]> code.delx.au - gnu-emacs/blob - src/search.c
Remove now-inaccurate bytecode comments
[gnu-emacs] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23
24 #include "lisp.h"
25 #include "character.h"
26 #include "buffer.h"
27 #include "syntax.h"
28 #include "charset.h"
29 #include "region-cache.h"
30 #include "blockinput.h"
31 #include "intervals.h"
32
33 #include <sys/types.h>
34 #include "regex.h"
35
36 #define REGEXP_CACHE_SIZE 20
37
38 /* If the regexp is non-nil, then the buffer contains the compiled form
39 of that regexp, suitable for searching. */
40 struct regexp_cache
41 {
42 struct regexp_cache *next;
43 Lisp_Object regexp, whitespace_regexp;
44 /* Syntax table for which the regexp applies. We need this because
45 of character classes. If this is t, then the compiled pattern is valid
46 for any syntax-table. */
47 Lisp_Object syntax_table;
48 struct re_pattern_buffer buf;
49 char fastmap[0400];
50 /* True means regexp was compiled to do full POSIX backtracking. */
51 bool posix;
52 };
53
54 /* The instances of that struct. */
55 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
56
57 /* The head of the linked list; points to the most recently used buffer. */
58 static struct regexp_cache *searchbuf_head;
59
60
61 /* Every call to re_match, etc., must pass &search_regs as the regs
62 argument unless you can show it is unnecessary (i.e., if re_match
63 is certainly going to be called again before region-around-match
64 can be called).
65
66 Since the registers are now dynamically allocated, we need to make
67 sure not to refer to the Nth register before checking that it has
68 been allocated by checking search_regs.num_regs.
69
70 The regex code keeps track of whether it has allocated the search
71 buffer using bits in the re_pattern_buffer. This means that whenever
72 you compile a new pattern, it completely forgets whether it has
73 allocated any registers, and will allocate new registers the next
74 time you call a searching or matching function. Therefore, we need
75 to call re_set_registers after compiling a new pattern or after
76 setting the match registers, so that the regex functions will be
77 able to free or re-allocate it properly. */
78 static struct re_registers search_regs;
79
80 /* The buffer in which the last search was performed, or
81 Qt if the last search was done in a string;
82 Qnil if no searching has been done yet. */
83 static Lisp_Object last_thing_searched;
84
85 static void set_search_regs (ptrdiff_t, ptrdiff_t);
86 static void save_search_regs (void);
87 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
88 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
89 ptrdiff_t, ptrdiff_t);
90 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
91 Lisp_Object, Lisp_Object, ptrdiff_t,
92 ptrdiff_t, int);
93 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
94 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
95 Lisp_Object, Lisp_Object, bool);
96
97 static _Noreturn void
98 matcher_overflow (void)
99 {
100 error ("Stack overflow in regexp matcher");
101 }
102
103 /* Compile a regexp and signal a Lisp error if anything goes wrong.
104 PATTERN is the pattern to compile.
105 CP is the place to put the result.
106 TRANSLATE is a translation table for ignoring case, or nil for none.
107 POSIX is true if we want full backtracking (POSIX style) for this pattern.
108 False means backtrack only enough to get a valid match.
109
110 The behavior also depends on Vsearch_spaces_regexp. */
111
112 static void
113 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern,
114 Lisp_Object translate, bool posix)
115 {
116 char *val;
117 reg_syntax_t old;
118
119 cp->regexp = Qnil;
120 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
121 cp->posix = posix;
122 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
123 cp->buf.charset_unibyte = charset_unibyte;
124 if (STRINGP (Vsearch_spaces_regexp))
125 cp->whitespace_regexp = Vsearch_spaces_regexp;
126 else
127 cp->whitespace_regexp = Qnil;
128
129 /* rms: I think BLOCK_INPUT is not needed here any more,
130 because regex.c defines malloc to call xmalloc.
131 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
132 So let's turn it off. */
133 /* BLOCK_INPUT; */
134 old = re_set_syntax (RE_SYNTAX_EMACS
135 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
136
137 if (STRINGP (Vsearch_spaces_regexp))
138 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
139 else
140 re_set_whitespace_regexp (NULL);
141
142 val = (char *) re_compile_pattern (SSDATA (pattern),
143 SBYTES (pattern), &cp->buf);
144
145 /* If the compiled pattern hard codes some of the contents of the
146 syntax-table, it can only be reused with *this* syntax table. */
147 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
148
149 re_set_whitespace_regexp (NULL);
150
151 re_set_syntax (old);
152 /* unblock_input (); */
153 if (val)
154 xsignal1 (Qinvalid_regexp, build_string (val));
155
156 cp->regexp = Fcopy_sequence (pattern);
157 }
158
159 /* Shrink each compiled regexp buffer in the cache
160 to the size actually used right now.
161 This is called from garbage collection. */
162
163 void
164 shrink_regexp_cache (void)
165 {
166 struct regexp_cache *cp;
167
168 for (cp = searchbuf_head; cp != 0; cp = cp->next)
169 {
170 cp->buf.allocated = cp->buf.used;
171 cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
172 }
173 }
174
175 /* Clear the regexp cache w.r.t. a particular syntax table,
176 because it was changed.
177 There is no danger of memory leak here because re_compile_pattern
178 automagically manages the memory in each re_pattern_buffer struct,
179 based on its `allocated' and `buffer' values. */
180 void
181 clear_regexp_cache (void)
182 {
183 int i;
184
185 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
186 /* It's tempting to compare with the syntax-table we've actually changed,
187 but it's not sufficient because char-table inheritance means that
188 modifying one syntax-table can change others at the same time. */
189 if (!EQ (searchbufs[i].syntax_table, Qt))
190 searchbufs[i].regexp = Qnil;
191 }
192
193 /* Compile a regexp if necessary, but first check to see if there's one in
194 the cache.
195 PATTERN is the pattern to compile.
196 TRANSLATE is a translation table for ignoring case, or nil for none.
197 REGP is the structure that says where to store the "register"
198 values that will result from matching this pattern.
199 If it is 0, we should compile the pattern not to record any
200 subexpression bounds.
201 POSIX is true if we want full backtracking (POSIX style) for this pattern.
202 False means backtrack only enough to get a valid match. */
203
204 struct re_pattern_buffer *
205 compile_pattern (Lisp_Object pattern, struct re_registers *regp,
206 Lisp_Object translate, bool posix, bool multibyte)
207 {
208 struct regexp_cache *cp, **cpp;
209
210 for (cpp = &searchbuf_head; ; cpp = &cp->next)
211 {
212 cp = *cpp;
213 /* Entries are initialized to nil, and may be set to nil by
214 compile_pattern_1 if the pattern isn't valid. Don't apply
215 string accessors in those cases. However, compile_pattern_1
216 is only applied to the cache entry we pick here to reuse. So
217 nil should never appear before a non-nil entry. */
218 if (NILP (cp->regexp))
219 goto compile_it;
220 if (SCHARS (cp->regexp) == SCHARS (pattern)
221 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
222 && !NILP (Fstring_equal (cp->regexp, pattern))
223 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
224 && cp->posix == posix
225 && (EQ (cp->syntax_table, Qt)
226 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
227 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
228 && cp->buf.charset_unibyte == charset_unibyte)
229 break;
230
231 /* If we're at the end of the cache, compile into the nil cell
232 we found, or the last (least recently used) cell with a
233 string value. */
234 if (cp->next == 0)
235 {
236 compile_it:
237 compile_pattern_1 (cp, pattern, translate, posix);
238 break;
239 }
240 }
241
242 /* When we get here, cp (aka *cpp) contains the compiled pattern,
243 either because we found it in the cache or because we just compiled it.
244 Move it to the front of the queue to mark it as most recently used. */
245 *cpp = cp->next;
246 cp->next = searchbuf_head;
247 searchbuf_head = cp;
248
249 /* Advise the searching functions about the space we have allocated
250 for register data. */
251 if (regp)
252 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
253
254 /* The compiled pattern can be used both for multibyte and unibyte
255 target. But, we have to tell which the pattern is used for. */
256 cp->buf.target_multibyte = multibyte;
257
258 return &cp->buf;
259 }
260
261 \f
262 static Lisp_Object
263 looking_at_1 (Lisp_Object string, bool posix)
264 {
265 Lisp_Object val;
266 unsigned char *p1, *p2;
267 ptrdiff_t s1, s2;
268 register ptrdiff_t i;
269 struct re_pattern_buffer *bufp;
270
271 if (running_asynch_code)
272 save_search_regs ();
273
274 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
275 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
276 BVAR (current_buffer, case_eqv_table));
277
278 CHECK_STRING (string);
279 bufp = compile_pattern (string,
280 (NILP (Vinhibit_changing_match_data)
281 ? &search_regs : NULL),
282 (!NILP (BVAR (current_buffer, case_fold_search))
283 ? BVAR (current_buffer, case_canon_table) : Qnil),
284 posix,
285 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
286
287 immediate_quit = 1;
288 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
289
290 /* Get pointers and sizes of the two strings
291 that make up the visible portion of the buffer. */
292
293 p1 = BEGV_ADDR;
294 s1 = GPT_BYTE - BEGV_BYTE;
295 p2 = GAP_END_ADDR;
296 s2 = ZV_BYTE - GPT_BYTE;
297 if (s1 < 0)
298 {
299 p2 = p1;
300 s2 = ZV_BYTE - BEGV_BYTE;
301 s1 = 0;
302 }
303 if (s2 < 0)
304 {
305 s1 = ZV_BYTE - BEGV_BYTE;
306 s2 = 0;
307 }
308
309 re_match_object = Qnil;
310
311 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
312 PT_BYTE - BEGV_BYTE,
313 (NILP (Vinhibit_changing_match_data)
314 ? &search_regs : NULL),
315 ZV_BYTE - BEGV_BYTE);
316 immediate_quit = 0;
317
318 if (i == -2)
319 matcher_overflow ();
320
321 val = (i >= 0 ? Qt : Qnil);
322 if (NILP (Vinhibit_changing_match_data) && i >= 0)
323 {
324 for (i = 0; i < search_regs.num_regs; i++)
325 if (search_regs.start[i] >= 0)
326 {
327 search_regs.start[i]
328 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
329 search_regs.end[i]
330 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
331 }
332 /* Set last_thing_searched only when match data is changed. */
333 XSETBUFFER (last_thing_searched, current_buffer);
334 }
335
336 return val;
337 }
338
339 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
340 doc: /* Return t if text after point matches regular expression REGEXP.
341 This function modifies the match data that `match-beginning',
342 `match-end' and `match-data' access; save and restore the match
343 data if you want to preserve them. */)
344 (Lisp_Object regexp)
345 {
346 return looking_at_1 (regexp, 0);
347 }
348
349 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
350 doc: /* Return t if text after point matches regular expression REGEXP.
351 Find the longest match, in accord with Posix regular expression rules.
352 This function modifies the match data that `match-beginning',
353 `match-end' and `match-data' access; save and restore the match
354 data if you want to preserve them. */)
355 (Lisp_Object regexp)
356 {
357 return looking_at_1 (regexp, 1);
358 }
359 \f
360 static Lisp_Object
361 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start,
362 bool posix)
363 {
364 ptrdiff_t val;
365 struct re_pattern_buffer *bufp;
366 EMACS_INT pos;
367 ptrdiff_t pos_byte, i;
368
369 if (running_asynch_code)
370 save_search_regs ();
371
372 CHECK_STRING (regexp);
373 CHECK_STRING (string);
374
375 if (NILP (start))
376 pos = 0, pos_byte = 0;
377 else
378 {
379 ptrdiff_t len = SCHARS (string);
380
381 CHECK_NUMBER (start);
382 pos = XINT (start);
383 if (pos < 0 && -pos <= len)
384 pos = len + pos;
385 else if (0 > pos || pos > len)
386 args_out_of_range (string, start);
387 pos_byte = string_char_to_byte (string, pos);
388 }
389
390 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
391 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
392 BVAR (current_buffer, case_eqv_table));
393
394 bufp = compile_pattern (regexp,
395 (NILP (Vinhibit_changing_match_data)
396 ? &search_regs : NULL),
397 (!NILP (BVAR (current_buffer, case_fold_search))
398 ? BVAR (current_buffer, case_canon_table) : Qnil),
399 posix,
400 STRING_MULTIBYTE (string));
401 immediate_quit = 1;
402 re_match_object = string;
403
404 val = re_search (bufp, SSDATA (string),
405 SBYTES (string), pos_byte,
406 SBYTES (string) - pos_byte,
407 (NILP (Vinhibit_changing_match_data)
408 ? &search_regs : NULL));
409 immediate_quit = 0;
410
411 /* Set last_thing_searched only when match data is changed. */
412 if (NILP (Vinhibit_changing_match_data))
413 last_thing_searched = Qt;
414
415 if (val == -2)
416 matcher_overflow ();
417 if (val < 0) return Qnil;
418
419 if (NILP (Vinhibit_changing_match_data))
420 for (i = 0; i < search_regs.num_regs; i++)
421 if (search_regs.start[i] >= 0)
422 {
423 search_regs.start[i]
424 = string_byte_to_char (string, search_regs.start[i]);
425 search_regs.end[i]
426 = string_byte_to_char (string, search_regs.end[i]);
427 }
428
429 return make_number (string_byte_to_char (string, val));
430 }
431
432 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
433 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
434 Matching ignores case if `case-fold-search' is non-nil.
435 If third arg START is non-nil, start search at that index in STRING.
436 For index of first char beyond the match, do (match-end 0).
437 `match-end' and `match-beginning' also give indices of substrings
438 matched by parenthesis constructs in the pattern.
