b, c, d) \
3290 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3291 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3292 gcpro1.level = gcpro_level; \
3293 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3294 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3295 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3296 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3297 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3298 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3299 gcpro4.level = gcpro_level++; \
3300 gcprolist = &gcpro4; }
3301
3302 #define GCPRO5(a, b, c, d, e) \
3303 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3304 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3305 gcpro1.level = gcpro_level; \
3306 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3307 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3308 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3309 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3310 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3311 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3312 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3313 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3314 gcpro5.level = gcpro_level++; \
3315 gcprolist = &gcpro5; }
3316
3317 #define GCPRO6(a, b, c, d, e, f) \
3318 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3319 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3320 gcpro1.level = gcpro_level; \
3321 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3322 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3323 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3324 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3325 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3326 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3327 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3328 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3329 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3330 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3331 gcpro6.level = gcpro_level++; \
3332 gcprolist = &gcpro6; }
3333
3334 #define GCPRO7(a, b, c, d, e, f, g) \
3335 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3336 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3337 gcpro1.level = gcpro_level; \
3338 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3339 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3340 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3341 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3342 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3343 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3344 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3345 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3346 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3347 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3348 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3349 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3350 gcpro7.level = gcpro_level++; \
3351 gcprolist = &gcpro7; }
3352
3353 #define UNGCPRO \
3354 (--gcpro_level != gcpro1.level \
3355 ? emacs_abort () \
3356 : (void) (gcprolist = gcpro1.next))
3357
3358 #endif /* DEBUG_GCPRO */
3359 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3360
3361
3362 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3363 #define RETURN_UNGCPRO(expr) \
3364 do \
3365 { \
3366 Lisp_Object ret_ungc_val; \
3367 ret_ungc_val = (expr); \
3368 UNGCPRO; \
3369 return ret_ungc_val; \
3370 } \
3371 while (false)
3372
3373 /* Call staticpro (&var) to protect static variable `var'. */
3374
3375 void staticpro (Lisp_Object *);
3376 \f
3377 /* Forward declarations for prototypes. */
3378 struct window;
3379 struct frame;
3380
3381 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3382
3383 INLINE void
3384 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3385 {
3386 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3387 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3388 }
3389
3390 /* Functions to modify hash tables. */
3391
3392 INLINE void
3393 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3394 {
3395 gc_aset (h->key_and_value, 2 * idx, val);
3396 }
3397
3398 INLINE void
3399 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3400 {
3401 gc_aset (h->key_and_value, 2 * idx + 1, val);
3402 }
3403
3404 /* Use these functions to set Lisp_Object
3405 or pointer slots of struct Lisp_Symbol. */
3406
3407 INLINE void
3408 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3409 {
3410 XSYMBOL (sym)->function = function;
3411 }
3412
3413 INLINE void
3414 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3415 {
3416 XSYMBOL (sym)->plist = plist;
3417 }
3418
3419 INLINE void
3420 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3421 {
3422 XSYMBOL (sym)->next = next;
3423 }
3424
3425 /* Buffer-local (also frame-local) variable access functions. */
3426
3427 INLINE int
3428 blv_found (struct Lisp_Buffer_Local_Value *blv)
3429 {
3430 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3431 return blv->found;
3432 }
3433
3434 /* Set overlay's property list. */
3435
3436 INLINE void
3437 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3438 {
3439 XOVERLAY (overlay)->plist = plist;
3440 }
3441
3442 /* Get text properties of S. */
3443
3444 INLINE INTERVAL
3445 string_intervals (Lisp_Object s)
3446 {
3447 return XSTRING (s)->intervals;
3448 }
3449
3450 /* Set text properties of S to I. */
3451
3452 INLINE void
3453 set_string_intervals (Lisp_Object s, INTERVAL i)
3454 {
3455 XSTRING (s)->intervals = i;
3456 }
3457
3458 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3459 of setting slots directly. */
3460
3461 INLINE void
3462 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3463 {
3464 XCHAR_TABLE (table)->defalt = val;
3465 }
3466 INLINE void
3467 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3468 {
3469 XCHAR_TABLE (table)->purpose = val;
3470 }
3471
3472 /* Set different slots in (sub)character tables. */
3473
3474 INLINE void
3475 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3476 {
3477 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3478 XCHAR_TABLE (table)->extras[idx] = val;
3479 }
3480
3481 INLINE void
3482 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3483 {
3484 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3485 XCHAR_TABLE (table)->contents[idx] = val;
3486 }
3487
3488 INLINE void
3489 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3490 {
3491 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3492 }
3493
3494 /* Defined in data.c. */
3495 extern Lisp_Object indirect_function (Lisp_Object);
3496 extern Lisp_Object find_symbol_value (Lisp_Object);
3497 enum Arith_Comparison {
3498 ARITH_EQUAL,
3499 ARITH_NOTEQUAL,
3500 ARITH_LESS,
3501 ARITH_GRTR,
3502 ARITH_LESS_OR_EQUAL,
3503 ARITH_GRTR_OR_EQUAL
3504 };
3505 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3506 enum Arith_Comparison comparison);
3507
3508 /* Convert the integer I to an Emacs representation, either the integer
3509 itself, or a cons of two or three integers, or if all else fails a float.
