]> code.delx.au - gnu-emacs/blob - src/alloc.c
Omit XLI (init) == 0 optimization in make-vector
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25 #include <signal.h> /* For SIGABRT, SIGDANGER. */
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 #include "lisp.h"
32 #include "dispextern.h"
33 #include "intervals.h"
34 #include "puresize.h"
35 #include "sheap.h"
36 #include "systime.h"
37 #include "character.h"
38 #include "buffer.h"
39 #include "window.h"
40 #include "keyboard.h"
41 #include "frame.h"
42 #include "blockinput.h"
43 #include "termhooks.h" /* For struct terminal. */
44 #ifdef HAVE_WINDOW_SYSTEM
45 #include TERM_HEADER
46 #endif /* HAVE_WINDOW_SYSTEM */
47
48 #include <verify.h>
49 #include <execinfo.h> /* For backtrace. */
50
51 #ifdef HAVE_LINUX_SYSINFO
52 #include <sys/sysinfo.h>
53 #endif
54
55 #ifdef MSDOS
56 #include "dosfns.h" /* For dos_memory_info. */
57 #endif
58
59 #ifdef HAVE_MALLOC_H
60 # include <malloc.h>
61 #endif
62
63 #if (defined ENABLE_CHECKING \
64 && defined HAVE_VALGRIND_VALGRIND_H \
65 && !defined USE_VALGRIND)
66 # define USE_VALGRIND 1
67 #endif
68
69 #if USE_VALGRIND
70 #include <valgrind/valgrind.h>
71 #include <valgrind/memcheck.h>
72 static bool valgrind_p;
73 #endif
74
75 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
76
77 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
78 memory. Can do this only if using gmalloc.c and if not checking
79 marked objects. */
80
81 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
82 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
83 #undef GC_MALLOC_CHECK
84 #endif
85
86 #include <unistd.h>
87 #include <fcntl.h>
88
89 #ifdef USE_GTK
90 # include "gtkutil.h"
91 #endif
92 #ifdef WINDOWSNT
93 #include "w32.h"
94 #include "w32heap.h" /* for sbrk */
95 #endif
96
97 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
98 /* The address where the heap starts. */
99 void *
100 my_heap_start (void)
101 {
102 static void *start;
103 if (! start)
104 start = sbrk (0);
105 return start;
106 }
107 #endif
108
109 #ifdef DOUG_LEA_MALLOC
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Restore the dumped malloc state. Because malloc can be invoked
121 even before main (e.g. by the dynamic linker), the dumped malloc
122 state must be restored as early as possible using this special hook. */
123 static void
124 malloc_initialize_hook (void)
125 {
126 static bool malloc_using_checking;
127
128 if (! initialized)
129 {
130 my_heap_start ();
131 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
132 }
133 else
134 {
135 if (!malloc_using_checking)
136 {
137 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
138 ignored if the heap to be restored was constructed without
139 malloc checking. Can't use unsetenv, since that calls malloc. */
140 char **p = environ;
141 if (p)
142 for (; *p; p++)
143 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
144 {
145 do
146 *p = p[1];
147 while (*++p);
148
149 break;
150 }
151 }
152
153 malloc_set_state (malloc_state_ptr);
154 # ifndef XMALLOC_OVERRUN_CHECK
155 alloc_unexec_post ();
156 # endif
157 }
158 }
159
160 /* Declare the malloc initialization hook, which runs before 'main' starts.
161 EXTERNALLY_VISIBLE works around Bug#22522. */
162 # ifndef __MALLOC_HOOK_VOLATILE
163 # define __MALLOC_HOOK_VOLATILE
164 # endif
165 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
166 = malloc_initialize_hook;
167
168 #endif
169
170 /* Allocator-related actions to do just before and after unexec. */
171
172 void
173 alloc_unexec_pre (void)
174 {
175 #ifdef DOUG_LEA_MALLOC
176 malloc_state_ptr = malloc_get_state ();
177 #endif
178 #ifdef HYBRID_MALLOC
179 bss_sbrk_did_unexec = true;
180 #endif
181 }
182
183 void
184 alloc_unexec_post (void)
185 {
186 #ifdef DOUG_LEA_MALLOC
187 free (malloc_state_ptr);
188 #endif
189 #ifdef HYBRID_MALLOC
190 bss_sbrk_did_unexec = false;
191 #endif
192 }
193
194 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
195 to a struct Lisp_String. */
196
197 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
198 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
199 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
200
201 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
202 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
203 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
204
205 /* Default value of gc_cons_threshold (see below). */
206
207 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
208
209 /* Global variables. */
210 struct emacs_globals globals;
211
212 /* Number of bytes of consing done since the last gc. */
213
214 EMACS_INT consing_since_gc;
215
216 /* Similar minimum, computed from Vgc_cons_percentage. */
217
218 EMACS_INT gc_relative_threshold;
219
220 /* Minimum number of bytes of consing since GC before next GC,
221 when memory is full. */
222
223 EMACS_INT memory_full_cons_threshold;
224
225 /* True during GC. */
226
227 bool gc_in_progress;
228
229 /* True means abort if try to GC.
230 This is for code which is written on the assumption that
231 no GC will happen, so as to verify that assumption. */
232
233 bool abort_on_gc;
234
235 /* Number of live and free conses etc. */
236
237 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
238 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
239 static EMACS_INT total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block, or to see
248 whether this much is available when malloc fails on a larger request. */
249
250 #define SPARE_MEMORY (1 << 14)
251
252 /* Initialize it to a nonzero value to force it into data space
253 (rather than bss space). That way unexec will remap it into text
254 space (pure), on some systems. We have not implemented the
255 remapping on more recent systems because this is less important
256 nowadays than in the days of small memories and timesharing. */
257
258 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
259 #define PUREBEG (char *) pure
260
261 /* Pointer to the pure area, and its size. */
262
263 static char *purebeg;
264 static ptrdiff_t pure_size;
265
266 /* Number of bytes of pure storage used before pure storage overflowed.
267 If this is non-zero, this implies that an overflow occurred. */
268
269 static ptrdiff_t pure_bytes_used_before_overflow;
270
271 /* Index in pure at which next pure Lisp object will be allocated.. */
272
273 static ptrdiff_t pure_bytes_used_lisp;
274
275 /* Number of bytes allocated for non-Lisp objects in pure storage. */
276
277 static ptrdiff_t pure_bytes_used_non_lisp;
278
279 /* If nonzero, this is a warning delivered by malloc and not yet
280 displayed. */
281
282 const char *pending_malloc_warning;
283
284 #if 0 /* Normally, pointer sanity only on request... */
285 #ifdef ENABLE_CHECKING
286 #define SUSPICIOUS_OBJECT_CHECKING 1
287 #endif
288 #endif
289
290 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
291 bug is unresolved. */
292 #define SUSPICIOUS_OBJECT_CHECKING 1
293
294 #ifdef SUSPICIOUS_OBJECT_CHECKING
295 struct suspicious_free_record
296 {
297 void *suspicious_object;
298 void *backtrace[128];
299 };
300 static void *suspicious_objects[32];
301 static int suspicious_object_index;
302 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
303 static int suspicious_free_history_index;
304 /* Find the first currently-monitored suspicious pointer in range
305 [begin,end) or NULL if no such pointer exists. */
306 static void *find_suspicious_object_in_range (void *begin, void *end);
307 static void detect_suspicious_free (void *ptr);
308 #else
309 # define find_suspicious_object_in_range(begin, end) NULL
310 # define detect_suspicious_free(ptr) (void)
311 #endif
312
313 /* Maximum amount of C stack to save when a GC happens. */
314
315 #ifndef MAX_SAVE_STACK
316 #define MAX_SAVE_STACK 16000
317 #endif
318
319 /* Buffer in which we save a copy of the C stack at each GC. */
320
321 #if MAX_SAVE_STACK > 0
322 static char *stack_copy;
323 static ptrdiff_t stack_copy_size;
324
325 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
326 avoiding any address sanitization. */
327
328 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
329 no_sanitize_memcpy (void *dest, void const *src, size_t size)
330 {
331 if (! ADDRESS_SANITIZER)
332 return memcpy (dest, src, size);
333 else
334 {
335 size_t i;
336 char *d = dest;
337 char const *s = src;
338 for (i = 0; i < size; i++)
339 d[i] = s[i];
340 return dest;
341 }
342 }
343
344 #endif /* MAX_SAVE_STACK > 0 */
345
346 static void mark_terminals (void);
347 static void gc_sweep (void);
348 static Lisp_Object make_pure_vector (ptrdiff_t);
349 static void mark_buffer (struct buffer *);
350
351 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
352 static void refill_memory_reserve (void);
353 #endif
354 static void compact_small_strings (void);
355 static void free_large_strings (void);
356 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
357
358 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
359 what memory allocated via lisp_malloc and lisp_align_malloc is intended
360 for what purpose. This enumeration specifies the type of memory. */
361
362 enum mem_type
363 {
364 MEM_TYPE_NON_LISP,
365 MEM_TYPE_BUFFER,
366 MEM_TYPE_CONS,
367 MEM_TYPE_STRING,
368 MEM_TYPE_MISC,
369 MEM_TYPE_SYMBOL,
370 MEM_TYPE_FLOAT,
371 /* Since all non-bool pseudovectors are small enough to be
372 allocated from vector blocks, this memory type denotes
373 large regular vectors and large bool pseudovectors. */
374 MEM_TYPE_VECTORLIKE,
375 /* Special type to denote vector blocks. */
376 MEM_TYPE_VECTOR_BLOCK,
377 /* Special type to denote reserved memory. */
378 MEM_TYPE_SPARE
379 };
380
381 /* A unique object in pure space used to make some Lisp objects
382 on free lists recognizable in O(1). */
383
384 static Lisp_Object Vdead;
385 #define DEADP(x) EQ (x, Vdead)
386
387 #ifdef GC_MALLOC_CHECK
388
389 enum mem_type allocated_mem_type;
390
391 #endif /* GC_MALLOC_CHECK */
392
393 /* A node in the red-black tree describing allocated memory containing
394 Lisp data. Each such block is recorded with its start and end
395 address when it is allocated, and removed from the tree when it
396 is freed.
397
398 A red-black tree is a balanced binary tree with the following
399 properties:
400
401 1. Every node is either red or black.
402 2. Every leaf is black.
403 3. If a node is red, then both of its children are black.
404 4. Every simple path from a node to a descendant leaf contains
405 the same number of black nodes.
406 5. The root is always black.
407
408 When nodes are inserted into the tree, or deleted from the tree,
409 the tree is "fixed" so that these properties are always true.
410
411 A red-black tree with N internal nodes has height at most 2
412 log(N+1). Searches, insertions and deletions are done in O(log N).
413 Please see a text book about data structures for a detailed
414 description of red-black trees. Any book worth its salt should
415 describe them. */
416
417 struct mem_node
418 {
419 /* Children of this node. These pointers are never NULL. When there
420 is no child, the value is MEM_NIL, which points to a dummy node. */
421 struct mem_node *left, *right;
422
423 /* The parent of this node. In the root node, this is NULL. */
424 struct mem_node *parent;
425
426 /* Start and end of allocated region. */
427 void *start, *end;
428
429 /* Node color. */
430 enum {MEM_BLACK, MEM_RED} color;
431
432 /* Memory type. */
433 enum mem_type type;
434 };
435
436 /* Base address of stack. Set in main. */
437
438 Lisp_Object *stack_base;
439
440 /* Root of the tree describing allocated Lisp memory. */
441
442 static struct mem_node *mem_root;
443
444 /* Lowest and highest known address in the heap. */
445
446 static void *min_heap_address, *max_heap_address;
447
448 /* Sentinel node of the tree. */
449
450 static struct mem_node mem_z;
451 #define MEM_NIL &mem_z
452
453 static struct mem_node *mem_insert (void *, void *, enum mem_type);
454 static void mem_insert_fixup (struct mem_node *);
455 static void mem_rotate_left (struct mem_node *);
456 static void mem_rotate_right (struct mem_node *);
457 static void mem_delete (struct mem_node *);
458 static void mem_delete_fixup (struct mem_node *);
459 static struct mem_node *mem_find (void *);
460
461 #ifndef DEADP
462 # define DEADP(x) 0
463 #endif
464
465 /* Addresses of staticpro'd variables. Initialize it to a nonzero
466 value; otherwise some compilers put it into BSS. */
467
468 enum { NSTATICS = 2048 };
469 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
470
471 /* Index of next unused slot in staticvec. */
472
473 static int staticidx;
474
475 static void *pure_alloc (size_t, int);
476
477 /* Return X rounded to the next multiple of Y. Arguments should not
478 have side effects, as they are evaluated more than once. Assume X
479 + Y - 1 does not overflow. Tune for Y being a power of 2. */
480
481 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
482 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
483 : ((x) + (y) - 1) & ~ ((y) - 1))
484
485 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
486
487 static void *
488 ALIGN (void *ptr, int alignment)
489 {
490 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
491 }
492
493 /* Extract the pointer hidden within A, if A is not a symbol.
494 If A is a symbol, extract the hidden pointer's offset from lispsym,
495 converted to void *. */
496
497 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
498 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
499
500 /* Extract the pointer hidden within A. */
501
502 #define macro_XPNTR(a) \
503 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
504 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
505
506 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
507 functions, as functions are cleaner and can be used in debuggers.
508 Also, define them as macros if being compiled with GCC without
509 optimization, for performance in that case. The macro_* names are
510 private to this section of code. */
511
512 static ATTRIBUTE_UNUSED void *
513 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
514 {
515 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
516 }
517 static ATTRIBUTE_UNUSED void *
518 XPNTR (Lisp_Object a)
519 {
520 return macro_XPNTR (a);
521 }
522
523 #if DEFINE_KEY_OPS_AS_MACROS
524 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
525 # define XPNTR(a) macro_XPNTR (a)
526 #endif
527
528 static void
529 XFLOAT_INIT (Lisp_Object f, double n)
530 {
531 XFLOAT (f)->u.data = n;
532 }
533
534 #ifdef DOUG_LEA_MALLOC
535 static bool
536 pointers_fit_in_lispobj_p (void)
537 {
538 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
539 }
540
541 static bool
542 mmap_lisp_allowed_p (void)
543 {
544 /* If we can't store all memory addresses in our lisp objects, it's
545 risky to let the heap use mmap and give us addresses from all
546 over our address space. We also can't use mmap for lisp objects
547 if we might dump: unexec doesn't preserve the contents of mmapped
548 regions. */
549 return pointers_fit_in_lispobj_p () && !might_dump;
550 }
551 #endif
552
553 /* Head of a circularly-linked list of extant finalizers. */
554 static struct Lisp_Finalizer finalizers;
555
556 /* Head of a circularly-linked list of finalizers that must be invoked
557 because we deemed them unreachable. This list must be global, and
558 not a local inside garbage_collect_1, in case we GC again while
559 running finalizers. */
560 static struct Lisp_Finalizer doomed_finalizers;
561
562 \f
563 /************************************************************************
564 Malloc
565 ************************************************************************/
566
567 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
568
569 /* Function malloc calls this if it finds we are near exhausting storage. */
570
571 void
572 malloc_warning (const char *str)
573 {
574 pending_malloc_warning = str;
575 }
576
577 #endif
578
579 /* Display an already-pending malloc warning. */
580
581 void
582 display_malloc_warning (void)
583 {
584 call3 (intern ("display-warning"),
585 intern ("alloc"),
586 build_string (pending_malloc_warning),
587 intern ("emergency"));
588 pending_malloc_warning = 0;
589 }
590 \f
591 /* Called if we can't allocate relocatable space for a buffer. */
592
593 void
594 buffer_memory_full (ptrdiff_t nbytes)
595 {
596 /* If buffers use the relocating allocator, no need to free
597 spare_memory, because we may have plenty of malloc space left
598 that we could get, and if we don't, the malloc that fails will
599 itself cause spare_memory to be freed. If buffers don't use the
600 relocating allocator, treat this like any other failing
601 malloc. */
602
603 #ifndef REL_ALLOC
604 memory_full (nbytes);
605 #else
606 /* This used to call error, but if we've run out of memory, we could
607 get infinite recursion trying to build the string. */
608 xsignal (Qnil, Vmemory_signal_data);
609 #endif
610 }
611
612 /* A common multiple of the positive integers A and B. Ideally this
613 would be the least common multiple, but there's no way to do that
614 as a constant expression in C, so do the best that we can easily do. */
615 #define COMMON_MULTIPLE(a, b) \
616 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
617
618 #ifndef XMALLOC_OVERRUN_CHECK
619 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
620 #else
621
622 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
623 around each block.
624
625 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
626 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
627 block size in little-endian order. The trailer consists of
628 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
629
630 The header is used to detect whether this block has been allocated
631 through these functions, as some low-level libc functions may
632 bypass the malloc hooks. */
633
634 #define XMALLOC_OVERRUN_CHECK_SIZE 16
635 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
636 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
637
638 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
639 hold a size_t value and (2) the header size is a multiple of the
640 alignment that Emacs needs for C types and for USE_LSB_TAG. */
641 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
642
643 #define XMALLOC_HEADER_ALIGNMENT \
644 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
645 #define XMALLOC_OVERRUN_SIZE_SIZE \
646 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
647 + XMALLOC_HEADER_ALIGNMENT - 1) \
648 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
649 - XMALLOC_OVERRUN_CHECK_SIZE)
650
651 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
652 { '\x9a', '\x9b', '\xae', '\xaf',
653 '\xbf', '\xbe', '\xce', '\xcf',
654 '\xea', '\xeb', '\xec', '\xed',
655 '\xdf', '\xde', '\x9c', '\x9d' };
656
657 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
658 { '\xaa', '\xab', '\xac', '\xad',
659 '\xba', '\xbb', '\xbc', '\xbd',
660 '\xca', '\xcb', '\xcc', '\xcd',
661 '\xda', '\xdb', '\xdc', '\xdd' };
662
663 /* Insert and extract the block size in the header. */
664
665 static void
666 xmalloc_put_size (unsigned char *ptr, size_t size)
667 {
668 int i;
669 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
670 {
671 *--ptr = size & ((1 << CHAR_BIT) - 1);
672 size >>= CHAR_BIT;
673 }
674 }
675
676 static size_t
677 xmalloc_get_size (unsigned char *ptr)
678 {
679 size_t size = 0;
680 int i;
681 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
683 {
684 size <<= CHAR_BIT;
685 size += *ptr++;
686 }
687 return size;
688 }
689
690
691 /* Like malloc, but wraps allocated block with header and trailer. */
692
693 static void *
694 overrun_check_malloc (size_t size)
695 {
696 register unsigned char *val;
697 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
698 emacs_abort ();
699
700 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 if (val)
702 {
703 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
704 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
705 xmalloc_put_size (val, size);
706 memcpy (val + size, xmalloc_overrun_check_trailer,
707 XMALLOC_OVERRUN_CHECK_SIZE);
708 }
709 return val;
710 }
711
712
713 /* Like realloc, but checks old block for overrun, and wraps new block
714 with header and trailer. */
715
716 static void *
717 overrun_check_realloc (void *block, size_t size)
718 {
719 register unsigned char *val = (unsigned char *) block;
720 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
721 emacs_abort ();
722
723 if (val
724 && memcmp (xmalloc_overrun_check_header,
725 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
726 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
727 {
728 size_t osize = xmalloc_get_size (val);
729 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
730 XMALLOC_OVERRUN_CHECK_SIZE))
731 emacs_abort ();
732 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
733 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
734 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
735 }
736
737 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
738
739 if (val)
740 {
741 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
742 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
743 xmalloc_put_size (val, size);
744 memcpy (val + size, xmalloc_overrun_check_trailer,
745 XMALLOC_OVERRUN_CHECK_SIZE);
746 }
747 return val;
748 }
749
750 /* Like free, but checks block for overrun. */
751
752 static void
753 overrun_check_free (void *block)
754 {
755 unsigned char *val = (unsigned char *) block;
756
757 if (val
758 && memcmp (xmalloc_overrun_check_header,
759 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
760 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
761 {
762 size_t osize = xmalloc_get_size (val);
763 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
764 XMALLOC_OVERRUN_CHECK_SIZE))
765 emacs_abort ();
766 #ifdef XMALLOC_CLEAR_FREE_MEMORY
767 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
768 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
769 #else
770 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
771 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
772 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
773 #endif
774 }
775
776 free (val);
777 }
778
779 #undef malloc
780 #undef realloc
781 #undef free
782 #define malloc overrun_check_malloc
783 #define realloc overrun_check_realloc
784 #define free overrun_check_free
785 #endif
786
787 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
788 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
789 If that variable is set, block input while in one of Emacs's memory
790 allocation functions. There should be no need for this debugging
791 option, since signal handlers do not allocate memory, but Emacs
792 formerly allocated memory in signal handlers and this compile-time
793 option remains as a way to help debug the issue should it rear its
794 ugly head again. */
795 #ifdef XMALLOC_BLOCK_INPUT_CHECK
796 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
797 static void
798 malloc_block_input (void)
799 {
800 if (block_input_in_memory_allocators)
801 block_input ();
802 }
803 static void
804 malloc_unblock_input (void)
805 {
806 if (block_input_in_memory_allocators)
807 unblock_input ();
808 }
809 # define MALLOC_BLOCK_INPUT malloc_block_input ()
810 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
811 #else
812 # define MALLOC_BLOCK_INPUT ((void) 0)
813 # define MALLOC_UNBLOCK_INPUT ((void) 0)
814 #endif
815
816 #define MALLOC_PROBE(size) \
817 do { \
818 if (profiler_memory_running) \
819 malloc_probe (size); \
820 } while (0)
821
822
823 /* Like malloc but check for no memory and block interrupt input.. */
824
825 void *
826 xmalloc (size_t size)
827 {
828 void *val;
829
830 MALLOC_BLOCK_INPUT;
831 val = malloc (size);
832 MALLOC_UNBLOCK_INPUT;
833
834 if (!val && size)
835 memory_full (size);
836 MALLOC_PROBE (size);
837 return val;
838 }
839
840 /* Like the above, but zeroes out the memory just allocated. */
841
842 void *
843 xzalloc (size_t size)
844 {
845 void *val;
846
847 MALLOC_BLOCK_INPUT;
848 val = malloc (size);
849 MALLOC_UNBLOCK_INPUT;
850
851 if (!val && size)
852 memory_full (size);
853 memset (val, 0, size);
854 MALLOC_PROBE (size);
855 return val;
856 }
857
858 /* Like realloc but check for no memory and block interrupt input.. */
859
860 void *
861 xrealloc (void *block, size_t size)
862 {
863 void *val;
864
865 MALLOC_BLOCK_INPUT;
866 /* We must call malloc explicitly when BLOCK is 0, since some
867 reallocs don't do this. */
868 if (! block)
869 val = malloc (size);
870 else
871 val = realloc (block, size);
872 MALLOC_UNBLOCK_INPUT;
873
874 if (!val && size)
875 memory_full (size);
876 MALLOC_PROBE (size);
877 return val;
878 }
879
880
881 /* Like free but block interrupt input. */
882
883 void
884 xfree (void *block)
885 {
886 if (!block)
887 return;
888 MALLOC_BLOCK_INPUT;
889 free (block);
890 MALLOC_UNBLOCK_INPUT;
891 /* We don't call refill_memory_reserve here
892 because in practice the call in r_alloc_free seems to suffice. */
893 }
894
895
896 /* Other parts of Emacs pass large int values to allocator functions
897 expecting ptrdiff_t. This is portable in practice, but check it to
898 be safe. */
899 verify (INT_MAX <= PTRDIFF_MAX);
900
901
902 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
903 Signal an error on memory exhaustion, and block interrupt input. */
904
905 void *
906 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
907 {
908 eassert (0 <= nitems && 0 < item_size);
909 ptrdiff_t nbytes;
910 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
911 memory_full (SIZE_MAX);
912 return xmalloc (nbytes);
913 }
914
915
916 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
917 Signal an error on memory exhaustion, and block interrupt input. */
918
919 void *
920 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
921 {
922 eassert (0 <= nitems && 0 < item_size);
923 ptrdiff_t nbytes;
924 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
925 memory_full (SIZE_MAX);
926 return xrealloc (pa, nbytes);
927 }
928
929
930 /* Grow PA, which points to an array of *NITEMS items, and return the
931 location of the reallocated array, updating *NITEMS to reflect its
932 new size. The new array will contain at least NITEMS_INCR_MIN more
933 items, but will not contain more than NITEMS_MAX items total.
934 ITEM_SIZE is the size of each item, in bytes.
935
936 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
937 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
938 infinity.
939
940 If PA is null, then allocate a new array instead of reallocating
941 the old one.
942
943 Block interrupt input as needed. If memory exhaustion occurs, set
944 *NITEMS to zero if PA is null, and signal an error (i.e., do not
945 return).
946
947 Thus, to grow an array A without saving its old contents, do
948 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
949 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
950 and signals an error, and later this code is reexecuted and
951 attempts to free A. */
952
953 void *
954 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
955 ptrdiff_t nitems_max, ptrdiff_t item_size)
956 {
957 ptrdiff_t n0 = *nitems;
958 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
959
960 /* The approximate size to use for initial small allocation
961 requests. This is the largest "small" request for the GNU C
962 library malloc. */
963 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
964
965 /* If the array is tiny, grow it to about (but no greater than)
966 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
967 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
968 NITEMS_MAX, and what the C language can represent safely. */
969
970 ptrdiff_t n, nbytes;
971 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
972 n = PTRDIFF_MAX;
973 if (0 <= nitems_max && nitems_max < n)
974 n = nitems_max;
975
976 ptrdiff_t adjusted_nbytes
977 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
978 ? min (PTRDIFF_MAX, SIZE_MAX)
979 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
980 if (adjusted_nbytes)
981 {
982 n = adjusted_nbytes / item_size;
983 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
984 }
985
986 if (! pa)
987 *nitems = 0;
988 if (n - n0 < nitems_incr_min
989 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
990 || (0 <= nitems_max && nitems_max < n)
991 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
992 memory_full (SIZE_MAX);
993 pa = xrealloc (pa, nbytes);
994 *nitems = n;
995 return pa;
996 }
997
998
999 /* Like strdup, but uses xmalloc. */
1000
1001 char *
1002 xstrdup (const char *s)
1003 {
1004 ptrdiff_t size;
1005 eassert (s);
1006 size = strlen (s) + 1;
1007 return memcpy (xmalloc (size), s, size);
1008 }
1009
1010 /* Like above, but duplicates Lisp string to C string. */
1011
1012 char *
1013 xlispstrdup (Lisp_Object string)
1014 {
1015 ptrdiff_t size = SBYTES (string) + 1;
1016 return memcpy (xmalloc (size), SSDATA (string), size);
1017 }
1018
1019 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1020 pointed to. If STRING is null, assign it without copying anything.
