]> code.delx.au - gnu-emacs/blob - src/lisp.h
; Merge branch 'fix/no-undo-boundary-on-secondary-buffer-change'
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
305
306 without worrying about the implementations diverging, since
307 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
308 are intended to be private to this include file, and should not be
309 used elsewhere.
310
311 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
312 functions, once most developers have access to GCC 4.8 or later and
313 can use "gcc -Og" to debug. Maybe in the year 2016. See
314 Bug#11935.
315
316 Commentary for these macros can be found near their corresponding
317 functions, below. */
318
319 #if CHECK_LISP_OBJECT_TYPE
320 # define lisp_h_XLI(o) ((o).i)
321 # define lisp_h_XIL(i) ((Lisp_Object) { i })
322 #else
323 # define lisp_h_XLI(o) (o)
324 # define lisp_h_XIL(i) (i)
325 #endif
326 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
327 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
328 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
329 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
330 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
331 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
332 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
333 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
334 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
335 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
336 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
337 #define lisp_h_NILP(x) EQ (x, Qnil)
338 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
339 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
340 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
341 #define lisp_h_SYMBOL_VAL(sym) \
342 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
343 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
344 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
345 #define lisp_h_XCAR(c) XCONS (c)->car
346 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
347 #define lisp_h_XCONS(a) \
348 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
349 #define lisp_h_XHASH(a) XUINT (a)
350 #ifndef GC_CHECK_CONS_LIST
351 # define lisp_h_check_cons_list() ((void) 0)
352 #endif
353 #if USE_LSB_TAG
354 # define lisp_h_make_number(n) \
355 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
356 # define lisp_h_XFASTINT(a) XINT (a)
357 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
358 # define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), \
360 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
361 + (char *) lispsym))
362 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
363 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
364 #endif
365
366 /* When compiling via gcc -O0, define the key operations as macros, as
367 Emacs is too slow otherwise. To disable this optimization, compile
368 with -DINLINING=false. */
369 #if (defined __NO_INLINE__ \
370 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
371 && ! (defined INLINING && ! INLINING))
372 # define XLI(o) lisp_h_XLI (o)
373 # define XIL(i) lisp_h_XIL (i)
374 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
375 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
376 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
377 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
378 # define CONSP(x) lisp_h_CONSP (x)
379 # define EQ(x, y) lisp_h_EQ (x, y)
380 # define FLOATP(x) lisp_h_FLOATP (x)
381 # define INTEGERP(x) lisp_h_INTEGERP (x)
382 # define MARKERP(x) lisp_h_MARKERP (x)
383 # define MISCP(x) lisp_h_MISCP (x)
384 # define NILP(x) lisp_h_NILP (x)
385 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
386 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
387 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
388 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
389 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
390 # define XCAR(c) lisp_h_XCAR (c)
391 # define XCDR(c) lisp_h_XCDR (c)
392 # define XCONS(a) lisp_h_XCONS (a)
393 # define XHASH(a) lisp_h_XHASH (a)
394 # ifndef GC_CHECK_CONS_LIST
395 # define check_cons_list() lisp_h_check_cons_list ()
396 # endif
397 # if USE_LSB_TAG
398 # define make_number(n) lisp_h_make_number (n)
399 # define XFASTINT(a) lisp_h_XFASTINT (a)
400 # define XINT(a) lisp_h_XINT (a)
401 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
402 # define XTYPE(a) lisp_h_XTYPE (a)
403 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
404 # endif
405 #endif
406
407
408 /* Define the fundamental Lisp data structures. */
409
410 /* This is the set of Lisp data types. If you want to define a new
411 data type, read the comments after Lisp_Fwd_Type definition
412 below. */
413
414 /* Lisp integers use 2 tags, to give them one extra bit, thus
415 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
416 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
417 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
418
419 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
420 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
421 vociferously about them. */
422 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
423 || (defined __SUNPRO_C && __STDC__))
424 #define ENUM_BF(TYPE) unsigned int
425 #else
426 #define ENUM_BF(TYPE) enum TYPE
427 #endif
428
429
430 enum Lisp_Type
431 {
432 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
433 Lisp_Symbol = 0,
434
435 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
436 whose first member indicates the subtype. */
437 Lisp_Misc = 1,
438
439 /* Integer. XINT (obj) is the integer value. */
440 Lisp_Int0 = 2,
441 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
442
443 /* String. XSTRING (object) points to a struct Lisp_String.
444 The length of the string, and its contents, are stored therein. */
445 Lisp_String = 4,
446
447 /* Vector of Lisp objects, or something resembling it.
448 XVECTOR (object) points to a struct Lisp_Vector, which contains
449 the size and contents. The size field also contains the type
450 information, if it's not a real vector object. */
451 Lisp_Vectorlike = 5,
452
453 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
454 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
455
456 Lisp_Float = 7
457 };
458
459 /* This is the set of data types that share a common structure.
460 The first member of the structure is a type code from this set.
461 The enum values are arbitrary, but we'll use large numbers to make it
462 more likely that we'll spot the error if a random word in memory is
463 mistakenly interpreted as a Lisp_Misc. */
464 enum Lisp_Misc_Type
465 {
466 Lisp_Misc_Free = 0x5eab,
467 Lisp_Misc_Marker,
468 Lisp_Misc_Overlay,
469 Lisp_Misc_Save_Value,
470 Lisp_Misc_Finalizer,
471 /* Currently floats are not a misc type,
472 but let's define this in case we want to change that. */
473 Lisp_Misc_Float,
474 /* This is not a type code. It is for range checking. */
475 Lisp_Misc_Limit
476 };
477
478 /* These are the types of forwarding objects used in the value slot
479 of symbols for special built-in variables whose value is stored in
480 C variables. */
481 enum Lisp_Fwd_Type
482 {
483 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
484 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
485 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
486 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
487 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
488 };
489
490 /* If you want to define a new Lisp data type, here are some
491 instructions. See the thread at
492 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
493 for more info.
494
495 First, there are already a couple of Lisp types that can be used if
496 your new type does not need to be exposed to Lisp programs nor
497 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
498 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
499 is suitable for temporarily stashing away pointers and integers in
500 a Lisp object. The latter is useful for vector-like Lisp objects
501 that need to be used as part of other objects, but which are never
502 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
503 an example).
504
505 These two types don't look pretty when printed, so they are
506 unsuitable for Lisp objects that can be exposed to users.
507
508 To define a new data type, add one more Lisp_Misc subtype or one
509 more pseudovector subtype. Pseudovectors are more suitable for
510 objects with several slots that need to support fast random access,
511 while Lisp_Misc types are for everything else. A pseudovector object
512 provides one or more slots for Lisp objects, followed by struct
513 members that are accessible only from C. A Lisp_Misc object is a
514 wrapper for a C struct that can contain anything you like.
515
516 Explicit freeing is discouraged for Lisp objects in general. But if
517 you really need to exploit this, use Lisp_Misc (check free_misc in
518 alloc.c to see why). There is no way to free a vectorlike object.
519
520 To add a new pseudovector type, extend the pvec_type enumeration;
521 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
522
523 For a Lisp_Misc, you will also need to add your entry to union
524 Lisp_Misc (but make sure the first word has the same structure as
525 the others, starting with a 16-bit member of the Lisp_Misc_Type
526 enumeration and a 1-bit GC markbit) and make sure the overall size
527 of the union is not increased by your addition.
528
529 For a new pseudovector, it's highly desirable to limit the size
530 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
531 Otherwise you will need to change sweep_vectors (also in alloc.c).
532
533 Then you will need to add switch branches in print.c (in
534 print_object, to print your object, and possibly also in
535 print_preprocess) and to alloc.c, to mark your object (in
536 mark_object) and to free it (in gc_sweep). The latter is also the
537 right place to call any code specific to your data type that needs
538 to run when the object is recycled -- e.g., free any additional
539 resources allocated for it that are not Lisp objects. You can even
540 make a pointer to the function that frees the resources a slot in
541 your object -- this way, the same object could be used to represent
542 several disparate C structures. */
543
544 #ifdef CHECK_LISP_OBJECT_TYPE
545
546 typedef struct { EMACS_INT i; } Lisp_Object;
547
548 #define LISP_INITIALLY(i) {i}
549
550 #undef CHECK_LISP_OBJECT_TYPE
551 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
552 #else /* CHECK_LISP_OBJECT_TYPE */
553
554 /* If a struct type is not wanted, define Lisp_Object as just a number. */
555
556 typedef EMACS_INT Lisp_Object;
557 #define LISP_INITIALLY(i) (i)
558 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
559 #endif /* CHECK_LISP_OBJECT_TYPE */
560
561 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
562 \f
563 /* Forward declarations. */
564
565 /* Defined in this file. */
566 union Lisp_Fwd;
567 INLINE bool BOOL_VECTOR_P (Lisp_Object);
568 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
569 INLINE bool BUFFERP (Lisp_Object);
570 INLINE bool CHAR_TABLE_P (Lisp_Object);
571 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
572 INLINE bool (CONSP) (Lisp_Object);
573 INLINE bool (FLOATP) (Lisp_Object);
574 INLINE bool functionp (Lisp_Object);
575 INLINE bool (INTEGERP) (Lisp_Object);
576 INLINE bool (MARKERP) (Lisp_Object);
577 INLINE bool (MISCP) (Lisp_Object);
578 INLINE bool (NILP) (Lisp_Object);
579 INLINE bool OVERLAYP (Lisp_Object);
580 INLINE bool PROCESSP (Lisp_Object);
581 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
582 INLINE bool SAVE_VALUEP (Lisp_Object);
583 INLINE bool FINALIZERP (Lisp_Object);
584 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
585 Lisp_Object);
586 INLINE bool STRINGP (Lisp_Object);
587 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
588 INLINE bool SUBRP (Lisp_Object);
589 INLINE bool (SYMBOLP) (Lisp_Object);
590 INLINE bool (VECTORLIKEP) (Lisp_Object);
591 INLINE bool WINDOWP (Lisp_Object);
592 INLINE bool TERMINALP (Lisp_Object);
593 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
594 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
595 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
596 INLINE void *(XUNTAG) (Lisp_Object, int);
597
598 /* Defined in chartab.c. */
599 extern Lisp_Object char_table_ref (Lisp_Object, int);
600 extern void char_table_set (Lisp_Object, int, Lisp_Object);
601
602 /* Defined in data.c. */
603 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
604 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
605
606 /* Defined in emacs.c. */
607 extern bool might_dump;
608 /* True means Emacs has already been initialized.
609 Used during startup to detect startup of dumped Emacs. */
610 extern bool initialized;
611
612 /* Defined in floatfns.c. */
613 extern double extract_float (Lisp_Object);
614
615 \f
616 /* Interned state of a symbol. */
617
618 enum symbol_interned
619 {
620 SYMBOL_UNINTERNED = 0,
621 SYMBOL_INTERNED = 1,
622 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
623 };
624
625 enum symbol_redirect
626 {
627 SYMBOL_PLAINVAL = 4,
628 SYMBOL_VARALIAS = 1,
629 SYMBOL_LOCALIZED = 2,
630 SYMBOL_FORWARDED = 3
631 };
632
633 struct Lisp_Symbol
634 {
635 bool_bf gcmarkbit : 1;
636
637 /* Indicates where the value can be found:
638 0 : it's a plain var, the value is in the `value' field.
639 1 : it's a varalias, the value is really in the `alias' symbol.
640 2 : it's a localized var, the value is in the `blv' object.
641 3 : it's a forwarding variable, the value is in `forward'. */
642 ENUM_BF (symbol_redirect) redirect : 3;
643
644 /* Non-zero means symbol is constant, i.e. changing its value
645 should signal an error. If the value is 3, then the var
646 can be changed, but only by `defconst'. */
647 unsigned constant : 2;
648
649 /* Interned state of the symbol. This is an enumerator from
650 enum symbol_interned. */
651 unsigned interned : 2;
652
653 /* True means that this variable has been explicitly declared
654 special (with `defvar' etc), and shouldn't be lexically bound. */
655 bool_bf declared_special : 1;
656
657 /* True if pointed to from purespace and hence can't be GC'd. */
658 bool_bf pinned : 1;
659
660 /* The symbol's name, as a Lisp string. */
661 Lisp_Object name;
662
663 /* Value of the symbol or Qunbound if unbound. Which alternative of the
664 union is used depends on the `redirect' field above. */
665 union {
666 Lisp_Object value;
667 struct Lisp_Symbol *alias;
668 struct Lisp_Buffer_Local_Value *blv;
669 union Lisp_Fwd *fwd;
670 } val;
671
672 /* Function value of the symbol or Qnil if not fboundp. */
673 Lisp_Object function;
674
675 /* The symbol's property list. */
676 Lisp_Object plist;
677
678 /* Next symbol in obarray bucket, if the symbol is interned. */
679 struct Lisp_Symbol *next;
680 };
681
682 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
683 meaning as in the DEFUN macro, and is used to construct a prototype. */
684 /* We can use the same trick as in the DEFUN macro to generate the
685 appropriate prototype. */
686 #define EXFUN(fnname, maxargs) \
687 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
688
689 /* Note that the weird token-substitution semantics of ANSI C makes
690 this work for MANY and UNEVALLED. */
691 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
692 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
693 #define DEFUN_ARGS_0 (void)
694 #define DEFUN_ARGS_1 (Lisp_Object)
695 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
696 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
697 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
698 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
699 Lisp_Object)
700 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
701 Lisp_Object, Lisp_Object)
702 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
703 Lisp_Object, Lisp_Object, Lisp_Object)
704 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
705 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
706
707 /* Yield an integer that contains TAG along with PTR. */
708 #define TAG_PTR(tag, ptr) \
709 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
710
711 /* Yield an integer that contains a symbol tag along with OFFSET.
712 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
713 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
714
715 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
716 XLI (builtin_lisp_symbol (Qwhatever)),
717 except the former expands to an integer constant expression. */
718 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
719
720 /* Declare extern constants for Lisp symbols. These can be helpful
721 when using a debugger like GDB, on older platforms where the debug
722 format does not represent C macros. */
723 #define DEFINE_LISP_SYMBOL(name) \
724 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
725 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
726
727 /* By default, define macros for Qt, etc., as this leads to a bit
728 better performance in the core Emacs interpreter. A plugin can
729 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
730 other Emacs instances that assign different values to Qt, etc. */
731 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
732 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
733 #endif
734
735 #include "globals.h"
736
737 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
738 At the machine level, these operations are no-ops. */
739
740 INLINE EMACS_INT
741 (XLI) (Lisp_Object o)
742 {
743 return lisp_h_XLI (o);
744 }
745
746 INLINE Lisp_Object
747 (XIL) (EMACS_INT i)
748 {
749 return lisp_h_XIL (i);
750 }
751
752 /* In the size word of a vector, this bit means the vector has been marked. */
753
754 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
755 # define ARRAY_MARK_FLAG PTRDIFF_MIN
756 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
757
758 /* In the size word of a struct Lisp_Vector, this bit means it's really
759 some other vector-like object. */
760 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
761 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
762 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
763
764 /* In a pseudovector, the size field actually contains a word with one
765 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
766 with PVEC_TYPE_MASK to indicate the actual type. */
767 enum pvec_type
768 {
769 PVEC_NORMAL_VECTOR,
770 PVEC_FREE,
771 PVEC_PROCESS,
772 PVEC_FRAME,
773 PVEC_WINDOW,
774 PVEC_BOOL_VECTOR,
775 PVEC_BUFFER,
776 PVEC_HASH_TABLE,
777 PVEC_TERMINAL,
778 PVEC_WINDOW_CONFIGURATION,
779 PVEC_SUBR,
780 PVEC_OTHER,
781 /* These should be last, check internal_equal to see why. */
782 PVEC_COMPILED,
783 PVEC_CHAR_TABLE,
784 PVEC_SUB_CHAR_TABLE,
785 PVEC_FONT /* Should be last because it's used for range checking. */
786 };
787
788 enum More_Lisp_Bits
789 {
790 /* For convenience, we also store the number of elements in these bits.
791 Note that this size is not necessarily the memory-footprint size, but
792 only the number of Lisp_Object fields (that need to be traced by GC).
793 The distinction is used, e.g., by Lisp_Process, which places extra
794 non-Lisp_Object fields at the end of the structure. */
795 PSEUDOVECTOR_SIZE_BITS = 12,
796 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
797
798 /* To calculate the memory footprint of the pseudovector, it's useful
799 to store the size of non-Lisp area in word_size units here. */
800 PSEUDOVECTOR_REST_BITS = 12,
801 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
802 << PSEUDOVECTOR_SIZE_BITS),
803
804 /* Used to extract pseudovector subtype information. */
805 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
806 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
807 };
808 \f
809 /* These functions extract various sorts of values from a Lisp_Object.
