]> code.delx.au - gnu-emacs/blob - src/alloc.c
Don't install keyboard hook when debugged on MS-Windows
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <errno.h>
24 #include <stdio.h>
25 #include <limits.h> /* For CHAR_BIT. */
26 #include <signal.h> /* For SIGABRT, SIGDANGER. */
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 #include "lisp.h"
33 #include "dispextern.h"
34 #include "intervals.h"
35 #include "puresize.h"
36 #include "sheap.h"
37 #include "systime.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
55
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
59
60 #ifdef HAVE_MALLOC_H
61 # include <malloc.h>
62 #endif
63
64 #if (defined ENABLE_CHECKING \
65 && defined HAVE_VALGRIND_VALGRIND_H \
66 && !defined USE_VALGRIND)
67 # define USE_VALGRIND 1
68 #endif
69
70 #if USE_VALGRIND
71 #include <valgrind/valgrind.h>
72 #include <valgrind/memcheck.h>
73 static bool valgrind_p;
74 #endif
75
76 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
77
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
81
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
86
87 #include <unistd.h>
88 #include <fcntl.h>
89
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
97
98 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
99 /* The address where the heap starts. */
100 void *
101 my_heap_start (void)
102 {
103 static void *start;
104 if (! start)
105 start = sbrk (0);
106 return start;
107 }
108 #endif
109
110 #ifdef DOUG_LEA_MALLOC
111
112 /* Specify maximum number of areas to mmap. It would be nice to use a
113 value that explicitly means "no limit". */
114
115 #define MMAP_MAX_AREAS 100000000
116
117 /* A pointer to the memory allocated that copies that static data
118 inside glibc's malloc. */
119 static void *malloc_state_ptr;
120
121 /* Restore the dumped malloc state. Because malloc can be invoked
122 even before main (e.g. by the dynamic linker), the dumped malloc
123 state must be restored as early as possible using this special hook. */
124 static void
125 malloc_initialize_hook (void)
126 {
127 static bool malloc_using_checking;
128
129 if (! initialized)
130 {
131 my_heap_start ();
132 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
133 }
134 else
135 {
136 if (!malloc_using_checking)
137 {
138 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
139 ignored if the heap to be restored was constructed without
140 malloc checking. Can't use unsetenv, since that calls malloc. */
141 char **p = environ;
142 if (p)
143 for (; *p; p++)
144 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
145 {
146 do
147 *p = p[1];
148 while (*++p);
149
150 break;
151 }
152 }
153
154 if (malloc_set_state (malloc_state_ptr) != 0)
155 emacs_abort ();
156 # ifndef XMALLOC_OVERRUN_CHECK
157 alloc_unexec_post ();
158 # endif
159 }
160 }
161
162 /* Declare the malloc initialization hook, which runs before 'main' starts.
163 EXTERNALLY_VISIBLE works around Bug#22522. */
164 # ifndef __MALLOC_HOOK_VOLATILE
165 # define __MALLOC_HOOK_VOLATILE
166 # endif
167 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
168 = malloc_initialize_hook;
169
170 #endif
171
172 /* Allocator-related actions to do just before and after unexec. */
173
174 void
175 alloc_unexec_pre (void)
176 {
177 #ifdef DOUG_LEA_MALLOC
178 malloc_state_ptr = malloc_get_state ();
179 if (!malloc_state_ptr)
180 fatal ("malloc_get_state: %s", strerror (errno));
181 #endif
182 #ifdef HYBRID_MALLOC
183 bss_sbrk_did_unexec = true;
184 #endif
185 }
186
187 void
188 alloc_unexec_post (void)
189 {
190 #ifdef DOUG_LEA_MALLOC
191 free (malloc_state_ptr);
192 #endif
193 #ifdef HYBRID_MALLOC
194 bss_sbrk_did_unexec = false;
195 #endif
196 }
197
198 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
199 to a struct Lisp_String. */
200
201 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
202 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
203 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
204
205 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
206 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
207 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
208
209 /* Default value of gc_cons_threshold (see below). */
210
211 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
212
213 /* Global variables. */
214 struct emacs_globals globals;
215
216 /* Number of bytes of consing done since the last gc. */
217
218 EMACS_INT consing_since_gc;
219
220 /* Similar minimum, computed from Vgc_cons_percentage. */
221
222 EMACS_INT gc_relative_threshold;
223
224 /* Minimum number of bytes of consing since GC before next GC,
225 when memory is full. */
226
227 EMACS_INT memory_full_cons_threshold;
228
229 /* True during GC. */
230
231 bool gc_in_progress;
232
233 /* True means abort if try to GC.
234 This is for code which is written on the assumption that
235 no GC will happen, so as to verify that assumption. */
236
237 bool abort_on_gc;
238
239 /* Number of live and free conses etc. */
240
241 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
242 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
243 static EMACS_INT total_free_floats, total_floats;
244
245 /* Points to memory space allocated as "spare", to be freed if we run
246 out of memory. We keep one large block, four cons-blocks, and
247 two string blocks. */
248
249 static char *spare_memory[7];
250
251 /* Amount of spare memory to keep in large reserve block, or to see
252 whether this much is available when malloc fails on a larger request. */
253
254 #define SPARE_MEMORY (1 << 14)
255
256 /* Initialize it to a nonzero value to force it into data space
257 (rather than bss space). That way unexec will remap it into text
258 space (pure), on some systems. We have not implemented the
259 remapping on more recent systems because this is less important
260 nowadays than in the days of small memories and timesharing. */
261
262 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
263 #define PUREBEG (char *) pure
264
265 /* Pointer to the pure area, and its size. */
266
267 static char *purebeg;
268 static ptrdiff_t pure_size;
269
270 /* Number of bytes of pure storage used before pure storage overflowed.
271 If this is non-zero, this implies that an overflow occurred. */
272
273 static ptrdiff_t pure_bytes_used_before_overflow;
274
275 /* Index in pure at which next pure Lisp object will be allocated.. */
276
277 static ptrdiff_t pure_bytes_used_lisp;
278
279 /* Number of bytes allocated for non-Lisp objects in pure storage. */
280
281 static ptrdiff_t pure_bytes_used_non_lisp;
282
283 /* If nonzero, this is a warning delivered by malloc and not yet
284 displayed. */
285
286 const char *pending_malloc_warning;
287
288 #if 0 /* Normally, pointer sanity only on request... */
289 #ifdef ENABLE_CHECKING
290 #define SUSPICIOUS_OBJECT_CHECKING 1
291 #endif
292 #endif
293
294 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
295 bug is unresolved. */
296 #define SUSPICIOUS_OBJECT_CHECKING 1
297
298 #ifdef SUSPICIOUS_OBJECT_CHECKING
299 struct suspicious_free_record
300 {
301 void *suspicious_object;
302 void *backtrace[128];
303 };
304 static void *suspicious_objects[32];
305 static int suspicious_object_index;
306 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
307 static int suspicious_free_history_index;
308 /* Find the first currently-monitored suspicious pointer in range
309 [begin,end) or NULL if no such pointer exists. */
310 static void *find_suspicious_object_in_range (void *begin, void *end);
311 static void detect_suspicious_free (void *ptr);
312 #else
313 # define find_suspicious_object_in_range(begin, end) NULL
314 # define detect_suspicious_free(ptr) (void)
315 #endif
316
317 /* Maximum amount of C stack to save when a GC happens. */
318
319 #ifndef MAX_SAVE_STACK
320 #define MAX_SAVE_STACK 16000
321 #endif
322
323 /* Buffer in which we save a copy of the C stack at each GC. */
324
325 #if MAX_SAVE_STACK > 0
326 static char *stack_copy;
327 static ptrdiff_t stack_copy_size;
328
329 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
330 avoiding any address sanitization. */
331
332 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
333 no_sanitize_memcpy (void *dest, void const *src, size_t size)
334 {
335 if (! ADDRESS_SANITIZER)
336 return memcpy (dest, src, size);
337 else
338 {
339 size_t i;
340 char *d = dest;
341 char const *s = src;
342 for (i = 0; i < size; i++)
343 d[i] = s[i];
344 return dest;
345 }
346 }
347
348 #endif /* MAX_SAVE_STACK > 0 */
349
350 static void mark_terminals (void);
351 static void gc_sweep (void);
352 static Lisp_Object make_pure_vector (ptrdiff_t);
353 static void mark_buffer (struct buffer *);
354
355 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
356 static void refill_memory_reserve (void);
357 #endif
358 static void compact_small_strings (void);
359 static void free_large_strings (void);
360 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
361
362 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
363 what memory allocated via lisp_malloc and lisp_align_malloc is intended
364 for what purpose. This enumeration specifies the type of memory. */
365
366 enum mem_type
367 {
368 MEM_TYPE_NON_LISP,
369 MEM_TYPE_BUFFER,
370 MEM_TYPE_CONS,
371 MEM_TYPE_STRING,
372 MEM_TYPE_MISC,
373 MEM_TYPE_SYMBOL,
374 MEM_TYPE_FLOAT,
375 /* Since all non-bool pseudovectors are small enough to be
376 allocated from vector blocks, this memory type denotes
377 large regular vectors and large bool pseudovectors. */
378 MEM_TYPE_VECTORLIKE,
379 /* Special type to denote vector blocks. */
380 MEM_TYPE_VECTOR_BLOCK,
381 /* Special type to denote reserved memory. */
382 MEM_TYPE_SPARE
383 };
384
385 /* A unique object in pure space used to make some Lisp objects
386 on free lists recognizable in O(1). */
387
388 static Lisp_Object Vdead;
389 #define DEADP(x) EQ (x, Vdead)
390
391 #ifdef GC_MALLOC_CHECK
392
393 enum mem_type allocated_mem_type;
394
395 #endif /* GC_MALLOC_CHECK */
396
397 /* A node in the red-black tree describing allocated memory containing
398 Lisp data. Each such block is recorded with its start and end
399 address when it is allocated, and removed from the tree when it
400 is freed.
401
402 A red-black tree is a balanced binary tree with the following
403 properties:
404
405 1. Every node is either red or black.
406 2. Every leaf is black.
407 3. If a node is red, then both of its children are black.
408 4. Every simple path from a node to a descendant leaf contains
409 the same number of black nodes.
410 5. The root is always black.
411
412 When nodes are inserted into the tree, or deleted from the tree,
413 the tree is "fixed" so that these properties are always true.
414
415 A red-black tree with N internal nodes has height at most 2
416 log(N+1). Searches, insertions and deletions are done in O(log N).
417 Please see a text book about data structures for a detailed
418 description of red-black trees. Any book worth its salt should
419 describe them. */
420
421 struct mem_node
422 {
423 /* Children of this node. These pointers are never NULL. When there
424 is no child, the value is MEM_NIL, which points to a dummy node. */
425 struct mem_node *left, *right;
426
427 /* The parent of this node. In the root node, this is NULL. */
428 struct mem_node *parent;
429
430 /* Start and end of allocated region. */
431 void *start, *end;
432
433 /* Node color. */
434 enum {MEM_BLACK, MEM_RED} color;
435
436 /* Memory type. */
437 enum mem_type type;
438 };
439
440 /* Base address of stack. Set in main. */
441
442 Lisp_Object *stack_base;
443
444 /* Root of the tree describing allocated Lisp memory. */
445
446 static struct mem_node *mem_root;
447
448 /* Lowest and highest known address in the heap. */
449
450 static void *min_heap_address, *max_heap_address;
451
452 /* Sentinel node of the tree. */
453
454 static struct mem_node mem_z;
455 #define MEM_NIL &mem_z
456
457 static struct mem_node *mem_insert (void *, void *, enum mem_type);
458 static void mem_insert_fixup (struct mem_node *);
459 static void mem_rotate_left (struct mem_node *);
460 static void mem_rotate_right (struct mem_node *);
461 static void mem_delete (struct mem_node *);
462 static void mem_delete_fixup (struct mem_node *);
463 static struct mem_node *mem_find (void *);
464
465 #ifndef DEADP
466 # define DEADP(x) 0
467 #endif
468
469 /* Addresses of staticpro'd variables. Initialize it to a nonzero
470 value; otherwise some compilers put it into BSS. */
471
472 enum { NSTATICS = 2048 };
473 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
474
475 /* Index of next unused slot in staticvec. */
476
477 static int staticidx;
478
479 static void *pure_alloc (size_t, int);
480
481 /* Return X rounded to the next multiple of Y. Arguments should not
482 have side effects, as they are evaluated more than once. Assume X
483 + Y - 1 does not overflow. Tune for Y being a power of 2. */
484
485 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
486 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
487 : ((x) + (y) - 1) & ~ ((y) - 1))
488
489 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
490
491 static void *
492 pointer_align (void *ptr, int alignment)
493 {
494 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
495 }
496
497 /* Extract the pointer hidden within A, if A is not a symbol.
498 If A is a symbol, extract the hidden pointer's offset from lispsym,
499 converted to void *. */
500
501 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
502 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
503
504 /* Extract the pointer hidden within A. */
505
506 #define macro_XPNTR(a) \
507 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
508 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
509
510 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
511 functions, as functions are cleaner and can be used in debuggers.
512 Also, define them as macros if being compiled with GCC without
513 optimization, for performance in that case. The macro_* names are
514 private to this section of code. */
515
516 static ATTRIBUTE_UNUSED void *
517 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
518 {
519 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
520 }
521 static ATTRIBUTE_UNUSED void *
522 XPNTR (Lisp_Object a)
523 {
524 return macro_XPNTR (a);
525 }
526
527 #if DEFINE_KEY_OPS_AS_MACROS
528 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
529 # define XPNTR(a) macro_XPNTR (a)
530 #endif
531
532 static void
533 XFLOAT_INIT (Lisp_Object f, double n)
534 {
535 XFLOAT (f)->u.data = n;
536 }
537
538 #ifdef DOUG_LEA_MALLOC
539 static bool
540 pointers_fit_in_lispobj_p (void)
541 {
542 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
543 }
544
545 static bool
546 mmap_lisp_allowed_p (void)
547 {
548 /* If we can't store all memory addresses in our lisp objects, it's
549 risky to let the heap use mmap and give us addresses from all
550 over our address space. We also can't use mmap for lisp objects
551 if we might dump: unexec doesn't preserve the contents of mmapped
552 regions. */
553 return pointers_fit_in_lispobj_p () && !might_dump;
554 }
555 #endif
556
557 /* Head of a circularly-linked list of extant finalizers. */
558 static struct Lisp_Finalizer finalizers;
559
560 /* Head of a circularly-linked list of finalizers that must be invoked
561 because we deemed them unreachable. This list must be global, and
562 not a local inside garbage_collect_1, in case we GC again while
563 running finalizers. */
564 static struct Lisp_Finalizer doomed_finalizers;
565
566 \f
567 /************************************************************************
568 Malloc
569 ************************************************************************/
570
571 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
572
573 /* Function malloc calls this if it finds we are near exhausting storage. */
574
575 void
576 malloc_warning (const char *str)
577 {
578 pending_malloc_warning = str;
579 }
580
581 #endif
582
583 /* Display an already-pending malloc warning. */
584
585 void
586 display_malloc_warning (void)
587 {
588 call3 (intern ("display-warning"),
589 intern ("alloc"),
590 build_string (pending_malloc_warning),
591 intern ("emergency"));
592 pending_malloc_warning = 0;
593 }
594 \f
595 /* Called if we can't allocate relocatable space for a buffer. */
596
597 void
598 buffer_memory_full (ptrdiff_t nbytes)
599 {
600 /* If buffers use the relocating allocator, no need to free
601 spare_memory, because we may have plenty of malloc space left
602 that we could get, and if we don't, the malloc that fails will
603 itself cause spare_memory to be freed. If buffers don't use the
604 relocating allocator, treat this like any other failing
605 malloc. */
606
607 #ifndef REL_ALLOC
608 memory_full (nbytes);
609 #else
610 /* This used to call error, but if we've run out of memory, we could
611 get infinite recursion trying to build the string. */
612 xsignal (Qnil, Vmemory_signal_data);
613 #endif
614 }
615
616 /* A common multiple of the positive integers A and B. Ideally this
617 would be the least common multiple, but there's no way to do that
618 as a constant expression in C, so do the best that we can easily do. */
619 #define COMMON_MULTIPLE(a, b) \
620 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
621
622 #ifndef XMALLOC_OVERRUN_CHECK
623 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
624 #else
625
626 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
627 around each block.
628
629 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
630 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
631 block size in little-endian order. The trailer consists of
632 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
633
634 The header is used to detect whether this block has been allocated
635 through these functions, as some low-level libc functions may
636 bypass the malloc hooks. */
637
638 #define XMALLOC_OVERRUN_CHECK_SIZE 16
639 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
640 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
641
642 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
643 hold a size_t value and (2) the header size is a multiple of the
644 alignment that Emacs needs for C types and for USE_LSB_TAG. */
645 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
646
647 #define XMALLOC_HEADER_ALIGNMENT \
648 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
649 #define XMALLOC_OVERRUN_SIZE_SIZE \
650 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
651 + XMALLOC_HEADER_ALIGNMENT - 1) \
652 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
653 - XMALLOC_OVERRUN_CHECK_SIZE)
654
655 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
656 { '\x9a', '\x9b', '\xae', '\xaf',
657 '\xbf', '\xbe', '\xce', '\xcf',
658 '\xea', '\xeb', '\xec', '\xed',
659 '\xdf', '\xde', '\x9c', '\x9d' };
660
661 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
662 { '\xaa', '\xab', '\xac', '\xad',
663 '\xba', '\xbb', '\xbc', '\xbd',
664 '\xca', '\xcb', '\xcc', '\xcd',
665 '\xda', '\xdb', '\xdc', '\xdd' };
666
667 /* Insert and extract the block size in the header. */
668
669 static void
670 xmalloc_put_size (unsigned char *ptr, size_t size)
671 {
672 int i;
673 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
674 {
675 *--ptr = size & ((1 << CHAR_BIT) - 1);
676 size >>= CHAR_BIT;
677 }
678 }
679
680 static size_t
681 xmalloc_get_size (unsigned char *ptr)
682 {
683 size_t size = 0;
684 int i;
685 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
686 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
687 {
688 size <<= CHAR_BIT;
689 size += *ptr++;
690 }
691 return size;
692 }
693
694
695 /* Like malloc, but wraps allocated block with header and trailer. */
696
697 static void *
698 overrun_check_malloc (size_t size)
699 {
700 register unsigned char *val;
701 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
702 emacs_abort ();
703
704 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
705 if (val)
706 {
707 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
708 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
709 xmalloc_put_size (val, size);
710 memcpy (val + size, xmalloc_overrun_check_trailer,
711 XMALLOC_OVERRUN_CHECK_SIZE);
712 }
713 return val;
714 }
715
716
717 /* Like realloc, but checks old block for overrun, and wraps new block
718 with header and trailer. */
719
720 static void *
721 overrun_check_realloc (void *block, size_t size)
722 {
723 register unsigned char *val = (unsigned char *) block;
724 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
725 emacs_abort ();
726
727 if (val
728 && memcmp (xmalloc_overrun_check_header,
729 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
730 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
731 {
732 size_t osize = xmalloc_get_size (val);
733 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
734 XMALLOC_OVERRUN_CHECK_SIZE))
735 emacs_abort ();
736 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
737 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
738 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
739 }
740
741 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
742
743 if (val)
744 {
745 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
746 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
747 xmalloc_put_size (val, size);
748 memcpy (val + size, xmalloc_overrun_check_trailer,
749 XMALLOC_OVERRUN_CHECK_SIZE);
750 }
751 return val;
752 }
753
754 /* Like free, but checks block for overrun. */
755
756 static void
757 overrun_check_free (void *block)
758 {
759 unsigned char *val = (unsigned char *) block;
760
761 if (val
762 && memcmp (xmalloc_overrun_check_header,
763 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
764 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
765 {
766 size_t osize = xmalloc_get_size (val);
767 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
768 XMALLOC_OVERRUN_CHECK_SIZE))
769 emacs_abort ();
770 #ifdef XMALLOC_CLEAR_FREE_MEMORY
771 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
772 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
773 #else
774 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
775 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
776 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
777 #endif
778 }
779
780 free (val);
781 }
782
783 #undef malloc
784 #undef realloc
785 #undef free
786 #define malloc overrun_check_malloc
787 #define realloc overrun_check_realloc
788 #define free overrun_check_free
789 #endif
790
791 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
792 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
793 If that variable is set, block input while in one of Emacs's memory
794 allocation functions. There should be no need for this debugging
795 option, since signal handlers do not allocate memory, but Emacs
796 formerly allocated memory in signal handlers and this compile-time
797 option remains as a way to help debug the issue should it rear its
798 ugly head again. */
799 #ifdef XMALLOC_BLOCK_INPUT_CHECK
800 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
801 static void
802 malloc_block_input (void)
803 {
804 if (block_input_in_memory_allocators)
805 block_input ();
806 }
807 static void
808 malloc_unblock_input (void)
809 {
810 if (block_input_in_memory_allocators)
811 unblock_input ();
812 }
813 # define MALLOC_BLOCK_INPUT malloc_block_input ()
814 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
815 #else
816 # define MALLOC_BLOCK_INPUT ((void) 0)
817 # define MALLOC_UNBLOCK_INPUT ((void) 0)
818 #endif
819
820 #define MALLOC_PROBE(size) \
821 do { \
822 if (profiler_memory_running) \
823 malloc_probe (size); \
824 } while (0)
825
826 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
827 static void *lrealloc (void *, size_t);
828
829 /* Like malloc but check for no memory and block interrupt input. */
830
831 void *
832 xmalloc (size_t size)
833 {
834 void *val;
835
836 MALLOC_BLOCK_INPUT;
837 val = lmalloc (size);
838 MALLOC_UNBLOCK_INPUT;
839
840 if (!val && size)
841 memory_full (size);
842 MALLOC_PROBE (size);
843 return val;
844 }
845
846 /* Like the above, but zeroes out the memory just allocated. */
847
848 void *
849 xzalloc (size_t size)
850 {
851 void *val;
852
853 MALLOC_BLOCK_INPUT;
854 val = lmalloc (size);
855 MALLOC_UNBLOCK_INPUT;
856
857 if (!val && size)
858 memory_full (size);
859 memset (val, 0, size);
860 MALLOC_PROBE (size);
861 return val;
862 }
863
864 /* Like realloc but check for no memory and block interrupt input.. */
865
866 void *
867 xrealloc (void *block, size_t size)
868 {
869 void *val;
870
871 MALLOC_BLOCK_INPUT;
872 /* We must call malloc explicitly when BLOCK is 0, since some
873 reallocs don't do this. */
874 if (! block)
875 val = lmalloc (size);
876 else
877 val = lrealloc (block, size);
878 MALLOC_UNBLOCK_INPUT;
879
880 if (!val && size)
881 memory_full (size);
882 MALLOC_PROBE (size);
883 return val;
884 }
885
886
887 /* Like free but block interrupt input. */
888
889 void
890 xfree (void *block)
891 {
892 if (!block)
893 return;
894 MALLOC_BLOCK_INPUT;
895 free (block);
896 MALLOC_UNBLOCK_INPUT;
897 /* We don't call refill_memory_reserve here
898 because in practice the call in r_alloc_free seems to suffice. */
899 }
900
901
902 /* Other parts of Emacs pass large int values to allocator functions
903 expecting ptrdiff_t. This is portable in practice, but check it to
904 be safe. */
905 verify (INT_MAX <= PTRDIFF_MAX);
906
907
908 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
909 Signal an error on memory exhaustion, and block interrupt input. */
910
911 void *
912 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
913 {
914 eassert (0 <= nitems && 0 < item_size);
915 ptrdiff_t nbytes;
916 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
917 memory_full (SIZE_MAX);
918 return xmalloc (nbytes);
919 }
920
921
922 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
923 Signal an error on memory exhaustion, and block interrupt input. */
924
925 void *
926 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
927 {
928 eassert (0 <= nitems && 0 < item_size);
929 ptrdiff_t nbytes;
930 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
931 memory_full (SIZE_MAX);
932 return xrealloc (pa, nbytes);
933 }
934
935
936 /* Grow PA, which points to an array of *NITEMS items, and return the
937 location of the reallocated array, updating *NITEMS to reflect its
938 new size. The new array will contain at least NITEMS_INCR_MIN more
939 items, but will not contain more than NITEMS_MAX items total.
940 ITEM_SIZE is the size of each item, in bytes.
941
942 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
943 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
944 infinity.
945
946 If PA is null, then allocate a new array instead of reallocating
947 the old one.
948
949 Block interrupt input as needed. If memory exhaustion occurs, set
950 *NITEMS to zero if PA is null, and signal an error (i.e., do not
951 return).
952
953 Thus, to grow an array A without saving its old contents, do
954 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
955 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
956 and signals an error, and later this code is reexecuted and
957 attempts to free A. */
958
959 void *
960 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
961 ptrdiff_t nitems_max, ptrdiff_t item_size)
962 {
963 ptrdiff_t n0 = *nitems;
964 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
965
966 /* The approximate size to use for initial small allocation
967 requests. This is the largest "small" request for the GNU C
968 library malloc. */
969 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
970
971 /* If the array is tiny, grow it to about (but no greater than)
972 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
973 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
974 NITEMS_MAX, and what the C language can represent safely. */
975
976 ptrdiff_t n, nbytes;
977 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
978 n = PTRDIFF_MAX;
979 if (0 <= nitems_max && nitems_max < n)
980 n = nitems_max;
981
982 ptrdiff_t adjusted_nbytes
983 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
984 ? min (PTRDIFF_MAX, SIZE_MAX)
985 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
986 if (adjusted_nbytes)
987 {
988 n = adjusted_nbytes / item_size;
989 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
990 }
991
992 if (! pa)
993 *nitems = 0;
994 if (n - n0 < nitems_incr_min
995 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
996 || (0 <= nitems_max && nitems_max < n)
997 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
998 memory_full (SIZE_MAX);
999 pa = xrealloc (pa, nbytes);
1000 *nitems = n;
1001 return pa;
1002 }
1003
1004
1005 /* Like strdup, but uses xmalloc. */
1006
1007 char *
1008 xstrdup (const char *s)
1009 {
1010 ptrdiff_t size;
1011 eassert (s);
1012 size = strlen (s) + 1;
1013 return memcpy (xmalloc (size), s, size);
1014 }
1015
1016 /* Like above, but duplicates Lisp string to C string. */
1017
1018 char *
1019 xlispstrdup (Lisp_Object string)
1020 {
1021 ptrdiff_t size = SBYTES (string) + 1;
1022 return memcpy (xmalloc (size), SSDATA (string), size);
1023 }
1024
1025 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1026 pointed to. If STRING is null, assign it without copying anything.