1021 Allocate before freeing, to avoid a dangling pointer if allocation
1022 fails. */
1023
1024 void
1025 dupstring (char **ptr, char const *string)
1026 {
1027 char *old = *ptr;
1028 *ptr = string ? xstrdup (string) : 0;
1029 xfree (old);
1030 }
1031
1032
1033 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1034 argument is a const pointer. */
1035
1036 void
1037 xputenv (char const *string)
1038 {
1039 if (putenv ((char *) string) != 0)
1040 memory_full (0);
1041 }
1042
1043 /* Return a newly allocated memory block of SIZE bytes, remembering
1044 to free it when unwinding. */
1045 void *
1046 record_xmalloc (size_t size)
1047 {
1048 void *p = xmalloc (size);
1049 record_unwind_protect_ptr (xfree, p);
1050 return p;
1051 }
1052
1053
1054 /* Like malloc but used for allocating Lisp data. NBYTES is the
1055 number of bytes to allocate, TYPE describes the intended use of the
1056 allocated memory block (for strings, for conses, ...). */
1057
1058 #if ! USE_LSB_TAG
1059 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1060 #endif
1061
1062 static void *
1063 lisp_malloc (size_t nbytes, enum mem_type type)
1064 {
1065 register void *val;
1066
1067 MALLOC_BLOCK_INPUT;
1068
1069 #ifdef GC_MALLOC_CHECK
1070 allocated_mem_type = type;
1071 #endif
1072
1073 val = malloc (nbytes);
1074
1075 #if ! USE_LSB_TAG
1076 /* If the memory just allocated cannot be addressed thru a Lisp
1077 object's pointer, and it needs to be,
1078 that's equivalent to running out of memory. */
1079 if (val && type != MEM_TYPE_NON_LISP)
1080 {
1081 Lisp_Object tem;
1082 XSETCONS (tem, (char *) val + nbytes - 1);
1083 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1084 {
1085 lisp_malloc_loser = val;
1086 free (val);
1087 val = 0;
1088 }
1089 }
1090 #endif
1091
1092 #ifndef GC_MALLOC_CHECK
1093 if (val && type != MEM_TYPE_NON_LISP)
1094 mem_insert (val, (char *) val + nbytes, type);
1095 #endif
1096
1097 MALLOC_UNBLOCK_INPUT;
1098 if (!val && nbytes)
1099 memory_full (nbytes);
1100 MALLOC_PROBE (nbytes);
1101 return val;
1102 }
1103
1104 /* Free BLOCK. This must be called to free memory allocated with a
1105 call to lisp_malloc. */
1106
1107 static void
1108 lisp_free (void *block)
1109 {
1110 MALLOC_BLOCK_INPUT;
1111 free (block);
1112 #ifndef GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 MALLOC_UNBLOCK_INPUT;
1116 }
1117
1118 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1119
1120 /* The entry point is lisp_align_malloc which returns blocks of at most
1121 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1122
1123 /* Use aligned_alloc if it or a simple substitute is available.
1124 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1125 clang 3.3 anyway. Aligned allocation is incompatible with
1126 unexmacosx.c, so don't use it on Darwin. */
1127
1128 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1129 # if (defined HAVE_ALIGNED_ALLOC \
1130 || (defined HYBRID_MALLOC \
1131 ? defined HAVE_POSIX_MEMALIGN \
1132 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1133 # define USE_ALIGNED_ALLOC 1
1134 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1135 # define USE_ALIGNED_ALLOC 1
1136 static void *
1137 aligned_alloc (size_t alignment, size_t size)
1138 {
1139 void *p;
1140 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1141 }
1142 # endif
1143 #endif
1144
1145 /* BLOCK_ALIGN has to be a power of 2. */
1146 #define BLOCK_ALIGN (1 << 10)
1147
1148 /* Padding to leave at the end of a malloc'd block. This is to give
1149 malloc a chance to minimize the amount of memory wasted to alignment.
1150 It should be tuned to the particular malloc library used.
1151 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1152 aligned_alloc on the other hand would ideally prefer a value of 4
1153 because otherwise, there's 1020 bytes wasted between each ablocks.
1154 In Emacs, testing shows that those 1020 can most of the time be
1155 efficiently used by malloc to place other objects, so a value of 0 can
1156 still preferable unless you have a lot of aligned blocks and virtually
1157 nothing else. */
1158 #define BLOCK_PADDING 0
1159 #define BLOCK_BYTES \
1160 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1161
1162 /* Internal data structures and constants. */
1163
1164 #define ABLOCKS_SIZE 16
1165
1166 /* An aligned block of memory. */
1167 struct ablock
1168 {
1169 union
1170 {
1171 char payload[BLOCK_BYTES];
1172 struct ablock *next_free;
1173 } x;
1174 /* `abase' is the aligned base of the ablocks. */
1175 /* It is overloaded to hold the virtual `busy' field that counts
1176 the number of used ablock in the parent ablocks.
1177 The first ablock has the `busy' field, the others have the `abase'
1178 field. To tell the difference, we assume that pointers will have
1179 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1180 is used to tell whether the real base of the parent ablocks is `abase'
1181 (if not, the word before the first ablock holds a pointer to the
1182 real base). */
1183 struct ablocks *abase;
1184 /* The padding of all but the last ablock is unused. The padding of
1185 the last ablock in an ablocks is not allocated. */
1186 #if BLOCK_PADDING
1187 char padding[BLOCK_PADDING];
1188 #endif
1189 };
1190
1191 /* A bunch of consecutive aligned blocks. */
1192 struct ablocks
1193 {
1194 struct ablock blocks[ABLOCKS_SIZE];
1195 };
1196
1197 /* Size of the block requested from malloc or aligned_alloc. */
1198 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1199
1200 #define ABLOCK_ABASE(block) \
1201 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1202 ? (struct ablocks *)(block) \
1203 : (block)->abase)
1204
1205 /* Virtual `busy' field. */
1206 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1207
1208 /* Pointer to the (not necessarily aligned) malloc block. */
1209 #ifdef USE_ALIGNED_ALLOC
1210 #define ABLOCKS_BASE(abase) (abase)
1211 #else
1212 #define ABLOCKS_BASE(abase) \
1213 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1214 #endif
1215
1216 /* The list of free ablock. */
1217 static struct ablock *free_ablock;
1218
1219 /* Allocate an aligned block of nbytes.
1220 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1221 smaller or equal to BLOCK_BYTES. */
1222 static void *
1223 lisp_align_malloc (size_t nbytes, enum mem_type type)
1224 {
1225 void *base, *val;
1226 struct ablocks *abase;
1227
1228 eassert (nbytes <= BLOCK_BYTES);
1229
1230 MALLOC_BLOCK_INPUT;
1231
1232 #ifdef GC_MALLOC_CHECK
1233 allocated_mem_type = type;
1234 #endif
1235
1236 if (!free_ablock)
1237 {
1238 int i;
1239 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1240
1241 #ifdef DOUG_LEA_MALLOC
1242 if (!mmap_lisp_allowed_p ())
1243 mallopt (M_MMAP_MAX, 0);
1244 #endif
1245
1246 #ifdef USE_ALIGNED_ALLOC
1247 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1248 #else
1249 base = malloc (ABLOCKS_BYTES);
1250 abase = ALIGN (base, BLOCK_ALIGN);
1251 #endif
1252
1253 if (base == 0)
1254 {
1255 MALLOC_UNBLOCK_INPUT;
1256 memory_full (ABLOCKS_BYTES);
1257 }
1258
1259 aligned = (base == abase);
1260 if (!aligned)
1261 ((void **) abase)[-1] = base;
1262
1263 #ifdef DOUG_LEA_MALLOC
1264 if (!mmap_lisp_allowed_p ())
1265 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1266 #endif
1267
1268 #if ! USE_LSB_TAG
1269 /* If the memory just allocated cannot be addressed thru a Lisp
1270 object's pointer, and it needs to be, that's equivalent to
1271 running out of memory. */
1272 if (type != MEM_TYPE_NON_LISP)
1273 {
1274 Lisp_Object tem;
1275 char *end = (char *) base + ABLOCKS_BYTES - 1;
1276 XSETCONS (tem, end);
1277 if ((char *) XCONS (tem) != end)
1278 {
1279 lisp_malloc_loser = base;
1280 free (base);
1281 MALLOC_UNBLOCK_INPUT;
1282 memory_full (SIZE_MAX);
1283 }
1284 }
1285 #endif
1286
1287 /* Initialize the blocks and put them on the free list.
1288 If `base' was not properly aligned, we can't use the last block. */
1289 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1290 {
1291 abase->blocks[i].abase = abase;
1292 abase->blocks[i].x.next_free = free_ablock;
1293 free_ablock = &abase->blocks[i];
1294 }
1295 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1296
1297 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1298 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1299 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1300 eassert (ABLOCKS_BASE (abase) == base);
1301 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1302 }
1303
1304 abase = ABLOCK_ABASE (free_ablock);
1305 ABLOCKS_BUSY (abase)
1306 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1307 val = free_ablock;
1308 free_ablock = free_ablock->x.next_free;
1309
1310 #ifndef GC_MALLOC_CHECK
1311 if (type != MEM_TYPE_NON_LISP)
1312 mem_insert (val, (char *) val + nbytes, type);
1313 #endif
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 MALLOC_PROBE (nbytes);
1318
1319 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1320 return val;
1321 }
1322
1323 static void
1324 lisp_align_free (void *block)
1325 {
1326 struct ablock *ablock = block;
1327 struct ablocks *abase = ABLOCK_ABASE (ablock);
1328
1329 MALLOC_BLOCK_INPUT;
1330 #ifndef GC_MALLOC_CHECK
1331 mem_delete (mem_find (block));
1332 #endif
1333 /* Put on free list. */
1334 ablock->x.next_free = free_ablock;
1335 free_ablock = ablock;
1336 /* Update busy count. */
1337 ABLOCKS_BUSY (abase)
1338 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1339
1340 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1341 { /* All the blocks are free. */
1342 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1343 struct ablock **tem = &free_ablock;
1344 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1345
1346 while (*tem)
1347 {
1348 if (*tem >= (struct ablock *) abase && *tem < atop)
1349 {
1350 i++;
1351 *tem = (*tem)->x.next_free;
1352 }
1353 else
1354 tem = &(*tem)->x.next_free;
1355 }
1356 eassert ((aligned & 1) == aligned);
1357 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1358 #ifdef USE_POSIX_MEMALIGN
1359 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1360 #endif
1361 free (ABLOCKS_BASE (abase));
1362 }
1363 MALLOC_UNBLOCK_INPUT;
1364 }
1365
1366 \f
1367 /***********************************************************************
1368 Interval Allocation
1369 ***********************************************************************/
1370
1371 /* Number of intervals allocated in an interval_block structure.
1372 The 1020 is 1024 minus malloc overhead. */
1373
1374 #define INTERVAL_BLOCK_SIZE \
1375 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1376
1377 /* Intervals are allocated in chunks in the form of an interval_block
1378 structure. */
1379
1380 struct interval_block
1381 {
1382 /* Place `intervals' first, to preserve alignment. */
1383 struct interval intervals[INTERVAL_BLOCK_SIZE];
1384 struct interval_block *next;
1385 };
1386
1387 /* Current interval block. Its `next' pointer points to older
1388 blocks. */
1389
1390 static struct interval_block *interval_block;
1391
1392 /* Index in interval_block above of the next unused interval
1393 structure. */
1394
1395 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1396
1397 /* Number of free and live intervals. */
1398
1399 static EMACS_INT total_free_intervals, total_intervals;
1400
1401 /* List of free intervals. */
1402
1403 static INTERVAL interval_free_list;
1404
1405 /* Return a new interval. */
1406
1407 INTERVAL
1408 make_interval (void)
1409 {
1410 INTERVAL val;
1411
1412 MALLOC_BLOCK_INPUT;
1413
1414 if (interval_free_list)
1415 {
1416 val = interval_free_list;
1417 interval_free_list = INTERVAL_PARENT (interval_free_list);
1418 }
1419 else
1420 {
1421 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1422 {
1423 struct interval_block *newi
1424 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1425
1426 newi->next = interval_block;
1427 interval_block = newi;
1428 interval_block_index = 0;
1429 total_free_intervals += INTERVAL_BLOCK_SIZE;
1430 }
1431 val = &interval_block->intervals[interval_block_index++];
1432 }
1433
1434 MALLOC_UNBLOCK_INPUT;
1435
1436 consing_since_gc += sizeof (struct interval);
1437 intervals_consed++;
1438 total_free_intervals--;
1439 RESET_INTERVAL (val);
1440 val->gcmarkbit = 0;
1441 return val;
1442 }
1443
1444
1445 /* Mark Lisp objects in interval I. */
1446
1447 static void
1448 mark_interval (register INTERVAL i, Lisp_Object dummy)
1449 {
1450 /* Intervals should never be shared. So, if extra internal checking is
1451 enabled, GC aborts if it seems to have visited an interval twice. */
1452 eassert (!i->gcmarkbit);
1453 i->gcmarkbit = 1;
1454 mark_object (i->plist);
1455 }
1456
1457 /* Mark the interval tree rooted in I. */
1458
1459 #define MARK_INTERVAL_TREE(i) \
1460 do { \
1461 if (i && !i->gcmarkbit) \
1462 traverse_intervals_noorder (i, mark_interval, Qnil); \
1463 } while (0)
1464
1465 /***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1468
1469 /* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
1471 added to a free-list string_free_list. When a new Lisp_String is
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
1475
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
1484
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `n.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
1491
1492 /* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
1494
1495 #define SBLOCK_SIZE 8188
1496
1497 /* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
1499
1500 #define LARGE_STRING_BYTES 1024
1501
1502 /* The SDATA typedef is a struct or union describing string memory
1503 sub-allocated from an sblock. This is where the contents of Lisp
1504 strings are stored. */
1505
1506 struct sdata
1507 {
1508 /* Back-pointer to the string this sdata belongs to. If null, this
1509 structure is free, and NBYTES (in this structure or in the union below)
1510 contains the string's byte size (the same value that STRING_BYTES
1511 would return if STRING were non-null). If non-null, STRING_BYTES
1512 (STRING) is the size of the data, and DATA contains the string's
1513 contents. */
1514 struct Lisp_String *string;
1515
1516 #ifdef GC_CHECK_STRING_BYTES
1517 ptrdiff_t nbytes;
1518 #endif
1519
1520 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1521 };
1522
1523 #ifdef GC_CHECK_STRING_BYTES
1524
1525 typedef struct sdata sdata;
1526 #define SDATA_NBYTES(S) (S)->nbytes
1527 #define SDATA_DATA(S) (S)->data
1528
1529 #else
1530
1531 typedef union
1532 {
1533 struct Lisp_String *string;
1534
1535 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1536 which has a flexible array member. However, if implemented by
1537 giving this union a member of type 'struct sdata', the union
1538 could not be the last (flexible) member of 'struct sblock',
1539 because C99 prohibits a flexible array member from having a type
1540 that is itself a flexible array. So, comment this member out here,
1541 but remember that the option's there when using this union. */
1542 #if 0
1543 struct sdata u;
1544 #endif
1545
1546 /* When STRING is null. */
1547 struct
1548 {
1549 struct Lisp_String *string;
1550 ptrdiff_t nbytes;
1551 } n;
1552 } sdata;
1553
1554 #define SDATA_NBYTES(S) (S)->n.nbytes
1555 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1556
1557 #endif /* not GC_CHECK_STRING_BYTES */
1558
1559 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1560
1561 /* Structure describing a block of memory which is sub-allocated to
1562 obtain string data memory for strings. Blocks for small strings
1563 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1564 as large as needed. */
1565
1566 struct sblock
1567 {
1568 /* Next in list. */
1569 struct sblock *next;
1570
1571 /* Pointer to the next free sdata block. This points past the end
1572 of the sblock if there isn't any space left in this block. */
1573 sdata *next_free;
1574
1575 /* String data. */
1576 sdata data[FLEXIBLE_ARRAY_MEMBER];
1577 };
1578
1579 /* Number of Lisp strings in a string_block structure. The 1020 is
1580 1024 minus malloc overhead. */
1581
1582 #define STRING_BLOCK_SIZE \
1583 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1584
1585 /* Structure describing a block from which Lisp_String structures
1586 are allocated. */
1587
1588 struct string_block
1589 {
1590 /* Place `strings' first, to preserve alignment. */
1591 struct Lisp_String strings[STRING_BLOCK_SIZE];
1592 struct string_block *next;
1593 };
1594
1595 /* Head and tail of the list of sblock structures holding Lisp string
1596 data. We always allocate from current_sblock. The NEXT pointers
1597 in the sblock structures go from oldest_sblock to current_sblock. */
1598
1599 static struct sblock *oldest_sblock, *current_sblock;
1600
1601 /* List of sblocks for large strings. */
1602
1603 static struct sblock *large_sblocks;
1604
1605 /* List of string_block structures. */
1606
1607 static struct string_block *string_blocks;
1608
1609 /* Free-list of Lisp_Strings. */
1610
1611 static struct Lisp_String *string_free_list;
1612
1613 /* Number of live and free Lisp_Strings. */
1614
1615 static EMACS_INT total_strings, total_free_strings;
1616
1617 /* Number of bytes used by live strings. */
1618
1619 static EMACS_INT total_string_bytes;
1620
1621 /* Given a pointer to a Lisp_String S which is on the free-list
1622 string_free_list, return a pointer to its successor in the
1623 free-list. */
1624
1625 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1626
1627 /* Return a pointer to the sdata structure belonging to Lisp string S.
1628 S must be live, i.e. S->data must not be null. S->data is actually
1629 a pointer to the `u.data' member of its sdata structure; the
1630 structure starts at a constant offset in front of that. */
1631
1632 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1633
1634
1635 #ifdef GC_CHECK_STRING_OVERRUN
1636
1637 /* We check for overrun in string data blocks by appending a small
1638 "cookie" after each allocated string data block, and check for the
1639 presence of this cookie during GC. */
1640
1641 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1642 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1643 { '\xde', '\xad', '\xbe', '\xef' };
1644
1645 #else
1646 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1647 #endif
1648
1649 /* Value is the size of an sdata structure large enough to hold NBYTES
1650 bytes of string data. The value returned includes a terminating
1651 NUL byte, the size of the sdata structure, and padding. */
1652
1653 #ifdef GC_CHECK_STRING_BYTES
1654
1655 #define SDATA_SIZE(NBYTES) \
1656 ((SDATA_DATA_OFFSET \
1657 + (NBYTES) + 1 \
1658 + sizeof (ptrdiff_t) - 1) \
1659 & ~(sizeof (ptrdiff_t) - 1))
1660
1661 #else /* not GC_CHECK_STRING_BYTES */
1662
1663 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1664 less than the size of that member. The 'max' is not needed when
1665 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1666 alignment code reserves enough space. */
1667
1668 #define SDATA_SIZE(NBYTES) \
1669 ((SDATA_DATA_OFFSET \
1670 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1671 ? NBYTES \
1672 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1673 + 1 \
1674 + sizeof (ptrdiff_t) - 1) \
1675 & ~(sizeof (ptrdiff_t) - 1))
1676
1677 #endif /* not GC_CHECK_STRING_BYTES */
1678
1679 /* Extra bytes to allocate for each string. */
1680
1681 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1682
1683 /* Exact bound on the number of bytes in a string, not counting the
1684 terminating null. A string cannot contain more bytes than
1685 STRING_BYTES_BOUND, nor can it be so long that the size_t
1686 arithmetic in allocate_string_data would overflow while it is
1687 calculating a value to be passed to malloc. */
1688 static ptrdiff_t const STRING_BYTES_MAX =
1689 min (STRING_BYTES_BOUND,
1690 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1691 - GC_STRING_EXTRA
1692 - offsetof (struct sblock, data)
1693 - SDATA_DATA_OFFSET)
1694 & ~(sizeof (EMACS_INT) - 1)));
1695
1696 /* Initialize string allocation. Called from init_alloc_once. */
1697
1698 static void
1699 init_strings (void)
1700 {
1701 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1702 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1703 }
1704
1705
1706 #ifdef GC_CHECK_STRING_BYTES
1707
1708 static int check_string_bytes_count;
1709
1710 /* Like STRING_BYTES, but with debugging check. Can be
1711 called during GC, so pay attention to the mark bit. */
1712
1713 ptrdiff_t
1714 string_bytes (struct Lisp_String *s)
1715 {
1716 ptrdiff_t nbytes =
1717 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1718
1719 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1720 emacs_abort ();
1721 return nbytes;
1722 }
1723
1724 /* Check validity of Lisp strings' string_bytes member in B. */
1725
1726 static void
1727 check_sblock (struct sblock *b)
1728 {
1729 sdata *from, *end, *from_end;
1730
1731 end = b->next_free;
1732
1733 for (from = b->data; from < end; from = from_end)
1734 {
1735 /* Compute the next FROM here because copying below may
1736 overwrite data we need to compute it. */
1737 ptrdiff_t nbytes;
1738
1739 /* Check that the string size recorded in the string is the
1740 same as the one recorded in the sdata structure. */
1741 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1742 : SDATA_NBYTES (from));
1743 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1744 }
1745 }
1746
1747
1748 /* Check validity of Lisp strings' string_bytes member. ALL_P
1749 means check all strings, otherwise check only most
1750 recently allocated strings. Used for hunting a bug. */
1751
1752 static void
1753 check_string_bytes (bool all_p)
1754 {
1755 if (all_p)
1756 {
1757 struct sblock *b;
1758
1759 for (b = large_sblocks; b; b = b->next)
1760 {
1761 struct Lisp_String *s = b->data[0].string;
1762 if (s)
1763 string_bytes (s);
1764 }
1765
1766 for (b = oldest_sblock; b; b = b->next)
1767 check_sblock (b);
1768 }
1769 else if (current_sblock)
1770 check_sblock (current_sblock);
1771 }
1772
1773 #else /* not GC_CHECK_STRING_BYTES */
1774
1775 #define check_string_bytes(all) ((void) 0)
1776
1777 #endif /* GC_CHECK_STRING_BYTES */
1778
1779 #ifdef GC_CHECK_STRING_FREE_LIST
1780
1781 /* Walk through the string free list looking for bogus next pointers.
