]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from origin/emacs-25
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25 #include <signal.h> /* For SIGABRT, SIGDANGER. */
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 #include "lisp.h"
32 #include "dispextern.h"
33 #include "intervals.h"
34 #include "puresize.h"
35 #include "sheap.h"
36 #include "systime.h"
37 #include "character.h"
38 #include "buffer.h"
39 #include "window.h"
40 #include "keyboard.h"
41 #include "frame.h"
42 #include "blockinput.h"
43 #include "termhooks.h" /* For struct terminal. */
44 #ifdef HAVE_WINDOW_SYSTEM
45 #include TERM_HEADER
46 #endif /* HAVE_WINDOW_SYSTEM */
47
48 #include <verify.h>
49 #include <execinfo.h> /* For backtrace. */
50
51 #ifdef HAVE_LINUX_SYSINFO
52 #include <sys/sysinfo.h>
53 #endif
54
55 #ifdef MSDOS
56 #include "dosfns.h" /* For dos_memory_info. */
57 #endif
58
59 #ifdef HAVE_MALLOC_H
60 # include <malloc.h>
61 #endif
62
63 #if (defined ENABLE_CHECKING \
64 && defined HAVE_VALGRIND_VALGRIND_H \
65 && !defined USE_VALGRIND)
66 # define USE_VALGRIND 1
67 #endif
68
69 #if USE_VALGRIND
70 #include <valgrind/valgrind.h>
71 #include <valgrind/memcheck.h>
72 static bool valgrind_p;
73 #endif
74
75 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
76
77 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
78 memory. Can do this only if using gmalloc.c and if not checking
79 marked objects. */
80
81 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
82 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
83 #undef GC_MALLOC_CHECK
84 #endif
85
86 #include <unistd.h>
87 #include <fcntl.h>
88
89 #ifdef USE_GTK
90 # include "gtkutil.h"
91 #endif
92 #ifdef WINDOWSNT
93 #include "w32.h"
94 #include "w32heap.h" /* for sbrk */
95 #endif
96
97 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
98 /* The address where the heap starts. */
99 void *
100 my_heap_start (void)
101 {
102 static void *start;
103 if (! start)
104 start = sbrk (0);
105 return start;
106 }
107 #endif
108
109 #ifdef DOUG_LEA_MALLOC
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Restore the dumped malloc state. Because malloc can be invoked
121 even before main (e.g. by the dynamic linker), the dumped malloc
122 state must be restored as early as possible using this special hook. */
123 static void
124 malloc_initialize_hook (void)
125 {
126 static bool malloc_using_checking;
127
128 if (! initialized)
129 {
130 my_heap_start ();
131 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
132 }
133 else
134 {
135 if (!malloc_using_checking)
136 {
137 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
138 ignored if the heap to be restored was constructed without
139 malloc checking. Can't use unsetenv, since that calls malloc. */
140 char **p = environ;
141 if (p)
142 for (; *p; p++)
143 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
144 {
145 do
146 *p = p[1];
147 while (*++p);
148
149 break;
150 }
151 }
152
153 malloc_set_state (malloc_state_ptr);
154 # ifndef XMALLOC_OVERRUN_CHECK
155 alloc_unexec_post ();
156 # endif
157 }
158 }
159
160 /* Declare the malloc initialization hook, which runs before 'main' starts.
161 EXTERNALLY_VISIBLE works around Bug#22522. */
162 # ifndef __MALLOC_HOOK_VOLATILE
163 # define __MALLOC_HOOK_VOLATILE
164 # endif
165 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
166 = malloc_initialize_hook;
167
168 #endif
169
170 /* Allocator-related actions to do just before and after unexec. */
171
172 void
173 alloc_unexec_pre (void)
174 {
175 #ifdef DOUG_LEA_MALLOC
176 malloc_state_ptr = malloc_get_state ();
177 #endif
178 #ifdef HYBRID_MALLOC
179 bss_sbrk_did_unexec = true;
180 #endif
181 }
182
183 void
184 alloc_unexec_post (void)
185 {
186 #ifdef DOUG_LEA_MALLOC
187 free (malloc_state_ptr);
188 #endif
189 #ifdef HYBRID_MALLOC
190 bss_sbrk_did_unexec = false;
191 #endif
192 }
193
194 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
195 to a struct Lisp_String. */
196
197 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
198 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
199 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
200
201 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
202 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
203 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
204
205 /* Default value of gc_cons_threshold (see below). */
206
207 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
208
209 /* Global variables. */
210 struct emacs_globals globals;
211
212 /* Number of bytes of consing done since the last gc. */
213
214 EMACS_INT consing_since_gc;
215
216 /* Similar minimum, computed from Vgc_cons_percentage. */
217
218 EMACS_INT gc_relative_threshold;
219
220 /* Minimum number of bytes of consing since GC before next GC,
221 when memory is full. */
222
223 EMACS_INT memory_full_cons_threshold;
224
225 /* True during GC. */
226
227 bool gc_in_progress;
228
229 /* True means abort if try to GC.