3510 I should not have side effects. */
3511 #define INTEGER_TO_CONS(i) \
3512 (! FIXNUM_OVERFLOW_P (i) \
3513 ? make_number (i) \
3514 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3515 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3516 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3517 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3518 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3519 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3520 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3521 ? Fcons (make_number ((i) >> 16 >> 24), \
3522 Fcons (make_number ((i) >> 16 & 0xffffff), \
3523 make_number ((i) & 0xffff))) \
3524 : make_float (i))
3525
3526 /* Convert the Emacs representation CONS back to an integer of type
3527 TYPE, storing the result the variable VAR. Signal an error if CONS
3528 is not a valid representation or is out of range for TYPE. */
3529 #define CONS_TO_INTEGER(cons, type, var) \
3530 (TYPE_SIGNED (type) \
3531 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3532 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3533 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3534 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3535
3536 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3537 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3538 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3539 Lisp_Object);
3540 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3541 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3542 extern void syms_of_data (void);
3543 extern void swap_in_global_binding (struct Lisp_Symbol *);
3544
3545 /* Defined in cmds.c */
3546 extern void syms_of_cmds (void);
3547 extern void keys_of_cmds (void);
3548
3549 /* Defined in coding.c. */
3550 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3551 ptrdiff_t, bool, bool, Lisp_Object);
3552 extern void init_coding (void);
3553 extern void init_coding_once (void);
3554 extern void syms_of_coding (void);
3555
3556 /* Defined in character.c. */
3557 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3558 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3559 extern void syms_of_character (void);
3560
3561 /* Defined in charset.c. */
3562 extern void init_charset (void);
3563 extern void init_charset_once (void);
3564 extern void syms_of_charset (void);
3565 /* Structure forward declarations. */
3566 struct charset;
3567
3568 /* Defined in syntax.c. */
3569 extern void init_syntax_once (void);
3570 extern void syms_of_syntax (void);
3571
3572 /* Defined in fns.c. */
3573 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3574 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3575 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3576 extern void sweep_weak_hash_tables (void);
3577 EMACS_UINT hash_string (char const *, ptrdiff_t);
3578 EMACS_UINT sxhash (Lisp_Object, int);
3579 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3580 Lisp_Object, Lisp_Object);
3581 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3582 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3583 EMACS_UINT);
3584 extern struct hash_table_test hashtest_eql, hashtest_equal;
3585 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3586 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3587 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3588 ptrdiff_t, ptrdiff_t);
3589 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3590 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3591 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3592 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3593 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3594 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3595 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3596 extern void clear_string_char_byte_cache (void);
3597 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3598 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3599 extern Lisp_Object string_to_multibyte (Lisp_Object);
3600 extern Lisp_Object string_make_unibyte (Lisp_Object);
3601 extern void syms_of_fns (void);
3602
3603 /* Defined in floatfns.c. */
3604 extern void syms_of_floatfns (void);
3605 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3606
3607 /* Defined in fringe.c. */
3608 extern void syms_of_fringe (void);
3609 extern void init_fringe (void);
3610 #ifdef HAVE_WINDOW_SYSTEM
3611 extern void mark_fringe_data (void);
3612 extern void init_fringe_once (void);
3613 #endif /* HAVE_WINDOW_SYSTEM */
3614
3615 /* Defined in image.c. */
3616 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3617 extern void reset_image_types (void);
3618 extern void syms_of_image (void);
3619
3620 /* Defined in insdel.c. */
3621 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3622 extern _Noreturn void buffer_overflow (void);
3623 extern void make_gap (ptrdiff_t);
3624 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3625 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3626 ptrdiff_t, bool, bool);
3627 extern int count_combining_before (const unsigned char *,
3628 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3629 extern int count_combining_after (const unsigned char *,
3630 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3631 extern void insert (const char *, ptrdiff_t);
3632 extern void insert_and_inherit (const char *, ptrdiff_t);
3633 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3634 bool, bool, bool);
3635 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3636 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3637 ptrdiff_t, ptrdiff_t, bool);
3638 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3639 extern void insert_char (int);
3640 extern void insert_string (const char *);
3641 extern void insert_before_markers (const char *, ptrdiff_t);
3642 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3643 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3644 ptrdiff_t, ptrdiff_t,
3645 ptrdiff_t, bool);
3646 extern void del_range (ptrdiff_t, ptrdiff_t);
3647 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3648 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3649 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3650 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3651 ptrdiff_t, ptrdiff_t, bool);
3652 extern void modify_text (ptrdiff_t, ptrdiff_t);
3653 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3654 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3655 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3656 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3657 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3658 ptrdiff_t, ptrdiff_t);
3659 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3660 ptrdiff_t, ptrdiff_t);
3661 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3662 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3663 const char *, ptrdiff_t, ptrdiff_t, bool);
3664 extern void syms_of_insdel (void);
3665
3666 /* Defined in dispnew.c. */
3667 #if (defined PROFILING \
3668 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3669 _Noreturn void __executable_start (void);
3670 #endif
3671 extern Lisp_Object Vwindow_system;
3672 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3673
3674 /* Defined in xdisp.c. */
3675 extern bool noninteractive_need_newline;
3676 extern Lisp_Object echo_area_buffer[2];
3677 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3678 extern void check_message_stack (void);
3679 extern void setup_echo_area_for_printing (bool);
3680 extern bool push_message (void);
3681 extern void pop_message_unwind (void);
3682 extern Lisp_Object restore_message_unwind (Lisp_Object);
3683 extern void restore_message (void);
3684 extern Lisp_Object current_message (void);
3685 extern void clear_message (bool, bool);
3686 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3687 extern void message1 (const char *);
3688 extern void message1_nolog (const char *);
3689 extern void message3 (Lisp_Object);
3690 extern void message3_nolog (Lisp_Object);
3691 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3692 extern void message_with_string (const char *, Lisp_Object, bool);
3693 extern void message_log_maybe_newline (void);
3694 extern void update_echo_area (void);
3695 extern void truncate_echo_area (ptrdiff_t);
3696 extern void redisplay (void);
3697
3698 void set_frame_cursor_types (struct frame *, Lisp_Object);
3699 extern void syms_of_xdisp (void);
3700 extern void init_xdisp (void);
3701 extern Lisp_Object safe_eval (Lisp_Object);
3702 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3703 int *, int *, int *, int *, int *);