1782 This may catch buffer overrun from a previous string. */
1783
1784 static void
1785 check_string_free_list (void)
1786 {
1787 struct Lisp_String *s;
1788
1789 /* Pop a Lisp_String off the free-list. */
1790 s = string_free_list;
1791 while (s != NULL)
1792 {
1793 if ((uintptr_t) s < 1024)
1794 emacs_abort ();
1795 s = NEXT_FREE_LISP_STRING (s);
1796 }
1797 }
1798 #else
1799 #define check_string_free_list()
1800 #endif
1801
1802 /* Return a new Lisp_String. */
1803
1804 static struct Lisp_String *
1805 allocate_string (void)
1806 {
1807 struct Lisp_String *s;
1808
1809 MALLOC_BLOCK_INPUT;
1810
1811 /* If the free-list is empty, allocate a new string_block, and
1812 add all the Lisp_Strings in it to the free-list. */
1813 if (string_free_list == NULL)
1814 {
1815 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1816 int i;
1817
1818 b->next = string_blocks;
1819 string_blocks = b;
1820
1821 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1822 {
1823 s = b->strings + i;
1824 /* Every string on a free list should have NULL data pointer. */
1825 s->data = NULL;
1826 NEXT_FREE_LISP_STRING (s) = string_free_list;
1827 string_free_list = s;
1828 }
1829
1830 total_free_strings += STRING_BLOCK_SIZE;
1831 }
1832
1833 check_string_free_list ();
1834
1835 /* Pop a Lisp_String off the free-list. */
1836 s = string_free_list;
1837 string_free_list = NEXT_FREE_LISP_STRING (s);
1838
1839 MALLOC_UNBLOCK_INPUT;
1840
1841 --total_free_strings;
1842 ++total_strings;
1843 ++strings_consed;
1844 consing_since_gc += sizeof *s;
1845
1846 #ifdef GC_CHECK_STRING_BYTES
1847 if (!noninteractive)
1848 {
1849 if (++check_string_bytes_count == 200)
1850 {
1851 check_string_bytes_count = 0;
1852 check_string_bytes (1);
1853 }
1854 else
1855 check_string_bytes (0);
1856 }
1857 #endif /* GC_CHECK_STRING_BYTES */
1858
1859 return s;
1860 }
1861
1862
1863 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1864 plus a NUL byte at the end. Allocate an sdata structure for S, and
1865 set S->data to its `u.data' member. Store a NUL byte at the end of
1866 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1867 S->data if it was initially non-null. */
1868
1869 void
1870 allocate_string_data (struct Lisp_String *s,
1871 EMACS_INT nchars, EMACS_INT nbytes)
1872 {
1873 sdata *data, *old_data;
1874 struct sblock *b;
1875 ptrdiff_t needed, old_nbytes;
1876
1877 if (STRING_BYTES_MAX < nbytes)
1878 string_overflow ();
1879
1880 /* Determine the number of bytes needed to store NBYTES bytes
1881 of string data. */
1882 needed = SDATA_SIZE (nbytes);
1883 if (s->data)
1884 {
1885 old_data = SDATA_OF_STRING (s);
1886 old_nbytes = STRING_BYTES (s);
1887 }
1888 else
1889 old_data = NULL;
1890
1891 MALLOC_BLOCK_INPUT;
1892
1893 if (nbytes > LARGE_STRING_BYTES)
1894 {
1895 size_t size = offsetof (struct sblock, data) + needed;
1896
1897 #ifdef DOUG_LEA_MALLOC
1898 if (!mmap_lisp_allowed_p ())
1899 mallopt (M_MMAP_MAX, 0);
1900 #endif
1901
1902 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1903
1904 #ifdef DOUG_LEA_MALLOC
1905 if (!mmap_lisp_allowed_p ())
1906 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1907 #endif
1908
1909 b->next_free = b->data;
1910 b->data[0].string = NULL;
1911 b->next = large_sblocks;
1912 large_sblocks = b;
1913 }
1914 else if (current_sblock == NULL
1915 || (((char *) current_sblock + SBLOCK_SIZE
1916 - (char *) current_sblock->next_free)
1917 < (needed + GC_STRING_EXTRA)))
1918 {
1919 /* Not enough room in the current sblock. */
1920 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1921 b->next_free = b->data;
1922 b->data[0].string = NULL;
1923 b->next = NULL;
1924
1925 if (current_sblock)
1926 current_sblock->next = b;
1927 else
1928 oldest_sblock = b;
1929 current_sblock = b;
1930 }
1931 else
1932 b = current_sblock;
1933
1934 data = b->next_free;
1935 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1936
1937 MALLOC_UNBLOCK_INPUT;
1938
1939 data->string = s;
1940 s->data = SDATA_DATA (data);
1941 #ifdef GC_CHECK_STRING_BYTES
1942 SDATA_NBYTES (data) = nbytes;
1943 #endif
1944 s->size = nchars;
1945 s->size_byte = nbytes;
1946 s->data[nbytes] = '\0';
1947 #ifdef GC_CHECK_STRING_OVERRUN
1948 memcpy ((char *) data + needed, string_overrun_cookie,
1949 GC_STRING_OVERRUN_COOKIE_SIZE);
1950 #endif
1951
1952 /* Note that Faset may call to this function when S has already data
1953 assigned. In this case, mark data as free by setting it's string
1954 back-pointer to null, and record the size of the data in it. */
1955 if (old_data)
1956 {
1957 SDATA_NBYTES (old_data) = old_nbytes;
1958 old_data->string = NULL;
1959 }
1960
1961 consing_since_gc += needed;
1962 }
1963
1964
1965 /* Sweep and compact strings. */
1966
1967 NO_INLINE /* For better stack traces */
1968 static void
1969 sweep_strings (void)
1970 {
1971 struct string_block *b, *next;
1972 struct string_block *live_blocks = NULL;
1973
1974 string_free_list = NULL;
1975 total_strings = total_free_strings = 0;
1976 total_string_bytes = 0;
1977
1978 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1979 for (b = string_blocks; b; b = next)
1980 {
1981 int i, nfree = 0;
1982 struct Lisp_String *free_list_before = string_free_list;
1983
1984 next = b->next;
1985
1986 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1987 {
1988 struct Lisp_String *s = b->strings + i;
1989
1990 if (s->data)
1991 {
1992 /* String was not on free-list before. */
1993 if (STRING_MARKED_P (s))
1994 {
1995 /* String is live; unmark it and its intervals. */
1996 UNMARK_STRING (s);
1997
1998 /* Do not use string_(set|get)_intervals here. */
1999 s->intervals = balance_intervals (s->intervals);
2000
2001 ++total_strings;
2002 total_string_bytes += STRING_BYTES (s);
2003 }
2004 else
2005 {
2006 /* String is dead. Put it on the free-list. */
2007 sdata *data = SDATA_OF_STRING (s);
2008
2009 /* Save the size of S in its sdata so that we know
2010 how large that is. Reset the sdata's string
2011 back-pointer so that we know it's free. */
2012 #ifdef GC_CHECK_STRING_BYTES
2013 if (string_bytes (s) != SDATA_NBYTES (data))
2014 emacs_abort ();
2015 #else
2016 data->n.nbytes = STRING_BYTES (s);
2017 #endif
2018 data->string = NULL;
2019
2020 /* Reset the strings's `data' member so that we
2021 know it's free. */
2022 s->data = NULL;
2023
2024 /* Put the string on the free-list. */
2025 NEXT_FREE_LISP_STRING (s) = string_free_list;
2026 string_free_list = s;
2027 ++nfree;
2028 }
2029 }
2030 else
2031 {
2032 /* S was on the free-list before. Put it there again. */
2033 NEXT_FREE_LISP_STRING (s) = string_free_list;
2034 string_free_list = s;
2035 ++nfree;
2036 }
2037 }
2038
2039 /* Free blocks that contain free Lisp_Strings only, except
2040 the first two of them. */
2041 if (nfree == STRING_BLOCK_SIZE
2042 && total_free_strings > STRING_BLOCK_SIZE)
2043 {
2044 lisp_free (b);
2045 string_free_list = free_list_before;
2046 }
2047 else
2048 {
2049 total_free_strings += nfree;
2050 b->next = live_blocks;
2051 live_blocks = b;
2052 }
2053 }
2054
2055 check_string_free_list ();
2056
2057 string_blocks = live_blocks;
2058 free_large_strings ();
2059 compact_small_strings ();
2060
2061 check_string_free_list ();
2062 }
2063
2064
2065 /* Free dead large strings. */
2066
2067 static void
2068 free_large_strings (void)
2069 {
2070 struct sblock *b, *next;
2071 struct sblock *live_blocks = NULL;
2072
2073 for (b = large_sblocks; b; b = next)
2074 {
2075 next = b->next;
2076
2077 if (b->data[0].string == NULL)
2078 lisp_free (b);
2079 else
2080 {
2081 b->next = live_blocks;
2082 live_blocks = b;
2083 }
2084 }
2085
2086 large_sblocks = live_blocks;
2087 }
2088
2089
2090 /* Compact data of small strings. Free sblocks that don't contain
2091 data of live strings after compaction. */
2092
2093 static void
2094 compact_small_strings (void)
2095 {
2096 struct sblock *b, *tb, *next;
2097 sdata *from, *to, *end, *tb_end;
2098 sdata *to_end, *from_end;
2099
2100 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2101 to, and TB_END is the end of TB. */
2102 tb = oldest_sblock;
2103 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2104 to = tb->data;
2105
2106 /* Step through the blocks from the oldest to the youngest. We
2107 expect that old blocks will stabilize over time, so that less
2108 copying will happen this way. */
2109 for (b = oldest_sblock; b; b = b->next)
2110 {
2111 end = b->next_free;
2112 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2113
2114 for (from = b->data; from < end; from = from_end)
2115 {
2116 /* Compute the next FROM here because copying below may
2117 overwrite data we need to compute it. */
2118 ptrdiff_t nbytes;
2119 struct Lisp_String *s = from->string;
2120
2121 #ifdef GC_CHECK_STRING_BYTES
2122 /* Check that the string size recorded in the string is the
2123 same as the one recorded in the sdata structure. */
2124 if (s && string_bytes (s) != SDATA_NBYTES (from))
2125 emacs_abort ();
2126 #endif /* GC_CHECK_STRING_BYTES */
2127
2128 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2129 eassert (nbytes <= LARGE_STRING_BYTES);
2130
2131 nbytes = SDATA_SIZE (nbytes);
2132 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2133
2134 #ifdef GC_CHECK_STRING_OVERRUN
2135 if (memcmp (string_overrun_cookie,
2136 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2137 GC_STRING_OVERRUN_COOKIE_SIZE))
2138 emacs_abort ();
2139 #endif
2140
2141 /* Non-NULL S means it's alive. Copy its data. */
2142 if (s)
2143 {
2144 /* If TB is full, proceed with the next sblock. */
2145 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2146 if (to_end > tb_end)
2147 {
2148 tb->next_free = to;
2149 tb = tb->next;
2150 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2151 to = tb->data;
2152 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2153 }
2154
2155 /* Copy, and update the string's `data' pointer. */
2156 if (from != to)
2157 {
2158 eassert (tb != b || to < from);
2159 memmove (to, from, nbytes + GC_STRING_EXTRA);
2160 to->string->data = SDATA_DATA (to);
2161 }
2162
2163 /* Advance past the sdata we copied to. */
2164 to = to_end;
2165 }
2166 }
2167 }
2168
2169 /* The rest of the sblocks following TB don't contain live data, so
2170 we can free them. */
2171 for (b = tb->next; b; b = next)
2172 {
2173 next = b->next;
2174 lisp_free (b);
2175 }
2176
2177 tb->next_free = to;
2178 tb->next = NULL;
2179 current_sblock = tb;
2180 }
2181
2182 void
2183 string_overflow (void)
2184 {
2185 error ("Maximum string size exceeded");
2186 }
2187
2188 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2189 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2190 LENGTH must be an integer.
2191 INIT must be an integer that represents a character. */)
2192 (Lisp_Object length, Lisp_Object init)
2193 {
2194 register Lisp_Object val;
2195 int c;
2196 EMACS_INT nbytes;
2197
2198 CHECK_NATNUM (length);
2199 CHECK_CHARACTER (init);
2200
2201 c = XFASTINT (init);
2202 if (ASCII_CHAR_P (c))
2203 {
2204 nbytes = XINT (length);
2205 val = make_uninit_string (nbytes);
2206 if (nbytes)
2207 {
2208 memset (SDATA (val), c, nbytes);
2209 SDATA (val)[nbytes] = 0;
2210 }
2211 }
2212 else
2213 {
2214 unsigned char str[MAX_MULTIBYTE_LENGTH];
2215 ptrdiff_t len = CHAR_STRING (c, str);
2216 EMACS_INT string_len = XINT (length);
2217 unsigned char *p, *beg, *end;
2218
2219 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2220 string_overflow ();
2221 val = make_uninit_multibyte_string (string_len, nbytes);
2222 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2223 {
2224 /* First time we just copy `str' to the data of `val'. */
2225 if (p == beg)
2226 memcpy (p, str, len);
2227 else
2228 {
2229 /* Next time we copy largest possible chunk from
2230 initialized to uninitialized part of `val'. */
2231 len = min (p - beg, end - p);
2232 memcpy (p, beg, len);
2233 }
2234 }
2235 if (nbytes)
2236 *p = 0;
2237 }
2238
2239 return val;
2240 }
2241
2242 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2243 Return A. */
2244
2245 Lisp_Object
2246 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2247 {
2248 EMACS_INT nbits = bool_vector_size (a);
2249 if (0 < nbits)
2250 {
2251 unsigned char *data = bool_vector_uchar_data (a);
2252 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2253 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2254 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2255 memset (data, pattern, nbytes - 1);
2256 data[nbytes - 1] = pattern & last_mask;
2257 }
2258 return a;
2259 }
2260
2261 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2262
2263 Lisp_Object
2264 make_uninit_bool_vector (EMACS_INT nbits)
2265 {
2266 Lisp_Object val;
2267 EMACS_INT words = bool_vector_words (nbits);
2268 EMACS_INT word_bytes = words * sizeof (bits_word);
2269 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2270 + word_size - 1)
2271 / word_size);
2272 struct Lisp_Bool_Vector *p
2273 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2274 XSETVECTOR (val, p);
2275 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2276 p->size = nbits;
2277
2278 /* Clear padding at the end. */
2279 if (words)
2280 p->data[words - 1] = 0;
2281
2282 return val;
2283 }
2284
2285 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2286 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2287 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2288 (Lisp_Object length, Lisp_Object init)
2289 {
2290 Lisp_Object val;
2291
2292 CHECK_NATNUM (length);
2293 val = make_uninit_bool_vector (XFASTINT (length));
2294 return bool_vector_fill (val, init);
2295 }
2296
2297 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2298 doc: /* Return a new bool-vector with specified arguments as elements.
2299 Any number of arguments, even zero arguments, are allowed.
2300 usage: (bool-vector &rest OBJECTS) */)
2301 (ptrdiff_t nargs, Lisp_Object *args)
2302 {
2303 ptrdiff_t i;
2304 Lisp_Object vector;
2305
2306 vector = make_uninit_bool_vector (nargs);
2307 for (i = 0; i < nargs; i++)
2308 bool_vector_set (vector, i, !NILP (args[i]));
2309
2310 return vector;
2311 }
2312
2313 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2314 of characters from the contents. This string may be unibyte or
2315 multibyte, depending on the contents. */
2316
2317 Lisp_Object
2318 make_string (const char *contents, ptrdiff_t nbytes)
2319 {
2320 register Lisp_Object val;
2321 ptrdiff_t nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2324 &nchars, &multibyte_nbytes);
2325 if (nbytes == nchars || nbytes != multibyte_nbytes)
2326 /* CONTENTS contains no multibyte sequences or contains an invalid
2327 multibyte sequence. We must make unibyte string. */
2328 val = make_unibyte_string (contents, nbytes);
2329 else
2330 val = make_multibyte_string (contents, nchars, nbytes);
2331 return val;
2332 }
2333
2334 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2335
2336 Lisp_Object
2337 make_unibyte_string (const char *contents, ptrdiff_t length)
2338 {
2339 register Lisp_Object val;
2340 val = make_uninit_string (length);
2341 memcpy (SDATA (val), contents, length);
2342 return val;
2343 }
2344
2345
2346 /* Make a multibyte string from NCHARS characters occupying NBYTES
2347 bytes at CONTENTS. */
2348
2349 Lisp_Object
2350 make_multibyte_string (const char *contents,
2351 ptrdiff_t nchars, ptrdiff_t nbytes)
2352 {
2353 register Lisp_Object val;
2354 val = make_uninit_multibyte_string (nchars, nbytes);
2355 memcpy (SDATA (val), contents, nbytes);
2356 return val;
2357 }
2358
2359
2360 /* Make a string from NCHARS characters occupying NBYTES bytes at
2361 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2362
2363 Lisp_Object
2364 make_string_from_bytes (const char *contents,
2365 ptrdiff_t nchars, ptrdiff_t nbytes)
2366 {
2367 register Lisp_Object val;
2368 val = make_uninit_multibyte_string (nchars, nbytes);
2369 memcpy (SDATA (val), contents, nbytes);
2370 if (SBYTES (val) == SCHARS (val))
2371 STRING_SET_UNIBYTE (val);
2372 return val;
2373 }
2374
2375
2376 /* Make a string from NCHARS characters occupying NBYTES bytes at
2377 CONTENTS. The argument MULTIBYTE controls whether to label the
2378 string as multibyte. If NCHARS is negative, it counts the number of
2379 characters by itself. */
2380
2381 Lisp_Object
2382 make_specified_string (const char *contents,
2383 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2384 {
2385 Lisp_Object val;
2386
2387 if (nchars < 0)
2388 {
2389 if (multibyte)
2390 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2391 nbytes);
2392 else
2393 nchars = nbytes;
2394 }
2395 val = make_uninit_multibyte_string (nchars, nbytes);
2396 memcpy (SDATA (val), contents, nbytes);
2397 if (!multibyte)
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2404 occupying LENGTH bytes. */
2405
2406 Lisp_Object
2407 make_uninit_string (EMACS_INT length)
2408 {
2409 Lisp_Object val;
2410
2411 if (!length)
2412 return empty_unibyte_string;
2413 val = make_uninit_multibyte_string (length, length);
2414 STRING_SET_UNIBYTE (val);
2415 return val;
2416 }
2417
2418
2419 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2420 which occupy NBYTES bytes. */
2421
2422 Lisp_Object
2423 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2424 {
2425 Lisp_Object string;
2426 struct Lisp_String *s;
2427
2428 if (nchars < 0)
2429 emacs_abort ();
2430 if (!nbytes)
2431 return empty_multibyte_string;
2432
2433 s = allocate_string ();
2434 s->intervals = NULL;
2435 allocate_string_data (s, nchars, nbytes);
2436 XSETSTRING (string, s);
2437 string_chars_consed += nbytes;
2438 return string;
2439 }
2440
2441 /* Print arguments to BUF according to a FORMAT, then return
2442 a Lisp_String initialized with the data from BUF. */
2443
2444 Lisp_Object
2445 make_formatted_string (char *buf, const char *format, ...)
2446 {
2447 va_list ap;
2448 int length;
2449
2450 va_start (ap, format);
2451 length = vsprintf (buf, format, ap);
2452 va_end (ap);
2453 return make_string (buf, length);
2454 }
2455
2456 \f
2457 /***********************************************************************
2458 Float Allocation
2459 ***********************************************************************/
2460
2461 /* We store float cells inside of float_blocks, allocating a new
2462 float_block with malloc whenever necessary. Float cells reclaimed
2463 by GC are put on a free list to be reallocated before allocating
2464 any new float cells from the latest float_block. */
2465
2466 #define FLOAT_BLOCK_SIZE \
2467 (((BLOCK_BYTES - sizeof (struct float_block *) \
2468 /* The compiler might add padding at the end. */ \
2469 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2470 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2471
2472 #define GETMARKBIT(block,n) \
2473 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2474 >> ((n) % BITS_PER_BITS_WORD)) \
2475 & 1)
2476
2477 #define SETMARKBIT(block,n) \
2478 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2479 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2480
2481 #define UNSETMARKBIT(block,n) \
2482 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2483 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2484
2485 #define FLOAT_BLOCK(fptr) \
2486 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2487
2488 #define FLOAT_INDEX(fptr) \
2489 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2490
2491 struct float_block
2492 {
2493 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2494 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2495 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2496 struct float_block *next;
2497 };
2498
2499 #define FLOAT_MARKED_P(fptr) \
2500 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2501
2502 #define FLOAT_MARK(fptr) \
2503 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2504
2505 #define FLOAT_UNMARK(fptr) \
2506 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2507
2508 /* Current float_block. */
2509
2510 static struct float_block *float_block;
2511
2512 /* Index of first unused Lisp_Float in the current float_block. */
2513
2514 static int float_block_index = FLOAT_BLOCK_SIZE;
2515
2516 /* Free-list of Lisp_Floats. */
2517
2518 static struct Lisp_Float *float_free_list;
2519
2520 /* Return a new float object with value FLOAT_VALUE. */
2521
2522 Lisp_Object
2523 make_float (double float_value)
2524 {
2525 register Lisp_Object val;
2526
2527 MALLOC_BLOCK_INPUT;
2528
2529 if (float_free_list)
2530 {
2531 /* We use the data field for chaining the free list
2532 so that we won't use the same field that has the mark bit. */
2533 XSETFLOAT (val, float_free_list);
2534 float_free_list = float_free_list->u.chain;
2535 }
2536 else
2537 {
2538 if (float_block_index == FLOAT_BLOCK_SIZE)
2539 {
2540 struct float_block *new
2541 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2542 new->next = float_block;
2543 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2544 float_block = new;
2545 float_block_index = 0;
2546 total_free_floats += FLOAT_BLOCK_SIZE;
2547 }
2548 XSETFLOAT (val, &float_block->floats[float_block_index]);
2549 float_block_index++;
2550 }
2551
2552 MALLOC_UNBLOCK_INPUT;
2553
2554 XFLOAT_INIT (val, float_value);
2555 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2556 consing_since_gc += sizeof (struct Lisp_Float);
2557 floats_consed++;
2558 total_free_floats--;
2559 return val;
2560 }
2561
2562
2563 \f
2564 /***********************************************************************
2565 Cons Allocation
2566 ***********************************************************************/
2567
2568 /* We store cons cells inside of cons_blocks, allocating a new
2569 cons_block with malloc whenever necessary. Cons cells reclaimed by
2570 GC are put on a free list to be reallocated before allocating
2571 any new cons cells from the latest cons_block. */
2572
2573 #define CONS_BLOCK_SIZE \
2574 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2575 /* The compiler might add padding at the end. */ \
2576 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2577 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2578
2579 #define CONS_BLOCK(fptr) \
2580 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2581
2582 #define CONS_INDEX(fptr) \
2583 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2584
2585 struct cons_block
2586 {
2587 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2588 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2589 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2590 struct cons_block *next;
2591 };
2592
2593 #define CONS_MARKED_P(fptr) \
2594 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2595
2596 #define CONS_MARK(fptr) \
2597 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2598
2599 #define CONS_UNMARK(fptr) \
2600 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2601
2602 /* Current cons_block. */
2603
2604 static struct cons_block *cons_block;
2605
2606 /* Index of first unused Lisp_Cons in the current block. */
2607
2608 static int cons_block_index = CONS_BLOCK_SIZE;
2609
2610 /* Free-list of Lisp_Cons structures. */
2611
2612 static struct Lisp_Cons *cons_free_list;
2613
2614 /* Explicitly free a cons cell by putting it on the free-list. */
2615
2616 void
2617 free_cons (struct Lisp_Cons *ptr)
2618 {
2619 ptr->u.chain = cons_free_list;
2620 ptr->car = Vdead;
2621 cons_free_list = ptr;
2622 consing_since_gc -= sizeof *ptr;
2623 total_free_conses++;
2624 }
2625
2626 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2627 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2628 (Lisp_Object car, Lisp_Object cdr)
2629 {
2630 register Lisp_Object val;
2631
2632 MALLOC_BLOCK_INPUT;
2633
2634 if (cons_free_list)
2635 {
2636 /* We use the cdr for chaining the free list
2637 so that we won't use the same field that has the mark bit. */
2638 XSETCONS (val, cons_free_list);
2639 cons_free_list = cons_free_list->u.chain;
2640 }
2641 else
2642 {
2643 if (cons_block_index == CONS_BLOCK_SIZE)
2644 {
2645 struct cons_block *new
2646 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2647 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2648 new->next = cons_block;
2649 cons_block = new;
2650 cons_block_index = 0;
2651 total_free_conses += CONS_BLOCK_SIZE;
2652 }
2653 XSETCONS (val, &cons_block->conses[cons_block_index]);
2654 cons_block_index++;
2655 }
2656
2657 MALLOC_UNBLOCK_INPUT;
2658
2659 XSETCAR (val, car);
2660 XSETCDR (val, cdr);
2661 eassert (!CONS_MARKED_P (XCONS (val)));
2662 consing_since_gc += sizeof (struct Lisp_Cons);
2663 total_free_conses--;
2664 cons_cells_consed++;
2665 return val;
2666 }
2667
2668 #ifdef GC_CHECK_CONS_LIST
2669 /* Get an error now if there's any junk in the cons free list. */
2670 void
2671 check_cons_list (void)
2672 {
2673 struct Lisp_Cons *tail = cons_free_list;
2674
2675 while (tail)
2676 tail = tail->u.chain;
2677 }
2678 #endif
2679
2680 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2681
2682 Lisp_Object
2683 list1 (Lisp_Object arg1)
2684 {
2685 return Fcons (arg1, Qnil);
2686 }
2687
2688 Lisp_Object
2689 list2 (Lisp_Object arg1, Lisp_Object arg2)
2690 {
2691 return Fcons (arg1, Fcons (arg2, Qnil));
2692 }
2693
2694
2695 Lisp_Object
2696 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2697 {
2698 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2699 }
2700
2701
2702 Lisp_Object
2703 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2704 {
2705 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2706 }
2707
2708
2709 Lisp_Object
2710 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2711 {
2712 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2713 Fcons (arg5, Qnil)))));
2714 }
2715
2716 /* Make a list of COUNT Lisp_Objects, where ARG is the
2717 first one. Allocate conses from pure space if TYPE
2718 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2719
2720 Lisp_Object
2721 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2722 {
2723 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2724 switch (type)
2725 {
2726 case CONSTYPE_PURE: cons = pure_cons; break;
2727 case CONSTYPE_HEAP: cons = Fcons; break;
2728 default: emacs_abort ();
2729 }
2730
2731 eassume (0 < count);
2732 Lisp_Object val = cons (arg, Qnil);
2733 Lisp_Object tail = val;
2734
2735 va_list ap;
2736 va_start (ap, arg);
2737 for (ptrdiff_t i = 1; i < count; i++)
2738 {
2739 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2740 XSETCDR (tail, elem);
2741 tail = elem;
2742 }
2743 va_end (ap);
2744
2745 return val;
2746 }
2747
2748 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2749 doc: /* Return a newly created list with specified arguments as elements.
2750 Any number of arguments, even zero arguments, are allowed.
2751 usage: (list &rest OBJECTS) */)
2752 (ptrdiff_t nargs, Lisp_Object *args)
2753 {
2754 register Lisp_Object val;
2755 val = Qnil;
2756
2757 while (nargs > 0)
2758 {
2759 nargs--;
2760 val = Fcons (args[nargs], val);
2761 }
2762 return val;
2763 }
2764
2765
2766 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2767 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2768 (register Lisp_Object length, Lisp_Object init)
2769 {
2770 register Lisp_Object val;
2771 register EMACS_INT size;
2772
2773 CHECK_NATNUM (length);
2774 size = XFASTINT (length);
2775
2776 val = Qnil;
2777 while (size > 0)
2778 {
2779 val = Fcons (init, val);
2780 --size;
2781
2782 if (size > 0)
2783 {
2784 val = Fcons (init, val);
2785 --size;
2786
2787 if (size > 0)
2788 {
2789 val = Fcons (init, val);
2790 --size;
2791
2792 if (size > 0)
2793 {
2794 val = Fcons (init, val);
2795 --size;
2796
2797 if (size > 0)
2798 {
2799 val = Fcons (init, val);
2800 --size;
2801 }
2802 }
2803 }
2804 }
2805
2806 QUIT;
2807 }
2808
2809 return val;
2810 }
2811
2812
2813 \f
2814 /***********************************************************************
2815 Vector Allocation
2816 ***********************************************************************/
2817
2818 /* Sometimes a vector's contents are merely a pointer internally used
2819 in vector allocation code. On the rare platforms where a null
2820 pointer cannot be tagged, represent it with a Lisp 0.
2821 Usually you don't want to touch this. */
2822
2823 static struct Lisp_Vector *
2824 next_vector (struct Lisp_Vector *v)
2825 {
2826 return XUNTAG (v->contents[0], Lisp_Int0);
2827 }
2828
2829 static void
2830 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2831 {
2832 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2833 }
2834
2835 /* This value is balanced well enough to avoid too much internal overhead
2836 for the most common cases; it's not required to be a power of two, but
2837 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2838
2839 #define VECTOR_BLOCK_SIZE 4096
2840
2841 enum
2842 {
2843 /* Alignment of struct Lisp_Vector objects. */
2844 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2845 GCALIGNMENT),
2846
2847 /* Vector size requests are a multiple of this. */
2848 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2849 };
2850
2851 /* Verify assumptions described above. */
2852 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2853 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2854
2855 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2856 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2857 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2858 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2859
2860 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2861
2862 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2863
2864 /* Size of the minimal vector allocated from block. */
2865
2866 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2867
2868 /* Size of the largest vector allocated from block. */
2869
2870 #define VBLOCK_BYTES_MAX \
2871 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2872
2873 /* We maintain one free list for each possible block-allocated
2874 vector size, and this is the number of free lists we have. */
2875
2876 #define VECTOR_MAX_FREE_LIST_INDEX \
2877 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2878
2879 /* Common shortcut to advance vector pointer over a block data. */
2880
2881 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2882
2883 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2884
2885 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2886
2887 /* Common shortcut to setup vector on a free list. */
2888
2889 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2890 do { \
2891 (tmp) = ((nbytes - header_size) / word_size); \
2892 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2893 eassert ((nbytes) % roundup_size == 0); \
2894 (tmp) = VINDEX (nbytes); \
2895 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2896 set_next_vector (v, vector_free_lists[tmp]); \
2897 vector_free_lists[tmp] = (v); \
2898 total_free_vector_slots += (nbytes) / word_size; \
2899 } while (0)
2900
2901 /* This internal type is used to maintain the list of large vectors
2902 which are allocated at their own, e.g. outside of vector blocks.