230 This is for code which is written on the assumption that
231 no GC will happen, so as to verify that assumption. */
232
233 bool abort_on_gc;
234
235 /* Number of live and free conses etc. */
236
237 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
238 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
239 static EMACS_INT total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block, or to see
248 whether this much is available when malloc fails on a larger request. */
249
250 #define SPARE_MEMORY (1 << 14)
251
252 /* Initialize it to a nonzero value to force it into data space
253 (rather than bss space). That way unexec will remap it into text
254 space (pure), on some systems. We have not implemented the
255 remapping on more recent systems because this is less important
256 nowadays than in the days of small memories and timesharing. */
257
258 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
259 #define PUREBEG (char *) pure
260
261 /* Pointer to the pure area, and its size. */
262
263 static char *purebeg;
264 static ptrdiff_t pure_size;
265
266 /* Number of bytes of pure storage used before pure storage overflowed.
267 If this is non-zero, this implies that an overflow occurred. */
268
269 static ptrdiff_t pure_bytes_used_before_overflow;
270
271 /* Index in pure at which next pure Lisp object will be allocated.. */
272
273 static ptrdiff_t pure_bytes_used_lisp;
274
275 /* Number of bytes allocated for non-Lisp objects in pure storage. */
276
277 static ptrdiff_t pure_bytes_used_non_lisp;
278
279 /* If nonzero, this is a warning delivered by malloc and not yet
280 displayed. */
281
282 const char *pending_malloc_warning;
283
284 #if 0 /* Normally, pointer sanity only on request... */
285 #ifdef ENABLE_CHECKING
286 #define SUSPICIOUS_OBJECT_CHECKING 1
287 #endif
288 #endif
289
290 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
291 bug is unresolved. */
292 #define SUSPICIOUS_OBJECT_CHECKING 1
293
294 #ifdef SUSPICIOUS_OBJECT_CHECKING
295 struct suspicious_free_record
296 {
297 void *suspicious_object;
298 void *backtrace[128];
299 };
300 static void *suspicious_objects[32];
301 static int suspicious_object_index;
302 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
303 static int suspicious_free_history_index;
304 /* Find the first currently-monitored suspicious pointer in range
305 [begin,end) or NULL if no such pointer exists. */
306 static void *find_suspicious_object_in_range (void *begin, void *end);
307 static void detect_suspicious_free (void *ptr);
308 #else
309 # define find_suspicious_object_in_range(begin, end) NULL
310 # define detect_suspicious_free(ptr) (void)
311 #endif
312
313 /* Maximum amount of C stack to save when a GC happens. */
314
315 #ifndef MAX_SAVE_STACK
316 #define MAX_SAVE_STACK 16000
317 #endif
318
319 /* Buffer in which we save a copy of the C stack at each GC. */
320
321 #if MAX_SAVE_STACK > 0
322 static char *stack_copy;
323 static ptrdiff_t stack_copy_size;
324
325 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
326 avoiding any address sanitization. */
327
328 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
329 no_sanitize_memcpy (void *dest, void const *src, size_t size)
330 {
331 if (! ADDRESS_SANITIZER)
332 return memcpy (dest, src, size);
333 else
334 {
335 size_t i;
336 char *d = dest;
337 char const *s = src;
338 for (i = 0; i < size; i++)
339 d[i] = s[i];
340 return dest;
341 }
342 }
343
344 #endif /* MAX_SAVE_STACK > 0 */
345
346 static void mark_terminals (void);
347 static void gc_sweep (void);
348 static Lisp_Object make_pure_vector (ptrdiff_t);
349 static void mark_buffer (struct buffer *);
350
351 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
352 static void refill_memory_reserve (void);
353 #endif
354 static void compact_small_strings (void);
355 static void free_large_strings (void);
356 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
357
358 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
359 what memory allocated via lisp_malloc and lisp_align_malloc is intended
360 for what purpose. This enumeration specifies the type of memory. */
361
362 enum mem_type
363 {