3704
3705 /* Defined in xsettings.c. */
3706 extern void syms_of_xsettings (void);
3707
3708 /* Defined in vm-limit.c. */
3709 extern void memory_warnings (void *, void (*warnfun) (const char *));
3710
3711 /* Defined in character.c. */
3712 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3713 ptrdiff_t *, ptrdiff_t *);
3714
3715 /* Defined in alloc.c. */
3716 extern void check_pure_size (void);
3717 extern void free_misc (Lisp_Object);
3718 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3719 extern void malloc_warning (const char *);
3720 extern _Noreturn void memory_full (size_t);
3721 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3722 extern bool survives_gc_p (Lisp_Object);
3723 extern void mark_object (Lisp_Object);
3724 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3725 extern void refill_memory_reserve (void);
3726 #endif
3727 extern const char *pending_malloc_warning;
3728 extern Lisp_Object zero_vector;
3729 extern Lisp_Object *stack_base;
3730 extern EMACS_INT consing_since_gc;
3731 extern EMACS_INT gc_relative_threshold;
3732 extern EMACS_INT memory_full_cons_threshold;
3733 extern Lisp_Object list1 (Lisp_Object);
3734 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3735 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3736 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3737 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3738 Lisp_Object);
3739 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3740 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3741
3742 /* Build a frequently used 2/3/4-integer lists. */
3743
3744 INLINE Lisp_Object
3745 list2i (EMACS_INT x, EMACS_INT y)
3746 {
3747 return list2 (make_number (x), make_number (y));
3748 }
3749
3750 INLINE Lisp_Object
3751 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3752 {
3753 return list3 (make_number (x), make_number (y), make_number (w));
3754 }
3755
3756 INLINE Lisp_Object
3757 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3758 {
3759 return list4 (make_number (x), make_number (y),
3760 make_number (w), make_number (h));
3761 }
3762
3763 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3764 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3765 extern _Noreturn void string_overflow (void);
3766 extern Lisp_Object make_string (const char *, ptrdiff_t);
3767 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3768 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3769 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3770
3771 /* Make unibyte string from C string when the length isn't known. */
3772
3773 INLINE Lisp_Object
3774 build_unibyte_string (const char *str)
3775 {
3776 return make_unibyte_string (str, strlen (str));
3777 }
3778
3779 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3780 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3781 extern Lisp_Object make_uninit_string (EMACS_INT);
3782 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3783 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3784 extern Lisp_Object make_specified_string (const char *,
3785 ptrdiff_t, ptrdiff_t, bool);
3786 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3787 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3788
3789 /* Make a string allocated in pure space, use STR as string data. */
3790
3791 INLINE Lisp_Object
3792 build_pure_c_string (const char *str)
3793 {
3794 return make_pure_c_string (str, strlen (str));
3795 }
3796
3797 /* Make a string from the data at STR, treating it as multibyte if the
3798 data warrants. */
3799
3800 INLINE Lisp_Object
3801 build_string (const char *str)
3802 {
3803 return make_string (str, strlen (str));
3804 }
3805
3806 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3807 extern void make_byte_code (struct Lisp_Vector *);
3808 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3809
3810 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3811 be sure that GC cannot happen until the vector is completely
3812 initialized. E.g. the following code is likely to crash:
3813
3814 v = make_uninit_vector (3);
3815 ASET (v, 0, obj0);
3816 ASET (v, 1, Ffunction_can_gc ());
3817 ASET (v, 2, obj1); */
3818
3819 INLINE Lisp_Object
3820 make_uninit_vector (ptrdiff_t size)
3821 {
3822 Lisp_Object v;
3823 struct Lisp_Vector *p;
3824
3825 p = allocate_vector (size);
3826 XSETVECTOR (v, p);
3827 return v;
3828 }
3829
3830 /* Like above, but special for sub char-tables. */
3831
3832 INLINE Lisp_Object
3833 make_uninit_sub_char_table (int depth, int min_char)
3834 {
3835 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3836 Lisp_Object v = make_uninit_vector (slots);
3837
3838 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3839 XSUB_CHAR_TABLE (v)->depth = depth;
3840 XSUB_CHAR_TABLE (v)->min_char = min_char;
3841 return v;
3842 }
3843
3844 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3845 enum pvec_type);
3846
3847 /* Allocate partially initialized pseudovector where all Lisp_Object
3848 slots are set to Qnil but the rest (if any) is left uninitialized. */
3849
3850 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3851 ((type *) allocate_pseudovector (VECSIZE (type), \
3852 PSEUDOVECSIZE (type, field), \
3853 PSEUDOVECSIZE (type, field), tag))
3854
3855 /* Allocate fully initialized pseudovector where all Lisp_Object
3856 slots are set to Qnil and the rest (if any) is zeroed. */
3857
3858 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3859 ((type *) allocate_pseudovector (VECSIZE (type), \
3860 PSEUDOVECSIZE (type, field), \
3861 VECSIZE (type), tag))
3862
3863 extern bool gc_in_progress;
3864 extern bool abort_on_gc;
3865 extern Lisp_Object make_float (double);
3866 extern void display_malloc_warning (void);
3867 extern ptrdiff_t inhibit_garbage_collection (void);
3868 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3869 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3870 Lisp_Object, Lisp_Object);
3871 extern Lisp_Object make_save_ptr (void *);
3872 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3873 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3874 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3875 Lisp_Object);
3876 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3877 extern void free_save_value (Lisp_Object);
3878 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3879 extern void free_marker (Lisp_Object);
3880 extern void free_cons (struct Lisp_Cons *);
3881 extern void init_alloc_once (void);
3882 extern void init_alloc (void);
3883 extern void syms_of_alloc (void);
3884 extern struct buffer * allocate_buffer (void);
3885 extern int valid_lisp_object_p (Lisp_Object);
3886 extern int relocatable_string_data_p (const char *);
3887 #ifdef GC_CHECK_CONS_LIST
3888 extern void check_cons_list (void);
3889 #else
3890 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3891 #endif
3892
3893 #ifdef REL_ALLOC
3894 /* Defined in ralloc.c. */
3895 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3896 extern void r_alloc_free (void **);
3897 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3898 extern void r_alloc_reset_variable (void **, void **);
3899 extern void r_alloc_inhibit_buffer_relocation (int);
3900 #endif
3901
3902 /* Defined in chartab.c. */
3903 extern Lisp_Object copy_char_table (Lisp_Object);
3904 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3905 int *, int *);
3906 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3907 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3908 Lisp_Object),
3909 Lisp_Object, Lisp_Object, Lisp_Object);
3910 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3911 Lisp_Object, Lisp_Object,
3912 Lisp_Object, struct charset *,
3913 unsigned, unsigned);
3914 extern Lisp_Object uniprop_table (Lisp_Object);
3915 extern void syms_of_chartab (void);
3916
3917 /* Defined in print.c. */
3918 extern Lisp_Object Vprin1_to_string_buffer;
3919 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3920 extern void temp_output_buffer_setup (const char *);
3921 extern int print_level;
3922 extern void write_string (const char *);
3923 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3924 Lisp_Object);
3925 extern Lisp_Object internal_with_output_to_temp_buffer
3926 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3927 #define FLOAT_TO_STRING_BUFSIZE 350
3928 extern int float_to_string (char *, double);
3929 extern void init_print_once (void);
3930 extern void syms_of_print (void);
3931
3932 /* Defined in doprnt.c. */
3933 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3934 va_list);
3935 extern ptrdiff_t esprintf (char *, char const *, ...)