1027 Allocate before freeing, to avoid a dangling pointer if allocation
1028 fails. */
1029
1030 void
1031 dupstring (char **ptr, char const *string)
1032 {
1033 char *old = *ptr;
1034 *ptr = string ? xstrdup (string) : 0;
1035 xfree (old);
1036 }
1037
1038
1039 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1040 argument is a const pointer. */
1041
1042 void
1043 xputenv (char const *string)
1044 {
1045 if (putenv ((char *) string) != 0)
1046 memory_full (0);
1047 }
1048
1049 /* Return a newly allocated memory block of SIZE bytes, remembering
1050 to free it when unwinding. */
1051 void *
1052 record_xmalloc (size_t size)
1053 {
1054 void *p = xmalloc (size);
1055 record_unwind_protect_ptr (xfree, p);
1056 return p;
1057 }
1058
1059
1060 /* Like malloc but used for allocating Lisp data. NBYTES is the
1061 number of bytes to allocate, TYPE describes the intended use of the
1062 allocated memory block (for strings, for conses, ...). */
1063
1064 #if ! USE_LSB_TAG
1065 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1066 #endif
1067
1068 static void *
1069 lisp_malloc (size_t nbytes, enum mem_type type)
1070 {
1071 register void *val;
1072
1073 MALLOC_BLOCK_INPUT;
1074
1075 #ifdef GC_MALLOC_CHECK
1076 allocated_mem_type = type;
1077 #endif
1078
1079 val = lmalloc (nbytes);
1080
1081 #if ! USE_LSB_TAG
1082 /* If the memory just allocated cannot be addressed thru a Lisp
1083 object's pointer, and it needs to be,
1084 that's equivalent to running out of memory. */
1085 if (val && type != MEM_TYPE_NON_LISP)
1086 {
1087 Lisp_Object tem;
1088 XSETCONS (tem, (char *) val + nbytes - 1);
1089 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1090 {
1091 lisp_malloc_loser = val;
1092 free (val);
1093 val = 0;
1094 }
1095 }
1096 #endif
1097
1098 #ifndef GC_MALLOC_CHECK
1099 if (val && type != MEM_TYPE_NON_LISP)
1100 mem_insert (val, (char *) val + nbytes, type);
1101 #endif
1102
1103 MALLOC_UNBLOCK_INPUT;
1104 if (!val && nbytes)
1105 memory_full (nbytes);
1106 MALLOC_PROBE (nbytes);
1107 return val;
1108 }
1109
1110 /* Free BLOCK. This must be called to free memory allocated with a
1111 call to lisp_malloc. */
1112
1113 static void
1114 lisp_free (void *block)
1115 {
1116 MALLOC_BLOCK_INPUT;
1117 free (block);
1118 #ifndef GC_MALLOC_CHECK
1119 mem_delete (mem_find (block));
1120 #endif
1121 MALLOC_UNBLOCK_INPUT;
1122 }
1123
1124 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1125
1126 /* The entry point is lisp_align_malloc which returns blocks of at most
1127 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1128
1129 /* Use aligned_alloc if it or a simple substitute is available.
1130 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1131 clang 3.3 anyway. Aligned allocation is incompatible with
1132 unexmacosx.c, so don't use it on Darwin. */
1133
1134 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1135 # if (defined HAVE_ALIGNED_ALLOC \
1136 || (defined HYBRID_MALLOC \
1137 ? defined HAVE_POSIX_MEMALIGN \
1138 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1139 # define USE_ALIGNED_ALLOC 1
1140 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1141 # define USE_ALIGNED_ALLOC 1
1142 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1143 static void *
1144 aligned_alloc (size_t alignment, size_t size)
1145 {
1146 void *p;
1147 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1148 }
1149 # endif
1150 #endif
1151
1152 /* BLOCK_ALIGN has to be a power of 2. */
1153 #define BLOCK_ALIGN (1 << 10)
1154
1155 /* Padding to leave at the end of a malloc'd block. This is to give
1156 malloc a chance to minimize the amount of memory wasted to alignment.
1157 It should be tuned to the particular malloc library used.
1158 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1159 aligned_alloc on the other hand would ideally prefer a value of 4
1160 because otherwise, there's 1020 bytes wasted between each ablocks.
1161 In Emacs, testing shows that those 1020 can most of the time be
1162 efficiently used by malloc to place other objects, so a value of 0 can
1163 still preferable unless you have a lot of aligned blocks and virtually
1164 nothing else. */
1165 #define BLOCK_PADDING 0
1166 #define BLOCK_BYTES \
1167 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1168
1169 /* Internal data structures and constants. */
1170
1171 #define ABLOCKS_SIZE 16
1172
1173 /* An aligned block of memory. */
1174 struct ablock
1175 {
1176 union
1177 {
1178 char payload[BLOCK_BYTES];
1179 struct ablock *next_free;
1180 } x;
1181
1182 /* ABASE is the aligned base of the ablocks. It is overloaded to
1183 hold a virtual "busy" field that counts twice the number of used
1184 ablock values in the parent ablocks, plus one if the real base of
1185 the parent ablocks is ABASE (if the "busy" field is even, the
1186 word before the first ablock holds a pointer to the real base).
1187 The first ablock has a "busy" ABASE, and the others have an
1188 ordinary pointer ABASE. To tell the difference, the code assumes
1189 that pointers, when cast to uintptr_t, are at least 2 *
1190 ABLOCKS_SIZE + 1. */
1191 struct ablocks *abase;
1192
1193 /* The padding of all but the last ablock is unused. The padding of
1194 the last ablock in an ablocks is not allocated. */
1195 #if BLOCK_PADDING
1196 char padding[BLOCK_PADDING];
1197 #endif
1198 };
1199
1200 /* A bunch of consecutive aligned blocks. */
1201 struct ablocks
1202 {
1203 struct ablock blocks[ABLOCKS_SIZE];
1204 };
1205
1206 /* Size of the block requested from malloc or aligned_alloc. */
1207 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1208
1209 #define ABLOCK_ABASE(block) \
1210 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1211 ? (struct ablocks *) (block) \
1212 : (block)->abase)
1213
1214 /* Virtual `busy' field. */
1215 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1216
1217 /* Pointer to the (not necessarily aligned) malloc block. */
1218 #ifdef USE_ALIGNED_ALLOC
1219 #define ABLOCKS_BASE(abase) (abase)
1220 #else
1221 #define ABLOCKS_BASE(abase) \
1222 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1223 #endif
1224
1225 /* The list of free ablock. */
1226 static struct ablock *free_ablock;
1227
1228 /* Allocate an aligned block of nbytes.
1229 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1230 smaller or equal to BLOCK_BYTES. */
1231 static void *
1232 lisp_align_malloc (size_t nbytes, enum mem_type type)
1233 {
1234 void *base, *val;
1235 struct ablocks *abase;
1236
1237 eassert (nbytes <= BLOCK_BYTES);
1238
1239 MALLOC_BLOCK_INPUT;
1240
1241 #ifdef GC_MALLOC_CHECK
1242 allocated_mem_type = type;
1243 #endif
1244
1245 if (!free_ablock)
1246 {
1247 int i;
1248 bool aligned;
1249
1250 #ifdef DOUG_LEA_MALLOC
1251 if (!mmap_lisp_allowed_p ())
1252 mallopt (M_MMAP_MAX, 0);
1253 #endif
1254
1255 #ifdef USE_ALIGNED_ALLOC
1256 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1257 #else
1258 base = malloc (ABLOCKS_BYTES);
1259 abase = pointer_align (base, BLOCK_ALIGN);
1260 #endif
1261
1262 if (base == 0)
1263 {
1264 MALLOC_UNBLOCK_INPUT;
1265 memory_full (ABLOCKS_BYTES);
1266 }
1267
1268 aligned = (base == abase);
1269 if (!aligned)
1270 ((void **) abase)[-1] = base;
1271
1272 #ifdef DOUG_LEA_MALLOC
1273 if (!mmap_lisp_allowed_p ())
1274 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1275 #endif
1276
1277 #if ! USE_LSB_TAG
1278 /* If the memory just allocated cannot be addressed thru a Lisp
1279 object's pointer, and it needs to be, that's equivalent to
1280 running out of memory. */
1281 if (type != MEM_TYPE_NON_LISP)
1282 {
1283 Lisp_Object tem;
1284 char *end = (char *) base + ABLOCKS_BYTES - 1;
1285 XSETCONS (tem, end);
1286 if ((char *) XCONS (tem) != end)
1287 {
1288 lisp_malloc_loser = base;
1289 free (base);
1290 MALLOC_UNBLOCK_INPUT;
1291 memory_full (SIZE_MAX);
1292 }
1293 }
1294 #endif
1295
1296 /* Initialize the blocks and put them on the free list.
1297 If `base' was not properly aligned, we can't use the last block. */
1298 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1299 {
1300 abase->blocks[i].abase = abase;
1301 abase->blocks[i].x.next_free = free_ablock;
1302 free_ablock = &abase->blocks[i];
1303 }
1304 intptr_t ialigned = aligned;
1305 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1306
1307 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1308 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1309 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1310 eassert (ABLOCKS_BASE (abase) == base);
1311 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1312 }
1313
1314 abase = ABLOCK_ABASE (free_ablock);
1315 ABLOCKS_BUSY (abase)
1316 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1317 val = free_ablock;
1318 free_ablock = free_ablock->x.next_free;
1319
1320 #ifndef GC_MALLOC_CHECK
1321 if (type != MEM_TYPE_NON_LISP)
1322 mem_insert (val, (char *) val + nbytes, type);
1323 #endif
1324
1325 MALLOC_UNBLOCK_INPUT;
1326
1327 MALLOC_PROBE (nbytes);
1328
1329 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1330 return val;
1331 }
1332
1333 static void
1334 lisp_align_free (void *block)
1335 {
1336 struct ablock *ablock = block;
1337 struct ablocks *abase = ABLOCK_ABASE (ablock);
1338
1339 MALLOC_BLOCK_INPUT;
1340 #ifndef GC_MALLOC_CHECK
1341 mem_delete (mem_find (block));
1342 #endif
1343 /* Put on free list. */
1344 ablock->x.next_free = free_ablock;
1345 free_ablock = ablock;
1346 /* Update busy count. */
1347 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1348 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1349 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1350
1351 if (busy < 2)
1352 { /* All the blocks are free. */
1353 int i = 0;
1354 bool aligned = busy;
1355 struct ablock **tem = &free_ablock;
1356 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1357
1358 while (*tem)
1359 {
1360 if (*tem >= (struct ablock *) abase && *tem < atop)
1361 {
1362 i++;
1363 *tem = (*tem)->x.next_free;
1364 }
1365 else
1366 tem = &(*tem)->x.next_free;
1367 }
1368 eassert ((aligned & 1) == aligned);
1369 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1370 #ifdef USE_POSIX_MEMALIGN
1371 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1372 #endif
1373 free (ABLOCKS_BASE (abase));
1374 }
1375 MALLOC_UNBLOCK_INPUT;
1376 }
1377
1378 #if !defined __GNUC__ && !defined __alignof__
1379 # define __alignof__(type) alignof (type)
1380 #endif
1381
1382 /* True if malloc returns a multiple of GCALIGNMENT. In practice this
1383 holds if __alignof__ (max_align_t) is a multiple. Use __alignof__
1384 if available, as otherwise this check would fail with GCC x86.
1385 This is a macro, not an enum constant, for portability to HP-UX
1386 10.20 cc and AIX 3.2.5 xlc. */
1387 #define MALLOC_IS_GC_ALIGNED (__alignof__ (max_align_t) % GCALIGNMENT == 0)
1388
1389 /* True if P is suitably aligned for SIZE, where Lisp alignment may be
1390 needed if SIZE is Lisp-aligned. */
1391
1392 static bool
1393 laligned (void *p, size_t size)
1394 {
1395 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1396 || size % GCALIGNMENT != 0);
1397 }
1398
1399 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1400 sure the result is too, if necessary by reallocating (typically
1401 with larger and larger sizes) until the allocator returns a
1402 Lisp-aligned pointer. Code that needs to allocate C heap memory
1403 for a Lisp object should use one of these functions to obtain a
1404 pointer P; that way, if T is an enum Lisp_Type value and L ==
1405 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1406
1407 On typical modern platforms these functions' loops do not iterate.
1408 On now-rare (and perhaps nonexistent) platforms, the loops in
1409 theory could repeat forever. If an infinite loop is possible on a
1410 platform, a build would surely loop and the builder can then send
1411 us a bug report. Adding a counter to try to detect any such loop
1412 would complicate the code (and possibly introduce bugs, in code
1413 that's never really exercised) for little benefit. */
1414
1415 static void *
1416 lmalloc (size_t size)
1417 {
1418 #if USE_ALIGNED_ALLOC
1419 if (! MALLOC_IS_GC_ALIGNED)
1420 return aligned_alloc (GCALIGNMENT, size);
1421 #endif
1422
1423 void *p;
1424 while (true)
1425 {
1426 p = malloc (size);
1427 if (laligned (p, size))
1428 break;
1429 free (p);
1430 size_t bigger;
1431 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1432 size = bigger;
1433 }
1434
1435 eassert ((intptr_t) p % GCALIGNMENT == 0);
1436 return p;
1437 }
1438
1439 static void *
1440 lrealloc (void *p, size_t size)
1441 {
1442 while (true)
1443 {
1444 p = realloc (p, size);
1445 if (laligned (p, size))
1446 break;
1447 size_t bigger;
1448 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1449 size = bigger;
1450 }
1451
1452 eassert ((intptr_t) p % GCALIGNMENT == 0);
1453 return p;
1454 }
1455
1456 \f
1457 /***********************************************************************
1458 Interval Allocation
1459 ***********************************************************************/
1460
1461 /* Number of intervals allocated in an interval_block structure.
1462 The 1020 is 1024 minus malloc overhead. */
1463
1464 #define INTERVAL_BLOCK_SIZE \
1465 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1466
1467 /* Intervals are allocated in chunks in the form of an interval_block
1468 structure. */
1469
1470 struct interval_block
1471 {
1472 /* Place `intervals' first, to preserve alignment. */
1473 struct interval intervals[INTERVAL_BLOCK_SIZE];
1474 struct interval_block *next;
1475 };
1476
1477 /* Current interval block. Its `next' pointer points to older
1478 blocks. */
1479
1480 static struct interval_block *interval_block;
1481
1482 /* Index in interval_block above of the next unused interval
1483 structure. */
1484
1485 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1486
1487 /* Number of free and live intervals. */
1488
1489 static EMACS_INT total_free_intervals, total_intervals;
1490
1491 /* List of free intervals. */
1492
1493 static INTERVAL interval_free_list;
1494
1495 /* Return a new interval. */
1496
1497 INTERVAL
1498 make_interval (void)
1499 {
1500 INTERVAL val;
1501
1502 MALLOC_BLOCK_INPUT;
1503
1504 if (interval_free_list)
1505 {
1506 val = interval_free_list;
1507 interval_free_list = INTERVAL_PARENT (interval_free_list);
1508 }
1509 else
1510 {
1511 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1512 {
1513 struct interval_block *newi
1514 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1515
1516 newi->next = interval_block;
1517 interval_block = newi;
1518 interval_block_index = 0;
1519 total_free_intervals += INTERVAL_BLOCK_SIZE;
1520 }
1521 val = &interval_block->intervals[interval_block_index++];
1522 }
1523
1524 MALLOC_UNBLOCK_INPUT;
1525
1526 consing_since_gc += sizeof (struct interval);
1527 intervals_consed++;
1528 total_free_intervals--;
1529 RESET_INTERVAL (val);
1530 val->gcmarkbit = 0;
1531 return val;
1532 }
1533
1534
1535 /* Mark Lisp objects in interval I. */
1536
1537 static void
1538 mark_interval (register INTERVAL i, Lisp_Object dummy)
1539 {
1540 /* Intervals should never be shared. So, if extra internal checking is
1541 enabled, GC aborts if it seems to have visited an interval twice. */
1542 eassert (!i->gcmarkbit);
1543 i->gcmarkbit = 1;
1544 mark_object (i->plist);
1545 }
1546
1547 /* Mark the interval tree rooted in I. */
1548
1549 #define MARK_INTERVAL_TREE(i) \
1550 do { \
1551 if (i && !i->gcmarkbit) \
1552 traverse_intervals_noorder (i, mark_interval, Qnil); \
1553 } while (0)
1554
1555 /***********************************************************************
1556 String Allocation
1557 ***********************************************************************/
1558
1559 /* Lisp_Strings are allocated in string_block structures. When a new
1560 string_block is allocated, all the Lisp_Strings it contains are
1561 added to a free-list string_free_list. When a new Lisp_String is
1562 needed, it is taken from that list. During the sweep phase of GC,
1563 string_blocks that are entirely free are freed, except two which
1564 we keep.
1565
1566 String data is allocated from sblock structures. Strings larger
1567 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1568 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1569
1570 Sblocks consist internally of sdata structures, one for each
1571 Lisp_String. The sdata structure points to the Lisp_String it
1572 belongs to. The Lisp_String points back to the `u.data' member of
1573 its sdata structure.
1574
1575 When a Lisp_String is freed during GC, it is put back on
1576 string_free_list, and its `data' member and its sdata's `string'
1577 pointer is set to null. The size of the string is recorded in the
1578 `n.nbytes' member of the sdata. So, sdata structures that are no
1579 longer used, can be easily recognized, and it's easy to compact the
1580 sblocks of small strings which we do in compact_small_strings. */
1581
1582 /* Size in bytes of an sblock structure used for small strings. This
1583 is 8192 minus malloc overhead. */
1584
1585 #define SBLOCK_SIZE 8188
1586
1587 /* Strings larger than this are considered large strings. String data
1588 for large strings is allocated from individual sblocks. */
1589
1590 #define LARGE_STRING_BYTES 1024
1591
1592 /* The SDATA typedef is a struct or union describing string memory
1593 sub-allocated from an sblock. This is where the contents of Lisp
1594 strings are stored. */
1595
1596 struct sdata
1597 {
1598 /* Back-pointer to the string this sdata belongs to. If null, this
1599 structure is free, and NBYTES (in this structure or in the union below)
1600 contains the string's byte size (the same value that STRING_BYTES
1601 would return if STRING were non-null). If non-null, STRING_BYTES
1602 (STRING) is the size of the data, and DATA contains the string's
1603 contents. */
1604 struct Lisp_String *string;
1605
1606 #ifdef GC_CHECK_STRING_BYTES
1607 ptrdiff_t nbytes;
1608 #endif
1609
1610 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1611 };
1612
1613 #ifdef GC_CHECK_STRING_BYTES
1614
1615 typedef struct sdata sdata;
1616 #define SDATA_NBYTES(S) (S)->nbytes
1617 #define SDATA_DATA(S) (S)->data
1618
1619 #else
1620
1621 typedef union
1622 {
1623 struct Lisp_String *string;
1624
1625 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1626 which has a flexible array member. However, if implemented by
1627 giving this union a member of type 'struct sdata', the union
1628 could not be the last (flexible) member of 'struct sblock',
1629 because C99 prohibits a flexible array member from having a type
1630 that is itself a flexible array. So, comment this member out here,
1631 but remember that the option's there when using this union. */
1632 #if 0
1633 struct sdata u;
1634 #endif
1635
1636 /* When STRING is null. */
1637 struct
1638 {
1639 struct Lisp_String *string;
1640 ptrdiff_t nbytes;
1641 } n;
1642 } sdata;
1643
1644 #define SDATA_NBYTES(S) (S)->n.nbytes
1645 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1646
1647 #endif /* not GC_CHECK_STRING_BYTES */
1648
1649 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1650
1651 /* Structure describing a block of memory which is sub-allocated to
1652 obtain string data memory for strings. Blocks for small strings
1653 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1654 as large as needed. */
1655
1656 struct sblock
1657 {
1658 /* Next in list. */
1659 struct sblock *next;
1660
1661 /* Pointer to the next free sdata block. This points past the end
1662 of the sblock if there isn't any space left in this block. */
1663 sdata *next_free;
1664
1665 /* String data. */
1666 sdata data[FLEXIBLE_ARRAY_MEMBER];
1667 };
1668
1669 /* Number of Lisp strings in a string_block structure. The 1020 is
1670 1024 minus malloc overhead. */
1671
1672 #define STRING_BLOCK_SIZE \
1673 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1674
1675 /* Structure describing a block from which Lisp_String structures
1676 are allocated. */
1677
1678 struct string_block
1679 {
1680 /* Place `strings' first, to preserve alignment. */
1681 struct Lisp_String strings[STRING_BLOCK_SIZE];
1682 struct string_block *next;
1683 };
1684
1685 /* Head and tail of the list of sblock structures holding Lisp string
1686 data. We always allocate from current_sblock. The NEXT pointers
1687 in the sblock structures go from oldest_sblock to current_sblock. */
1688
1689 static struct sblock *oldest_sblock, *current_sblock;
1690
1691 /* List of sblocks for large strings. */
1692
1693 static struct sblock *large_sblocks;
1694
1695 /* List of string_block structures. */
1696
1697 static struct string_block *string_blocks;
1698
1699 /* Free-list of Lisp_Strings. */
1700
1701 static struct Lisp_String *string_free_list;
1702
1703 /* Number of live and free Lisp_Strings. */
1704
1705 static EMACS_INT total_strings, total_free_strings;
1706
1707 /* Number of bytes used by live strings. */
1708
1709 static EMACS_INT total_string_bytes;
1710
1711 /* Given a pointer to a Lisp_String S which is on the free-list
1712 string_free_list, return a pointer to its successor in the
1713 free-list. */
1714
1715 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1716
1717 /* Return a pointer to the sdata structure belonging to Lisp string S.
1718 S must be live, i.e. S->data must not be null. S->data is actually
1719 a pointer to the `u.data' member of its sdata structure; the
1720 structure starts at a constant offset in front of that. */
1721
1722 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1723
1724
1725 #ifdef GC_CHECK_STRING_OVERRUN
1726
1727 /* We check for overrun in string data blocks by appending a small
1728 "cookie" after each allocated string data block, and check for the
1729 presence of this cookie during GC. */
1730
1731 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1732 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1733 { '\xde', '\xad', '\xbe', '\xef' };
1734
1735 #else
1736 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1737 #endif
1738
1739 /* Value is the size of an sdata structure large enough to hold NBYTES
1740 bytes of string data. The value returned includes a terminating
1741 NUL byte, the size of the sdata structure, and padding. */
1742
1743 #ifdef GC_CHECK_STRING_BYTES
1744
1745 #define SDATA_SIZE(NBYTES) \
1746 ((SDATA_DATA_OFFSET \
1747 + (NBYTES) + 1 \
1748 + sizeof (ptrdiff_t) - 1) \
1749 & ~(sizeof (ptrdiff_t) - 1))
1750
1751 #else /* not GC_CHECK_STRING_BYTES */
1752
1753 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1754 less than the size of that member. The 'max' is not needed when
1755 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1756 alignment code reserves enough space. */
1757
1758 #define SDATA_SIZE(NBYTES) \
1759 ((SDATA_DATA_OFFSET \
1760 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1761 ? NBYTES \
1762 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1763 + 1 \
1764 + sizeof (ptrdiff_t) - 1) \
1765 & ~(sizeof (ptrdiff_t) - 1))
1766
1767 #endif /* not GC_CHECK_STRING_BYTES */
1768
1769 /* Extra bytes to allocate for each string. */
1770
1771 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1772
1773 /* Exact bound on the number of bytes in a string, not counting the
1774 terminating null. A string cannot contain more bytes than
1775 STRING_BYTES_BOUND, nor can it be so long that the size_t
1776 arithmetic in allocate_string_data would overflow while it is
1777 calculating a value to be passed to malloc. */
1778 static ptrdiff_t const STRING_BYTES_MAX =
1779 min (STRING_BYTES_BOUND,
1780 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1781 - GC_STRING_EXTRA
1782 - offsetof (struct sblock, data)
1783 - SDATA_DATA_OFFSET)
1784 & ~(sizeof (EMACS_INT) - 1)));
1785
1786 /* Initialize string allocation. Called from init_alloc_once. */
1787
1788 static void
1789 init_strings (void)
1790 {
1791 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1792 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1793 }
1794
1795
1796 #ifdef GC_CHECK_STRING_BYTES
1797
1798 static int check_string_bytes_count;
1799
1800 /* Like STRING_BYTES, but with debugging check. Can be
1801 called during GC, so pay attention to the mark bit. */
1802
1803 ptrdiff_t
1804 string_bytes (struct Lisp_String *s)
1805 {
1806 ptrdiff_t nbytes =
1807 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1808
1809 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1810 emacs_abort ();
1811 return nbytes;
1812 }
1813
1814 /* Check validity of Lisp strings' string_bytes member in B. */
1815
1816 static void
1817 check_sblock (struct sblock *b)
1818 {
1819 sdata *from, *end, *from_end;
1820
1821 end = b->next_free;
1822
1823 for (from = b->data; from < end; from = from_end)
1824 {
1825 /* Compute the next FROM here because copying below may
1826 overwrite data we need to compute it. */
1827 ptrdiff_t nbytes;
1828
1829 /* Check that the string size recorded in the string is the
1830 same as the one recorded in the sdata structure. */
1831 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1832 : SDATA_NBYTES (from));
1833 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1834 }
1835 }
1836
1837
1838 /* Check validity of Lisp strings' string_bytes member. ALL_P
1839 means check all strings, otherwise check only most
1840 recently allocated strings. Used for hunting a bug. */
1841
1842 static void
1843 check_string_bytes (bool all_p)
1844 {
1845 if (all_p)
1846 {
1847 struct sblock *b;
1848
1849 for (b = large_sblocks; b; b = b->next)
1850 {
1851 struct Lisp_String *s = b->data[0].string;
1852 if (s)
1853 string_bytes (s);
1854 }
1855
1856 for (b = oldest_sblock; b; b = b->next)
1857 check_sblock (b);
1858 }
1859 else if (current_sblock)
1860 check_sblock (current_sblock);
1861 }
1862
1863 #else /* not GC_CHECK_STRING_BYTES */
1864
1865 #define check_string_bytes(all) ((void) 0)
1866
1867 #endif /* GC_CHECK_STRING_BYTES */
1868
1869 #ifdef GC_CHECK_STRING_FREE_LIST
1870
1871 /* Walk through the string free list looking for bogus next pointers.