2903
2904 struct large_vector itself cannot contain a struct Lisp_Vector, as
2905 the latter contains a flexible array member and C99 does not allow
2906 such structs to be nested. Instead, each struct large_vector
2907 object LV is followed by a struct Lisp_Vector, which is at offset
2908 large_vector_offset from LV, and whose address is therefore
2909 large_vector_vec (&LV). */
2910
2911 struct large_vector
2912 {
2913 struct large_vector *next;
2914 };
2915
2916 enum
2917 {
2918 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2919 };
2920
2921 static struct Lisp_Vector *
2922 large_vector_vec (struct large_vector *p)
2923 {
2924 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2925 }
2926
2927 /* This internal type is used to maintain an underlying storage
2928 for small vectors. */
2929
2930 struct vector_block
2931 {
2932 char data[VECTOR_BLOCK_BYTES];
2933 struct vector_block *next;
2934 };
2935
2936 /* Chain of vector blocks. */
2937
2938 static struct vector_block *vector_blocks;
2939
2940 /* Vector free lists, where NTH item points to a chain of free
2941 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2942
2943 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2944
2945 /* Singly-linked list of large vectors. */
2946
2947 static struct large_vector *large_vectors;
2948
2949 /* The only vector with 0 slots, allocated from pure space. */
2950
2951 Lisp_Object zero_vector;
2952
2953 /* Number of live vectors. */
2954
2955 static EMACS_INT total_vectors;
2956
2957 /* Total size of live and free vectors, in Lisp_Object units. */
2958
2959 static EMACS_INT total_vector_slots, total_free_vector_slots;
2960
2961 /* Get a new vector block. */
2962
2963 static struct vector_block *
2964 allocate_vector_block (void)
2965 {
2966 struct vector_block *block = xmalloc (sizeof *block);
2967
2968 #ifndef GC_MALLOC_CHECK
2969 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2970 MEM_TYPE_VECTOR_BLOCK);
2971 #endif
2972
2973 block->next = vector_blocks;
2974 vector_blocks = block;
2975 return block;
2976 }
2977
2978 /* Called once to initialize vector allocation. */
2979
2980 static void
2981 init_vectors (void)
2982 {
2983 zero_vector = make_pure_vector (0);
2984 }
2985
2986 /* Allocate vector from a vector block. */
2987
2988 static struct Lisp_Vector *
2989 allocate_vector_from_block (size_t nbytes)
2990 {
2991 struct Lisp_Vector *vector;
2992 struct vector_block *block;
2993 size_t index, restbytes;
2994
2995 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2996 eassert (nbytes % roundup_size == 0);
2997
2998 /* First, try to allocate from a free list
2999 containing vectors of the requested size. */
3000 index = VINDEX (nbytes);
3001 if (vector_free_lists[index])
3002 {
3003 vector = vector_free_lists[index];
3004 vector_free_lists[index] = next_vector (vector);
3005 total_free_vector_slots -= nbytes / word_size;
3006 return vector;
3007 }
3008
3009 /* Next, check free lists containing larger vectors. Since
3010 we will split the result, we should have remaining space
3011 large enough to use for one-slot vector at least. */
3012 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3013 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3014 if (vector_free_lists[index])
3015 {
3016 /* This vector is larger than requested. */
3017 vector = vector_free_lists[index];
3018 vector_free_lists[index] = next_vector (vector);
3019 total_free_vector_slots -= nbytes / word_size;
3020
3021 /* Excess bytes are used for the smaller vector,
3022 which should be set on an appropriate free list. */
3023 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3024 eassert (restbytes % roundup_size == 0);
3025 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3026 return vector;
3027 }
3028
3029 /* Finally, need a new vector block. */
3030 block = allocate_vector_block ();
3031
3032 /* New vector will be at the beginning of this block. */
3033 vector = (struct Lisp_Vector *) block->data;
3034
3035 /* If the rest of space from this block is large enough
3036 for one-slot vector at least, set up it on a free list. */
3037 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3038 if (restbytes >= VBLOCK_BYTES_MIN)
3039 {
3040 eassert (restbytes % roundup_size == 0);
3041 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3042 }
3043 return vector;
3044 }
3045
3046 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3047
3048 #define VECTOR_IN_BLOCK(vector, block) \
3049 ((char *) (vector) <= (block)->data \
3050 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3051
3052 /* Return the memory footprint of V in bytes. */
3053
3054 static ptrdiff_t
3055 vector_nbytes (struct Lisp_Vector *v)
3056 {
3057 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3058 ptrdiff_t nwords;
3059
3060 if (size & PSEUDOVECTOR_FLAG)
3061 {
3062 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3063 {
3064 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3065 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3066 * sizeof (bits_word));
3067 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3068 verify (header_size <= bool_header_size);
3069 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3070 }
3071 else
3072 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3073 + ((size & PSEUDOVECTOR_REST_MASK)
3074 >> PSEUDOVECTOR_SIZE_BITS));
3075 }
3076 else
3077 nwords = size;
3078 return vroundup (header_size + word_size * nwords);
3079 }
3080
3081 /* Release extra resources still in use by VECTOR, which may be any
3082 vector-like object. For now, this is used just to free data in
3083 font objects. */
3084
3085 static void
3086 cleanup_vector (struct Lisp_Vector *vector)
3087 {
3088 detect_suspicious_free (vector);
3089 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3090 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3091 == FONT_OBJECT_MAX))
3092 {
3093 struct font_driver *drv = ((struct font *) vector)->driver;
3094
3095 /* The font driver might sometimes be NULL, e.g. if Emacs was
3096 interrupted before it had time to set it up. */
3097 if (drv)
3098 {
3099 /* Attempt to catch subtle bugs like Bug#16140. */
3100 eassert (valid_font_driver (drv));
3101 drv->close ((struct font *) vector);
3102 }
3103 }
3104 }
3105
3106 /* Reclaim space used by unmarked vectors. */
3107
3108 NO_INLINE /* For better stack traces */
3109 static void
3110 sweep_vectors (void)
3111 {
3112 struct vector_block *block, **bprev = &vector_blocks;
3113 struct large_vector *lv, **lvprev = &large_vectors;
3114 struct Lisp_Vector *vector, *next;
3115
3116 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3117 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3118
3119 /* Looking through vector blocks. */
3120
3121 for (block = vector_blocks; block; block = *bprev)
3122 {
3123 bool free_this_block = 0;
3124 ptrdiff_t nbytes;
3125
3126 for (vector = (struct Lisp_Vector *) block->data;
3127 VECTOR_IN_BLOCK (vector, block); vector = next)
3128 {
3129 if (VECTOR_MARKED_P (vector))
3130 {
3131 VECTOR_UNMARK (vector);
3132 total_vectors++;
3133 nbytes = vector_nbytes (vector);
3134 total_vector_slots += nbytes / word_size;
3135 next = ADVANCE (vector, nbytes);
3136 }
3137 else
3138 {
3139 ptrdiff_t total_bytes;
3140
3141 cleanup_vector (vector);
3142 nbytes = vector_nbytes (vector);
3143 total_bytes = nbytes;
3144 next = ADVANCE (vector, nbytes);
3145
3146 /* While NEXT is not marked, try to coalesce with VECTOR,
3147 thus making VECTOR of the largest possible size. */
3148
3149 while (VECTOR_IN_BLOCK (next, block))
3150 {
3151 if (VECTOR_MARKED_P (next))
3152 break;
3153 cleanup_vector (next);
3154 nbytes = vector_nbytes (next);
3155 total_bytes += nbytes;
3156 next = ADVANCE (next, nbytes);
3157 }
3158
3159 eassert (total_bytes % roundup_size == 0);
3160
3161 if (vector == (struct Lisp_Vector *) block->data
3162 && !VECTOR_IN_BLOCK (next, block))
3163 /* This block should be freed because all of its
3164 space was coalesced into the only free vector. */
3165 free_this_block = 1;
3166 else
3167 {
3168 size_t tmp;
3169 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3170 }
3171 }
3172 }
3173
3174 if (free_this_block)
3175 {
3176 *bprev = block->next;
3177 #ifndef GC_MALLOC_CHECK
3178 mem_delete (mem_find (block->data));
3179 #endif
3180 xfree (block);
3181 }
3182 else
3183 bprev = &block->next;
3184 }
3185
3186 /* Sweep large vectors. */
3187
3188 for (lv = large_vectors; lv; lv = *lvprev)
3189 {
3190 vector = large_vector_vec (lv);
3191 if (VECTOR_MARKED_P (vector))
3192 {
3193 VECTOR_UNMARK (vector);
3194 total_vectors++;
3195 if (vector->header.size & PSEUDOVECTOR_FLAG)
3196 {
3197 /* All non-bool pseudovectors are small enough to be allocated
3198 from vector blocks. This code should be redesigned if some
3199 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3200 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3201 total_vector_slots += vector_nbytes (vector) / word_size;
3202 }
3203 else
3204 total_vector_slots
3205 += header_size / word_size + vector->header.size;
3206 lvprev = &lv->next;
3207 }
3208 else
3209 {
3210 *lvprev = lv->next;
3211 lisp_free (lv);
3212 }
3213 }
3214 }
3215
3216 /* Value is a pointer to a newly allocated Lisp_Vector structure
3217 with room for LEN Lisp_Objects. */
3218
3219 static struct Lisp_Vector *
3220 allocate_vectorlike (ptrdiff_t len)
3221 {
3222 struct Lisp_Vector *p;
3223
3224 MALLOC_BLOCK_INPUT;
3225
3226 if (len == 0)
3227 p = XVECTOR (zero_vector);
3228 else
3229 {
3230 size_t nbytes = header_size + len * word_size;
3231
3232 #ifdef DOUG_LEA_MALLOC
3233 if (!mmap_lisp_allowed_p ())
3234 mallopt (M_MMAP_MAX, 0);
3235 #endif
3236
3237 if (nbytes <= VBLOCK_BYTES_MAX)
3238 p = allocate_vector_from_block (vroundup (nbytes));
3239 else
3240 {
3241 struct large_vector *lv
3242 = lisp_malloc ((large_vector_offset + header_size
3243 + len * word_size),
3244 MEM_TYPE_VECTORLIKE);
3245 lv->next = large_vectors;
3246 large_vectors = lv;
3247 p = large_vector_vec (lv);
3248 }
3249
3250 #ifdef DOUG_LEA_MALLOC
3251 if (!mmap_lisp_allowed_p ())
3252 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3253 #endif
3254
3255 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3256 emacs_abort ();
3257
3258 consing_since_gc += nbytes;
3259 vector_cells_consed += len;
3260 }
3261
3262 MALLOC_UNBLOCK_INPUT;
3263
3264 return p;
3265 }
3266
3267
3268 /* Allocate a vector with LEN slots. */
3269
3270 struct Lisp_Vector *
3271 allocate_vector (EMACS_INT len)
3272 {
3273 struct Lisp_Vector *v;
3274 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3275
3276 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3277 memory_full (SIZE_MAX);
3278 v = allocate_vectorlike (len);
3279 if (len)
3280 v->header.size = len;
3281 return v;
3282 }
3283
3284
3285 /* Allocate other vector-like structures. */
3286
3287 struct Lisp_Vector *
3288 allocate_pseudovector (int memlen, int lisplen,
3289 int zerolen, enum pvec_type tag)
3290 {
3291 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3292
3293 /* Catch bogus values. */
3294 eassert (0 <= tag && tag <= PVEC_FONT);
3295 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3296 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3297 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3298
3299 /* Only the first LISPLEN slots will be traced normally by the GC. */
3300 memclear (v->contents, zerolen * word_size);
3301 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3302 return v;
3303 }
3304
3305 struct buffer *
3306 allocate_buffer (void)
3307 {
3308 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3309
3310 BUFFER_PVEC_INIT (b);
3311 /* Put B on the chain of all buffers including killed ones. */
3312 b->next = all_buffers;
3313 all_buffers = b;
3314 /* Note that the rest fields of B are not initialized. */
3315 return b;
3316 }
3317
3318 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3319 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3320 See also the function `vector'. */)
3321 (Lisp_Object length, Lisp_Object init)
3322 {
3323 CHECK_NATNUM (length);
3324 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3325 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3326 p->contents[i] = init;
3327 return make_lisp_ptr (p, Lisp_Vectorlike);
3328 }
3329
3330 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3331 doc: /* Return a newly created vector with specified arguments as elements.
3332 Any number of arguments, even zero arguments, are allowed.
3333 usage: (vector &rest OBJECTS) */)
3334 (ptrdiff_t nargs, Lisp_Object *args)
3335 {
3336 Lisp_Object val = make_uninit_vector (nargs);
3337 struct Lisp_Vector *p = XVECTOR (val);
3338 memcpy (p->contents, args, nargs * sizeof *args);
3339 return val;
3340 }
3341
3342 void
3343 make_byte_code (struct Lisp_Vector *v)
3344 {
3345 /* Don't allow the global zero_vector to become a byte code object. */
3346 eassert (0 < v->header.size);
3347
3348 if (v->header.size > 1 && STRINGP (v->contents[1])
3349 && STRING_MULTIBYTE (v->contents[1]))
3350 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3351 earlier because they produced a raw 8-bit string for byte-code
3352 and now such a byte-code string is loaded as multibyte while
3353 raw 8-bit characters converted to multibyte form. Thus, now we
3354 must convert them back to the original unibyte form. */
3355 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3356 XSETPVECTYPE (v, PVEC_COMPILED);
3357 }
3358
3359 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3360 doc: /* Create a byte-code object with specified arguments as elements.
3361 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3362 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3363 and (optional) INTERACTIVE-SPEC.
3364 The first four arguments are required; at most six have any
3365 significance.
3366 The ARGLIST can be either like the one of `lambda', in which case the arguments
3367 will be dynamically bound before executing the byte code, or it can be an
3368 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3369 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3370 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3371 argument to catch the left-over arguments. If such an integer is used, the
3372 arguments will not be dynamically bound but will be instead pushed on the
3373 stack before executing the byte-code.
3374 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3375 (ptrdiff_t nargs, Lisp_Object *args)
3376 {
3377 Lisp_Object val = make_uninit_vector (nargs);
3378 struct Lisp_Vector *p = XVECTOR (val);
3379
3380 /* We used to purecopy everything here, if purify-flag was set. This worked
3381 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3382 dangerous, since make-byte-code is used during execution to build
3383 closures, so any closure built during the preload phase would end up
3384 copied into pure space, including its free variables, which is sometimes
3385 just wasteful and other times plainly wrong (e.g. those free vars may want
3386 to be setcar'd). */
3387
3388 memcpy (p->contents, args, nargs * sizeof *args);
3389 make_byte_code (p);
3390 XSETCOMPILED (val, p);
3391 return val;
3392 }
3393
3394
3395 \f
3396 /***********************************************************************
3397 Symbol Allocation
3398 ***********************************************************************/
3399
3400 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3401 of the required alignment. */
3402
3403 union aligned_Lisp_Symbol
3404 {
3405 struct Lisp_Symbol s;
3406 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3407 & -GCALIGNMENT];
3408 };
3409
3410 /* Each symbol_block is just under 1020 bytes long, since malloc
3411 really allocates in units of powers of two and uses 4 bytes for its
3412 own overhead. */
3413
3414 #define SYMBOL_BLOCK_SIZE \
3415 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3416
3417 struct symbol_block
3418 {
3419 /* Place `symbols' first, to preserve alignment. */
3420 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3421 struct symbol_block *next;
3422 };
3423
3424 /* Current symbol block and index of first unused Lisp_Symbol
3425 structure in it. */
3426
3427 static struct symbol_block *symbol_block;
3428 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3429 /* Pointer to the first symbol_block that contains pinned symbols.
3430 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3431 10K of which are pinned (and all but 250 of them are interned in obarray),
3432 whereas a "typical session" has in the order of 30K symbols.
3433 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3434 than 30K to find the 10K symbols we need to mark. */
3435 static struct symbol_block *symbol_block_pinned;
3436
3437 /* List of free symbols. */
3438
3439 static struct Lisp_Symbol *symbol_free_list;
3440
3441 static void
3442 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3443 {
3444 XSYMBOL (sym)->name = name;
3445 }
3446
3447 void
3448 init_symbol (Lisp_Object val, Lisp_Object name)
3449 {
3450 struct Lisp_Symbol *p = XSYMBOL (val);
3451 set_symbol_name (val, name);
3452 set_symbol_plist (val, Qnil);
3453 p->redirect = SYMBOL_PLAINVAL;
3454 SET_SYMBOL_VAL (p, Qunbound);
3455 set_symbol_function (val, Qnil);
3456 set_symbol_next (val, NULL);
3457 p->gcmarkbit = false;
3458 p->interned = SYMBOL_UNINTERNED;
3459 p->constant = 0;
3460 p->declared_special = false;
3461 p->pinned = false;
3462 }
3463
3464 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3465 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3466 Its value is void, and its function definition and property list are nil. */)
3467 (Lisp_Object name)
3468 {
3469 Lisp_Object val;
3470
3471 CHECK_STRING (name);
3472
3473 MALLOC_BLOCK_INPUT;
3474
3475 if (symbol_free_list)
3476 {
3477 XSETSYMBOL (val, symbol_free_list);
3478 symbol_free_list = symbol_free_list->next;
3479 }
3480 else
3481 {
3482 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3483 {
3484 struct symbol_block *new
3485 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3486 new->next = symbol_block;
3487 symbol_block = new;
3488 symbol_block_index = 0;
3489 total_free_symbols += SYMBOL_BLOCK_SIZE;
3490 }
3491 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3492 symbol_block_index++;
3493 }
3494
3495 MALLOC_UNBLOCK_INPUT;
3496
3497 init_symbol (val, name);
3498 consing_since_gc += sizeof (struct Lisp_Symbol);
3499 symbols_consed++;
3500 total_free_symbols--;
3501 return val;
3502 }
3503
3504
3505 \f
3506 /***********************************************************************
3507 Marker (Misc) Allocation
3508 ***********************************************************************/
3509
3510 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3511 the required alignment. */
3512
3513 union aligned_Lisp_Misc
3514 {
3515 union Lisp_Misc m;
3516 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3517 & -GCALIGNMENT];
3518 };
3519
3520 /* Allocation of markers and other objects that share that structure.
3521 Works like allocation of conses. */
3522
3523 #define MARKER_BLOCK_SIZE \
3524 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3525
3526 struct marker_block
3527 {
3528 /* Place `markers' first, to preserve alignment. */
3529 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3530 struct marker_block *next;
3531 };
3532
3533 static struct marker_block *marker_block;
3534 static int marker_block_index = MARKER_BLOCK_SIZE;
3535
3536 static union Lisp_Misc *marker_free_list;
3537
3538 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3539
3540 static Lisp_Object
3541 allocate_misc (enum Lisp_Misc_Type type)
3542 {
3543 Lisp_Object val;
3544
3545 MALLOC_BLOCK_INPUT;
3546
3547 if (marker_free_list)
3548 {
3549 XSETMISC (val, marker_free_list);
3550 marker_free_list = marker_free_list->u_free.chain;
3551 }
3552 else
3553 {
3554 if (marker_block_index == MARKER_BLOCK_SIZE)
3555 {
3556 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3557 new->next = marker_block;
3558 marker_block = new;
3559 marker_block_index = 0;
3560 total_free_markers += MARKER_BLOCK_SIZE;
3561 }
3562 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3563 marker_block_index++;
3564 }
3565
3566 MALLOC_UNBLOCK_INPUT;
3567
3568 --total_free_markers;
3569 consing_since_gc += sizeof (union Lisp_Misc);
3570 misc_objects_consed++;
3571 XMISCANY (val)->type = type;
3572 XMISCANY (val)->gcmarkbit = 0;
3573 return val;
3574 }
3575
3576 /* Free a Lisp_Misc object. */
3577
3578 void
3579 free_misc (Lisp_Object misc)
3580 {
3581 XMISCANY (misc)->type = Lisp_Misc_Free;
3582 XMISC (misc)->u_free.chain = marker_free_list;
3583 marker_free_list = XMISC (misc);
3584 consing_since_gc -= sizeof (union Lisp_Misc);
3585 total_free_markers++;
3586 }
3587
3588 /* Verify properties of Lisp_Save_Value's representation
3589 that are assumed here and elsewhere. */
3590
3591 verify (SAVE_UNUSED == 0);
3592 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3593 >> SAVE_SLOT_BITS)
3594 == 0);
3595
3596 /* Return Lisp_Save_Value objects for the various combinations
3597 that callers need. */
3598
3599 Lisp_Object
3600 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3601 {
3602 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3603 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3604 p->save_type = SAVE_TYPE_INT_INT_INT;
3605 p->data[0].integer = a;
3606 p->data[1].integer = b;
3607 p->data[2].integer = c;
3608 return val;
3609 }
3610
3611 Lisp_Object
3612 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3613 Lisp_Object d)
3614 {
3615 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3616 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3617 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3618 p->data[0].object = a;
3619 p->data[1].object = b;
3620 p->data[2].object = c;
3621 p->data[3].object = d;
3622 return val;
3623 }
3624
3625 Lisp_Object
3626 make_save_ptr (void *a)
3627 {
3628 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3629 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3630 p->save_type = SAVE_POINTER;
3631 p->data[0].pointer = a;
3632 return val;
3633 }
3634
3635 Lisp_Object
3636 make_save_ptr_int (void *a, ptrdiff_t b)
3637 {
3638 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3639 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3640 p->save_type = SAVE_TYPE_PTR_INT;
3641 p->data[0].pointer = a;
3642 p->data[1].integer = b;
3643 return val;
3644 }
3645
3646 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3647 Lisp_Object
3648 make_save_ptr_ptr (void *a, void *b)
3649 {
3650 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3651 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3652 p->save_type = SAVE_TYPE_PTR_PTR;
3653 p->data[0].pointer = a;
3654 p->data[1].pointer = b;
3655 return val;
3656 }
3657 #endif
3658
3659 Lisp_Object
3660 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3661 {
3662 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3663 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3664 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3665 p->data[0].funcpointer = a;
3666 p->data[1].pointer = b;
3667 p->data[2].object = c;
3668 return val;
3669 }
3670
3671 /* Return a Lisp_Save_Value object that represents an array A
3672 of N Lisp objects. */
3673
3674 Lisp_Object
3675 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3676 {
3677 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3678 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3679 p->save_type = SAVE_TYPE_MEMORY;
3680 p->data[0].pointer = a;
3681 p->data[1].integer = n;
3682 return val;
3683 }
3684
3685 /* Free a Lisp_Save_Value object. Do not use this function
3686 if SAVE contains pointer other than returned by xmalloc. */
3687
3688 void
3689 free_save_value (Lisp_Object save)
3690 {
3691 xfree (XSAVE_POINTER (save, 0));
3692 free_misc (save);
3693 }
3694
3695 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3696
3697 Lisp_Object
3698 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3699 {
3700 register Lisp_Object overlay;
3701
3702 overlay = allocate_misc (Lisp_Misc_Overlay);
3703 OVERLAY_START (overlay) = start;
3704 OVERLAY_END (overlay) = end;
3705 set_overlay_plist (overlay, plist);
3706 XOVERLAY (overlay)->next = NULL;
3707 return overlay;
3708 }
3709
3710 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3711 doc: /* Return a newly allocated marker which does not point at any place. */)
3712 (void)
3713 {
3714 register Lisp_Object val;
3715 register struct Lisp_Marker *p;
3716
3717 val = allocate_misc (Lisp_Misc_Marker);
3718 p = XMARKER (val);
3719 p->buffer = 0;
3720 p->bytepos = 0;
3721 p->charpos = 0;
3722 p->next = NULL;
3723 p->insertion_type = 0;
3724 p->need_adjustment = 0;
3725 return val;
3726 }
3727
3728 /* Return a newly allocated marker which points into BUF
3729 at character position CHARPOS and byte position BYTEPOS. */
3730
3731 Lisp_Object
3732 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3733 {
3734 Lisp_Object obj;
3735 struct Lisp_Marker *m;
3736
3737 /* No dead buffers here. */
3738 eassert (BUFFER_LIVE_P (buf));
3739
3740 /* Every character is at least one byte. */
3741 eassert (charpos <= bytepos);
3742
3743 obj = allocate_misc (Lisp_Misc_Marker);
3744 m = XMARKER (obj);
3745 m->buffer = buf;
3746 m->charpos = charpos;
3747 m->bytepos = bytepos;
3748 m->insertion_type = 0;
3749 m->need_adjustment = 0;
3750 m->next = BUF_MARKERS (buf);
3751 BUF_MARKERS (buf) = m;
3752 return obj;
3753 }
3754
3755 /* Put MARKER back on the free list after using it temporarily. */
3756
3757 void
3758 free_marker (Lisp_Object marker)
3759 {
3760 unchain_marker (XMARKER (marker));
3761 free_misc (marker);
3762 }
3763
3764 \f
3765 /* Return a newly created vector or string with specified arguments as
3766 elements. If all the arguments are characters that can fit
3767 in a string of events, make a string; otherwise, make a vector.