3936 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3937 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3938 char const *, ...)
3939 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3940 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3941 char const *, va_list)
3942 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3943
3944 /* Defined in lread.c. */
3945 extern Lisp_Object check_obarray (Lisp_Object);
3946 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3947 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3948 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3949 extern void init_symbol (Lisp_Object, Lisp_Object);
3950 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3951 INLINE void
3952 LOADHIST_ATTACH (Lisp_Object x)
3953 {
3954 if (initialized)
3955 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3956 }
3957 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3958 Lisp_Object *, Lisp_Object, bool);
3959 extern Lisp_Object string_to_number (char const *, int, bool);
3960 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3961 Lisp_Object);
3962 extern void dir_warning (const char *, Lisp_Object);
3963 extern void init_obarray (void);
3964 extern void init_lread (void);
3965 extern void syms_of_lread (void);
3966
3967 INLINE Lisp_Object
3968 intern (const char *str)
3969 {
3970 return intern_1 (str, strlen (str));
3971 }
3972
3973 INLINE Lisp_Object
3974 intern_c_string (const char *str)
3975 {
3976 return intern_c_string_1 (str, strlen (str));
3977 }
3978
3979 /* Defined in eval.c. */
3980 extern EMACS_INT lisp_eval_depth;
3981 extern Lisp_Object Vautoload_queue;
3982 extern Lisp_Object Vrun_hooks;
3983 extern Lisp_Object Vsignaling_function;
3984 extern Lisp_Object inhibit_lisp_code;
3985 extern struct handler *handlerlist;
3986
3987 /* To run a normal hook, use the appropriate function from the list below.
3988 The calling convention:
3989
3990 if (!NILP (Vrun_hooks))
3991 call1 (Vrun_hooks, Qmy_funny_hook);
3992
3993 should no longer be used. */
3994 extern void run_hook (Lisp_Object);
3995 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3996 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3997 Lisp_Object (*funcall)
3998 (ptrdiff_t nargs, Lisp_Object *args));
3999 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
4000 extern _Noreturn void xsignal0 (Lisp_Object);
4001 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
4002 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
4003 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
4004 Lisp_Object);
4005 extern _Noreturn void signal_error (const char *, Lisp_Object);
4006 extern Lisp_Object eval_sub (Lisp_Object form);
4007 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
4008 extern Lisp_Object call0 (Lisp_Object);
4009 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
4010 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4011 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4012 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4013 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4014 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4015 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4016 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
4017 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
4018 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
4019 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
4020 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
4021 extern Lisp_Object internal_condition_case_n
4022 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
4023 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
4024 extern void specbind (Lisp_Object, Lisp_Object);
4025 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
4026 extern void record_unwind_protect_ptr (void (*) (void *), void *);
4027 extern void record_unwind_protect_int (void (*) (int), int);
4028 extern void record_unwind_protect_void (void (*) (void));
4029 extern void record_unwind_protect_nothing (void);
4030 extern void clear_unwind_protect (ptrdiff_t);
4031 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
4032 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
4033 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
4034 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
4035 extern _Noreturn void verror (const char *, va_list)
4036 ATTRIBUTE_FORMAT_PRINTF (1, 0);
4037 extern void un_autoload (Lisp_Object);
4038 extern Lisp_Object call_debugger (Lisp_Object arg);
4039 extern void init_eval_once (void);
4040 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
4041 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
4042 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4043 extern void init_eval (void);
4044 extern void syms_of_eval (void);
4045 extern void unwind_body (Lisp_Object);
4046 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
4047 extern void mark_specpdl (void);
4048 extern void get_backtrace (Lisp_Object array);
4049 Lisp_Object backtrace_top_function (void);
4050 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
4051 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
4052
4053
4054 /* Defined in editfns.c. */
4055 extern void insert1 (Lisp_Object);
4056 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
4057 extern Lisp_Object save_excursion_save (void);
4058 extern Lisp_Object save_restriction_save (void);
4059 extern void save_excursion_restore (Lisp_Object);
4060 extern void save_restriction_restore (Lisp_Object);
4061 extern _Noreturn void time_overflow (void);
4062 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4063 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4064 ptrdiff_t, bool);
4065 extern void init_editfns (void);
4066 extern void syms_of_editfns (void);
4067
4068 /* Defined in buffer.c. */
4069 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4070 extern _Noreturn void nsberror (Lisp_Object);
4071 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4072 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4073 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4074 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4075 Lisp_Object, Lisp_Object, Lisp_Object);
4076 extern bool overlay_touches_p (ptrdiff_t);
4077 extern Lisp_Object other_buffer_safely (Lisp_Object);