1872 This may catch buffer overrun from a previous string. */
1873
1874 static void
1875 check_string_free_list (void)
1876 {
1877 struct Lisp_String *s;
1878
1879 /* Pop a Lisp_String off the free-list. */
1880 s = string_free_list;
1881 while (s != NULL)
1882 {
1883 if ((uintptr_t) s < 1024)
1884 emacs_abort ();
1885 s = NEXT_FREE_LISP_STRING (s);
1886 }
1887 }
1888 #else
1889 #define check_string_free_list()
1890 #endif
1891
1892 /* Return a new Lisp_String. */
1893
1894 static struct Lisp_String *
1895 allocate_string (void)
1896 {
1897 struct Lisp_String *s;
1898
1899 MALLOC_BLOCK_INPUT;
1900
1901 /* If the free-list is empty, allocate a new string_block, and
1902 add all the Lisp_Strings in it to the free-list. */
1903 if (string_free_list == NULL)
1904 {
1905 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1906 int i;
1907
1908 b->next = string_blocks;
1909 string_blocks = b;
1910
1911 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1912 {
1913 s = b->strings + i;
1914 /* Every string on a free list should have NULL data pointer. */
1915 s->data = NULL;
1916 NEXT_FREE_LISP_STRING (s) = string_free_list;
1917 string_free_list = s;
1918 }
1919
1920 total_free_strings += STRING_BLOCK_SIZE;
1921 }
1922
1923 check_string_free_list ();
1924
1925 /* Pop a Lisp_String off the free-list. */
1926 s = string_free_list;
1927 string_free_list = NEXT_FREE_LISP_STRING (s);
1928
1929 MALLOC_UNBLOCK_INPUT;
1930
1931 --total_free_strings;
1932 ++total_strings;
1933 ++strings_consed;
1934 consing_since_gc += sizeof *s;
1935
1936 #ifdef GC_CHECK_STRING_BYTES
1937 if (!noninteractive)
1938 {
1939 if (++check_string_bytes_count == 200)
1940 {
1941 check_string_bytes_count = 0;
1942 check_string_bytes (1);
1943 }
1944 else
1945 check_string_bytes (0);
1946 }
1947 #endif /* GC_CHECK_STRING_BYTES */
1948
1949 return s;
1950 }
1951
1952
1953 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1954 plus a NUL byte at the end. Allocate an sdata structure for S, and
1955 set S->data to its `u.data' member. Store a NUL byte at the end of
1956 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1957 S->data if it was initially non-null. */
1958
1959 void
1960 allocate_string_data (struct Lisp_String *s,
1961 EMACS_INT nchars, EMACS_INT nbytes)
1962 {
1963 sdata *data, *old_data;
1964 struct sblock *b;
1965 ptrdiff_t needed, old_nbytes;
1966
1967 if (STRING_BYTES_MAX < nbytes)
1968 string_overflow ();
1969
1970 /* Determine the number of bytes needed to store NBYTES bytes
1971 of string data. */
1972 needed = SDATA_SIZE (nbytes);
1973 if (s->data)
1974 {
1975 old_data = SDATA_OF_STRING (s);
1976 old_nbytes = STRING_BYTES (s);
1977 }
1978 else
1979 old_data = NULL;
1980
1981 MALLOC_BLOCK_INPUT;
1982
1983 if (nbytes > LARGE_STRING_BYTES)
1984 {
1985 size_t size = offsetof (struct sblock, data) + needed;
1986
1987 #ifdef DOUG_LEA_MALLOC
1988 if (!mmap_lisp_allowed_p ())
1989 mallopt (M_MMAP_MAX, 0);
1990 #endif
1991
1992 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1993
1994 #ifdef DOUG_LEA_MALLOC
1995 if (!mmap_lisp_allowed_p ())
1996 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1997 #endif
1998
1999 b->next_free = b->data;
2000 b->data[0].string = NULL;
2001 b->next = large_sblocks;
2002 large_sblocks = b;
2003 }
2004 else if (current_sblock == NULL
2005 || (((char *) current_sblock + SBLOCK_SIZE
2006 - (char *) current_sblock->next_free)
2007 < (needed + GC_STRING_EXTRA)))
2008 {
2009 /* Not enough room in the current sblock. */
2010 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2011 b->next_free = b->data;
2012 b->data[0].string = NULL;
2013 b->next = NULL;
2014
2015 if (current_sblock)
2016 current_sblock->next = b;
2017 else
2018 oldest_sblock = b;
2019 current_sblock = b;
2020 }
2021 else
2022 b = current_sblock;
2023
2024 data = b->next_free;
2025 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2026
2027 MALLOC_UNBLOCK_INPUT;
2028
2029 data->string = s;
2030 s->data = SDATA_DATA (data);
2031 #ifdef GC_CHECK_STRING_BYTES
2032 SDATA_NBYTES (data) = nbytes;
2033 #endif
2034 s->size = nchars;
2035 s->size_byte = nbytes;
2036 s->data[nbytes] = '\0';
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 memcpy ((char *) data + needed, string_overrun_cookie,
2039 GC_STRING_OVERRUN_COOKIE_SIZE);
2040 #endif
2041
2042 /* Note that Faset may call to this function when S has already data
2043 assigned. In this case, mark data as free by setting it's string
2044 back-pointer to null, and record the size of the data in it. */
2045 if (old_data)
2046 {
2047 SDATA_NBYTES (old_data) = old_nbytes;
2048 old_data->string = NULL;
2049 }
2050
2051 consing_since_gc += needed;
2052 }
2053
2054
2055 /* Sweep and compact strings. */
2056
2057 NO_INLINE /* For better stack traces */
2058 static void
2059 sweep_strings (void)
2060 {
2061 struct string_block *b, *next;
2062 struct string_block *live_blocks = NULL;
2063
2064 string_free_list = NULL;
2065 total_strings = total_free_strings = 0;
2066 total_string_bytes = 0;
2067
2068 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2069 for (b = string_blocks; b; b = next)
2070 {
2071 int i, nfree = 0;
2072 struct Lisp_String *free_list_before = string_free_list;
2073
2074 next = b->next;
2075
2076 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2077 {
2078 struct Lisp_String *s = b->strings + i;
2079
2080 if (s->data)
2081 {
2082 /* String was not on free-list before. */
2083 if (STRING_MARKED_P (s))
2084 {
2085 /* String is live; unmark it and its intervals. */
2086 UNMARK_STRING (s);
2087
2088 /* Do not use string_(set|get)_intervals here. */
2089 s->intervals = balance_intervals (s->intervals);
2090
2091 ++total_strings;
2092 total_string_bytes += STRING_BYTES (s);
2093 }
2094 else
2095 {
2096 /* String is dead. Put it on the free-list. */
2097 sdata *data = SDATA_OF_STRING (s);
2098
2099 /* Save the size of S in its sdata so that we know
2100 how large that is. Reset the sdata's string
2101 back-pointer so that we know it's free. */
2102 #ifdef GC_CHECK_STRING_BYTES
2103 if (string_bytes (s) != SDATA_NBYTES (data))
2104 emacs_abort ();
2105 #else
2106 data->n.nbytes = STRING_BYTES (s);
2107 #endif
2108 data->string = NULL;
2109
2110 /* Reset the strings's `data' member so that we
2111 know it's free. */
2112 s->data = NULL;
2113
2114 /* Put the string on the free-list. */
2115 NEXT_FREE_LISP_STRING (s) = string_free_list;
2116 string_free_list = s;
2117 ++nfree;
2118 }
2119 }
2120 else
2121 {
2122 /* S was on the free-list before. Put it there again. */
2123 NEXT_FREE_LISP_STRING (s) = string_free_list;
2124 string_free_list = s;
2125 ++nfree;
2126 }
2127 }
2128
2129 /* Free blocks that contain free Lisp_Strings only, except
2130 the first two of them. */
2131 if (nfree == STRING_BLOCK_SIZE
2132 && total_free_strings > STRING_BLOCK_SIZE)
2133 {
2134 lisp_free (b);
2135 string_free_list = free_list_before;
2136 }
2137 else
2138 {
2139 total_free_strings += nfree;
2140 b->next = live_blocks;
2141 live_blocks = b;
2142 }
2143 }
2144
2145 check_string_free_list ();
2146
2147 string_blocks = live_blocks;
2148 free_large_strings ();
2149 compact_small_strings ();
2150
2151 check_string_free_list ();
2152 }
2153
2154
2155 /* Free dead large strings. */
2156
2157 static void
2158 free_large_strings (void)
2159 {
2160 struct sblock *b, *next;
2161 struct sblock *live_blocks = NULL;
2162
2163 for (b = large_sblocks; b; b = next)
2164 {
2165 next = b->next;
2166
2167 if (b->data[0].string == NULL)
2168 lisp_free (b);
2169 else
2170 {
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
2176 large_sblocks = live_blocks;
2177 }
2178
2179
2180 /* Compact data of small strings. Free sblocks that don't contain
2181 data of live strings after compaction. */
2182
2183 static void
2184 compact_small_strings (void)
2185 {
2186 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2187 to, and TB_END is the end of TB. */
2188 struct sblock *tb = oldest_sblock;
2189 if (tb)
2190 {
2191 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2192 sdata *to = tb->data;
2193
2194 /* Step through the blocks from the oldest to the youngest. We
2195 expect that old blocks will stabilize over time, so that less
2196 copying will happen this way. */
2197 struct sblock *b = tb;
2198 do
2199 {
2200 sdata *end = b->next_free;
2201 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2202
2203 for (sdata *from = b->data; from < end; )
2204 {
2205 /* Compute the next FROM here because copying below may
2206 overwrite data we need to compute it. */
2207 ptrdiff_t nbytes;
2208 struct Lisp_String *s = from->string;
2209
2210 #ifdef GC_CHECK_STRING_BYTES
2211 /* Check that the string size recorded in the string is the
2212 same as the one recorded in the sdata structure. */
2213 if (s && string_bytes (s) != SDATA_NBYTES (from))
2214 emacs_abort ();
2215 #endif /* GC_CHECK_STRING_BYTES */
2216
2217 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2218 eassert (nbytes <= LARGE_STRING_BYTES);
2219
2220 nbytes = SDATA_SIZE (nbytes);
2221 sdata *from_end = (sdata *) ((char *) from
2222 + nbytes + GC_STRING_EXTRA);
2223
2224 #ifdef GC_CHECK_STRING_OVERRUN
2225 if (memcmp (string_overrun_cookie,
2226 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2227 GC_STRING_OVERRUN_COOKIE_SIZE))
2228 emacs_abort ();
2229 #endif
2230
2231 /* Non-NULL S means it's alive. Copy its data. */
2232 if (s)
2233 {
2234 /* If TB is full, proceed with the next sblock. */
2235 sdata *to_end = (sdata *) ((char *) to
2236 + nbytes + GC_STRING_EXTRA);
2237 if (to_end > tb_end)
2238 {
2239 tb->next_free = to;
2240 tb = tb->next;
2241 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2242 to = tb->data;
2243 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2244 }
2245
2246 /* Copy, and update the string's `data' pointer. */
2247 if (from != to)
2248 {
2249 eassert (tb != b || to < from);
2250 memmove (to, from, nbytes + GC_STRING_EXTRA);
2251 to->string->data = SDATA_DATA (to);
2252 }
2253
2254 /* Advance past the sdata we copied to. */
2255 to = to_end;
2256 }
2257 from = from_end;
2258 }
2259 b = b->next;
2260 }
2261 while (b);
2262
2263 /* The rest of the sblocks following TB don't contain live data, so
2264 we can free them. */
2265 for (b = tb->next; b; )
2266 {
2267 struct sblock *next = b->next;
2268 lisp_free (b);
2269 b = next;
2270 }
2271
2272 tb->next_free = to;
2273 tb->next = NULL;
2274 }
2275
2276 current_sblock = tb;
2277 }
2278
2279 void
2280 string_overflow (void)
2281 {
2282 error ("Maximum string size exceeded");
2283 }
2284
2285 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2286 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2287 LENGTH must be an integer.
2288 INIT must be an integer that represents a character. */)
2289 (Lisp_Object length, Lisp_Object init)
2290 {
2291 register Lisp_Object val;
2292 int c;
2293 EMACS_INT nbytes;
2294
2295 CHECK_NATNUM (length);
2296 CHECK_CHARACTER (init);
2297
2298 c = XFASTINT (init);
2299 if (ASCII_CHAR_P (c))
2300 {
2301 nbytes = XINT (length);
2302 val = make_uninit_string (nbytes);
2303 if (nbytes)
2304 {
2305 memset (SDATA (val), c, nbytes);
2306 SDATA (val)[nbytes] = 0;
2307 }
2308 }
2309 else
2310 {
2311 unsigned char str[MAX_MULTIBYTE_LENGTH];
2312 ptrdiff_t len = CHAR_STRING (c, str);
2313 EMACS_INT string_len = XINT (length);
2314 unsigned char *p, *beg, *end;
2315
2316 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2317 string_overflow ();
2318 val = make_uninit_multibyte_string (string_len, nbytes);
2319 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2320 {
2321 /* First time we just copy `str' to the data of `val'. */
2322 if (p == beg)
2323 memcpy (p, str, len);
2324 else
2325 {
2326 /* Next time we copy largest possible chunk from
2327 initialized to uninitialized part of `val'. */
2328 len = min (p - beg, end - p);
2329 memcpy (p, beg, len);
2330 }
2331 }
2332 if (nbytes)
2333 *p = 0;
2334 }
2335
2336 return val;
2337 }
2338
2339 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2340 Return A. */
2341
2342 Lisp_Object
2343 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2344 {
2345 EMACS_INT nbits = bool_vector_size (a);
2346 if (0 < nbits)
2347 {
2348 unsigned char *data = bool_vector_uchar_data (a);
2349 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2350 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2351 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2352 memset (data, pattern, nbytes - 1);
2353 data[nbytes - 1] = pattern & last_mask;
2354 }
2355 return a;
2356 }
2357
2358 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2359
2360 Lisp_Object
2361 make_uninit_bool_vector (EMACS_INT nbits)
2362 {
2363 Lisp_Object val;
2364 EMACS_INT words = bool_vector_words (nbits);
2365 EMACS_INT word_bytes = words * sizeof (bits_word);
2366 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2367 + word_size - 1)
2368 / word_size);
2369 struct Lisp_Bool_Vector *p
2370 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2371 XSETVECTOR (val, p);
2372 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2373 p->size = nbits;
2374
2375 /* Clear padding at the end. */
2376 if (words)
2377 p->data[words - 1] = 0;
2378
2379 return val;
2380 }
2381
2382 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2383 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2384 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2385 (Lisp_Object length, Lisp_Object init)
2386 {
2387 Lisp_Object val;
2388
2389 CHECK_NATNUM (length);
2390 val = make_uninit_bool_vector (XFASTINT (length));
2391 return bool_vector_fill (val, init);
2392 }
2393
2394 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2395 doc: /* Return a new bool-vector with specified arguments as elements.
2396 Any number of arguments, even zero arguments, are allowed.
2397 usage: (bool-vector &rest OBJECTS) */)
2398 (ptrdiff_t nargs, Lisp_Object *args)
2399 {
2400 ptrdiff_t i;
2401 Lisp_Object vector;
2402
2403 vector = make_uninit_bool_vector (nargs);
2404 for (i = 0; i < nargs; i++)
2405 bool_vector_set (vector, i, !NILP (args[i]));
2406
2407 return vector;
2408 }
2409
2410 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2411 of characters from the contents. This string may be unibyte or
2412 multibyte, depending on the contents. */
2413
2414 Lisp_Object
2415 make_string (const char *contents, ptrdiff_t nbytes)
2416 {
2417 register Lisp_Object val;
2418 ptrdiff_t nchars, multibyte_nbytes;
2419
2420 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2421 &nchars, &multibyte_nbytes);
2422 if (nbytes == nchars || nbytes != multibyte_nbytes)
2423 /* CONTENTS contains no multibyte sequences or contains an invalid
2424 multibyte sequence. We must make unibyte string. */
2425 val = make_unibyte_string (contents, nbytes);
2426 else
2427 val = make_multibyte_string (contents, nchars, nbytes);
2428 return val;
2429 }
2430
2431 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2432
2433 Lisp_Object
2434 make_unibyte_string (const char *contents, ptrdiff_t length)
2435 {
2436 register Lisp_Object val;
2437 val = make_uninit_string (length);
2438 memcpy (SDATA (val), contents, length);
2439 return val;
2440 }
2441
2442
2443 /* Make a multibyte string from NCHARS characters occupying NBYTES
2444 bytes at CONTENTS. */
2445
2446 Lisp_Object
2447 make_multibyte_string (const char *contents,
2448 ptrdiff_t nchars, ptrdiff_t nbytes)
2449 {
2450 register Lisp_Object val;
2451 val = make_uninit_multibyte_string (nchars, nbytes);
2452 memcpy (SDATA (val), contents, nbytes);
2453 return val;
2454 }
2455
2456
2457 /* Make a string from NCHARS characters occupying NBYTES bytes at
2458 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2459
2460 Lisp_Object
2461 make_string_from_bytes (const char *contents,
2462 ptrdiff_t nchars, ptrdiff_t nbytes)
2463 {
2464 register Lisp_Object val;
2465 val = make_uninit_multibyte_string (nchars, nbytes);
2466 memcpy (SDATA (val), contents, nbytes);
2467 if (SBYTES (val) == SCHARS (val))
2468 STRING_SET_UNIBYTE (val);
2469 return val;
2470 }
2471
2472
2473 /* Make a string from NCHARS characters occupying NBYTES bytes at
2474 CONTENTS. The argument MULTIBYTE controls whether to label the
2475 string as multibyte. If NCHARS is negative, it counts the number of
2476 characters by itself. */
2477
2478 Lisp_Object
2479 make_specified_string (const char *contents,
2480 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2481 {
2482 Lisp_Object val;
2483
2484 if (nchars < 0)
2485 {
2486 if (multibyte)
2487 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2488 nbytes);
2489 else
2490 nchars = nbytes;
2491 }
2492 val = make_uninit_multibyte_string (nchars, nbytes);
2493 memcpy (SDATA (val), contents, nbytes);
2494 if (!multibyte)
2495 STRING_SET_UNIBYTE (val);
2496 return val;
2497 }
2498
2499
2500 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2501 occupying LENGTH bytes. */
2502
2503 Lisp_Object
2504 make_uninit_string (EMACS_INT length)
2505 {
2506 Lisp_Object val;
2507
2508 if (!length)
2509 return empty_unibyte_string;
2510 val = make_uninit_multibyte_string (length, length);
2511 STRING_SET_UNIBYTE (val);
2512 return val;
2513 }
2514
2515
2516 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2517 which occupy NBYTES bytes. */
2518
2519 Lisp_Object
2520 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2521 {
2522 Lisp_Object string;
2523 struct Lisp_String *s;
2524
2525 if (nchars < 0)
2526 emacs_abort ();
2527 if (!nbytes)
2528 return empty_multibyte_string;
2529
2530 s = allocate_string ();
2531 s->intervals = NULL;
2532 allocate_string_data (s, nchars, nbytes);
2533 XSETSTRING (string, s);
2534 string_chars_consed += nbytes;
2535 return string;
2536 }
2537
2538 /* Print arguments to BUF according to a FORMAT, then return
2539 a Lisp_String initialized with the data from BUF. */
2540
2541 Lisp_Object
2542 make_formatted_string (char *buf, const char *format, ...)
2543 {
2544 va_list ap;
2545 int length;
2546
2547 va_start (ap, format);
2548 length = vsprintf (buf, format, ap);
2549 va_end (ap);
2550 return make_string (buf, length);
2551 }
2552
2553 \f
2554 /***********************************************************************
2555 Float Allocation
2556 ***********************************************************************/
2557
2558 /* We store float cells inside of float_blocks, allocating a new
2559 float_block with malloc whenever necessary. Float cells reclaimed
2560 by GC are put on a free list to be reallocated before allocating
2561 any new float cells from the latest float_block. */
2562
2563 #define FLOAT_BLOCK_SIZE \
2564 (((BLOCK_BYTES - sizeof (struct float_block *) \
2565 /* The compiler might add padding at the end. */ \
2566 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2567 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2568
2569 #define GETMARKBIT(block,n) \
2570 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2571 >> ((n) % BITS_PER_BITS_WORD)) \
2572 & 1)
2573
2574 #define SETMARKBIT(block,n) \
2575 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2576 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2577
2578 #define UNSETMARKBIT(block,n) \
2579 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2580 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2581
2582 #define FLOAT_BLOCK(fptr) \
2583 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2584
2585 #define FLOAT_INDEX(fptr) \
2586 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2587
2588 struct float_block
2589 {
2590 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2591 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2592 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2593 struct float_block *next;
2594 };
2595
2596 #define FLOAT_MARKED_P(fptr) \
2597 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2598
2599 #define FLOAT_MARK(fptr) \
2600 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2601
2602 #define FLOAT_UNMARK(fptr) \
2603 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2604
2605 /* Current float_block. */
2606
2607 static struct float_block *float_block;
2608
2609 /* Index of first unused Lisp_Float in the current float_block. */
2610
2611 static int float_block_index = FLOAT_BLOCK_SIZE;
2612
2613 /* Free-list of Lisp_Floats. */
2614
2615 static struct Lisp_Float *float_free_list;
2616
2617 /* Return a new float object with value FLOAT_VALUE. */
2618
2619 Lisp_Object
2620 make_float (double float_value)
2621 {
2622 register Lisp_Object val;
2623
2624 MALLOC_BLOCK_INPUT;
2625
2626 if (float_free_list)
2627 {
2628 /* We use the data field for chaining the free list
2629 so that we won't use the same field that has the mark bit. */
2630 XSETFLOAT (val, float_free_list);
2631 float_free_list = float_free_list->u.chain;
2632 }
2633 else
2634 {
2635 if (float_block_index == FLOAT_BLOCK_SIZE)
2636 {
2637 struct float_block *new
2638 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2639 new->next = float_block;
2640 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2641 float_block = new;
2642 float_block_index = 0;
2643 total_free_floats += FLOAT_BLOCK_SIZE;
2644 }
2645 XSETFLOAT (val, &float_block->floats[float_block_index]);
2646 float_block_index++;
2647 }
2648
2649 MALLOC_UNBLOCK_INPUT;
2650
2651 XFLOAT_INIT (val, float_value);
2652 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2653 consing_since_gc += sizeof (struct Lisp_Float);
2654 floats_consed++;
2655 total_free_floats--;
2656 return val;
2657 }
2658
2659
2660 \f
2661 /***********************************************************************
2662 Cons Allocation
2663 ***********************************************************************/
2664
2665 /* We store cons cells inside of cons_blocks, allocating a new
2666 cons_block with malloc whenever necessary. Cons cells reclaimed by
2667 GC are put on a free list to be reallocated before allocating
2668 any new cons cells from the latest cons_block. */
2669
2670 #define CONS_BLOCK_SIZE \
2671 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2672 /* The compiler might add padding at the end. */ \
2673 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2674 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2675
2676 #define CONS_BLOCK(fptr) \
2677 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2678
2679 #define CONS_INDEX(fptr) \
2680 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2681
2682 struct cons_block
2683 {
2684 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2685 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2686 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2687 struct cons_block *next;
2688 };
2689
2690 #define CONS_MARKED_P(fptr) \
2691 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2692
2693 #define CONS_MARK(fptr) \
2694 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2695
2696 #define CONS_UNMARK(fptr) \
2697 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2698
2699 /* Current cons_block. */
2700
2701 static struct cons_block *cons_block;
2702
2703 /* Index of first unused Lisp_Cons in the current block. */
2704
2705 static int cons_block_index = CONS_BLOCK_SIZE;
2706
2707 /* Free-list of Lisp_Cons structures. */
2708
2709 static struct Lisp_Cons *cons_free_list;
2710
2711 /* Explicitly free a cons cell by putting it on the free-list. */
2712
2713 void
2714 free_cons (struct Lisp_Cons *ptr)
2715 {
2716 ptr->u.chain = cons_free_list;
2717 ptr->car = Vdead;
2718 cons_free_list = ptr;
2719 consing_since_gc -= sizeof *ptr;
2720 total_free_conses++;
2721 }
2722
2723 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2724 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2725 (Lisp_Object car, Lisp_Object cdr)
2726 {
2727 register Lisp_Object val;
2728
2729 MALLOC_BLOCK_INPUT;
2730
2731 if (cons_free_list)
2732 {
2733 /* We use the cdr for chaining the free list
2734 so that we won't use the same field that has the mark bit. */
2735 XSETCONS (val, cons_free_list);
2736 cons_free_list = cons_free_list->u.chain;
2737 }
2738 else
2739 {
2740 if (cons_block_index == CONS_BLOCK_SIZE)
2741 {
2742 struct cons_block *new
2743 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2744 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2745 new->next = cons_block;
2746 cons_block = new;
2747 cons_block_index = 0;
2748 total_free_conses += CONS_BLOCK_SIZE;
2749 }
2750 XSETCONS (val, &cons_block->conses[cons_block_index]);
2751 cons_block_index++;
2752 }
2753
2754 MALLOC_UNBLOCK_INPUT;
2755
2756 XSETCAR (val, car);
2757 XSETCDR (val, cdr);
2758 eassert (!CONS_MARKED_P (XCONS (val)));
2759 consing_since_gc += sizeof (struct Lisp_Cons);
2760 total_free_conses--;
2761 cons_cells_consed++;
2762 return val;
2763 }
2764
2765 #ifdef GC_CHECK_CONS_LIST
2766 /* Get an error now if there's any junk in the cons free list. */
2767 void
2768 check_cons_list (void)
2769 {
2770 struct Lisp_Cons *tail = cons_free_list;
2771
2772 while (tail)
2773 tail = tail->u.chain;
2774 }
2775 #endif
2776
2777 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2778
2779 Lisp_Object
2780 list1 (Lisp_Object arg1)
2781 {
2782 return Fcons (arg1, Qnil);
2783 }
2784
2785 Lisp_Object
2786 list2 (Lisp_Object arg1, Lisp_Object arg2)
2787 {
2788 return Fcons (arg1, Fcons (arg2, Qnil));
2789 }
2790
2791
2792 Lisp_Object
2793 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2794 {
2795 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2796 }
2797
2798
2799 Lisp_Object
2800 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2801 {
2802 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2803 }
2804
2805
2806 Lisp_Object
2807 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2808 {
2809 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2810 Fcons (arg5, Qnil)))));
2811 }
2812
2813 /* Make a list of COUNT Lisp_Objects, where ARG is the
2814 first one. Allocate conses from pure space if TYPE
2815 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2816
2817 Lisp_Object
2818 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2819 {
2820 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2821 switch (type)
2822 {
2823 case CONSTYPE_PURE: cons = pure_cons; break;
2824 case CONSTYPE_HEAP: cons = Fcons; break;
2825 default: emacs_abort ();
2826 }
2827
2828 eassume (0 < count);
2829 Lisp_Object val = cons (arg, Qnil);
2830 Lisp_Object tail = val;
2831
2832 va_list ap;
2833 va_start (ap, arg);
2834 for (ptrdiff_t i = 1; i < count; i++)
2835 {
2836 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2837 XSETCDR (tail, elem);
2838 tail = elem;
2839 }
2840 va_end (ap);
2841
2842 return val;
2843 }
2844
2845 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2846 doc: /* Return a newly created list with specified arguments as elements.