3768
3769 Any number of arguments, even zero arguments, are allowed. */
3770
3771 Lisp_Object
3772 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3773 {
3774 ptrdiff_t i;
3775
3776 for (i = 0; i < nargs; i++)
3777 /* The things that fit in a string
3778 are characters that are in 0...127,
3779 after discarding the meta bit and all the bits above it. */
3780 if (!INTEGERP (args[i])
3781 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3782 return Fvector (nargs, args);
3783
3784 /* Since the loop exited, we know that all the things in it are
3785 characters, so we can make a string. */
3786 {
3787 Lisp_Object result;
3788
3789 result = Fmake_string (make_number (nargs), make_number (0));
3790 for (i = 0; i < nargs; i++)
3791 {
3792 SSET (result, i, XINT (args[i]));
3793 /* Move the meta bit to the right place for a string char. */
3794 if (XINT (args[i]) & CHAR_META)
3795 SSET (result, i, SREF (result, i) | 0x80);
3796 }
3797
3798 return result;
3799 }
3800 }
3801
3802 #ifdef HAVE_MODULES
3803 /* Create a new module user ptr object. */
3804 Lisp_Object
3805 make_user_ptr (void (*finalizer) (void *), void *p)
3806 {
3807 Lisp_Object obj;
3808 struct Lisp_User_Ptr *uptr;
3809
3810 obj = allocate_misc (Lisp_Misc_User_Ptr);
3811 uptr = XUSER_PTR (obj);
3812 uptr->finalizer = finalizer;
3813 uptr->p = p;
3814 return obj;
3815 }
3816
3817 #endif
3818
3819 static void
3820 init_finalizer_list (struct Lisp_Finalizer *head)
3821 {
3822 head->prev = head->next = head;
3823 }
3824
3825 /* Insert FINALIZER before ELEMENT. */
3826
3827 static void
3828 finalizer_insert (struct Lisp_Finalizer *element,
3829 struct Lisp_Finalizer *finalizer)
3830 {
3831 eassert (finalizer->prev == NULL);
3832 eassert (finalizer->next == NULL);
3833 finalizer->next = element;
3834 finalizer->prev = element->prev;
3835 finalizer->prev->next = finalizer;
3836 element->prev = finalizer;
3837 }
3838
3839 static void
3840 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3841 {
3842 if (finalizer->prev != NULL)
3843 {
3844 eassert (finalizer->next != NULL);
3845 finalizer->prev->next = finalizer->next;
3846 finalizer->next->prev = finalizer->prev;
3847 finalizer->prev = finalizer->next = NULL;
3848 }
3849 }
3850
3851 static void
3852 mark_finalizer_list (struct Lisp_Finalizer *head)
3853 {
3854 for (struct Lisp_Finalizer *finalizer = head->next;
3855 finalizer != head;
3856 finalizer = finalizer->next)
3857 {
3858 finalizer->base.gcmarkbit = true;
3859 mark_object (finalizer->function);
3860 }
3861 }
3862
3863 /* Move doomed finalizers to list DEST from list SRC. A doomed
3864 finalizer is one that is not GC-reachable and whose
3865 finalizer->function is non-nil. */
3866
3867 static void
3868 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3869 struct Lisp_Finalizer *src)
3870 {
3871 struct Lisp_Finalizer *finalizer = src->next;
3872 while (finalizer != src)
3873 {
3874 struct Lisp_Finalizer *next = finalizer->next;
3875 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3876 {
3877 unchain_finalizer (finalizer);
3878 finalizer_insert (dest, finalizer);
3879 }
3880
3881 finalizer = next;
3882 }
3883 }
3884
3885 static Lisp_Object
3886 run_finalizer_handler (Lisp_Object args)
3887 {
3888 add_to_log ("finalizer failed: %S", args);
3889 return Qnil;
3890 }
3891
3892 static void
3893 run_finalizer_function (Lisp_Object function)
3894 {
3895 ptrdiff_t count = SPECPDL_INDEX ();
3896
3897 specbind (Qinhibit_quit, Qt);
3898 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3899 unbind_to (count, Qnil);
3900 }
3901
3902 static void
3903 run_finalizers (struct Lisp_Finalizer *finalizers)
3904 {
3905 struct Lisp_Finalizer *finalizer;
3906 Lisp_Object function;
3907
3908 while (finalizers->next != finalizers)
3909 {
3910 finalizer = finalizers->next;
3911 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3912 unchain_finalizer (finalizer);
3913 function = finalizer->function;
3914 if (!NILP (function))
3915 {
3916 finalizer->function = Qnil;
3917 run_finalizer_function (function);
3918 }
3919 }
3920 }
3921
3922 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3923 doc: /* Make a finalizer that will run FUNCTION.
3924 FUNCTION will be called after garbage collection when the returned
3925 finalizer object becomes unreachable. If the finalizer object is
3926 reachable only through references from finalizer objects, it does not
3927 count as reachable for the purpose of deciding whether to run
3928 FUNCTION. FUNCTION will be run once per finalizer object. */)
3929 (Lisp_Object function)
3930 {
3931 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3932 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3933 finalizer->function = function;
3934 finalizer->prev = finalizer->next = NULL;
3935 finalizer_insert (&finalizers, finalizer);
3936 return val;
3937 }
3938
3939 \f
3940 /************************************************************************
3941 Memory Full Handling
3942 ************************************************************************/
3943
3944
3945 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3946 there may have been size_t overflow so that malloc was never
3947 called, or perhaps malloc was invoked successfully but the
3948 resulting pointer had problems fitting into a tagged EMACS_INT. In
3949 either case this counts as memory being full even though malloc did
3950 not fail. */
3951
3952 void
3953 memory_full (size_t nbytes)
3954 {
3955 /* Do not go into hysterics merely because a large request failed. */
3956 bool enough_free_memory = 0;
3957 if (SPARE_MEMORY < nbytes)
3958 {
3959 void *p;
3960
3961 MALLOC_BLOCK_INPUT;
3962 p = malloc (SPARE_MEMORY);
3963 if (p)
3964 {
3965 free (p);
3966 enough_free_memory = 1;
3967 }
3968 MALLOC_UNBLOCK_INPUT;
3969 }
3970
3971 if (! enough_free_memory)
3972 {
3973 int i;
3974
3975 Vmemory_full = Qt;
3976
3977 memory_full_cons_threshold = sizeof (struct cons_block);
3978
3979 /* The first time we get here, free the spare memory. */
3980 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3981 if (spare_memory[i])
3982 {
3983 if (i == 0)
3984 free (spare_memory[i]);
3985 else if (i >= 1 && i <= 4)
3986 lisp_align_free (spare_memory[i]);
3987 else
3988 lisp_free (spare_memory[i]);
3989 spare_memory[i] = 0;
3990 }
3991 }
3992
3993 /* This used to call error, but if we've run out of memory, we could
3994 get infinite recursion trying to build the string. */
3995 xsignal (Qnil, Vmemory_signal_data);
3996 }
3997
3998 /* If we released our reserve (due to running out of memory),
3999 and we have a fair amount free once again,
4000 try to set aside another reserve in case we run out once more.
4001
4002 This is called when a relocatable block is freed in ralloc.c,
4003 and also directly from this file, in case we're not using ralloc.c. */
4004
4005 void
4006 refill_memory_reserve (void)
4007 {
4008 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4009 if (spare_memory[0] == 0)
4010 spare_memory[0] = malloc (SPARE_MEMORY);
4011 if (spare_memory[1] == 0)
4012 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4013 MEM_TYPE_SPARE);
4014 if (spare_memory[2] == 0)
4015 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4016 MEM_TYPE_SPARE);
4017 if (spare_memory[3] == 0)
4018 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4019 MEM_TYPE_SPARE);
4020 if (spare_memory[4] == 0)
4021 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4022 MEM_TYPE_SPARE);
4023 if (spare_memory[5] == 0)
4024 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4025 MEM_TYPE_SPARE);
4026 if (spare_memory[6] == 0)
4027 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4028 MEM_TYPE_SPARE);
4029 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4030 Vmemory_full = Qnil;
4031 #endif
4032 }
4033 \f
4034 /************************************************************************
4035 C Stack Marking
4036 ************************************************************************/
4037
4038 /* Conservative C stack marking requires a method to identify possibly
4039 live Lisp objects given a pointer value. We do this by keeping
4040 track of blocks of Lisp data that are allocated in a red-black tree
4041 (see also the comment of mem_node which is the type of nodes in
4042 that tree). Function lisp_malloc adds information for an allocated
4043 block to the red-black tree with calls to mem_insert, and function
4044 lisp_free removes it with mem_delete. Functions live_string_p etc
4045 call mem_find to lookup information about a given pointer in the
4046 tree, and use that to determine if the pointer points to a Lisp
4047 object or not. */
4048
4049 /* Initialize this part of alloc.c. */
4050
4051 static void
4052 mem_init (void)
4053 {
4054 mem_z.left = mem_z.right = MEM_NIL;
4055 mem_z.parent = NULL;
4056 mem_z.color = MEM_BLACK;
4057 mem_z.start = mem_z.end = NULL;
4058 mem_root = MEM_NIL;
4059 }
4060
4061
4062 /* Value is a pointer to the mem_node containing START. Value is
4063 MEM_NIL if there is no node in the tree containing START. */
4064
4065 static struct mem_node *
4066 mem_find (void *start)
4067 {
4068 struct mem_node *p;
4069
4070 if (start < min_heap_address || start > max_heap_address)
4071 return MEM_NIL;
4072
4073 /* Make the search always successful to speed up the loop below. */
4074 mem_z.start = start;
4075 mem_z.end = (char *) start + 1;
4076
4077 p = mem_root;
4078 while (start < p->start || start >= p->end)
4079 p = start < p->start ? p->left : p->right;
4080 return p;
4081 }
4082
4083
4084 /* Insert a new node into the tree for a block of memory with start
4085 address START, end address END, and type TYPE. Value is a
4086 pointer to the node that was inserted. */
4087
4088 static struct mem_node *
4089 mem_insert (void *start, void *end, enum mem_type type)
4090 {
4091 struct mem_node *c, *parent, *x;
4092
4093 if (min_heap_address == NULL || start < min_heap_address)
4094 min_heap_address = start;
4095 if (max_heap_address == NULL || end > max_heap_address)
4096 max_heap_address = end;
4097
4098 /* See where in the tree a node for START belongs. In this
4099 particular application, it shouldn't happen that a node is already
4100 present. For debugging purposes, let's check that. */
4101 c = mem_root;
4102 parent = NULL;
4103
4104 while (c != MEM_NIL)
4105 {
4106 parent = c;
4107 c = start < c->start ? c->left : c->right;
4108 }
4109
4110 /* Create a new node. */
4111 #ifdef GC_MALLOC_CHECK
4112 x = malloc (sizeof *x);
4113 if (x == NULL)
4114 emacs_abort ();
4115 #else
4116 x = xmalloc (sizeof *x);
4117 #endif
4118 x->start = start;
4119 x->end = end;
4120 x->type = type;
4121 x->parent = parent;
4122 x->left = x->right = MEM_NIL;
4123 x->color = MEM_RED;
4124
4125 /* Insert it as child of PARENT or install it as root. */
4126 if (parent)
4127 {
4128 if (start < parent->start)
4129 parent->left = x;
4130 else
4131 parent->right = x;
4132 }
4133 else
4134 mem_root = x;
4135
4136 /* Re-establish red-black tree properties. */
4137 mem_insert_fixup (x);
4138
4139 return x;
4140 }
4141
4142
4143 /* Re-establish the red-black properties of the tree, and thereby
4144 balance the tree, after node X has been inserted; X is always red. */
4145
4146 static void
4147 mem_insert_fixup (struct mem_node *x)
4148 {
4149 while (x != mem_root && x->parent->color == MEM_RED)
4150 {
4151 /* X is red and its parent is red. This is a violation of
4152 red-black tree property #3. */
4153
4154 if (x->parent == x->parent->parent->left)
4155 {
4156 /* We're on the left side of our grandparent, and Y is our
4157 "uncle". */
4158 struct mem_node *y = x->parent->parent->right;
4159
4160 if (y->color == MEM_RED)
4161 {
4162 /* Uncle and parent are red but should be black because
4163 X is red. Change the colors accordingly and proceed
4164 with the grandparent. */
4165 x->parent->color = MEM_BLACK;
4166 y->color = MEM_BLACK;
4167 x->parent->parent->color = MEM_RED;
4168 x = x->parent->parent;
4169 }
4170 else
4171 {
4172 /* Parent and uncle have different colors; parent is
4173 red, uncle is black. */
4174 if (x == x->parent->right)
4175 {
4176 x = x->parent;
4177 mem_rotate_left (x);
4178 }
4179
4180 x->parent->color = MEM_BLACK;
4181 x->parent->parent->color = MEM_RED;
4182 mem_rotate_right (x->parent->parent);
4183 }
4184 }
4185 else
4186 {
4187 /* This is the symmetrical case of above. */
4188 struct mem_node *y = x->parent->parent->left;
4189
4190 if (y->color == MEM_RED)
4191 {
4192 x->parent->color = MEM_BLACK;
4193 y->color = MEM_BLACK;
4194 x->parent->parent->color = MEM_RED;
4195 x = x->parent->parent;
4196 }
4197 else
4198 {
4199 if (x == x->parent->left)
4200 {
4201 x = x->parent;
4202 mem_rotate_right (x);
4203 }
4204
4205 x->parent->color = MEM_BLACK;
4206 x->parent->parent->color = MEM_RED;
4207 mem_rotate_left (x->parent->parent);
4208 }
4209 }
4210 }
4211
4212 /* The root may have been changed to red due to the algorithm. Set
4213 it to black so that property #5 is satisfied. */
4214 mem_root->color = MEM_BLACK;
4215 }
4216
4217
4218 /* (x) (y)
4219 / \ / \
4220 a (y) ===> (x) c
4221 / \ / \
4222 b c a b */
4223
4224 static void
4225 mem_rotate_left (struct mem_node *x)
4226 {
4227 struct mem_node *y;
4228
4229 /* Turn y's left sub-tree into x's right sub-tree. */
4230 y = x->right;
4231 x->right = y->left;
4232 if (y->left != MEM_NIL)
4233 y->left->parent = x;
4234
4235 /* Y's parent was x's parent. */
4236 if (y != MEM_NIL)
4237 y->parent = x->parent;
4238
4239 /* Get the parent to point to y instead of x. */
4240 if (x->parent)
4241 {
4242 if (x == x->parent->left)
4243 x->parent->left = y;
4244 else
4245 x->parent->right = y;
4246 }
4247 else
4248 mem_root = y;
4249
4250 /* Put x on y's left. */
4251 y->left = x;
4252 if (x != MEM_NIL)
4253 x->parent = y;
4254 }
4255
4256
4257 /* (x) (Y)
4258 / \ / \
4259 (y) c ===> a (x)
4260 / \ / \
4261 a b b c */
4262
4263 static void
4264 mem_rotate_right (struct mem_node *x)
4265 {
4266 struct mem_node *y = x->left;
4267
4268 x->left = y->right;
4269 if (y->right != MEM_NIL)
4270 y->right->parent = x;
4271
4272 if (y != MEM_NIL)
4273 y->parent = x->parent;
4274 if (x->parent)
4275 {
4276 if (x == x->parent->right)
4277 x->parent->right = y;
4278 else
4279 x->parent->left = y;
4280 }
4281 else
4282 mem_root = y;
4283
4284 y->right = x;
4285 if (x != MEM_NIL)
4286 x->parent = y;
4287 }
4288
4289
4290 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4291
4292 static void
4293 mem_delete (struct mem_node *z)
4294 {
4295 struct mem_node *x, *y;
4296
4297 if (!z || z == MEM_NIL)
4298 return;
4299
4300 if (z->left == MEM_NIL || z->right == MEM_NIL)
4301 y = z;
4302 else
4303 {
4304 y = z->right;
4305 while (y->left != MEM_NIL)
4306 y = y->left;
4307 }
4308
4309 if (y->left != MEM_NIL)
4310 x = y->left;
4311 else
4312 x = y->right;
4313
4314 x->parent = y->parent;
4315 if (y->parent)
4316 {
4317 if (y == y->parent->left)
4318 y->parent->left = x;
4319 else
4320 y->parent->right = x;
4321 }
4322 else
4323 mem_root = x;
4324
4325 if (y != z)
4326 {
4327 z->start = y->start;
4328 z->end = y->end;
4329 z->type = y->type;
4330 }
4331
4332 if (y->color == MEM_BLACK)
4333 mem_delete_fixup (x);
4334
4335 #ifdef GC_MALLOC_CHECK
4336 free (y);
4337 #else
4338 xfree (y);
4339 #endif
4340 }
4341
4342
4343 /* Re-establish the red-black properties of the tree, after a
4344 deletion. */
4345
4346 static void
4347 mem_delete_fixup (struct mem_node *x)
4348 {
4349 while (x != mem_root && x->color == MEM_BLACK)
4350 {
4351 if (x == x->parent->left)
4352 {
4353 struct mem_node *w = x->parent->right;
4354
4355 if (w->color == MEM_RED)
4356 {
4357 w->color = MEM_BLACK;
4358 x->parent->color = MEM_RED;
4359 mem_rotate_left (x->parent);
4360 w = x->parent->right;
4361 }
4362
4363 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4364 {
4365 w->color = MEM_RED;
4366 x = x->parent;
4367 }
4368 else
4369 {
4370 if (w->right->color == MEM_BLACK)
4371 {
4372 w->left->color = MEM_BLACK;
4373 w->color = MEM_RED;
4374 mem_rotate_right (w);
4375 w = x->parent->right;
4376 }
4377 w->color = x->parent->color;
4378 x->parent->color = MEM_BLACK;
4379 w->right->color = MEM_BLACK;
4380 mem_rotate_left (x->parent);
4381 x = mem_root;
4382 }
4383 }
4384 else
4385 {
4386 struct mem_node *w = x->parent->left;
4387
4388 if (w->color == MEM_RED)
4389 {
4390 w->color = MEM_BLACK;
4391 x->parent->color = MEM_RED;
4392 mem_rotate_right (x->parent);
4393 w = x->parent->left;
4394 }
4395
4396 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4397 {
4398 w->color = MEM_RED;
4399 x = x->parent;
4400 }
4401 else
4402 {
4403 if (w->left->color == MEM_BLACK)
4404 {
4405 w->right->color = MEM_BLACK;
4406 w->color = MEM_RED;
4407 mem_rotate_left (w);
4408 w = x->parent->left;
4409 }
4410
4411 w->color = x->parent->color;
4412 x->parent->color = MEM_BLACK;
4413 w->left->color = MEM_BLACK;
4414 mem_rotate_right (x->parent);
4415 x = mem_root;
4416 }
4417 }
4418 }
4419
4420 x->color = MEM_BLACK;
4421 }
4422
4423
4424 /* Value is non-zero if P is a pointer to a live Lisp string on
4425 the heap. M is a pointer to the mem_block for P. */
4426
4427 static bool
4428 live_string_p (struct mem_node *m, void *p)
4429 {
4430 if (m->type == MEM_TYPE_STRING)
4431 {
4432 struct string_block *b = m->start;
4433 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4434
4435 /* P must point to the start of a Lisp_String structure, and it
4436 must not be on the free-list. */
4437 return (offset >= 0
4438 && offset % sizeof b->strings[0] == 0
4439 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4440 && ((struct Lisp_String *) p)->data != NULL);
4441 }
4442 else
4443 return 0;
4444 }
4445
4446
4447 /* Value is non-zero if P is a pointer to a live Lisp cons on
4448 the heap. M is a pointer to the mem_block for P. */
4449
4450 static bool
4451 live_cons_p (struct mem_node *m, void *p)
4452 {
4453 if (m->type == MEM_TYPE_CONS)
4454 {
4455 struct cons_block *b = m->start;
4456 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4457
4458 /* P must point to the start of a Lisp_Cons, not be
4459 one of the unused cells in the current cons block,
4460 and not be on the free-list. */
4461 return (offset >= 0
4462 && offset % sizeof b->conses[0] == 0
4463 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4464 && (b != cons_block
4465 || offset / sizeof b->conses[0] < cons_block_index)
4466 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4467 }
4468 else
4469 return 0;
4470 }
4471
4472
4473 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4474 the heap. M is a pointer to the mem_block for P. */
4475
4476 static bool
4477 live_symbol_p (struct mem_node *m, void *p)
4478 {
4479 if (m->type == MEM_TYPE_SYMBOL)
4480 {
4481 struct symbol_block *b = m->start;
4482 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4483
4484 /* P must point to the start of a Lisp_Symbol, not be
4485 one of the unused cells in the current symbol block,
4486 and not be on the free-list. */
4487 return (offset >= 0
4488 && offset % sizeof b->symbols[0] == 0
4489 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4490 && (b != symbol_block
4491 || offset / sizeof b->symbols[0] < symbol_block_index)
4492 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4493 }
4494 else
4495 return 0;
4496 }
4497
4498
4499 /* Value is non-zero if P is a pointer to a live Lisp float on
4500 the heap. M is a pointer to the mem_block for P. */
4501
4502 static bool
4503 live_float_p (struct mem_node *m, void *p)
4504 {
4505 if (m->type == MEM_TYPE_FLOAT)
4506 {
4507 struct float_block *b = m->start;
4508 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4509
4510 /* P must point to the start of a Lisp_Float and not be
4511 one of the unused cells in the current float block. */
4512 return (offset >= 0
4513 && offset % sizeof b->floats[0] == 0
4514 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4515 && (b != float_block
4516 || offset / sizeof b->floats[0] < float_block_index));
4517 }
4518 else
4519 return 0;
4520 }
4521
4522
4523 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4524 the heap. M is a pointer to the mem_block for P. */
4525
4526 static bool
4527 live_misc_p (struct mem_node *m, void *p)
4528 {
4529 if (m->type == MEM_TYPE_MISC)
4530 {
4531 struct marker_block *b = m->start;
4532 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4533
4534 /* P must point to the start of a Lisp_Misc, not be
4535 one of the unused cells in the current misc block,
4536 and not be on the free-list. */
4537 return (offset >= 0
4538 && offset % sizeof b->markers[0] == 0
4539 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4540 && (b != marker_block
4541 || offset / sizeof b->markers[0] < marker_block_index)
4542 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4543 }
4544 else
4545 return 0;
4546 }
4547
4548
4549 /* Value is non-zero if P is a pointer to a live vector-like object.
4550 M is a pointer to the mem_block for P. */
4551
4552 static bool
4553 live_vector_p (struct mem_node *m, void *p)
4554 {
4555 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4556 {
4557 /* This memory node corresponds to a vector block. */
4558 struct vector_block *block = m->start;
4559 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4560
4561 /* P is in the block's allocation range. Scan the block
4562 up to P and see whether P points to the start of some
4563 vector which is not on a free list. FIXME: check whether
4564 some allocation patterns (probably a lot of short vectors)
4565 may cause a substantial overhead of this loop. */
4566 while (VECTOR_IN_BLOCK (vector, block)
4567 && vector <= (struct Lisp_Vector *) p)
4568 {
4569 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4570 return 1;
4571 else
4572 vector = ADVANCE (vector, vector_nbytes (vector));
4573 }
4574 }
4575 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4576 /* This memory node corresponds to a large vector. */
4577 return 1;
4578 return 0;
4579 }
4580
4581
4582 /* Value is non-zero if P is a pointer to a live buffer. M is a
4583 pointer to the mem_block for P. */
4584
4585 static bool
4586 live_buffer_p (struct mem_node *m, void *p)
4587 {
4588 /* P must point to the start of the block, and the buffer
4589 must not have been killed. */
4590 return (m->type == MEM_TYPE_BUFFER
4591 && p == m->start
4592 && !NILP (((struct buffer *) p)->name_));
4593 }
4594
4595 /* Mark OBJ if we can prove it's a Lisp_Object. */
4596
4597 static void
4598 mark_maybe_object (Lisp_Object obj)
4599 {
4600 #if USE_VALGRIND
4601 if (valgrind_p)
4602 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4603 #endif
4604
4605 if (INTEGERP (obj))
4606 return;
4607
4608 void *po = XPNTR (obj);
4609 struct mem_node *m = mem_find (po);
4610
4611 if (m != MEM_NIL)
4612 {
4613 bool mark_p = false;
4614
4615 switch (XTYPE (obj))
4616 {
4617 case Lisp_String:
4618 mark_p = (live_string_p (m, po)
4619 && !STRING_MARKED_P ((struct Lisp_String *) po));
4620 break;
4621
4622 case Lisp_Cons:
4623 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4624 break;
4625
4626 case Lisp_Symbol:
4627 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4628 break;
4629
4630 case Lisp_Float:
4631 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4632 break;
4633
4634 case Lisp_Vectorlike:
4635 /* Note: can't check BUFFERP before we know it's a
4636 buffer because checking that dereferences the pointer
4637 PO which might point anywhere. */
4638 if (live_vector_p (m, po))
4639 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4640 else if (live_buffer_p (m, po))
4641 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4642 break;
4643
4644 case Lisp_Misc:
4645 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4646 break;
4647
4648 default:
4649 break;
4650 }
4651
4652 if (mark_p)
4653 mark_object (obj);
4654 }
4655 }
4656
4657 /* Return true if P can point to Lisp data, and false otherwise.