364 MEM_TYPE_NON_LISP,
365 MEM_TYPE_BUFFER,
366 MEM_TYPE_CONS,
367 MEM_TYPE_STRING,
368 MEM_TYPE_MISC,
369 MEM_TYPE_SYMBOL,
370 MEM_TYPE_FLOAT,
371 /* Since all non-bool pseudovectors are small enough to be
372 allocated from vector blocks, this memory type denotes
373 large regular vectors and large bool pseudovectors. */
374 MEM_TYPE_VECTORLIKE,
375 /* Special type to denote vector blocks. */
376 MEM_TYPE_VECTOR_BLOCK,
377 /* Special type to denote reserved memory. */
378 MEM_TYPE_SPARE
379 };
380
381 /* A unique object in pure space used to make some Lisp objects
382 on free lists recognizable in O(1). */
383
384 static Lisp_Object Vdead;
385 #define DEADP(x) EQ (x, Vdead)
386
387 #ifdef GC_MALLOC_CHECK
388
389 enum mem_type allocated_mem_type;
390
391 #endif /* GC_MALLOC_CHECK */
392
393 /* A node in the red-black tree describing allocated memory containing
394 Lisp data. Each such block is recorded with its start and end
395 address when it is allocated, and removed from the tree when it
396 is freed.
397
398 A red-black tree is a balanced binary tree with the following
399 properties:
400
401 1. Every node is either red or black.
402 2. Every leaf is black.
403 3. If a node is red, then both of its children are black.
404 4. Every simple path from a node to a descendant leaf contains
405 the same number of black nodes.
406 5. The root is always black.
407
408 When nodes are inserted into the tree, or deleted from the tree,
409 the tree is "fixed" so that these properties are always true.
410
411 A red-black tree with N internal nodes has height at most 2
412 log(N+1). Searches, insertions and deletions are done in O(log N).
413 Please see a text book about data structures for a detailed
414 description of red-black trees. Any book worth its salt should
415 describe them. */
416
417 struct mem_node
418 {
419 /* Children of this node. These pointers are never NULL. When there
420 is no child, the value is MEM_NIL, which points to a dummy node. */
421 struct mem_node *left, *right;
422
423 /* The parent of this node. In the root node, this is NULL. */
424 struct mem_node *parent;
425
426 /* Start and end of allocated region. */
427 void *start, *end;
428
429 /* Node color. */
430 enum {MEM_BLACK, MEM_RED} color;
431
432 /* Memory type. */
433 enum mem_type type;
434 };
435
436 /* Base address of stack. Set in main. */
437
438 Lisp_Object *stack_base;
439
440 /* Root of the tree describing allocated Lisp memory. */
441
442 static struct mem_node *mem_root;
443
444 /* Lowest and highest known address in the heap. */
445
446 static void *min_heap_address, *max_heap_address;
447
448 /* Sentinel node of the tree. */
449
450 static struct mem_node mem_z;
451 #define MEM_NIL &mem_z
452
453 static struct mem_node *mem_insert (void *, void *, enum mem_type);
454 static void mem_insert_fixup (struct mem_node *);
455 static void mem_rotate_left (struct mem_node *);
456 static void mem_rotate_right (struct mem_node *);
457 static void mem_delete (struct mem_node *);
458 static void mem_delete_fixup (struct mem_node *);
459 static struct mem_node *mem_find (void *);
460
461 #ifndef DEADP
462 # define DEADP(x) 0
463 #endif
464
465 /* Addresses of staticpro'd variables. Initialize it to a nonzero
466 value; otherwise some compilers put it into BSS. */
467
468 enum { NSTATICS = 2048 };
469 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
470
471 /* Index of next unused slot in staticvec. */
472
473 static int staticidx;
474
475 static void *pure_alloc (size_t, int);
476
477 /* Return X rounded to the next multiple of Y. Arguments should not
478 have side effects, as they are evaluated more than once. Assume X
479 + Y - 1 does not overflow. Tune for Y being a power of 2. */
480
481 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
482 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
483 : ((x) + (y) - 1) & ~ ((y) - 1))
484
485 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
486
487 static void *
488 ALIGN (void *ptr, int alignment)
489 {
490 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
491 }
492
493 /* Extract the pointer hidden within A, if A is not a symbol.