4078 extern Lisp_Object get_truename_buffer (Lisp_Object);
4079 extern void init_buffer_once (void);
4080 extern void init_buffer (int);
4081 extern void syms_of_buffer (void);
4082 extern void keys_of_buffer (void);
4083
4084 /* Defined in marker.c. */
4085
4086 extern ptrdiff_t marker_position (Lisp_Object);
4087 extern ptrdiff_t marker_byte_position (Lisp_Object);
4088 extern void clear_charpos_cache (struct buffer *);
4089 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4090 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4091 extern void unchain_marker (struct Lisp_Marker *marker);
4092 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4093 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4094 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4095 ptrdiff_t, ptrdiff_t);
4096 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4097 extern void syms_of_marker (void);
4098
4099 /* Defined in fileio.c. */
4100
4101 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4102 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4103 Lisp_Object, Lisp_Object, Lisp_Object,
4104 Lisp_Object, int);
4105 extern void close_file_unwind (int);
4106 extern void fclose_unwind (void *);
4107 extern void restore_point_unwind (Lisp_Object);
4108 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4109 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4110 extern bool internal_delete_file (Lisp_Object);
4111 extern Lisp_Object emacs_readlinkat (int, const char *);
4112 extern bool file_directory_p (const char *);
4113 extern bool file_accessible_directory_p (Lisp_Object);
4114 extern void init_fileio (void);
4115 extern void syms_of_fileio (void);
4116 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4117
4118 /* Defined in search.c. */
4119 extern void shrink_regexp_cache (void);
4120 extern void restore_search_regs (void);
4121 extern void record_unwind_save_match_data (void);
4122 struct re_registers;
4123 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4124 struct re_registers *,
4125 Lisp_Object, bool, bool);
4126 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4127 Lisp_Object);
4128
4129 INLINE ptrdiff_t
4130 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4131 {
4132 return fast_string_match_internal (regexp, string, Qnil);
4133 }
4134
4135 INLINE ptrdiff_t
4136 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4137 {
4138 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4139 }
4140
4141 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4142 ptrdiff_t);
4143 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4144 ptrdiff_t, ptrdiff_t, Lisp_Object);
4145 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4146 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4147 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4148 ptrdiff_t, bool);
4149 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4150 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4151 ptrdiff_t, ptrdiff_t *);
4152 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4153 ptrdiff_t, ptrdiff_t *);
4154 extern void syms_of_search (void);
4155 extern void clear_regexp_cache (void);
4156
4157 /* Defined in minibuf.c. */
4158
4159 extern Lisp_Object Vminibuffer_list;
4160 extern Lisp_Object last_minibuf_string;
4161 extern Lisp_Object get_minibuffer (EMACS_INT);
4162 extern void init_minibuf_once (void);
4163 extern void syms_of_minibuf (void);
4164
4165 /* Defined in callint.c. */
4166
4167 extern void syms_of_callint (void);
4168
4169 /* Defined in casefiddle.c. */
4170
4171 extern void syms_of_casefiddle (void);
4172 extern void keys_of_casefiddle (void);
4173
4174 /* Defined in casetab.c. */
4175
4176 extern void init_casetab_once (void);
4177 extern void syms_of_casetab (void);
4178
4179 /* Defined in keyboard.c. */
4180
4181 extern Lisp_Object echo_message_buffer;
4182 extern struct kboard *echo_kboard;
4183 extern void cancel_echoing (void);
4184 extern Lisp_Object last_undo_boundary;
4185 extern bool input_pending;
4186 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4187 extern sigjmp_buf return_to_command_loop;
4188 #endif
4189 extern Lisp_Object menu_bar_items (Lisp_Object);
4190 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4191 extern void discard_mouse_events (void);
4192 #ifdef USABLE_SIGIO
4193 void handle_input_available_signal (int);
4194 #endif
4195 extern Lisp_Object pending_funcalls;
4196 extern bool detect_input_pending (void);
4197 extern bool detect_input_pending_ignore_squeezables (void);
4198 extern bool detect_input_pending_run_timers (bool);
4199 extern void safe_run_hooks (Lisp_Object);
4200 extern void cmd_error_internal (Lisp_Object, const char *);
4201 extern Lisp_Object command_loop_1 (void);
4202 extern Lisp_Object read_menu_command (void);
4203 extern Lisp_Object recursive_edit_1 (void);
4204 extern void record_auto_save (void);
4205 extern void force_auto_save_soon (void);
4206 extern void init_keyboard (void);
4207 extern void syms_of_keyboard (void);
4208 extern void keys_of_keyboard (void);
4209
4210 /* Defined in indent.c. */
4211 extern ptrdiff_t current_column (void);
4212 extern void invalidate_current_column (void);
4213 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4214 extern void syms_of_indent (void);
4215
4216 /* Defined in frame.c. */
4217 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4218 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4219 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4220 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4221 extern void frames_discard_buffer (Lisp_Object);
4222 extern void syms_of_frame (void);
4223
4224 /* Defined in emacs.c. */
4225 extern char **initial_argv;
4226 extern int initial_argc;
4227 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4228 extern bool display_arg;
4229 #endif
4230 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4231 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4232 extern _Noreturn void terminate_due_to_signal (int, int);
4233 #ifdef WINDOWSNT
4234 extern Lisp_Object Vlibrary_cache;
4235 #endif
4236 #if HAVE_SETLOCALE
4237 void fixup_locale (void);
4238 void synchronize_system_messages_locale (void);
4239 void synchronize_system_time_locale (void);
4240 #else