810 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
811 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
812 that cons. */
813
814 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
815 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
816 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
817 DEFINE_GDB_SYMBOL_END (VALMASK)
818
819 /* Largest and smallest representable fixnum values. These are the C
820 values. They are macros for use in static initializers. */
821 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
822 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
823
824 #if USE_LSB_TAG
825
826 INLINE Lisp_Object
827 (make_number) (EMACS_INT n)
828 {
829 return lisp_h_make_number (n);
830 }
831
832 INLINE EMACS_INT
833 (XINT) (Lisp_Object a)
834 {
835 return lisp_h_XINT (a);
836 }
837
838 INLINE EMACS_INT
839 (XFASTINT) (Lisp_Object a)
840 {
841 return lisp_h_XFASTINT (a);
842 }
843
844 INLINE struct Lisp_Symbol *
845 (XSYMBOL) (Lisp_Object a)
846 {
847 return lisp_h_XSYMBOL (a);
848 }
849
850 INLINE enum Lisp_Type
851 (XTYPE) (Lisp_Object a)
852 {
853 return lisp_h_XTYPE (a);
854 }
855
856 INLINE void *
857 (XUNTAG) (Lisp_Object a, int type)
858 {
859 return lisp_h_XUNTAG (a, type);
860 }
861
862 #else /* ! USE_LSB_TAG */
863
864 /* Although compiled only if ! USE_LSB_TAG, the following functions
865 also work when USE_LSB_TAG; this is to aid future maintenance when
866 the lisp_h_* macros are eventually removed. */
867
868 /* Make a Lisp integer representing the value of the low order
869 bits of N. */
870 INLINE Lisp_Object
871 make_number (EMACS_INT n)
872 {
873 EMACS_INT int0 = Lisp_Int0;
874 if (USE_LSB_TAG)
875 {
876 EMACS_UINT u = n;
877 n = u << INTTYPEBITS;
878 n += int0;
879 }
880 else
881 {
882 n &= INTMASK;
883 n += (int0 << VALBITS);
884 }
885 return XIL (n);
886 }
887
888 /* Extract A's value as a signed integer. */
889 INLINE EMACS_INT
890 XINT (Lisp_Object a)
891 {
892 EMACS_INT i = XLI (a);
893 if (! USE_LSB_TAG)
894 {
895 EMACS_UINT u = i;
896 i = u << INTTYPEBITS;
897 }
898 return i >> INTTYPEBITS;
899 }
900
901 /* Like XINT (A), but may be faster. A must be nonnegative.
902 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
903 integers have zero-bits in their tags. */
904 INLINE EMACS_INT
905 XFASTINT (Lisp_Object a)
906 {
907 EMACS_INT int0 = Lisp_Int0;
908 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
909 eassert (0 <= n);
910 return n;
911 }
912
913 /* Extract A's value as a symbol. */
914 INLINE struct Lisp_Symbol *
915 XSYMBOL (Lisp_Object a)
916 {
917 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
918 void *p = (char *) lispsym + i;
919 return p;
920 }
921
922 /* Extract A's type. */
923 INLINE enum Lisp_Type
924 XTYPE (Lisp_Object a)
925 {
926 EMACS_UINT i = XLI (a);
927 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
928 }
929
930 /* Extract A's pointer value, assuming A's type is TYPE. */
931 INLINE void *
932 XUNTAG (Lisp_Object a, int type)
933 {
934 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
935 return (void *) i;
936 }
937
938 #endif /* ! USE_LSB_TAG */
939
940 /* Extract A's value as an unsigned integer. */
941 INLINE EMACS_UINT
942 XUINT (Lisp_Object a)
943 {
944 EMACS_UINT i = XLI (a);
945 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
946 }
947
948 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
949 right now, but XUINT should only be applied to objects we know are
950 integers. */
951
952 INLINE EMACS_INT
953 (XHASH) (Lisp_Object a)
954 {
955 return lisp_h_XHASH (a);
956 }
957
958 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
959 INLINE Lisp_Object
960 make_natnum (EMACS_INT n)
961 {
962 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
963 EMACS_INT int0 = Lisp_Int0;
964 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
965 }
966
967 /* Return true if X and Y are the same object. */
968
969 INLINE bool
970 (EQ) (Lisp_Object x, Lisp_Object y)
971 {
972 return lisp_h_EQ (x, y);
973 }
974
975 /* Value is true if I doesn't fit into a Lisp fixnum. It is
976 written this way so that it also works if I is of unsigned
977 type or if I is a NaN. */
978
979 #define FIXNUM_OVERFLOW_P(i) \
980 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
981
982 INLINE ptrdiff_t
983 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
984 {
985 return num < lower ? lower : num <= upper ? num : upper;
986 }
987 \f
988
989 /* Extract a value or address from a Lisp_Object. */
990
991 INLINE struct Lisp_Cons *
992 (XCONS) (Lisp_Object a)
993 {
994 return lisp_h_XCONS (a);
995 }
996
997 INLINE struct Lisp_Vector *
998 XVECTOR (Lisp_Object a)
999 {
1000 eassert (VECTORLIKEP (a));
1001 return XUNTAG (a, Lisp_Vectorlike);
1002 }
1003
1004 INLINE struct Lisp_String *
1005 XSTRING (Lisp_Object a)
1006 {
1007 eassert (STRINGP (a));
1008 return XUNTAG (a, Lisp_String);
1009 }
1010
1011 /* The index of the C-defined Lisp symbol SYM.
1012 This can be used in a static initializer. */
1013 #define SYMBOL_INDEX(sym) i##sym
1014
1015 INLINE struct Lisp_Float *
1016 XFLOAT (Lisp_Object a)
1017 {
1018 eassert (FLOATP (a));
1019 return XUNTAG (a, Lisp_Float);
1020 }
1021
1022 /* Pseudovector types. */
1023
1024 INLINE struct Lisp_Process *
1025 XPROCESS (Lisp_Object a)
1026 {
1027 eassert (PROCESSP (a));
1028 return XUNTAG (a, Lisp_Vectorlike);
1029 }
1030
1031 INLINE struct window *
1032 XWINDOW (Lisp_Object a)
1033 {
1034 eassert (WINDOWP (a));
1035 return XUNTAG (a, Lisp_Vectorlike);
1036 }
1037
1038 INLINE struct terminal *
1039 XTERMINAL (Lisp_Object a)
1040 {
1041 eassert (TERMINALP (a));
1042 return XUNTAG (a, Lisp_Vectorlike);
1043 }
1044
1045 INLINE struct Lisp_Subr *
1046 XSUBR (Lisp_Object a)
1047 {
1048 eassert (SUBRP (a));
1049 return XUNTAG (a, Lisp_Vectorlike);
1050 }
1051
1052 INLINE struct buffer *
1053 XBUFFER (Lisp_Object a)
1054 {
1055 eassert (BUFFERP (a));
1056 return XUNTAG (a, Lisp_Vectorlike);
1057 }
1058
1059 INLINE struct Lisp_Char_Table *
1060 XCHAR_TABLE (Lisp_Object a)
1061 {
1062 eassert (CHAR_TABLE_P (a));
1063 return XUNTAG (a, Lisp_Vectorlike);
1064 }
1065
1066 INLINE struct Lisp_Sub_Char_Table *
1067 XSUB_CHAR_TABLE (Lisp_Object a)
1068 {
1069 eassert (SUB_CHAR_TABLE_P (a));
1070 return XUNTAG (a, Lisp_Vectorlike);
1071 }
1072
1073 INLINE struct Lisp_Bool_Vector *
1074 XBOOL_VECTOR (Lisp_Object a)
1075 {
1076 eassert (BOOL_VECTOR_P (a));
1077 return XUNTAG (a, Lisp_Vectorlike);
1078 }
1079
1080 /* Construct a Lisp_Object from a value or address. */
1081
1082 INLINE Lisp_Object
1083 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1084 {
1085 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1086 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1087 return a;
1088 }
1089
1090 INLINE Lisp_Object
1091 make_lisp_symbol (struct Lisp_Symbol *sym)
1092 {
1093 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1094 eassert (XSYMBOL (a) == sym);
1095 return a;
1096 }
1097
1098 INLINE Lisp_Object
1099 builtin_lisp_symbol (int index)
1100 {
1101 return make_lisp_symbol (lispsym + index);
1102 }
1103
1104 #define XSETINT(a, b) ((a) = make_number (b))
1105 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1106 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1107 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1108 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1109 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1110 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1111 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1112
1113 /* Pseudovector types. */
1114
1115 #define XSETPVECTYPE(v, code) \
1116 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1117 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1118 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1119 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1120 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1121 | (lispsize)))
1122
1123 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1124 #define XSETPSEUDOVECTOR(a, b, code) \
1125 XSETTYPED_PSEUDOVECTOR (a, b, \
1126 (((struct vectorlike_header *) \
1127 XUNTAG (a, Lisp_Vectorlike)) \
1128 ->size), \
1129 code)
1130 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1131 (XSETVECTOR (a, b), \
1132 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1133 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1134
1135 #define XSETWINDOW_CONFIGURATION(a, b) \
1136 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1137 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1138 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1139 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1140 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1141 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1142 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1143 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1144 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1145 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1146
1147 /* Efficiently convert a pointer to a Lisp object and back. The
1148 pointer is represented as a Lisp integer, so the garbage collector
1149 does not know about it. The pointer should not have both Lisp_Int1
1150 bits set, which makes this conversion inherently unportable. */
1151
1152 INLINE void *
1153 XINTPTR (Lisp_Object a)
1154 {
1155 return XUNTAG (a, Lisp_Int0);
1156 }
1157
1158 INLINE Lisp_Object
1159 make_pointer_integer (void *p)
1160 {
1161 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1162 eassert (INTEGERP (a) && XINTPTR (a) == p);
1163 return a;
1164 }
1165
1166 /* Type checking. */
1167
1168 INLINE void
1169 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1170 {
1171 lisp_h_CHECK_TYPE (ok, predicate, x);
1172 }
1173
1174 /* See the macros in intervals.h. */
1175
1176 typedef struct interval *INTERVAL;
1177
1178 struct GCALIGNED Lisp_Cons
1179 {
1180 /* Car of this cons cell. */
1181 Lisp_Object car;
1182
1183 union
1184 {
1185 /* Cdr of this cons cell. */
1186 Lisp_Object cdr;
1187
1188 /* Used to chain conses on a free list. */
1189 struct Lisp_Cons *chain;
1190 } u;
1191 };
1192
1193 /* Take the car or cdr of something known to be a cons cell. */
1194 /* The _addr functions shouldn't be used outside of the minimal set
1195 of code that has to know what a cons cell looks like. Other code not
1196 part of the basic lisp implementation should assume that the car and cdr
1197 fields are not accessible. (What if we want to switch to
1198 a copying collector someday? Cached cons cell field addresses may be
1199 invalidated at arbitrary points.) */
1200 INLINE Lisp_Object *
1201 xcar_addr (Lisp_Object c)
1202 {
1203 return &XCONS (c)->car;
1204 }
1205 INLINE Lisp_Object *
1206 xcdr_addr (Lisp_Object c)
1207 {
1208 return &XCONS (c)->u.cdr;
1209 }
1210
1211 /* Use these from normal code. */
1212
1213 INLINE Lisp_Object
1214 (XCAR) (Lisp_Object c)
1215 {
1216 return lisp_h_XCAR (c);
1217 }
1218
1219 INLINE Lisp_Object
1220 (XCDR) (Lisp_Object c)
1221 {
1222 return lisp_h_XCDR (c);
1223 }
1224
1225 /* Use these to set the fields of a cons cell.
1226
1227 Note that both arguments may refer to the same object, so 'n'
1228 should not be read after 'c' is first modified. */
1229 INLINE void
1230 XSETCAR (Lisp_Object c, Lisp_Object n)
1231 {
1232 *xcar_addr (c) = n;
1233 }
1234 INLINE void
1235 XSETCDR (Lisp_Object c, Lisp_Object n)
1236 {
1237 *xcdr_addr (c) = n;
1238 }
1239
1240 /* Take the car or cdr of something whose type is not known. */
1241 INLINE Lisp_Object
1242 CAR (Lisp_Object c)
1243 {
1244 return (CONSP (c) ? XCAR (c)
1245 : NILP (c) ? Qnil
1246 : wrong_type_argument (Qlistp, c));
1247 }
1248 INLINE Lisp_Object
1249 CDR (Lisp_Object c)
1250 {
1251 return (CONSP (c) ? XCDR (c)
1252 : NILP (c) ? Qnil
1253 : wrong_type_argument (Qlistp, c));
1254 }
1255
1256 /* Take the car or cdr of something whose type is not known. */
1257 INLINE Lisp_Object
1258 CAR_SAFE (Lisp_Object c)
1259 {
1260 return CONSP (c) ? XCAR (c) : Qnil;
1261 }
1262 INLINE Lisp_Object
1263 CDR_SAFE (Lisp_Object c)
1264 {
1265 return CONSP (c) ? XCDR (c) : Qnil;
1266 }
1267
1268 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1269
1270 struct GCALIGNED Lisp_String
1271 {
1272 ptrdiff_t size;
1273 ptrdiff_t size_byte;
1274 INTERVAL intervals; /* Text properties in this string. */
1275 unsigned char *data;
1276 };
1277
1278 /* True if STR is a multibyte string. */
1279 INLINE bool
1280 STRING_MULTIBYTE (Lisp_Object str)
1281 {
1282 return 0 <= XSTRING (str)->size_byte;
1283 }
1284
1285 /* An upper bound on the number of bytes in a Lisp string, not
1286 counting the terminating null. This a tight enough bound to
1287 prevent integer overflow errors that would otherwise occur during
1288 string size calculations. A string cannot contain more bytes than
1289 a fixnum can represent, nor can it be so long that C pointer
1290 arithmetic stops working on the string plus its terminating null.
1291 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1292 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1293 would expose alloc.c internal details that we'd rather keep
1294 private.
1295
1296 This is a macro for use in static initializers. The cast to
1297 ptrdiff_t ensures that the macro is signed. */
1298 #define STRING_BYTES_BOUND \
1299 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1300
1301 /* Mark STR as a unibyte string. */
1302 #define STRING_SET_UNIBYTE(STR) \
1303 do { \
1304 if (EQ (STR, empty_multibyte_string)) \
1305 (STR) = empty_unibyte_string; \
1306 else \
1307 XSTRING (STR)->size_byte = -1; \
1308 } while (false)
1309
1310 /* Mark STR as a multibyte string. Assure that STR contains only
1311 ASCII characters in advance. */
1312 #define STRING_SET_MULTIBYTE(STR) \
1313 do { \
1314 if (EQ (STR, empty_unibyte_string)) \
1315 (STR) = empty_multibyte_string; \
1316 else \
1317 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1318 } while (false)
1319
1320 /* Convenience functions for dealing with Lisp strings. */
1321
1322 INLINE unsigned char *
1323 SDATA (Lisp_Object string)
1324 {
1325 return XSTRING (string)->data;
1326 }
1327 INLINE char *
1328 SSDATA (Lisp_Object string)
1329 {
1330 /* Avoid "differ in sign" warnings. */
1331 return (char *) SDATA (string);
1332 }
1333 INLINE unsigned char
1334 SREF (Lisp_Object string, ptrdiff_t index)
1335 {
1336 return SDATA (string)[index];
1337 }
1338 INLINE void
1339 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1340 {
1341 SDATA (string)[index] = new;
1342 }
1343 INLINE ptrdiff_t
1344 SCHARS (Lisp_Object string)
1345 {
1346 return XSTRING (string)->size;
1347 }
1348
1349 #ifdef GC_CHECK_STRING_BYTES
1350 extern ptrdiff_t string_bytes (struct Lisp_String *);
1351 #endif
1352 INLINE ptrdiff_t
1353 STRING_BYTES (struct Lisp_String *s)
1354 {
1355 #ifdef GC_CHECK_STRING_BYTES
1356 return string_bytes (s);
1357 #else
1358 return s->size_byte < 0 ? s->size : s->size_byte;
1359 #endif
1360 }
1361
1362 INLINE ptrdiff_t
1363 SBYTES (Lisp_Object string)
1364 {
1365 return STRING_BYTES (XSTRING (string));
1366 }
1367 INLINE void
1368 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1369 {
1370 XSTRING (string)->size = newsize;
1371 }
1372
1373 /* Header of vector-like objects. This documents the layout constraints on
1374 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1375 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1376 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1377 because when two such pointers potentially alias, a compiler won't
1378 incorrectly reorder loads and stores to their size fields. See
1379 Bug#8546. */
1380 struct vectorlike_header
1381 {
1382 /* The only field contains various pieces of information:
1383 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1384 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1385 vector (0) or a pseudovector (1).