2847 Any number of arguments, even zero arguments, are allowed.
2848 usage: (list &rest OBJECTS) */)
2849 (ptrdiff_t nargs, Lisp_Object *args)
2850 {
2851 register Lisp_Object val;
2852 val = Qnil;
2853
2854 while (nargs > 0)
2855 {
2856 nargs--;
2857 val = Fcons (args[nargs], val);
2858 }
2859 return val;
2860 }
2861
2862
2863 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2864 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2865 (register Lisp_Object length, Lisp_Object init)
2866 {
2867 register Lisp_Object val;
2868 register EMACS_INT size;
2869
2870 CHECK_NATNUM (length);
2871 size = XFASTINT (length);
2872
2873 val = Qnil;
2874 while (size > 0)
2875 {
2876 val = Fcons (init, val);
2877 --size;
2878
2879 if (size > 0)
2880 {
2881 val = Fcons (init, val);
2882 --size;
2883
2884 if (size > 0)
2885 {
2886 val = Fcons (init, val);
2887 --size;
2888
2889 if (size > 0)
2890 {
2891 val = Fcons (init, val);
2892 --size;
2893
2894 if (size > 0)
2895 {
2896 val = Fcons (init, val);
2897 --size;
2898 }
2899 }
2900 }
2901 }
2902
2903 QUIT;
2904 }
2905
2906 return val;
2907 }
2908
2909
2910 \f
2911 /***********************************************************************
2912 Vector Allocation
2913 ***********************************************************************/
2914
2915 /* Sometimes a vector's contents are merely a pointer internally used
2916 in vector allocation code. On the rare platforms where a null
2917 pointer cannot be tagged, represent it with a Lisp 0.
2918 Usually you don't want to touch this. */
2919
2920 static struct Lisp_Vector *
2921 next_vector (struct Lisp_Vector *v)
2922 {
2923 return XUNTAG (v->contents[0], Lisp_Int0);
2924 }
2925
2926 static void
2927 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2928 {
2929 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2930 }
2931
2932 /* This value is balanced well enough to avoid too much internal overhead
2933 for the most common cases; it's not required to be a power of two, but
2934 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2935
2936 #define VECTOR_BLOCK_SIZE 4096
2937
2938 enum
2939 {
2940 /* Alignment of struct Lisp_Vector objects. */
2941 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2942 GCALIGNMENT),
2943
2944 /* Vector size requests are a multiple of this. */
2945 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2946 };
2947
2948 /* Verify assumptions described above. */
2949 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2950 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2951
2952 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2953 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2954 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2955 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2956
2957 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2958
2959 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2960
2961 /* Size of the minimal vector allocated from block. */
2962
2963 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2964
2965 /* Size of the largest vector allocated from block. */
2966
2967 #define VBLOCK_BYTES_MAX \
2968 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2969
2970 /* We maintain one free list for each possible block-allocated
2971 vector size, and this is the number of free lists we have. */
2972
2973 #define VECTOR_MAX_FREE_LIST_INDEX \
2974 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2975
2976 /* Common shortcut to advance vector pointer over a block data. */
2977
2978 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2979
2980 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2981
2982 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2983
2984 /* Common shortcut to setup vector on a free list. */
2985
2986 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2987 do { \
2988 (tmp) = ((nbytes - header_size) / word_size); \
2989 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2990 eassert ((nbytes) % roundup_size == 0); \
2991 (tmp) = VINDEX (nbytes); \
2992 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2993 set_next_vector (v, vector_free_lists[tmp]); \
2994 vector_free_lists[tmp] = (v); \
2995 total_free_vector_slots += (nbytes) / word_size; \
2996 } while (0)
2997
2998 /* This internal type is used to maintain the list of large vectors
2999 which are allocated at their own, e.g. outside of vector blocks.
3000
3001 struct large_vector itself cannot contain a struct Lisp_Vector, as
3002 the latter contains a flexible array member and C99 does not allow
3003 such structs to be nested. Instead, each struct large_vector
3004 object LV is followed by a struct Lisp_Vector, which is at offset
3005 large_vector_offset from LV, and whose address is therefore
3006 large_vector_vec (&LV). */
3007
3008 struct large_vector
3009 {
3010 struct large_vector *next;
3011 };
3012
3013 enum
3014 {
3015 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
3016 };
3017
3018 static struct Lisp_Vector *
3019 large_vector_vec (struct large_vector *p)
3020 {
3021 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3022 }
3023
3024 /* This internal type is used to maintain an underlying storage
3025 for small vectors. */
3026
3027 struct vector_block
3028 {
3029 char data[VECTOR_BLOCK_BYTES];
3030 struct vector_block *next;
3031 };
3032
3033 /* Chain of vector blocks. */
3034
3035 static struct vector_block *vector_blocks;
3036
3037 /* Vector free lists, where NTH item points to a chain of free
3038 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3039
3040 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3041
3042 /* Singly-linked list of large vectors. */
3043
3044 static struct large_vector *large_vectors;
3045
3046 /* The only vector with 0 slots, allocated from pure space. */
3047
3048 Lisp_Object zero_vector;
3049
3050 /* Number of live vectors. */
3051
3052 static EMACS_INT total_vectors;
3053
3054 /* Total size of live and free vectors, in Lisp_Object units. */
3055
3056 static EMACS_INT total_vector_slots, total_free_vector_slots;
3057
3058 /* Get a new vector block. */
3059
3060 static struct vector_block *
3061 allocate_vector_block (void)
3062 {
3063 struct vector_block *block = xmalloc (sizeof *block);
3064
3065 #ifndef GC_MALLOC_CHECK
3066 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3067 MEM_TYPE_VECTOR_BLOCK);
3068 #endif
3069
3070 block->next = vector_blocks;
3071 vector_blocks = block;
3072 return block;
3073 }
3074
3075 /* Called once to initialize vector allocation. */
3076
3077 static void
3078 init_vectors (void)
3079 {
3080 zero_vector = make_pure_vector (0);
3081 }
3082
3083 /* Allocate vector from a vector block. */
3084
3085 static struct Lisp_Vector *
3086 allocate_vector_from_block (size_t nbytes)
3087 {
3088 struct Lisp_Vector *vector;
3089 struct vector_block *block;
3090 size_t index, restbytes;
3091
3092 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3093 eassert (nbytes % roundup_size == 0);
3094
3095 /* First, try to allocate from a free list
3096 containing vectors of the requested size. */
3097 index = VINDEX (nbytes);
3098 if (vector_free_lists[index])
3099 {
3100 vector = vector_free_lists[index];
3101 vector_free_lists[index] = next_vector (vector);
3102 total_free_vector_slots -= nbytes / word_size;
3103 return vector;
3104 }
3105
3106 /* Next, check free lists containing larger vectors. Since
3107 we will split the result, we should have remaining space
3108 large enough to use for one-slot vector at least. */
3109 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3110 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3111 if (vector_free_lists[index])
3112 {
3113 /* This vector is larger than requested. */
3114 vector = vector_free_lists[index];
3115 vector_free_lists[index] = next_vector (vector);
3116 total_free_vector_slots -= nbytes / word_size;
3117
3118 /* Excess bytes are used for the smaller vector,
3119 which should be set on an appropriate free list. */
3120 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3121 eassert (restbytes % roundup_size == 0);
3122 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3123 return vector;
3124 }
3125
3126 /* Finally, need a new vector block. */
3127 block = allocate_vector_block ();
3128
3129 /* New vector will be at the beginning of this block. */
3130 vector = (struct Lisp_Vector *) block->data;
3131
3132 /* If the rest of space from this block is large enough
3133 for one-slot vector at least, set up it on a free list. */
3134 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3135 if (restbytes >= VBLOCK_BYTES_MIN)
3136 {
3137 eassert (restbytes % roundup_size == 0);
3138 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3139 }
3140 return vector;
3141 }
3142
3143 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3144
3145 #define VECTOR_IN_BLOCK(vector, block) \
3146 ((char *) (vector) <= (block)->data \
3147 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3148
3149 /* Return the memory footprint of V in bytes. */
3150
3151 static ptrdiff_t
3152 vector_nbytes (struct Lisp_Vector *v)
3153 {
3154 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3155 ptrdiff_t nwords;
3156
3157 if (size & PSEUDOVECTOR_FLAG)
3158 {
3159 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3160 {
3161 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3162 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3163 * sizeof (bits_word));
3164 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3165 verify (header_size <= bool_header_size);
3166 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3167 }
3168 else
3169 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3170 + ((size & PSEUDOVECTOR_REST_MASK)
3171 >> PSEUDOVECTOR_SIZE_BITS));
3172 }
3173 else
3174 nwords = size;
3175 return vroundup (header_size + word_size * nwords);
3176 }
3177
3178 /* Release extra resources still in use by VECTOR, which may be any
3179 vector-like object. For now, this is used just to free data in
3180 font objects. */
3181
3182 static void
3183 cleanup_vector (struct Lisp_Vector *vector)
3184 {
3185 detect_suspicious_free (vector);
3186 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3187 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3188 == FONT_OBJECT_MAX))
3189 {
3190 struct font_driver *drv = ((struct font *) vector)->driver;
3191
3192 /* The font driver might sometimes be NULL, e.g. if Emacs was
3193 interrupted before it had time to set it up. */
3194 if (drv)
3195 {
3196 /* Attempt to catch subtle bugs like Bug#16140. */
3197 eassert (valid_font_driver (drv));
3198 drv->close ((struct font *) vector);
3199 }
3200 }
3201 }
3202
3203 /* Reclaim space used by unmarked vectors. */
3204
3205 NO_INLINE /* For better stack traces */
3206 static void
3207 sweep_vectors (void)
3208 {
3209 struct vector_block *block, **bprev = &vector_blocks;
3210 struct large_vector *lv, **lvprev = &large_vectors;
3211 struct Lisp_Vector *vector, *next;
3212
3213 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3214 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3215
3216 /* Looking through vector blocks. */
3217
3218 for (block = vector_blocks; block; block = *bprev)
3219 {
3220 bool free_this_block = 0;
3221 ptrdiff_t nbytes;
3222
3223 for (vector = (struct Lisp_Vector *) block->data;
3224 VECTOR_IN_BLOCK (vector, block); vector = next)
3225 {
3226 if (VECTOR_MARKED_P (vector))
3227 {
3228 VECTOR_UNMARK (vector);
3229 total_vectors++;
3230 nbytes = vector_nbytes (vector);
3231 total_vector_slots += nbytes / word_size;
3232 next = ADVANCE (vector, nbytes);
3233 }
3234 else
3235 {
3236 ptrdiff_t total_bytes;
3237
3238 cleanup_vector (vector);
3239 nbytes = vector_nbytes (vector);
3240 total_bytes = nbytes;
3241 next = ADVANCE (vector, nbytes);
3242
3243 /* While NEXT is not marked, try to coalesce with VECTOR,
3244 thus making VECTOR of the largest possible size. */
3245
3246 while (VECTOR_IN_BLOCK (next, block))
3247 {
3248 if (VECTOR_MARKED_P (next))
3249 break;
3250 cleanup_vector (next);
3251 nbytes = vector_nbytes (next);
3252 total_bytes += nbytes;
3253 next = ADVANCE (next, nbytes);
3254 }
3255
3256 eassert (total_bytes % roundup_size == 0);
3257
3258 if (vector == (struct Lisp_Vector *) block->data
3259 && !VECTOR_IN_BLOCK (next, block))
3260 /* This block should be freed because all of its
3261 space was coalesced into the only free vector. */
3262 free_this_block = 1;
3263 else
3264 {
3265 size_t tmp;
3266 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3267 }
3268 }
3269 }
3270
3271 if (free_this_block)
3272 {
3273 *bprev = block->next;
3274 #ifndef GC_MALLOC_CHECK
3275 mem_delete (mem_find (block->data));
3276 #endif
3277 xfree (block);
3278 }
3279 else
3280 bprev = &block->next;
3281 }
3282
3283 /* Sweep large vectors. */
3284
3285 for (lv = large_vectors; lv; lv = *lvprev)
3286 {
3287 vector = large_vector_vec (lv);
3288 if (VECTOR_MARKED_P (vector))
3289 {
3290 VECTOR_UNMARK (vector);
3291 total_vectors++;
3292 if (vector->header.size & PSEUDOVECTOR_FLAG)
3293 {
3294 /* All non-bool pseudovectors are small enough to be allocated
3295 from vector blocks. This code should be redesigned if some
3296 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3297 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3298 total_vector_slots += vector_nbytes (vector) / word_size;
3299 }
3300 else
3301 total_vector_slots
3302 += header_size / word_size + vector->header.size;
3303 lvprev = &lv->next;
3304 }
3305 else
3306 {
3307 *lvprev = lv->next;
3308 lisp_free (lv);
3309 }
3310 }
3311 }
3312
3313 /* Value is a pointer to a newly allocated Lisp_Vector structure
3314 with room for LEN Lisp_Objects. */
3315
3316 static struct Lisp_Vector *
3317 allocate_vectorlike (ptrdiff_t len)
3318 {
3319 struct Lisp_Vector *p;
3320
3321 MALLOC_BLOCK_INPUT;
3322
3323 if (len == 0)
3324 p = XVECTOR (zero_vector);
3325 else
3326 {
3327 size_t nbytes = header_size + len * word_size;
3328
3329 #ifdef DOUG_LEA_MALLOC
3330 if (!mmap_lisp_allowed_p ())
3331 mallopt (M_MMAP_MAX, 0);
3332 #endif
3333
3334 if (nbytes <= VBLOCK_BYTES_MAX)
3335 p = allocate_vector_from_block (vroundup (nbytes));
3336 else
3337 {
3338 struct large_vector *lv
3339 = lisp_malloc ((large_vector_offset + header_size
3340 + len * word_size),
3341 MEM_TYPE_VECTORLIKE);
3342 lv->next = large_vectors;
3343 large_vectors = lv;
3344 p = large_vector_vec (lv);
3345 }
3346
3347 #ifdef DOUG_LEA_MALLOC
3348 if (!mmap_lisp_allowed_p ())
3349 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3350 #endif
3351
3352 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3353 emacs_abort ();
3354
3355 consing_since_gc += nbytes;
3356 vector_cells_consed += len;
3357 }
3358
3359 MALLOC_UNBLOCK_INPUT;
3360
3361 return p;
3362 }
3363
3364
3365 /* Allocate a vector with LEN slots. */
3366
3367 struct Lisp_Vector *
3368 allocate_vector (EMACS_INT len)
3369 {
3370 struct Lisp_Vector *v;
3371 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3372
3373 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3374 memory_full (SIZE_MAX);
3375 v = allocate_vectorlike (len);
3376 if (len)
3377 v->header.size = len;
3378 return v;
3379 }
3380
3381
3382 /* Allocate other vector-like structures. */
3383
3384 struct Lisp_Vector *
3385 allocate_pseudovector (int memlen, int lisplen,
3386 int zerolen, enum pvec_type tag)
3387 {
3388 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3389
3390 /* Catch bogus values. */
3391 eassert (0 <= tag && tag <= PVEC_FONT);
3392 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3393 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3394 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3395
3396 /* Only the first LISPLEN slots will be traced normally by the GC. */
3397 memclear (v->contents, zerolen * word_size);
3398 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3399 return v;
3400 }
3401
3402 struct buffer *
3403 allocate_buffer (void)
3404 {
3405 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3406
3407 BUFFER_PVEC_INIT (b);
3408 /* Put B on the chain of all buffers including killed ones. */
3409 b->next = all_buffers;
3410 all_buffers = b;
3411 /* Note that the rest fields of B are not initialized. */
3412 return b;
3413 }
3414
3415 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3416 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3417 See also the function `vector'. */)
3418 (Lisp_Object length, Lisp_Object init)
3419 {
3420 CHECK_NATNUM (length);
3421 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3422 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3423 p->contents[i] = init;
3424 return make_lisp_ptr (p, Lisp_Vectorlike);
3425 }
3426
3427 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3428 doc: /* Return a newly created vector with specified arguments as elements.
3429 Any number of arguments, even zero arguments, are allowed.
3430 usage: (vector &rest OBJECTS) */)
3431 (ptrdiff_t nargs, Lisp_Object *args)
3432 {
3433 Lisp_Object val = make_uninit_vector (nargs);
3434 struct Lisp_Vector *p = XVECTOR (val);
3435 memcpy (p->contents, args, nargs * sizeof *args);
3436 return val;
3437 }
3438
3439 void
3440 make_byte_code (struct Lisp_Vector *v)
3441 {
3442 /* Don't allow the global zero_vector to become a byte code object. */
3443 eassert (0 < v->header.size);
3444
3445 if (v->header.size > 1 && STRINGP (v->contents[1])
3446 && STRING_MULTIBYTE (v->contents[1]))
3447 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3448 earlier because they produced a raw 8-bit string for byte-code
3449 and now such a byte-code string is loaded as multibyte while
3450 raw 8-bit characters converted to multibyte form. Thus, now we
3451 must convert them back to the original unibyte form. */
3452 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3453 XSETPVECTYPE (v, PVEC_COMPILED);
3454 }
3455
3456 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3457 doc: /* Create a byte-code object with specified arguments as elements.
3458 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3459 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3460 and (optional) INTERACTIVE-SPEC.
3461 The first four arguments are required; at most six have any
3462 significance.
3463 The ARGLIST can be either like the one of `lambda', in which case the arguments
3464 will be dynamically bound before executing the byte code, or it can be an
3465 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3466 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3467 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3468 argument to catch the left-over arguments. If such an integer is used, the
3469 arguments will not be dynamically bound but will be instead pushed on the
3470 stack before executing the byte-code.
3471 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3472 (ptrdiff_t nargs, Lisp_Object *args)
3473 {
3474 Lisp_Object val = make_uninit_vector (nargs);
3475 struct Lisp_Vector *p = XVECTOR (val);
3476
3477 /* We used to purecopy everything here, if purify-flag was set. This worked
3478 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3479 dangerous, since make-byte-code is used during execution to build
3480 closures, so any closure built during the preload phase would end up
3481 copied into pure space, including its free variables, which is sometimes
3482 just wasteful and other times plainly wrong (e.g. those free vars may want
3483 to be setcar'd). */
3484
3485 memcpy (p->contents, args, nargs * sizeof *args);
3486 make_byte_code (p);
3487 XSETCOMPILED (val, p);
3488 return val;
3489 }
3490
3491
3492 \f
3493 /***********************************************************************
3494 Symbol Allocation
3495 ***********************************************************************/
3496
3497 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3498 of the required alignment. */
3499
3500 union aligned_Lisp_Symbol
3501 {
3502 struct Lisp_Symbol s;
3503 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3504 & -GCALIGNMENT];
3505 };
3506
3507 /* Each symbol_block is just under 1020 bytes long, since malloc
3508 really allocates in units of powers of two and uses 4 bytes for its
3509 own overhead. */
3510
3511 #define SYMBOL_BLOCK_SIZE \
3512 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3513
3514 struct symbol_block
3515 {
3516 /* Place `symbols' first, to preserve alignment. */
3517 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3518 struct symbol_block *next;
3519 };
3520
3521 /* Current symbol block and index of first unused Lisp_Symbol
3522 structure in it. */
3523
3524 static struct symbol_block *symbol_block;
3525 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3526 /* Pointer to the first symbol_block that contains pinned symbols.
3527 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3528 10K of which are pinned (and all but 250 of them are interned in obarray),
3529 whereas a "typical session" has in the order of 30K symbols.
3530 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3531 than 30K to find the 10K symbols we need to mark. */
3532 static struct symbol_block *symbol_block_pinned;
3533
3534 /* List of free symbols. */
3535
3536 static struct Lisp_Symbol *symbol_free_list;
3537
3538 static void
3539 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3540 {
3541 XSYMBOL (sym)->name = name;
3542 }
3543
3544 void
3545 init_symbol (Lisp_Object val, Lisp_Object name)
3546 {
3547 struct Lisp_Symbol *p = XSYMBOL (val);
3548 set_symbol_name (val, name);
3549 set_symbol_plist (val, Qnil);
3550 p->redirect = SYMBOL_PLAINVAL;
3551 SET_SYMBOL_VAL (p, Qunbound);
3552 set_symbol_function (val, Qnil);
3553 set_symbol_next (val, NULL);
3554 p->gcmarkbit = false;
3555 p->interned = SYMBOL_UNINTERNED;
3556 p->constant = 0;
3557 p->declared_special = false;
3558 p->pinned = false;
3559 }
3560
3561 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3562 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3563 Its value is void, and its function definition and property list are nil. */)
3564 (Lisp_Object name)
3565 {
3566 Lisp_Object val;
3567
3568 CHECK_STRING (name);
3569
3570 MALLOC_BLOCK_INPUT;
3571
3572 if (symbol_free_list)
3573 {
3574 XSETSYMBOL (val, symbol_free_list);
3575 symbol_free_list = symbol_free_list->next;
3576 }
3577 else
3578 {
3579 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3580 {
3581 struct symbol_block *new
3582 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3583 new->next = symbol_block;
3584 symbol_block = new;
3585 symbol_block_index = 0;
3586 total_free_symbols += SYMBOL_BLOCK_SIZE;
3587 }
3588 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3589 symbol_block_index++;
3590 }
3591
3592 MALLOC_UNBLOCK_INPUT;
3593
3594 init_symbol (val, name);
3595 consing_since_gc += sizeof (struct Lisp_Symbol);
3596 symbols_consed++;
3597 total_free_symbols--;
3598 return val;
3599 }
3600
3601
3602 \f
3603 /***********************************************************************
3604 Marker (Misc) Allocation
3605 ***********************************************************************/
3606
3607 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3608 the required alignment. */
3609
3610 union aligned_Lisp_Misc
3611 {
3612 union Lisp_Misc m;
3613 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3614 & -GCALIGNMENT];
3615 };
3616
3617 /* Allocation of markers and other objects that share that structure.
3618 Works like allocation of conses. */
3619
3620 #define MARKER_BLOCK_SIZE \
3621 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3622
3623 struct marker_block
3624 {
3625 /* Place `markers' first, to preserve alignment. */
3626 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3627 struct marker_block *next;
3628 };
3629
3630 static struct marker_block *marker_block;
3631 static int marker_block_index = MARKER_BLOCK_SIZE;
3632
3633 static union Lisp_Misc *marker_free_list;
3634
3635 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3636
3637 static Lisp_Object
3638 allocate_misc (enum Lisp_Misc_Type type)
3639 {
3640 Lisp_Object val;
3641
3642 MALLOC_BLOCK_INPUT;
3643
3644 if (marker_free_list)
3645 {
3646 XSETMISC (val, marker_free_list);
3647 marker_free_list = marker_free_list->u_free.chain;
3648 }
3649 else
3650 {
3651 if (marker_block_index == MARKER_BLOCK_SIZE)
3652 {
3653 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3654 new->next = marker_block;
3655 marker_block = new;
3656 marker_block_index = 0;
3657 total_free_markers += MARKER_BLOCK_SIZE;
3658 }
3659 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3660 marker_block_index++;
3661 }
3662
3663 MALLOC_UNBLOCK_INPUT;
3664
3665 --total_free_markers;
3666 consing_since_gc += sizeof (union Lisp_Misc);
3667 misc_objects_consed++;
3668 XMISCANY (val)->type = type;
3669 XMISCANY (val)->gcmarkbit = 0;
3670 return val;
3671 }
3672
3673 /* Free a Lisp_Misc object. */
3674
3675 void
3676 free_misc (Lisp_Object misc)
3677 {
3678 XMISCANY (misc)->type = Lisp_Misc_Free;
3679 XMISC (misc)->u_free.chain = marker_free_list;
3680 marker_free_list = XMISC (misc);
3681 consing_since_gc -= sizeof (union Lisp_Misc);
3682 total_free_markers++;
3683 }
3684
3685 /* Verify properties of Lisp_Save_Value's representation
3686 that are assumed here and elsewhere. */
3687
3688 verify (SAVE_UNUSED == 0);
3689 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3690 >> SAVE_SLOT_BITS)
3691 == 0);
3692
3693 /* Return Lisp_Save_Value objects for the various combinations
3694 that callers need. */
3695
3696 Lisp_Object
3697 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3698 {
3699 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3700 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3701 p->save_type = SAVE_TYPE_INT_INT_INT;
3702 p->data[0].integer = a;
3703 p->data[1].integer = b;
3704 p->data[2].integer = c;
3705 return val;
3706 }
3707
3708 Lisp_Object
3709 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3710 Lisp_Object d)
3711 {
3712 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3713 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3714 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3715 p->data[0].object = a;
3716 p->data[1].object = b;
3717 p->data[2].object = c;
3718 p->data[3].object = d;
3719 return val;
3720 }
3721
3722 Lisp_Object
3723 make_save_ptr (void *a)
3724 {
3725 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3726 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3727 p->save_type = SAVE_POINTER;
3728 p->data[0].pointer = a;
3729 return val;
3730 }
3731
3732 Lisp_Object
3733 make_save_ptr_int (void *a, ptrdiff_t b)
3734 {
3735 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3736 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3737 p->save_type = SAVE_TYPE_PTR_INT;
3738 p->data[0].pointer = a;
3739 p->data[1].integer = b;
3740 return val;
3741 }
3742
3743 Lisp_Object
3744 make_save_ptr_ptr (void *a, void *b)
3745 {
3746 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3747 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3748 p->save_type = SAVE_TYPE_PTR_PTR;
3749 p->data[0].pointer = a;
3750 p->data[1].pointer = b;
3751 return val;
3752 }
3753
3754 Lisp_Object
3755 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3756 {
3757 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3758 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3759 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3760 p->data[0].funcpointer = a;
3761 p->data[1].pointer = b;
3762 p->data[2].object = c;
3763 return val;
3764 }
3765
3766 /* Return a Lisp_Save_Value object that represents an array A
3767 of N Lisp objects. */
3768
3769 Lisp_Object
3770 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3771 {
3772 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3773 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3774 p->save_type = SAVE_TYPE_MEMORY;
3775 p->data[0].pointer = a;
3776 p->data[1].integer = n;
3777 return val;
3778 }
3779
3780 /* Free a Lisp_Save_Value object. Do not use this function
3781 if SAVE contains pointer other than returned by xmalloc. */
3782
3783 void
3784 free_save_value (Lisp_Object save)
3785 {
3786 xfree (XSAVE_POINTER (save, 0));
3787 free_misc (save);
3788 }
3789
3790 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3791
3792 Lisp_Object
3793 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3794 {
3795 register Lisp_Object overlay;
3796
3797 overlay = allocate_misc (Lisp_Misc_Overlay);
3798 OVERLAY_START (overlay) = start;
3799 OVERLAY_END (overlay) = end;
3800 set_overlay_plist (overlay, plist);
3801 XOVERLAY (overlay)->next = NULL;
3802 return overlay;
3803 }
3804
3805 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3806 doc: /* Return a newly allocated marker which does not point at any place. */)
3807 (void)
3808 {
3809 register Lisp_Object val;
3810 register struct Lisp_Marker *p;
3811
3812 val = allocate_misc (Lisp_Misc_Marker);
3813 p = XMARKER (val);
3814 p->buffer = 0;
3815 p->bytepos = 0;
3816 p->charpos = 0;
3817 p->next = NULL;
3818 p->insertion_type = 0;
3819 p->need_adjustment = 0;
3820 return val;
3821 }
3822
3823 /* Return a newly allocated marker which points into BUF
3824 at character position CHARPOS and byte position BYTEPOS. */
3825
3826 Lisp_Object
3827 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3828 {
3829 Lisp_Object obj;
3830 struct Lisp_Marker *m;
3831
3832 /* No dead buffers here. */
3833 eassert (BUFFER_LIVE_P (buf));
3834
3835 /* Every character is at least one byte. */
3836 eassert (charpos <= bytepos);
3837
3838 obj = allocate_misc (Lisp_Misc_Marker);
3839 m = XMARKER (obj);
3840 m->buffer = buf;
3841 m->charpos = charpos;
3842 m->bytepos = bytepos;
3843 m->insertion_type = 0;
3844 m->need_adjustment = 0;
3845 m->next = BUF_MARKERS (buf);
3846 BUF_MARKERS (buf) = m;
3847 return obj;
3848 }
3849
3850 /* Put MARKER back on the free list after using it temporarily. */
3851
3852 void
3853 free_marker (Lisp_Object marker)
3854 {
3855 unchain_marker (XMARKER (marker));
3856 free_misc (marker);
3857 }
3858
3859 \f
3860 /* Return a newly created vector or string with specified arguments as
3861 elements. If all the arguments are characters that can fit
3862 in a string of events, make a string; otherwise, make a vector.