4658 Symbols are implemented via offsets not pointers, but the offsets
4659 are also multiples of GCALIGNMENT. */
4660
4661 static bool
4662 maybe_lisp_pointer (void *p)
4663 {
4664 return (uintptr_t) p % GCALIGNMENT == 0;
4665 }
4666
4667 #ifndef HAVE_MODULES
4668 enum { HAVE_MODULES = false };
4669 #endif
4670
4671 /* If P points to Lisp data, mark that as live if it isn't already
4672 marked. */
4673
4674 static void
4675 mark_maybe_pointer (void *p)
4676 {
4677 struct mem_node *m;
4678
4679 #if USE_VALGRIND
4680 if (valgrind_p)
4681 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4682 #endif
4683
4684 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4685 {
4686 if (!maybe_lisp_pointer (p))
4687 return;
4688 }
4689 else
4690 {
4691 /* For the wide-int case, also mark emacs_value tagged pointers,
4692 which can be generated by emacs-module.c's value_to_lisp. */
4693 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4694 }
4695
4696 m = mem_find (p);
4697 if (m != MEM_NIL)
4698 {
4699 Lisp_Object obj = Qnil;
4700
4701 switch (m->type)
4702 {
4703 case MEM_TYPE_NON_LISP:
4704 case MEM_TYPE_SPARE:
4705 /* Nothing to do; not a pointer to Lisp memory. */
4706 break;
4707
4708 case MEM_TYPE_BUFFER:
4709 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4710 XSETVECTOR (obj, p);
4711 break;
4712
4713 case MEM_TYPE_CONS:
4714 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4715 XSETCONS (obj, p);
4716 break;
4717
4718 case MEM_TYPE_STRING:
4719 if (live_string_p (m, p)
4720 && !STRING_MARKED_P ((struct Lisp_String *) p))
4721 XSETSTRING (obj, p);
4722 break;
4723
4724 case MEM_TYPE_MISC:
4725 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4726 XSETMISC (obj, p);
4727 break;
4728
4729 case MEM_TYPE_SYMBOL:
4730 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4731 XSETSYMBOL (obj, p);
4732 break;
4733
4734 case MEM_TYPE_FLOAT:
4735 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4736 XSETFLOAT (obj, p);
4737 break;
4738
4739 case MEM_TYPE_VECTORLIKE:
4740 case MEM_TYPE_VECTOR_BLOCK:
4741 if (live_vector_p (m, p))
4742 {
4743 Lisp_Object tem;
4744 XSETVECTOR (tem, p);
4745 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4746 obj = tem;
4747 }
4748 break;
4749
4750 default:
4751 emacs_abort ();
4752 }
4753
4754 if (!NILP (obj))
4755 mark_object (obj);
4756 }
4757 }
4758
4759
4760 /* Alignment of pointer values. Use alignof, as it sometimes returns
4761 a smaller alignment than GCC's __alignof__ and mark_memory might
4762 miss objects if __alignof__ were used. */
4763 #define GC_POINTER_ALIGNMENT alignof (void *)
4764
4765 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4766 or END+OFFSET..START. */
4767
4768 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4769 mark_memory (void *start, void *end)
4770 {
4771 char *pp;
4772
4773 /* Make START the pointer to the start of the memory region,
4774 if it isn't already. */
4775 if (end < start)
4776 {
4777 void *tem = start;
4778 start = end;
4779 end = tem;
4780 }
4781
4782 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4783
4784 /* Mark Lisp data pointed to. This is necessary because, in some
4785 situations, the C compiler optimizes Lisp objects away, so that
4786 only a pointer to them remains. Example:
4787
4788 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4789 ()
4790 {
4791 Lisp_Object obj = build_string ("test");
4792 struct Lisp_String *s = XSTRING (obj);
4793 Fgarbage_collect ();
4794 fprintf (stderr, "test '%s'\n", s->data);
4795 return Qnil;
4796 }
4797
4798 Here, `obj' isn't really used, and the compiler optimizes it
4799 away. The only reference to the life string is through the
4800 pointer `s'. */
4801
4802 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4803 {
4804 mark_maybe_pointer (*(void **) pp);
4805 mark_maybe_object (*(Lisp_Object *) pp);
4806 }
4807 }
4808
4809 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4810
4811 static bool setjmp_tested_p;
4812 static int longjmps_done;
4813
4814 #define SETJMP_WILL_LIKELY_WORK "\
4815 \n\
4816 Emacs garbage collector has been changed to use conservative stack\n\
4817 marking. Emacs has determined that the method it uses to do the\n\
4818 marking will likely work on your system, but this isn't sure.\n\
4819 \n\
4820 If you are a system-programmer, or can get the help of a local wizard\n\
4821 who is, please take a look at the function mark_stack in alloc.c, and\n\
4822 verify that the methods used are appropriate for your system.\n\
4823 \n\
4824 Please mail the result to <emacs-devel@gnu.org>.\n\
4825 "
4826
4827 #define SETJMP_WILL_NOT_WORK "\
4828 \n\
4829 Emacs garbage collector has been changed to use conservative stack\n\
4830 marking. Emacs has determined that the default method it uses to do the\n\
4831 marking will not work on your system. We will need a system-dependent\n\
4832 solution for your system.\n\
4833 \n\
4834 Please take a look at the function mark_stack in alloc.c, and\n\
4835 try to find a way to make it work on your system.\n\
4836 \n\
4837 Note that you may get false negatives, depending on the compiler.\n\
4838 In particular, you need to use -O with GCC for this test.\n\
4839 \n\
4840 Please mail the result to <emacs-devel@gnu.org>.\n\
4841 "
4842
4843
4844 /* Perform a quick check if it looks like setjmp saves registers in a
4845 jmp_buf. Print a message to stderr saying so. When this test
4846 succeeds, this is _not_ a proof that setjmp is sufficient for
4847 conservative stack marking. Only the sources or a disassembly
4848 can prove that. */
4849
4850 static void
4851 test_setjmp (void)
4852 {
4853 char buf[10];
4854 register int x;
4855 sys_jmp_buf jbuf;
4856
4857 /* Arrange for X to be put in a register. */
4858 sprintf (buf, "1");
4859 x = strlen (buf);
4860 x = 2 * x - 1;
4861
4862 sys_setjmp (jbuf);
4863 if (longjmps_done == 1)
4864 {
4865 /* Came here after the longjmp at the end of the function.
4866
4867 If x == 1, the longjmp has restored the register to its
4868 value before the setjmp, and we can hope that setjmp
4869 saves all such registers in the jmp_buf, although that
4870 isn't sure.
4871
4872 For other values of X, either something really strange is
4873 taking place, or the setjmp just didn't save the register. */
4874
4875 if (x == 1)
4876 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4877 else
4878 {
4879 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4880 exit (1);
4881 }
4882 }
4883
4884 ++longjmps_done;
4885 x = 2;
4886 if (longjmps_done == 1)
4887 sys_longjmp (jbuf, 1);
4888 }
4889
4890 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4891
4892
4893 /* Mark live Lisp objects on the C stack.
4894
4895 There are several system-dependent problems to consider when
4896 porting this to new architectures:
4897
4898 Processor Registers
4899
4900 We have to mark Lisp objects in CPU registers that can hold local
4901 variables or are used to pass parameters.
4902
4903 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4904 something that either saves relevant registers on the stack, or
4905 calls mark_maybe_object passing it each register's contents.
4906
4907 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4908 implementation assumes that calling setjmp saves registers we need
4909 to see in a jmp_buf which itself lies on the stack. This doesn't
4910 have to be true! It must be verified for each system, possibly
4911 by taking a look at the source code of setjmp.
4912
4913 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4914 can use it as a machine independent method to store all registers
4915 to the stack. In this case the macros described in the previous
4916 two paragraphs are not used.
4917
4918 Stack Layout
4919
4920 Architectures differ in the way their processor stack is organized.
4921 For example, the stack might look like this
4922
4923 +----------------+
4924 | Lisp_Object | size = 4
4925 +----------------+
4926 | something else | size = 2
4927 +----------------+
4928 | Lisp_Object | size = 4
4929 +----------------+
4930 | ... |
4931
4932 In such a case, not every Lisp_Object will be aligned equally. To
4933 find all Lisp_Object on the stack it won't be sufficient to walk
4934 the stack in steps of 4 bytes. Instead, two passes will be
4935 necessary, one starting at the start of the stack, and a second
4936 pass starting at the start of the stack + 2. Likewise, if the
4937 minimal alignment of Lisp_Objects on the stack is 1, four passes
4938 would be necessary, each one starting with one byte more offset
4939 from the stack start. */
4940
4941 static void
4942 mark_stack (void *end)
4943 {
4944
4945 /* This assumes that the stack is a contiguous region in memory. If
4946 that's not the case, something has to be done here to iterate
4947 over the stack segments. */
4948 mark_memory (stack_base, end);
4949
4950 /* Allow for marking a secondary stack, like the register stack on the
4951 ia64. */
4952 #ifdef GC_MARK_SECONDARY_STACK
4953 GC_MARK_SECONDARY_STACK ();
4954 #endif
4955 }
4956
4957 static bool
4958 c_symbol_p (struct Lisp_Symbol *sym)
4959 {
4960 char *lispsym_ptr = (char *) lispsym;
4961 char *sym_ptr = (char *) sym;
4962 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4963 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4964 }
4965
4966 /* Determine whether it is safe to access memory at address P. */
4967 static int
4968 valid_pointer_p (void *p)
4969 {
4970 #ifdef WINDOWSNT
4971 return w32_valid_pointer_p (p, 16);
4972 #else
4973
4974 if (ADDRESS_SANITIZER)
4975 return p ? -1 : 0;
4976
4977 int fd[2];
4978
4979 /* Obviously, we cannot just access it (we would SEGV trying), so we
4980 trick the o/s to tell us whether p is a valid pointer.
4981 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4982 not validate p in that case. */
4983
4984 if (emacs_pipe (fd) == 0)
4985 {
4986 bool valid = emacs_write (fd[1], p, 16) == 16;
4987 emacs_close (fd[1]);
4988 emacs_close (fd[0]);
4989 return valid;
4990 }
4991
4992 return -1;
4993 #endif
4994 }
4995
4996 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4997 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4998 cannot validate OBJ. This function can be quite slow, so its primary
4999 use is the manual debugging. The only exception is print_object, where
5000 we use it to check whether the memory referenced by the pointer of
5001 Lisp_Save_Value object contains valid objects. */
5002
5003 int
5004 valid_lisp_object_p (Lisp_Object obj)
5005 {
5006 if (INTEGERP (obj))
5007 return 1;
5008
5009 void *p = XPNTR (obj);
5010 if (PURE_P (p))
5011 return 1;
5012
5013 if (SYMBOLP (obj) && c_symbol_p (p))
5014 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5015
5016 if (p == &buffer_defaults || p == &buffer_local_symbols)
5017 return 2;
5018
5019 struct mem_node *m = mem_find (p);
5020
5021 if (m == MEM_NIL)
5022 {
5023 int valid = valid_pointer_p (p);
5024 if (valid <= 0)
5025 return valid;
5026
5027 if (SUBRP (obj))
5028 return 1;
5029
5030 return 0;
5031 }
5032
5033 switch (m->type)
5034 {
5035 case MEM_TYPE_NON_LISP:
5036 case MEM_TYPE_SPARE:
5037 return 0;
5038
5039 case MEM_TYPE_BUFFER:
5040 return live_buffer_p (m, p) ? 1 : 2;
5041
5042 case MEM_TYPE_CONS:
5043 return live_cons_p (m, p);
5044
5045 case MEM_TYPE_STRING:
5046 return live_string_p (m, p);
5047
5048 case MEM_TYPE_MISC:
5049 return live_misc_p (m, p);
5050
5051 case MEM_TYPE_SYMBOL:
5052 return live_symbol_p (m, p);
5053
5054 case MEM_TYPE_FLOAT:
5055 return live_float_p (m, p);
5056
5057 case MEM_TYPE_VECTORLIKE:
5058 case MEM_TYPE_VECTOR_BLOCK:
5059 return live_vector_p (m, p);
5060
5061 default:
5062 break;
5063 }
5064
5065 return 0;
5066 }
5067
5068 /***********************************************************************
5069 Pure Storage Management
5070 ***********************************************************************/
5071
5072 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5073 pointer to it. TYPE is the Lisp type for which the memory is
5074 allocated. TYPE < 0 means it's not used for a Lisp object. */
5075
5076 static void *
5077 pure_alloc (size_t size, int type)
5078 {
5079 void *result;
5080
5081 again:
5082 if (type >= 0)
5083 {
5084 /* Allocate space for a Lisp object from the beginning of the free
5085 space with taking account of alignment. */
5086 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5087 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5088 }
5089 else
5090 {
5091 /* Allocate space for a non-Lisp object from the end of the free
5092 space. */
5093 pure_bytes_used_non_lisp += size;
5094 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5095 }
5096 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5097
5098 if (pure_bytes_used <= pure_size)
5099 return result;
5100
5101 /* Don't allocate a large amount here,
5102 because it might get mmap'd and then its address
5103 might not be usable. */
5104 purebeg = xmalloc (10000);
5105 pure_size = 10000;
5106 pure_bytes_used_before_overflow += pure_bytes_used - size;
5107 pure_bytes_used = 0;
5108 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5109 goto again;
5110 }
5111
5112
5113 /* Print a warning if PURESIZE is too small. */
5114
5115 void
5116 check_pure_size (void)
5117 {
5118 if (pure_bytes_used_before_overflow)
5119 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5120 " bytes needed)"),
5121 pure_bytes_used + pure_bytes_used_before_overflow);
5122 }
5123
5124
5125 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5126 the non-Lisp data pool of the pure storage, and return its start
5127 address. Return NULL if not found. */
5128
5129 static char *
5130 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5131 {
5132 int i;
5133 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5134 const unsigned char *p;
5135 char *non_lisp_beg;
5136
5137 if (pure_bytes_used_non_lisp <= nbytes)
5138 return NULL;
5139
5140 /* Set up the Boyer-Moore table. */
5141 skip = nbytes + 1;
5142 for (i = 0; i < 256; i++)
5143 bm_skip[i] = skip;
5144
5145 p = (const unsigned char *) data;
5146 while (--skip > 0)
5147 bm_skip[*p++] = skip;
5148
5149 last_char_skip = bm_skip['\0'];
5150
5151 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5152 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5153
5154 /* See the comments in the function `boyer_moore' (search.c) for the
5155 use of `infinity'. */
5156 infinity = pure_bytes_used_non_lisp + 1;
5157 bm_skip['\0'] = infinity;
5158
5159 p = (const unsigned char *) non_lisp_beg + nbytes;
5160 start = 0;
5161 do
5162 {
5163 /* Check the last character (== '\0'). */
5164 do
5165 {
5166 start += bm_skip[*(p + start)];
5167 }
5168 while (start <= start_max);
5169
5170 if (start < infinity)
5171 /* Couldn't find the last character. */
5172 return NULL;
5173
5174 /* No less than `infinity' means we could find the last
5175 character at `p[start - infinity]'. */
5176 start -= infinity;
5177
5178 /* Check the remaining characters. */
5179 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5180 /* Found. */
5181 return non_lisp_beg + start;
5182
5183 start += last_char_skip;
5184 }
5185 while (start <= start_max);
5186
5187 return NULL;
5188 }
5189
5190
5191 /* Return a string allocated in pure space. DATA is a buffer holding
5192 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5193 means make the result string multibyte.
5194
5195 Must get an error if pure storage is full, since if it cannot hold
5196 a large string it may be able to hold conses that point to that
5197 string; then the string is not protected from gc. */
5198
5199 Lisp_Object
5200 make_pure_string (const char *data,
5201 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5202 {
5203 Lisp_Object string;
5204 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5205 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5206 if (s->data == NULL)
5207 {
5208 s->data = pure_alloc (nbytes + 1, -1);
5209 memcpy (s->data, data, nbytes);
5210 s->data[nbytes] = '\0';
5211 }
5212 s->size = nchars;
5213 s->size_byte = multibyte ? nbytes : -1;
5214 s->intervals = NULL;
5215 XSETSTRING (string, s);
5216 return string;
5217 }
5218
5219 /* Return a string allocated in pure space. Do not
5220 allocate the string data, just point to DATA. */
5221
5222 Lisp_Object
5223 make_pure_c_string (const char *data, ptrdiff_t nchars)
5224 {
5225 Lisp_Object string;
5226 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5227 s->size = nchars;
5228 s->size_byte = -1;
5229 s->data = (unsigned char *) data;
5230 s->intervals = NULL;
5231 XSETSTRING (string, s);
5232 return string;
5233 }
5234
5235 static Lisp_Object purecopy (Lisp_Object obj);
5236
5237 /* Return a cons allocated from pure space. Give it pure copies
5238 of CAR as car and CDR as cdr. */
5239
5240 Lisp_Object
5241 pure_cons (Lisp_Object car, Lisp_Object cdr)
5242 {
5243 Lisp_Object new;
5244 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5245 XSETCONS (new, p);
5246 XSETCAR (new, purecopy (car));
5247 XSETCDR (new, purecopy (cdr));
5248 return new;
5249 }
5250
5251
5252 /* Value is a float object with value NUM allocated from pure space. */
5253
5254 static Lisp_Object
5255 make_pure_float (double num)
5256 {
5257 Lisp_Object new;
5258 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5259 XSETFLOAT (new, p);
5260 XFLOAT_INIT (new, num);
5261 return new;
5262 }
5263
5264
5265 /* Return a vector with room for LEN Lisp_Objects allocated from
5266 pure space. */
5267
5268 static Lisp_Object
5269 make_pure_vector (ptrdiff_t len)
5270 {
5271 Lisp_Object new;
5272 size_t size = header_size + len * word_size;
5273 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5274 XSETVECTOR (new, p);
5275 XVECTOR (new)->header.size = len;
5276 return new;
5277 }
5278
5279 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5280 doc: /* Make a copy of object OBJ in pure storage.
5281 Recursively copies contents of vectors and cons cells.
5282 Does not copy symbols. Copies strings without text properties. */)
5283 (register Lisp_Object obj)
5284 {
5285 if (NILP (Vpurify_flag))
5286 return obj;
5287 else if (MARKERP (obj) || OVERLAYP (obj)
5288 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5289 /* Can't purify those. */
5290 return obj;
5291 else
5292 return purecopy (obj);
5293 }
5294
5295 static Lisp_Object
5296 purecopy (Lisp_Object obj)
5297 {
5298 if (INTEGERP (obj)
5299 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5300 || SUBRP (obj))
5301 return obj; /* Already pure. */
5302
5303 if (STRINGP (obj) && XSTRING (obj)->intervals)
5304 message_with_string ("Dropping text-properties while making string `%s' pure",
5305 obj, true);
5306
5307 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5308 {
5309 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5310 if (!NILP (tmp))
5311 return tmp;
5312 }
5313
5314 if (CONSP (obj))
5315 obj = pure_cons (XCAR (obj), XCDR (obj));
5316 else if (FLOATP (obj))
5317 obj = make_pure_float (XFLOAT_DATA (obj));
5318 else if (STRINGP (obj))
5319 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5320 SBYTES (obj),
5321 STRING_MULTIBYTE (obj));
5322 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5323 {
5324 struct Lisp_Vector *objp = XVECTOR (obj);
5325 ptrdiff_t nbytes = vector_nbytes (objp);
5326 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5327 register ptrdiff_t i;
5328 ptrdiff_t size = ASIZE (obj);
5329 if (size & PSEUDOVECTOR_FLAG)
5330 size &= PSEUDOVECTOR_SIZE_MASK;
5331 memcpy (vec, objp, nbytes);
5332 for (i = 0; i < size; i++)
5333 vec->contents[i] = purecopy (vec->contents[i]);
5334 XSETVECTOR (obj, vec);
5335 }
5336 else if (SYMBOLP (obj))
5337 {
5338 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5339 { /* We can't purify them, but they appear in many pure objects.
5340 Mark them as `pinned' so we know to mark them at every GC cycle. */
5341 XSYMBOL (obj)->pinned = true;
5342 symbol_block_pinned = symbol_block;
5343 }
5344 /* Don't hash-cons it. */
5345 return obj;
5346 }
5347 else
5348 {
5349 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5350 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5351 }
5352
5353 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5354 Fputhash (obj, obj, Vpurify_flag);
5355
5356 return obj;
5357 }
5358
5359
5360 \f
5361 /***********************************************************************
5362 Protection from GC
5363 ***********************************************************************/
5364
5365 /* Put an entry in staticvec, pointing at the variable with address
5366 VARADDRESS. */
5367
5368 void
5369 staticpro (Lisp_Object *varaddress)
5370 {
5371 if (staticidx >= NSTATICS)
5372 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5373 staticvec[staticidx++] = varaddress;
5374 }
5375
5376 \f
5377 /***********************************************************************
5378 Protection from GC
5379 ***********************************************************************/
5380
5381 /* Temporarily prevent garbage collection. */
5382
5383 ptrdiff_t
5384 inhibit_garbage_collection (void)
5385 {
5386 ptrdiff_t count = SPECPDL_INDEX ();
5387
5388 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5389 return count;
5390 }
5391
5392 /* Used to avoid possible overflows when
5393 converting from C to Lisp integers. */
5394
5395 static Lisp_Object
5396 bounded_number (EMACS_INT number)
5397 {
5398 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5399 }
5400
5401 /* Calculate total bytes of live objects. */
5402
5403 static size_t
5404 total_bytes_of_live_objects (void)
5405 {
5406 size_t tot = 0;
5407 tot += total_conses * sizeof (struct Lisp_Cons);
5408 tot += total_symbols * sizeof (struct Lisp_Symbol);
5409 tot += total_markers * sizeof (union Lisp_Misc);
5410 tot += total_string_bytes;
5411 tot += total_vector_slots * word_size;
5412 tot += total_floats * sizeof (struct Lisp_Float);
5413 tot += total_intervals * sizeof (struct interval);
5414 tot += total_strings * sizeof (struct Lisp_String);
5415 return tot;
5416 }
5417
5418 #ifdef HAVE_WINDOW_SYSTEM
5419
5420 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5421 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5422
5423 static Lisp_Object
5424 compact_font_cache_entry (Lisp_Object entry)
5425 {
5426 Lisp_Object tail, *prev = &entry;
5427
5428 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5429 {
5430 bool drop = 0;
5431 Lisp_Object obj = XCAR (tail);
5432
5433 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5434 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5435 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5436 /* Don't use VECTORP here, as that calls ASIZE, which could
5437 hit assertion violation during GC. */
5438 && (VECTORLIKEP (XCDR (obj))
5439 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5440 {
5441 ptrdiff_t i, size = gc_asize (XCDR (obj));
5442 Lisp_Object obj_cdr = XCDR (obj);
5443
5444 /* If font-spec is not marked, most likely all font-entities
5445 are not marked too. But we must be sure that nothing is
5446 marked within OBJ before we really drop it. */
5447 for (i = 0; i < size; i++)
5448 {
5449 Lisp_Object objlist;
5450
5451 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5452 break;
5453
5454 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5455 for (; CONSP (objlist); objlist = XCDR (objlist))
5456 {
5457 Lisp_Object val = XCAR (objlist);
5458 struct font *font = GC_XFONT_OBJECT (val);
5459
5460 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5461 && VECTOR_MARKED_P(font))
5462 break;
5463 }
5464 if (CONSP (objlist))
5465 {
5466 /* Found a marked font, bail out. */
5467 break;
5468 }
5469 }
5470
5471 if (i == size)
5472 {
5473 /* No marked fonts were found, so this entire font
5474 entity can be dropped. */
5475 drop = 1;
5476 }
5477 }
5478 if (drop)
5479 *prev = XCDR (tail);
5480 else
5481 prev = xcdr_addr (tail);
5482 }
5483 return entry;
5484 }
5485
5486 /* Compact font caches on all terminals and mark
5487 everything which is still here after compaction. */
5488
5489 static void
5490 compact_font_caches (void)
5491 {
5492 struct terminal *t;
5493
5494 for (t = terminal_list; t; t = t->next_terminal)
5495 {
5496 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5497 if (CONSP (cache))
5498 {
5499 Lisp_Object entry;
5500
5501 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5502 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5503 }
5504 mark_object (cache);
5505 }
5506 }
5507
5508 #else /* not HAVE_WINDOW_SYSTEM */
5509
5510 #define compact_font_caches() (void)(0)
5511
5512 #endif /* HAVE_WINDOW_SYSTEM */
5513
5514 /* Remove (MARKER . DATA) entries with unmarked MARKER
5515 from buffer undo LIST and return changed list. */
5516
5517 static Lisp_Object
5518 compact_undo_list (Lisp_Object list)
5519 {
5520 Lisp_Object tail, *prev = &list;
5521
5522 for (tail = list; CONSP (tail); tail = XCDR (tail))
5523 {
5524 if (CONSP (XCAR (tail))
5525 && MARKERP (XCAR (XCAR (tail)))
5526 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5527 *prev = XCDR (tail);
5528 else
5529 prev = xcdr_addr (tail);
5530 }
5531 return list;
5532 }
5533
5534 static void
5535 mark_pinned_symbols (void)
5536 {
5537 struct symbol_block *sblk;
5538 int lim = (symbol_block_pinned == symbol_block
5539 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5540
5541 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5542 {
5543 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5544 for (; sym < end; ++sym)
5545 if (sym->s.pinned)
5546 mark_object (make_lisp_symbol (&sym->s));
5547
5548 lim = SYMBOL_BLOCK_SIZE;
5549 }
5550 }
5551
5552 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5553 separate function so that we could limit mark_stack in searching
5554 the stack frames below this function, thus avoiding the rare cases
5555 where mark_stack finds values that look like live Lisp objects on
5556 portions of stack that couldn't possibly contain such live objects.
5557 For more details of this, see the discussion at
5558 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5559 static Lisp_Object
5560 garbage_collect_1 (void *end)
5561 {
5562 struct buffer *nextb;
5563 char stack_top_variable;
5564 ptrdiff_t i;
5565 bool message_p;
5566 ptrdiff_t count = SPECPDL_INDEX ();
5567 struct timespec start;
5568 Lisp_Object retval = Qnil;
5569 size_t tot_before = 0;
5570
5571 if (abort_on_gc)
5572 emacs_abort ();
5573
5574 /* Can't GC if pure storage overflowed because we can't determine
5575 if something is a pure object or not. */
5576 if (pure_bytes_used_before_overflow)
5577 return Qnil;
5578
5579 /* Record this function, so it appears on the profiler's backtraces. */
5580 record_in_backtrace (Qautomatic_gc, 0, 0);
5581
5582 check_cons_list ();
5583
5584 /* Don't keep undo information around forever.