439
440 You can use the function `match-string' to extract the substrings
441 matched by the parenthesis constructions in REGEXP. */)
442 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
443 {
444 return string_match_1 (regexp, string, start, 0);
445 }
446
447 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
448 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
449 Find the longest match, in accord with Posix regular expression rules.
450 Case is ignored if `case-fold-search' is non-nil in the current buffer.
451 If third arg START is non-nil, start search at that index in STRING.
452 For index of first char beyond the match, do (match-end 0).
453 `match-end' and `match-beginning' also give indices of substrings
454 matched by parenthesis constructs in the pattern. */)
455 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
456 {
457 return string_match_1 (regexp, string, start, 1);
458 }
459
460 /* Match REGEXP against STRING using translation table TABLE,
461 searching all of STRING, and return the index of the match,
462 or negative on failure. This does not clobber the match data. */
463
464 ptrdiff_t
465 fast_string_match_internal (Lisp_Object regexp, Lisp_Object string,
466 Lisp_Object table)
467 {
468 ptrdiff_t val;
469 struct re_pattern_buffer *bufp;
470
471 bufp = compile_pattern (regexp, 0, table,
472 0, STRING_MULTIBYTE (string));
473 immediate_quit = 1;
474 re_match_object = string;
475
476 val = re_search (bufp, SSDATA (string),
477 SBYTES (string), 0,
478 SBYTES (string), 0);
479 immediate_quit = 0;
480 return val;
481 }
482
483 /* Match REGEXP against STRING, searching all of STRING ignoring case,
484 and return the index of the match, or negative on failure.
485 This does not clobber the match data.
486 We assume that STRING contains single-byte characters. */
487
488 ptrdiff_t
489 fast_c_string_match_ignore_case (Lisp_Object regexp,
490 const char *string, ptrdiff_t len)
491 {
492 ptrdiff_t val;
493 struct re_pattern_buffer *bufp;
494
495 regexp = string_make_unibyte (regexp);
496 re_match_object = Qt;
497 bufp = compile_pattern (regexp, 0,
498 Vascii_canon_table, 0,
499 0);
500 immediate_quit = 1;
501 val = re_search (bufp, string, len, 0, len, 0);
502 immediate_quit = 0;
503 return val;
504 }
505
506 /* Match REGEXP against the characters after POS to LIMIT, and return
507 the number of matched characters. If STRING is non-nil, match
508 against the characters in it. In that case, POS and LIMIT are
509 indices into the string. This function doesn't modify the match
510 data. */
511
512 ptrdiff_t
513 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte,
514 ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
515 {
516 bool multibyte;
517 struct re_pattern_buffer *buf;
518 unsigned char *p1, *p2;
519 ptrdiff_t s1, s2;
520 ptrdiff_t len;
521
522 if (STRINGP (string))
523 {
524 if (pos_byte < 0)
525 pos_byte = string_char_to_byte (string, pos);
526 if (limit_byte < 0)
527 limit_byte = string_char_to_byte (string, limit);
528 p1 = NULL;
529 s1 = 0;
530 p2 = SDATA (string);
531 s2 = SBYTES (string);
532 re_match_object = string;
533 multibyte = STRING_MULTIBYTE (string);
534 }
535 else
536 {
537 if (pos_byte < 0)
538 pos_byte = CHAR_TO_BYTE (pos);
539 if (limit_byte < 0)
540 limit_byte = CHAR_TO_BYTE (limit);
541 pos_byte -= BEGV_BYTE;
542 limit_byte -= BEGV_BYTE;
543 p1 = BEGV_ADDR;
544 s1 = GPT_BYTE - BEGV_BYTE;
545 p2 = GAP_END_ADDR;
546 s2 = ZV_BYTE - GPT_BYTE;
547 if (s1 < 0)
548 {
549 p2 = p1;
550 s2 = ZV_BYTE - BEGV_BYTE;
551 s1 = 0;
552 }
553 if (s2 < 0)
554 {
555 s1 = ZV_BYTE - BEGV_BYTE;
556 s2 = 0;
557 }
558 re_match_object = Qnil;
559 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
560 }
561
562 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
563 immediate_quit = 1;
564 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
565 pos_byte, NULL, limit_byte);
566 immediate_quit = 0;
567
568 return len;
569 }
570
571 \f
572 /* The newline cache: remembering which sections of text have no newlines. */
573
574 /* If the user has requested the long scans caching, make sure it's on.
575 Otherwise, make sure it's off.
576 This is our cheezy way of associating an action with the change of
577 state of a buffer-local variable. */
578 static struct region_cache *
579 newline_cache_on_off (struct buffer *buf)
580 {
581 struct buffer *base_buf = buf;
582 bool indirect_p = false;
583
584 if (buf->base_buffer)
585 {
586 base_buf = buf->base_buffer;
587 indirect_p = true;
588 }
589
590 /* Don't turn on or off the cache in the base buffer, if the value
591 of cache-long-scans of the base buffer is inconsistent with that.
592 This is because doing so will just make the cache pure overhead,
593 since if we turn it on via indirect buffer, it will be
594 immediately turned off by its base buffer. */
595 if (NILP (BVAR (buf, cache_long_scans)))
596 {
597 if (!indirect_p
598 || NILP (BVAR (base_buf, cache_long_scans)))
599 {
600 /* It should be off. */
601 if (base_buf->newline_cache)
602 {
603 free_region_cache (base_buf->newline_cache);
604 base_buf->newline_cache = 0;
605 }
606 }
607 return NULL;
608 }
609 else
610 {
611 if (!indirect_p
612 || !NILP (BVAR (base_buf, cache_long_scans)))
613 {
614 /* It should be on. */
615 if (base_buf->newline_cache == 0)
616 base_buf->newline_cache = new_region_cache ();
617 }
618 return base_buf->newline_cache;
619 }
620 }
621
622 \f
623 /* Search for COUNT newlines between START/START_BYTE and END/END_BYTE.
624
625 If COUNT is positive, search forwards; END must be >= START.
626 If COUNT is negative, search backwards for the -COUNTth instance;
627 END must be <= START.
628 If COUNT is zero, do anything you please; run rogue, for all I care.
629
630 If END is zero, use BEGV or ZV instead, as appropriate for the
631 direction indicated by COUNT.
632
633 If we find COUNT instances, set *SHORTAGE to zero, and return the
634 position past the COUNTth match. Note that for reverse motion
635 this is not the same as the usual convention for Emacs motion commands.
636
637 If we don't find COUNT instances before reaching END, set *SHORTAGE
638 to the number of newlines left unfound, and return END.
639
640 If BYTEPOS is not NULL, set *BYTEPOS to the byte position corresponding
641 to the returned character position.
642
643 If ALLOW_QUIT, set immediate_quit. That's good to do
644 except when inside redisplay. */
645
646 ptrdiff_t
647 find_newline (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
648 ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *shortage,
649 ptrdiff_t *bytepos, bool allow_quit)
650 {
651 struct region_cache *newline_cache;
652 int direction;
653 struct buffer *cache_buffer;
654
655 if (count > 0)
656 {
657 direction = 1;
658 if (!end)
659 end = ZV, end_byte = ZV_BYTE;
660 }
661 else
662 {
663 direction = -1;
664 if (!end)
665 end = BEGV, end_byte = BEGV_BYTE;
666 }
667 if (end_byte == -1)
668 end_byte = CHAR_TO_BYTE (end);
669
670 newline_cache = newline_cache_on_off (current_buffer);
671 if (current_buffer->base_buffer)
672 cache_buffer = current_buffer->base_buffer;
673 else
674 cache_buffer = current_buffer;
675
676 if (shortage != 0)
677 *shortage = 0;
678
679 immediate_quit = allow_quit;
680
681 if (count > 0)
682 while (start != end)
683 {
684 /* Our innermost scanning loop is very simple; it doesn't know
685 about gaps, buffer ends, or the newline cache. ceiling is
686 the position of the last character before the next such
687 obstacle --- the last character the dumb search loop should
688 examine. */
689 ptrdiff_t tem, ceiling_byte = end_byte - 1;
690
691 /* If we're using the newline cache, consult it to see whether
692 we can avoid some scanning. */
693 if (newline_cache)
694 {
695 ptrdiff_t next_change;
696 int result = 1;
697
698 immediate_quit = 0;
699 while (start < end && result)
700 {
701 ptrdiff_t lim1;
702
703 result = region_cache_forward (cache_buffer, newline_cache,
704 start, &next_change);
705 if (result)
706 {
707 /* When the cache revalidation is deferred,
708 next-change might point beyond ZV, which will
709 cause assertion violation in CHAR_TO_BYTE below.
710 Limit next_change to ZV to avoid that. */
711 if (next_change > ZV)
712 next_change = ZV;
713 start = next_change;
714 lim1 = next_change = end;
715 }
716 else
717 lim1 = min (next_change, end);
718
719 /* The cache returned zero for this region; see if
720 this is because the region is known and includes
721 only newlines. While at that, count any newlines
722 we bump into, and exit if we found enough off them. */
723 start_byte = CHAR_TO_BYTE (start);
724 while (start < lim1
725 && FETCH_BYTE (start_byte) == '\n')
726 {
727 start_byte++;
728 start++;
729 if (--count == 0)
730 {
731 if (bytepos)
732 *bytepos = start_byte;
733 return start;
734 }
735 }
736 /* If we found a non-newline character before hitting
737 position where the cache will again return non-zero
738 (i.e. no newlines beyond that position), it means
739 this region is not yet known to the cache, and we
740 must resort to the "dumb loop" method. */
741 if (start < next_change && !result)
742 break;
743 result = 1;
744 }
745 if (start >= end)
746 {
747 start = end;
748 start_byte = end_byte;
749 break;
750 }
751 immediate_quit = allow_quit;
752
753 /* START should never be after END. */
754 if (start_byte > ceiling_byte)
755 start_byte = ceiling_byte;
756
757 /* Now the text after start is an unknown region, and
758 next_change is the position of the next known region. */
759 ceiling_byte = min (CHAR_TO_BYTE (next_change) - 1, ceiling_byte);
760 }
761 else if (start_byte == -1)
762 start_byte = CHAR_TO_BYTE (start);
763
764 /* The dumb loop can only scan text stored in contiguous
765 bytes. BUFFER_CEILING_OF returns the last character
766 position that is contiguous, so the ceiling is the
767 position after that. */
768 tem = BUFFER_CEILING_OF (start_byte);
769 ceiling_byte = min (tem, ceiling_byte);
770
771 {
772 /* The termination address of the dumb loop. */
773 unsigned char *lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
774 ptrdiff_t lim_byte = ceiling_byte + 1;
775
776 /* Nonpositive offsets (relative to LIM_ADDR and LIM_BYTE)
777 of the base, the cursor, and the next line. */
778 ptrdiff_t base = start_byte - lim_byte;
779 ptrdiff_t cursor, next;
780
781 for (cursor = base; cursor < 0; cursor = next)
782 {
783 /* The dumb loop. */
784 unsigned char *nl = memchr (lim_addr + cursor, '\n', - cursor);
785 next = nl ? nl - lim_addr : 0;
786
787 /* If we're using the newline cache, cache the fact that
788 the region we just traversed is free of newlines. */
789 if (newline_cache && cursor != next)
790 {
791 know_region_cache (cache_buffer, newline_cache,
792 BYTE_TO_CHAR (lim_byte + cursor),
793 BYTE_TO_CHAR (lim_byte + next));
794 /* know_region_cache can relocate buffer text. */
795 lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
796 }
797
798 if (! nl)
799 break;
800 next++;
801
802 if (--count == 0)
803 {
804 immediate_quit = 0;
805 if (bytepos)
806 *bytepos = lim_byte + next;
807 return BYTE_TO_CHAR (lim_byte + next);
808 }
809 }
810
811 start_byte = lim_byte;
812 start = BYTE_TO_CHAR (start_byte);
813 }
814 }
815 else
816 while (start > end)
817 {
818 /* The last character to check before the next obstacle. */
819 ptrdiff_t tem, ceiling_byte = end_byte;
820
821 /* Consult the newline cache, if appropriate. */
822 if (newline_cache)
823 {
824 ptrdiff_t next_change;
825 int result = 1;
826
827 immediate_quit = 0;
828 while (start > end && result)
829 {
830 ptrdiff_t lim1;
831
832 result = region_cache_backward (cache_buffer, newline_cache,
833 start, &next_change);
834 if (result)
835 {
836 start = next_change;
837 lim1 = next_change = end;
838 }
839 else
840 lim1 = max (next_change, end);
841 start_byte = CHAR_TO_BYTE (start);
842 while (start > lim1
843 && FETCH_BYTE (start_byte - 1) == '\n')
844 {
845 if (++count == 0)
846 {
847 if (bytepos)
848 *bytepos = start_byte;
849 return start;
850 }
851 start_byte--;
852 start--;
853 }
854 if (start > next_change && !result)
855 break;
856 result = 1;
857 }
858 if (start <= end)
859 {
860 start = end;
861 start_byte = end_byte;
862 break;
863 }
864 immediate_quit = allow_quit;
865
866 /* Start should never be at or before end. */
867 if (start_byte <= ceiling_byte)
868 start_byte = ceiling_byte + 1;
869
870 /* Now the text before start is an unknown region, and
871 next_change is the position of the next known region. */
872 ceiling_byte = max (CHAR_TO_BYTE (next_change), ceiling_byte);
873 }
874 else if (start_byte == -1)
875 start_byte = CHAR_TO_BYTE (start);
876
877 /* Stop scanning before the gap. */
878 tem = BUFFER_FLOOR_OF (start_byte - 1);
879 ceiling_byte = max (tem, ceiling_byte);
880
881 {
882 /* The termination address of the dumb loop. */
883 unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
884
885 /* Offsets (relative to CEILING_ADDR and CEILING_BYTE) of
886 the base, the cursor, and the previous line. These
887 offsets are at least -1. */
888 ptrdiff_t base = start_byte - ceiling_byte;
889 ptrdiff_t cursor, prev;
890
891 for (cursor = base; 0 < cursor; cursor = prev)
892 {
893 unsigned char *nl = memrchr (ceiling_addr, '\n', cursor);
894 prev = nl ? nl - ceiling_addr : -1;
895
896 /* If we're looking for newlines, cache the fact that
897 this line's region is free of them. */
898 if (newline_cache && cursor != prev + 1)
899 {
900 know_region_cache (cache_buffer, newline_cache,
901 BYTE_TO_CHAR (ceiling_byte + prev + 1),
902 BYTE_TO_CHAR (ceiling_byte + cursor));
903 /* know_region_cache can relocate buffer text. */
904 ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
905 }
906
907 if (! nl)
908 break;
909
910 if (++count >= 0)
911 {
912 immediate_quit = 0;
913 if (bytepos)
914 *bytepos = ceiling_byte + prev + 1;
915 return BYTE_TO_CHAR (ceiling_byte + prev + 1);
916 }
917 }
918
919 start_byte = ceiling_byte;
920 start = BYTE_TO_CHAR (start_byte);
921 }
922 }
923
924 immediate_quit = 0;
925 if (shortage)
926 *shortage = count * direction;
927 if (bytepos)
928 {
929 *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
930 eassert (*bytepos == CHAR_TO_BYTE (start));
931 }
932 return start;
933 }
934 \f
935 /* Search for COUNT instances of a line boundary.