4241 INLINE void fixup_locale (void) {}
4242 INLINE void synchronize_system_messages_locale (void) {}
4243 INLINE void synchronize_system_time_locale (void) {}
4244 #endif
4245 extern void shut_down_emacs (int, Lisp_Object);
4246
4247 /* True means don't do interactive redisplay and don't change tty modes. */
4248 extern bool noninteractive;
4249
4250 /* True means remove site-lisp directories from load-path. */
4251 extern bool no_site_lisp;
4252
4253 /* Pipe used to send exit notification to the daemon parent at
4254 startup. On Windows, we use a kernel event instead. */
4255 #ifndef WINDOWSNT
4256 extern int daemon_pipe[2];
4257 #define IS_DAEMON (daemon_pipe[1] != 0)
4258 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4259 #else /* WINDOWSNT */
4260 extern void *w32_daemon_event;
4261 #define IS_DAEMON (w32_daemon_event != NULL)
4262 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4263 #endif
4264
4265 /* True if handling a fatal error already. */
4266 extern bool fatal_error_in_progress;
4267
4268 /* True means don't do use window-system-specific display code. */
4269 extern bool inhibit_window_system;
4270 /* True means that a filter or a sentinel is running. */
4271 extern bool running_asynch_code;
4272
4273 /* Defined in process.c. */
4274 extern void kill_buffer_processes (Lisp_Object);
4275 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4276 struct Lisp_Process *, int);
4277 /* Max value for the first argument of wait_reading_process_output. */
4278 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4279 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4280 The bug merely causes a bogus warning, but the warning is annoying. */
4281 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4282 #else
4283 # define WAIT_READING_MAX INTMAX_MAX
4284 #endif
4285 #ifdef HAVE_TIMERFD
4286 extern void add_timer_wait_descriptor (int);
4287 #endif
4288 extern void add_keyboard_wait_descriptor (int);
4289 extern void delete_keyboard_wait_descriptor (int);
4290 #ifdef HAVE_GPM
4291 extern void add_gpm_wait_descriptor (int);
4292 extern void delete_gpm_wait_descriptor (int);
4293 #endif
4294 extern void init_process_emacs (void);
4295 extern void syms_of_process (void);
4296 extern void setup_process_coding_systems (Lisp_Object);
4297
4298 /* Defined in callproc.c. */
4299 #ifndef DOS_NT
4300 _Noreturn
4301 #endif
4302 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4303 extern void init_callproc_1 (void);
4304 extern void init_callproc (void);
4305 extern void set_initial_environment (void);
4306 extern void syms_of_callproc (void);
4307
4308 /* Defined in doc.c. */
4309 extern Lisp_Object read_doc_string (Lisp_Object);
4310 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4311 extern void syms_of_doc (void);
4312 extern int read_bytecode_char (bool);
4313
4314 /* Defined in bytecode.c. */
4315 extern void syms_of_bytecode (void);
4316 extern struct byte_stack *byte_stack_list;
4317 #if BYTE_MARK_STACK
4318 extern void mark_byte_stack (void);
4319 #endif
4320 extern void unmark_byte_stack (void);
4321 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4322 Lisp_Object, ptrdiff_t, Lisp_Object *);
4323
4324 /* Defined in macros.c. */
4325 extern void init_macros (void);
4326 extern void syms_of_macros (void);
4327
4328 /* Defined in undo.c. */
4329 extern void truncate_undo_list (struct buffer *);
4330 extern void record_insert (ptrdiff_t, ptrdiff_t);
4331 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4332 extern void record_first_change (void);
4333 extern void record_change (ptrdiff_t, ptrdiff_t);
4334 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4335 Lisp_Object, Lisp_Object,
4336 Lisp_Object);
4337 extern void syms_of_undo (void);
4338
4339 /* Defined in textprop.c. */
4340 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4341
4342 /* Defined in menu.c. */
4343 extern void syms_of_menu (void);
4344
4345 /* Defined in xmenu.c. */
4346 extern void syms_of_xmenu (void);
4347
4348 /* Defined in termchar.h. */
4349 struct tty_display_info;
4350
4351 /* Defined in termhooks.h. */
4352 struct terminal;
4353
4354 /* Defined in sysdep.c. */
4355 #ifndef HAVE_GET_CURRENT_DIR_NAME
4356 extern char *get_current_dir_name (void);
4357 #endif
4358 extern void stuff_char (char c);
4359 extern void init_foreground_group (void);
4360 extern void sys_subshell (void);
4361 extern void sys_suspend (void);
4362 extern void discard_tty_input (void);
4363 extern void init_sys_modes (struct tty_display_info *);
4364 extern void reset_sys_modes (struct tty_display_info *);
4365 extern void init_all_sys_modes (void);
4366 extern void reset_all_sys_modes (void);
4367 extern void child_setup_tty (int);
4368 extern void setup_pty (int);
4369 extern int set_window_size (int, int, int);
4370 extern EMACS_INT get_random (void);
4371 extern void seed_random (void *, ptrdiff_t);
4372 extern void init_random (void);
4373 extern void emacs_backtrace (int);
4374 extern _Noreturn void emacs_abort (void) NO_INLINE;
4375 extern int emacs_open (const char *, int, int);
4376 extern int emacs_pipe (int[2]);
4377 extern int emacs_close (int);
4378 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4379 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4380 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4381 extern void emacs_perror (char const *);
4382
4383 extern void unlock_all_files (void);
4384 extern void lock_file (Lisp_Object);
4385 extern void unlock_file (Lisp_Object);
4386 extern void unlock_buffer (struct buffer *);
4387 extern void syms_of_filelock (void);
4388 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4389
4390 /* Defined in sound.c. */
4391 extern void syms_of_sound (void);
4392
4393 /* Defined in category.c. */
4394 extern void init_category_once (void);
4395 extern Lisp_Object char_category_set (int);
4396 extern void syms_of_category (void);
4397
4398 /* Defined in ccl.c. */
4399 extern void syms_of_ccl (void);
4400
4401 /* Defined in dired.c. */
4402 extern void syms_of_dired (void);
4403 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4404 Lisp_Object, Lisp_Object,
4405 bool, Lisp_Object);
4406
4407 /* Defined in term.c. */
4408 extern int *char_ins_del_vector;
4409 extern void syms_of_term (void);
4410 extern _Noreturn void fatal (const char *msgid, ...)