1386 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1387 of slots) of the vector.
1388 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1389 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1390 - b) number of Lisp_Objects slots at the beginning of the object
1391 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1392 traced by the GC;
1393 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1394 measured in word_size units. Rest fields may also include
1395 Lisp_Objects, but these objects usually needs some special treatment
1396 during GC.
1397 There are some exceptions. For PVEC_FREE, b) is always zero. For
1398 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1399 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1400 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1401 ptrdiff_t size;
1402 };
1403
1404 /* A regular vector is just a header plus an array of Lisp_Objects. */
1405
1406 struct Lisp_Vector
1407 {
1408 struct vectorlike_header header;
1409 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1410 };
1411
1412 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1413 enum
1414 {
1415 ALIGNOF_STRUCT_LISP_VECTOR
1416 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1417 };
1418
1419 /* A boolvector is a kind of vectorlike, with contents like a string. */
1420
1421 struct Lisp_Bool_Vector
1422 {
1423 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1424 just the subtype information. */
1425 struct vectorlike_header header;
1426 /* This is the size in bits. */
1427 EMACS_INT size;
1428 /* The actual bits, packed into bytes.
1429 Zeros fill out the last word if needed.
1430 The bits are in little-endian order in the bytes, and
1431 the bytes are in little-endian order in the words. */
1432 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1433 };
1434
1435 INLINE EMACS_INT
1436 bool_vector_size (Lisp_Object a)
1437 {
1438 EMACS_INT size = XBOOL_VECTOR (a)->size;
1439 eassume (0 <= size);
1440 return size;
1441 }
1442
1443 INLINE bits_word *
1444 bool_vector_data (Lisp_Object a)
1445 {
1446 return XBOOL_VECTOR (a)->data;
1447 }
1448
1449 INLINE unsigned char *
1450 bool_vector_uchar_data (Lisp_Object a)
1451 {
1452 return (unsigned char *) bool_vector_data (a);
1453 }
1454
1455 /* The number of data words and bytes in a bool vector with SIZE bits. */
1456
1457 INLINE EMACS_INT
1458 bool_vector_words (EMACS_INT size)
1459 {
1460 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1461 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1462 }
1463
1464 INLINE EMACS_INT
1465 bool_vector_bytes (EMACS_INT size)
1466 {
1467 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1468 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1469 }
1470
1471 /* True if A's Ith bit is set. */
1472
1473 INLINE bool
1474 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1475 {
1476 eassume (0 <= i && i < bool_vector_size (a));
1477 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1478 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1479 }
1480
1481 INLINE Lisp_Object
1482 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1483 {
1484 return bool_vector_bitref (a, i) ? Qt : Qnil;
1485 }
1486
1487 /* Set A's Ith bit to B. */
1488
1489 INLINE void
1490 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1491 {
1492 unsigned char *addr;
1493
1494 eassume (0 <= i && i < bool_vector_size (a));
1495 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1496
1497 if (b)
1498 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1499 else
1500 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1501 }
1502
1503 /* Some handy constants for calculating sizes
1504 and offsets, mostly of vectorlike objects. */
1505
1506 enum
1507 {
1508 header_size = offsetof (struct Lisp_Vector, contents),
1509 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1510 word_size = sizeof (Lisp_Object)
1511 };
1512
1513 /* Conveniences for dealing with Lisp arrays. */
1514
1515 INLINE Lisp_Object
1516 AREF (Lisp_Object array, ptrdiff_t idx)
1517 {
1518 return XVECTOR (array)->contents[idx];
1519 }
1520
1521 INLINE Lisp_Object *
1522 aref_addr (Lisp_Object array, ptrdiff_t idx)
1523 {
1524 return & XVECTOR (array)->contents[idx];
1525 }
1526
1527 INLINE ptrdiff_t
1528 ASIZE (Lisp_Object array)
1529 {
1530 return XVECTOR (array)->header.size;
1531 }
1532
1533 INLINE void
1534 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1535 {
1536 eassert (0 <= idx && idx < ASIZE (array));
1537 XVECTOR (array)->contents[idx] = val;
1538 }
1539
1540 INLINE void
1541 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1542 {
1543 /* Like ASET, but also can be used in the garbage collector:
1544 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1545 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1546 XVECTOR (array)->contents[idx] = val;
1547 }
1548
1549 /* True, since Qnil's representation is zero. Every place in the code
1550 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1551 to find such assumptions later if we change Qnil to be nonzero. */
1552 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1553
1554 /* Clear the object addressed by P, with size NBYTES, so that all its
1555 bytes are zero and all its Lisp values are nil. */
1556 INLINE void
1557 memclear (void *p, ptrdiff_t nbytes)
1558 {
1559 eassert (0 <= nbytes);
1560 verify (NIL_IS_ZERO);
1561 /* Since Qnil is zero, memset suffices. */
1562 memset (p, 0, nbytes);
1563 }
1564
1565 /* If a struct is made to look like a vector, this macro returns the length
1566 of the shortest vector that would hold that struct. */
1567
1568 #define VECSIZE(type) \
1569 ((sizeof (type) - header_size + word_size - 1) / word_size)
1570
1571 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1572 at the end and we need to compute the number of Lisp_Object fields (the
1573 ones that the GC needs to trace). */
1574
1575 #define PSEUDOVECSIZE(type, nonlispfield) \
1576 ((offsetof (type, nonlispfield) - header_size) / word_size)
1577
1578 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1579 should be integer expressions. This is not the same as
1580 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1581 returns true. For efficiency, prefer plain unsigned comparison if A
1582 and B's sizes both fit (after integer promotion). */
1583 #define UNSIGNED_CMP(a, op, b) \
1584 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1585 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1586 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1587
1588 /* True iff C is an ASCII character. */
1589 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1590
1591 /* A char-table is a kind of vectorlike, with contents are like a
1592 vector but with a few other slots. For some purposes, it makes
1593 sense to handle a char-table with type struct Lisp_Vector. An
1594 element of a char table can be any Lisp objects, but if it is a sub
1595 char-table, we treat it a table that contains information of a
1596 specific range of characters. A sub char-table is like a vector but
1597 with two integer fields between the header and Lisp data, which means
1598 that it has to be marked with some precautions (see mark_char_table
1599 in alloc.c). A sub char-table appears only in an element of a char-table,
1600 and there's no way to access it directly from Emacs Lisp program. */
1601
1602 enum CHARTAB_SIZE_BITS
1603 {
1604 CHARTAB_SIZE_BITS_0 = 6,
1605 CHARTAB_SIZE_BITS_1 = 4,
1606 CHARTAB_SIZE_BITS_2 = 5,
1607 CHARTAB_SIZE_BITS_3 = 7
1608 };
1609
1610 extern const int chartab_size[4];
1611
1612 struct Lisp_Char_Table
1613 {
1614 /* HEADER.SIZE is the vector's size field, which also holds the
1615 pseudovector type information. It holds the size, too.
1616 The size counts the defalt, parent, purpose, ascii,
1617 contents, and extras slots. */
1618 struct vectorlike_header header;
1619
1620 /* This holds a default value,
1621 which is used whenever the value for a specific character is nil. */
1622 Lisp_Object defalt;
1623
1624 /* This points to another char table, which we inherit from when the
1625 value for a specific character is nil. The `defalt' slot takes
1626 precedence over this. */
1627 Lisp_Object parent;
1628
1629 /* This is a symbol which says what kind of use this char-table is
1630 meant for. */
1631 Lisp_Object purpose;
1632
1633 /* The bottom sub char-table for characters of the range 0..127. It
1634 is nil if none of ASCII character has a specific value. */
1635 Lisp_Object ascii;
1636
1637 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1638
1639 /* These hold additional data. It is a vector. */
1640 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1641 };
1642
1643 struct Lisp_Sub_Char_Table
1644 {
1645 /* HEADER.SIZE is the vector's size field, which also holds the
1646 pseudovector type information. It holds the size, too. */
1647 struct vectorlike_header header;
1648
1649 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1650 char-table of depth 1 contains 16 elements, and each element
1651 covers 4096 (128*32) characters. A sub char-table of depth 2
1652 contains 32 elements, and each element covers 128 characters. A
1653 sub char-table of depth 3 contains 128 elements, and each element
1654 is for one character. */
1655 int depth;
1656
1657 /* Minimum character covered by the sub char-table. */
1658 int min_char;
1659
1660 /* Use set_sub_char_table_contents to set this. */
1661 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1662 };
1663
1664 INLINE Lisp_Object
1665 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1666 {
1667 struct Lisp_Char_Table *tbl = NULL;
1668 Lisp_Object val;
1669 do
1670 {
1671 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1672 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1673 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1674 if (NILP (val))
1675 val = tbl->defalt;
1676 }
1677 while (NILP (val) && ! NILP (tbl->parent));
1678
1679 return val;
1680 }
1681
1682 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1683 characters. Do not check validity of CT. */
1684 INLINE Lisp_Object
1685 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1686 {
1687 return (ASCII_CHAR_P (idx)
1688 ? CHAR_TABLE_REF_ASCII (ct, idx)
1689 : char_table_ref (ct, idx));
1690 }
1691
1692 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1693 8-bit European characters. Do not check validity of CT. */
1694 INLINE void
1695 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1696 {
1697 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1698 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1699 else
1700 char_table_set (ct, idx, val);
1701 }
1702
1703 /* This structure describes a built-in function.
1704 It is generated by the DEFUN macro only.
1705 defsubr makes it into a Lisp object. */
1706
1707 struct Lisp_Subr
1708 {
1709 struct vectorlike_header header;
1710 union {
1711 Lisp_Object (*a0) (void);
1712 Lisp_Object (*a1) (Lisp_Object);
1713 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1714 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1715 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1716 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1717 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1718 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1719 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1720 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1721 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1722 } function;
1723 short min_args, max_args;
1724 const char *symbol_name;
1725 const char *intspec;
1726 const char *doc;
1727 };
1728
1729 enum char_table_specials
1730 {
1731 /* This is the number of slots that every char table must have. This
1732 counts the ordinary slots and the top, defalt, parent, and purpose
1733 slots. */
1734 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1735
1736 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1737 when the latter is treated as an ordinary Lisp_Vector. */
1738 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1739 };
1740
1741 /* Return the number of "extra" slots in the char table CT. */
1742
1743 INLINE int
1744 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1745 {
1746 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1747 - CHAR_TABLE_STANDARD_SLOTS);
1748 }
1749
1750 /* Make sure that sub char-table contents slot is where we think it is. */
1751 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1752 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1753
1754 /***********************************************************************
1755 Symbols
1756 ***********************************************************************/
1757
1758 /* Value is name of symbol. */
1759
1760 INLINE Lisp_Object
1761 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1762 {
1763 return lisp_h_SYMBOL_VAL (sym);
1764 }
1765
1766 INLINE struct Lisp_Symbol *
1767 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1768 {
1769 eassert (sym->redirect == SYMBOL_VARALIAS);
1770 return sym->val.alias;
1771 }
1772 INLINE struct Lisp_Buffer_Local_Value *
1773 SYMBOL_BLV (struct Lisp_Symbol *sym)
1774 {
1775 eassert (sym->redirect == SYMBOL_LOCALIZED);
1776 return sym->val.blv;
1777 }
1778 INLINE union Lisp_Fwd *
1779 SYMBOL_FWD (struct Lisp_Symbol *sym)
1780 {
1781 eassert (sym->redirect == SYMBOL_FORWARDED);
1782 return sym->val.fwd;
1783 }
1784
1785 INLINE void
1786 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1787 {
1788 lisp_h_SET_SYMBOL_VAL (sym, v);
1789 }
1790
1791 INLINE void
1792 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1793 {
1794 eassert (sym->redirect == SYMBOL_VARALIAS);
1795 sym->val.alias = v;
1796 }
1797 INLINE void
1798 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1799 {
1800 eassert (sym->redirect == SYMBOL_LOCALIZED);
1801 sym->val.blv = v;
1802 }
1803 INLINE void
1804 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1805 {
1806 eassert (sym->redirect == SYMBOL_FORWARDED);
1807 sym->val.fwd = v;
1808 }
1809
1810 INLINE Lisp_Object
1811 SYMBOL_NAME (Lisp_Object sym)
1812 {
1813 return XSYMBOL (sym)->name;
1814 }
1815
1816 /* Value is true if SYM is an interned symbol. */
1817
1818 INLINE bool
1819 SYMBOL_INTERNED_P (Lisp_Object sym)
1820 {
1821 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1822 }
1823
1824 /* Value is true if SYM is interned in initial_obarray. */
1825
1826 INLINE bool
1827 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1828 {
1829 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1830 }
1831
1832 /* Value is non-zero if symbol is considered a constant, i.e. its
1833 value cannot be changed (there is an exception for keyword symbols,
1834 whose value can be set to the keyword symbol itself). */
1835
1836 INLINE int
1837 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1838 {
1839 return lisp_h_SYMBOL_CONSTANT_P (sym);
1840 }
1841
1842 /* Placeholder for make-docfile to process. The actual symbol
1843 definition is done by lread.c's defsym. */
1844 #define DEFSYM(sym, name) /* empty */
1845
1846 \f
1847 /***********************************************************************
1848 Hash Tables
1849 ***********************************************************************/
1850
1851 /* The structure of a Lisp hash table. */
1852
1853 struct hash_table_test
1854 {
1855 /* Name of the function used to compare keys. */
1856 Lisp_Object name;
1857
1858 /* User-supplied hash function, or nil. */
1859 Lisp_Object user_hash_function;
1860
1861 /* User-supplied key comparison function, or nil. */
1862 Lisp_Object user_cmp_function;
1863
1864 /* C function to compare two keys. */
1865 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1866
1867 /* C function to compute hash code. */
1868 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1869 };
1870
1871 struct Lisp_Hash_Table
1872 {
1873 /* This is for Lisp; the hash table code does not refer to it. */
1874 struct vectorlike_header header;
1875
1876 /* Nil if table is non-weak. Otherwise a symbol describing the
1877 weakness of the table. */
1878 Lisp_Object weak;
1879
1880 /* When the table is resized, and this is an integer, compute the
1881 new size by adding this to the old size. If a float, compute the
1882 new size by multiplying the old size with this factor. */
1883 Lisp_Object rehash_size;
1884
1885 /* Resize hash table when number of entries/ table size is >= this
1886 ratio, a float. */
1887 Lisp_Object rehash_threshold;
1888
1889 /* Vector of hash codes. If hash[I] is nil, this means that the
1890 I-th entry is unused. */
1891 Lisp_Object hash;
1892
1893 /* Vector used to chain entries. If entry I is free, next[I] is the
1894 entry number of the next free item. If entry I is non-free,
1895 next[I] is the index of the next entry in the collision chain. */
1896 Lisp_Object next;
1897
1898 /* Index of first free entry in free list. */
1899 Lisp_Object next_free;
1900
1901 /* Bucket vector. A non-nil entry is the index of the first item in
1902 a collision chain. This vector's size can be larger than the
1903 hash table size to reduce collisions. */
1904 Lisp_Object index;
1905
1906 /* Only the fields above are traced normally by the GC. The ones below
1907 `count' are special and are either ignored by the GC or traced in
1908 a special way (e.g. because of weakness). */
1909
1910 /* Number of key/value entries in the table. */
1911 ptrdiff_t count;
1912
1913 /* Vector of keys and values. The key of item I is found at index
1914 2 * I, the value is found at index 2 * I + 1.