936 Start at START. If COUNT is negative, search backwards.
937
938 We report the resulting position by calling TEMP_SET_PT_BOTH.
939
940 If we find COUNT instances. we position after (always after,
941 even if scanning backwards) the COUNTth match, and return 0.
942
943 If we don't find COUNT instances before reaching the end of the
944 buffer (or the beginning, if scanning backwards), we return
945 the number of line boundaries left unfound, and position at
946 the limit we bumped up against.
947
948 If ALLOW_QUIT, set immediate_quit. That's good to do
949 except in special cases. */
950
951 ptrdiff_t
952 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
953 ptrdiff_t limit, ptrdiff_t limit_byte,
954 ptrdiff_t count, bool allow_quit)
955 {
956 ptrdiff_t charpos, bytepos, shortage;
957
958 charpos = find_newline (start, start_byte, limit, limit_byte,
959 count, &shortage, &bytepos, allow_quit);
960 if (shortage)
961 TEMP_SET_PT_BOTH (limit, limit_byte);
962 else
963 TEMP_SET_PT_BOTH (charpos, bytepos);
964 return shortage;
965 }
966
967 /* Like above, but always scan from point and report the
968 resulting position in *CHARPOS and *BYTEPOS. */
969
970 ptrdiff_t
971 scan_newline_from_point (ptrdiff_t count, ptrdiff_t *charpos,
972 ptrdiff_t *bytepos)
973 {
974 ptrdiff_t shortage;
975
976 if (count <= 0)
977 *charpos = find_newline (PT, PT_BYTE, BEGV, BEGV_BYTE, count - 1,
978 &shortage, bytepos, 1);
979 else
980 *charpos = find_newline (PT, PT_BYTE, ZV, ZV_BYTE, count,
981 &shortage, bytepos, 1);
982 return shortage;
983 }
984
985 /* Like find_newline, but doesn't allow QUITting and doesn't return
986 SHORTAGE. */
987 ptrdiff_t
988 find_newline_no_quit (ptrdiff_t from, ptrdiff_t frombyte,
989 ptrdiff_t cnt, ptrdiff_t *bytepos)
990 {
991 return find_newline (from, frombyte, 0, -1, cnt, NULL, bytepos, 0);
992 }
993
994 /* Like find_newline, but returns position before the newline, not
995 after, and only search up to TO.
996 This isn't just find_newline_no_quit (...)-1, because you might hit TO. */
997
998 ptrdiff_t
999 find_before_next_newline (ptrdiff_t from, ptrdiff_t to,
1000 ptrdiff_t cnt, ptrdiff_t *bytepos)
1001 {
1002 ptrdiff_t shortage;
1003 ptrdiff_t pos = find_newline (from, -1, to, -1, cnt, &shortage, bytepos, 1);
1004
1005 if (shortage == 0)
1006 {
1007 if (bytepos)
1008 DEC_BOTH (pos, *bytepos);
1009 else
1010 pos--;
1011 }
1012 return pos;
1013 }
1014 \f
1015 /* Subroutines of Lisp buffer search functions. */
1016
1017 static Lisp_Object
1018 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
1019 Lisp_Object count, int direction, int RE, bool posix)
1020 {
1021 EMACS_INT np;
1022 EMACS_INT lim;
1023 ptrdiff_t lim_byte;
1024 EMACS_INT n = direction;
1025
1026 if (!NILP (count))
1027 {
1028 CHECK_NUMBER (count);
1029 n *= XINT (count);
1030 }
1031
1032 CHECK_STRING (string);
1033 if (NILP (bound))
1034 {
1035 if (n > 0)
1036 lim = ZV, lim_byte = ZV_BYTE;
1037 else
1038 lim = BEGV, lim_byte = BEGV_BYTE;
1039 }
1040 else
1041 {
1042 CHECK_NUMBER_COERCE_MARKER (bound);
1043 lim = XINT (bound);
1044 if (n > 0 ? lim < PT : lim > PT)
1045 error ("Invalid search bound (wrong side of point)");
1046 if (lim > ZV)
1047 lim = ZV, lim_byte = ZV_BYTE;
1048 else if (lim < BEGV)
1049 lim = BEGV, lim_byte = BEGV_BYTE;
1050 else
1051 lim_byte = CHAR_TO_BYTE (lim);
1052 }
1053
1054 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
1055 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
1056 BVAR (current_buffer, case_eqv_table));
1057
1058 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
1059 (!NILP (BVAR (current_buffer, case_fold_search))
1060 ? BVAR (current_buffer, case_canon_table)
1061 : Qnil),
1062 (!NILP (BVAR (current_buffer, case_fold_search))
1063 ? BVAR (current_buffer, case_eqv_table)
1064 : Qnil),
1065 posix);
1066 if (np <= 0)
1067 {
1068 if (NILP (noerror))
1069 xsignal1 (Qsearch_failed, string);
1070
1071 if (!EQ (noerror, Qt))
1072 {
1073 eassert (BEGV <= lim && lim <= ZV);
1074 SET_PT_BOTH (lim, lim_byte);
1075 return Qnil;
1076 #if 0 /* This would be clean, but maybe programs depend on
1077 a value of nil here. */
1078 np = lim;
1079 #endif
1080 }
1081 else
1082 return Qnil;
1083 }
1084
1085 eassert (BEGV <= np && np <= ZV);
1086 SET_PT (np);
1087
1088 return make_number (np);
1089 }
1090 \f
1091 /* Return true if REGEXP it matches just one constant string. */
1092
1093 static bool
1094 trivial_regexp_p (Lisp_Object regexp)
1095 {
1096 ptrdiff_t len = SBYTES (regexp);
1097 unsigned char *s = SDATA (regexp);
1098 while (--len >= 0)
1099 {
1100 switch (*s++)
1101 {
1102 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1103 return 0;
1104 case '\\':
1105 if (--len < 0)
1106 return 0;
1107 switch (*s++)
1108 {
1109 case '|': case '(': case ')': case '`': case '\'': case 'b':
1110 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1111 case 'S': case '=': case '{': case '}': case '_':
1112 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1113 case '1': case '2': case '3': case '4': case '5':
1114 case '6': case '7': case '8': case '9':
1115 return 0;
1116 }
1117 }
1118 }
1119 return 1;
1120 }
1121
1122 /* Search for the n'th occurrence of STRING in the current buffer,
1123 starting at position POS and stopping at position LIM,
1124 treating STRING as a literal string if RE is false or as
1125 a regular expression if RE is true.
1126
1127 If N is positive, searching is forward and LIM must be greater than POS.
1128 If N is negative, searching is backward and LIM must be less than POS.
1129
1130 Returns -x if x occurrences remain to be found (x > 0),
1131 or else the position at the beginning of the Nth occurrence
1132 (if searching backward) or the end (if searching forward).
1133
1134 POSIX is nonzero if we want full backtracking (POSIX style)
1135 for this pattern. 0 means backtrack only enough to get a valid match. */
1136
1137 #define TRANSLATE(out, trt, d) \
1138 do \
1139 { \
1140 if (! NILP (trt)) \
1141 { \
1142 Lisp_Object temp; \
1143 temp = Faref (trt, make_number (d)); \
1144 if (INTEGERP (temp)) \
1145 out = XINT (temp); \
1146 else \
1147 out = d; \
1148 } \
1149 else \
1150 out = d; \
1151 } \
1152 while (0)
1153
1154 /* Only used in search_buffer, to record the end position of the match
1155 when searching regexps and SEARCH_REGS should not be changed
1156 (i.e. Vinhibit_changing_match_data is non-nil). */
1157 static struct re_registers search_regs_1;
1158
1159 static EMACS_INT
1160 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1161 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1162 int RE, Lisp_Object trt, Lisp_Object inverse_trt, bool posix)
1163 {
1164 ptrdiff_t len = SCHARS (string);
1165 ptrdiff_t len_byte = SBYTES (string);
1166 register ptrdiff_t i;
1167
1168 if (running_asynch_code)
1169 save_search_regs ();
1170
1171 /* Searching 0 times means don't move. */
1172 /* Null string is found at starting position. */
1173 if (len == 0 || n == 0)
1174 {
1175 set_search_regs (pos_byte, 0);
1176 return pos;
1177 }
1178
1179 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1180 {
1181 unsigned char *p1, *p2;
1182 ptrdiff_t s1, s2;
1183 struct re_pattern_buffer *bufp;
1184
1185 bufp = compile_pattern (string,
1186 (NILP (Vinhibit_changing_match_data)
1187 ? &search_regs : &search_regs_1),
1188 trt, posix,
1189 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1190
1191 immediate_quit = 1; /* Quit immediately if user types ^G,
1192 because letting this function finish
1193 can take too long. */
1194 QUIT; /* Do a pending quit right away,
1195 to avoid paradoxical behavior */
1196 /* Get pointers and sizes of the two strings
1197 that make up the visible portion of the buffer. */
1198
1199 p1 = BEGV_ADDR;
1200 s1 = GPT_BYTE - BEGV_BYTE;
1201 p2 = GAP_END_ADDR;
1202 s2 = ZV_BYTE - GPT_BYTE;
1203 if (s1 < 0)
1204 {
1205 p2 = p1;
1206 s2 = ZV_BYTE - BEGV_BYTE;
1207 s1 = 0;
1208 }
1209 if (s2 < 0)
1210 {
1211 s1 = ZV_BYTE - BEGV_BYTE;
1212 s2 = 0;
1213 }
1214 re_match_object = Qnil;
1215
1216 while (n < 0)
1217 {
1218 ptrdiff_t val;
1219
1220 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1221 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1222 (NILP (Vinhibit_changing_match_data)
1223 ? &search_regs : &search_regs_1),
1224 /* Don't allow match past current point */
1225 pos_byte - BEGV_BYTE);
1226 if (val == -2)
1227 {
1228 matcher_overflow ();
1229 }
1230 if (val >= 0)
1231 {
1232 if (NILP (Vinhibit_changing_match_data))
1233 {
1234 pos_byte = search_regs.start[0] + BEGV_BYTE;
1235 for (i = 0; i < search_regs.num_regs; i++)
1236 if (search_regs.start[i] >= 0)
1237 {
1238 search_regs.start[i]
1239 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1240 search_regs.end[i]
1241 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1242 }
1243 XSETBUFFER (last_thing_searched, current_buffer);
1244 /* Set pos to the new position. */
1245 pos = search_regs.start[0];
1246 }
1247 else
1248 {
1249 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1250 /* Set pos to the new position. */
1251 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1252 }
1253 }
1254 else
1255 {
1256 immediate_quit = 0;
1257 return (n);
1258 }
1259 n++;
1260 }
1261 while (n > 0)
1262 {
1263 ptrdiff_t val;
1264
1265 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1266 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1267 (NILP (Vinhibit_changing_match_data)
1268 ? &search_regs : &search_regs_1),
1269 lim_byte - BEGV_BYTE);
1270 if (val == -2)
1271 {
1272 matcher_overflow ();
1273 }
1274 if (val >= 0)
1275 {
1276 if (NILP (Vinhibit_changing_match_data))
1277 {
1278 pos_byte = search_regs.end[0] + BEGV_BYTE;
1279 for (i = 0; i < search_regs.num_regs; i++)
1280 if (search_regs.start[i] >= 0)
1281 {
1282 search_regs.start[i]
1283 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1284 search_regs.end[i]
1285 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1286 }
1287 XSETBUFFER (last_thing_searched, current_buffer);
1288 pos = search_regs.end[0];
1289 }
1290 else
1291 {
1292 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1293 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1294 }
1295 }
1296 else
1297 {
1298 immediate_quit = 0;
1299 return (0 - n);
1300 }
1301 n--;
1302 }
1303 immediate_quit = 0;
1304 return (pos);
1305 }
1306 else /* non-RE case */
1307 {
1308 unsigned char *raw_pattern, *pat;
1309 ptrdiff_t raw_pattern_size;
1310 ptrdiff_t raw_pattern_size_byte;
1311 unsigned char *patbuf;
1312 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1313 unsigned char *base_pat;
1314 /* Set to positive if we find a non-ASCII char that need
1315 translation. Otherwise set to zero later. */
1316 int char_base = -1;
1317 bool boyer_moore_ok = 1;
1318 USE_SAFE_ALLOCA;
1319
1320 /* MULTIBYTE says whether the text to be searched is multibyte.