5585 Do this early on, so it is no problem if the user quits. */
5586 FOR_EACH_BUFFER (nextb)
5587 compact_buffer (nextb);
5588
5589 if (profiler_memory_running)
5590 tot_before = total_bytes_of_live_objects ();
5591
5592 start = current_timespec ();
5593
5594 /* In case user calls debug_print during GC,
5595 don't let that cause a recursive GC. */
5596 consing_since_gc = 0;
5597
5598 /* Save what's currently displayed in the echo area. Don't do that
5599 if we are GC'ing because we've run out of memory, since
5600 push_message will cons, and we might have no memory for that. */
5601 if (NILP (Vmemory_full))
5602 {
5603 message_p = push_message ();
5604 record_unwind_protect_void (pop_message_unwind);
5605 }
5606 else
5607 message_p = false;
5608
5609 /* Save a copy of the contents of the stack, for debugging. */
5610 #if MAX_SAVE_STACK > 0
5611 if (NILP (Vpurify_flag))
5612 {
5613 char *stack;
5614 ptrdiff_t stack_size;
5615 if (&stack_top_variable < stack_bottom)
5616 {
5617 stack = &stack_top_variable;
5618 stack_size = stack_bottom - &stack_top_variable;
5619 }
5620 else
5621 {
5622 stack = stack_bottom;
5623 stack_size = &stack_top_variable - stack_bottom;
5624 }
5625 if (stack_size <= MAX_SAVE_STACK)
5626 {
5627 if (stack_copy_size < stack_size)
5628 {
5629 stack_copy = xrealloc (stack_copy, stack_size);
5630 stack_copy_size = stack_size;
5631 }
5632 no_sanitize_memcpy (stack_copy, stack, stack_size);
5633 }
5634 }
5635 #endif /* MAX_SAVE_STACK > 0 */
5636
5637 if (garbage_collection_messages)
5638 message1_nolog ("Garbage collecting...");
5639
5640 block_input ();
5641
5642 shrink_regexp_cache ();
5643
5644 gc_in_progress = 1;
5645
5646 /* Mark all the special slots that serve as the roots of accessibility. */
5647
5648 mark_buffer (&buffer_defaults);
5649 mark_buffer (&buffer_local_symbols);
5650
5651 for (i = 0; i < ARRAYELTS (lispsym); i++)
5652 mark_object (builtin_lisp_symbol (i));
5653
5654 for (i = 0; i < staticidx; i++)
5655 mark_object (*staticvec[i]);
5656
5657 mark_pinned_symbols ();
5658 mark_specpdl ();
5659 mark_terminals ();
5660 mark_kboards ();
5661
5662 #ifdef USE_GTK
5663 xg_mark_data ();
5664 #endif
5665
5666 mark_stack (end);
5667
5668 {
5669 struct handler *handler;
5670 for (handler = handlerlist; handler; handler = handler->next)
5671 {
5672 mark_object (handler->tag_or_ch);
5673 mark_object (handler->val);
5674 }
5675 }
5676 #ifdef HAVE_WINDOW_SYSTEM
5677 mark_fringe_data ();
5678 #endif
5679
5680 /* Everything is now marked, except for the data in font caches,
5681 undo lists, and finalizers. The first two are compacted by
5682 removing an items which aren't reachable otherwise. */
5683
5684 compact_font_caches ();
5685
5686 FOR_EACH_BUFFER (nextb)
5687 {
5688 if (!EQ (BVAR (nextb, undo_list), Qt))
5689 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5690 /* Now that we have stripped the elements that need not be
5691 in the undo_list any more, we can finally mark the list. */
5692 mark_object (BVAR (nextb, undo_list));
5693 }
5694
5695 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5696 to doomed_finalizers so we can run their associated functions
5697 after GC. It's important to scan finalizers at this stage so
5698 that we can be sure that unmarked finalizers are really
5699 unreachable except for references from their associated functions
5700 and from other finalizers. */
5701
5702 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5703 mark_finalizer_list (&doomed_finalizers);
5704
5705 gc_sweep ();
5706
5707 relocate_byte_stack ();
5708
5709 /* Clear the mark bits that we set in certain root slots. */
5710 VECTOR_UNMARK (&buffer_defaults);
5711 VECTOR_UNMARK (&buffer_local_symbols);
5712
5713 check_cons_list ();
5714
5715 gc_in_progress = 0;
5716
5717 unblock_input ();
5718
5719 consing_since_gc = 0;
5720 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5721 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5722
5723 gc_relative_threshold = 0;
5724 if (FLOATP (Vgc_cons_percentage))
5725 { /* Set gc_cons_combined_threshold. */
5726 double tot = total_bytes_of_live_objects ();
5727
5728 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5729 if (0 < tot)
5730 {
5731 if (tot < TYPE_MAXIMUM (EMACS_INT))
5732 gc_relative_threshold = tot;
5733 else
5734 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5735 }
5736 }
5737
5738 if (garbage_collection_messages && NILP (Vmemory_full))
5739 {
5740 if (message_p || minibuf_level > 0)
5741 restore_message ();
5742 else
5743 message1_nolog ("Garbage collecting...done");
5744 }
5745
5746 unbind_to (count, Qnil);
5747
5748 Lisp_Object total[] = {
5749 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5750 bounded_number (total_conses),
5751 bounded_number (total_free_conses)),
5752 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5753 bounded_number (total_symbols),
5754 bounded_number (total_free_symbols)),
5755 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5756 bounded_number (total_markers),
5757 bounded_number (total_free_markers)),
5758 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5759 bounded_number (total_strings),
5760 bounded_number (total_free_strings)),
5761 list3 (Qstring_bytes, make_number (1),
5762 bounded_number (total_string_bytes)),
5763 list3 (Qvectors,
5764 make_number (header_size + sizeof (Lisp_Object)),
5765 bounded_number (total_vectors)),
5766 list4 (Qvector_slots, make_number (word_size),
5767 bounded_number (total_vector_slots),
5768 bounded_number (total_free_vector_slots)),
5769 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5770 bounded_number (total_floats),
5771 bounded_number (total_free_floats)),
5772 list4 (Qintervals, make_number (sizeof (struct interval)),
5773 bounded_number (total_intervals),
5774 bounded_number (total_free_intervals)),
5775 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5776 bounded_number (total_buffers)),
5777
5778 #ifdef DOUG_LEA_MALLOC
5779 list4 (Qheap, make_number (1024),
5780 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5781 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5782 #endif
5783 };
5784 retval = CALLMANY (Flist, total);
5785
5786 /* GC is complete: now we can run our finalizer callbacks. */
5787 run_finalizers (&doomed_finalizers);
5788
5789 if (!NILP (Vpost_gc_hook))
5790 {
5791 ptrdiff_t gc_count = inhibit_garbage_collection ();
5792 safe_run_hooks (Qpost_gc_hook);
5793 unbind_to (gc_count, Qnil);
5794 }
5795
5796 /* Accumulate statistics. */
5797 if (FLOATP (Vgc_elapsed))
5798 {
5799 struct timespec since_start = timespec_sub (current_timespec (), start);
5800 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5801 + timespectod (since_start));
5802 }
5803
5804 gcs_done++;
5805
5806 /* Collect profiling data. */
5807 if (profiler_memory_running)
5808 {
5809 size_t swept = 0;
5810 size_t tot_after = total_bytes_of_live_objects ();
5811 if (tot_before > tot_after)
5812 swept = tot_before - tot_after;
5813 malloc_probe (swept);
5814 }
5815
5816 return retval;
5817 }
5818
5819 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5820 doc: /* Reclaim storage for Lisp objects no longer needed.
5821 Garbage collection happens automatically if you cons more than
5822 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5823 `garbage-collect' normally returns a list with info on amount of space in use,
5824 where each entry has the form (NAME SIZE USED FREE), where:
5825 - NAME is a symbol describing the kind of objects this entry represents,
5826 - SIZE is the number of bytes used by each one,
5827 - USED is the number of those objects that were found live in the heap,
5828 - FREE is the number of those objects that are not live but that Emacs
5829 keeps around for future allocations (maybe because it does not know how
5830 to return them to the OS).
5831 However, if there was overflow in pure space, `garbage-collect'
5832 returns nil, because real GC can't be done.
5833 See Info node `(elisp)Garbage Collection'. */)
5834 (void)
5835 {
5836 void *end;
5837
5838 #ifdef HAVE___BUILTIN_UNWIND_INIT
5839 /* Force callee-saved registers and register windows onto the stack.
5840 This is the preferred method if available, obviating the need for
5841 machine dependent methods. */
5842 __builtin_unwind_init ();
5843 end = &end;
5844 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5845 #ifndef GC_SAVE_REGISTERS_ON_STACK
5846 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5847 union aligned_jmpbuf {
5848 Lisp_Object o;
5849 sys_jmp_buf j;
5850 } j;
5851 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5852 #endif
5853 /* This trick flushes the register windows so that all the state of
5854 the process is contained in the stack. */
5855 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5856 needed on ia64 too. See mach_dep.c, where it also says inline
5857 assembler doesn't work with relevant proprietary compilers. */
5858 #ifdef __sparc__
5859 #if defined (__sparc64__) && defined (__FreeBSD__)
5860 /* FreeBSD does not have a ta 3 handler. */
5861 asm ("flushw");
5862 #else
5863 asm ("ta 3");
5864 #endif
5865 #endif
5866
5867 /* Save registers that we need to see on the stack. We need to see
5868 registers used to hold register variables and registers used to
5869 pass parameters. */
5870 #ifdef GC_SAVE_REGISTERS_ON_STACK
5871 GC_SAVE_REGISTERS_ON_STACK (end);
5872 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5873
5874 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5875 setjmp will definitely work, test it
5876 and print a message with the result
5877 of the test. */
5878 if (!setjmp_tested_p)
5879 {
5880 setjmp_tested_p = 1;
5881 test_setjmp ();
5882 }
5883 #endif /* GC_SETJMP_WORKS */
5884
5885 sys_setjmp (j.j);
5886 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5887 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5888 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5889 return garbage_collect_1 (end);
5890 }
5891
5892 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5893 only interesting objects referenced from glyphs are strings. */
5894
5895 static void
5896 mark_glyph_matrix (struct glyph_matrix *matrix)
5897 {
5898 struct glyph_row *row = matrix->rows;
5899 struct glyph_row *end = row + matrix->nrows;
5900
5901 for (; row < end; ++row)
5902 if (row->enabled_p)
5903 {
5904 int area;
5905 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5906 {
5907 struct glyph *glyph = row->glyphs[area];
5908 struct glyph *end_glyph = glyph + row->used[area];
5909
5910 for (; glyph < end_glyph; ++glyph)
5911 if (STRINGP (glyph->object)
5912 && !STRING_MARKED_P (XSTRING (glyph->object)))
5913 mark_object (glyph->object);
5914 }
5915 }
5916 }
5917
5918 /* Mark reference to a Lisp_Object.
5919 If the object referred to has not been seen yet, recursively mark
5920 all the references contained in it. */
5921
5922 #define LAST_MARKED_SIZE 500
5923 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5924 static int last_marked_index;
5925
5926 /* For debugging--call abort when we cdr down this many
5927 links of a list, in mark_object. In debugging,
5928 the call to abort will hit a breakpoint.
5929 Normally this is zero and the check never goes off. */
5930 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5931
5932 static void
5933 mark_vectorlike (struct Lisp_Vector *ptr)
5934 {
5935 ptrdiff_t size = ptr->header.size;
5936 ptrdiff_t i;
5937
5938 eassert (!VECTOR_MARKED_P (ptr));
5939 VECTOR_MARK (ptr); /* Else mark it. */
5940 if (size & PSEUDOVECTOR_FLAG)
5941 size &= PSEUDOVECTOR_SIZE_MASK;
5942
5943 /* Note that this size is not the memory-footprint size, but only
5944 the number of Lisp_Object fields that we should trace.
5945 The distinction is used e.g. by Lisp_Process which places extra
5946 non-Lisp_Object fields at the end of the structure... */
5947 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5948 mark_object (ptr->contents[i]);
5949 }
5950
5951 /* Like mark_vectorlike but optimized for char-tables (and
5952 sub-char-tables) assuming that the contents are mostly integers or
5953 symbols. */
5954
5955 static void
5956 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5957 {
5958 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5959 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5960 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5961
5962 eassert (!VECTOR_MARKED_P (ptr));
5963 VECTOR_MARK (ptr);
5964 for (i = idx; i < size; i++)
5965 {
5966 Lisp_Object val = ptr->contents[i];
5967
5968 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5969 continue;
5970 if (SUB_CHAR_TABLE_P (val))
5971 {
5972 if (! VECTOR_MARKED_P (XVECTOR (val)))
5973 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5974 }
5975 else
5976 mark_object (val);
5977 }
5978 }
5979
5980 NO_INLINE /* To reduce stack depth in mark_object. */
5981 static Lisp_Object
5982 mark_compiled (struct Lisp_Vector *ptr)
5983 {
5984 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5985
5986 VECTOR_MARK (ptr);
5987 for (i = 0; i < size; i++)
5988 if (i != COMPILED_CONSTANTS)
5989 mark_object (ptr->contents[i]);
5990 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5991 }
5992
5993 /* Mark the chain of overlays starting at PTR. */
5994
5995 static void
5996 mark_overlay (struct Lisp_Overlay *ptr)
5997 {
5998 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5999 {
6000 ptr->gcmarkbit = 1;
6001 /* These two are always markers and can be marked fast. */
6002 XMARKER (ptr->start)->gcmarkbit = 1;
6003 XMARKER (ptr->end)->gcmarkbit = 1;
6004 mark_object (ptr->plist);
6005 }
6006 }
6007
6008 /* Mark Lisp_Objects and special pointers in BUFFER. */
6009
6010 static void
6011 mark_buffer (struct buffer *buffer)
6012 {
6013 /* This is handled much like other pseudovectors... */
6014 mark_vectorlike ((struct Lisp_Vector *) buffer);
6015
6016 /* ...but there are some buffer-specific things. */
6017
6018 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6019
6020 /* For now, we just don't mark the undo_list. It's done later in
6021 a special way just before the sweep phase, and after stripping
6022 some of its elements that are not needed any more. */
6023
6024 mark_overlay (buffer->overlays_before);
6025 mark_overlay (buffer->overlays_after);
6026
6027 /* If this is an indirect buffer, mark its base buffer. */
6028 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6029 mark_buffer (buffer->base_buffer);
6030 }
6031
6032 /* Mark Lisp faces in the face cache C. */
6033
6034 NO_INLINE /* To reduce stack depth in mark_object. */
6035 static void
6036 mark_face_cache (struct face_cache *c)
6037 {
6038 if (c)
6039 {
6040 int i, j;
6041 for (i = 0; i < c->used; ++i)
6042 {
6043 struct face *face = FACE_FROM_ID (c->f, i);
6044
6045 if (face)
6046 {
6047 if (face->font && !VECTOR_MARKED_P (face->font))
6048 mark_vectorlike ((struct Lisp_Vector *) face->font);
6049
6050 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6051 mark_object (face->lface[j]);
6052 }
6053 }
6054 }
6055 }
6056
6057 NO_INLINE /* To reduce stack depth in mark_object. */
6058 static void
6059 mark_localized_symbol (struct Lisp_Symbol *ptr)
6060 {
6061 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6062 Lisp_Object where = blv->where;
6063 /* If the value is set up for a killed buffer or deleted
6064 frame, restore its global binding. If the value is
6065 forwarded to a C variable, either it's not a Lisp_Object
6066 var, or it's staticpro'd already. */
6067 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6068 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6069 swap_in_global_binding (ptr);
6070 mark_object (blv->where);
6071 mark_object (blv->valcell);
6072 mark_object (blv->defcell);
6073 }
6074
6075 NO_INLINE /* To reduce stack depth in mark_object. */
6076 static void
6077 mark_save_value (struct Lisp_Save_Value *ptr)
6078 {
6079 /* If `save_type' is zero, `data[0].pointer' is the address
6080 of a memory area containing `data[1].integer' potential
6081 Lisp_Objects. */
6082 if (ptr->save_type == SAVE_TYPE_MEMORY)
6083 {
6084 Lisp_Object *p = ptr->data[0].pointer;
6085 ptrdiff_t nelt;
6086 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6087 mark_maybe_object (*p);
6088 }
6089 else
6090 {
6091 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6092 int i;
6093 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6094 if (save_type (ptr, i) == SAVE_OBJECT)
6095 mark_object (ptr->data[i].object);
6096 }
6097 }
6098
6099 /* Remove killed buffers or items whose car is a killed buffer from
6100 LIST, and mark other items. Return changed LIST, which is marked. */
6101
6102 static Lisp_Object
6103 mark_discard_killed_buffers (Lisp_Object list)
6104 {
6105 Lisp_Object tail, *prev = &list;
6106
6107 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6108 tail = XCDR (tail))
6109 {
6110 Lisp_Object tem = XCAR (tail);
6111 if (CONSP (tem))
6112 tem = XCAR (tem);
6113 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6114 *prev = XCDR (tail);
6115 else
6116 {
6117 CONS_MARK (XCONS (tail));
6118 mark_object (XCAR (tail));
6119 prev = xcdr_addr (tail);
6120 }
6121 }
6122 mark_object (tail);
6123 return list;
6124 }
6125
6126 /* Determine type of generic Lisp_Object and mark it accordingly.
6127
6128 This function implements a straightforward depth-first marking
6129 algorithm and so the recursion depth may be very high (a few
6130 tens of thousands is not uncommon). To minimize stack usage,
6131 a few cold paths are moved out to NO_INLINE functions above.
6132 In general, inlining them doesn't help you to gain more speed. */
6133
6134 void
6135 mark_object (Lisp_Object arg)
6136 {
6137 register Lisp_Object obj;
6138 void *po;
6139 #ifdef GC_CHECK_MARKED_OBJECTS
6140 struct mem_node *m;
6141 #endif
6142 ptrdiff_t cdr_count = 0;
6143
6144 obj = arg;
6145 loop:
6146
6147 po = XPNTR (obj);
6148 if (PURE_P (po))
6149 return;
6150
6151 last_marked[last_marked_index++] = obj;
6152 if (last_marked_index == LAST_MARKED_SIZE)
6153 last_marked_index = 0;
6154
6155 /* Perform some sanity checks on the objects marked here. Abort if
6156 we encounter an object we know is bogus. This increases GC time
6157 by ~80%. */
6158 #ifdef GC_CHECK_MARKED_OBJECTS
6159
6160 /* Check that the object pointed to by PO is known to be a Lisp
6161 structure allocated from the heap. */
6162 #define CHECK_ALLOCATED() \
6163 do { \
6164 m = mem_find (po); \
6165 if (m == MEM_NIL) \
6166 emacs_abort (); \
6167 } while (0)
6168
6169 /* Check that the object pointed to by PO is live, using predicate
6170 function LIVEP. */
6171 #define CHECK_LIVE(LIVEP) \
6172 do { \
6173 if (!LIVEP (m, po)) \
6174 emacs_abort (); \
6175 } while (0)
6176
6177 /* Check both of the above conditions, for non-symbols. */
6178 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6179 do { \
6180 CHECK_ALLOCATED (); \
6181 CHECK_LIVE (LIVEP); \
6182 } while (0) \
6183
6184 /* Check both of the above conditions, for symbols. */
6185 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6186 do { \
6187 if (!c_symbol_p (ptr)) \
6188 { \
6189 CHECK_ALLOCATED (); \
6190 CHECK_LIVE (live_symbol_p); \
6191 } \
6192 } while (0) \
6193
6194 #else /* not GC_CHECK_MARKED_OBJECTS */
6195
6196 #define CHECK_LIVE(LIVEP) ((void) 0)
6197 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6198 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6199
6200 #endif /* not GC_CHECK_MARKED_OBJECTS */
6201
6202 switch (XTYPE (obj))
6203 {
6204 case Lisp_String:
6205 {
6206 register struct Lisp_String *ptr = XSTRING (obj);
6207 if (STRING_MARKED_P (ptr))
6208 break;
6209 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6210 MARK_STRING (ptr);
6211 MARK_INTERVAL_TREE (ptr->intervals);
6212 #ifdef GC_CHECK_STRING_BYTES
6213 /* Check that the string size recorded in the string is the
6214 same as the one recorded in the sdata structure. */
6215 string_bytes (ptr);
6216 #endif /* GC_CHECK_STRING_BYTES */
6217 }
6218 break;
6219
6220 case Lisp_Vectorlike:
6221 {
6222 register struct Lisp_Vector *ptr = XVECTOR (obj);
6223 register ptrdiff_t pvectype;
6224
6225 if (VECTOR_MARKED_P (ptr))
6226 break;
6227
6228 #ifdef GC_CHECK_MARKED_OBJECTS
6229 m = mem_find (po);
6230 if (m == MEM_NIL && !SUBRP (obj))
6231 emacs_abort ();
6232 #endif /* GC_CHECK_MARKED_OBJECTS */
6233
6234 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6235 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6236 >> PSEUDOVECTOR_AREA_BITS);
6237 else
6238 pvectype = PVEC_NORMAL_VECTOR;
6239
6240 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6241 CHECK_LIVE (live_vector_p);
6242
6243 switch (pvectype)
6244 {
6245 case PVEC_BUFFER:
6246 #ifdef GC_CHECK_MARKED_OBJECTS
6247 {
6248 struct buffer *b;
6249 FOR_EACH_BUFFER (b)
6250 if (b == po)
6251 break;
6252 if (b == NULL)
6253 emacs_abort ();
6254 }
6255 #endif /* GC_CHECK_MARKED_OBJECTS */
6256 mark_buffer ((struct buffer *) ptr);
6257 break;
6258
6259 case PVEC_COMPILED:
6260 /* Although we could treat this just like a vector, mark_compiled
6261 returns the COMPILED_CONSTANTS element, which is marked at the
6262 next iteration of goto-loop here. This is done to avoid a few
6263 recursive calls to mark_object. */
6264 obj = mark_compiled (ptr);
6265 if (!NILP (obj))
6266 goto loop;
6267 break;
6268
6269 case PVEC_FRAME:
6270 {
6271 struct frame *f = (struct frame *) ptr;
6272
6273 mark_vectorlike (ptr);
6274 mark_face_cache (f->face_cache);
6275 #ifdef HAVE_WINDOW_SYSTEM
6276 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6277 {
6278 struct font *font = FRAME_FONT (f);
6279
6280 if (font && !VECTOR_MARKED_P (font))
6281 mark_vectorlike ((struct Lisp_Vector *) font);
6282 }
6283 #endif
6284 }
6285 break;
6286
6287 case PVEC_WINDOW:
6288 {
6289 struct window *w = (struct window *) ptr;
6290
6291 mark_vectorlike (ptr);
6292
6293 /* Mark glyph matrices, if any. Marking window
6294 matrices is sufficient because frame matrices
6295 use the same glyph memory. */
6296 if (w->current_matrix)
6297 {
6298 mark_glyph_matrix (w->current_matrix);
6299 mark_glyph_matrix (w->desired_matrix);
6300 }
6301
6302 /* Filter out killed buffers from both buffer lists
6303 in attempt to help GC to reclaim killed buffers faster.
6304 We can do it elsewhere for live windows, but this is the
6305 best place to do it for dead windows. */
6306 wset_prev_buffers
6307 (w, mark_discard_killed_buffers (w->prev_buffers));
6308 wset_next_buffers
6309 (w, mark_discard_killed_buffers (w->next_buffers));
6310 }
6311 break;
6312
6313 case PVEC_HASH_TABLE:
6314 {
6315 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6316
6317 mark_vectorlike (ptr);
6318 mark_object (h->test.name);
6319 mark_object (h->test.user_hash_function);
6320 mark_object (h->test.user_cmp_function);
6321 /* If hash table is not weak, mark all keys and values.
6322 For weak tables, mark only the vector. */
6323 if (NILP (h->weak))
6324 mark_object (h->key_and_value);
6325 else
6326 VECTOR_MARK (XVECTOR (h->key_and_value));
6327 }
6328 break;
6329
6330 case PVEC_CHAR_TABLE:
6331 case PVEC_SUB_CHAR_TABLE:
6332 mark_char_table (ptr, (enum pvec_type) pvectype);
6333 break;
6334
6335 case PVEC_BOOL_VECTOR:
6336 /* No Lisp_Objects to mark in a bool vector. */
6337 VECTOR_MARK (ptr);
6338 break;
6339
6340 case PVEC_SUBR:
6341 break;
6342
6343 case PVEC_FREE:
6344 emacs_abort ();
6345
6346 default:
6347 mark_vectorlike (ptr);
6348 }
6349 }
6350 break;
6351
6352 case Lisp_Symbol:
6353 {
6354 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6355 nextsym:
6356 if (ptr->gcmarkbit)
6357 break;
6358 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6359 ptr->gcmarkbit = 1;
6360 /* Attempt to catch bogus objects. */
6361 eassert (valid_lisp_object_p (ptr->function));
6362 mark_object (ptr->function);
6363 mark_object (ptr->plist);
6364 switch (ptr->redirect)
6365 {
6366 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6367 case SYMBOL_VARALIAS:
6368 {
6369 Lisp_Object tem;
6370 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6371 mark_object (tem);
6372 break;
6373 }
6374 case SYMBOL_LOCALIZED:
6375 mark_localized_symbol (ptr);
6376 break;
6377 case SYMBOL_FORWARDED:
6378 /* If the value is forwarded to a buffer or keyboard field,
6379 these are marked when we see the corresponding object.
6380 And if it's forwarded to a C variable, either it's not
6381 a Lisp_Object var, or it's staticpro'd already. */
6382 break;
6383 default: emacs_abort ();
6384 }
6385 if (!PURE_P (XSTRING (ptr->name)))
6386 MARK_STRING (XSTRING (ptr->name));
6387 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6388 /* Inner loop to mark next symbol in this bucket, if any. */
6389 po = ptr = ptr->next;
6390 if (ptr)
6391 goto nextsym;
6392 }
6393 break;
6394
6395 case Lisp_Misc:
6396 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6397
6398 if (XMISCANY (obj)->gcmarkbit)
6399 break;
6400
6401 switch (XMISCTYPE (obj))
6402 {
6403 case Lisp_Misc_Marker:
6404 /* DO NOT mark thru the marker's chain.
6405 The buffer's markers chain does not preserve markers from gc;
6406 instead, markers are removed from the chain when freed by gc. */
6407 XMISCANY (obj)->gcmarkbit = 1;
6408 break;
6409
6410 case Lisp_Misc_Save_Value:
6411 XMISCANY (obj)->gcmarkbit = 1;
6412 mark_save_value (XSAVE_VALUE (obj));
6413 break;
6414
6415 case Lisp_Misc_Overlay:
6416 mark_overlay (XOVERLAY (obj));
6417 break;
6418
6419 case Lisp_Misc_Finalizer:
6420 XMISCANY (obj)->gcmarkbit = true;
6421 mark_object (XFINALIZER (obj)->function);
6422 break;
6423
6424 #ifdef HAVE_MODULES
6425 case Lisp_Misc_User_Ptr:
6426 XMISCANY (obj)->gcmarkbit = true;
6427 break;
6428 #endif
6429
6430 default:
6431 emacs_abort ();
6432 }
6433 break;
6434
6435 case Lisp_Cons:
6436 {
6437 register struct Lisp_Cons *ptr = XCONS (obj);
6438 if (CONS_MARKED_P (ptr))
6439 break;
6440 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6441 CONS_MARK (ptr);
6442 /* If the cdr is nil, avoid recursion for the car. */
6443 if (EQ (ptr->u.cdr, Qnil))
6444 {
6445 obj = ptr->car;
6446 cdr_count = 0;
6447 goto loop;
6448 }
6449 mark_object (ptr->car);
6450 obj = ptr->u.cdr;
6451 cdr_count++;
6452 if (cdr_count == mark_object_loop_halt)
6453 emacs_abort ();
6454 goto loop;
6455 }
6456
6457 case Lisp_Float:
6458 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6459 FLOAT_MARK (XFLOAT (obj));
6460 break;
6461
6462 case_Lisp_Int:
6463 break;
6464
6465 default:
6466 emacs_abort ();
6467 }
6468
6469 #undef CHECK_LIVE
6470 #undef CHECK_ALLOCATED
6471 #undef CHECK_ALLOCATED_AND_LIVE
6472 }
6473 /* Mark the Lisp pointers in the terminal objects.