3863
3864 Any number of arguments, even zero arguments, are allowed. */
3865
3866 Lisp_Object
3867 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3868 {
3869 ptrdiff_t i;
3870
3871 for (i = 0; i < nargs; i++)
3872 /* The things that fit in a string
3873 are characters that are in 0...127,
3874 after discarding the meta bit and all the bits above it. */
3875 if (!INTEGERP (args[i])
3876 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3877 return Fvector (nargs, args);
3878
3879 /* Since the loop exited, we know that all the things in it are
3880 characters, so we can make a string. */
3881 {
3882 Lisp_Object result;
3883
3884 result = Fmake_string (make_number (nargs), make_number (0));
3885 for (i = 0; i < nargs; i++)
3886 {
3887 SSET (result, i, XINT (args[i]));
3888 /* Move the meta bit to the right place for a string char. */
3889 if (XINT (args[i]) & CHAR_META)
3890 SSET (result, i, SREF (result, i) | 0x80);
3891 }
3892
3893 return result;
3894 }
3895 }
3896
3897 #ifdef HAVE_MODULES
3898 /* Create a new module user ptr object. */
3899 Lisp_Object
3900 make_user_ptr (void (*finalizer) (void *), void *p)
3901 {
3902 Lisp_Object obj;
3903 struct Lisp_User_Ptr *uptr;
3904
3905 obj = allocate_misc (Lisp_Misc_User_Ptr);
3906 uptr = XUSER_PTR (obj);
3907 uptr->finalizer = finalizer;
3908 uptr->p = p;
3909 return obj;
3910 }
3911
3912 #endif
3913
3914 static void
3915 init_finalizer_list (struct Lisp_Finalizer *head)
3916 {
3917 head->prev = head->next = head;
3918 }
3919
3920 /* Insert FINALIZER before ELEMENT. */
3921
3922 static void
3923 finalizer_insert (struct Lisp_Finalizer *element,
3924 struct Lisp_Finalizer *finalizer)
3925 {
3926 eassert (finalizer->prev == NULL);
3927 eassert (finalizer->next == NULL);
3928 finalizer->next = element;
3929 finalizer->prev = element->prev;
3930 finalizer->prev->next = finalizer;
3931 element->prev = finalizer;
3932 }
3933
3934 static void
3935 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3936 {
3937 if (finalizer->prev != NULL)
3938 {
3939 eassert (finalizer->next != NULL);
3940 finalizer->prev->next = finalizer->next;
3941 finalizer->next->prev = finalizer->prev;
3942 finalizer->prev = finalizer->next = NULL;
3943 }
3944 }
3945
3946 static void
3947 mark_finalizer_list (struct Lisp_Finalizer *head)
3948 {
3949 for (struct Lisp_Finalizer *finalizer = head->next;
3950 finalizer != head;
3951 finalizer = finalizer->next)
3952 {
3953 finalizer->base.gcmarkbit = true;
3954 mark_object (finalizer->function);
3955 }
3956 }
3957
3958 /* Move doomed finalizers to list DEST from list SRC. A doomed
3959 finalizer is one that is not GC-reachable and whose
3960 finalizer->function is non-nil. */
3961
3962 static void
3963 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3964 struct Lisp_Finalizer *src)
3965 {
3966 struct Lisp_Finalizer *finalizer = src->next;
3967 while (finalizer != src)
3968 {
3969 struct Lisp_Finalizer *next = finalizer->next;
3970 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3971 {
3972 unchain_finalizer (finalizer);
3973 finalizer_insert (dest, finalizer);
3974 }
3975
3976 finalizer = next;
3977 }
3978 }
3979
3980 static Lisp_Object
3981 run_finalizer_handler (Lisp_Object args)
3982 {
3983 add_to_log ("finalizer failed: %S", args);
3984 return Qnil;
3985 }
3986
3987 static void
3988 run_finalizer_function (Lisp_Object function)
3989 {
3990 ptrdiff_t count = SPECPDL_INDEX ();
3991
3992 specbind (Qinhibit_quit, Qt);
3993 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3994 unbind_to (count, Qnil);
3995 }
3996
3997 static void
3998 run_finalizers (struct Lisp_Finalizer *finalizers)
3999 {
4000 struct Lisp_Finalizer *finalizer;
4001 Lisp_Object function;
4002
4003 while (finalizers->next != finalizers)
4004 {
4005 finalizer = finalizers->next;
4006 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
4007 unchain_finalizer (finalizer);
4008 function = finalizer->function;
4009 if (!NILP (function))
4010 {
4011 finalizer->function = Qnil;
4012 run_finalizer_function (function);
4013 }
4014 }
4015 }
4016
4017 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4018 doc: /* Make a finalizer that will run FUNCTION.
4019 FUNCTION will be called after garbage collection when the returned
4020 finalizer object becomes unreachable. If the finalizer object is
4021 reachable only through references from finalizer objects, it does not
4022 count as reachable for the purpose of deciding whether to run
4023 FUNCTION. FUNCTION will be run once per finalizer object. */)
4024 (Lisp_Object function)
4025 {
4026 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4027 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4028 finalizer->function = function;
4029 finalizer->prev = finalizer->next = NULL;
4030 finalizer_insert (&finalizers, finalizer);
4031 return val;
4032 }
4033
4034 \f
4035 /************************************************************************
4036 Memory Full Handling
4037 ************************************************************************/
4038
4039
4040 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4041 there may have been size_t overflow so that malloc was never
4042 called, or perhaps malloc was invoked successfully but the
4043 resulting pointer had problems fitting into a tagged EMACS_INT. In
4044 either case this counts as memory being full even though malloc did
4045 not fail. */
4046
4047 void
4048 memory_full (size_t nbytes)
4049 {
4050 /* Do not go into hysterics merely because a large request failed. */
4051 bool enough_free_memory = 0;
4052 if (SPARE_MEMORY < nbytes)
4053 {
4054 void *p;
4055
4056 MALLOC_BLOCK_INPUT;
4057 p = malloc (SPARE_MEMORY);
4058 if (p)
4059 {
4060 free (p);
4061 enough_free_memory = 1;
4062 }
4063 MALLOC_UNBLOCK_INPUT;
4064 }
4065
4066 if (! enough_free_memory)
4067 {
4068 int i;
4069
4070 Vmemory_full = Qt;
4071
4072 memory_full_cons_threshold = sizeof (struct cons_block);
4073
4074 /* The first time we get here, free the spare memory. */
4075 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4076 if (spare_memory[i])
4077 {
4078 if (i == 0)
4079 free (spare_memory[i]);
4080 else if (i >= 1 && i <= 4)
4081 lisp_align_free (spare_memory[i]);
4082 else
4083 lisp_free (spare_memory[i]);
4084 spare_memory[i] = 0;
4085 }
4086 }
4087
4088 /* This used to call error, but if we've run out of memory, we could
4089 get infinite recursion trying to build the string. */
4090 xsignal (Qnil, Vmemory_signal_data);
4091 }
4092
4093 /* If we released our reserve (due to running out of memory),
4094 and we have a fair amount free once again,
4095 try to set aside another reserve in case we run out once more.
4096
4097 This is called when a relocatable block is freed in ralloc.c,
4098 and also directly from this file, in case we're not using ralloc.c. */
4099
4100 void
4101 refill_memory_reserve (void)
4102 {
4103 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4104 if (spare_memory[0] == 0)
4105 spare_memory[0] = malloc (SPARE_MEMORY);
4106 if (spare_memory[1] == 0)
4107 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4108 MEM_TYPE_SPARE);
4109 if (spare_memory[2] == 0)
4110 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4111 MEM_TYPE_SPARE);
4112 if (spare_memory[3] == 0)
4113 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4114 MEM_TYPE_SPARE);
4115 if (spare_memory[4] == 0)
4116 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4117 MEM_TYPE_SPARE);
4118 if (spare_memory[5] == 0)
4119 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4120 MEM_TYPE_SPARE);
4121 if (spare_memory[6] == 0)
4122 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4123 MEM_TYPE_SPARE);
4124 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4125 Vmemory_full = Qnil;
4126 #endif
4127 }
4128 \f
4129 /************************************************************************
4130 C Stack Marking
4131 ************************************************************************/
4132
4133 /* Conservative C stack marking requires a method to identify possibly
4134 live Lisp objects given a pointer value. We do this by keeping
4135 track of blocks of Lisp data that are allocated in a red-black tree
4136 (see also the comment of mem_node which is the type of nodes in
4137 that tree). Function lisp_malloc adds information for an allocated
4138 block to the red-black tree with calls to mem_insert, and function
4139 lisp_free removes it with mem_delete. Functions live_string_p etc
4140 call mem_find to lookup information about a given pointer in the
4141 tree, and use that to determine if the pointer points to a Lisp
4142 object or not. */
4143
4144 /* Initialize this part of alloc.c. */
4145
4146 static void
4147 mem_init (void)
4148 {
4149 mem_z.left = mem_z.right = MEM_NIL;
4150 mem_z.parent = NULL;
4151 mem_z.color = MEM_BLACK;
4152 mem_z.start = mem_z.end = NULL;
4153 mem_root = MEM_NIL;
4154 }
4155
4156
4157 /* Value is a pointer to the mem_node containing START. Value is
4158 MEM_NIL if there is no node in the tree containing START. */
4159
4160 static struct mem_node *
4161 mem_find (void *start)
4162 {
4163 struct mem_node *p;
4164
4165 if (start < min_heap_address || start > max_heap_address)
4166 return MEM_NIL;
4167
4168 /* Make the search always successful to speed up the loop below. */
4169 mem_z.start = start;
4170 mem_z.end = (char *) start + 1;
4171
4172 p = mem_root;
4173 while (start < p->start || start >= p->end)
4174 p = start < p->start ? p->left : p->right;
4175 return p;
4176 }
4177
4178
4179 /* Insert a new node into the tree for a block of memory with start
4180 address START, end address END, and type TYPE. Value is a
4181 pointer to the node that was inserted. */
4182
4183 static struct mem_node *
4184 mem_insert (void *start, void *end, enum mem_type type)
4185 {
4186 struct mem_node *c, *parent, *x;
4187
4188 if (min_heap_address == NULL || start < min_heap_address)
4189 min_heap_address = start;
4190 if (max_heap_address == NULL || end > max_heap_address)
4191 max_heap_address = end;
4192
4193 /* See where in the tree a node for START belongs. In this
4194 particular application, it shouldn't happen that a node is already
4195 present. For debugging purposes, let's check that. */
4196 c = mem_root;
4197 parent = NULL;
4198
4199 while (c != MEM_NIL)
4200 {
4201 parent = c;
4202 c = start < c->start ? c->left : c->right;
4203 }
4204
4205 /* Create a new node. */
4206 #ifdef GC_MALLOC_CHECK
4207 x = malloc (sizeof *x);
4208 if (x == NULL)
4209 emacs_abort ();
4210 #else
4211 x = xmalloc (sizeof *x);
4212 #endif
4213 x->start = start;
4214 x->end = end;
4215 x->type = type;
4216 x->parent = parent;
4217 x->left = x->right = MEM_NIL;
4218 x->color = MEM_RED;
4219
4220 /* Insert it as child of PARENT or install it as root. */
4221 if (parent)
4222 {
4223 if (start < parent->start)
4224 parent->left = x;
4225 else
4226 parent->right = x;
4227 }
4228 else
4229 mem_root = x;
4230
4231 /* Re-establish red-black tree properties. */
4232 mem_insert_fixup (x);
4233
4234 return x;
4235 }
4236
4237
4238 /* Re-establish the red-black properties of the tree, and thereby
4239 balance the tree, after node X has been inserted; X is always red. */
4240
4241 static void
4242 mem_insert_fixup (struct mem_node *x)
4243 {
4244 while (x != mem_root && x->parent->color == MEM_RED)
4245 {
4246 /* X is red and its parent is red. This is a violation of
4247 red-black tree property #3. */
4248
4249 if (x->parent == x->parent->parent->left)
4250 {
4251 /* We're on the left side of our grandparent, and Y is our
4252 "uncle". */
4253 struct mem_node *y = x->parent->parent->right;
4254
4255 if (y->color == MEM_RED)
4256 {
4257 /* Uncle and parent are red but should be black because
4258 X is red. Change the colors accordingly and proceed
4259 with the grandparent. */
4260 x->parent->color = MEM_BLACK;
4261 y->color = MEM_BLACK;
4262 x->parent->parent->color = MEM_RED;
4263 x = x->parent->parent;
4264 }
4265 else
4266 {
4267 /* Parent and uncle have different colors; parent is
4268 red, uncle is black. */
4269 if (x == x->parent->right)
4270 {
4271 x = x->parent;
4272 mem_rotate_left (x);
4273 }
4274
4275 x->parent->color = MEM_BLACK;
4276 x->parent->parent->color = MEM_RED;
4277 mem_rotate_right (x->parent->parent);
4278 }
4279 }
4280 else
4281 {
4282 /* This is the symmetrical case of above. */
4283 struct mem_node *y = x->parent->parent->left;
4284
4285 if (y->color == MEM_RED)
4286 {
4287 x->parent->color = MEM_BLACK;
4288 y->color = MEM_BLACK;
4289 x->parent->parent->color = MEM_RED;
4290 x = x->parent->parent;
4291 }
4292 else
4293 {
4294 if (x == x->parent->left)
4295 {
4296 x = x->parent;
4297 mem_rotate_right (x);
4298 }
4299
4300 x->parent->color = MEM_BLACK;
4301 x->parent->parent->color = MEM_RED;
4302 mem_rotate_left (x->parent->parent);
4303 }
4304 }
4305 }
4306
4307 /* The root may have been changed to red due to the algorithm. Set
4308 it to black so that property #5 is satisfied. */
4309 mem_root->color = MEM_BLACK;
4310 }
4311
4312
4313 /* (x) (y)
4314 / \ / \
4315 a (y) ===> (x) c
4316 / \ / \
4317 b c a b */
4318
4319 static void
4320 mem_rotate_left (struct mem_node *x)
4321 {
4322 struct mem_node *y;
4323
4324 /* Turn y's left sub-tree into x's right sub-tree. */
4325 y = x->right;
4326 x->right = y->left;
4327 if (y->left != MEM_NIL)
4328 y->left->parent = x;
4329
4330 /* Y's parent was x's parent. */
4331 if (y != MEM_NIL)
4332 y->parent = x->parent;
4333
4334 /* Get the parent to point to y instead of x. */
4335 if (x->parent)
4336 {
4337 if (x == x->parent->left)
4338 x->parent->left = y;
4339 else
4340 x->parent->right = y;
4341 }
4342 else
4343 mem_root = y;
4344
4345 /* Put x on y's left. */
4346 y->left = x;
4347 if (x != MEM_NIL)
4348 x->parent = y;
4349 }
4350
4351
4352 /* (x) (Y)
4353 / \ / \
4354 (y) c ===> a (x)
4355 / \ / \
4356 a b b c */
4357
4358 static void
4359 mem_rotate_right (struct mem_node *x)
4360 {
4361 struct mem_node *y = x->left;
4362
4363 x->left = y->right;
4364 if (y->right != MEM_NIL)
4365 y->right->parent = x;
4366
4367 if (y != MEM_NIL)
4368 y->parent = x->parent;
4369 if (x->parent)
4370 {
4371 if (x == x->parent->right)
4372 x->parent->right = y;
4373 else
4374 x->parent->left = y;
4375 }
4376 else
4377 mem_root = y;
4378
4379 y->right = x;
4380 if (x != MEM_NIL)
4381 x->parent = y;
4382 }
4383
4384
4385 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4386
4387 static void
4388 mem_delete (struct mem_node *z)
4389 {
4390 struct mem_node *x, *y;
4391
4392 if (!z || z == MEM_NIL)
4393 return;
4394
4395 if (z->left == MEM_NIL || z->right == MEM_NIL)
4396 y = z;
4397 else
4398 {
4399 y = z->right;
4400 while (y->left != MEM_NIL)
4401 y = y->left;
4402 }
4403
4404 if (y->left != MEM_NIL)
4405 x = y->left;
4406 else
4407 x = y->right;
4408
4409 x->parent = y->parent;
4410 if (y->parent)
4411 {
4412 if (y == y->parent->left)
4413 y->parent->left = x;
4414 else
4415 y->parent->right = x;
4416 }
4417 else
4418 mem_root = x;
4419
4420 if (y != z)
4421 {
4422 z->start = y->start;
4423 z->end = y->end;
4424 z->type = y->type;
4425 }
4426
4427 if (y->color == MEM_BLACK)
4428 mem_delete_fixup (x);
4429
4430 #ifdef GC_MALLOC_CHECK
4431 free (y);
4432 #else
4433 xfree (y);
4434 #endif
4435 }
4436
4437
4438 /* Re-establish the red-black properties of the tree, after a
4439 deletion. */
4440
4441 static void
4442 mem_delete_fixup (struct mem_node *x)
4443 {
4444 while (x != mem_root && x->color == MEM_BLACK)
4445 {
4446 if (x == x->parent->left)
4447 {
4448 struct mem_node *w = x->parent->right;
4449
4450 if (w->color == MEM_RED)
4451 {
4452 w->color = MEM_BLACK;
4453 x->parent->color = MEM_RED;
4454 mem_rotate_left (x->parent);
4455 w = x->parent->right;
4456 }
4457
4458 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4459 {
4460 w->color = MEM_RED;
4461 x = x->parent;
4462 }
4463 else
4464 {
4465 if (w->right->color == MEM_BLACK)
4466 {
4467 w->left->color = MEM_BLACK;
4468 w->color = MEM_RED;
4469 mem_rotate_right (w);
4470 w = x->parent->right;
4471 }
4472 w->color = x->parent->color;
4473 x->parent->color = MEM_BLACK;
4474 w->right->color = MEM_BLACK;
4475 mem_rotate_left (x->parent);
4476 x = mem_root;
4477 }
4478 }
4479 else
4480 {
4481 struct mem_node *w = x->parent->left;
4482
4483 if (w->color == MEM_RED)
4484 {
4485 w->color = MEM_BLACK;
4486 x->parent->color = MEM_RED;
4487 mem_rotate_right (x->parent);
4488 w = x->parent->left;
4489 }
4490
4491 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4492 {
4493 w->color = MEM_RED;
4494 x = x->parent;
4495 }
4496 else
4497 {
4498 if (w->left->color == MEM_BLACK)
4499 {
4500 w->right->color = MEM_BLACK;
4501 w->color = MEM_RED;
4502 mem_rotate_left (w);
4503 w = x->parent->left;
4504 }
4505
4506 w->color = x->parent->color;
4507 x->parent->color = MEM_BLACK;
4508 w->left->color = MEM_BLACK;
4509 mem_rotate_right (x->parent);
4510 x = mem_root;
4511 }
4512 }
4513 }
4514
4515 x->color = MEM_BLACK;
4516 }
4517
4518
4519 /* Value is non-zero if P is a pointer to a live Lisp string on
4520 the heap. M is a pointer to the mem_block for P. */
4521
4522 static bool
4523 live_string_p (struct mem_node *m, void *p)
4524 {
4525 if (m->type == MEM_TYPE_STRING)
4526 {
4527 struct string_block *b = m->start;
4528 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4529
4530 /* P must point to the start of a Lisp_String structure, and it
4531 must not be on the free-list. */
4532 return (offset >= 0
4533 && offset % sizeof b->strings[0] == 0
4534 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4535 && ((struct Lisp_String *) p)->data != NULL);
4536 }
4537 else
4538 return 0;
4539 }
4540
4541
4542 /* Value is non-zero if P is a pointer to a live Lisp cons on
4543 the heap. M is a pointer to the mem_block for P. */
4544
4545 static bool
4546 live_cons_p (struct mem_node *m, void *p)
4547 {
4548 if (m->type == MEM_TYPE_CONS)
4549 {
4550 struct cons_block *b = m->start;
4551 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4552
4553 /* P must point to the start of a Lisp_Cons, not be
4554 one of the unused cells in the current cons block,
4555 and not be on the free-list. */
4556 return (offset >= 0
4557 && offset % sizeof b->conses[0] == 0
4558 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4559 && (b != cons_block
4560 || offset / sizeof b->conses[0] < cons_block_index)
4561 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4562 }
4563 else
4564 return 0;
4565 }
4566
4567
4568 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4569 the heap. M is a pointer to the mem_block for P. */
4570
4571 static bool
4572 live_symbol_p (struct mem_node *m, void *p)
4573 {
4574 if (m->type == MEM_TYPE_SYMBOL)
4575 {
4576 struct symbol_block *b = m->start;
4577 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4578
4579 /* P must point to the start of a Lisp_Symbol, not be
4580 one of the unused cells in the current symbol block,
4581 and not be on the free-list. */
4582 return (offset >= 0
4583 && offset % sizeof b->symbols[0] == 0
4584 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4585 && (b != symbol_block
4586 || offset / sizeof b->symbols[0] < symbol_block_index)
4587 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4588 }
4589 else
4590 return 0;
4591 }
4592
4593
4594 /* Value is non-zero if P is a pointer to a live Lisp float on
4595 the heap. M is a pointer to the mem_block for P. */
4596
4597 static bool
4598 live_float_p (struct mem_node *m, void *p)
4599 {
4600 if (m->type == MEM_TYPE_FLOAT)
4601 {
4602 struct float_block *b = m->start;
4603 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4604
4605 /* P must point to the start of a Lisp_Float and not be
4606 one of the unused cells in the current float block. */
4607 return (offset >= 0
4608 && offset % sizeof b->floats[0] == 0
4609 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4610 && (b != float_block
4611 || offset / sizeof b->floats[0] < float_block_index));
4612 }
4613 else
4614 return 0;
4615 }
4616
4617
4618 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4619 the heap. M is a pointer to the mem_block for P. */
4620
4621 static bool
4622 live_misc_p (struct mem_node *m, void *p)
4623 {
4624 if (m->type == MEM_TYPE_MISC)
4625 {
4626 struct marker_block *b = m->start;
4627 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4628
4629 /* P must point to the start of a Lisp_Misc, not be
4630 one of the unused cells in the current misc block,
4631 and not be on the free-list. */
4632 return (offset >= 0
4633 && offset % sizeof b->markers[0] == 0
4634 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4635 && (b != marker_block
4636 || offset / sizeof b->markers[0] < marker_block_index)
4637 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4638 }
4639 else
4640 return 0;
4641 }
4642
4643
4644 /* Value is non-zero if P is a pointer to a live vector-like object.
4645 M is a pointer to the mem_block for P. */
4646
4647 static bool
4648 live_vector_p (struct mem_node *m, void *p)
4649 {
4650 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4651 {
4652 /* This memory node corresponds to a vector block. */
4653 struct vector_block *block = m->start;
4654 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4655
4656 /* P is in the block's allocation range. Scan the block
4657 up to P and see whether P points to the start of some
4658 vector which is not on a free list. FIXME: check whether
4659 some allocation patterns (probably a lot of short vectors)
4660 may cause a substantial overhead of this loop. */
4661 while (VECTOR_IN_BLOCK (vector, block)
4662 && vector <= (struct Lisp_Vector *) p)
4663 {
4664 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4665 return 1;
4666 else
4667 vector = ADVANCE (vector, vector_nbytes (vector));
4668 }
4669 }
4670 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4671 /* This memory node corresponds to a large vector. */
4672 return 1;
4673 return 0;
4674 }
4675
4676
4677 /* Value is non-zero if P is a pointer to a live buffer. M is a
4678 pointer to the mem_block for P. */
4679
4680 static bool
4681 live_buffer_p (struct mem_node *m, void *p)
4682 {
4683 /* P must point to the start of the block, and the buffer
4684 must not have been killed. */
4685 return (m->type == MEM_TYPE_BUFFER
4686 && p == m->start
4687 && !NILP (((struct buffer *) p)->name_));
4688 }
4689
4690 /* Mark OBJ if we can prove it's a Lisp_Object. */
4691
4692 static void
4693 mark_maybe_object (Lisp_Object obj)
4694 {
4695 #if USE_VALGRIND
4696 if (valgrind_p)
4697 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4698 #endif
4699
4700 if (INTEGERP (obj))
4701 return;
4702
4703 void *po = XPNTR (obj);
4704 struct mem_node *m = mem_find (po);
4705
4706 if (m != MEM_NIL)
4707 {
4708 bool mark_p = false;
4709
4710 switch (XTYPE (obj))
4711 {
4712 case Lisp_String:
4713 mark_p = (live_string_p (m, po)
4714 && !STRING_MARKED_P ((struct Lisp_String *) po));
4715 break;
4716
4717 case Lisp_Cons:
4718 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4719 break;
4720
4721 case Lisp_Symbol:
4722 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4723 break;
4724
4725 case Lisp_Float:
4726 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4727 break;
4728
4729 case Lisp_Vectorlike:
4730 /* Note: can't check BUFFERP before we know it's a
4731 buffer because checking that dereferences the pointer
4732 PO which might point anywhere. */
4733 if (live_vector_p (m, po))
4734 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4735 else if (live_buffer_p (m, po))
4736 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4737 break;
4738
4739 case Lisp_Misc:
4740 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4741 break;
4742
4743 default:
4744 break;
4745 }
4746
4747 if (mark_p)
4748 mark_object (obj);
4749 }
4750 }
4751
4752 /* Return true if P can point to Lisp data, and false otherwise.