1321 We must convert PATTERN to match that, or we will not really
1322 find things right. */
1323
1324 if (multibyte == STRING_MULTIBYTE (string))
1325 {
1326 raw_pattern = SDATA (string);
1327 raw_pattern_size = SCHARS (string);
1328 raw_pattern_size_byte = SBYTES (string);
1329 }
1330 else if (multibyte)
1331 {
1332 raw_pattern_size = SCHARS (string);
1333 raw_pattern_size_byte
1334 = count_size_as_multibyte (SDATA (string),
1335 raw_pattern_size);
1336 raw_pattern = SAFE_ALLOCA (raw_pattern_size_byte + 1);
1337 copy_text (SDATA (string), raw_pattern,
1338 SCHARS (string), 0, 1);
1339 }
1340 else
1341 {
1342 /* Converting multibyte to single-byte.
1343
1344 ??? Perhaps this conversion should be done in a special way
1345 by subtracting nonascii-insert-offset from each non-ASCII char,
1346 so that only the multibyte chars which really correspond to
1347 the chosen single-byte character set can possibly match. */
1348 raw_pattern_size = SCHARS (string);
1349 raw_pattern_size_byte = SCHARS (string);
1350 raw_pattern = SAFE_ALLOCA (raw_pattern_size + 1);
1351 copy_text (SDATA (string), raw_pattern,
1352 SBYTES (string), 1, 0);
1353 }
1354
1355 /* Copy and optionally translate the pattern. */
1356 len = raw_pattern_size;
1357 len_byte = raw_pattern_size_byte;
1358 SAFE_NALLOCA (patbuf, MAX_MULTIBYTE_LENGTH, len);
1359 pat = patbuf;
1360 base_pat = raw_pattern;
1361 if (multibyte)
1362 {
1363 /* Fill patbuf by translated characters in STRING while
1364 checking if we can use boyer-moore search. If TRT is
1365 non-nil, we can use boyer-moore search only if TRT can be
1366 represented by the byte array of 256 elements. For that,
1367 all non-ASCII case-equivalents of all case-sensitive
1368 characters in STRING must belong to the same character
1369 group (two characters belong to the same group iff their
1370 multibyte forms are the same except for the last byte;
1371 i.e. every 64 characters form a group; U+0000..U+003F,
1372 U+0040..U+007F, U+0080..U+00BF, ...). */
1373
1374 while (--len >= 0)
1375 {
1376 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1377 int c, translated, inverse;
1378 int in_charlen, charlen;
1379
1380 /* If we got here and the RE flag is set, it's because we're
1381 dealing with a regexp known to be trivial, so the backslash
1382 just quotes the next character. */
1383 if (RE && *base_pat == '\\')
1384 {
1385 len--;
1386 raw_pattern_size--;
1387 len_byte--;
1388 base_pat++;
1389 }
1390
1391 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1392
1393 if (NILP (trt))
1394 {
1395 str = base_pat;
1396 charlen = in_charlen;
1397 }
1398 else
1399 {
1400 /* Translate the character. */
1401 TRANSLATE (translated, trt, c);
1402 charlen = CHAR_STRING (translated, str_base);
1403 str = str_base;
1404
1405 /* Check if C has any other case-equivalents. */
1406 TRANSLATE (inverse, inverse_trt, c);
1407 /* If so, check if we can use boyer-moore. */
1408 if (c != inverse && boyer_moore_ok)
1409 {
1410 /* Check if all equivalents belong to the same
1411 group of characters. Note that the check of C
1412 itself is done by the last iteration. */
1413 int this_char_base = -1;
1414
1415 while (boyer_moore_ok)
1416 {
1417 if (ASCII_CHAR_P (inverse))
1418 {
1419 if (this_char_base > 0)
1420 boyer_moore_ok = 0;
1421 else
1422 this_char_base = 0;
1423 }
1424 else if (CHAR_BYTE8_P (inverse))
1425 /* Boyer-moore search can't handle a
1426 translation of an eight-bit
1427 character. */
1428 boyer_moore_ok = 0;
1429 else if (this_char_base < 0)
1430 {
1431 this_char_base = inverse & ~0x3F;
1432 if (char_base < 0)
1433 char_base = this_char_base;
1434 else if (this_char_base != char_base)
1435 boyer_moore_ok = 0;
1436 }
1437 else if ((inverse & ~0x3F) != this_char_base)
1438 boyer_moore_ok = 0;
1439 if (c == inverse)
1440 break;
1441 TRANSLATE (inverse, inverse_trt, inverse);
1442 }
1443 }
1444 }
1445
1446 /* Store this character into the translated pattern. */
1447 memcpy (pat, str, charlen);
1448 pat += charlen;
1449 base_pat += in_charlen;
1450 len_byte -= in_charlen;
1451 }
1452
1453 /* If char_base is still negative we didn't find any translated
1454 non-ASCII characters. */
1455 if (char_base < 0)
1456 char_base = 0;
1457 }
1458 else
1459 {
1460 /* Unibyte buffer. */
1461 char_base = 0;
1462 while (--len >= 0)
1463 {
1464 int c, translated, inverse;
1465
1466 /* If we got here and the RE flag is set, it's because we're
1467 dealing with a regexp known to be trivial, so the backslash
1468 just quotes the next character. */
1469 if (RE && *base_pat == '\\')
1470 {
1471 len--;
1472 raw_pattern_size--;
1473 base_pat++;
1474 }
1475 c = *base_pat++;
1476 TRANSLATE (translated, trt, c);
1477 *pat++ = translated;
1478 /* Check that none of C's equivalents violates the
1479 assumptions of boyer_moore. */
1480 TRANSLATE (inverse, inverse_trt, c);
1481 while (1)
1482 {
1483 if (inverse >= 0200)
1484 {
1485 boyer_moore_ok = 0;
1486 break;
1487 }
1488 if (c == inverse)
1489 break;
1490 TRANSLATE (inverse, inverse_trt, inverse);
1491 }
1492 }
1493 }
1494
1495 len_byte = pat - patbuf;
1496 pat = base_pat = patbuf;
1497
1498 EMACS_INT result
1499 = (boyer_moore_ok
1500 ? boyer_moore (n, pat, len_byte, trt, inverse_trt,
1501 pos_byte, lim_byte,
1502 char_base)
1503 : simple_search (n, pat, raw_pattern_size, len_byte, trt,
1504 pos, pos_byte, lim, lim_byte));
1505 SAFE_FREE ();
1506 return result;
1507 }
1508 }
1509 \f
1510 /* Do a simple string search N times for the string PAT,
1511 whose length is LEN/LEN_BYTE,
1512 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1513 TRT is the translation table.
1514
1515 Return the character position where the match is found.
1516 Otherwise, if M matches remained to be found, return -M.
1517
1518 This kind of search works regardless of what is in PAT and
1519 regardless of what is in TRT. It is used in cases where
1520 boyer_moore cannot work. */
1521
1522 static EMACS_INT
1523 simple_search (EMACS_INT n, unsigned char *pat,
1524 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1525 ptrdiff_t pos, ptrdiff_t pos_byte,
1526 ptrdiff_t lim, ptrdiff_t lim_byte)
1527 {
1528 bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1529 bool forward = n > 0;
1530 /* Number of buffer bytes matched. Note that this may be different
1531 from len_byte in a multibyte buffer. */
1532 ptrdiff_t match_byte = PTRDIFF_MIN;
1533
1534 if (lim > pos && multibyte)
1535 while (n > 0)
1536 {
1537 while (1)
1538 {
1539 /* Try matching at position POS. */
1540 ptrdiff_t this_pos = pos;
1541 ptrdiff_t this_pos_byte = pos_byte;
1542 ptrdiff_t this_len = len;
1543 unsigned char *p = pat;
1544 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1545 goto stop;
1546
1547 while (this_len > 0)
1548 {
1549 int charlen, buf_charlen;
1550 int pat_ch, buf_ch;
1551
1552 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1553 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1554 buf_charlen);
1555 TRANSLATE (buf_ch, trt, buf_ch);
1556
1557 if (buf_ch != pat_ch)
1558 break;
1559
1560 this_len--;
1561 p += charlen;
1562
1563 this_pos_byte += buf_charlen;
1564 this_pos++;
1565 }
1566
1567 if (this_len == 0)
1568 {
1569 match_byte = this_pos_byte - pos_byte;
1570 pos += len;
1571 pos_byte += match_byte;
1572 break;
1573 }
1574
1575 INC_BOTH (pos, pos_byte);
1576 }
1577
1578 n--;
1579 }
1580 else if (lim > pos)
1581 while (n > 0)
1582 {
1583 while (1)
1584 {
1585 /* Try matching at position POS. */
1586 ptrdiff_t this_pos = pos;
1587 ptrdiff_t this_len = len;
1588 unsigned char *p = pat;
1589
1590 if (pos + len > lim)
1591 goto stop;
1592
1593 while (this_len > 0)
1594 {
1595 int pat_ch = *p++;
1596 int buf_ch = FETCH_BYTE (this_pos);
1597 TRANSLATE (buf_ch, trt, buf_ch);
1598
1599 if (buf_ch != pat_ch)
1600 break;
1601
1602 this_len--;
1603 this_pos++;
1604 }
1605
1606 if (this_len == 0)
1607 {
1608 match_byte = len;
1609 pos += len;
1610 break;
1611 }
1612
1613 pos++;
1614 }
1615
1616 n--;
1617 }
1618 /* Backwards search. */
1619 else if (lim < pos && multibyte)
1620 while (n < 0)
1621 {
1622 while (1)
1623 {
1624 /* Try matching at position POS. */
1625 ptrdiff_t this_pos = pos;
1626 ptrdiff_t this_pos_byte = pos_byte;
1627 ptrdiff_t this_len = len;
1628 const unsigned char *p = pat + len_byte;
1629
1630 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1631 goto stop;
1632
1633 while (this_len > 0)
1634 {
1635 int pat_ch, buf_ch;
1636
1637 DEC_BOTH (this_pos, this_pos_byte);
1638 PREV_CHAR_BOUNDARY (p, pat);
1639 pat_ch = STRING_CHAR (p);
1640 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1641 TRANSLATE (buf_ch, trt, buf_ch);
1642
1643 if (buf_ch != pat_ch)
1644 break;
1645
1646 this_len--;
1647 }
1648
1649 if (this_len == 0)
1650 {
1651 match_byte = pos_byte - this_pos_byte;
1652 pos = this_pos;
1653 pos_byte = this_pos_byte;
1654 break;
1655 }
1656
1657 DEC_BOTH (pos, pos_byte);
1658 }
1659
1660 n++;
1661 }
1662 else if (lim < pos)
1663 while (n < 0)
1664 {
1665 while (1)
1666 {
1667 /* Try matching at position POS. */
1668 ptrdiff_t this_pos = pos - len;
1669 ptrdiff_t this_len = len;
1670 unsigned char *p = pat;
1671
1672 if (this_pos < lim)
1673 goto stop;
1674
1675 while (this_len > 0)
1676 {
1677 int pat_ch = *p++;
1678 int buf_ch = FETCH_BYTE (this_pos);
1679 TRANSLATE (buf_ch, trt, buf_ch);
1680
1681 if (buf_ch != pat_ch)
1682 break;
1683 this_len--;
1684 this_pos++;
1685 }
1686
1687 if (this_len == 0)
1688 {
1689 match_byte = len;
1690 pos -= len;
1691 break;
1692 }
1693
1694 pos--;
1695 }
1696
1697 n++;
1698 }
1699
1700 stop:
1701 if (n == 0)
1702 {
1703 eassert (match_byte != PTRDIFF_MIN);
1704 if (forward)
1705 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1706 else
1707 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1708
1709 return pos;
1710 }
1711 else if (n > 0)
1712 return -n;
1713 else
1714 return n;
1715 }
1716 \f
1717 /* Do Boyer-Moore search N times for the string BASE_PAT,
1718 whose length is LEN_BYTE,
1719 from buffer position POS_BYTE until LIM_BYTE.
1720 DIRECTION says which direction we search in.
1721 TRT and INVERSE_TRT are translation tables.
1722 Characters in PAT are already translated by TRT.
1723
1724 This kind of search works if all the characters in BASE_PAT that
1725 have nontrivial translation are the same aside from the last byte.
1726 This makes it possible to translate just the last byte of a
1727 character, and do so after just a simple test of the context.