4411 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4412
4413 /* Defined in terminal.c. */
4414 extern void syms_of_terminal (void);
4415
4416 /* Defined in font.c. */
4417 extern void syms_of_font (void);
4418 extern void init_font (void);
4419
4420 #ifdef HAVE_WINDOW_SYSTEM
4421 /* Defined in fontset.c. */
4422 extern void syms_of_fontset (void);
4423 #endif
4424
4425 /* Defined in gfilenotify.c */
4426 #ifdef HAVE_GFILENOTIFY
4427 extern void globals_of_gfilenotify (void);
4428 extern void syms_of_gfilenotify (void);
4429 #endif
4430
4431 /* Defined in inotify.c */
4432 #ifdef HAVE_INOTIFY
4433 extern void syms_of_inotify (void);
4434 #endif
4435
4436 #ifdef HAVE_W32NOTIFY
4437 /* Defined on w32notify.c. */
4438 extern void syms_of_w32notify (void);
4439 #endif
4440
4441 /* Defined in xfaces.c. */
4442 extern Lisp_Object Vface_alternative_font_family_alist;
4443 extern Lisp_Object Vface_alternative_font_registry_alist;
4444 extern void syms_of_xfaces (void);
4445
4446 #ifdef HAVE_X_WINDOWS
4447 /* Defined in xfns.c. */
4448 extern void syms_of_xfns (void);
4449
4450 /* Defined in xsmfns.c. */
4451 extern void syms_of_xsmfns (void);
4452
4453 /* Defined in xselect.c. */
4454 extern void syms_of_xselect (void);
4455
4456 /* Defined in xterm.c. */
4457 extern void init_xterm (void);
4458 extern void syms_of_xterm (void);
4459 #endif /* HAVE_X_WINDOWS */
4460
4461 #ifdef HAVE_WINDOW_SYSTEM
4462 /* Defined in xterm.c, nsterm.m, w32term.c. */
4463 extern char *x_get_keysym_name (int);
4464 #endif /* HAVE_WINDOW_SYSTEM */
4465
4466 #ifdef HAVE_LIBXML2
4467 /* Defined in xml.c. */
4468 extern void syms_of_xml (void);
4469 extern void xml_cleanup_parser (void);
4470 #endif
4471
4472 #ifdef HAVE_ZLIB
4473 /* Defined in decompress.c. */
4474 extern void syms_of_decompress (void);
4475 #endif
4476
4477 #ifdef HAVE_DBUS
4478 /* Defined in dbusbind.c. */
4479 void init_dbusbind (void);
4480 void syms_of_dbusbind (void);
4481 #endif
4482
4483
4484 /* Defined in profiler.c. */
4485 extern bool profiler_memory_running;
4486 extern void malloc_probe (size_t);
4487 extern void syms_of_profiler (void);
4488
4489
4490 #ifdef DOS_NT
4491 /* Defined in msdos.c, w32.c. */
4492 extern char *emacs_root_dir (void);
4493 #endif /* DOS_NT */
4494
4495 /* Defined in lastfile.c. */
4496 extern char my_edata[];
4497 extern char my_endbss[];
4498 extern char *my_endbss_static;
4499
4500 /* True means ^G can quit instantly. */
4501 extern bool immediate_quit;
4502
4503 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4504 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4505 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4506 extern void xfree (void *);
4507 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4508 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4509 ATTRIBUTE_ALLOC_SIZE ((2,3));
4510 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4511
4512 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4513 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4514 extern void dupstring (char **, char const *);
4515
4516 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4517 null byte. This is like stpcpy, except the source is a Lisp string. */
4518
4519 INLINE char *
4520 lispstpcpy (char *dest, Lisp_Object string)
4521 {
4522 ptrdiff_t len = SBYTES (string);
4523 memcpy (dest, SDATA (string), len + 1);
4524 return dest + len;
4525 }
4526
4527 extern void xputenv (const char *);
4528
4529 extern char *egetenv_internal (const char *, ptrdiff_t);
4530
4531 INLINE char *
4532 egetenv (const char *var)
4533 {
4534 /* When VAR is a string literal, strlen can be optimized away. */
4535 return egetenv_internal (var, strlen (var));
4536 }
4537
4538 /* Set up the name of the machine we're running on. */
4539 extern void init_system_name (void);
4540
4541 /* Return the absolute value of X. X should be a signed integer
4542 expression without side effects, and X's absolute value should not
4543 exceed the maximum for its promoted type. This is called 'eabs'
4544 because 'abs' is reserved by the C standard. */
4545 #define eabs(x) ((x) < 0 ? -(x) : (x))
4546
4547 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4548 fixnum. */
4549
4550 #define make_fixnum_or_float(val) \
4551 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4552
4553 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4554 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4555
4556 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4557
4558 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4559
4560 #define USE_SAFE_ALLOCA \
4561 ptrdiff_t sa_avail = MAX_ALLOCA; \
4562 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4563
4564 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4565
4566 /* SAFE_ALLOCA allocates a simple buffer. */
4567
4568 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4569 ? AVAIL_ALLOCA (size) \
4570 : (sa_must_free = true, record_xmalloc (size)))
4571
4572 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4573 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4574 positive. The code is tuned for MULTIPLIER being a constant. */
4575
4576 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4577 do { \
4578 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4579 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4580 else \
4581 { \
4582 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4583 sa_must_free = true; \
4584 record_unwind_protect_ptr (xfree, buf); \
4585 } \
4586 } while (false)
4587
4588 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4589
4590 #define SAFE_ALLOCA_STRING(ptr, string) \
4591 do { \
4592 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4593 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4594 } while (false)
4595
4596 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4597
4598 #define SAFE_FREE() \
4599 do { \
4600 if (sa_must_free) { \
4601 sa_must_free = false; \
4602 unbind_to (sa_count, Qnil); \
4603 } \
4604 } while (false)
4605
4606
4607 /* Return floor (NBYTES / WORD_SIZE). */
4608
4609 INLINE ptrdiff_t
4610 lisp_word_count (ptrdiff_t nbytes)
4611 {
4612 if (-1 >> 1 == -1)
4613 switch (word_size)
4614 {
4615 case 2: return nbytes >> 1;
4616 case 4: return nbytes >> 2;
4617 case 8: return nbytes >> 3;
4618 case 16: return nbytes >> 4;
4619 }
4620 return nbytes / word_size - (nbytes % word_size < 0);
4621 }
4622
4623 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4624
4625 #define SAFE_ALLOCA_LISP(buf, nelt) \
4626 do { \
4627 if ((nelt) <= lisp_word_count (sa_avail)) \
4628 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4629 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4630 { \
4631 Lisp_Object arg_; \
4632 (buf) = xmalloc ((nelt) * word_size); \
4633 arg_ = make_save_memory (buf, nelt); \
4634 sa_must_free = true; \
4635 record_unwind_protect (free_save_value, arg_); \
4636 } \
4637 else \
4638 memory_full (SIZE_MAX); \
4639 } while (false)
4640
4641
4642 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4643 block-scoped conses and strings. These objects are not
4644 managed by the garbage collector, so they are dangerous: passing them
4645 out of their scope (e.g., to user code) results in undefined behavior.