4753 Symbols are implemented via offsets not pointers, but the offsets
4754 are also multiples of GCALIGNMENT. */
4755
4756 static bool
4757 maybe_lisp_pointer (void *p)
4758 {
4759 return (uintptr_t) p % GCALIGNMENT == 0;
4760 }
4761
4762 #ifndef HAVE_MODULES
4763 enum { HAVE_MODULES = false };
4764 #endif
4765
4766 /* If P points to Lisp data, mark that as live if it isn't already
4767 marked. */
4768
4769 static void
4770 mark_maybe_pointer (void *p)
4771 {
4772 struct mem_node *m;
4773
4774 #if USE_VALGRIND
4775 if (valgrind_p)
4776 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4777 #endif
4778
4779 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4780 {
4781 if (!maybe_lisp_pointer (p))
4782 return;
4783 }
4784 else
4785 {
4786 /* For the wide-int case, also mark emacs_value tagged pointers,
4787 which can be generated by emacs-module.c's value_to_lisp. */
4788 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4789 }
4790
4791 m = mem_find (p);
4792 if (m != MEM_NIL)
4793 {
4794 Lisp_Object obj = Qnil;
4795
4796 switch (m->type)
4797 {
4798 case MEM_TYPE_NON_LISP:
4799 case MEM_TYPE_SPARE:
4800 /* Nothing to do; not a pointer to Lisp memory. */
4801 break;
4802
4803 case MEM_TYPE_BUFFER:
4804 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4805 XSETVECTOR (obj, p);
4806 break;
4807
4808 case MEM_TYPE_CONS:
4809 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4810 XSETCONS (obj, p);
4811 break;
4812
4813 case MEM_TYPE_STRING:
4814 if (live_string_p (m, p)
4815 && !STRING_MARKED_P ((struct Lisp_String *) p))
4816 XSETSTRING (obj, p);
4817 break;
4818
4819 case MEM_TYPE_MISC:
4820 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4821 XSETMISC (obj, p);
4822 break;
4823
4824 case MEM_TYPE_SYMBOL:
4825 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4826 XSETSYMBOL (obj, p);
4827 break;
4828
4829 case MEM_TYPE_FLOAT:
4830 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4831 XSETFLOAT (obj, p);
4832 break;
4833
4834 case MEM_TYPE_VECTORLIKE:
4835 case MEM_TYPE_VECTOR_BLOCK:
4836 if (live_vector_p (m, p))
4837 {
4838 Lisp_Object tem;
4839 XSETVECTOR (tem, p);
4840 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4841 obj = tem;
4842 }
4843 break;
4844
4845 default:
4846 emacs_abort ();
4847 }
4848
4849 if (!NILP (obj))
4850 mark_object (obj);
4851 }
4852 }
4853
4854
4855 /* Alignment of pointer values. Use alignof, as it sometimes returns
4856 a smaller alignment than GCC's __alignof__ and mark_memory might
4857 miss objects if __alignof__ were used. */
4858 #define GC_POINTER_ALIGNMENT alignof (void *)
4859
4860 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4861 or END+OFFSET..START. */
4862
4863 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4864 mark_memory (void *start, void *end)
4865 {
4866 char *pp;
4867
4868 /* Make START the pointer to the start of the memory region,
4869 if it isn't already. */
4870 if (end < start)
4871 {
4872 void *tem = start;
4873 start = end;
4874 end = tem;
4875 }
4876
4877 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4878
4879 /* Mark Lisp data pointed to. This is necessary because, in some
4880 situations, the C compiler optimizes Lisp objects away, so that
4881 only a pointer to them remains. Example:
4882
4883 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4884 ()
4885 {
4886 Lisp_Object obj = build_string ("test");
4887 struct Lisp_String *s = XSTRING (obj);
4888 Fgarbage_collect ();
4889 fprintf (stderr, "test '%s'\n", s->data);
4890 return Qnil;
4891 }
4892
4893 Here, `obj' isn't really used, and the compiler optimizes it
4894 away. The only reference to the life string is through the
4895 pointer `s'. */
4896
4897 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4898 {
4899 mark_maybe_pointer (*(void **) pp);
4900 mark_maybe_object (*(Lisp_Object *) pp);
4901 }
4902 }
4903
4904 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4905
4906 static bool setjmp_tested_p;
4907 static int longjmps_done;
4908
4909 #define SETJMP_WILL_LIKELY_WORK "\
4910 \n\
4911 Emacs garbage collector has been changed to use conservative stack\n\
4912 marking. Emacs has determined that the method it uses to do the\n\
4913 marking will likely work on your system, but this isn't sure.\n\
4914 \n\
4915 If you are a system-programmer, or can get the help of a local wizard\n\
4916 who is, please take a look at the function mark_stack in alloc.c, and\n\
4917 verify that the methods used are appropriate for your system.\n\
4918 \n\
4919 Please mail the result to <emacs-devel@gnu.org>.\n\
4920 "
4921
4922 #define SETJMP_WILL_NOT_WORK "\
4923 \n\
4924 Emacs garbage collector has been changed to use conservative stack\n\
4925 marking. Emacs has determined that the default method it uses to do the\n\
4926 marking will not work on your system. We will need a system-dependent\n\
4927 solution for your system.\n\
4928 \n\
4929 Please take a look at the function mark_stack in alloc.c, and\n\
4930 try to find a way to make it work on your system.\n\
4931 \n\
4932 Note that you may get false negatives, depending on the compiler.\n\
4933 In particular, you need to use -O with GCC for this test.\n\
4934 \n\
4935 Please mail the result to <emacs-devel@gnu.org>.\n\
4936 "
4937
4938
4939 /* Perform a quick check if it looks like setjmp saves registers in a
4940 jmp_buf. Print a message to stderr saying so. When this test
4941 succeeds, this is _not_ a proof that setjmp is sufficient for
4942 conservative stack marking. Only the sources or a disassembly
4943 can prove that. */
4944
4945 static void
4946 test_setjmp (void)
4947 {
4948 char buf[10];
4949 register int x;
4950 sys_jmp_buf jbuf;
4951
4952 /* Arrange for X to be put in a register. */
4953 sprintf (buf, "1");
4954 x = strlen (buf);
4955 x = 2 * x - 1;
4956
4957 sys_setjmp (jbuf);
4958 if (longjmps_done == 1)
4959 {
4960 /* Came here after the longjmp at the end of the function.
4961
4962 If x == 1, the longjmp has restored the register to its
4963 value before the setjmp, and we can hope that setjmp
4964 saves all such registers in the jmp_buf, although that
4965 isn't sure.
4966
4967 For other values of X, either something really strange is
4968 taking place, or the setjmp just didn't save the register. */
4969
4970 if (x == 1)
4971 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4972 else
4973 {
4974 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4975 exit (1);
4976 }
4977 }
4978
4979 ++longjmps_done;
4980 x = 2;
4981 if (longjmps_done == 1)
4982 sys_longjmp (jbuf, 1);
4983 }
4984
4985 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4986
4987
4988 /* Mark live Lisp objects on the C stack.
4989
4990 There are several system-dependent problems to consider when
4991 porting this to new architectures:
4992
4993 Processor Registers
4994
4995 We have to mark Lisp objects in CPU registers that can hold local
4996 variables or are used to pass parameters.
4997
4998 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4999 something that either saves relevant registers on the stack, or
5000 calls mark_maybe_object passing it each register's contents.
5001
5002 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
5003 implementation assumes that calling setjmp saves registers we need
5004 to see in a jmp_buf which itself lies on the stack. This doesn't
5005 have to be true! It must be verified for each system, possibly
5006 by taking a look at the source code of setjmp.
5007
5008 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5009 can use it as a machine independent method to store all registers
5010 to the stack. In this case the macros described in the previous
5011 two paragraphs are not used.
5012
5013 Stack Layout
5014
5015 Architectures differ in the way their processor stack is organized.
5016 For example, the stack might look like this
5017
5018 +----------------+
5019 | Lisp_Object | size = 4
5020 +----------------+
5021 | something else | size = 2
5022 +----------------+
5023 | Lisp_Object | size = 4
5024 +----------------+
5025 | ... |
5026
5027 In such a case, not every Lisp_Object will be aligned equally. To
5028 find all Lisp_Object on the stack it won't be sufficient to walk
5029 the stack in steps of 4 bytes. Instead, two passes will be
5030 necessary, one starting at the start of the stack, and a second
5031 pass starting at the start of the stack + 2. Likewise, if the
5032 minimal alignment of Lisp_Objects on the stack is 1, four passes
5033 would be necessary, each one starting with one byte more offset
5034 from the stack start. */
5035
5036 static void
5037 mark_stack (void *end)
5038 {
5039
5040 /* This assumes that the stack is a contiguous region in memory. If
5041 that's not the case, something has to be done here to iterate
5042 over the stack segments. */
5043 mark_memory (stack_base, end);
5044
5045 /* Allow for marking a secondary stack, like the register stack on the
5046 ia64. */
5047 #ifdef GC_MARK_SECONDARY_STACK
5048 GC_MARK_SECONDARY_STACK ();
5049 #endif
5050 }
5051
5052 static bool
5053 c_symbol_p (struct Lisp_Symbol *sym)
5054 {
5055 char *lispsym_ptr = (char *) lispsym;
5056 char *sym_ptr = (char *) sym;
5057 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5058 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5059 }
5060
5061 /* Determine whether it is safe to access memory at address P. */
5062 static int
5063 valid_pointer_p (void *p)
5064 {
5065 #ifdef WINDOWSNT
5066 return w32_valid_pointer_p (p, 16);
5067 #else
5068
5069 if (ADDRESS_SANITIZER)
5070 return p ? -1 : 0;
5071
5072 int fd[2];
5073
5074 /* Obviously, we cannot just access it (we would SEGV trying), so we
5075 trick the o/s to tell us whether p is a valid pointer.
5076 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5077 not validate p in that case. */
5078
5079 if (emacs_pipe (fd) == 0)
5080 {
5081 bool valid = emacs_write (fd[1], p, 16) == 16;
5082 emacs_close (fd[1]);
5083 emacs_close (fd[0]);
5084 return valid;
5085 }
5086
5087 return -1;
5088 #endif
5089 }
5090
5091 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5092 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5093 cannot validate OBJ. This function can be quite slow, so its primary
5094 use is the manual debugging. The only exception is print_object, where
5095 we use it to check whether the memory referenced by the pointer of
5096 Lisp_Save_Value object contains valid objects. */
5097
5098 int
5099 valid_lisp_object_p (Lisp_Object obj)
5100 {
5101 if (INTEGERP (obj))
5102 return 1;
5103
5104 void *p = XPNTR (obj);
5105 if (PURE_P (p))
5106 return 1;
5107
5108 if (SYMBOLP (obj) && c_symbol_p (p))
5109 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5110
5111 if (p == &buffer_defaults || p == &buffer_local_symbols)
5112 return 2;
5113
5114 struct mem_node *m = mem_find (p);
5115
5116 if (m == MEM_NIL)
5117 {
5118 int valid = valid_pointer_p (p);
5119 if (valid <= 0)
5120 return valid;
5121
5122 if (SUBRP (obj))
5123 return 1;
5124
5125 return 0;
5126 }
5127
5128 switch (m->type)
5129 {
5130 case MEM_TYPE_NON_LISP:
5131 case MEM_TYPE_SPARE:
5132 return 0;
5133
5134 case MEM_TYPE_BUFFER:
5135 return live_buffer_p (m, p) ? 1 : 2;
5136
5137 case MEM_TYPE_CONS:
5138 return live_cons_p (m, p);
5139
5140 case MEM_TYPE_STRING:
5141 return live_string_p (m, p);
5142
5143 case MEM_TYPE_MISC:
5144 return live_misc_p (m, p);
5145
5146 case MEM_TYPE_SYMBOL:
5147 return live_symbol_p (m, p);
5148
5149 case MEM_TYPE_FLOAT:
5150 return live_float_p (m, p);
5151
5152 case MEM_TYPE_VECTORLIKE:
5153 case MEM_TYPE_VECTOR_BLOCK:
5154 return live_vector_p (m, p);
5155
5156 default:
5157 break;
5158 }
5159
5160 return 0;
5161 }
5162
5163 /***********************************************************************
5164 Pure Storage Management
5165 ***********************************************************************/
5166
5167 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5168 pointer to it. TYPE is the Lisp type for which the memory is
5169 allocated. TYPE < 0 means it's not used for a Lisp object. */
5170
5171 static void *
5172 pure_alloc (size_t size, int type)
5173 {
5174 void *result;
5175
5176 again:
5177 if (type >= 0)
5178 {
5179 /* Allocate space for a Lisp object from the beginning of the free
5180 space with taking account of alignment. */
5181 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5182 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5183 }
5184 else
5185 {
5186 /* Allocate space for a non-Lisp object from the end of the free
5187 space. */
5188 pure_bytes_used_non_lisp += size;
5189 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5190 }
5191 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5192
5193 if (pure_bytes_used <= pure_size)
5194 return result;
5195
5196 /* Don't allocate a large amount here,
5197 because it might get mmap'd and then its address
5198 might not be usable. */
5199 purebeg = xmalloc (10000);
5200 pure_size = 10000;
5201 pure_bytes_used_before_overflow += pure_bytes_used - size;
5202 pure_bytes_used = 0;
5203 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5204 goto again;
5205 }
5206
5207
5208 /* Print a warning if PURESIZE is too small. */
5209
5210 void
5211 check_pure_size (void)
5212 {
5213 if (pure_bytes_used_before_overflow)
5214 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5215 " bytes needed)"),
5216 pure_bytes_used + pure_bytes_used_before_overflow);
5217 }
5218
5219
5220 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5221 the non-Lisp data pool of the pure storage, and return its start
5222 address. Return NULL if not found. */
5223
5224 static char *
5225 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5226 {
5227 int i;
5228 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5229 const unsigned char *p;
5230 char *non_lisp_beg;
5231
5232 if (pure_bytes_used_non_lisp <= nbytes)
5233 return NULL;
5234
5235 /* Set up the Boyer-Moore table. */
5236 skip = nbytes + 1;
5237 for (i = 0; i < 256; i++)
5238 bm_skip[i] = skip;
5239
5240 p = (const unsigned char *) data;
5241 while (--skip > 0)
5242 bm_skip[*p++] = skip;
5243
5244 last_char_skip = bm_skip['\0'];
5245
5246 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5247 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5248
5249 /* See the comments in the function `boyer_moore' (search.c) for the
5250 use of `infinity'. */
5251 infinity = pure_bytes_used_non_lisp + 1;
5252 bm_skip['\0'] = infinity;
5253
5254 p = (const unsigned char *) non_lisp_beg + nbytes;
5255 start = 0;
5256 do
5257 {
5258 /* Check the last character (== '\0'). */
5259 do
5260 {
5261 start += bm_skip[*(p + start)];
5262 }
5263 while (start <= start_max);
5264
5265 if (start < infinity)
5266 /* Couldn't find the last character. */
5267 return NULL;
5268
5269 /* No less than `infinity' means we could find the last
5270 character at `p[start - infinity]'. */
5271 start -= infinity;
5272
5273 /* Check the remaining characters. */
5274 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5275 /* Found. */
5276 return non_lisp_beg + start;
5277
5278 start += last_char_skip;
5279 }
5280 while (start <= start_max);
5281
5282 return NULL;
5283 }
5284
5285
5286 /* Return a string allocated in pure space. DATA is a buffer holding
5287 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5288 means make the result string multibyte.
5289
5290 Must get an error if pure storage is full, since if it cannot hold
5291 a large string it may be able to hold conses that point to that
5292 string; then the string is not protected from gc. */
5293
5294 Lisp_Object
5295 make_pure_string (const char *data,
5296 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5297 {
5298 Lisp_Object string;
5299 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5300 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5301 if (s->data == NULL)
5302 {
5303 s->data = pure_alloc (nbytes + 1, -1);
5304 memcpy (s->data, data, nbytes);
5305 s->data[nbytes] = '\0';
5306 }
5307 s->size = nchars;
5308 s->size_byte = multibyte ? nbytes : -1;
5309 s->intervals = NULL;
5310 XSETSTRING (string, s);
5311 return string;
5312 }
5313
5314 /* Return a string allocated in pure space. Do not
5315 allocate the string data, just point to DATA. */
5316
5317 Lisp_Object
5318 make_pure_c_string (const char *data, ptrdiff_t nchars)
5319 {
5320 Lisp_Object string;
5321 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5322 s->size = nchars;
5323 s->size_byte = -1;
5324 s->data = (unsigned char *) data;
5325 s->intervals = NULL;
5326 XSETSTRING (string, s);
5327 return string;
5328 }
5329
5330 static Lisp_Object purecopy (Lisp_Object obj);
5331
5332 /* Return a cons allocated from pure space. Give it pure copies
5333 of CAR as car and CDR as cdr. */
5334
5335 Lisp_Object
5336 pure_cons (Lisp_Object car, Lisp_Object cdr)
5337 {
5338 Lisp_Object new;
5339 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5340 XSETCONS (new, p);
5341 XSETCAR (new, purecopy (car));
5342 XSETCDR (new, purecopy (cdr));
5343 return new;
5344 }
5345
5346
5347 /* Value is a float object with value NUM allocated from pure space. */
5348
5349 static Lisp_Object
5350 make_pure_float (double num)
5351 {
5352 Lisp_Object new;
5353 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5354 XSETFLOAT (new, p);
5355 XFLOAT_INIT (new, num);
5356 return new;
5357 }
5358
5359
5360 /* Return a vector with room for LEN Lisp_Objects allocated from
5361 pure space. */
5362
5363 static Lisp_Object
5364 make_pure_vector (ptrdiff_t len)
5365 {
5366 Lisp_Object new;
5367 size_t size = header_size + len * word_size;
5368 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5369 XSETVECTOR (new, p);
5370 XVECTOR (new)->header.size = len;
5371 return new;
5372 }
5373
5374 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5375 doc: /* Make a copy of object OBJ in pure storage.
5376 Recursively copies contents of vectors and cons cells.
5377 Does not copy symbols. Copies strings without text properties. */)
5378 (register Lisp_Object obj)
5379 {
5380 if (NILP (Vpurify_flag))
5381 return obj;
5382 else if (MARKERP (obj) || OVERLAYP (obj)
5383 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5384 /* Can't purify those. */
5385 return obj;
5386 else
5387 return purecopy (obj);
5388 }
5389
5390 static Lisp_Object
5391 purecopy (Lisp_Object obj)
5392 {
5393 if (INTEGERP (obj)
5394 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5395 || SUBRP (obj))
5396 return obj; /* Already pure. */
5397
5398 if (STRINGP (obj) && XSTRING (obj)->intervals)
5399 message_with_string ("Dropping text-properties while making string `%s' pure",
5400 obj, true);
5401
5402 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5403 {
5404 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5405 if (!NILP (tmp))
5406 return tmp;
5407 }
5408
5409 if (CONSP (obj))
5410 obj = pure_cons (XCAR (obj), XCDR (obj));
5411 else if (FLOATP (obj))
5412 obj = make_pure_float (XFLOAT_DATA (obj));
5413 else if (STRINGP (obj))
5414 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5415 SBYTES (obj),
5416 STRING_MULTIBYTE (obj));
5417 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5418 {
5419 struct Lisp_Vector *objp = XVECTOR (obj);
5420 ptrdiff_t nbytes = vector_nbytes (objp);
5421 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5422 register ptrdiff_t i;
5423 ptrdiff_t size = ASIZE (obj);
5424 if (size & PSEUDOVECTOR_FLAG)
5425 size &= PSEUDOVECTOR_SIZE_MASK;
5426 memcpy (vec, objp, nbytes);
5427 for (i = 0; i < size; i++)
5428 vec->contents[i] = purecopy (vec->contents[i]);
5429 XSETVECTOR (obj, vec);
5430 }
5431 else if (SYMBOLP (obj))
5432 {
5433 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5434 { /* We can't purify them, but they appear in many pure objects.
5435 Mark them as `pinned' so we know to mark them at every GC cycle. */
5436 XSYMBOL (obj)->pinned = true;
5437 symbol_block_pinned = symbol_block;
5438 }
5439 /* Don't hash-cons it. */
5440 return obj;
5441 }
5442 else
5443 {
5444 AUTO_STRING (fmt, "Don't know how to purify: %S");
5445 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5446 }
5447
5448 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5449 Fputhash (obj, obj, Vpurify_flag);
5450
5451 return obj;
5452 }
5453
5454
5455 \f
5456 /***********************************************************************
5457 Protection from GC
5458 ***********************************************************************/
5459
5460 /* Put an entry in staticvec, pointing at the variable with address
5461 VARADDRESS. */
5462
5463 void
5464 staticpro (Lisp_Object *varaddress)
5465 {
5466 if (staticidx >= NSTATICS)
5467 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5468 staticvec[staticidx++] = varaddress;
5469 }
5470
5471 \f
5472 /***********************************************************************
5473 Protection from GC
5474 ***********************************************************************/
5475
5476 /* Temporarily prevent garbage collection. */
5477
5478 ptrdiff_t
5479 inhibit_garbage_collection (void)
5480 {
5481 ptrdiff_t count = SPECPDL_INDEX ();
5482
5483 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5484 return count;
5485 }
5486
5487 /* Used to avoid possible overflows when
5488 converting from C to Lisp integers. */
5489
5490 static Lisp_Object
5491 bounded_number (EMACS_INT number)
5492 {
5493 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5494 }
5495
5496 /* Calculate total bytes of live objects. */
5497
5498 static size_t
5499 total_bytes_of_live_objects (void)
5500 {
5501 size_t tot = 0;
5502 tot += total_conses * sizeof (struct Lisp_Cons);
5503 tot += total_symbols * sizeof (struct Lisp_Symbol);
5504 tot += total_markers * sizeof (union Lisp_Misc);
5505 tot += total_string_bytes;
5506 tot += total_vector_slots * word_size;
5507 tot += total_floats * sizeof (struct Lisp_Float);
5508 tot += total_intervals * sizeof (struct interval);
5509 tot += total_strings * sizeof (struct Lisp_String);
5510 return tot;
5511 }
5512
5513 #ifdef HAVE_WINDOW_SYSTEM
5514
5515 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5516 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5517
5518 static Lisp_Object
5519 compact_font_cache_entry (Lisp_Object entry)
5520 {
5521 Lisp_Object tail, *prev = &entry;
5522
5523 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5524 {
5525 bool drop = 0;
5526 Lisp_Object obj = XCAR (tail);
5527
5528 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5529 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5530 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5531 /* Don't use VECTORP here, as that calls ASIZE, which could
5532 hit assertion violation during GC. */
5533 && (VECTORLIKEP (XCDR (obj))
5534 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5535 {
5536 ptrdiff_t i, size = gc_asize (XCDR (obj));
5537 Lisp_Object obj_cdr = XCDR (obj);
5538
5539 /* If font-spec is not marked, most likely all font-entities
5540 are not marked too. But we must be sure that nothing is
5541 marked within OBJ before we really drop it. */
5542 for (i = 0; i < size; i++)
5543 {
5544 Lisp_Object objlist;
5545
5546 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5547 break;
5548
5549 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5550 for (; CONSP (objlist); objlist = XCDR (objlist))
5551 {
5552 Lisp_Object val = XCAR (objlist);
5553 struct font *font = GC_XFONT_OBJECT (val);
5554
5555 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5556 && VECTOR_MARKED_P(font))
5557 break;
5558 }
5559 if (CONSP (objlist))
5560 {
5561 /* Found a marked font, bail out. */
5562 break;
5563 }
5564 }
5565
5566 if (i == size)
5567 {
5568 /* No marked fonts were found, so this entire font
5569 entity can be dropped. */
5570 drop = 1;
5571 }
5572 }
5573 if (drop)
5574 *prev = XCDR (tail);
5575 else
5576 prev = xcdr_addr (tail);
5577 }
5578 return entry;
5579 }
5580
5581 /* Compact font caches on all terminals and mark
5582 everything which is still here after compaction. */
5583
5584 static void
5585 compact_font_caches (void)
5586 {
5587 struct terminal *t;
5588
5589 for (t = terminal_list; t; t = t->next_terminal)
5590 {
5591 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5592 if (CONSP (cache))
5593 {
5594 Lisp_Object entry;
5595
5596 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5597 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5598 }
5599 mark_object (cache);
5600 }
5601 }
5602
5603 #else /* not HAVE_WINDOW_SYSTEM */
5604
5605 #define compact_font_caches() (void)(0)
5606
5607 #endif /* HAVE_WINDOW_SYSTEM */
5608
5609 /* Remove (MARKER . DATA) entries with unmarked MARKER
5610 from buffer undo LIST and return changed list. */
5611
5612 static Lisp_Object
5613 compact_undo_list (Lisp_Object list)
5614 {
5615 Lisp_Object tail, *prev = &list;
5616
5617 for (tail = list; CONSP (tail); tail = XCDR (tail))
5618 {
5619 if (CONSP (XCAR (tail))
5620 && MARKERP (XCAR (XCAR (tail)))
5621 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5622 *prev = XCDR (tail);
5623 else
5624 prev = xcdr_addr (tail);
5625 }
5626 return list;
5627 }
5628
5629 static void
5630 mark_pinned_symbols (void)
5631 {
5632 struct symbol_block *sblk;
5633 int lim = (symbol_block_pinned == symbol_block
5634 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5635
5636 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5637 {
5638 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5639 for (; sym < end; ++sym)
5640 if (sym->s.pinned)
5641 mark_object (make_lisp_symbol (&sym->s));
5642
5643 lim = SYMBOL_BLOCK_SIZE;
5644 }
5645 }
5646
5647 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5648 separate function so that we could limit mark_stack in searching
5649 the stack frames below this function, thus avoiding the rare cases
5650 where mark_stack finds values that look like live Lisp objects on
5651 portions of stack that couldn't possibly contain such live objects.
5652 For more details of this, see the discussion at
5653 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5654 static Lisp_Object
5655 garbage_collect_1 (void *end)
5656 {
5657 struct buffer *nextb;
5658 char stack_top_variable;
5659 ptrdiff_t i;
5660 bool message_p;
5661 ptrdiff_t count = SPECPDL_INDEX ();
5662 struct timespec start;
5663 Lisp_Object retval = Qnil;
5664 size_t tot_before = 0;
5665
5666 if (abort_on_gc)
5667 emacs_abort ();
5668
5669 /* Can't GC if pure storage overflowed because we can't determine
5670 if something is a pure object or not. */
5671 if (pure_bytes_used_before_overflow)
5672 return Qnil;
5673
5674 /* Record this function, so it appears on the profiler's backtraces. */
5675 record_in_backtrace (QAutomatic_GC, 0, 0);
5676
5677 check_cons_list ();
5678
5679 /* Don't keep undo information around forever.