1915 This is gc_marked specially if the table is weak. */
1916 Lisp_Object key_and_value;
1917
1918 /* The comparison and hash functions. */
1919 struct hash_table_test test;
1920
1921 /* Next weak hash table if this is a weak hash table. The head
1922 of the list is in weak_hash_tables. */
1923 struct Lisp_Hash_Table *next_weak;
1924 };
1925
1926
1927 INLINE struct Lisp_Hash_Table *
1928 XHASH_TABLE (Lisp_Object a)
1929 {
1930 return XUNTAG (a, Lisp_Vectorlike);
1931 }
1932
1933 #define XSET_HASH_TABLE(VAR, PTR) \
1934 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1935
1936 INLINE bool
1937 HASH_TABLE_P (Lisp_Object a)
1938 {
1939 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1940 }
1941
1942 /* Value is the key part of entry IDX in hash table H. */
1943 INLINE Lisp_Object
1944 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1945 {
1946 return AREF (h->key_and_value, 2 * idx);
1947 }
1948
1949 /* Value is the value part of entry IDX in hash table H. */
1950 INLINE Lisp_Object
1951 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1952 {
1953 return AREF (h->key_and_value, 2 * idx + 1);
1954 }
1955
1956 /* Value is the index of the next entry following the one at IDX
1957 in hash table H. */
1958 INLINE Lisp_Object
1959 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1960 {
1961 return AREF (h->next, idx);
1962 }
1963
1964 /* Value is the hash code computed for entry IDX in hash table H. */
1965 INLINE Lisp_Object
1966 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1967 {
1968 return AREF (h->hash, idx);
1969 }
1970
1971 /* Value is the index of the element in hash table H that is the
1972 start of the collision list at index IDX in the index vector of H. */
1973 INLINE Lisp_Object
1974 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1975 {
1976 return AREF (h->index, idx);
1977 }
1978
1979 /* Value is the size of hash table H. */
1980 INLINE ptrdiff_t
1981 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1982 {
1983 return ASIZE (h->next);
1984 }
1985
1986 /* Default size for hash tables if not specified. */
1987
1988 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1989
1990 /* Default threshold specifying when to resize a hash table. The
1991 value gives the ratio of current entries in the hash table and the
1992 size of the hash table. */
1993
1994 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1995
1996 /* Default factor by which to increase the size of a hash table. */
1997
1998 static double const DEFAULT_REHASH_SIZE = 1.5;
1999
2000 /* Combine two integers X and Y for hashing. The result might not fit
2001 into a Lisp integer. */
2002
2003 INLINE EMACS_UINT
2004 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2005 {
2006 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2007 }
2008
2009 /* Hash X, returning a value that fits into a fixnum. */
2010
2011 INLINE EMACS_UINT
2012 SXHASH_REDUCE (EMACS_UINT x)
2013 {
2014 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2015 }
2016
2017 /* These structures are used for various misc types. */
2018
2019 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2020 {
2021 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2022 bool_bf gcmarkbit : 1;
2023 unsigned spacer : 15;
2024 };
2025
2026 struct Lisp_Marker
2027 {
2028 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2029 bool_bf gcmarkbit : 1;
2030 unsigned spacer : 13;
2031 /* This flag is temporarily used in the functions
2032 decode/encode_coding_object to record that the marker position
2033 must be adjusted after the conversion. */
2034 bool_bf need_adjustment : 1;
2035 /* True means normal insertion at the marker's position
2036 leaves the marker after the inserted text. */
2037 bool_bf insertion_type : 1;
2038 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2039 Note: a chain of markers can contain markers pointing into different
2040 buffers (the chain is per buffer_text rather than per buffer, so it's
2041 shared between indirect buffers). */
2042 /* This is used for (other than NULL-checking):
2043 - Fmarker_buffer
2044 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2045 - unchain_marker: to find the list from which to unchain.
2046 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2047 */
2048 struct buffer *buffer;
2049
2050 /* The remaining fields are meaningless in a marker that
2051 does not point anywhere. */
2052
2053 /* For markers that point somewhere,
2054 this is used to chain of all the markers in a given buffer. */
2055 /* We could remove it and use an array in buffer_text instead.
2056 That would also allow to preserve it ordered. */
2057 struct Lisp_Marker *next;
2058 /* This is the char position where the marker points. */
2059 ptrdiff_t charpos;
2060 /* This is the byte position.
2061 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2062 used to implement the functionality of markers, but rather to (ab)use
2063 markers as a cache for char<->byte mappings). */
2064 ptrdiff_t bytepos;
2065 };
2066
2067 /* START and END are markers in the overlay's buffer, and
2068 PLIST is the overlay's property list. */
2069 struct Lisp_Overlay
2070 /* An overlay's real data content is:
2071 - plist
2072 - buffer (really there are two buffer pointers, one per marker,
2073 and both points to the same buffer)
2074 - insertion type of both ends (per-marker fields)
2075 - start & start byte (of start marker)
2076 - end & end byte (of end marker)
2077 - next (singly linked list of overlays)
2078 - next fields of start and end markers (singly linked list of markers).
2079 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2080 */
2081 {
2082 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2083 bool_bf gcmarkbit : 1;
2084 unsigned spacer : 15;
2085 struct Lisp_Overlay *next;
2086 Lisp_Object start;
2087 Lisp_Object end;
2088 Lisp_Object plist;
2089 };
2090
2091 /* Types of data which may be saved in a Lisp_Save_Value. */
2092
2093 enum
2094 {
2095 SAVE_UNUSED,
2096 SAVE_INTEGER,
2097 SAVE_FUNCPOINTER,
2098 SAVE_POINTER,
2099 SAVE_OBJECT
2100 };
2101
2102 /* Number of bits needed to store one of the above values. */
2103 enum { SAVE_SLOT_BITS = 3 };
2104
2105 /* Number of slots in a save value where save_type is nonzero. */
2106 enum { SAVE_VALUE_SLOTS = 4 };
2107
2108 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2109
2110 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2111
2112 enum Lisp_Save_Type
2113 {
2114 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2115 SAVE_TYPE_INT_INT_INT
2116 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2117 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2118 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2119 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2120 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2121 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2122 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2123 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2124 SAVE_TYPE_FUNCPTR_PTR_OBJ
2125 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2126
2127 /* This has an extra bit indicating it's raw memory. */
2128 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2129 };
2130
2131 /* Special object used to hold a different values for later use.
2132
2133 This is mostly used to package C integers and pointers to call
2134 record_unwind_protect when two or more values need to be saved.
2135 For example:
2136
2137 ...
2138 struct my_data *md = get_my_data ();
2139 ptrdiff_t mi = get_my_integer ();
2140 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2141 ...
2142
2143 Lisp_Object my_unwind (Lisp_Object arg)
2144 {
2145 struct my_data *md = XSAVE_POINTER (arg, 0);
2146 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2147 ...
2148 }
2149
2150 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2151 saved objects and raise eassert if type of the saved object doesn't match
2152 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2153 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2154 slot 0 is a pointer. */
2155
2156 typedef void (*voidfuncptr) (void);
2157
2158 struct Lisp_Save_Value
2159 {
2160 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2161 bool_bf gcmarkbit : 1;
2162 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2163
2164 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2165 V's data entries are determined by V->save_type. E.g., if
2166 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2167 V->data[1] is an integer, and V's other data entries are unused.
2168
2169 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2170 a memory area containing V->data[1].integer potential Lisp_Objects. */
2171 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2172 union {
2173 void *pointer;
2174 voidfuncptr funcpointer;
2175 ptrdiff_t integer;
2176 Lisp_Object object;
2177 } data[SAVE_VALUE_SLOTS];
2178 };
2179
2180 /* Return the type of V's Nth saved value. */
2181 INLINE int
2182 save_type (struct Lisp_Save_Value *v, int n)
2183 {
2184 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2185 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2186 }
2187
2188 /* Get and set the Nth saved pointer. */
2189
2190 INLINE void *
2191 XSAVE_POINTER (Lisp_Object obj, int n)
2192 {
2193 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2194 return XSAVE_VALUE (obj)->data[n].pointer;
2195 }
2196 INLINE void
2197 set_save_pointer (Lisp_Object obj, int n, void *val)
2198 {
2199 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2200 XSAVE_VALUE (obj)->data[n].pointer = val;
2201 }
2202 INLINE voidfuncptr
2203 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2204 {
2205 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2206 return XSAVE_VALUE (obj)->data[n].funcpointer;
2207 }
2208
2209 /* Likewise for the saved integer. */
2210
2211 INLINE ptrdiff_t
2212 XSAVE_INTEGER (Lisp_Object obj, int n)
2213 {
2214 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2215 return XSAVE_VALUE (obj)->data[n].integer;
2216 }
2217 INLINE void
2218 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2219 {
2220 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2221 XSAVE_VALUE (obj)->data[n].integer = val;
2222 }
2223
2224 /* Extract Nth saved object. */
2225
2226 INLINE Lisp_Object
2227 XSAVE_OBJECT (Lisp_Object obj, int n)
2228 {
2229 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2230 return XSAVE_VALUE (obj)->data[n].object;
2231 }
2232
2233 /* A finalizer sentinel. */
2234 struct Lisp_Finalizer
2235 {
2236 struct Lisp_Misc_Any base;
2237
2238 /* Circular list of all active weak references. */
2239 struct Lisp_Finalizer *prev;
2240 struct Lisp_Finalizer *next;
2241
2242 /* Call FUNCTION when the finalizer becomes unreachable, even if
2243 FUNCTION contains a reference to the finalizer; i.e., call
2244 FUNCTION when it is reachable _only_ through finalizers. */
2245 Lisp_Object function;
2246 };
2247
2248 /* A miscellaneous object, when it's on the free list. */
2249 struct Lisp_Free
2250 {
2251 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2252 bool_bf gcmarkbit : 1;
2253 unsigned spacer : 15;
2254 union Lisp_Misc *chain;
2255 };
2256
2257 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2258 It uses one of these struct subtypes to get the type field. */
2259
2260 union Lisp_Misc
2261 {
2262 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2263 struct Lisp_Free u_free;
2264 struct Lisp_Marker u_marker;
2265 struct Lisp_Overlay u_overlay;
2266 struct Lisp_Save_Value u_save_value;
2267 struct Lisp_Finalizer u_finalizer;
2268 };
2269
2270 INLINE union Lisp_Misc *
2271 XMISC (Lisp_Object a)
2272 {
2273 return XUNTAG (a, Lisp_Misc);
2274 }
2275
2276 INLINE struct Lisp_Misc_Any *
2277 XMISCANY (Lisp_Object a)
2278 {
2279 eassert (MISCP (a));
2280 return & XMISC (a)->u_any;
2281 }
2282
2283 INLINE enum Lisp_Misc_Type
2284 XMISCTYPE (Lisp_Object a)
2285 {
2286 return XMISCANY (a)->type;
2287 }
2288
2289 INLINE struct Lisp_Marker *
2290 XMARKER (Lisp_Object a)
2291 {
2292 eassert (MARKERP (a));
2293 return & XMISC (a)->u_marker;
2294 }
2295
2296 INLINE struct Lisp_Overlay *
2297 XOVERLAY (Lisp_Object a)
2298 {
2299 eassert (OVERLAYP (a));
2300 return & XMISC (a)->u_overlay;
2301 }
2302
2303 INLINE struct Lisp_Save_Value *
2304 XSAVE_VALUE (Lisp_Object a)
2305 {
2306 eassert (SAVE_VALUEP (a));
2307 return & XMISC (a)->u_save_value;
2308 }
2309
2310 INLINE struct Lisp_Finalizer *
2311 XFINALIZER (Lisp_Object a)
2312 {
2313 eassert (FINALIZERP (a));
2314 return & XMISC (a)->u_finalizer;
2315 }
2316
2317 \f
2318 /* Forwarding pointer to an int variable.
2319 This is allowed only in the value cell of a symbol,
2320 and it means that the symbol's value really lives in the
2321 specified int variable. */
2322 struct Lisp_Intfwd
2323 {
2324 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2325 EMACS_INT *intvar;
2326 };
2327
2328 /* Boolean forwarding pointer to an int variable.
2329 This is like Lisp_Intfwd except that the ostensible
2330 "value" of the symbol is t if the bool variable is true,
2331 nil if it is false. */
2332 struct Lisp_Boolfwd
2333 {
2334 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2335 bool *boolvar;
2336 };
2337
2338 /* Forwarding pointer to a Lisp_Object variable.
2339 This is allowed only in the value cell of a symbol,
2340 and it means that the symbol's value really lives in the
2341 specified variable. */
2342 struct Lisp_Objfwd
2343 {
2344 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2345 Lisp_Object *objvar;
2346 };
2347
2348 /* Like Lisp_Objfwd except that value lives in a slot in the
2349 current buffer. Value is byte index of slot within buffer. */
2350 struct Lisp_Buffer_Objfwd
2351 {
2352 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2353 int offset;
2354 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2355 Lisp_Object predicate;
2356 };
2357
2358 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2359 the symbol has buffer-local or frame-local bindings. (Exception:
2360 some buffer-local variables are built-in, with their values stored
2361 in the buffer structure itself. They are handled differently,
2362 using struct Lisp_Buffer_Objfwd.)
2363
2364 The `realvalue' slot holds the variable's current value, or a
2365 forwarding pointer to where that value is kept. This value is the
2366 one that corresponds to the loaded binding. To read or set the
2367 variable, you must first make sure the right binding is loaded;
2368 then you can access the value in (or through) `realvalue'.
2369
2370 `buffer' and `frame' are the buffer and frame for which the loaded
2371 binding was found. If those have changed, to make sure the right
2372 binding is loaded it is necessary to find which binding goes with
2373 the current buffer and selected frame, then load it. To load it,
2374 first unload the previous binding, then copy the value of the new
2375 binding into `realvalue' (or through it). Also update
2376 LOADED-BINDING to point to the newly loaded binding.
2377
2378 `local_if_set' indicates that merely setting the variable creates a
2379 local binding for the current buffer. Otherwise the latter, setting
2380 the variable does not do that; only make-local-variable does that. */
2381
2382 struct Lisp_Buffer_Local_Value
2383 {
2384 /* True means that merely setting the variable creates a local
2385 binding for the current buffer. */
2386 bool_bf local_if_set : 1;
2387 /* True means this variable can have frame-local bindings, otherwise, it is
2388 can have buffer-local bindings. The two cannot be combined. */
2389 bool_bf frame_local : 1;
2390 /* True means that the binding now loaded was found.
2391 Presumably equivalent to (defcell!=valcell). */
2392 bool_bf found : 1;
2393 /* If non-NULL, a forwarding to the C var where it should also be set. */
2394 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2395 /* The buffer or frame for which the loaded binding was found. */
2396 Lisp_Object where;
2397 /* A cons cell that holds the default value. It has the form
2398 (SYMBOL . DEFAULT-VALUE). */
2399 Lisp_Object defcell;
2400 /* The cons cell from `where's parameter alist.
2401 It always has the form (SYMBOL . VALUE)
2402 Note that if `forward' is non-nil, VALUE may be out of date.
2403 Also if the currently loaded binding is the default binding, then
2404 this is `eq'ual to defcell. */
2405 Lisp_Object valcell;
2406 };
2407
2408 /* Like Lisp_Objfwd except that value lives in a slot in the
2409 current kboard. */
2410 struct Lisp_Kboard_Objfwd
2411 {
2412 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2413 int offset;
2414 };
2415
2416 union Lisp_Fwd
2417 {
2418 struct Lisp_Intfwd u_intfwd;
2419 struct Lisp_Boolfwd u_boolfwd;
2420 struct Lisp_Objfwd u_objfwd;
2421 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2422 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2423 };
2424
2425 INLINE enum Lisp_Fwd_Type
2426 XFWDTYPE (union Lisp_Fwd *a)
2427 {
2428 return a->u_intfwd.type;
2429 }
2430
2431 INLINE struct Lisp_Buffer_Objfwd *
2432 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2433 {
2434 eassert (BUFFER_OBJFWDP (a));
2435 return &a->u_buffer_objfwd;
2436 }
2437 \f
2438 /* Lisp floating point type. */
2439 struct Lisp_Float
2440 {
2441 union
2442 {
2443 double data;
2444 struct Lisp_Float *chain;
2445 } u;
2446 };
2447
2448 INLINE double
2449 XFLOAT_DATA (Lisp_Object f)
2450 {
2451 return XFLOAT (f)->u.data;
2452 }
2453
2454 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2455 representations, have infinities and NaNs, and do not trap on
2456 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2457 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2458 wanted here, but is not quite right because Emacs does not require
2459 all the features of C11 Annex F (and does not require C11 at all,
2460 for that matter). */
2461 enum
2462 {
2463 IEEE_FLOATING_POINT
2464 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2465 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2466 };
2467
2468 /* A character, declared with the following typedef, is a member
2469 of some character set associated with the current buffer. */
2470 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2471 #define _UCHAR_T
2472 typedef unsigned char UCHAR;
2473 #endif
2474
2475 /* Meanings of slots in a Lisp_Compiled: */
2476
2477 enum Lisp_Compiled
2478 {
2479 COMPILED_ARGLIST = 0,
2480 COMPILED_BYTECODE = 1,
2481 COMPILED_CONSTANTS = 2,
2482 COMPILED_STACK_DEPTH = 3,
2483 COMPILED_DOC_STRING = 4,
2484 COMPILED_INTERACTIVE = 5
2485 };
2486
2487 /* Flag bits in a character. These also get used in termhooks.h.