1728 CHAR_BASE is nonzero if there is such a non-ASCII character.
1729
1730 If that criterion is not satisfied, do not call this function. */
1731
1732 static EMACS_INT
1733 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1734 ptrdiff_t len_byte,
1735 Lisp_Object trt, Lisp_Object inverse_trt,
1736 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1737 int char_base)
1738 {
1739 int direction = ((n > 0) ? 1 : -1);
1740 register ptrdiff_t dirlen;
1741 ptrdiff_t limit;
1742 int stride_for_teases = 0;
1743 int BM_tab[0400];
1744 register unsigned char *cursor, *p_limit;
1745 register ptrdiff_t i;
1746 register int j;
1747 unsigned char *pat, *pat_end;
1748 bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1749
1750 unsigned char simple_translate[0400];
1751 /* These are set to the preceding bytes of a byte to be translated
1752 if char_base is nonzero. As the maximum byte length of a
1753 multibyte character is 5, we have to check at most four previous
1754 bytes. */
1755 int translate_prev_byte1 = 0;
1756 int translate_prev_byte2 = 0;
1757 int translate_prev_byte3 = 0;
1758
1759 /* The general approach is that we are going to maintain that we know
1760 the first (closest to the present position, in whatever direction
1761 we're searching) character that could possibly be the last
1762 (furthest from present position) character of a valid match. We
1763 advance the state of our knowledge by looking at that character
1764 and seeing whether it indeed matches the last character of the
1765 pattern. If it does, we take a closer look. If it does not, we
1766 move our pointer (to putative last characters) as far as is
1767 logically possible. This amount of movement, which I call a
1768 stride, will be the length of the pattern if the actual character
1769 appears nowhere in the pattern, otherwise it will be the distance
1770 from the last occurrence of that character to the end of the
1771 pattern. If the amount is zero we have a possible match. */
1772
1773 /* Here we make a "mickey mouse" BM table. The stride of the search
1774 is determined only by the last character of the putative match.
1775 If that character does not match, we will stride the proper
1776 distance to propose a match that superimposes it on the last
1777 instance of a character that matches it (per trt), or misses
1778 it entirely if there is none. */
1779
1780 dirlen = len_byte * direction;
1781
1782 /* Record position after the end of the pattern. */
1783 pat_end = base_pat + len_byte;
1784 /* BASE_PAT points to a character that we start scanning from.
1785 It is the first character in a forward search,
1786 the last character in a backward search. */
1787 if (direction < 0)
1788 base_pat = pat_end - 1;
1789
1790 /* A character that does not appear in the pattern induces a
1791 stride equal to the pattern length. */
1792 for (i = 0; i < 0400; i++)
1793 BM_tab[i] = dirlen;
1794
1795 /* We use this for translation, instead of TRT itself.
1796 We fill this in to handle the characters that actually
1797 occur in the pattern. Others don't matter anyway! */
1798 for (i = 0; i < 0400; i++)
1799 simple_translate[i] = i;
1800
1801 if (char_base)
1802 {
1803 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1804 byte following them are the target of translation. */
1805 unsigned char str[MAX_MULTIBYTE_LENGTH];
1806 int cblen = CHAR_STRING (char_base, str);
1807
1808 translate_prev_byte1 = str[cblen - 2];
1809 if (cblen > 2)
1810 {
1811 translate_prev_byte2 = str[cblen - 3];
1812 if (cblen > 3)
1813 translate_prev_byte3 = str[cblen - 4];
1814 }
1815 }
1816
1817 i = 0;
1818 while (i != dirlen)
1819 {
1820 unsigned char *ptr = base_pat + i;
1821 i += direction;
1822 if (! NILP (trt))
1823 {
1824 /* If the byte currently looking at is the last of a
1825 character to check case-equivalents, set CH to that
1826 character. An ASCII character and a non-ASCII character
1827 matching with CHAR_BASE are to be checked. */
1828 int ch = -1;
1829
1830 if (ASCII_CHAR_P (*ptr) || ! multibyte)
1831 ch = *ptr;
1832 else if (char_base
1833 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1834 {
1835 unsigned char *charstart = ptr - 1;
1836
1837 while (! (CHAR_HEAD_P (*charstart)))
1838 charstart--;
1839 ch = STRING_CHAR (charstart);
1840 if (char_base != (ch & ~0x3F))
1841 ch = -1;
1842 }
1843
1844 if (ch >= 0200 && multibyte)
1845 j = (ch & 0x3F) | 0200;
1846 else
1847 j = *ptr;
1848
1849 if (i == dirlen)
1850 stride_for_teases = BM_tab[j];
1851
1852 BM_tab[j] = dirlen - i;
1853 /* A translation table is accompanied by its inverse -- see
1854 comment following downcase_table for details. */
1855 if (ch >= 0)
1856 {
1857 int starting_ch = ch;
1858 int starting_j = j;
1859
1860 while (1)
1861 {
1862 TRANSLATE (ch, inverse_trt, ch);
1863 if (ch >= 0200 && multibyte)
1864 j = (ch & 0x3F) | 0200;
1865 else
1866 j = ch;
1867
1868 /* For all the characters that map into CH,
1869 set up simple_translate to map the last byte
1870 into STARTING_J. */
1871 simple_translate[j] = starting_j;
1872 if (ch == starting_ch)
1873 break;
1874 BM_tab[j] = dirlen - i;
1875 }
1876 }
1877 }
1878 else
1879 {
1880 j = *ptr;
1881
1882 if (i == dirlen)
1883 stride_for_teases = BM_tab[j];
1884 BM_tab[j] = dirlen - i;
1885 }
1886 /* stride_for_teases tells how much to stride if we get a
1887 match on the far character but are subsequently
1888 disappointed, by recording what the stride would have been
1889 for that character if the last character had been
1890 different. */
1891 }
1892 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1893 /* loop invariant - POS_BYTE points at where last char (first
1894 char if reverse) of pattern would align in a possible match. */
1895 while (n != 0)
1896 {
1897 ptrdiff_t tail_end;
1898 unsigned char *tail_end_ptr;
1899
1900 /* It's been reported that some (broken) compiler thinks that
1901 Boolean expressions in an arithmetic context are unsigned.
1902 Using an explicit ?1:0 prevents this. */
1903 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1904 < 0)
1905 return (n * (0 - direction));
1906 /* First we do the part we can by pointers (maybe nothing) */
1907 QUIT;
1908 pat = base_pat;
1909 limit = pos_byte - dirlen + direction;
1910 if (direction > 0)
1911 {
1912 limit = BUFFER_CEILING_OF (limit);
1913 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1914 can take on without hitting edge of buffer or the gap. */
1915 limit = min (limit, pos_byte + 20000);
1916 limit = min (limit, lim_byte - 1);
1917 }
1918 else
1919 {
1920 limit = BUFFER_FLOOR_OF (limit);
1921 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1922 can take on without hitting edge of buffer or the gap. */
1923 limit = max (limit, pos_byte - 20000);
1924 limit = max (limit, lim_byte);
1925 }
1926 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1927 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1928
1929 if ((limit - pos_byte) * direction > 20)
1930 {
1931 unsigned char *p2;
1932
1933 p_limit = BYTE_POS_ADDR (limit);
1934 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1935 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1936 while (1) /* use one cursor setting as long as i can */
1937 {
1938 if (direction > 0) /* worth duplicating */
1939 {
1940 while (cursor <= p_limit)
1941 {
1942 if (BM_tab[*cursor] == 0)
1943 goto hit;
1944 cursor += BM_tab[*cursor];
1945 }
1946 }
1947 else
1948 {
1949 while (cursor >= p_limit)
1950 {
1951 if (BM_tab[*cursor] == 0)
1952 goto hit;
1953 cursor += BM_tab[*cursor];
1954 }
1955 }
1956 /* If you are here, cursor is beyond the end of the
1957 searched region. You fail to match within the
1958 permitted region and would otherwise try a character
1959 beyond that region. */
1960 break;
1961
1962 hit:
1963 i = dirlen - direction;
1964 if (! NILP (trt))
1965 {
1966 while ((i -= direction) + direction != 0)
1967 {
1968 int ch;
1969 cursor -= direction;
1970 /* Translate only the last byte of a character. */
1971 if (! multibyte
1972 || ((cursor == tail_end_ptr
1973 || CHAR_HEAD_P (cursor[1]))
1974 && (CHAR_HEAD_P (cursor[0])
1975 /* Check if this is the last byte of
1976 a translatable character. */
1977 || (translate_prev_byte1 == cursor[-1]
1978 && (CHAR_HEAD_P (translate_prev_byte1)
1979 || (translate_prev_byte2 == cursor[-2]
1980 && (CHAR_HEAD_P (translate_prev_byte2)
1981 || (translate_prev_byte3 == cursor[-3]))))))))
1982 ch = simple_translate[*cursor];
1983 else
1984 ch = *cursor;
1985 if (pat[i] != ch)
1986 break;
1987 }
1988 }
1989 else
1990 {
1991 while ((i -= direction) + direction != 0)
1992 {
1993 cursor -= direction;
1994 if (pat[i] != *cursor)
1995 break;
1996 }
1997 }
1998 cursor += dirlen - i - direction; /* fix cursor */
1999 if (i + direction == 0)
2000 {
2001 ptrdiff_t position, start, end;
2002
2003 cursor -= direction;
2004
2005 position = pos_byte + cursor - p2 + ((direction > 0)
2006 ? 1 - len_byte : 0);
2007 set_search_regs (position, len_byte);
2008
2009 if (NILP (Vinhibit_changing_match_data))
2010 {
2011 start = search_regs.start[0];
2012 end = search_regs.end[0];
2013 }
2014 else
2015 /* If Vinhibit_changing_match_data is non-nil,
2016 search_regs will not be changed. So let's
2017 compute start and end here. */
2018 {
2019 start = BYTE_TO_CHAR (position);
2020 end = BYTE_TO_CHAR (position + len_byte);
2021 }
2022
2023 if ((n -= direction) != 0)
2024 cursor += dirlen; /* to resume search */
2025 else
2026 return direction > 0 ? end : start;
2027 }
2028 else
2029 cursor += stride_for_teases; /* <sigh> we lose - */
2030 }
2031 pos_byte += cursor - p2;
2032 }
2033 else
2034 /* Now we'll pick up a clump that has to be done the hard
2035 way because it covers a discontinuity. */
2036 {
2037 limit = ((direction > 0)
2038 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
2039 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
2040 limit = ((direction > 0)
2041 ? min (limit + len_byte, lim_byte - 1)
2042 : max (limit - len_byte, lim_byte));
2043 /* LIMIT is now the last value POS_BYTE can have
2044 and still be valid for a possible match. */
2045 while (1)
2046 {
2047 /* This loop can be coded for space rather than
2048 speed because it will usually run only once.
2049 (the reach is at most len + 21, and typically
2050 does not exceed len). */
2051 while ((limit - pos_byte) * direction >= 0)
2052 {
2053 int ch = FETCH_BYTE (pos_byte);
2054 if (BM_tab[ch] == 0)
2055 goto hit2;
2056 pos_byte += BM_tab[ch];
2057 }
2058 break; /* ran off the end */
2059
2060 hit2:
2061 /* Found what might be a match. */
2062 i = dirlen - direction;
2063 while ((i -= direction) + direction != 0)
2064 {
2065 int ch;
2066 unsigned char *ptr;
2067 pos_byte -= direction;
2068 ptr = BYTE_POS_ADDR (pos_byte);
2069 /* Translate only the last byte of a character. */
2070 if (! multibyte
2071 || ((ptr == tail_end_ptr
2072 || CHAR_HEAD_P (ptr[1]))
2073 && (CHAR_HEAD_P (ptr[0])
2074 /* Check if this is the last byte of a
2075 translatable character. */
2076 || (translate_prev_byte1 == ptr[-1]
2077 && (CHAR_HEAD_P (translate_prev_byte1)
2078 || (translate_prev_byte2 == ptr[-2]
2079 && (CHAR_HEAD_P (translate_prev_byte2)
2080 || translate_prev_byte3 == ptr[-3])))))))
2081 ch = simple_translate[*ptr];
2082 else
2083 ch = *ptr;
2084 if (pat[i] != ch)
2085 break;
2086 }
2087 /* Above loop has moved POS_BYTE part or all the way
2088 back to the first pos (last pos if reverse).
2089 Set it once again at the last (first if reverse) char. */
2090 pos_byte += dirlen - i - direction;
2091 if (i + direction == 0)
2092 {
2093 ptrdiff_t position, start, end;
2094 pos_byte -= direction;
2095
2096 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2097 set_search_regs (position, len_byte);
2098
2099 if (NILP (Vinhibit_changing_match_data))
2100 {
2101 start = search_regs.start[0];
2102 end = search_regs.end[0];
2103 }
2104 else
2105 /* If Vinhibit_changing_match_data is non-nil,
2106 search_regs will not be changed. So let's
2107 compute start and end here. */
2108 {
2109 start = BYTE_TO_CHAR (position);
2110 end = BYTE_TO_CHAR (position + len_byte);
2111 }
2112
2113 if ((n -= direction) != 0)
2114 pos_byte += dirlen; /* to resume search */
2115 else
2116 return direction > 0 ? end : start;
2117 }
2118 else
2119 pos_byte += stride_for_teases;
2120 }
2121 }
2122 /* We have done one clump. Can we continue? */
2123 if ((lim_byte - pos_byte) * direction < 0)
2124 return ((0 - n) * direction);
2125 }
2126 return BYTE_TO_CHAR (pos_byte);
2127 }
2128
2129 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2130 for the overall match just found in the current buffer.
2131 Also clear out the match data for registers 1 and up. */
2132
2133 static void
2134 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2135 {
2136 ptrdiff_t i;
2137
2138 if (!NILP (Vinhibit_changing_match_data))
2139 return;
2140
2141 /* Make sure we have registers in which to store
2142 the match position. */
2143 if (search_regs.num_regs == 0)
2144 {
2145 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2146 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2147 search_regs.num_regs = 2;
2148 }
2149
2150 /* Clear out the other registers. */
2151 for (i = 1; i < search_regs.num_regs; i++)
2152 {
2153 search_regs.start[i] = -1;
2154 search_regs.end[i] = -1;
2155 }
2156
2157 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2158 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2159 XSETBUFFER (last_thing_searched, current_buffer);
2160 }
2161 \f
2162 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2163 "MSearch backward: ",
2164 doc: /* Search backward from point for STRING.