6474 Called by Fgarbage_collect. */
6475
6476 static void
6477 mark_terminals (void)
6478 {
6479 struct terminal *t;
6480 for (t = terminal_list; t; t = t->next_terminal)
6481 {
6482 eassert (t->name != NULL);
6483 #ifdef HAVE_WINDOW_SYSTEM
6484 /* If a terminal object is reachable from a stacpro'ed object,
6485 it might have been marked already. Make sure the image cache
6486 gets marked. */
6487 mark_image_cache (t->image_cache);
6488 #endif /* HAVE_WINDOW_SYSTEM */
6489 if (!VECTOR_MARKED_P (t))
6490 mark_vectorlike ((struct Lisp_Vector *)t);
6491 }
6492 }
6493
6494
6495
6496 /* Value is non-zero if OBJ will survive the current GC because it's
6497 either marked or does not need to be marked to survive. */
6498
6499 bool
6500 survives_gc_p (Lisp_Object obj)
6501 {
6502 bool survives_p;
6503
6504 switch (XTYPE (obj))
6505 {
6506 case_Lisp_Int:
6507 survives_p = 1;
6508 break;
6509
6510 case Lisp_Symbol:
6511 survives_p = XSYMBOL (obj)->gcmarkbit;
6512 break;
6513
6514 case Lisp_Misc:
6515 survives_p = XMISCANY (obj)->gcmarkbit;
6516 break;
6517
6518 case Lisp_String:
6519 survives_p = STRING_MARKED_P (XSTRING (obj));
6520 break;
6521
6522 case Lisp_Vectorlike:
6523 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6524 break;
6525
6526 case Lisp_Cons:
6527 survives_p = CONS_MARKED_P (XCONS (obj));
6528 break;
6529
6530 case Lisp_Float:
6531 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6532 break;
6533
6534 default:
6535 emacs_abort ();
6536 }
6537
6538 return survives_p || PURE_P (XPNTR (obj));
6539 }
6540
6541
6542 \f
6543
6544 NO_INLINE /* For better stack traces */
6545 static void
6546 sweep_conses (void)
6547 {
6548 struct cons_block *cblk;
6549 struct cons_block **cprev = &cons_block;
6550 int lim = cons_block_index;
6551 EMACS_INT num_free = 0, num_used = 0;
6552
6553 cons_free_list = 0;
6554
6555 for (cblk = cons_block; cblk; cblk = *cprev)
6556 {
6557 int i = 0;
6558 int this_free = 0;
6559 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6560
6561 /* Scan the mark bits an int at a time. */
6562 for (i = 0; i < ilim; i++)
6563 {
6564 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6565 {
6566 /* Fast path - all cons cells for this int are marked. */
6567 cblk->gcmarkbits[i] = 0;
6568 num_used += BITS_PER_BITS_WORD;
6569 }
6570 else
6571 {
6572 /* Some cons cells for this int are not marked.
6573 Find which ones, and free them. */
6574 int start, pos, stop;
6575
6576 start = i * BITS_PER_BITS_WORD;
6577 stop = lim - start;
6578 if (stop > BITS_PER_BITS_WORD)
6579 stop = BITS_PER_BITS_WORD;
6580 stop += start;
6581
6582 for (pos = start; pos < stop; pos++)
6583 {
6584 if (!CONS_MARKED_P (&cblk->conses[pos]))
6585 {
6586 this_free++;
6587 cblk->conses[pos].u.chain = cons_free_list;
6588 cons_free_list = &cblk->conses[pos];
6589 cons_free_list->car = Vdead;
6590 }
6591 else
6592 {
6593 num_used++;
6594 CONS_UNMARK (&cblk->conses[pos]);
6595 }
6596 }
6597 }
6598 }
6599
6600 lim = CONS_BLOCK_SIZE;
6601 /* If this block contains only free conses and we have already
6602 seen more than two blocks worth of free conses then deallocate
6603 this block. */
6604 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6605 {
6606 *cprev = cblk->next;
6607 /* Unhook from the free list. */
6608 cons_free_list = cblk->conses[0].u.chain;
6609 lisp_align_free (cblk);
6610 }
6611 else
6612 {
6613 num_free += this_free;
6614 cprev = &cblk->next;
6615 }
6616 }
6617 total_conses = num_used;
6618 total_free_conses = num_free;
6619 }
6620
6621 NO_INLINE /* For better stack traces */
6622 static void
6623 sweep_floats (void)
6624 {
6625 register struct float_block *fblk;
6626 struct float_block **fprev = &float_block;
6627 register int lim = float_block_index;
6628 EMACS_INT num_free = 0, num_used = 0;
6629
6630 float_free_list = 0;
6631
6632 for (fblk = float_block; fblk; fblk = *fprev)
6633 {
6634 register int i;
6635 int this_free = 0;
6636 for (i = 0; i < lim; i++)
6637 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6638 {
6639 this_free++;
6640 fblk->floats[i].u.chain = float_free_list;
6641 float_free_list = &fblk->floats[i];
6642 }
6643 else
6644 {
6645 num_used++;
6646 FLOAT_UNMARK (&fblk->floats[i]);
6647 }
6648 lim = FLOAT_BLOCK_SIZE;
6649 /* If this block contains only free floats and we have already
6650 seen more than two blocks worth of free floats then deallocate
6651 this block. */
6652 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6653 {
6654 *fprev = fblk->next;
6655 /* Unhook from the free list. */
6656 float_free_list = fblk->floats[0].u.chain;
6657 lisp_align_free (fblk);
6658 }
6659 else
6660 {
6661 num_free += this_free;
6662 fprev = &fblk->next;
6663 }
6664 }
6665 total_floats = num_used;
6666 total_free_floats = num_free;
6667 }
6668
6669 NO_INLINE /* For better stack traces */
6670 static void
6671 sweep_intervals (void)
6672 {
6673 register struct interval_block *iblk;
6674 struct interval_block **iprev = &interval_block;
6675 register int lim = interval_block_index;
6676 EMACS_INT num_free = 0, num_used = 0;
6677
6678 interval_free_list = 0;
6679
6680 for (iblk = interval_block; iblk; iblk = *iprev)
6681 {
6682 register int i;
6683 int this_free = 0;
6684
6685 for (i = 0; i < lim; i++)
6686 {
6687 if (!iblk->intervals[i].gcmarkbit)
6688 {
6689 set_interval_parent (&iblk->intervals[i], interval_free_list);
6690 interval_free_list = &iblk->intervals[i];
6691 this_free++;
6692 }
6693 else
6694 {
6695 num_used++;
6696 iblk->intervals[i].gcmarkbit = 0;
6697 }
6698 }
6699 lim = INTERVAL_BLOCK_SIZE;
6700 /* If this block contains only free intervals and we have already
6701 seen more than two blocks worth of free intervals then
6702 deallocate this block. */
6703 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6704 {
6705 *iprev = iblk->next;
6706 /* Unhook from the free list. */
6707 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6708 lisp_free (iblk);
6709 }
6710 else
6711 {
6712 num_free += this_free;
6713 iprev = &iblk->next;
6714 }
6715 }
6716 total_intervals = num_used;
6717 total_free_intervals = num_free;
6718 }
6719
6720 NO_INLINE /* For better stack traces */
6721 static void
6722 sweep_symbols (void)
6723 {
6724 struct symbol_block *sblk;
6725 struct symbol_block **sprev = &symbol_block;
6726 int lim = symbol_block_index;
6727 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6728
6729 symbol_free_list = NULL;
6730
6731 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6732 lispsym[i].gcmarkbit = 0;
6733
6734 for (sblk = symbol_block; sblk; sblk = *sprev)
6735 {
6736 int this_free = 0;
6737 union aligned_Lisp_Symbol *sym = sblk->symbols;
6738 union aligned_Lisp_Symbol *end = sym + lim;
6739
6740 for (; sym < end; ++sym)
6741 {
6742 if (!sym->s.gcmarkbit)
6743 {
6744 if (sym->s.redirect == SYMBOL_LOCALIZED)
6745 xfree (SYMBOL_BLV (&sym->s));
6746 sym->s.next = symbol_free_list;
6747 symbol_free_list = &sym->s;
6748 symbol_free_list->function = Vdead;
6749 ++this_free;
6750 }
6751 else
6752 {
6753 ++num_used;
6754 sym->s.gcmarkbit = 0;
6755 /* Attempt to catch bogus objects. */
6756 eassert (valid_lisp_object_p (sym->s.function));
6757 }
6758 }
6759
6760 lim = SYMBOL_BLOCK_SIZE;
6761 /* If this block contains only free symbols and we have already
6762 seen more than two blocks worth of free symbols then deallocate
6763 this block. */
6764 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6765 {
6766 *sprev = sblk->next;
6767 /* Unhook from the free list. */
6768 symbol_free_list = sblk->symbols[0].s.next;
6769 lisp_free (sblk);
6770 }
6771 else
6772 {
6773 num_free += this_free;
6774 sprev = &sblk->next;
6775 }
6776 }
6777 total_symbols = num_used;
6778 total_free_symbols = num_free;
6779 }
6780
6781 NO_INLINE /* For better stack traces. */
6782 static void
6783 sweep_misc (void)
6784 {
6785 register struct marker_block *mblk;
6786 struct marker_block **mprev = &marker_block;
6787 register int lim = marker_block_index;
6788 EMACS_INT num_free = 0, num_used = 0;
6789
6790 /* Put all unmarked misc's on free list. For a marker, first
6791 unchain it from the buffer it points into. */
6792
6793 marker_free_list = 0;
6794
6795 for (mblk = marker_block; mblk; mblk = *mprev)
6796 {
6797 register int i;
6798 int this_free = 0;
6799
6800 for (i = 0; i < lim; i++)
6801 {
6802 if (!mblk->markers[i].m.u_any.gcmarkbit)
6803 {
6804 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6805 unchain_marker (&mblk->markers[i].m.u_marker);
6806 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6807 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6808 #ifdef HAVE_MODULES
6809 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6810 {
6811 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6812 uptr->finalizer (uptr->p);
6813 }
6814 #endif
6815 /* Set the type of the freed object to Lisp_Misc_Free.
6816 We could leave the type alone, since nobody checks it,
6817 but this might catch bugs faster. */
6818 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6819 mblk->markers[i].m.u_free.chain = marker_free_list;
6820 marker_free_list = &mblk->markers[i].m;
6821 this_free++;
6822 }
6823 else
6824 {
6825 num_used++;
6826 mblk->markers[i].m.u_any.gcmarkbit = 0;
6827 }
6828 }
6829 lim = MARKER_BLOCK_SIZE;
6830 /* If this block contains only free markers and we have already
6831 seen more than two blocks worth of free markers then deallocate
6832 this block. */
6833 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6834 {
6835 *mprev = mblk->next;
6836 /* Unhook from the free list. */
6837 marker_free_list = mblk->markers[0].m.u_free.chain;
6838 lisp_free (mblk);
6839 }
6840 else
6841 {
6842 num_free += this_free;
6843 mprev = &mblk->next;
6844 }
6845 }
6846
6847 total_markers = num_used;
6848 total_free_markers = num_free;
6849 }
6850
6851 NO_INLINE /* For better stack traces */
6852 static void
6853 sweep_buffers (void)
6854 {
6855 register struct buffer *buffer, **bprev = &all_buffers;
6856
6857 total_buffers = 0;
6858 for (buffer = all_buffers; buffer; buffer = *bprev)
6859 if (!VECTOR_MARKED_P (buffer))
6860 {
6861 *bprev = buffer->next;
6862 lisp_free (buffer);
6863 }
6864 else
6865 {
6866 VECTOR_UNMARK (buffer);
6867 /* Do not use buffer_(set|get)_intervals here. */
6868 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6869 total_buffers++;
6870 bprev = &buffer->next;
6871 }
6872 }
6873
6874 /* Sweep: find all structures not marked, and free them. */
6875 static void
6876 gc_sweep (void)
6877 {
6878 /* Remove or mark entries in weak hash tables.
6879 This must be done before any object is unmarked. */
6880 sweep_weak_hash_tables ();
6881
6882 sweep_strings ();
6883 check_string_bytes (!noninteractive);
6884 sweep_conses ();
6885 sweep_floats ();
6886 sweep_intervals ();
6887 sweep_symbols ();
6888 sweep_misc ();
6889 sweep_buffers ();
6890 sweep_vectors ();
6891 check_string_bytes (!noninteractive);
6892 }
6893
6894 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6895 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6896 All values are in Kbytes. If there is no swap space,
6897 last two values are zero. If the system is not supported
6898 or memory information can't be obtained, return nil. */)
6899 (void)
6900 {
6901 #if defined HAVE_LINUX_SYSINFO
6902 struct sysinfo si;
6903 uintmax_t units;
6904
6905 if (sysinfo (&si))
6906 return Qnil;
6907 #ifdef LINUX_SYSINFO_UNIT
6908 units = si.mem_unit;
6909 #else
6910 units = 1;
6911 #endif
6912 return list4i ((uintmax_t) si.totalram * units / 1024,
6913 (uintmax_t) si.freeram * units / 1024,
6914 (uintmax_t) si.totalswap * units / 1024,
6915 (uintmax_t) si.freeswap * units / 1024);
6916 #elif defined WINDOWSNT
6917 unsigned long long totalram, freeram, totalswap, freeswap;
6918
6919 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6920 return list4i ((uintmax_t) totalram / 1024,
6921 (uintmax_t) freeram / 1024,
6922 (uintmax_t) totalswap / 1024,
6923 (uintmax_t) freeswap / 1024);
6924 else
6925 return Qnil;
6926 #elif defined MSDOS
6927 unsigned long totalram, freeram, totalswap, freeswap;
6928
6929 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6930 return list4i ((uintmax_t) totalram / 1024,
6931 (uintmax_t) freeram / 1024,
6932 (uintmax_t) totalswap / 1024,
6933 (uintmax_t) freeswap / 1024);
6934 else
6935 return Qnil;
6936 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6937 /* FIXME: add more systems. */
6938 return Qnil;
6939 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6940 }
6941
6942 /* Debugging aids. */
6943
6944 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6945 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6946 This may be helpful in debugging Emacs's memory usage.
6947 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6948 (void)
6949 {
6950 Lisp_Object end;
6951
6952 #ifdef HAVE_NS
6953 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6954 XSETINT (end, 0);
6955 #else
6956 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6957 #endif
6958
6959 return end;
6960 }
6961
6962 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6963 doc: /* Return a list of counters that measure how much consing there has been.
6964 Each of these counters increments for a certain kind of object.
6965 The counters wrap around from the largest positive integer to zero.
6966 Garbage collection does not decrease them.
6967 The elements of the value are as follows:
6968 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6969 All are in units of 1 = one object consed
6970 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6971 objects consed.
6972 MISCS include overlays, markers, and some internal types.
6973 Frames, windows, buffers, and subprocesses count as vectors
6974 (but the contents of a buffer's text do not count here). */)
6975 (void)
6976 {
6977 return listn (CONSTYPE_HEAP, 8,
6978 bounded_number (cons_cells_consed),
6979 bounded_number (floats_consed),
6980 bounded_number (vector_cells_consed),
6981 bounded_number (symbols_consed),
6982 bounded_number (string_chars_consed),
6983 bounded_number (misc_objects_consed),
6984 bounded_number (intervals_consed),
6985 bounded_number (strings_consed));
6986 }
6987
6988 static bool
6989 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6990 {
6991 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6992 Lisp_Object val = find_symbol_value (symbol);
6993 return (EQ (val, obj)
6994 || EQ (sym->function, obj)
6995 || (!NILP (sym->function)
6996 && COMPILEDP (sym->function)
6997 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6998 || (!NILP (val)
6999 && COMPILEDP (val)
7000 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7001 }
7002
7003 /* Find at most FIND_MAX symbols which have OBJ as their value or
7004 function. This is used in gdbinit's `xwhichsymbols' command. */
7005
7006 Lisp_Object
7007 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7008 {
7009 struct symbol_block *sblk;
7010 ptrdiff_t gc_count = inhibit_garbage_collection ();
7011 Lisp_Object found = Qnil;
7012
7013 if (! DEADP (obj))
7014 {
7015 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7016 {
7017 Lisp_Object sym = builtin_lisp_symbol (i);
7018 if (symbol_uses_obj (sym, obj))
7019 {
7020 found = Fcons (sym, found);
7021 if (--find_max == 0)
7022 goto out;
7023 }
7024 }
7025
7026 for (sblk = symbol_block; sblk; sblk = sblk->next)
7027 {
7028 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7029 int bn;
7030
7031 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7032 {
7033 if (sblk == symbol_block && bn >= symbol_block_index)
7034 break;
7035
7036 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7037 if (symbol_uses_obj (sym, obj))
7038 {
7039 found = Fcons (sym, found);
7040 if (--find_max == 0)
7041 goto out;
7042 }
7043 }
7044 }
7045 }
7046
7047 out:
7048 unbind_to (gc_count, Qnil);
7049 return found;
7050 }
7051
7052 #ifdef SUSPICIOUS_OBJECT_CHECKING
7053
7054 static void *
7055 find_suspicious_object_in_range (void *begin, void *end)
7056 {
7057 char *begin_a = begin;
7058 char *end_a = end;
7059 int i;
7060
7061 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7062 {
7063 char *suspicious_object = suspicious_objects[i];
7064 if (begin_a <= suspicious_object && suspicious_object < end_a)
7065 return suspicious_object;
7066 }
7067
7068 return NULL;
7069 }
7070
7071 static void
7072 note_suspicious_free (void* ptr)
7073 {
7074 struct suspicious_free_record* rec;
7075
7076 rec = &suspicious_free_history[suspicious_free_history_index++];
7077 if (suspicious_free_history_index ==
7078 ARRAYELTS (suspicious_free_history))
7079 {
7080 suspicious_free_history_index = 0;
7081 }
7082
7083 memset (rec, 0, sizeof (*rec));
7084 rec->suspicious_object = ptr;
7085 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7086 }
7087
7088 static void
7089 detect_suspicious_free (void* ptr)
7090 {
7091 int i;
7092
7093 eassert (ptr != NULL);
7094
7095 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7096 if (suspicious_objects[i] == ptr)
7097 {
7098 note_suspicious_free (ptr);
7099 suspicious_objects[i] = NULL;
7100 }
7101 }
7102
7103 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7104
7105 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7106 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7107 If Emacs is compiled with suspicious object checking, capture
7108 a stack trace when OBJ is freed in order to help track down
7109 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7110 (Lisp_Object obj)
7111 {
7112 #ifdef SUSPICIOUS_OBJECT_CHECKING
7113 /* Right now, we care only about vectors. */
7114 if (VECTORLIKEP (obj))
7115 {
7116 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7117 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7118 suspicious_object_index = 0;
7119 }
7120 #endif
7121 return obj;
7122 }
7123
7124 #ifdef ENABLE_CHECKING
7125
7126 bool suppress_checking;
7127
7128 void
7129 die (const char *msg, const char *file, int line)
7130 {
7131 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7132 file, line, msg);
7133 terminate_due_to_signal (SIGABRT, INT_MAX);
7134 }
7135
7136 #endif /* ENABLE_CHECKING */
7137
7138 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7139
7140 /* Debugging check whether STR is ASCII-only. */
7141
7142 const char *
7143 verify_ascii (const char *str)
7144 {
7145 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7146 while (ptr < end)
7147 {
7148 int c = STRING_CHAR_ADVANCE (ptr);
7149 if (!ASCII_CHAR_P (c))
7150 emacs_abort ();
7151 }
7152 return str;
7153 }
7154
7155 /* Stress alloca with inconveniently sized requests and check
7156 whether all allocated areas may be used for Lisp_Object. */
7157
7158 NO_INLINE static void
7159 verify_alloca (void)
7160 {
7161 int i;
7162 enum { ALLOCA_CHECK_MAX = 256 };
7163 /* Start from size of the smallest Lisp object. */
7164 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7165 {
7166 void *ptr = alloca (i);
7167 make_lisp_ptr (ptr, Lisp_Cons);
7168 }
7169 }
7170
7171 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7172
7173 #define verify_alloca() ((void) 0)
7174
7175 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7176
7177 /* Initialization. */
7178
7179 void
7180 init_alloc_once (void)
7181 {
7182 /* Even though Qt's contents are not set up, its address is known. */
7183 Vpurify_flag = Qt;
7184
7185 purebeg = PUREBEG;
7186 pure_size = PURESIZE;
7187
7188 verify_alloca ();
7189 init_finalizer_list (&finalizers);
7190 init_finalizer_list (&doomed_finalizers);
7191
7192 mem_init ();
7193 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7194
7195 #ifdef DOUG_LEA_MALLOC
7196 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7197 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7198 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7199 #endif
7200 init_strings ();
7201 init_vectors ();
7202
7203 refill_memory_reserve ();
7204 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7205 }
7206
7207 void
7208 init_alloc (void)
7209 {
7210 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7211 setjmp_tested_p = longjmps_done = 0;
7212 #endif
7213 Vgc_elapsed = make_float (0.0);
7214 gcs_done = 0;
7215
7216 #if USE_VALGRIND
7217 valgrind_p = RUNNING_ON_VALGRIND != 0;
7218 #endif
7219 }
7220
7221 void
7222 syms_of_alloc (void)
7223 {
7224 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7225 doc: /* Number of bytes of consing between garbage collections.
7226 Garbage collection can happen automatically once this many bytes have been
7227 allocated since the last garbage collection. All data types count.
7228
7229 Garbage collection happens automatically only when `eval' is called.
7230
7231 By binding this temporarily to a large number, you can effectively
7232 prevent garbage collection during a part of the program.
7233 See also `gc-cons-percentage'. */);
7234
7235 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7236 doc: /* Portion of the heap used for allocation.
7237 Garbage collection can happen automatically once this portion of the heap
7238 has been allocated since the last garbage collection.
7239 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7240 Vgc_cons_percentage = make_float (0.1);
7241
7242 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7243 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7244
7245 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7246 doc: /* Number of cons cells that have been consed so far. */);
7247
7248 DEFVAR_INT ("floats-consed", floats_consed,
7249 doc: /* Number of floats that have been consed so far. */);
7250
7251 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7252 doc: /* Number of vector cells that have been consed so far. */);
7253
7254 DEFVAR_INT ("symbols-consed", symbols_consed,
7255 doc: /* Number of symbols that have been consed so far. */);
7256 symbols_consed += ARRAYELTS (lispsym);
7257
7258 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7259 doc: /* Number of string characters that have been consed so far. */);
7260
7261 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7262 doc: /* Number of miscellaneous objects that have been consed so far.
7263 These include markers and overlays, plus certain objects not visible
7264 to users. */);
7265
7266 DEFVAR_INT ("intervals-consed", intervals_consed,
7267 doc: /* Number of intervals that have been consed so far. */);
7268
7269 DEFVAR_INT ("strings-consed", strings_consed,
7270 doc: /* Number of strings that have been consed so far. */);
7271
7272 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7273 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7274 This means that certain objects should be allocated in shared (pure) space.
7275 It can also be set to a hash-table, in which case this table is used to
7276 do hash-consing of the objects allocated to pure space. */);
7277
7278 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7279 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7280 garbage_collection_messages = 0;
7281
7282 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7283 doc: /* Hook run after garbage collection has finished. */);
7284 Vpost_gc_hook = Qnil;
7285 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7286
7287 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7288 doc: /* Precomputed `signal' argument for memory-full error. */);
7289 /* We build this in advance because if we wait until we need it, we might
7290 not be able to allocate the memory to hold it. */
7291 Vmemory_signal_data
7292 = listn (CONSTYPE_PURE, 2, Qerror,
7293 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7294
7295 DEFVAR_LISP ("memory-full", Vmemory_full,
7296 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7297 Vmemory_full = Qnil;
7298
7299 DEFSYM (Qconses, "conses");
7300 DEFSYM (Qsymbols, "symbols");
7301 DEFSYM (Qmiscs, "miscs");
7302 DEFSYM (Qstrings, "strings");
7303 DEFSYM (Qvectors, "vectors");
7304 DEFSYM (Qfloats, "floats");
7305 DEFSYM (Qintervals, "intervals");
7306 DEFSYM (Qbuffers, "buffers");
7307 DEFSYM (Qstring_bytes, "string-bytes");
7308 DEFSYM (Qvector_slots, "vector-slots");
7309 DEFSYM (Qheap, "heap");
7310 DEFSYM (Qautomatic_gc, "Automatic GC");
7311
7312 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7313 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7314
7315 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7316 doc: /* Accumulated time elapsed in garbage collections.
7317 The time is in seconds as a floating point value. */);
7318 DEFVAR_INT ("gcs-done", gcs_done,
7319 doc: /* Accumulated number of garbage collections done. */);
7320
7321 defsubr (&Scons);
7322 defsubr (&Slist);
7323 defsubr (&Svector);
7324 defsubr (&Sbool_vector);
7325 defsubr (&Smake_byte_code);
7326 defsubr (&Smake_list);
7327 defsubr (&Smake_vector);
7328 defsubr (&Smake_string);
7329 defsubr (&Smake_bool_vector);
7330 defsubr (&Smake_symbol);
7331 defsubr (&Smake_marker);
7332 defsubr (&Smake_finalizer);
7333 defsubr (&Spurecopy);
7334 defsubr (&Sgarbage_collect);
7335 defsubr (&Smemory_limit);
7336 defsubr (&Smemory_info);
7337 defsubr (&Smemory_use_counts);
7338 defsubr (&Ssuspicious_object);
7339 }
7340
7341 /* When compiled with GCC, GDB might say "No enum type named
7342 pvec_type" if we don't have at least one symbol with that type, and
7343 then xbacktrace could fail. Similarly for the other enums and
7344 their values. Some non-GCC compilers don't like these constructs. */
7345 #ifdef __GNUC__
7346 union
7347 {
7348 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7349 enum char_table_specials char_table_specials;
7350 enum char_bits char_bits;
7351 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7352 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7353 enum Lisp_Bits Lisp_Bits;
7354 enum Lisp_Compiled Lisp_Compiled;
7355 enum maxargs maxargs;
7356 enum MAX_ALLOCA MAX_ALLOCA;
7357 enum More_Lisp_Bits More_Lisp_Bits;
7358 enum pvec_type pvec_type;
7359 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7360 #endif /* __GNUC__ */