2488 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2489 (MUlti-Lingual Emacs) might need 22 bits for the character value
2490 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2491 enum char_bits
2492 {
2493 CHAR_ALT = 0x0400000,
2494 CHAR_SUPER = 0x0800000,
2495 CHAR_HYPER = 0x1000000,
2496 CHAR_SHIFT = 0x2000000,
2497 CHAR_CTL = 0x4000000,
2498 CHAR_META = 0x8000000,
2499
2500 CHAR_MODIFIER_MASK =
2501 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2502
2503 /* Actually, the current Emacs uses 22 bits for the character value
2504 itself. */
2505 CHARACTERBITS = 22
2506 };
2507 \f
2508 /* Data type checking. */
2509
2510 INLINE bool
2511 (NILP) (Lisp_Object x)
2512 {
2513 return lisp_h_NILP (x);
2514 }
2515
2516 INLINE bool
2517 NUMBERP (Lisp_Object x)
2518 {
2519 return INTEGERP (x) || FLOATP (x);
2520 }
2521 INLINE bool
2522 NATNUMP (Lisp_Object x)
2523 {
2524 return INTEGERP (x) && 0 <= XINT (x);
2525 }
2526
2527 INLINE bool
2528 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2529 {
2530 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2531 }
2532
2533 #define TYPE_RANGED_INTEGERP(type, x) \
2534 (INTEGERP (x) \
2535 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2536 && XINT (x) <= TYPE_MAXIMUM (type))
2537
2538 INLINE bool
2539 (CONSP) (Lisp_Object x)
2540 {
2541 return lisp_h_CONSP (x);
2542 }
2543 INLINE bool
2544 (FLOATP) (Lisp_Object x)
2545 {
2546 return lisp_h_FLOATP (x);
2547 }
2548 INLINE bool
2549 (MISCP) (Lisp_Object x)
2550 {
2551 return lisp_h_MISCP (x);
2552 }
2553 INLINE bool
2554 (SYMBOLP) (Lisp_Object x)
2555 {
2556 return lisp_h_SYMBOLP (x);
2557 }
2558 INLINE bool
2559 (INTEGERP) (Lisp_Object x)
2560 {
2561 return lisp_h_INTEGERP (x);
2562 }
2563 INLINE bool
2564 (VECTORLIKEP) (Lisp_Object x)
2565 {
2566 return lisp_h_VECTORLIKEP (x);
2567 }
2568 INLINE bool
2569 (MARKERP) (Lisp_Object x)
2570 {
2571 return lisp_h_MARKERP (x);
2572 }
2573
2574 INLINE bool
2575 STRINGP (Lisp_Object x)
2576 {
2577 return XTYPE (x) == Lisp_String;
2578 }
2579 INLINE bool
2580 VECTORP (Lisp_Object x)
2581 {
2582 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2583 }
2584 INLINE bool
2585 OVERLAYP (Lisp_Object x)
2586 {
2587 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2588 }
2589 INLINE bool
2590 SAVE_VALUEP (Lisp_Object x)
2591 {
2592 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2593 }
2594
2595 INLINE bool
2596 FINALIZERP (Lisp_Object x)
2597 {
2598 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2599 }
2600
2601 INLINE bool
2602 AUTOLOADP (Lisp_Object x)
2603 {
2604 return CONSP (x) && EQ (Qautoload, XCAR (x));
2605 }
2606
2607 INLINE bool
2608 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2609 {
2610 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2611 }
2612
2613 INLINE bool
2614 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2615 {
2616 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2617 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2618 }
2619
2620 /* True if A is a pseudovector whose code is CODE. */
2621 INLINE bool
2622 PSEUDOVECTORP (Lisp_Object a, int code)
2623 {
2624 if (! VECTORLIKEP (a))
2625 return false;
2626 else
2627 {
2628 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2629 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2630 return PSEUDOVECTOR_TYPEP (h, code);
2631 }
2632 }
2633
2634
2635 /* Test for specific pseudovector types. */
2636
2637 INLINE bool
2638 WINDOW_CONFIGURATIONP (Lisp_Object a)
2639 {
2640 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2641 }
2642
2643 INLINE bool
2644 PROCESSP (Lisp_Object a)
2645 {
2646 return PSEUDOVECTORP (a, PVEC_PROCESS);
2647 }
2648
2649 INLINE bool
2650 WINDOWP (Lisp_Object a)
2651 {
2652 return PSEUDOVECTORP (a, PVEC_WINDOW);
2653 }
2654
2655 INLINE bool
2656 TERMINALP (Lisp_Object a)
2657 {
2658 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2659 }
2660
2661 INLINE bool
2662 SUBRP (Lisp_Object a)
2663 {
2664 return PSEUDOVECTORP (a, PVEC_SUBR);
2665 }
2666
2667 INLINE bool
2668 COMPILEDP (Lisp_Object a)
2669 {
2670 return PSEUDOVECTORP (a, PVEC_COMPILED);
2671 }
2672
2673 INLINE bool
2674 BUFFERP (Lisp_Object a)
2675 {
2676 return PSEUDOVECTORP (a, PVEC_BUFFER);
2677 }
2678
2679 INLINE bool
2680 CHAR_TABLE_P (Lisp_Object a)
2681 {
2682 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2683 }
2684
2685 INLINE bool
2686 SUB_CHAR_TABLE_P (Lisp_Object a)
2687 {
2688 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2689 }
2690
2691 INLINE bool
2692 BOOL_VECTOR_P (Lisp_Object a)
2693 {
2694 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2695 }
2696
2697 INLINE bool
2698 FRAMEP (Lisp_Object a)
2699 {
2700 return PSEUDOVECTORP (a, PVEC_FRAME);
2701 }
2702
2703 /* Test for image (image . spec) */
2704 INLINE bool
2705 IMAGEP (Lisp_Object x)
2706 {
2707 return CONSP (x) && EQ (XCAR (x), Qimage);
2708 }
2709
2710 /* Array types. */
2711 INLINE bool
2712 ARRAYP (Lisp_Object x)
2713 {
2714 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2715 }
2716 \f
2717 INLINE void
2718 CHECK_LIST (Lisp_Object x)
2719 {
2720 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2721 }
2722
2723 INLINE void
2724 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2725 {
2726 lisp_h_CHECK_LIST_CONS (x, y);
2727 }
2728
2729 INLINE void
2730 (CHECK_SYMBOL) (Lisp_Object x)
2731 {
2732 lisp_h_CHECK_SYMBOL (x);
2733 }
2734
2735 INLINE void
2736 (CHECK_NUMBER) (Lisp_Object x)
2737 {
2738 lisp_h_CHECK_NUMBER (x);
2739 }
2740
2741 INLINE void
2742 CHECK_STRING (Lisp_Object x)
2743 {
2744 CHECK_TYPE (STRINGP (x), Qstringp, x);
2745 }
2746 INLINE void
2747 CHECK_STRING_CAR (Lisp_Object x)
2748 {
2749 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2750 }
2751 INLINE void
2752 CHECK_CONS (Lisp_Object x)
2753 {
2754 CHECK_TYPE (CONSP (x), Qconsp, x);
2755 }
2756 INLINE void
2757 CHECK_VECTOR (Lisp_Object x)
2758 {
2759 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2760 }
2761 INLINE void
2762 CHECK_BOOL_VECTOR (Lisp_Object x)
2763 {
2764 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2765 }
2766 /* This is a bit special because we always need size afterwards. */
2767 INLINE ptrdiff_t
2768 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2769 {
2770 if (VECTORP (x))
2771 return ASIZE (x);
2772 if (STRINGP (x))
2773 return SCHARS (x);
2774 wrong_type_argument (Qarrayp, x);
2775 }
2776 INLINE void
2777 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2778 {
2779 CHECK_TYPE (ARRAYP (x), predicate, x);
2780 }
2781 INLINE void
2782 CHECK_BUFFER (Lisp_Object x)
2783 {
2784 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2785 }
2786 INLINE void
2787 CHECK_WINDOW (Lisp_Object x)
2788 {
2789 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2790 }
2791 #ifdef subprocesses
2792 INLINE void
2793 CHECK_PROCESS (Lisp_Object x)
2794 {
2795 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2796 }
2797 #endif
2798 INLINE void
2799 CHECK_NATNUM (Lisp_Object x)
2800 {
2801 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2802 }
2803
2804 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2805 do { \
2806 CHECK_NUMBER (x); \
2807 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2808 args_out_of_range_3 \
2809 (x, \
2810 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2811 ? MOST_NEGATIVE_FIXNUM \
2812 : (lo)), \
2813 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2814 } while (false)
2815 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2816 do { \
2817 if (TYPE_SIGNED (type)) \
2818 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2819 else \
2820 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2821 } while (false)
2822
2823 #define CHECK_NUMBER_COERCE_MARKER(x) \
2824 do { \
2825 if (MARKERP ((x))) \
2826 XSETFASTINT (x, marker_position (x)); \
2827 else \
2828 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2829 } while (false)
2830
2831 INLINE double
2832 XFLOATINT (Lisp_Object n)
2833 {
2834 return extract_float (n);
2835 }
2836
2837 INLINE void
2838 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2839 {
2840 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2841 }
2842
2843 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2844 do { \
2845 if (MARKERP (x)) \
2846 XSETFASTINT (x, marker_position (x)); \
2847 else \
2848 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2849 } while (false)
2850
2851 /* Since we can't assign directly to the CAR or CDR fields of a cons
2852 cell, use these when checking that those fields contain numbers. */
2853 INLINE void
2854 CHECK_NUMBER_CAR (Lisp_Object x)
2855 {
2856 Lisp_Object tmp = XCAR (x);
2857 CHECK_NUMBER (tmp);
2858 XSETCAR (x, tmp);
2859 }
2860
2861 INLINE void
2862 CHECK_NUMBER_CDR (Lisp_Object x)
2863 {
2864 Lisp_Object tmp = XCDR (x);
2865 CHECK_NUMBER (tmp);
2866 XSETCDR (x, tmp);
2867 }
2868 \f
2869 /* Define a built-in function for calling from Lisp.
2870 `lname' should be the name to give the function in Lisp,
2871 as a null-terminated C string.
2872 `fnname' should be the name of the function in C.
2873 By convention, it starts with F.
2874 `sname' should be the name for the C constant structure
2875 that records information on this function for internal use.
2876 By convention, it should be the same as `fnname' but with S instead of F.
2877 It's too bad that C macros can't compute this from `fnname'.
2878 `minargs' should be a number, the minimum number of arguments allowed.
2879 `maxargs' should be a number, the maximum number of arguments allowed,
2880 or else MANY or UNEVALLED.
2881 MANY means pass a vector of evaluated arguments,
2882 in the form of an integer number-of-arguments
2883 followed by the address of a vector of Lisp_Objects
2884 which contains the argument values.
2885 UNEVALLED means pass the list of unevaluated arguments
2886 `intspec' says how interactive arguments are to be fetched.
2887 If the string starts with a `(', `intspec' is evaluated and the resulting
2888 list is the list of arguments.
2889 If it's a string that doesn't start with `(', the value should follow
2890 the one of the doc string for `interactive'.
2891 A null string means call interactively with no arguments.
2892 `doc' is documentation for the user. */
2893
2894 /* This version of DEFUN declares a function prototype with the right
2895 arguments, so we can catch errors with maxargs at compile-time. */
2896 #ifdef _MSC_VER
2897 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2898 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2899 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2900 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2901 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2902 { (Lisp_Object (__cdecl *)(void))fnname }, \
2903 minargs, maxargs, lname, intspec, 0}; \
2904 Lisp_Object fnname
2905 #else /* not _MSC_VER */
2906 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2907 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2908 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2909 { .a ## maxargs = fnname }, \
2910 minargs, maxargs, lname, intspec, 0}; \
2911 Lisp_Object fnname
2912 #endif
2913
2914 /* True if OBJ is a Lisp function. */
2915 INLINE bool
2916 FUNCTIONP (Lisp_Object obj)
2917 {
2918 return functionp (obj);
2919 }
2920
2921 /* defsubr (Sname);
2922 is how we define the symbol for function `name' at start-up time. */
2923 extern void defsubr (struct Lisp_Subr *);
2924
2925 enum maxargs
2926 {
2927 MANY = -2,
2928 UNEVALLED = -1
2929 };
2930
2931 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2932 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2933
2934 /* Call a function F that accepts many args, passing it the remaining args,
2935 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2936 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2937 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2938 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2939
2940 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2941 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2942 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2943 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2944 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2945
2946 /* Macros we use to define forwarded Lisp variables.
2947 These are used in the syms_of_FILENAME functions.
2948
2949 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2950 lisp variable is actually a field in `struct emacs_globals'. The
2951 field's name begins with "f_", which is a convention enforced by
2952 these macros. Each such global has a corresponding #define in
2953 globals.h; the plain name should be used in the code.
2954
2955 E.g., the global "cons_cells_consed" is declared as "int
2956 f_cons_cells_consed" in globals.h, but there is a define:
2957
2958 #define cons_cells_consed globals.f_cons_cells_consed
2959
2960 All C code uses the `cons_cells_consed' name. This is all done
2961 this way to support indirection for multi-threaded Emacs. */
2962
2963 #define DEFVAR_LISP(lname, vname, doc) \
2964 do { \
2965 static struct Lisp_Objfwd o_fwd; \
2966 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2967 } while (false)
2968 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2969 do { \
2970 static struct Lisp_Objfwd o_fwd; \
2971 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2972 } while (false)
2973 #define DEFVAR_BOOL(lname, vname, doc) \
2974 do { \
2975 static struct Lisp_Boolfwd b_fwd; \
2976 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2977 } while (false)
2978 #define DEFVAR_INT(lname, vname, doc) \
2979 do { \
2980 static struct Lisp_Intfwd i_fwd; \
2981 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2982 } while (false)
2983
2984 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2985 do { \
2986 static struct Lisp_Objfwd o_fwd; \
2987 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2988 } while (false)
2989
2990 #define DEFVAR_KBOARD(lname, vname, doc) \
2991 do { \
2992 static struct Lisp_Kboard_Objfwd ko_fwd; \
2993 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2994 } while (false)
2995 \f
2996 /* Save and restore the instruction and environment pointers,
2997 without affecting the signal mask. */
2998
2999 #ifdef HAVE__SETJMP
3000 typedef jmp_buf sys_jmp_buf;
3001 # define sys_setjmp(j) _setjmp (j)
3002 # define sys_longjmp(j, v) _longjmp (j, v)
3003 #elif defined HAVE_SIGSETJMP
3004 typedef sigjmp_buf sys_jmp_buf;
3005 # define sys_setjmp(j) sigsetjmp (j, 0)
3006 # define sys_longjmp(j, v) siglongjmp (j, v)
3007 #else
3008 /* A platform that uses neither _longjmp nor siglongjmp; assume
3009 longjmp does not affect the sigmask. */
3010 typedef jmp_buf sys_jmp_buf;
3011 # define sys_setjmp(j) setjmp (j)
3012 # define sys_longjmp(j, v) longjmp (j, v)
3013 #endif
3014
3015 \f
3016 /* Elisp uses several stacks:
3017 - the C stack.
3018 - the bytecode stack: used internally by the bytecode interpreter.
3019 Allocated from the C stack.
3020 - The specpdl stack: keeps track of active unwind-protect and
3021 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3022 managed stack.
3023 - The handler stack: keeps track of active catch tags and condition-case
3024 handlers. Allocated in a manually managed stack implemented by a
3025 doubly-linked list allocated via xmalloc and never freed. */
3026
3027 /* Structure for recording Lisp call stack for backtrace purposes. */
3028
3029 /* The special binding stack holds the outer values of variables while
3030 they are bound by a function application or a let form, stores the
3031 code to be executed for unwind-protect forms.
3032
3033 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3034 used all over the place, needs to be fast, and needs to know the size of
3035 union specbinding. But only eval.c should access it. */
3036
3037 enum specbind_tag {
3038 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3039 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3040 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3041 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3042 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3043 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3044 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3045 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3046 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3047 };
3048
3049 union specbinding
3050 {
3051 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3052 struct {
3053 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3054 void (*func) (Lisp_Object);
3055 Lisp_Object arg;
3056 } unwind;
3057 struct {
3058 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3059 void (*func) (void *);
3060 void *arg;
3061 } unwind_ptr;
3062 struct {
3063 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3064 void (*func) (int);
3065 int arg;
3066 } unwind_int;
3067 struct {
3068 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3069 void (*func) (void);
3070 } unwind_void;
3071 struct {
3072 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3073 /* `where' is not used in the case of SPECPDL_LET. */
3074 Lisp_Object symbol, old_value, where;
3075 } let;
3076 struct {
3077 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3078 bool_bf debug_on_exit : 1;
3079 Lisp_Object function;
3080 Lisp_Object *args;
3081 ptrdiff_t nargs;
3082 } bt;
3083 };
3084
3085 extern union specbinding *specpdl;
3086 extern union specbinding *specpdl_ptr;
3087 extern ptrdiff_t specpdl_size;
3088
3089 INLINE ptrdiff_t
3090 SPECPDL_INDEX (void)
3091 {
3092 return specpdl_ptr - specpdl;
3093 }
3094
3095 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3096 control structures. A struct handler contains all the information needed to
3097 restore the state of the interpreter after a non-local jump.