2165 Set point to the beginning of the occurrence found, and return point.
2166 An optional second argument bounds the search; it is a buffer position.
2167 The match found must not extend before that position.
2168 Optional third argument, if t, means if fail just return nil (no error).
2169 If not nil and not t, position at limit of search and return nil.
2170 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2171 successive occurrences. If COUNT is negative, search forward,
2172 instead of backward, for -COUNT occurrences.
2173
2174 Search case-sensitivity is determined by the value of the variable
2175 `case-fold-search', which see.
2176
2177 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2178 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2179 {
2180 return search_command (string, bound, noerror, count, -1, 0, 0);
2181 }
2182
2183 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2184 doc: /* Search forward from point for STRING.
2185 Set point to the end of the occurrence found, and return point.
2186 An optional second argument bounds the search; it is a buffer position.
2187 The match found must not extend after that position. A value of nil is
2188 equivalent to (point-max).
2189 Optional third argument, if t, means if fail just return nil (no error).
2190 If not nil and not t, move to limit of search and return nil.
2191 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2192 successive occurrences. If COUNT is negative, search backward,
2193 instead of forward, for -COUNT occurrences.
2194
2195 Search case-sensitivity is determined by the value of the variable
2196 `case-fold-search', which see.
2197
2198 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2199 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2200 {
2201 return search_command (string, bound, noerror, count, 1, 0, 0);
2202 }
2203
2204 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2205 "sRE search backward: ",
2206 doc: /* Search backward from point for match for regular expression REGEXP.
2207 Set point to the beginning of the match, and return point.
2208 The match found is the one starting last in the buffer
2209 and yet ending before the origin of the search.
2210 An optional second argument bounds the search; it is a buffer position.
2211 The match found must start at or after that position.
2212 Optional third argument, if t, means if fail just return nil (no error).
2213 If not nil and not t, move to limit of search and return nil.
2214 Optional fourth argument is repeat count--search for successive occurrences.
2215
2216 Search case-sensitivity is determined by the value of the variable
2217 `case-fold-search', which see.
2218
2219 See also the functions `match-beginning', `match-end', `match-string',
2220 and `replace-match'. */)
2221 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2222 {
2223 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2224 }
2225
2226 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2227 "sRE search: ",
2228 doc: /* Search forward from point for regular expression REGEXP.
2229 Set point to the end of the occurrence found, and return point.
2230 An optional second argument bounds the search; it is a buffer position.
2231 The match found must not extend after that position.
2232 Optional third argument, if t, means if fail just return nil (no error).
2233 If not nil and not t, move to limit of search and return nil.
2234 Optional fourth argument is repeat count--search for successive occurrences.
2235
2236 Search case-sensitivity is determined by the value of the variable
2237 `case-fold-search', which see.
2238
2239 See also the functions `match-beginning', `match-end', `match-string',
2240 and `replace-match'. */)
2241 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2242 {
2243 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2244 }
2245
2246 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2247 "sPosix search backward: ",
2248 doc: /* Search backward from point for match for regular expression REGEXP.
2249 Find the longest match in accord with Posix regular expression rules.
2250 Set point to the beginning of the match, and return point.
2251 The match found is the one starting last in the buffer
2252 and yet ending before the origin of the search.
2253 An optional second argument bounds the search; it is a buffer position.
2254 The match found must start at or after that position.
2255 Optional third argument, if t, means if fail just return nil (no error).
2256 If not nil and not t, move to limit of search and return nil.
2257 Optional fourth argument is repeat count--search for successive occurrences.
2258
2259 Search case-sensitivity is determined by the value of the variable
2260 `case-fold-search', which see.
2261
2262 See also the functions `match-beginning', `match-end', `match-string',
2263 and `replace-match'. */)
2264 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2265 {
2266 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2267 }
2268
2269 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2270 "sPosix search: ",
2271 doc: /* Search forward from point for regular expression REGEXP.
2272 Find the longest match in accord with Posix regular expression rules.
2273 Set point to the end of the occurrence found, and return point.
2274 An optional second argument bounds the search; it is a buffer position.
2275 The match found must not extend after that position.
2276 Optional third argument, if t, means if fail just return nil (no error).
2277 If not nil and not t, move to limit of search and return nil.
2278 Optional fourth argument is repeat count--search for successive occurrences.
2279
2280 Search case-sensitivity is determined by the value of the variable
2281 `case-fold-search', which see.
2282
2283 See also the functions `match-beginning', `match-end', `match-string',
2284 and `replace-match'. */)
2285 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2286 {
2287 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2288 }
2289 \f
2290 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2291 doc: /* Replace text matched by last search with NEWTEXT.
2292 Leave point at the end of the replacement text.
2293
2294 If optional second arg FIXEDCASE is non-nil, do not alter the case of
2295 the replacement text. Otherwise, maybe capitalize the whole text, or
2296 maybe just word initials, based on the replaced text. If the replaced
2297 text has only capital letters and has at least one multiletter word,
2298 convert NEWTEXT to all caps. Otherwise if all words are capitalized
2299 in the replaced text, capitalize each word in NEWTEXT.
2300
2301 If optional third arg LITERAL is non-nil, insert NEWTEXT literally.
2302 Otherwise treat `\\' as special:
2303 `\\&' in NEWTEXT means substitute original matched text.
2304 `\\N' means substitute what matched the Nth `\\(...\\)'.
2305 If Nth parens didn't match, substitute nothing.
2306 `\\\\' means insert one `\\'.
2307 `\\?' is treated literally
2308 (for compatibility with `query-replace-regexp').
2309 Any other character following `\\' signals an error.
2310 Case conversion does not apply to these substitutions.
2311
2312 If optional fourth argument STRING is non-nil, it should be a string
2313 to act on; this should be the string on which the previous match was
2314 done via `string-match'. In this case, `replace-match' creates and
2315 returns a new string, made by copying STRING and replacing the part of
2316 STRING that was matched (the original STRING itself is not altered).
2317
2318 The optional fifth argument SUBEXP specifies a subexpression;
2319 it says to replace just that subexpression with NEWTEXT,
2320 rather than replacing the entire matched text.
2321 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2322 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2323 NEWTEXT in place of subexp N.
2324 This is useful only after a regular expression search or match,
2325 since only regular expressions have distinguished subexpressions. */)
2326 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2327 {
2328 enum { nochange, all_caps, cap_initial } case_action;
2329 ptrdiff_t pos, pos_byte;
2330 bool some_multiletter_word;
2331 bool some_lowercase;
2332 bool some_uppercase;
2333 bool some_nonuppercase_initial;
2334 int c, prevc;
2335 ptrdiff_t sub;
2336 ptrdiff_t opoint, newpoint;
2337
2338 CHECK_STRING (newtext);
2339
2340 if (! NILP (string))
2341 CHECK_STRING (string);
2342
2343 case_action = nochange; /* We tried an initialization */
2344 /* but some C compilers blew it */
2345
2346 if (search_regs.num_regs <= 0)
2347 error ("`replace-match' called before any match found");
2348
2349 if (NILP (subexp))
2350 sub = 0;
2351 else
2352 {
2353 CHECK_NUMBER (subexp);
2354 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2355 args_out_of_range (subexp, make_number (search_regs.num_regs));
2356 sub = XINT (subexp);
2357 }
2358
2359 if (NILP (string))
2360 {
2361 if (search_regs.start[sub] < BEGV
2362 || search_regs.start[sub] > search_regs.end[sub]
2363 || search_regs.end[sub] > ZV)
2364 args_out_of_range (make_number (search_regs.start[sub]),
2365 make_number (search_regs.end[sub]));
2366 }
2367 else
2368 {
2369 if (search_regs.start[sub] < 0
2370 || search_regs.start[sub] > search_regs.end[sub]
2371 || search_regs.end[sub] > SCHARS (string))
2372 args_out_of_range (make_number (search_regs.start[sub]),
2373 make_number (search_regs.end[sub]));
2374 }
2375
2376 if (NILP (fixedcase))
2377 {
2378 /* Decide how to casify by examining the matched text. */
2379 ptrdiff_t last;
2380
2381 pos = search_regs.start[sub];
2382 last = search_regs.end[sub];
2383
2384 if (NILP (string))
2385 pos_byte = CHAR_TO_BYTE (pos);
2386 else
2387 pos_byte = string_char_to_byte (string, pos);
2388
2389 prevc = '\n';
2390 case_action = all_caps;
2391
2392 /* some_multiletter_word is set nonzero if any original word
2393 is more than one letter long. */
2394 some_multiletter_word = 0;
2395 some_lowercase = 0;
2396 some_nonuppercase_initial = 0;
2397 some_uppercase = 0;
2398
2399 while (pos < last)
2400 {
2401 if (NILP (string))
2402 {
2403 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2404 INC_BOTH (pos, pos_byte);
2405 }
2406 else
2407 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2408
2409 if (lowercasep (c))
2410 {
2411 /* Cannot be all caps if any original char is lower case */
2412
2413 some_lowercase = 1;
2414 if (SYNTAX (prevc) != Sword)
2415 some_nonuppercase_initial = 1;
2416 else
2417 some_multiletter_word = 1;
2418 }
2419 else if (uppercasep (c))
2420 {
2421 some_uppercase = 1;
2422 if (SYNTAX (prevc) != Sword)
2423 ;
2424 else
2425 some_multiletter_word = 1;
2426 }
2427 else
2428 {
2429 /* If the initial is a caseless word constituent,
2430 treat that like a lowercase initial. */
2431 if (SYNTAX (prevc) != Sword)
2432 some_nonuppercase_initial = 1;
2433 }
2434
2435 prevc = c;
2436 }
2437
2438 /* Convert to all caps if the old text is all caps
2439 and has at least one multiletter word. */
2440 if (! some_lowercase && some_multiletter_word)
2441 case_action = all_caps;
2442 /* Capitalize each word, if the old text has all capitalized words. */
2443 else if (!some_nonuppercase_initial && some_multiletter_word)
2444 case_action = cap_initial;
2445 else if (!some_nonuppercase_initial && some_uppercase)
2446 /* Should x -> yz, operating on X, give Yz or YZ?
2447 We'll assume the latter. */
2448 case_action = all_caps;
2449 else
2450 case_action = nochange;
2451 }
2452
2453 /* Do replacement in a string. */
2454 if (!NILP (string))
2455 {
2456 Lisp_Object before, after;
2457
2458 before = Fsubstring (string, make_number (0),
2459 make_number (search_regs.start[sub]));
2460 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2461
2462 /* Substitute parts of the match into NEWTEXT
2463 if desired. */
2464 if (NILP (literal))
2465 {
2466 ptrdiff_t lastpos = 0;
2467 ptrdiff_t lastpos_byte = 0;
2468 /* We build up the substituted string in ACCUM. */
2469 Lisp_Object accum;
2470 Lisp_Object middle;
2471 ptrdiff_t length = SBYTES (newtext);
2472
2473 accum = Qnil;
2474
2475 for (pos_byte = 0, pos = 0; pos_byte < length;)
2476 {
2477 ptrdiff_t substart = -1;
2478 ptrdiff_t subend = 0;
2479 bool delbackslash = 0;
2480
2481 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2482
2483 if (c == '\\')
2484 {
2485 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2486
2487 if (c == '&')
2488 {
2489 substart = search_regs.start[sub];
2490 subend = search_regs.end[sub];
2491 }
2492 else if (c >= '1' && c <= '9')
2493 {
2494 if (c - '0' < search_regs.num_regs
2495 && search_regs.start[c - '0'] >= 0)
2496 {
2497 substart = search_regs.start[c - '0'];
2498 subend = search_regs.end[c - '0'];
2499 }
2500 else
2501 {
2502 /* If that subexp did not match,
2503 replace \\N with nothing. */
2504 substart = 0;
2505 subend = 0;
2506 }
2507 }
2508 else if (c == '\\')
2509 delbackslash = 1;
2510 else if (c != '?')