5680 Do this early on, so it is no problem if the user quits. */
5681 FOR_EACH_BUFFER (nextb)
5682 compact_buffer (nextb);
5683
5684 if (profiler_memory_running)
5685 tot_before = total_bytes_of_live_objects ();
5686
5687 start = current_timespec ();
5688
5689 /* In case user calls debug_print during GC,
5690 don't let that cause a recursive GC. */
5691 consing_since_gc = 0;
5692
5693 /* Save what's currently displayed in the echo area. Don't do that
5694 if we are GC'ing because we've run out of memory, since
5695 push_message will cons, and we might have no memory for that. */
5696 if (NILP (Vmemory_full))
5697 {
5698 message_p = push_message ();
5699 record_unwind_protect_void (pop_message_unwind);
5700 }
5701 else
5702 message_p = false;
5703
5704 /* Save a copy of the contents of the stack, for debugging. */
5705 #if MAX_SAVE_STACK > 0
5706 if (NILP (Vpurify_flag))
5707 {
5708 char *stack;
5709 ptrdiff_t stack_size;
5710 if (&stack_top_variable < stack_bottom)
5711 {
5712 stack = &stack_top_variable;
5713 stack_size = stack_bottom - &stack_top_variable;
5714 }
5715 else
5716 {
5717 stack = stack_bottom;
5718 stack_size = &stack_top_variable - stack_bottom;
5719 }
5720 if (stack_size <= MAX_SAVE_STACK)
5721 {
5722 if (stack_copy_size < stack_size)
5723 {
5724 stack_copy = xrealloc (stack_copy, stack_size);
5725 stack_copy_size = stack_size;
5726 }
5727 no_sanitize_memcpy (stack_copy, stack, stack_size);
5728 }
5729 }
5730 #endif /* MAX_SAVE_STACK > 0 */
5731
5732 if (garbage_collection_messages)
5733 message1_nolog ("Garbage collecting...");
5734
5735 block_input ();
5736
5737 shrink_regexp_cache ();
5738
5739 gc_in_progress = 1;
5740
5741 /* Mark all the special slots that serve as the roots of accessibility. */
5742
5743 mark_buffer (&buffer_defaults);
5744 mark_buffer (&buffer_local_symbols);
5745
5746 for (i = 0; i < ARRAYELTS (lispsym); i++)
5747 mark_object (builtin_lisp_symbol (i));
5748
5749 for (i = 0; i < staticidx; i++)
5750 mark_object (*staticvec[i]);
5751
5752 mark_pinned_symbols ();
5753 mark_specpdl ();
5754 mark_terminals ();
5755 mark_kboards ();
5756
5757 #ifdef USE_GTK
5758 xg_mark_data ();
5759 #endif
5760
5761 mark_stack (end);
5762
5763 {
5764 struct handler *handler;
5765 for (handler = handlerlist; handler; handler = handler->next)
5766 {
5767 mark_object (handler->tag_or_ch);
5768 mark_object (handler->val);
5769 }
5770 }
5771 #ifdef HAVE_WINDOW_SYSTEM
5772 mark_fringe_data ();
5773 #endif
5774
5775 /* Everything is now marked, except for the data in font caches,
5776 undo lists, and finalizers. The first two are compacted by
5777 removing an items which aren't reachable otherwise. */
5778
5779 compact_font_caches ();
5780
5781 FOR_EACH_BUFFER (nextb)
5782 {
5783 if (!EQ (BVAR (nextb, undo_list), Qt))
5784 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5785 /* Now that we have stripped the elements that need not be
5786 in the undo_list any more, we can finally mark the list. */
5787 mark_object (BVAR (nextb, undo_list));
5788 }
5789
5790 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5791 to doomed_finalizers so we can run their associated functions
5792 after GC. It's important to scan finalizers at this stage so
5793 that we can be sure that unmarked finalizers are really
5794 unreachable except for references from their associated functions
5795 and from other finalizers. */
5796
5797 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5798 mark_finalizer_list (&doomed_finalizers);
5799
5800 gc_sweep ();
5801
5802 relocate_byte_stack ();
5803
5804 /* Clear the mark bits that we set in certain root slots. */
5805 VECTOR_UNMARK (&buffer_defaults);
5806 VECTOR_UNMARK (&buffer_local_symbols);
5807
5808 check_cons_list ();
5809
5810 gc_in_progress = 0;
5811
5812 unblock_input ();
5813
5814 consing_since_gc = 0;
5815 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5816 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5817
5818 gc_relative_threshold = 0;
5819 if (FLOATP (Vgc_cons_percentage))
5820 { /* Set gc_cons_combined_threshold. */
5821 double tot = total_bytes_of_live_objects ();
5822
5823 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5824 if (0 < tot)
5825 {
5826 if (tot < TYPE_MAXIMUM (EMACS_INT))
5827 gc_relative_threshold = tot;
5828 else
5829 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5830 }
5831 }
5832
5833 if (garbage_collection_messages && NILP (Vmemory_full))
5834 {
5835 if (message_p || minibuf_level > 0)
5836 restore_message ();
5837 else
5838 message1_nolog ("Garbage collecting...done");
5839 }
5840
5841 unbind_to (count, Qnil);
5842
5843 Lisp_Object total[] = {
5844 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5845 bounded_number (total_conses),
5846 bounded_number (total_free_conses)),
5847 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5848 bounded_number (total_symbols),
5849 bounded_number (total_free_symbols)),
5850 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5851 bounded_number (total_markers),
5852 bounded_number (total_free_markers)),
5853 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5854 bounded_number (total_strings),
5855 bounded_number (total_free_strings)),
5856 list3 (Qstring_bytes, make_number (1),
5857 bounded_number (total_string_bytes)),
5858 list3 (Qvectors,
5859 make_number (header_size + sizeof (Lisp_Object)),
5860 bounded_number (total_vectors)),
5861 list4 (Qvector_slots, make_number (word_size),
5862 bounded_number (total_vector_slots),
5863 bounded_number (total_free_vector_slots)),
5864 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5865 bounded_number (total_floats),
5866 bounded_number (total_free_floats)),
5867 list4 (Qintervals, make_number (sizeof (struct interval)),
5868 bounded_number (total_intervals),
5869 bounded_number (total_free_intervals)),
5870 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5871 bounded_number (total_buffers)),
5872
5873 #ifdef DOUG_LEA_MALLOC
5874 list4 (Qheap, make_number (1024),
5875 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5876 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5877 #endif
5878 };
5879 retval = CALLMANY (Flist, total);
5880
5881 /* GC is complete: now we can run our finalizer callbacks. */
5882 run_finalizers (&doomed_finalizers);
5883
5884 if (!NILP (Vpost_gc_hook))
5885 {
5886 ptrdiff_t gc_count = inhibit_garbage_collection ();
5887 safe_run_hooks (Qpost_gc_hook);
5888 unbind_to (gc_count, Qnil);
5889 }
5890
5891 /* Accumulate statistics. */
5892 if (FLOATP (Vgc_elapsed))
5893 {
5894 struct timespec since_start = timespec_sub (current_timespec (), start);
5895 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5896 + timespectod (since_start));
5897 }
5898
5899 gcs_done++;
5900
5901 /* Collect profiling data. */
5902 if (profiler_memory_running)
5903 {
5904 size_t swept = 0;
5905 size_t tot_after = total_bytes_of_live_objects ();
5906 if (tot_before > tot_after)
5907 swept = tot_before - tot_after;
5908 malloc_probe (swept);
5909 }
5910
5911 return retval;
5912 }
5913
5914 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5915 doc: /* Reclaim storage for Lisp objects no longer needed.
5916 Garbage collection happens automatically if you cons more than
5917 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5918 `garbage-collect' normally returns a list with info on amount of space in use,
5919 where each entry has the form (NAME SIZE USED FREE), where:
5920 - NAME is a symbol describing the kind of objects this entry represents,
5921 - SIZE is the number of bytes used by each one,
5922 - USED is the number of those objects that were found live in the heap,
5923 - FREE is the number of those objects that are not live but that Emacs
5924 keeps around for future allocations (maybe because it does not know how
5925 to return them to the OS).
5926 However, if there was overflow in pure space, `garbage-collect'
5927 returns nil, because real GC can't be done.
5928 See Info node `(elisp)Garbage Collection'. */)
5929 (void)
5930 {
5931 void *end;
5932
5933 #ifdef HAVE___BUILTIN_UNWIND_INIT
5934 /* Force callee-saved registers and register windows onto the stack.
5935 This is the preferred method if available, obviating the need for
5936 machine dependent methods. */
5937 __builtin_unwind_init ();
5938 end = &end;
5939 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5940 #ifndef GC_SAVE_REGISTERS_ON_STACK
5941 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5942 union aligned_jmpbuf {
5943 Lisp_Object o;
5944 sys_jmp_buf j;
5945 } j;
5946 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5947 #endif
5948 /* This trick flushes the register windows so that all the state of
5949 the process is contained in the stack. */
5950 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5951 needed on ia64 too. See mach_dep.c, where it also says inline
5952 assembler doesn't work with relevant proprietary compilers. */
5953 #ifdef __sparc__
5954 #if defined (__sparc64__) && defined (__FreeBSD__)
5955 /* FreeBSD does not have a ta 3 handler. */
5956 asm ("flushw");
5957 #else
5958 asm ("ta 3");
5959 #endif
5960 #endif
5961
5962 /* Save registers that we need to see on the stack. We need to see
5963 registers used to hold register variables and registers used to
5964 pass parameters. */
5965 #ifdef GC_SAVE_REGISTERS_ON_STACK
5966 GC_SAVE_REGISTERS_ON_STACK (end);
5967 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5968
5969 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5970 setjmp will definitely work, test it
5971 and print a message with the result
5972 of the test. */
5973 if (!setjmp_tested_p)
5974 {
5975 setjmp_tested_p = 1;
5976 test_setjmp ();
5977 }
5978 #endif /* GC_SETJMP_WORKS */
5979
5980 sys_setjmp (j.j);
5981 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5982 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5983 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5984 return garbage_collect_1 (end);
5985 }
5986
5987 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5988 only interesting objects referenced from glyphs are strings. */
5989
5990 static void
5991 mark_glyph_matrix (struct glyph_matrix *matrix)
5992 {
5993 struct glyph_row *row = matrix->rows;
5994 struct glyph_row *end = row + matrix->nrows;
5995
5996 for (; row < end; ++row)
5997 if (row->enabled_p)
5998 {
5999 int area;
6000 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6001 {
6002 struct glyph *glyph = row->glyphs[area];
6003 struct glyph *end_glyph = glyph + row->used[area];
6004
6005 for (; glyph < end_glyph; ++glyph)
6006 if (STRINGP (glyph->object)
6007 && !STRING_MARKED_P (XSTRING (glyph->object)))
6008 mark_object (glyph->object);
6009 }
6010 }
6011 }
6012
6013 /* Mark reference to a Lisp_Object.
6014 If the object referred to has not been seen yet, recursively mark
6015 all the references contained in it. */
6016
6017 #define LAST_MARKED_SIZE 500
6018 static Lisp_Object last_marked[LAST_MARKED_SIZE];
6019 static int last_marked_index;
6020
6021 /* For debugging--call abort when we cdr down this many
6022 links of a list, in mark_object. In debugging,
6023 the call to abort will hit a breakpoint.
6024 Normally this is zero and the check never goes off. */
6025 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6026
6027 static void
6028 mark_vectorlike (struct Lisp_Vector *ptr)
6029 {
6030 ptrdiff_t size = ptr->header.size;
6031 ptrdiff_t i;
6032
6033 eassert (!VECTOR_MARKED_P (ptr));
6034 VECTOR_MARK (ptr); /* Else mark it. */
6035 if (size & PSEUDOVECTOR_FLAG)
6036 size &= PSEUDOVECTOR_SIZE_MASK;
6037
6038 /* Note that this size is not the memory-footprint size, but only
6039 the number of Lisp_Object fields that we should trace.
6040 The distinction is used e.g. by Lisp_Process which places extra
6041 non-Lisp_Object fields at the end of the structure... */
6042 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6043 mark_object (ptr->contents[i]);
6044 }
6045
6046 /* Like mark_vectorlike but optimized for char-tables (and
6047 sub-char-tables) assuming that the contents are mostly integers or
6048 symbols. */
6049
6050 static void
6051 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6052 {
6053 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6054 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6055 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6056
6057 eassert (!VECTOR_MARKED_P (ptr));
6058 VECTOR_MARK (ptr);
6059 for (i = idx; i < size; i++)
6060 {
6061 Lisp_Object val = ptr->contents[i];
6062
6063 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6064 continue;
6065 if (SUB_CHAR_TABLE_P (val))
6066 {
6067 if (! VECTOR_MARKED_P (XVECTOR (val)))
6068 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6069 }
6070 else
6071 mark_object (val);
6072 }
6073 }
6074
6075 NO_INLINE /* To reduce stack depth in mark_object. */
6076 static Lisp_Object
6077 mark_compiled (struct Lisp_Vector *ptr)
6078 {
6079 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6080
6081 VECTOR_MARK (ptr);
6082 for (i = 0; i < size; i++)
6083 if (i != COMPILED_CONSTANTS)
6084 mark_object (ptr->contents[i]);
6085 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6086 }
6087
6088 /* Mark the chain of overlays starting at PTR. */
6089
6090 static void
6091 mark_overlay (struct Lisp_Overlay *ptr)
6092 {
6093 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6094 {
6095 ptr->gcmarkbit = 1;
6096 /* These two are always markers and can be marked fast. */
6097 XMARKER (ptr->start)->gcmarkbit = 1;
6098 XMARKER (ptr->end)->gcmarkbit = 1;
6099 mark_object (ptr->plist);
6100 }
6101 }
6102
6103 /* Mark Lisp_Objects and special pointers in BUFFER. */
6104
6105 static void
6106 mark_buffer (struct buffer *buffer)
6107 {
6108 /* This is handled much like other pseudovectors... */
6109 mark_vectorlike ((struct Lisp_Vector *) buffer);
6110
6111 /* ...but there are some buffer-specific things. */
6112
6113 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6114
6115 /* For now, we just don't mark the undo_list. It's done later in
6116 a special way just before the sweep phase, and after stripping
6117 some of its elements that are not needed any more. */
6118
6119 mark_overlay (buffer->overlays_before);
6120 mark_overlay (buffer->overlays_after);
6121
6122 /* If this is an indirect buffer, mark its base buffer. */
6123 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6124 mark_buffer (buffer->base_buffer);
6125 }
6126
6127 /* Mark Lisp faces in the face cache C. */
6128
6129 NO_INLINE /* To reduce stack depth in mark_object. */
6130 static void
6131 mark_face_cache (struct face_cache *c)
6132 {
6133 if (c)
6134 {
6135 int i, j;
6136 for (i = 0; i < c->used; ++i)
6137 {
6138 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6139
6140 if (face)
6141 {
6142 if (face->font && !VECTOR_MARKED_P (face->font))
6143 mark_vectorlike ((struct Lisp_Vector *) face->font);
6144
6145 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6146 mark_object (face->lface[j]);
6147 }
6148 }
6149 }
6150 }
6151
6152 NO_INLINE /* To reduce stack depth in mark_object. */
6153 static void
6154 mark_localized_symbol (struct Lisp_Symbol *ptr)
6155 {
6156 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6157 Lisp_Object where = blv->where;
6158 /* If the value is set up for a killed buffer or deleted
6159 frame, restore its global binding. If the value is
6160 forwarded to a C variable, either it's not a Lisp_Object
6161 var, or it's staticpro'd already. */
6162 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6163 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6164 swap_in_global_binding (ptr);
6165 mark_object (blv->where);
6166 mark_object (blv->valcell);
6167 mark_object (blv->defcell);
6168 }
6169
6170 NO_INLINE /* To reduce stack depth in mark_object. */
6171 static void
6172 mark_save_value (struct Lisp_Save_Value *ptr)
6173 {
6174 /* If `save_type' is zero, `data[0].pointer' is the address
6175 of a memory area containing `data[1].integer' potential
6176 Lisp_Objects. */
6177 if (ptr->save_type == SAVE_TYPE_MEMORY)
6178 {
6179 Lisp_Object *p = ptr->data[0].pointer;
6180 ptrdiff_t nelt;
6181 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6182 mark_maybe_object (*p);
6183 }
6184 else
6185 {
6186 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6187 int i;
6188 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6189 if (save_type (ptr, i) == SAVE_OBJECT)
6190 mark_object (ptr->data[i].object);
6191 }
6192 }
6193
6194 /* Remove killed buffers or items whose car is a killed buffer from
6195 LIST, and mark other items. Return changed LIST, which is marked. */
6196
6197 static Lisp_Object
6198 mark_discard_killed_buffers (Lisp_Object list)
6199 {
6200 Lisp_Object tail, *prev = &list;
6201
6202 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6203 tail = XCDR (tail))
6204 {
6205 Lisp_Object tem = XCAR (tail);
6206 if (CONSP (tem))
6207 tem = XCAR (tem);
6208 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6209 *prev = XCDR (tail);
6210 else
6211 {
6212 CONS_MARK (XCONS (tail));
6213 mark_object (XCAR (tail));
6214 prev = xcdr_addr (tail);
6215 }
6216 }
6217 mark_object (tail);
6218 return list;
6219 }
6220
6221 /* Determine type of generic Lisp_Object and mark it accordingly.
6222
6223 This function implements a straightforward depth-first marking
6224 algorithm and so the recursion depth may be very high (a few
6225 tens of thousands is not uncommon). To minimize stack usage,
6226 a few cold paths are moved out to NO_INLINE functions above.
6227 In general, inlining them doesn't help you to gain more speed. */
6228
6229 void
6230 mark_object (Lisp_Object arg)
6231 {
6232 register Lisp_Object obj;
6233 void *po;
6234 #ifdef GC_CHECK_MARKED_OBJECTS
6235 struct mem_node *m;
6236 #endif
6237 ptrdiff_t cdr_count = 0;
6238
6239 obj = arg;
6240 loop:
6241
6242 po = XPNTR (obj);
6243 if (PURE_P (po))
6244 return;
6245
6246 last_marked[last_marked_index++] = obj;
6247 if (last_marked_index == LAST_MARKED_SIZE)
6248 last_marked_index = 0;
6249
6250 /* Perform some sanity checks on the objects marked here. Abort if
6251 we encounter an object we know is bogus. This increases GC time
6252 by ~80%. */
6253 #ifdef GC_CHECK_MARKED_OBJECTS
6254
6255 /* Check that the object pointed to by PO is known to be a Lisp
6256 structure allocated from the heap. */
6257 #define CHECK_ALLOCATED() \
6258 do { \
6259 m = mem_find (po); \
6260 if (m == MEM_NIL) \
6261 emacs_abort (); \
6262 } while (0)
6263
6264 /* Check that the object pointed to by PO is live, using predicate
6265 function LIVEP. */
6266 #define CHECK_LIVE(LIVEP) \
6267 do { \
6268 if (!LIVEP (m, po)) \
6269 emacs_abort (); \
6270 } while (0)
6271
6272 /* Check both of the above conditions, for non-symbols. */
6273 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6274 do { \
6275 CHECK_ALLOCATED (); \
6276 CHECK_LIVE (LIVEP); \
6277 } while (0) \
6278
6279 /* Check both of the above conditions, for symbols. */
6280 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6281 do { \
6282 if (!c_symbol_p (ptr)) \
6283 { \
6284 CHECK_ALLOCATED (); \
6285 CHECK_LIVE (live_symbol_p); \
6286 } \
6287 } while (0) \
6288
6289 #else /* not GC_CHECK_MARKED_OBJECTS */
6290
6291 #define CHECK_LIVE(LIVEP) ((void) 0)
6292 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6293 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6294
6295 #endif /* not GC_CHECK_MARKED_OBJECTS */
6296
6297 switch (XTYPE (obj))
6298 {
6299 case Lisp_String:
6300 {
6301 register struct Lisp_String *ptr = XSTRING (obj);
6302 if (STRING_MARKED_P (ptr))
6303 break;
6304 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6305 MARK_STRING (ptr);
6306 MARK_INTERVAL_TREE (ptr->intervals);
6307 #ifdef GC_CHECK_STRING_BYTES
6308 /* Check that the string size recorded in the string is the
6309 same as the one recorded in the sdata structure. */
6310 string_bytes (ptr);
6311 #endif /* GC_CHECK_STRING_BYTES */
6312 }
6313 break;
6314
6315 case Lisp_Vectorlike:
6316 {
6317 register struct Lisp_Vector *ptr = XVECTOR (obj);
6318 register ptrdiff_t pvectype;
6319
6320 if (VECTOR_MARKED_P (ptr))
6321 break;
6322
6323 #ifdef GC_CHECK_MARKED_OBJECTS
6324 m = mem_find (po);
6325 if (m == MEM_NIL && !SUBRP (obj))
6326 emacs_abort ();
6327 #endif /* GC_CHECK_MARKED_OBJECTS */
6328
6329 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6330 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6331 >> PSEUDOVECTOR_AREA_BITS);
6332 else
6333 pvectype = PVEC_NORMAL_VECTOR;
6334
6335 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6336 CHECK_LIVE (live_vector_p);
6337
6338 switch (pvectype)
6339 {
6340 case PVEC_BUFFER:
6341 #ifdef GC_CHECK_MARKED_OBJECTS
6342 {
6343 struct buffer *b;
6344 FOR_EACH_BUFFER (b)
6345 if (b == po)
6346 break;
6347 if (b == NULL)
6348 emacs_abort ();
6349 }
6350 #endif /* GC_CHECK_MARKED_OBJECTS */
6351 mark_buffer ((struct buffer *) ptr);
6352 break;
6353
6354 case PVEC_COMPILED:
6355 /* Although we could treat this just like a vector, mark_compiled
6356 returns the COMPILED_CONSTANTS element, which is marked at the
6357 next iteration of goto-loop here. This is done to avoid a few
6358 recursive calls to mark_object. */
6359 obj = mark_compiled (ptr);
6360 if (!NILP (obj))
6361 goto loop;
6362 break;
6363
6364 case PVEC_FRAME:
6365 {
6366 struct frame *f = (struct frame *) ptr;
6367
6368 mark_vectorlike (ptr);
6369 mark_face_cache (f->face_cache);
6370 #ifdef HAVE_WINDOW_SYSTEM
6371 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6372 {
6373 struct font *font = FRAME_FONT (f);
6374
6375 if (font && !VECTOR_MARKED_P (font))
6376 mark_vectorlike ((struct Lisp_Vector *) font);
6377 }
6378 #endif
6379 }
6380 break;
6381
6382 case PVEC_WINDOW:
6383 {
6384 struct window *w = (struct window *) ptr;
6385
6386 mark_vectorlike (ptr);
6387
6388 /* Mark glyph matrices, if any. Marking window
6389 matrices is sufficient because frame matrices
6390 use the same glyph memory. */
6391 if (w->current_matrix)
6392 {
6393 mark_glyph_matrix (w->current_matrix);
6394 mark_glyph_matrix (w->desired_matrix);
6395 }
6396
6397 /* Filter out killed buffers from both buffer lists
6398 in attempt to help GC to reclaim killed buffers faster.
6399 We can do it elsewhere for live windows, but this is the
6400 best place to do it for dead windows. */
6401 wset_prev_buffers
6402 (w, mark_discard_killed_buffers (w->prev_buffers));
6403 wset_next_buffers
6404 (w, mark_discard_killed_buffers (w->next_buffers));
6405 }
6406 break;
6407
6408 case PVEC_HASH_TABLE:
6409 {
6410 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6411
6412 mark_vectorlike (ptr);
6413 mark_object (h->test.name);
6414 mark_object (h->test.user_hash_function);
6415 mark_object (h->test.user_cmp_function);
6416 /* If hash table is not weak, mark all keys and values.
6417 For weak tables, mark only the vector. */
6418 if (NILP (h->weak))
6419 mark_object (h->key_and_value);
6420 else
6421 VECTOR_MARK (XVECTOR (h->key_and_value));
6422 }
6423 break;
6424
6425 case PVEC_CHAR_TABLE:
6426 case PVEC_SUB_CHAR_TABLE:
6427 mark_char_table (ptr, (enum pvec_type) pvectype);
6428 break;
6429
6430 case PVEC_BOOL_VECTOR:
6431 /* No Lisp_Objects to mark in a bool vector. */
6432 VECTOR_MARK (ptr);
6433 break;
6434
6435 case PVEC_SUBR:
6436 break;
6437
6438 case PVEC_FREE:
6439 emacs_abort ();
6440
6441 default:
6442 mark_vectorlike (ptr);
6443 }
6444 }
6445 break;
6446
6447 case Lisp_Symbol:
6448 {
6449 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6450 nextsym:
6451 if (ptr->gcmarkbit)
6452 break;
6453 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6454 ptr->gcmarkbit = 1;
6455 /* Attempt to catch bogus objects. */
6456 eassert (valid_lisp_object_p (ptr->function));
6457 mark_object (ptr->function);
6458 mark_object (ptr->plist);
6459 switch (ptr->redirect)
6460 {
6461 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6462 case SYMBOL_VARALIAS:
6463 {
6464 Lisp_Object tem;
6465 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6466 mark_object (tem);
6467 break;
6468 }
6469 case SYMBOL_LOCALIZED:
6470 mark_localized_symbol (ptr);
6471 break;
6472 case SYMBOL_FORWARDED:
6473 /* If the value is forwarded to a buffer or keyboard field,
6474 these are marked when we see the corresponding object.
6475 And if it's forwarded to a C variable, either it's not
6476 a Lisp_Object var, or it's staticpro'd already. */
6477 break;
6478 default: emacs_abort ();
6479 }
6480 if (!PURE_P (XSTRING (ptr->name)))
6481 MARK_STRING (XSTRING (ptr->name));
6482 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6483 /* Inner loop to mark next symbol in this bucket, if any. */
6484 po = ptr = ptr->next;
6485 if (ptr)
6486 goto nextsym;
6487 }
6488 break;
6489
6490 case Lisp_Misc:
6491 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6492
6493 if (XMISCANY (obj)->gcmarkbit)
6494 break;
6495
6496 switch (XMISCTYPE (obj))
6497 {
6498 case Lisp_Misc_Marker:
6499 /* DO NOT mark thru the marker's chain.
6500 The buffer's markers chain does not preserve markers from gc;
6501 instead, markers are removed from the chain when freed by gc. */
6502 XMISCANY (obj)->gcmarkbit = 1;
6503 break;
6504
6505 case Lisp_Misc_Save_Value:
6506 XMISCANY (obj)->gcmarkbit = 1;
6507 mark_save_value (XSAVE_VALUE (obj));
6508 break;
6509
6510 case Lisp_Misc_Overlay:
6511 mark_overlay (XOVERLAY (obj));
6512 break;
6513
6514 case Lisp_Misc_Finalizer:
6515 XMISCANY (obj)->gcmarkbit = true;
6516 mark_object (XFINALIZER (obj)->function);
6517 break;
6518
6519 #ifdef HAVE_MODULES
6520 case Lisp_Misc_User_Ptr:
6521 XMISCANY (obj)->gcmarkbit = true;
6522 break;
6523 #endif
6524
6525 default:
6526 emacs_abort ();
6527 }
6528 break;
6529
6530 case Lisp_Cons:
6531 {
6532 register struct Lisp_Cons *ptr = XCONS (obj);
6533 if (CONS_MARKED_P (ptr))
6534 break;
6535 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6536 CONS_MARK (ptr);
6537 /* If the cdr is nil, avoid recursion for the car. */
6538 if (EQ (ptr->u.cdr, Qnil))
6539 {
6540 obj = ptr->car;
6541 cdr_count = 0;
6542 goto loop;
6543 }
6544 mark_object (ptr->car);
6545 obj = ptr->u.cdr;
6546 cdr_count++;
6547 if (cdr_count == mark_object_loop_halt)
6548 emacs_abort ();
6549 goto loop;
6550 }
6551
6552 case Lisp_Float:
6553 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6554 FLOAT_MARK (XFLOAT (obj));
6555 break;
6556
6557 case_Lisp_Int:
6558 break;
6559
6560 default:
6561 emacs_abort ();
6562 }
6563
6564 #undef CHECK_LIVE
6565 #undef CHECK_ALLOCATED
6566 #undef CHECK_ALLOCATED_AND_LIVE
6567 }
6568 /* Mark the Lisp pointers in the terminal objects.