3098
3099 handler structures are chained together in a doubly linked list; the `next'
3100 member points to the next outer catchtag and the `nextfree' member points in
3101 the other direction to the next inner element (which is typically the next
3102 free element since we mostly use it on the deepest handler).
3103
3104 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3105 member is TAG, and then unbinds to it. The `val' member is used to
3106 hold VAL while the stack is unwound; `val' is returned as the value
3107 of the catch form.
3108
3109 All the other members are concerned with restoring the interpreter
3110 state.
3111
3112 Members are volatile if their values need to survive _longjmp when
3113 a 'struct handler' is a local variable. */
3114
3115 enum handlertype { CATCHER, CONDITION_CASE };
3116
3117 struct handler
3118 {
3119 enum handlertype type;
3120 Lisp_Object tag_or_ch;
3121 Lisp_Object val;
3122 struct handler *next;
3123 struct handler *nextfree;
3124
3125 /* The bytecode interpreter can have several handlers active at the same
3126 time, so when we longjmp to one of them, it needs to know which handler
3127 this was and what was the corresponding internal state. This is stored
3128 here, and when we longjmp we make sure that handlerlist points to the
3129 proper handler. */
3130 Lisp_Object *bytecode_top;
3131 int bytecode_dest;
3132
3133 /* Most global vars are reset to their value via the specpdl mechanism,
3134 but a few others are handled by storing their value here. */
3135 sys_jmp_buf jmp;
3136 EMACS_INT lisp_eval_depth;
3137 ptrdiff_t pdlcount;
3138 int poll_suppress_count;
3139 int interrupt_input_blocked;
3140 struct byte_stack *byte_stack;
3141 };
3142
3143 /* Fill in the components of c, and put it on the list. */
3144 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3145 if (handlerlist->nextfree) \
3146 (c) = handlerlist->nextfree; \
3147 else \
3148 { \
3149 (c) = xmalloc (sizeof (struct handler)); \
3150 (c)->nextfree = NULL; \
3151 handlerlist->nextfree = (c); \
3152 } \
3153 (c)->type = (handlertype); \
3154 (c)->tag_or_ch = (tag_ch_val); \
3155 (c)->val = Qnil; \
3156 (c)->next = handlerlist; \
3157 (c)->lisp_eval_depth = lisp_eval_depth; \
3158 (c)->pdlcount = SPECPDL_INDEX (); \
3159 (c)->poll_suppress_count = poll_suppress_count; \
3160 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3161 (c)->byte_stack = byte_stack_list; \
3162 handlerlist = (c);
3163
3164
3165 extern Lisp_Object memory_signal_data;
3166
3167 /* An address near the bottom of the stack.
3168 Tells GC how to save a copy of the stack. */
3169 extern char *stack_bottom;
3170
3171 /* Check quit-flag and quit if it is non-nil.
3172 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3173 So the program needs to do QUIT at times when it is safe to quit.
3174 Every loop that might run for a long time or might not exit
3175 ought to do QUIT at least once, at a safe place.
3176 Unless that is impossible, of course.
3177 But it is very desirable to avoid creating loops where QUIT is impossible.
3178
3179 Exception: if you set immediate_quit to true,
3180 then the handler that responds to the C-g does the quit itself.
3181 This is a good thing to do around a loop that has no side effects
3182 and (in particular) cannot call arbitrary Lisp code.
3183
3184 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3185 a request to exit Emacs when it is safe to do. */
3186
3187 extern void process_pending_signals (void);
3188 extern bool volatile pending_signals;
3189
3190 extern void process_quit_flag (void);
3191 #define QUIT \
3192 do { \
3193 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3194 process_quit_flag (); \
3195 else if (pending_signals) \
3196 process_pending_signals (); \
3197 } while (false)
3198
3199
3200 /* True if ought to quit now. */
3201
3202 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3203 \f
3204 extern Lisp_Object Vascii_downcase_table;
3205 extern Lisp_Object Vascii_canon_table;
3206 \f
3207 /* Call staticpro (&var) to protect static variable `var'. */
3208
3209 void staticpro (Lisp_Object *);
3210 \f
3211 /* Forward declarations for prototypes. */
3212 struct window;
3213 struct frame;
3214
3215 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3216
3217 INLINE void
3218 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3219 {
3220 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3221 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3222 }
3223
3224 /* Functions to modify hash tables. */
3225
3226 INLINE void
3227 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3228 {
3229 gc_aset (h->key_and_value, 2 * idx, val);
3230 }
3231
3232 INLINE void
3233 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3234 {
3235 gc_aset (h->key_and_value, 2 * idx + 1, val);
3236 }
3237
3238 /* Use these functions to set Lisp_Object
3239 or pointer slots of struct Lisp_Symbol. */
3240
3241 INLINE void
3242 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3243 {
3244 XSYMBOL (sym)->function = function;
3245 }
3246
3247 INLINE void
3248 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3249 {
3250 XSYMBOL (sym)->plist = plist;
3251 }
3252
3253 INLINE void
3254 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3255 {
3256 XSYMBOL (sym)->next = next;
3257 }
3258
3259 /* Buffer-local (also frame-local) variable access functions. */
3260
3261 INLINE int
3262 blv_found (struct Lisp_Buffer_Local_Value *blv)
3263 {
3264 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3265 return blv->found;
3266 }
3267
3268 /* Set overlay's property list. */
3269
3270 INLINE void
3271 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3272 {
3273 XOVERLAY (overlay)->plist = plist;
3274 }
3275
3276 /* Get text properties of S. */
3277
3278 INLINE INTERVAL
3279 string_intervals (Lisp_Object s)
3280 {
3281 return XSTRING (s)->intervals;
3282 }
3283
3284 /* Set text properties of S to I. */
3285
3286 INLINE void
3287 set_string_intervals (Lisp_Object s, INTERVAL i)
3288 {
3289 XSTRING (s)->intervals = i;
3290 }
3291
3292 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3293 of setting slots directly. */
3294
3295 INLINE void
3296 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3297 {
3298 XCHAR_TABLE (table)->defalt = val;
3299 }
3300 INLINE void
3301 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3302 {
3303 XCHAR_TABLE (table)->purpose = val;
3304 }
3305
3306 /* Set different slots in (sub)character tables. */
3307
3308 INLINE void
3309 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3310 {
3311 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3312 XCHAR_TABLE (table)->extras[idx] = val;
3313 }
3314
3315 INLINE void
3316 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3317 {
3318 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3319 XCHAR_TABLE (table)->contents[idx] = val;
3320 }
3321
3322 INLINE void
3323 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3324 {
3325 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3326 }
3327
3328 /* Defined in data.c. */
3329 extern Lisp_Object indirect_function (Lisp_Object);
3330 extern Lisp_Object find_symbol_value (Lisp_Object);
3331 enum Arith_Comparison {
3332 ARITH_EQUAL,
3333 ARITH_NOTEQUAL,
3334 ARITH_LESS,
3335 ARITH_GRTR,
3336 ARITH_LESS_OR_EQUAL,
3337 ARITH_GRTR_OR_EQUAL
3338 };
3339 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3340 enum Arith_Comparison comparison);
3341
3342 /* Convert the integer I to an Emacs representation, either the integer
3343 itself, or a cons of two or three integers, or if all else fails a float.
3344 I should not have side effects. */
3345 #define INTEGER_TO_CONS(i) \
3346 (! FIXNUM_OVERFLOW_P (i) \
3347 ? make_number (i) \
3348 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3349 extern Lisp_Object intbig_to_lisp (intmax_t);
3350 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3351
3352 /* Convert the Emacs representation CONS back to an integer of type
3353 TYPE, storing the result the variable VAR. Signal an error if CONS
3354 is not a valid representation or is out of range for TYPE. */
3355 #define CONS_TO_INTEGER(cons, type, var) \
3356 (TYPE_SIGNED (type) \
3357 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3358 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3359 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3360 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3361
3362 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3363 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3364 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3365 Lisp_Object);
3366 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3367 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3368 extern void syms_of_data (void);
3369 extern void swap_in_global_binding (struct Lisp_Symbol *);
3370
3371 /* Defined in cmds.c */
3372 extern void syms_of_cmds (void);
3373 extern void keys_of_cmds (void);
3374
3375 /* Defined in coding.c. */
3376 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3377 ptrdiff_t, bool, bool, Lisp_Object);
3378 extern void init_coding (void);
3379 extern void init_coding_once (void);
3380 extern void syms_of_coding (void);
3381
3382 /* Defined in character.c. */
3383 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3384 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3385 extern void syms_of_character (void);
3386
3387 /* Defined in charset.c. */
3388 extern void init_charset (void);
3389 extern void init_charset_once (void);
3390 extern void syms_of_charset (void);
3391 /* Structure forward declarations. */
3392 struct charset;
3393
3394 /* Defined in syntax.c. */
3395 extern void init_syntax_once (void);
3396 extern void syms_of_syntax (void);
3397
3398 /* Defined in fns.c. */
3399 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3400 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3401 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3402 extern void sweep_weak_hash_tables (void);
3403 EMACS_UINT hash_string (char const *, ptrdiff_t);
3404 EMACS_UINT sxhash (Lisp_Object, int);
3405 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3406 Lisp_Object, Lisp_Object);
3407 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3408 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3409 EMACS_UINT);
3410 extern struct hash_table_test hashtest_eql, hashtest_equal;
3411 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3412 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3413 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3414 ptrdiff_t, ptrdiff_t);
3415 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3416 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3417 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3418 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3419 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3420 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3421 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3422 extern void clear_string_char_byte_cache (void);
3423 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3424 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3425 extern Lisp_Object string_to_multibyte (Lisp_Object);
3426 extern Lisp_Object string_make_unibyte (Lisp_Object);
3427 extern void syms_of_fns (void);
3428
3429 /* Defined in floatfns.c. */
3430 extern void syms_of_floatfns (void);
3431 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3432
3433 /* Defined in fringe.c. */
3434 extern void syms_of_fringe (void);
3435 extern void init_fringe (void);
3436 #ifdef HAVE_WINDOW_SYSTEM
3437 extern void mark_fringe_data (void);
3438 extern void init_fringe_once (void);
3439 #endif /* HAVE_WINDOW_SYSTEM */
3440
3441 /* Defined in image.c. */
3442 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3443 extern void reset_image_types (void);
3444 extern void syms_of_image (void);
3445
3446 /* Defined in insdel.c. */
3447 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3448 extern _Noreturn void buffer_overflow (void);
3449 extern void make_gap (ptrdiff_t);
3450 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3451 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3452 ptrdiff_t, bool, bool);
3453 extern int count_combining_before (const unsigned char *,
3454 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3455 extern int count_combining_after (const unsigned char *,
3456 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3457 extern void insert (const char *, ptrdiff_t);
3458 extern void insert_and_inherit (const char *, ptrdiff_t);
3459 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3460 bool, bool, bool);
3461 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3462 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3463 ptrdiff_t, ptrdiff_t, bool);
3464 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3465 extern void insert_char (int);
3466 extern void insert_string (const char *);
3467 extern void insert_before_markers (const char *, ptrdiff_t);
3468 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3469 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3470 ptrdiff_t, ptrdiff_t,
3471 ptrdiff_t, bool);
3472 extern void del_range (ptrdiff_t, ptrdiff_t);
3473 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3474 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3475 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3476 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3477 ptrdiff_t, ptrdiff_t, bool);
3478 extern void modify_text (ptrdiff_t, ptrdiff_t);
3479 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3480 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3481 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3482 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3483 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3484 ptrdiff_t, ptrdiff_t);
3485 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3486 ptrdiff_t, ptrdiff_t);
3487 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3488 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3489 const char *, ptrdiff_t, ptrdiff_t, bool);
3490 extern void syms_of_insdel (void);
3491
3492 /* Defined in dispnew.c. */
3493 #if (defined PROFILING \
3494 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3495 _Noreturn void __executable_start (void);
3496 #endif
3497 extern Lisp_Object Vwindow_system;
3498 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3499
3500 /* Defined in xdisp.c. */
3501 extern bool noninteractive_need_newline;
3502 extern Lisp_Object echo_area_buffer[2];
3503 extern void add_to_log (char const *, ...);
3504 extern void vadd_to_log (char const *, va_list);
3505 extern void check_message_stack (void);
3506 extern void setup_echo_area_for_printing (bool);
3507 extern bool push_message (void);
3508 extern void pop_message_unwind (void);
3509 extern Lisp_Object restore_message_unwind (Lisp_Object);
3510 extern void restore_message (void);
3511 extern Lisp_Object current_message (void);
3512 extern void clear_message (bool, bool);
3513 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3514 extern void message1 (const char *);
3515 extern void message1_nolog (const char *);
3516 extern void message3 (Lisp_Object);
3517 extern void message3_nolog (Lisp_Object);
3518 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3519 extern void message_with_string (const char *, Lisp_Object, bool);
3520 extern void message_log_maybe_newline (void);
3521 extern void update_echo_area (void);
3522 extern void truncate_echo_area (ptrdiff_t);
3523 extern void redisplay (void);
3524
3525 void set_frame_cursor_types (struct frame *, Lisp_Object);
3526 extern void syms_of_xdisp (void);
3527 extern void init_xdisp (void);
3528 extern Lisp_Object safe_eval (Lisp_Object);
3529 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3530 int *, int *, int *, int *, int *);
3531
3532 /* Defined in xsettings.c. */
3533 extern void syms_of_xsettings (void);
3534
3535 /* Defined in vm-limit.c. */
3536 extern void memory_warnings (void *, void (*warnfun) (const char *));
3537
3538 /* Defined in character.c. */
3539 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3540 ptrdiff_t *, ptrdiff_t *);
3541
3542 /* Defined in alloc.c. */
3543 extern void check_pure_size (void);
3544 extern void free_misc (Lisp_Object);
3545 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3546 extern void malloc_warning (const char *);
3547 extern _Noreturn void memory_full (size_t);
3548 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3549 extern bool survives_gc_p (Lisp_Object);
3550 extern void mark_object (Lisp_Object);
3551 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3552 extern void refill_memory_reserve (void);
3553 #endif
3554 extern const char *pending_malloc_warning;
3555 extern Lisp_Object zero_vector;
3556 extern Lisp_Object *stack_base;
3557 extern EMACS_INT consing_since_gc;
3558 extern EMACS_INT gc_relative_threshold;
3559 extern EMACS_INT memory_full_cons_threshold;
3560 extern Lisp_Object list1 (Lisp_Object);
3561 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3562 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3563 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3564 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3565 Lisp_Object);
3566 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3567 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3568
3569 /* Build a frequently used 2/3/4-integer lists. */
3570
3571 INLINE Lisp_Object
3572 list2i (EMACS_INT x, EMACS_INT y)
3573 {
3574 return list2 (make_number (x), make_number (y));
3575 }
3576
3577 INLINE Lisp_Object
3578 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3579 {
3580 return list3 (make_number (x), make_number (y), make_number (w));
3581 }
3582
3583 INLINE Lisp_Object
3584 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3585 {
3586 return list4 (make_number (x), make_number (y),
3587 make_number (w), make_number (h));
3588 }
3589
3590 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3591 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3592 extern _Noreturn void string_overflow (void);
3593 extern Lisp_Object make_string (const char *, ptrdiff_t);
3594 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3595 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3596 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3597
3598 /* Make unibyte string from C string when the length isn't known. */
3599
3600 INLINE Lisp_Object
3601 build_unibyte_string (const char *str)
3602 {
3603 return make_unibyte_string (str, strlen (str));
3604 }
3605
3606 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3607 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3608 extern Lisp_Object make_uninit_string (EMACS_INT);
3609 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3610 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3611 extern Lisp_Object make_specified_string (const char *,
3612 ptrdiff_t, ptrdiff_t, bool);
3613 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3614 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3615
3616 /* Make a string allocated in pure space, use STR as string data. */
3617
3618 INLINE Lisp_Object
3619 build_pure_c_string (const char *str)
3620 {
3621 return make_pure_c_string (str, strlen (str));
3622 }
3623
3624 /* Make a string from the data at STR, treating it as multibyte if the
3625 data warrants. */
3626
3627 INLINE Lisp_Object
3628 build_string (const char *str)
3629 {
3630 return make_string (str, strlen (str));
3631 }
3632
3633 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3634 extern void make_byte_code (struct Lisp_Vector *);
3635 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3636
3637 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3638 be sure that GC cannot happen until the vector is completely
3639 initialized. E.g. the following code is likely to crash:
3640
3641 v = make_uninit_vector (3);
3642 ASET (v, 0, obj0);
3643 ASET (v, 1, Ffunction_can_gc ());
3644 ASET (v, 2, obj1); */
3645
3646 INLINE Lisp_Object
3647 make_uninit_vector (ptrdiff_t size)
3648 {
3649 Lisp_Object v;
3650 struct Lisp_Vector *p;
3651
3652 p = allocate_vector (size);
3653 XSETVECTOR (v, p);
3654 return v;
3655 }
3656
3657 /* Like above, but special for sub char-tables. */
3658
3659 INLINE Lisp_Object
3660 make_uninit_sub_char_table (int depth, int min_char)
3661 {
3662 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3663 Lisp_Object v = make_uninit_vector (slots);
3664
3665 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3666 XSUB_CHAR_TABLE (v)->depth = depth;
3667 XSUB_CHAR_TABLE (v)->min_char = min_char;
3668 return v;
3669 }
3670
3671 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3672 enum pvec_type);
3673
3674 /* Allocate partially initialized pseudovector where all Lisp_Object
3675 slots are set to Qnil but the rest (if any) is left uninitialized. */
3676
3677 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3678 ((type *) allocate_pseudovector (VECSIZE (type), \
3679 PSEUDOVECSIZE (type, field), \
3680 PSEUDOVECSIZE (type, field), tag))
3681
3682 /* Allocate fully initialized pseudovector where all Lisp_Object
3683 slots are set to Qnil and the rest (if any) is zeroed. */
3684
3685 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3686 ((type *) allocate_pseudovector (VECSIZE (type), \
3687 PSEUDOVECSIZE (type, field), \
3688 VECSIZE (type), tag))
3689
3690 extern bool gc_in_progress;
3691 extern bool abort_on_gc;
3692 extern Lisp_Object make_float (double);
3693 extern void display_malloc_warning (void);
3694 extern ptrdiff_t inhibit_garbage_collection (void);
3695 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3696 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3697 Lisp_Object, Lisp_Object);
3698 extern Lisp_Object make_save_ptr (void *);
3699 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3700 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3701 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3702 Lisp_Object);
3703 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3704 extern void free_save_value (Lisp_Object);
3705 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3706 extern void free_marker (Lisp_Object);
3707 extern void free_cons (struct Lisp_Cons *);
3708 extern void init_alloc_once (void);
3709 extern void init_alloc (void);
3710 extern void syms_of_alloc (void);
3711 extern struct buffer * allocate_buffer (void);
3712 extern int valid_lisp_object_p (Lisp_Object);
3713 #ifdef GC_CHECK_CONS_LIST
3714 extern void check_cons_list (void);
3715 #else
3716 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3717 #endif
3718
3719 #ifdef REL_ALLOC
3720 /* Defined in ralloc.c. */
3721 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3722 extern void r_alloc_free (void **);
3723 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3724 extern void r_alloc_reset_variable (void **, void **);
3725 extern void r_alloc_inhibit_buffer_relocation (int);
3726 #endif
3727
3728 /* Defined in chartab.c. */
3729 extern Lisp_Object copy_char_table (Lisp_Object);
3730 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3731 int *, int *);
3732 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3733 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3734 Lisp_Object),
3735 Lisp_Object, Lisp_Object, Lisp_Object);
3736 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3737 Lisp_Object, Lisp_Object,
3738 Lisp_Object, struct charset *,
3739 unsigned, unsigned);
3740 extern Lisp_Object uniprop_table (Lisp_Object);
3741 extern void syms_of_chartab (void);
3742
3743 /* Defined in print.c. */
3744 extern Lisp_Object Vprin1_to_string_buffer;
3745 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3746 extern void temp_output_buffer_setup (const char *);
3747 extern int print_level;
3748 extern void write_string (const char *);
3749 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3750 Lisp_Object);
3751 extern Lisp_Object internal_with_output_to_temp_buffer
3752 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3753 #define FLOAT_TO_STRING_BUFSIZE 350
3754 extern int float_to_string (char *, double);
3755 extern void init_print_once (void);
3756 extern void syms_of_print (void);
3757
3758 /* Defined in doprnt.c. */
3759 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3760 va_list);
3761 extern ptrdiff_t esprintf (char *, char const *, ...)