2511 error ("Invalid use of `\\' in replacement text");
2512 }
2513 if (substart >= 0)
2514 {
2515 if (pos - 2 != lastpos)
2516 middle = substring_both (newtext, lastpos,
2517 lastpos_byte,
2518 pos - 2, pos_byte - 2);
2519 else
2520 middle = Qnil;
2521 accum = concat3 (accum, middle,
2522 Fsubstring (string,
2523 make_number (substart),
2524 make_number (subend)));
2525 lastpos = pos;
2526 lastpos_byte = pos_byte;
2527 }
2528 else if (delbackslash)
2529 {
2530 middle = substring_both (newtext, lastpos,
2531 lastpos_byte,
2532 pos - 1, pos_byte - 1);
2533
2534 accum = concat2 (accum, middle);
2535 lastpos = pos;
2536 lastpos_byte = pos_byte;
2537 }
2538 }
2539
2540 if (pos != lastpos)
2541 middle = substring_both (newtext, lastpos,
2542 lastpos_byte,
2543 pos, pos_byte);
2544 else
2545 middle = Qnil;
2546
2547 newtext = concat2 (accum, middle);
2548 }
2549
2550 /* Do case substitution in NEWTEXT if desired. */
2551 if (case_action == all_caps)
2552 newtext = Fupcase (newtext);
2553 else if (case_action == cap_initial)
2554 newtext = Fupcase_initials (newtext);
2555
2556 return concat3 (before, newtext, after);
2557 }
2558
2559 /* Record point, then move (quietly) to the start of the match. */
2560 if (PT >= search_regs.end[sub])
2561 opoint = PT - ZV;
2562 else if (PT > search_regs.start[sub])
2563 opoint = search_regs.end[sub] - ZV;
2564 else
2565 opoint = PT;
2566
2567 /* If we want non-literal replacement,
2568 perform substitution on the replacement string. */
2569 if (NILP (literal))
2570 {
2571 ptrdiff_t length = SBYTES (newtext);
2572 unsigned char *substed;
2573 ptrdiff_t substed_alloc_size, substed_len;
2574 bool buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2575 bool str_multibyte = STRING_MULTIBYTE (newtext);
2576 bool really_changed = 0;
2577
2578 substed_alloc_size = (length <= (STRING_BYTES_BOUND - 100) / 2
2579 ? length * 2 + 100
2580 : STRING_BYTES_BOUND);
2581 substed = xmalloc (substed_alloc_size);
2582 substed_len = 0;
2583
2584 /* Go thru NEWTEXT, producing the actual text to insert in
2585 SUBSTED while adjusting multibyteness to that of the current
2586 buffer. */
2587
2588 for (pos_byte = 0, pos = 0; pos_byte < length;)
2589 {
2590 unsigned char str[MAX_MULTIBYTE_LENGTH];
2591 const unsigned char *add_stuff = NULL;
2592 ptrdiff_t add_len = 0;
2593 ptrdiff_t idx = -1;
2594
2595 if (str_multibyte)
2596 {
2597 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2598 if (!buf_multibyte)
2599 c = CHAR_TO_BYTE8 (c);
2600 }
2601 else
2602 {
2603 /* Note that we don't have to increment POS. */
2604 c = SREF (newtext, pos_byte++);
2605 if (buf_multibyte)
2606 MAKE_CHAR_MULTIBYTE (c);
2607 }
2608
2609 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2610 or set IDX to a match index, which means put that part
2611 of the buffer text into SUBSTED. */
2612
2613 if (c == '\\')
2614 {
2615 really_changed = 1;
2616
2617 if (str_multibyte)
2618 {
2619 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2620 pos, pos_byte);
2621 if (!buf_multibyte && !ASCII_CHAR_P (c))
2622 c = CHAR_TO_BYTE8 (c);
2623 }
2624 else
2625 {
2626 c = SREF (newtext, pos_byte++);
2627 if (buf_multibyte)
2628 MAKE_CHAR_MULTIBYTE (c);
2629 }
2630
2631 if (c == '&')
2632 idx = sub;
2633 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2634 {
2635 if (search_regs.start[c - '0'] >= 1)
2636 idx = c - '0';
2637 }
2638 else if (c == '\\')
2639 add_len = 1, add_stuff = (unsigned char *) "\\";
2640 else
2641 {
2642 xfree (substed);
2643 error ("Invalid use of `\\' in replacement text");
2644 }
2645 }
2646 else
2647 {
2648 add_len = CHAR_STRING (c, str);
2649 add_stuff = str;
2650 }
2651
2652 /* If we want to copy part of a previous match,
2653 set up ADD_STUFF and ADD_LEN to point to it. */
2654 if (idx >= 0)
2655 {
2656 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2657 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2658 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2659 move_gap_both (search_regs.start[idx], begbyte);
2660 add_stuff = BYTE_POS_ADDR (begbyte);
2661 }
2662
2663 /* Now the stuff we want to add to SUBSTED
2664 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2665
2666 /* Make sure SUBSTED is big enough. */
2667 if (substed_alloc_size - substed_len < add_len)
2668 substed =
2669 xpalloc (substed, &substed_alloc_size,
2670 add_len - (substed_alloc_size - substed_len),
2671 STRING_BYTES_BOUND, 1);
2672
2673 /* Now add to the end of SUBSTED. */
2674 if (add_stuff)
2675 {
2676 memcpy (substed + substed_len, add_stuff, add_len);
2677 substed_len += add_len;
2678 }
2679 }
2680
2681 if (really_changed)
2682 newtext = make_specified_string ((const char *) substed, -1,
2683 substed_len, buf_multibyte);
2684 xfree (substed);
2685 }
2686
2687 /* Replace the old text with the new in the cleanest possible way. */
2688 replace_range (search_regs.start[sub], search_regs.end[sub],
2689 newtext, 1, 0, 1);
2690 newpoint = search_regs.start[sub] + SCHARS (newtext);
2691
2692 if (case_action == all_caps)
2693 Fupcase_region (make_number (search_regs.start[sub]),
2694 make_number (newpoint),
2695 Qnil);
2696 else if (case_action == cap_initial)
2697 Fupcase_initials_region (make_number (search_regs.start[sub]),
2698 make_number (newpoint));
2699
2700 /* Adjust search data for this change. */
2701 {
2702 ptrdiff_t oldend = search_regs.end[sub];
2703 ptrdiff_t oldstart = search_regs.start[sub];
2704 ptrdiff_t change = newpoint - search_regs.end[sub];
2705 ptrdiff_t i;
2706
2707 for (i = 0; i < search_regs.num_regs; i++)
2708 {
2709 if (search_regs.start[i] >= oldend)
2710 search_regs.start[i] += change;
2711 else if (search_regs.start[i] > oldstart)
2712 search_regs.start[i] = oldstart;
2713 if (search_regs.end[i] >= oldend)
2714 search_regs.end[i] += change;
2715 else if (search_regs.end[i] > oldstart)
2716 search_regs.end[i] = oldstart;
2717 }
2718 }
2719
2720 /* Put point back where it was in the text. */
2721 if (opoint <= 0)
2722 TEMP_SET_PT (opoint + ZV);
2723 else
2724 TEMP_SET_PT (opoint);
2725
2726 /* Now move point "officially" to the start of the inserted replacement. */
2727 move_if_not_intangible (newpoint);
2728
2729 return Qnil;
2730 }
2731 \f
2732 static Lisp_Object
2733 match_limit (Lisp_Object num, bool beginningp)
2734 {
2735 EMACS_INT n;
2736
2737 CHECK_NUMBER (num);
2738 n = XINT (num);
2739 if (n < 0)
2740 args_out_of_range (num, make_number (0));
2741 if (search_regs.num_regs <= 0)
2742 error ("No match data, because no search succeeded");
2743 if (n >= search_regs.num_regs
2744 || search_regs.start[n] < 0)
2745 return Qnil;
2746 return (make_number ((beginningp) ? search_regs.start[n]
2747 : search_regs.end[n]));
2748 }
2749
2750 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2751 doc: /* Return position of start of text matched by last search.
2752 SUBEXP, a number, specifies which parenthesized expression in the last
2753 regexp.
2754 Value is nil if SUBEXPth pair didn't match, or there were less than
2755 SUBEXP pairs.
2756 Zero means the entire text matched by the whole regexp or whole string.
2757
2758 Return value is undefined if the last search failed. */)
2759 (Lisp_Object subexp)
2760 {
2761 return match_limit (subexp, 1);
2762 }
2763
2764 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2765 doc: /* Return position of end of text matched by last search.
2766 SUBEXP, a number, specifies which parenthesized expression in the last
2767 regexp.
2768 Value is nil if SUBEXPth pair didn't match, or there were less than
2769 SUBEXP pairs.
2770 Zero means the entire text matched by the whole regexp or whole string.
2771
2772 Return value is undefined if the last search failed. */)
2773 (Lisp_Object subexp)
2774 {
2775 return match_limit (subexp, 0);
2776 }
2777
2778 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2779 doc: /* Return a list describing what the last search matched.
2780 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2781 All the elements are markers or nil (nil if the Nth pair didn't match)
2782 if the last match was on a buffer; integers or nil if a string was matched.
2783 Use `set-match-data' to reinstate the data in this list.
2784
2785 If INTEGERS (the optional first argument) is non-nil, always use
2786 integers (rather than markers) to represent buffer positions. In
2787 this case, and if the last match was in a buffer, the buffer will get
2788 stored as one additional element at the end of the list.
2789
2790 If REUSE is a list, reuse it as part of the value. If REUSE is long
2791 enough to hold all the values, and if INTEGERS is non-nil, no consing
2792 is done.
2793
2794 If optional third arg RESEAT is non-nil, any previous markers on the
2795 REUSE list will be modified to point to nowhere.
2796
2797 Return value is undefined if the last search failed. */)
2798 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2799 {
2800 Lisp_Object tail, prev;
2801 Lisp_Object *data;
2802 ptrdiff_t i, len;
2803
2804 if (!NILP (reseat))
2805 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2806 if (MARKERP (XCAR (tail)))
2807 {
2808 unchain_marker (XMARKER (XCAR (tail)));
2809 XSETCAR (tail, Qnil);
2810 }
2811
2812 if (NILP (last_thing_searched))
2813 return Qnil;
2814
2815 prev = Qnil;
2816
2817 USE_SAFE_ALLOCA;
2818 SAFE_NALLOCA (data, 1, 2 * search_regs.num_regs + 1);
2819
2820 len = 0;
2821 for (i = 0; i < search_regs.num_regs; i++)
2822 {
2823 ptrdiff_t start = search_regs.start[i];
2824 if (start >= 0)
2825 {
2826 if (EQ (last_thing_searched, Qt)
2827 || ! NILP (integers))
2828 {
2829 XSETFASTINT (data[2 * i], start);
2830 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2831 }
2832 else if (BUFFERP (last_thing_searched))
2833 {
2834 data[2 * i] = Fmake_marker ();
2835 Fset_marker (data[2 * i],
2836 make_number (start),
2837 last_thing_searched);
2838 data[2 * i + 1] = Fmake_marker ();
2839 Fset_marker (data[2 * i + 1],
2840 make_number (search_regs.end[i]),
2841 last_thing_searched);
2842 }
2843 else
2844 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2845 emacs_abort ();
2846
2847 len = 2 * i + 2;
2848 }
2849 else
2850 data[2 * i] = data[2 * i + 1] = Qnil;
2851 }
2852
2853 if (BUFFERP (last_thing_searched) && !NILP (integers))
2854 {
2855 data[len] = last_thing_searched;
2856 len++;
2857 }
2858
2859 /* If REUSE is not usable, cons up the values and return them. */
2860 if (! CONSP (reuse))
2861 reuse = Flist (len, data);
2862 else
2863 {
2864 /* If REUSE is a list, store as many value elements as will fit
2865 into the elements of REUSE. */
2866 for (i = 0, tail = reuse; CONSP (tail);
2867 i++, tail = XCDR (tail))
2868 {
2869 if (i < len)
2870 XSETCAR (tail, data[i]);
2871 else
2872 XSETCAR (tail, Qnil);
2873 prev = tail;
2874 }
2875
2876 /* If we couldn't fit all value elements into REUSE,
2877 cons up the rest of them and add them to the end of REUSE. */
2878 if (i < len)
2879 XSETCDR (prev, Flist (len - i, data + i));
2880 }
2881
2882 SAFE_FREE ();
2883 return reuse;
2884 }
2885
2886 /* We used to have an internal use variant of `reseat' described as:
2887
2888 If RESEAT is `evaporate', put the markers back on the free list
2889 immediately. No other references to the markers must exist in this
2890 case, so it is used only internally on the unwind stack and
2891 save-match-data from Lisp.
2892
2893 But it was ill-conceived: those supposedly-internal markers get exposed via
2894 the undo-list, so freeing them here is unsafe. */
2895
2896 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2897 doc: /* Set internal data on last search match from elements of LIST.