6569 Called by Fgarbage_collect. */
6570
6571 static void
6572 mark_terminals (void)
6573 {
6574 struct terminal *t;
6575 for (t = terminal_list; t; t = t->next_terminal)
6576 {
6577 eassert (t->name != NULL);
6578 #ifdef HAVE_WINDOW_SYSTEM
6579 /* If a terminal object is reachable from a stacpro'ed object,
6580 it might have been marked already. Make sure the image cache
6581 gets marked. */
6582 mark_image_cache (t->image_cache);
6583 #endif /* HAVE_WINDOW_SYSTEM */
6584 if (!VECTOR_MARKED_P (t))
6585 mark_vectorlike ((struct Lisp_Vector *)t);
6586 }
6587 }
6588
6589
6590
6591 /* Value is non-zero if OBJ will survive the current GC because it's
6592 either marked or does not need to be marked to survive. */
6593
6594 bool
6595 survives_gc_p (Lisp_Object obj)
6596 {
6597 bool survives_p;
6598
6599 switch (XTYPE (obj))
6600 {
6601 case_Lisp_Int:
6602 survives_p = 1;
6603 break;
6604
6605 case Lisp_Symbol:
6606 survives_p = XSYMBOL (obj)->gcmarkbit;
6607 break;
6608
6609 case Lisp_Misc:
6610 survives_p = XMISCANY (obj)->gcmarkbit;
6611 break;
6612
6613 case Lisp_String:
6614 survives_p = STRING_MARKED_P (XSTRING (obj));
6615 break;
6616
6617 case Lisp_Vectorlike:
6618 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6619 break;
6620
6621 case Lisp_Cons:
6622 survives_p = CONS_MARKED_P (XCONS (obj));
6623 break;
6624
6625 case Lisp_Float:
6626 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6627 break;
6628
6629 default:
6630 emacs_abort ();
6631 }
6632
6633 return survives_p || PURE_P (XPNTR (obj));
6634 }
6635
6636
6637 \f
6638
6639 NO_INLINE /* For better stack traces */
6640 static void
6641 sweep_conses (void)
6642 {
6643 struct cons_block *cblk;
6644 struct cons_block **cprev = &cons_block;
6645 int lim = cons_block_index;
6646 EMACS_INT num_free = 0, num_used = 0;
6647
6648 cons_free_list = 0;
6649
6650 for (cblk = cons_block; cblk; cblk = *cprev)
6651 {
6652 int i = 0;
6653 int this_free = 0;
6654 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6655
6656 /* Scan the mark bits an int at a time. */
6657 for (i = 0; i < ilim; i++)
6658 {
6659 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6660 {
6661 /* Fast path - all cons cells for this int are marked. */
6662 cblk->gcmarkbits[i] = 0;
6663 num_used += BITS_PER_BITS_WORD;
6664 }
6665 else
6666 {
6667 /* Some cons cells for this int are not marked.
6668 Find which ones, and free them. */
6669 int start, pos, stop;
6670
6671 start = i * BITS_PER_BITS_WORD;
6672 stop = lim - start;
6673 if (stop > BITS_PER_BITS_WORD)
6674 stop = BITS_PER_BITS_WORD;
6675 stop += start;
6676
6677 for (pos = start; pos < stop; pos++)
6678 {
6679 if (!CONS_MARKED_P (&cblk->conses[pos]))
6680 {
6681 this_free++;
6682 cblk->conses[pos].u.chain = cons_free_list;
6683 cons_free_list = &cblk->conses[pos];
6684 cons_free_list->car = Vdead;
6685 }
6686 else
6687 {
6688 num_used++;
6689 CONS_UNMARK (&cblk->conses[pos]);
6690 }
6691 }
6692 }
6693 }
6694
6695 lim = CONS_BLOCK_SIZE;
6696 /* If this block contains only free conses and we have already
6697 seen more than two blocks worth of free conses then deallocate
6698 this block. */
6699 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6700 {
6701 *cprev = cblk->next;
6702 /* Unhook from the free list. */
6703 cons_free_list = cblk->conses[0].u.chain;
6704 lisp_align_free (cblk);
6705 }
6706 else
6707 {
6708 num_free += this_free;
6709 cprev = &cblk->next;
6710 }
6711 }
6712 total_conses = num_used;
6713 total_free_conses = num_free;
6714 }
6715
6716 NO_INLINE /* For better stack traces */
6717 static void
6718 sweep_floats (void)
6719 {
6720 register struct float_block *fblk;
6721 struct float_block **fprev = &float_block;
6722 register int lim = float_block_index;
6723 EMACS_INT num_free = 0, num_used = 0;
6724
6725 float_free_list = 0;
6726
6727 for (fblk = float_block; fblk; fblk = *fprev)
6728 {
6729 register int i;
6730 int this_free = 0;
6731 for (i = 0; i < lim; i++)
6732 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6733 {
6734 this_free++;
6735 fblk->floats[i].u.chain = float_free_list;
6736 float_free_list = &fblk->floats[i];
6737 }
6738 else
6739 {
6740 num_used++;
6741 FLOAT_UNMARK (&fblk->floats[i]);
6742 }
6743 lim = FLOAT_BLOCK_SIZE;
6744 /* If this block contains only free floats and we have already
6745 seen more than two blocks worth of free floats then deallocate
6746 this block. */
6747 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6748 {
6749 *fprev = fblk->next;
6750 /* Unhook from the free list. */
6751 float_free_list = fblk->floats[0].u.chain;
6752 lisp_align_free (fblk);
6753 }
6754 else
6755 {
6756 num_free += this_free;
6757 fprev = &fblk->next;
6758 }
6759 }
6760 total_floats = num_used;
6761 total_free_floats = num_free;
6762 }
6763
6764 NO_INLINE /* For better stack traces */
6765 static void
6766 sweep_intervals (void)
6767 {
6768 register struct interval_block *iblk;
6769 struct interval_block **iprev = &interval_block;
6770 register int lim = interval_block_index;
6771 EMACS_INT num_free = 0, num_used = 0;
6772
6773 interval_free_list = 0;
6774
6775 for (iblk = interval_block; iblk; iblk = *iprev)
6776 {
6777 register int i;
6778 int this_free = 0;
6779
6780 for (i = 0; i < lim; i++)
6781 {
6782 if (!iblk->intervals[i].gcmarkbit)
6783 {
6784 set_interval_parent (&iblk->intervals[i], interval_free_list);
6785 interval_free_list = &iblk->intervals[i];
6786 this_free++;
6787 }
6788 else
6789 {
6790 num_used++;
6791 iblk->intervals[i].gcmarkbit = 0;
6792 }
6793 }
6794 lim = INTERVAL_BLOCK_SIZE;
6795 /* If this block contains only free intervals and we have already
6796 seen more than two blocks worth of free intervals then
6797 deallocate this block. */
6798 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6799 {
6800 *iprev = iblk->next;
6801 /* Unhook from the free list. */
6802 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6803 lisp_free (iblk);
6804 }
6805 else
6806 {
6807 num_free += this_free;
6808 iprev = &iblk->next;
6809 }
6810 }
6811 total_intervals = num_used;
6812 total_free_intervals = num_free;
6813 }
6814
6815 NO_INLINE /* For better stack traces */
6816 static void
6817 sweep_symbols (void)
6818 {
6819 struct symbol_block *sblk;
6820 struct symbol_block **sprev = &symbol_block;
6821 int lim = symbol_block_index;
6822 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6823
6824 symbol_free_list = NULL;
6825
6826 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6827 lispsym[i].gcmarkbit = 0;
6828
6829 for (sblk = symbol_block; sblk; sblk = *sprev)
6830 {
6831 int this_free = 0;
6832 union aligned_Lisp_Symbol *sym = sblk->symbols;
6833 union aligned_Lisp_Symbol *end = sym + lim;
6834
6835 for (; sym < end; ++sym)
6836 {
6837 if (!sym->s.gcmarkbit)
6838 {
6839 if (sym->s.redirect == SYMBOL_LOCALIZED)
6840 xfree (SYMBOL_BLV (&sym->s));
6841 sym->s.next = symbol_free_list;
6842 symbol_free_list = &sym->s;
6843 symbol_free_list->function = Vdead;
6844 ++this_free;
6845 }
6846 else
6847 {
6848 ++num_used;
6849 sym->s.gcmarkbit = 0;
6850 /* Attempt to catch bogus objects. */
6851 eassert (valid_lisp_object_p (sym->s.function));
6852 }
6853 }
6854
6855 lim = SYMBOL_BLOCK_SIZE;
6856 /* If this block contains only free symbols and we have already
6857 seen more than two blocks worth of free symbols then deallocate
6858 this block. */
6859 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6860 {
6861 *sprev = sblk->next;
6862 /* Unhook from the free list. */
6863 symbol_free_list = sblk->symbols[0].s.next;
6864 lisp_free (sblk);
6865 }
6866 else
6867 {
6868 num_free += this_free;
6869 sprev = &sblk->next;
6870 }
6871 }
6872 total_symbols = num_used;
6873 total_free_symbols = num_free;
6874 }
6875
6876 NO_INLINE /* For better stack traces. */
6877 static void
6878 sweep_misc (void)
6879 {
6880 register struct marker_block *mblk;
6881 struct marker_block **mprev = &marker_block;
6882 register int lim = marker_block_index;
6883 EMACS_INT num_free = 0, num_used = 0;
6884
6885 /* Put all unmarked misc's on free list. For a marker, first
6886 unchain it from the buffer it points into. */
6887
6888 marker_free_list = 0;
6889
6890 for (mblk = marker_block; mblk; mblk = *mprev)
6891 {
6892 register int i;
6893 int this_free = 0;
6894
6895 for (i = 0; i < lim; i++)
6896 {
6897 if (!mblk->markers[i].m.u_any.gcmarkbit)
6898 {
6899 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6900 unchain_marker (&mblk->markers[i].m.u_marker);
6901 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6902 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6903 #ifdef HAVE_MODULES
6904 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6905 {
6906 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6907 uptr->finalizer (uptr->p);
6908 }
6909 #endif
6910 /* Set the type of the freed object to Lisp_Misc_Free.
6911 We could leave the type alone, since nobody checks it,
6912 but this might catch bugs faster. */
6913 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6914 mblk->markers[i].m.u_free.chain = marker_free_list;
6915 marker_free_list = &mblk->markers[i].m;
6916 this_free++;
6917 }
6918 else
6919 {
6920 num_used++;
6921 mblk->markers[i].m.u_any.gcmarkbit = 0;
6922 }
6923 }
6924 lim = MARKER_BLOCK_SIZE;
6925 /* If this block contains only free markers and we have already
6926 seen more than two blocks worth of free markers then deallocate
6927 this block. */
6928 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6929 {
6930 *mprev = mblk->next;
6931 /* Unhook from the free list. */
6932 marker_free_list = mblk->markers[0].m.u_free.chain;
6933 lisp_free (mblk);
6934 }
6935 else
6936 {
6937 num_free += this_free;
6938 mprev = &mblk->next;
6939 }
6940 }
6941
6942 total_markers = num_used;
6943 total_free_markers = num_free;
6944 }
6945
6946 NO_INLINE /* For better stack traces */
6947 static void
6948 sweep_buffers (void)
6949 {
6950 register struct buffer *buffer, **bprev = &all_buffers;
6951
6952 total_buffers = 0;
6953 for (buffer = all_buffers; buffer; buffer = *bprev)
6954 if (!VECTOR_MARKED_P (buffer))
6955 {
6956 *bprev = buffer->next;
6957 lisp_free (buffer);
6958 }
6959 else
6960 {
6961 VECTOR_UNMARK (buffer);
6962 /* Do not use buffer_(set|get)_intervals here. */
6963 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6964 total_buffers++;
6965 bprev = &buffer->next;
6966 }
6967 }
6968
6969 /* Sweep: find all structures not marked, and free them. */
6970 static void
6971 gc_sweep (void)
6972 {
6973 /* Remove or mark entries in weak hash tables.
6974 This must be done before any object is unmarked. */
6975 sweep_weak_hash_tables ();
6976
6977 sweep_strings ();
6978 check_string_bytes (!noninteractive);
6979 sweep_conses ();
6980 sweep_floats ();
6981 sweep_intervals ();
6982 sweep_symbols ();
6983 sweep_misc ();
6984 sweep_buffers ();
6985 sweep_vectors ();
6986 check_string_bytes (!noninteractive);
6987 }
6988
6989 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6990 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6991 All values are in Kbytes. If there is no swap space,
6992 last two values are zero. If the system is not supported
6993 or memory information can't be obtained, return nil. */)
6994 (void)
6995 {
6996 #if defined HAVE_LINUX_SYSINFO
6997 struct sysinfo si;
6998 uintmax_t units;
6999
7000 if (sysinfo (&si))
7001 return Qnil;
7002 #ifdef LINUX_SYSINFO_UNIT
7003 units = si.mem_unit;
7004 #else
7005 units = 1;
7006 #endif
7007 return list4i ((uintmax_t) si.totalram * units / 1024,
7008 (uintmax_t) si.freeram * units / 1024,
7009 (uintmax_t) si.totalswap * units / 1024,
7010 (uintmax_t) si.freeswap * units / 1024);
7011 #elif defined WINDOWSNT
7012 unsigned long long totalram, freeram, totalswap, freeswap;
7013
7014 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7015 return list4i ((uintmax_t) totalram / 1024,
7016 (uintmax_t) freeram / 1024,
7017 (uintmax_t) totalswap / 1024,
7018 (uintmax_t) freeswap / 1024);
7019 else
7020 return Qnil;
7021 #elif defined MSDOS
7022 unsigned long totalram, freeram, totalswap, freeswap;
7023
7024 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7025 return list4i ((uintmax_t) totalram / 1024,
7026 (uintmax_t) freeram / 1024,
7027 (uintmax_t) totalswap / 1024,
7028 (uintmax_t) freeswap / 1024);
7029 else
7030 return Qnil;
7031 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7032 /* FIXME: add more systems. */
7033 return Qnil;
7034 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7035 }
7036
7037 /* Debugging aids. */
7038
7039 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7040 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7041 This may be helpful in debugging Emacs's memory usage.
7042 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7043 (void)
7044 {
7045 Lisp_Object end;
7046
7047 #ifdef HAVE_NS
7048 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7049 XSETINT (end, 0);
7050 #else
7051 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7052 #endif
7053
7054 return end;
7055 }
7056
7057 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7058 doc: /* Return a list of counters that measure how much consing there has been.
7059 Each of these counters increments for a certain kind of object.
7060 The counters wrap around from the largest positive integer to zero.
7061 Garbage collection does not decrease them.
7062 The elements of the value are as follows:
7063 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7064 All are in units of 1 = one object consed
7065 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7066 objects consed.
7067 MISCS include overlays, markers, and some internal types.
7068 Frames, windows, buffers, and subprocesses count as vectors
7069 (but the contents of a buffer's text do not count here). */)
7070 (void)
7071 {
7072 return listn (CONSTYPE_HEAP, 8,
7073 bounded_number (cons_cells_consed),
7074 bounded_number (floats_consed),
7075 bounded_number (vector_cells_consed),
7076 bounded_number (symbols_consed),
7077 bounded_number (string_chars_consed),
7078 bounded_number (misc_objects_consed),
7079 bounded_number (intervals_consed),
7080 bounded_number (strings_consed));
7081 }
7082
7083 static bool
7084 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7085 {
7086 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7087 Lisp_Object val = find_symbol_value (symbol);
7088 return (EQ (val, obj)
7089 || EQ (sym->function, obj)
7090 || (!NILP (sym->function)
7091 && COMPILEDP (sym->function)
7092 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7093 || (!NILP (val)
7094 && COMPILEDP (val)
7095 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7096 }
7097
7098 /* Find at most FIND_MAX symbols which have OBJ as their value or
7099 function. This is used in gdbinit's `xwhichsymbols' command. */
7100
7101 Lisp_Object
7102 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7103 {
7104 struct symbol_block *sblk;
7105 ptrdiff_t gc_count = inhibit_garbage_collection ();
7106 Lisp_Object found = Qnil;
7107
7108 if (! DEADP (obj))
7109 {
7110 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7111 {
7112 Lisp_Object sym = builtin_lisp_symbol (i);
7113 if (symbol_uses_obj (sym, obj))
7114 {
7115 found = Fcons (sym, found);
7116 if (--find_max == 0)
7117 goto out;
7118 }
7119 }
7120
7121 for (sblk = symbol_block; sblk; sblk = sblk->next)
7122 {
7123 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7124 int bn;
7125
7126 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7127 {
7128 if (sblk == symbol_block && bn >= symbol_block_index)
7129 break;
7130
7131 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7132 if (symbol_uses_obj (sym, obj))
7133 {
7134 found = Fcons (sym, found);
7135 if (--find_max == 0)
7136 goto out;
7137 }
7138 }
7139 }
7140 }
7141
7142 out:
7143 unbind_to (gc_count, Qnil);
7144 return found;
7145 }
7146
7147 #ifdef SUSPICIOUS_OBJECT_CHECKING
7148
7149 static void *
7150 find_suspicious_object_in_range (void *begin, void *end)
7151 {
7152 char *begin_a = begin;
7153 char *end_a = end;
7154 int i;
7155
7156 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7157 {
7158 char *suspicious_object = suspicious_objects[i];
7159 if (begin_a <= suspicious_object && suspicious_object < end_a)
7160 return suspicious_object;
7161 }
7162
7163 return NULL;
7164 }
7165
7166 static void
7167 note_suspicious_free (void* ptr)
7168 {
7169 struct suspicious_free_record* rec;
7170
7171 rec = &suspicious_free_history[suspicious_free_history_index++];
7172 if (suspicious_free_history_index ==
7173 ARRAYELTS (suspicious_free_history))
7174 {
7175 suspicious_free_history_index = 0;
7176 }
7177
7178 memset (rec, 0, sizeof (*rec));
7179 rec->suspicious_object = ptr;
7180 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7181 }
7182
7183 static void
7184 detect_suspicious_free (void* ptr)
7185 {
7186 int i;
7187
7188 eassert (ptr != NULL);
7189
7190 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7191 if (suspicious_objects[i] == ptr)
7192 {
7193 note_suspicious_free (ptr);
7194 suspicious_objects[i] = NULL;
7195 }
7196 }
7197
7198 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7199
7200 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7201 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7202 If Emacs is compiled with suspicious object checking, capture
7203 a stack trace when OBJ is freed in order to help track down
7204 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7205 (Lisp_Object obj)
7206 {
7207 #ifdef SUSPICIOUS_OBJECT_CHECKING
7208 /* Right now, we care only about vectors. */
7209 if (VECTORLIKEP (obj))
7210 {
7211 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7212 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7213 suspicious_object_index = 0;
7214 }
7215 #endif
7216 return obj;
7217 }
7218
7219 #ifdef ENABLE_CHECKING
7220
7221 bool suppress_checking;
7222
7223 void
7224 die (const char *msg, const char *file, int line)
7225 {
7226 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7227 file, line, msg);
7228 terminate_due_to_signal (SIGABRT, INT_MAX);
7229 }
7230
7231 #endif /* ENABLE_CHECKING */
7232
7233 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7234
7235 /* Stress alloca with inconveniently sized requests and check
7236 whether all allocated areas may be used for Lisp_Object. */
7237
7238 NO_INLINE static void
7239 verify_alloca (void)
7240 {
7241 int i;
7242 enum { ALLOCA_CHECK_MAX = 256 };
7243 /* Start from size of the smallest Lisp object. */
7244 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7245 {
7246 void *ptr = alloca (i);
7247 make_lisp_ptr (ptr, Lisp_Cons);
7248 }
7249 }
7250
7251 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7252
7253 #define verify_alloca() ((void) 0)
7254
7255 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7256
7257 /* Initialization. */
7258
7259 void
7260 init_alloc_once (void)
7261 {
7262 /* Even though Qt's contents are not set up, its address is known. */
7263 Vpurify_flag = Qt;
7264
7265 purebeg = PUREBEG;
7266 pure_size = PURESIZE;
7267
7268 verify_alloca ();
7269 init_finalizer_list (&finalizers);
7270 init_finalizer_list (&doomed_finalizers);
7271
7272 mem_init ();
7273 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7274
7275 #ifdef DOUG_LEA_MALLOC
7276 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7277 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7278 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7279 #endif
7280 init_strings ();
7281 init_vectors ();
7282
7283 refill_memory_reserve ();
7284 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7285 }
7286
7287 void
7288 init_alloc (void)
7289 {
7290 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7291 setjmp_tested_p = longjmps_done = 0;
7292 #endif
7293 Vgc_elapsed = make_float (0.0);
7294 gcs_done = 0;
7295
7296 #if USE_VALGRIND
7297 valgrind_p = RUNNING_ON_VALGRIND != 0;
7298 #endif
7299 }
7300
7301 void
7302 syms_of_alloc (void)
7303 {
7304 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7305 doc: /* Number of bytes of consing between garbage collections.
7306 Garbage collection can happen automatically once this many bytes have been
7307 allocated since the last garbage collection. All data types count.
7308
7309 Garbage collection happens automatically only when `eval' is called.
7310
7311 By binding this temporarily to a large number, you can effectively
7312 prevent garbage collection during a part of the program.
7313 See also `gc-cons-percentage'. */);
7314
7315 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7316 doc: /* Portion of the heap used for allocation.
7317 Garbage collection can happen automatically once this portion of the heap
7318 has been allocated since the last garbage collection.
7319 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7320 Vgc_cons_percentage = make_float (0.1);
7321
7322 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7323 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7324
7325 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7326 doc: /* Number of cons cells that have been consed so far. */);
7327
7328 DEFVAR_INT ("floats-consed", floats_consed,
7329 doc: /* Number of floats that have been consed so far. */);
7330
7331 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7332 doc: /* Number of vector cells that have been consed so far. */);
7333
7334 DEFVAR_INT ("symbols-consed", symbols_consed,
7335 doc: /* Number of symbols that have been consed so far. */);
7336 symbols_consed += ARRAYELTS (lispsym);
7337
7338 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7339 doc: /* Number of string characters that have been consed so far. */);
7340
7341 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7342 doc: /* Number of miscellaneous objects that have been consed so far.
7343 These include markers and overlays, plus certain objects not visible
7344 to users. */);
7345
7346 DEFVAR_INT ("intervals-consed", intervals_consed,
7347 doc: /* Number of intervals that have been consed so far. */);
7348
7349 DEFVAR_INT ("strings-consed", strings_consed,
7350 doc: /* Number of strings that have been consed so far. */);
7351
7352 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7353 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7354 This means that certain objects should be allocated in shared (pure) space.
7355 It can also be set to a hash-table, in which case this table is used to
7356 do hash-consing of the objects allocated to pure space. */);
7357
7358 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7359 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7360 garbage_collection_messages = 0;
7361
7362 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7363 doc: /* Hook run after garbage collection has finished. */);
7364 Vpost_gc_hook = Qnil;
7365 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7366
7367 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7368 doc: /* Precomputed `signal' argument for memory-full error. */);
7369 /* We build this in advance because if we wait until we need it, we might
7370 not be able to allocate the memory to hold it. */
7371 Vmemory_signal_data
7372 = listn (CONSTYPE_PURE, 2, Qerror,
7373 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7374
7375 DEFVAR_LISP ("memory-full", Vmemory_full,
7376 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7377 Vmemory_full = Qnil;
7378
7379 DEFSYM (Qconses, "conses");
7380 DEFSYM (Qsymbols, "symbols");
7381 DEFSYM (Qmiscs, "miscs");
7382 DEFSYM (Qstrings, "strings");
7383 DEFSYM (Qvectors, "vectors");
7384 DEFSYM (Qfloats, "floats");
7385 DEFSYM (Qintervals, "intervals");
7386 DEFSYM (Qbuffers, "buffers");
7387 DEFSYM (Qstring_bytes, "string-bytes");
7388 DEFSYM (Qvector_slots, "vector-slots");
7389 DEFSYM (Qheap, "heap");
7390 DEFSYM (QAutomatic_GC, "Automatic GC");
7391
7392 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7393 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7394
7395 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7396 doc: /* Accumulated time elapsed in garbage collections.
7397 The time is in seconds as a floating point value. */);
7398 DEFVAR_INT ("gcs-done", gcs_done,
7399 doc: /* Accumulated number of garbage collections done. */);
7400
7401 defsubr (&Scons);
7402 defsubr (&Slist);
7403 defsubr (&Svector);
7404 defsubr (&Sbool_vector);
7405 defsubr (&Smake_byte_code);
7406 defsubr (&Smake_list);
7407 defsubr (&Smake_vector);
7408 defsubr (&Smake_string);
7409 defsubr (&Smake_bool_vector);
7410 defsubr (&Smake_symbol);
7411 defsubr (&Smake_marker);
7412 defsubr (&Smake_finalizer);
7413 defsubr (&Spurecopy);
7414 defsubr (&Sgarbage_collect);
7415 defsubr (&Smemory_limit);
7416 defsubr (&Smemory_info);
7417 defsubr (&Smemory_use_counts);
7418 defsubr (&Ssuspicious_object);
7419 }
7420
7421 /* When compiled with GCC, GDB might say "No enum type named
7422 pvec_type" if we don't have at least one symbol with that type, and
7423 then xbacktrace could fail. Similarly for the other enums and
7424 their values. Some non-GCC compilers don't like these constructs. */
7425 #ifdef __GNUC__
7426 union
7427 {
7428 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7429 enum char_table_specials char_table_specials;
7430 enum char_bits char_bits;
7431 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7432 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7433 enum Lisp_Bits Lisp_Bits;
7434 enum Lisp_Compiled Lisp_Compiled;
7435 enum maxargs maxargs;
7436 enum MAX_ALLOCA MAX_ALLOCA;
7437 enum More_Lisp_Bits More_Lisp_Bits;
7438 enum pvec_type pvec_type;
7439 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7440 #endif /* __GNUC__ */