3762 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3763 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3764 char const *, ...)
3765 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3766 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3767 char const *, va_list)
3768 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3769
3770 /* Defined in lread.c. */
3771 extern Lisp_Object check_obarray (Lisp_Object);
3772 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3773 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3774 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3775 extern void init_symbol (Lisp_Object, Lisp_Object);
3776 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3777 INLINE void
3778 LOADHIST_ATTACH (Lisp_Object x)
3779 {
3780 if (initialized)
3781 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3782 }
3783 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3784 Lisp_Object *, Lisp_Object, bool);
3785 extern Lisp_Object string_to_number (char const *, int, bool);
3786 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3787 Lisp_Object);
3788 extern void dir_warning (const char *, Lisp_Object);
3789 extern void init_obarray (void);
3790 extern void init_lread (void);
3791 extern void syms_of_lread (void);
3792
3793 INLINE Lisp_Object
3794 intern (const char *str)
3795 {
3796 return intern_1 (str, strlen (str));
3797 }
3798
3799 INLINE Lisp_Object
3800 intern_c_string (const char *str)
3801 {
3802 return intern_c_string_1 (str, strlen (str));
3803 }
3804
3805 /* Defined in eval.c. */
3806 extern EMACS_INT lisp_eval_depth;
3807 extern Lisp_Object Vautoload_queue;
3808 extern Lisp_Object Vrun_hooks;
3809 extern Lisp_Object Vsignaling_function;
3810 extern Lisp_Object inhibit_lisp_code;
3811 extern struct handler *handlerlist;
3812
3813 /* To run a normal hook, use the appropriate function from the list below.
3814 The calling convention:
3815
3816 if (!NILP (Vrun_hooks))
3817 call1 (Vrun_hooks, Qmy_funny_hook);
3818
3819 should no longer be used. */
3820 extern void run_hook (Lisp_Object);
3821 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3822 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3823 Lisp_Object (*funcall)
3824 (ptrdiff_t nargs, Lisp_Object *args));
3825 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3826 extern _Noreturn void xsignal0 (Lisp_Object);
3827 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3828 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3829 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3830 Lisp_Object);
3831 extern _Noreturn void signal_error (const char *, Lisp_Object);
3832 extern Lisp_Object eval_sub (Lisp_Object form);
3833 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3834 extern Lisp_Object call0 (Lisp_Object);
3835 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3836 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3837 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3838 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3839 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3840 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3841 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3842 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3843 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3844 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3845 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3846 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3847 extern Lisp_Object internal_condition_case_n
3848 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3849 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3850 extern void specbind (Lisp_Object, Lisp_Object);
3851 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3852 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3853 extern void record_unwind_protect_int (void (*) (int), int);
3854 extern void record_unwind_protect_void (void (*) (void));
3855 extern void record_unwind_protect_nothing (void);
3856 extern void clear_unwind_protect (ptrdiff_t);
3857 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3858 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3859 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3860 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3861 extern _Noreturn void verror (const char *, va_list)
3862 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3863 extern void un_autoload (Lisp_Object);
3864 extern Lisp_Object call_debugger (Lisp_Object arg);
3865 extern void *near_C_stack_top (void);
3866 extern void init_eval_once (void);
3867 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3868 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3869 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3870 extern void init_eval (void);
3871 extern void syms_of_eval (void);
3872 extern void unwind_body (Lisp_Object);
3873 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3874 extern void mark_specpdl (void);
3875 extern void get_backtrace (Lisp_Object array);
3876 Lisp_Object backtrace_top_function (void);
3877 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3878 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3879
3880
3881 /* Defined in editfns.c. */
3882 extern void insert1 (Lisp_Object);
3883 extern Lisp_Object save_excursion_save (void);
3884 extern Lisp_Object save_restriction_save (void);
3885 extern void save_excursion_restore (Lisp_Object);
3886 extern void save_restriction_restore (Lisp_Object);
3887 extern _Noreturn void time_overflow (void);
3888 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3889 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3890 ptrdiff_t, bool);
3891 extern void init_editfns (bool);
3892 extern void syms_of_editfns (void);
3893
3894 /* Defined in buffer.c. */
3895 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3896 extern _Noreturn void nsberror (Lisp_Object);
3897 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3898 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3899 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3900 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3901 Lisp_Object, Lisp_Object, Lisp_Object);
3902 extern bool overlay_touches_p (ptrdiff_t);
3903 extern Lisp_Object other_buffer_safely (Lisp_Object);
3904 extern Lisp_Object get_truename_buffer (Lisp_Object);
3905 extern void init_buffer_once (void);
3906 extern void init_buffer (int);
3907 extern void syms_of_buffer (void);
3908 extern void keys_of_buffer (void);
3909
3910 /* Defined in marker.c. */
3911
3912 extern ptrdiff_t marker_position (Lisp_Object);
3913 extern ptrdiff_t marker_byte_position (Lisp_Object);
3914 extern void clear_charpos_cache (struct buffer *);
3915 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3916 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3917 extern void unchain_marker (struct Lisp_Marker *marker);
3918 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3919 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3920 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3921 ptrdiff_t, ptrdiff_t);
3922 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3923 extern void syms_of_marker (void);
3924
3925 /* Defined in fileio.c. */
3926
3927 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3928 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3929 Lisp_Object, Lisp_Object, Lisp_Object,
3930 Lisp_Object, int);
3931 extern void close_file_unwind (int);
3932 extern void fclose_unwind (void *);
3933 extern void restore_point_unwind (Lisp_Object);
3934 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3935 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3936 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
3937 extern bool internal_delete_file (Lisp_Object);
3938 extern Lisp_Object emacs_readlinkat (int, const char *);
3939 extern bool file_directory_p (const char *);
3940 extern bool file_accessible_directory_p (Lisp_Object);
3941 extern void init_fileio (void);
3942 extern void syms_of_fileio (void);
3943 extern Lisp_Object make_temp_name (Lisp_Object, bool);
3944
3945 /* Defined in search.c. */
3946 extern void shrink_regexp_cache (void);
3947 extern void restore_search_regs (void);
3948 extern void record_unwind_save_match_data (void);
3949 struct re_registers;
3950 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
3951 struct re_registers *,
3952 Lisp_Object, bool, bool);
3953 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
3954 Lisp_Object);
3955
3956 INLINE ptrdiff_t
3957 fast_string_match (Lisp_Object regexp, Lisp_Object string)
3958 {
3959 return fast_string_match_internal (regexp, string, Qnil);
3960 }
3961
3962 INLINE ptrdiff_t
3963 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
3964 {
3965 return fast_string_match_internal (regexp, string, Vascii_canon_table);
3966 }
3967
3968 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
3969 ptrdiff_t);
3970 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
3971 ptrdiff_t, ptrdiff_t, Lisp_Object);
3972 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3973 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
3974 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3975 ptrdiff_t, bool);
3976 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3977 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
3978 ptrdiff_t, ptrdiff_t *);
3979 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
3980 ptrdiff_t, ptrdiff_t *);
3981 extern void syms_of_search (void);
3982 extern void clear_regexp_cache (void);
3983
3984 /* Defined in minibuf.c. */
3985
3986 extern Lisp_Object Vminibuffer_list;
3987 extern Lisp_Object last_minibuf_string;
3988 extern Lisp_Object get_minibuffer (EMACS_INT);
3989 extern void init_minibuf_once (void);
3990 extern void syms_of_minibuf (void);
3991
3992 /* Defined in callint.c. */
3993
3994 extern void syms_of_callint (void);
3995
3996 /* Defined in casefiddle.c. */
3997
3998 extern void syms_of_casefiddle (void);
3999 extern void keys_of_casefiddle (void);
4000
4001 /* Defined in casetab.c. */
4002
4003 extern void init_casetab_once (void);
4004 extern void syms_of_casetab (void);
4005
4006 /* Defined in keyboard.c. */
4007
4008 extern Lisp_Object echo_message_buffer;
4009 extern struct kboard *echo_kboard;
4010 extern void cancel_echoing (void);
4011 extern bool input_pending;
4012 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4013 extern sigjmp_buf return_to_command_loop;
4014 #endif
4015 extern Lisp_Object menu_bar_items (Lisp_Object);
4016 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4017 extern void discard_mouse_events (void);
4018 #ifdef USABLE_SIGIO
4019 void handle_input_available_signal (int);
4020 #endif
4021 extern Lisp_Object pending_funcalls;
4022 extern bool detect_input_pending (void);
4023 extern bool detect_input_pending_ignore_squeezables (void);
4024 extern bool detect_input_pending_run_timers (bool);
4025 extern void safe_run_hooks (Lisp_Object);
4026 extern void cmd_error_internal (Lisp_Object, const char *);
4027 extern Lisp_Object command_loop_1 (void);
4028 extern Lisp_Object read_menu_command (void);
4029 extern Lisp_Object recursive_edit_1 (void);
4030 extern void record_auto_save (void);
4031 extern void force_auto_save_soon (void);
4032 extern void init_keyboard (void);
4033 extern void syms_of_keyboard (void);
4034 extern void keys_of_keyboard (void);
4035
4036 /* Defined in indent.c. */
4037 extern ptrdiff_t current_column (void);
4038 extern void invalidate_current_column (void);
4039 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4040 extern void syms_of_indent (void);
4041
4042 /* Defined in frame.c. */
4043 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4044 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4045 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4046 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4047 extern void frames_discard_buffer (Lisp_Object);
4048 extern void syms_of_frame (void);
4049
4050 /* Defined in emacs.c. */
4051 extern char **initial_argv;
4052 extern int initial_argc;
4053 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4054 extern bool display_arg;
4055 #endif
4056 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4057 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4058 extern _Noreturn void terminate_due_to_signal (int, int);
4059 #ifdef WINDOWSNT
4060 extern Lisp_Object Vlibrary_cache;
4061 #endif
4062 #if HAVE_SETLOCALE
4063 void fixup_locale (void);
4064 void synchronize_system_messages_locale (void);
4065 void synchronize_system_time_locale (void);
4066 #else
4067 INLINE void fixup_locale (void) {}
4068 INLINE void synchronize_system_messages_locale (void) {}
4069 INLINE void synchronize_system_time_locale (void) {}
4070 #endif
4071 extern void shut_down_emacs (int, Lisp_Object);
4072
4073 /* True means don't do interactive redisplay and don't change tty modes. */
4074 extern bool noninteractive;
4075
4076 /* True means remove site-lisp directories from load-path. */
4077 extern bool no_site_lisp;
4078
4079 /* Pipe used to send exit notification to the daemon parent at
4080 startup. On Windows, we use a kernel event instead. */
4081 #ifndef WINDOWSNT
4082 extern int daemon_pipe[2];
4083 #define IS_DAEMON (daemon_pipe[1] != 0)
4084 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4085 #else /* WINDOWSNT */
4086 extern void *w32_daemon_event;
4087 #define IS_DAEMON (w32_daemon_event != NULL)
4088 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4089 #endif
4090
4091 /* True if handling a fatal error already. */
4092 extern bool fatal_error_in_progress;
4093
4094 /* True means don't do use window-system-specific display code. */
4095 extern bool inhibit_window_system;
4096 /* True means that a filter or a sentinel is running. */
4097 extern bool running_asynch_code;
4098
4099 /* Defined in process.c. */
4100 extern void kill_buffer_processes (Lisp_Object);
4101 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4102 struct Lisp_Process *, int);
4103 /* Max value for the first argument of wait_reading_process_output. */
4104 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4105 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4106 The bug merely causes a bogus warning, but the warning is annoying. */
4107 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4108 #else
4109 # define WAIT_READING_MAX INTMAX_MAX
4110 #endif
4111 #ifdef HAVE_TIMERFD
4112 extern void add_timer_wait_descriptor (int);
4113 #endif
4114 extern void add_keyboard_wait_descriptor (int);
4115 extern void delete_keyboard_wait_descriptor (int);
4116 #ifdef HAVE_GPM
4117 extern void add_gpm_wait_descriptor (int);
4118 extern void delete_gpm_wait_descriptor (int);
4119 #endif
4120 extern void init_process_emacs (void);
4121 extern void syms_of_process (void);
4122 extern void setup_process_coding_systems (Lisp_Object);
4123
4124 /* Defined in callproc.c. */
4125 #ifndef DOS_NT
4126 _Noreturn
4127 #endif
4128 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4129 extern void init_callproc_1 (void);
4130 extern void init_callproc (void);
4131 extern void set_initial_environment (void);
4132 extern void syms_of_callproc (void);
4133
4134 /* Defined in doc.c. */
4135 enum text_quoting_style
4136 {
4137 /* Use curved single quotes ‘like this’. */
4138 CURVE_QUOTING_STYLE,
4139
4140 /* Use grave accent and apostrophe `like this'. */
4141 GRAVE_QUOTING_STYLE,
4142
4143 /* Use apostrophes 'like this'. */
4144 STRAIGHT_QUOTING_STYLE
4145 };
4146 extern enum text_quoting_style text_quoting_style (void);
4147 extern Lisp_Object read_doc_string (Lisp_Object);
4148 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4149 extern void syms_of_doc (void);
4150 extern int read_bytecode_char (bool);
4151
4152 /* Defined in bytecode.c. */
4153 extern void syms_of_bytecode (void);
4154 extern struct byte_stack *byte_stack_list;
4155 extern void relocate_byte_stack (void);
4156 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4157 Lisp_Object, ptrdiff_t, Lisp_Object *);
4158
4159 /* Defined in macros.c. */
4160 extern void init_macros (void);
4161 extern void syms_of_macros (void);
4162
4163 /* Defined in undo.c. */
4164 extern void truncate_undo_list (struct buffer *);
4165 extern void record_insert (ptrdiff_t, ptrdiff_t);
4166 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4167 extern void record_first_change (void);
4168 extern void record_change (ptrdiff_t, ptrdiff_t);
4169 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4170 Lisp_Object, Lisp_Object,
4171 Lisp_Object);
4172 extern void syms_of_undo (void);
4173
4174 /* Defined in textprop.c. */
4175 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4176
4177 /* Defined in menu.c. */
4178 extern void syms_of_menu (void);
4179
4180 /* Defined in xmenu.c. */
4181 extern void syms_of_xmenu (void);
4182
4183 /* Defined in termchar.h. */
4184 struct tty_display_info;
4185
4186 /* Defined in termhooks.h. */
4187 struct terminal;
4188
4189 /* Defined in sysdep.c. */
4190 #ifndef HAVE_GET_CURRENT_DIR_NAME
4191 extern char *get_current_dir_name (void);
4192 #endif
4193 extern void stuff_char (char c);
4194 extern void init_foreground_group (void);
4195 extern void sys_subshell (void);
4196 extern void sys_suspend (void);
4197 extern void discard_tty_input (void);
4198 extern void init_sys_modes (struct tty_display_info *);
4199 extern void reset_sys_modes (struct tty_display_info *);
4200 extern void init_all_sys_modes (void);
4201 extern void reset_all_sys_modes (void);
4202 extern void child_setup_tty (int);
4203 extern void setup_pty (int);
4204 extern int set_window_size (int, int, int);
4205 extern EMACS_INT get_random (void);
4206 extern void seed_random (void *, ptrdiff_t);
4207 extern void init_random (void);
4208 extern void emacs_backtrace (int);
4209 extern _Noreturn void emacs_abort (void) NO_INLINE;
4210 extern int emacs_open (const char *, int, int);
4211 extern int emacs_pipe (int[2]);
4212 extern int emacs_close (int);
4213 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4214 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4215 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4216 extern void emacs_perror (char const *);
4217
4218 extern void unlock_all_files (void);
4219 extern void lock_file (Lisp_Object);
4220 extern void unlock_file (Lisp_Object);
4221 extern void unlock_buffer (struct buffer *);
4222 extern void syms_of_filelock (void);
4223 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4224
4225 /* Defined in sound.c. */
4226 extern void syms_of_sound (void);
4227
4228 /* Defined in category.c. */
4229 extern void init_category_once (void);
4230 extern Lisp_Object char_category_set (int);
4231 extern void syms_of_category (void);
4232
4233 /* Defined in ccl.c. */
4234 extern void syms_of_ccl (void);
4235
4236 /* Defined in dired.c. */
4237 extern void syms_of_dired (void);
4238 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4239 Lisp_Object, Lisp_Object,
4240 bool, Lisp_Object);
4241
4242 /* Defined in term.c. */
4243 extern int *char_ins_del_vector;
4244 extern void syms_of_term (void);
4245 extern _Noreturn void fatal (const char *msgid, ...)