2898 LIST should have been created by calling `match-data' previously.
2899
2900 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2901 (register Lisp_Object list, Lisp_Object reseat)
2902 {
2903 ptrdiff_t i;
2904 register Lisp_Object marker;
2905
2906 if (running_asynch_code)
2907 save_search_regs ();
2908
2909 CHECK_LIST (list);
2910
2911 /* Unless we find a marker with a buffer or an explicit buffer
2912 in LIST, assume that this match data came from a string. */
2913 last_thing_searched = Qt;
2914
2915 /* Allocate registers if they don't already exist. */
2916 {
2917 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2918
2919 if (length > search_regs.num_regs)
2920 {
2921 ptrdiff_t num_regs = search_regs.num_regs;
2922 if (PTRDIFF_MAX < length)
2923 memory_full (SIZE_MAX);
2924 search_regs.start =
2925 xpalloc (search_regs.start, &num_regs, length - num_regs,
2926 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2927 search_regs.end =
2928 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2929
2930 for (i = search_regs.num_regs; i < num_regs; i++)
2931 search_regs.start[i] = -1;
2932
2933 search_regs.num_regs = num_regs;
2934 }
2935
2936 for (i = 0; CONSP (list); i++)
2937 {
2938 marker = XCAR (list);
2939 if (BUFFERP (marker))
2940 {
2941 last_thing_searched = marker;
2942 break;
2943 }
2944 if (i >= length)
2945 break;
2946 if (NILP (marker))
2947 {
2948 search_regs.start[i] = -1;
2949 list = XCDR (list);
2950 }
2951 else
2952 {
2953 Lisp_Object from;
2954 Lisp_Object m;
2955
2956 m = marker;
2957 if (MARKERP (marker))
2958 {
2959 if (XMARKER (marker)->buffer == 0)
2960 XSETFASTINT (marker, 0);
2961 else
2962 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2963 }
2964
2965 CHECK_NUMBER_COERCE_MARKER (marker);
2966 from = marker;
2967
2968 if (!NILP (reseat) && MARKERP (m))
2969 {
2970 unchain_marker (XMARKER (m));
2971 XSETCAR (list, Qnil);
2972 }
2973
2974 if ((list = XCDR (list), !CONSP (list)))
2975 break;
2976
2977 m = marker = XCAR (list);
2978
2979 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2980 XSETFASTINT (marker, 0);
2981
2982 CHECK_NUMBER_COERCE_MARKER (marker);
2983 if ((XINT (from) < 0
2984 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2985 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2986 && (XINT (marker) < 0
2987 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2988 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2989 {
2990 search_regs.start[i] = XINT (from);
2991 search_regs.end[i] = XINT (marker);
2992 }
2993 else
2994 {
2995 search_regs.start[i] = -1;
2996 }
2997
2998 if (!NILP (reseat) && MARKERP (m))
2999 {
3000 unchain_marker (XMARKER (m));
3001 XSETCAR (list, Qnil);
3002 }
3003 }
3004 list = XCDR (list);
3005 }
3006
3007 for (; i < search_regs.num_regs; i++)
3008 search_regs.start[i] = -1;
3009 }
3010
3011 return Qnil;
3012 }
3013
3014 /* If true the match data have been saved in saved_search_regs
3015 during the execution of a sentinel or filter. */
3016 static bool search_regs_saved;
3017 static struct re_registers saved_search_regs;
3018 static Lisp_Object saved_last_thing_searched;
3019
3020 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3021 if asynchronous code (filter or sentinel) is running. */
3022 static void
3023 save_search_regs (void)
3024 {
3025 if (!search_regs_saved)
3026 {
3027 saved_search_regs.num_regs = search_regs.num_regs;
3028 saved_search_regs.start = search_regs.start;
3029 saved_search_regs.end = search_regs.end;
3030 saved_last_thing_searched = last_thing_searched;
3031 last_thing_searched = Qnil;
3032 search_regs.num_regs = 0;
3033 search_regs.start = 0;
3034 search_regs.end = 0;
3035
3036 search_regs_saved = 1;
3037 }
3038 }
3039
3040 /* Called upon exit from filters and sentinels. */
3041 void
3042 restore_search_regs (void)
3043 {
3044 if (search_regs_saved)
3045 {
3046 if (search_regs.num_regs > 0)
3047 {
3048 xfree (search_regs.start);
3049 xfree (search_regs.end);
3050 }
3051 search_regs.num_regs = saved_search_regs.num_regs;
3052 search_regs.start = saved_search_regs.start;
3053 search_regs.end = saved_search_regs.end;
3054 last_thing_searched = saved_last_thing_searched;
3055 saved_last_thing_searched = Qnil;
3056 search_regs_saved = 0;
3057 }
3058 }
3059
3060 static void
3061 unwind_set_match_data (Lisp_Object list)
3062 {
3063 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3064 Fset_match_data (list, Qt);
3065 }
3066
3067 /* Called to unwind protect the match data. */
3068 void
3069 record_unwind_save_match_data (void)
3070 {
3071 record_unwind_protect (unwind_set_match_data,
3072 Fmatch_data (Qnil, Qnil, Qnil));
3073 }
3074
3075 /* Quote a string to deactivate reg-expr chars */
3076
3077 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3078 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3079 (Lisp_Object string)
3080 {
3081 char *in, *out, *end;
3082 char *temp;
3083 ptrdiff_t backslashes_added = 0;
3084
3085 CHECK_STRING (string);
3086
3087 USE_SAFE_ALLOCA;
3088 SAFE_NALLOCA (temp, 2, SBYTES (string));
3089
3090 /* Now copy the data into the new string, inserting escapes. */
3091
3092 in = SSDATA (string);
3093 end = in + SBYTES (string);
3094 out = temp;
3095
3096 for (; in != end; in++)
3097 {
3098 if (*in == '['
3099 || *in == '*' || *in == '.' || *in == '\\'
3100 || *in == '?' || *in == '+'
3101 || *in == '^' || *in == '$')
3102 *out++ = '\\', backslashes_added++;
3103 *out++ = *in;
3104 }
3105
3106 Lisp_Object result
3107 = make_specified_string (temp,
3108 SCHARS (string) + backslashes_added,
3109 out - temp,
3110 STRING_MULTIBYTE (string));
3111 SAFE_FREE ();
3112 return result;
3113 }
3114
3115 /* Like find_newline, but doesn't use the cache, and only searches forward. */
3116 static ptrdiff_t
3117 find_newline1 (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
3118 ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *shortage,
3119 ptrdiff_t *bytepos, bool allow_quit)
3120 {
3121 if (count > 0)
3122 {
3123 if (!end)
3124 end = ZV, end_byte = ZV_BYTE;
3125 }
3126 else
3127 {
3128 if (!end)
3129 end = BEGV, end_byte = BEGV_BYTE;
3130 }
3131 if (end_byte == -1)
3132 end_byte = CHAR_TO_BYTE (end);
3133
3134 if (shortage != 0)
3135 *shortage = 0;
3136
3137 immediate_quit = allow_quit;
3138
3139 if (count > 0)
3140 while (start != end)
3141 {
3142 /* Our innermost scanning loop is very simple; it doesn't know
3143 about gaps, buffer ends, or the newline cache. ceiling is
3144 the position of the last character before the next such
3145 obstacle --- the last character the dumb search loop should
3146 examine. */
3147 ptrdiff_t tem, ceiling_byte = end_byte - 1;
3148
3149 if (start_byte == -1)
3150 start_byte = CHAR_TO_BYTE (start);
3151
3152 /* The dumb loop can only scan text stored in contiguous
3153 bytes. BUFFER_CEILING_OF returns the last character
3154 position that is contiguous, so the ceiling is the
3155 position after that. */
3156 tem = BUFFER_CEILING_OF (start_byte);
3157 ceiling_byte = min (tem, ceiling_byte);
3158
3159 {
3160 /* The termination address of the dumb loop. */
3161 unsigned char *lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
3162 ptrdiff_t lim_byte = ceiling_byte + 1;
3163
3164 /* Nonpositive offsets (relative to LIM_ADDR and LIM_BYTE)
3165 of the base, the cursor, and the next line. */
3166 ptrdiff_t base = start_byte - lim_byte;
3167 ptrdiff_t cursor, next;
3168
3169 for (cursor = base; cursor < 0; cursor = next)
3170 {
3171 /* The dumb loop. */
3172 unsigned char *nl = memchr (lim_addr + cursor, '\n', - cursor);
3173 next = nl ? nl - lim_addr : 0;
3174
3175 if (! nl)
3176 break;
3177 next++;
3178
3179 if (--count == 0)
3180 {
3181 immediate_quit = 0;
3182 if (bytepos)
3183 *bytepos = lim_byte + next;
3184 return BYTE_TO_CHAR (lim_byte + next);
3185 }
3186 }
3187
3188 start_byte = lim_byte;
3189 start = BYTE_TO_CHAR (start_byte);
3190 }
3191 }
3192
3193 immediate_quit = 0;
3194 if (shortage)
3195 *shortage = count;
3196 if (bytepos)
3197 {
3198 *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
3199 eassert (*bytepos == CHAR_TO_BYTE (start));
3200 }
3201 return start;
3202 }
3203
3204 DEFUN ("newline-cache-check", Fnewline_cache_check, Snewline_cache_check,
3205 0, 1, 0,
3206 doc: /* Check the newline cache of BUFFER against buffer contents.
3207
3208 BUFFER defaults to the current buffer.
3209
3210 Value is an array of 2 sub-arrays of buffer positions for newlines,
3211 the first based on the cache, the second based on actually scanning
3212 the buffer. If the buffer doesn't have a cache, the value is nil. */)
3213 (Lisp_Object buffer)
3214 {
3215 struct buffer *buf, *old = NULL;
3216 ptrdiff_t shortage, nl_count_cache, nl_count_buf;
3217 Lisp_Object cache_newlines, buf_newlines, val;
3218 ptrdiff_t from, found, i;
3219
3220 if (NILP (buffer))
3221 buf = current_buffer;
3222 else
3223 {
3224 CHECK_BUFFER (buffer);
3225 buf = XBUFFER (buffer);
3226 old = current_buffer;
3227 }
3228 if (buf->base_buffer)
3229 buf = buf->base_buffer;
3230
3231 /* If the buffer doesn't have a newline cache, return nil. */
3232 if (NILP (BVAR (buf, cache_long_scans))
3233 || buf->newline_cache == NULL)
3234 return Qnil;
3235
3236 /* find_newline can only work on the current buffer. */
3237 if (old != NULL)
3238 set_buffer_internal_1 (buf);
3239
3240 /* How many newlines are there according to the cache? */
3241 find_newline (BEGV, BEGV_BYTE, ZV, ZV_BYTE,
3242 TYPE_MAXIMUM (ptrdiff_t), &shortage, NULL, true);
3243 nl_count_cache = TYPE_MAXIMUM (ptrdiff_t) - shortage;
3244
3245 /* Create vector and populate it. */
3246 cache_newlines = make_uninit_vector (nl_count_cache);
3247
3248 if (nl_count_cache)
3249 {
3250 for (from = BEGV, found = from, i = 0; from < ZV; from = found, i++)
3251 {
3252 ptrdiff_t from_byte = CHAR_TO_BYTE (from);
3253
3254 found = find_newline (from, from_byte, 0, -1, 1, &shortage,
3255 NULL, true);
3256 if (shortage != 0 || i >= nl_count_cache)
3257 break;
3258 ASET (cache_newlines, i, make_number (found - 1));
3259 }
3260 /* Fill the rest of slots with an invalid position. */
3261 for ( ; i < nl_count_cache; i++)
3262 ASET (cache_newlines, i, make_number (-1));
3263 }
3264
3265 /* Now do the same, but without using the cache. */
3266 find_newline1 (BEGV, BEGV_BYTE, ZV, ZV_BYTE,
3267 TYPE_MAXIMUM (ptrdiff_t), &shortage, NULL, true);
3268 nl_count_buf = TYPE_MAXIMUM (ptrdiff_t) - shortage;
3269 buf_newlines = make_uninit_vector (nl_count_buf);
3270 if (nl_count_buf)
3271 {
3272 for (from = BEGV, found = from, i = 0; from < ZV; from = found, i++)
3273 {
3274 ptrdiff_t from_byte = CHAR_TO_BYTE (from);
3275
3276 found = find_newline1 (from, from_byte, 0, -1, 1, &shortage,
3277 NULL, true);
3278 if (shortage != 0 || i >= nl_count_buf)
3279 break;
3280 ASET (buf_newlines, i, make_number (found - 1));
3281 }
3282 for ( ; i < nl_count_buf; i++)
3283 ASET (buf_newlines, i, make_number (-1));
3284 }
3285
3286 /* Construct the value and return it. */
3287 val = make_uninit_vector (2);
3288 ASET (val, 0, cache_newlines);
3289 ASET (val, 1, buf_newlines);
3290
3291 if (old != NULL)
3292 set_buffer_internal_1 (old);
3293 return val;
3294 }
3295 \f
3296 void
3297 syms_of_search (void)
3298 {
3299 register int i;
3300
3301 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3302 {
3303 searchbufs[i].buf.allocated = 100;
3304 searchbufs[i].buf.buffer = xmalloc (100);
3305 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3306 searchbufs[i].regexp = Qnil;
3307 searchbufs[i].whitespace_regexp = Qnil;
3308 searchbufs[i].syntax_table = Qnil;
3309 staticpro (&searchbufs[i].regexp);
3310 staticpro (&searchbufs[i].whitespace_regexp);
3311 staticpro (&searchbufs[i].syntax_table);
3312 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3313 }
3314 searchbuf_head = &searchbufs[0];
3315
3316 /* Error condition used for failing searches. */
3317 DEFSYM (Qsearch_failed, "search-failed");
3318
3319 /* Error condition signaled when regexp compile_pattern fails. */
3320 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3321
3322 Fput (Qsearch_failed, Qerror_conditions,
3323 listn (CONSTYPE_PURE, 2, Qsearch_failed, Qerror));
3324 Fput (Qsearch_failed, Qerror_message,
3325 build_pure_c_string ("Search failed"));
3326
3327 Fput (Qinvalid_regexp, Qerror_conditions,
3328 listn (CONSTYPE_PURE, 2, Qinvalid_regexp, Qerror));
3329 Fput (Qinvalid_regexp, Qerror_message,
3330 build_pure_c_string ("Invalid regexp"));
3331
3332 last_thing_searched = Qnil;
3333 staticpro (&last_thing_searched);
3334
3335 saved_last_thing_searched = Qnil;
3336 staticpro (&saved_last_thing_searched);
3337
3338 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3339 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3340 Some commands use this for user-specified regexps.
3341 Spaces that occur inside character classes or repetition operators
3342 or other such regexp constructs are not replaced with this.
3343 A value of nil (which is the normal value) means treat spaces literally. */);
3344 Vsearch_spaces_regexp = Qnil;
3345
3346 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3347 doc: /* Internal use only.
3348 If non-nil, the primitive searching and matching functions
3349 such as `looking-at', `string-match', `re-search-forward', etc.,
3350 do not set the match data. The proper way to use this variable
3351 is to bind it with `let' around a small expression. */);
3352 Vinhibit_changing_match_data = Qnil;
3353
3354 defsubr (&Slooking_at);
3355 defsubr (&Sposix_looking_at);
3356 defsubr (&Sstring_match);
3357 defsubr (&Sposix_string_match);
3358 defsubr (&Ssearch_forward);
3359 defsubr (&Ssearch_backward);
3360 defsubr (&Sre_search_forward);
3361 defsubr (&Sre_search_backward);
3362 defsubr (&Sposix_search_forward);
3363 defsubr (&Sposix_search_backward);
3364 defsubr (&Sreplace_match);
3365 defsubr (&Smatch_beginning);
3366 defsubr (&Smatch_end);
3367 defsubr (&Smatch_data);
3368 defsubr (&Sset_match_data);
3369 defsubr (&Sregexp_quote);
3370 defsubr (&Snewline_cache_check);
3371 }