4646 Conversely, they have better performance because GC is not involved.
4647
4648 This feature is experimental and requires careful debugging.
4649 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4650
4651 #ifndef USE_STACK_LISP_OBJECTS
4652 # define USE_STACK_LISP_OBJECTS true
4653 #endif
4654
4655 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4656
4657 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4658 # undef USE_STACK_LISP_OBJECTS
4659 # define USE_STACK_LISP_OBJECTS false
4660 #endif
4661
4662 #ifdef GC_CHECK_STRING_BYTES
4663 enum { defined_GC_CHECK_STRING_BYTES = true };
4664 #else
4665 enum { defined_GC_CHECK_STRING_BYTES = false };
4666 #endif
4667
4668 /* Struct inside unions that are typically no larger and aligned enough. */
4669
4670 union Aligned_Cons
4671 {
4672 struct Lisp_Cons s;
4673 double d; intmax_t i; void *p;
4674 };
4675
4676 union Aligned_String
4677 {
4678 struct Lisp_String s;
4679 double d; intmax_t i; void *p;
4680 };
4681
4682 /* True for stack-based cons and string implementations, respectively.
4683 Use stack-based strings only if stack-based cons also works.
4684 Otherwise, STACK_CONS would create heap-based cons cells that
4685 could point to stack-based strings, which is a no-no. */
4686
4687 enum
4688 {
4689 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4690 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4691 USE_STACK_STRING = (USE_STACK_CONS
4692 && !defined_GC_CHECK_STRING_BYTES
4693 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4694 };
4695
4696 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4697 use these only in macros like AUTO_CONS that declare a local
4698 variable whose lifetime will be clear to the programmer. */
4699 #define STACK_CONS(a, b) \
4700 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4701 #define AUTO_CONS_EXPR(a, b) \
4702 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4703
4704 /* Declare NAME as an auto Lisp cons or short list if possible, a
4705 GC-based one otherwise. This is in the sense of the C keyword
4706 'auto'; i.e., the object has the lifetime of the containing block.
4707 The resulting object should not be made visible to user Lisp code. */
4708
4709 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4710 #define AUTO_LIST1(name, a) \
4711 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4712 #define AUTO_LIST2(name, a, b) \
4713 Lisp_Object name = (USE_STACK_CONS \
4714 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4715 : list2 (a, b))
4716 #define AUTO_LIST3(name, a, b, c) \
4717 Lisp_Object name = (USE_STACK_CONS \
4718 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4719 : list3 (a, b, c))
4720 #define AUTO_LIST4(name, a, b, c, d) \
4721 Lisp_Object name \
4722 = (USE_STACK_CONS \
4723 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4724 STACK_CONS (d, Qnil)))) \
4725 : list4 (a, b, c, d))
4726
4727 /* Check whether stack-allocated strings are ASCII-only. */
4728
4729 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4730 extern const char *verify_ascii (const char *);
4731 #else
4732 # define verify_ascii(str) (str)
4733 #endif
4734
4735 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4736 Take its value from STR. STR is not necessarily copied and should
4737 contain only ASCII characters. The resulting Lisp string should
4738 not be modified or made visible to user code. */
4739
4740 #define AUTO_STRING(name, str) \
4741 Lisp_Object name = \
4742 (USE_STACK_STRING \
4743 ? (make_lisp_ptr \
4744 ((&(union Aligned_String) \
4745 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4746 Lisp_String)) \
4747 : build_string (verify_ascii (str)))
4748
4749 /* Loop over all tails of a list, checking for cycles.
4750 FIXME: Make tortoise and n internal declarations.
4751 FIXME: Unroll the loop body so we don't need `n'. */
4752 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4753 for ((tortoise) = (hare) = (list), (n) = true; \
4754 CONSP (hare); \
4755 (hare = XCDR (hare), (n) = !(n), \
4756 ((n) \
4757 ? (EQ (hare, tortoise) \
4758 ? xsignal1 (Qcircular_list, list) \
4759 : (void) 0) \
4760 /* Move tortoise before the next iteration, in case */ \
4761 /* the next iteration does an Fsetcdr. */ \
4762 : (void) ((tortoise) = XCDR (tortoise)))))
4763
4764 /* Do a `for' loop over alist values. */
4765
4766 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4767 for ((list_var) = (head_var); \
4768 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4769 (list_var) = XCDR (list_var))
4770
4771 /* Check whether it's time for GC, and run it if so. */
4772
4773 INLINE void
4774 maybe_gc (void)
4775 {
4776 if ((consing_since_gc > gc_cons_threshold
4777 && consing_since_gc > gc_relative_threshold)
4778 || (!NILP (Vmemory_full)
4779 && consing_since_gc > memory_full_cons_threshold))
4780 Fgarbage_collect ();
4781 }
4782
4783 INLINE bool
4784 functionp (Lisp_Object object)
4785 {
4786 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4787 {
4788 object = Findirect_function (object, Qt);
4789
4790 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4791 {
4792 /* Autoloaded symbols are functions, except if they load
4793 macros or keymaps. */
4794 int i;
4795 for (i = 0; i < 4 && CONSP (object); i++)
4796 object = XCDR (object);
4797
4798 return ! (CONSP (object) && !NILP (XCAR (object)));
4799 }
4800 }
4801
4802 if (SUBRP (object))
4803 return XSUBR (object)->max_args != UNEVALLED;
4804 else if (COMPILEDP (object))
4805 return true;
4806 else if (CONSP (object))
4807 {
4808 Lisp_Object car = XCAR (object);
4809 return EQ (car, Qlambda) || EQ (car, Qclosure);
4810 }
4811 else
4812 return false;
4813 }
4814
4815 INLINE_HEADER_END
4816
4817 #endif /* EMACS_LISP_H */