4246 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4247
4248 /* Defined in terminal.c. */
4249 extern void syms_of_terminal (void);
4250
4251 /* Defined in font.c. */
4252 extern void syms_of_font (void);
4253 extern void init_font (void);
4254
4255 #ifdef HAVE_WINDOW_SYSTEM
4256 /* Defined in fontset.c. */
4257 extern void syms_of_fontset (void);
4258 #endif
4259
4260 /* Defined in gfilenotify.c */
4261 #ifdef HAVE_GFILENOTIFY
4262 extern void globals_of_gfilenotify (void);
4263 extern void syms_of_gfilenotify (void);
4264 #endif
4265
4266 /* Defined in inotify.c */
4267 #ifdef HAVE_INOTIFY
4268 extern void syms_of_inotify (void);
4269 #endif
4270
4271 #ifdef HAVE_W32NOTIFY
4272 /* Defined on w32notify.c. */
4273 extern void syms_of_w32notify (void);
4274 #endif
4275
4276 /* Defined in xfaces.c. */
4277 extern Lisp_Object Vface_alternative_font_family_alist;
4278 extern Lisp_Object Vface_alternative_font_registry_alist;
4279 extern void syms_of_xfaces (void);
4280
4281 #ifdef HAVE_X_WINDOWS
4282 /* Defined in xfns.c. */
4283 extern void syms_of_xfns (void);
4284
4285 /* Defined in xsmfns.c. */
4286 extern void syms_of_xsmfns (void);
4287
4288 /* Defined in xselect.c. */
4289 extern void syms_of_xselect (void);
4290
4291 /* Defined in xterm.c. */
4292 extern void init_xterm (void);
4293 extern void syms_of_xterm (void);
4294 #endif /* HAVE_X_WINDOWS */
4295
4296 #ifdef HAVE_WINDOW_SYSTEM
4297 /* Defined in xterm.c, nsterm.m, w32term.c. */
4298 extern char *x_get_keysym_name (int);
4299 #endif /* HAVE_WINDOW_SYSTEM */
4300
4301 #ifdef HAVE_LIBXML2
4302 /* Defined in xml.c. */
4303 extern void syms_of_xml (void);
4304 extern void xml_cleanup_parser (void);
4305 #endif
4306
4307 #ifdef HAVE_ZLIB
4308 /* Defined in decompress.c. */
4309 extern void syms_of_decompress (void);
4310 #endif
4311
4312 #ifdef HAVE_DBUS
4313 /* Defined in dbusbind.c. */
4314 void init_dbusbind (void);
4315 void syms_of_dbusbind (void);
4316 #endif
4317
4318
4319 /* Defined in profiler.c. */
4320 extern bool profiler_memory_running;
4321 extern void malloc_probe (size_t);
4322 extern void syms_of_profiler (void);
4323
4324
4325 #ifdef DOS_NT
4326 /* Defined in msdos.c, w32.c. */
4327 extern char *emacs_root_dir (void);
4328 #endif /* DOS_NT */
4329
4330 /* Defined in lastfile.c. */
4331 extern char my_edata[];
4332 extern char my_endbss[];
4333 extern char *my_endbss_static;
4334
4335 /* True means ^G can quit instantly. */
4336 extern bool immediate_quit;
4337
4338 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4339 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4340 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4341 extern void xfree (void *);
4342 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4343 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4344 ATTRIBUTE_ALLOC_SIZE ((2,3));
4345 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4346
4347 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4348 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4349 extern void dupstring (char **, char const *);
4350
4351 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4352 null byte. This is like stpcpy, except the source is a Lisp string. */
4353
4354 INLINE char *
4355 lispstpcpy (char *dest, Lisp_Object string)
4356 {
4357 ptrdiff_t len = SBYTES (string);
4358 memcpy (dest, SDATA (string), len + 1);
4359 return dest + len;
4360 }
4361
4362 extern void xputenv (const char *);
4363
4364 extern char *egetenv_internal (const char *, ptrdiff_t);
4365
4366 INLINE char *
4367 egetenv (const char *var)
4368 {
4369 /* When VAR is a string literal, strlen can be optimized away. */
4370 return egetenv_internal (var, strlen (var));
4371 }
4372
4373 /* Set up the name of the machine we're running on. */
4374 extern void init_system_name (void);
4375
4376 /* Return the absolute value of X. X should be a signed integer
4377 expression without side effects, and X's absolute value should not
4378 exceed the maximum for its promoted type. This is called 'eabs'
4379 because 'abs' is reserved by the C standard. */
4380 #define eabs(x) ((x) < 0 ? -(x) : (x))
4381
4382 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4383 fixnum. */
4384
4385 #define make_fixnum_or_float(val) \
4386 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4387
4388 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4389 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4390
4391 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4392
4393 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4394
4395 #define USE_SAFE_ALLOCA \
4396 ptrdiff_t sa_avail = MAX_ALLOCA; \
4397 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4398
4399 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4400
4401 /* SAFE_ALLOCA allocates a simple buffer. */
4402
4403 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4404 ? AVAIL_ALLOCA (size) \
4405 : (sa_must_free = true, record_xmalloc (size)))
4406
4407 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4408 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4409 positive. The code is tuned for MULTIPLIER being a constant. */
4410
4411 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4412 do { \
4413 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4414 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4415 else \
4416 { \
4417 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4418 sa_must_free = true; \
4419 record_unwind_protect_ptr (xfree, buf); \
4420 } \
4421 } while (false)
4422
4423 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4424
4425 #define SAFE_ALLOCA_STRING(ptr, string) \
4426 do { \
4427 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4428 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4429 } while (false)
4430
4431 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4432
4433 #define SAFE_FREE() \
4434 do { \
4435 if (sa_must_free) { \
4436 sa_must_free = false; \
4437 unbind_to (sa_count, Qnil); \
4438 } \
4439 } while (false)
4440
4441 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4442
4443 #define SAFE_ALLOCA_LISP(buf, nelt) \
4444 do { \
4445 ptrdiff_t alloca_nbytes; \
4446 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4447 || SIZE_MAX < alloca_nbytes) \
4448 memory_full (SIZE_MAX); \
4449 else if (alloca_nbytes <= sa_avail) \
4450 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4451 else \
4452 { \
4453 Lisp_Object arg_; \
4454 (buf) = xmalloc (alloca_nbytes); \
4455 arg_ = make_save_memory (buf, nelt); \
4456 sa_must_free = true; \
4457 record_unwind_protect (free_save_value, arg_); \
4458 } \
4459 } while (false)
4460
4461
4462 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4463 block-scoped conses and strings. These objects are not
4464 managed by the garbage collector, so they are dangerous: passing them
4465 out of their scope (e.g., to user code) results in undefined behavior.
4466 Conversely, they have better performance because GC is not involved.
4467
4468 This feature is experimental and requires careful debugging.
4469 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4470
4471 #ifndef USE_STACK_LISP_OBJECTS
4472 # define USE_STACK_LISP_OBJECTS true
4473 #endif
4474
4475 #ifdef GC_CHECK_STRING_BYTES
4476 enum { defined_GC_CHECK_STRING_BYTES = true };
4477 #else
4478 enum { defined_GC_CHECK_STRING_BYTES = false };
4479 #endif
4480
4481 /* Struct inside unions that are typically no larger and aligned enough. */
4482
4483 union Aligned_Cons
4484 {
4485 struct Lisp_Cons s;
4486 double d; intmax_t i; void *p;
4487 };
4488
4489 union Aligned_String
4490 {
4491 struct Lisp_String s;
4492 double d; intmax_t i; void *p;
4493 };
4494
4495 /* True for stack-based cons and string implementations, respectively.
4496 Use stack-based strings only if stack-based cons also works.
4497 Otherwise, STACK_CONS would create heap-based cons cells that
4498 could point to stack-based strings, which is a no-no. */
4499
4500 enum
4501 {
4502 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4503 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4504 USE_STACK_STRING = (USE_STACK_CONS
4505 && !defined_GC_CHECK_STRING_BYTES
4506 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4507 };
4508
4509 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4510 use these only in macros like AUTO_CONS that declare a local
4511 variable whose lifetime will be clear to the programmer. */
4512 #define STACK_CONS(a, b) \
4513 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4514 #define AUTO_CONS_EXPR(a, b) \
4515 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4516
4517 /* Declare NAME as an auto Lisp cons or short list if possible, a
4518 GC-based one otherwise. This is in the sense of the C keyword
4519 'auto'; i.e., the object has the lifetime of the containing block.
4520 The resulting object should not be made visible to user Lisp code. */
4521
4522 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4523 #define AUTO_LIST1(name, a) \
4524 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4525 #define AUTO_LIST2(name, a, b) \
4526 Lisp_Object name = (USE_STACK_CONS \
4527 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4528 : list2 (a, b))
4529 #define AUTO_LIST3(name, a, b, c) \
4530 Lisp_Object name = (USE_STACK_CONS \
4531 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4532 : list3 (a, b, c))
4533 #define AUTO_LIST4(name, a, b, c, d) \
4534 Lisp_Object name \
4535 = (USE_STACK_CONS \
4536 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4537 STACK_CONS (d, Qnil)))) \
4538 : list4 (a, b, c, d))
4539
4540 /* Check whether stack-allocated strings are ASCII-only. */
4541
4542 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4543 extern const char *verify_ascii (const char *);
4544 #else
4545 # define verify_ascii(str) (str)
4546 #endif
4547
4548 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4549 Take its value from STR. STR is not necessarily copied and should
4550 contain only ASCII characters. The resulting Lisp string should
4551 not be modified or made visible to user code. */
4552
4553 #define AUTO_STRING(name, str) \
4554 Lisp_Object name = \
4555 (USE_STACK_STRING \
4556 ? (make_lisp_ptr \
4557 ((&(union Aligned_String) \
4558 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4559 Lisp_String)) \
4560 : build_string (verify_ascii (str)))
4561
4562 /* Loop over all tails of a list, checking for cycles.
4563 FIXME: Make tortoise and n internal declarations.
4564 FIXME: Unroll the loop body so we don't need `n'. */
4565 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4566 for ((tortoise) = (hare) = (list), (n) = true; \
4567 CONSP (hare); \
4568 (hare = XCDR (hare), (n) = !(n), \
4569 ((n) \
4570 ? (EQ (hare, tortoise) \
4571 ? xsignal1 (Qcircular_list, list) \
4572 : (void) 0) \
4573 /* Move tortoise before the next iteration, in case */ \
4574 /* the next iteration does an Fsetcdr. */ \
4575 : (void) ((tortoise) = XCDR (tortoise)))))
4576
4577 /* Do a `for' loop over alist values. */
4578
4579 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4580 for ((list_var) = (head_var); \
4581 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4582 (list_var) = XCDR (list_var))
4583
4584 /* Check whether it's time for GC, and run it if so. */
4585
4586 INLINE void
4587 maybe_gc (void)
4588 {
4589 if ((consing_since_gc > gc_cons_threshold
4590 && consing_since_gc > gc_relative_threshold)
4591 || (!NILP (Vmemory_full)
4592 && consing_since_gc > memory_full_cons_threshold))
4593 Fgarbage_collect ();
4594 }
4595
4596 INLINE bool
4597 functionp (Lisp_Object object)
4598 {
4599 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4600 {
4601 object = Findirect_function (object, Qt);
4602
4603 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4604 {
4605 /* Autoloaded symbols are functions, except if they load
4606 macros or keymaps. */
4607 int i;
4608 for (i = 0; i < 4 && CONSP (object); i++)
4609 object = XCDR (object);
4610
4611 return ! (CONSP (object) && !NILP (XCAR (object)));
4612 }
4613 }
4614
4615 if (SUBRP (object))
4616 return XSUBR (object)->max_args != UNEVALLED;
4617 else if (COMPILEDP (object))
4618 return true;
4619 else if (CONSP (object))
4620 {
4621 Lisp_Object car = XCAR (object);
4622 return EQ (car, Qlambda) || EQ (car, Qclosure);
4623 }
4624 else
4625 return false;
4626 }
4627
4628 INLINE_HEADER_END
4629
4630 #endif /* EMACS_LISP_H */