494 If A is a symbol, extract the hidden pointer's offset from lispsym,
495 converted to void *. */
496
497 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
498 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
499
500 /* Extract the pointer hidden within A. */
501
502 #define macro_XPNTR(a) \
503 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
504 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
505
506 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
507 functions, as functions are cleaner and can be used in debuggers.
508 Also, define them as macros if being compiled with GCC without
509 optimization, for performance in that case. The macro_* names are
510 private to this section of code. */
511
512 static ATTRIBUTE_UNUSED void *
513 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
514 {
515 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
516 }
517 static ATTRIBUTE_UNUSED void *
518 XPNTR (Lisp_Object a)
519 {
520 return macro_XPNTR (a);
521 }
522
523 #if DEFINE_KEY_OPS_AS_MACROS
524 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
525 # define XPNTR(a) macro_XPNTR (a)
526 #endif
527
528 static void
529 XFLOAT_INIT (Lisp_Object f, double n)
530 {
531 XFLOAT (f)->u.data = n;
532 }
533
534 #ifdef DOUG_LEA_MALLOC
535 static bool
536 pointers_fit_in_lispobj_p (void)
537 {
538 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
539 }
540
541 static bool
542 mmap_lisp_allowed_p (void)
543 {
544 /* If we can't store all memory addresses in our lisp objects, it's
545 risky to let the heap use mmap and give us addresses from all
546 over our address space. We also can't use mmap for lisp objects
547 if we might dump: unexec doesn't preserve the contents of mmapped
548 regions. */
549 return pointers_fit_in_lispobj_p () && !might_dump;
550 }
551 #endif
552
553 /* Head of a circularly-linked list of extant finalizers. */
554 static struct Lisp_Finalizer finalizers;
555
556 /* Head of a circularly-linked list of finalizers that must be invoked
557 because we deemed them unreachable. This list must be global, and
558 not a local inside garbage_collect_1, in case we GC again while
559 running finalizers. */
560 static struct Lisp_Finalizer doomed_finalizers;
561
562 \f
563 /************************************************************************
564 Malloc
565 ************************************************************************/
566
567 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
568
569 /* Function malloc calls this if it finds we are near exhausting storage. */
570
571 void
572 malloc_warning (const char *str)
573 {
574 pending_malloc_warning = str;
575 }
576
577 #endif
578
579 /* Display an already-pending malloc warning. */
580
581 void
582 display_malloc_warning (void)
583 {
584 call3 (intern ("display-warning"),
585 intern ("alloc"),
586 build_string (pending_malloc_warning),
587 intern ("emergency"));
588 pending_malloc_warning = 0;
589 }
590 \f
591 /* Called if we can't allocate relocatable space for a buffer. */
592
593 void
594 buffer_memory_full (ptrdiff_t nbytes)
595 {
596 /* If buffers use the relocating allocator, no need to free
597 spare_memory, because we may have plenty of malloc space left
598 that we could get, and if we don't, the malloc that fails will
599 itself cause spare_memory to be freed. If buffers don't use the
600 relocating allocator, treat this like any other failing
601 malloc. */
602
603 #ifndef REL_ALLOC
604 memory_full (nbytes);
605 #else
606 /* This used to call error, but if we've run out of memory, we could
607 get infinite recursion trying to build the string. */
608 xsignal (Qnil, Vmemory_signal_data);
609 #endif
610 }
611
612 /* A common multiple of the positive integers A and B. Ideally this
613 would be the least common multiple, but there's no way to do that
614 as a constant expression in C, so do the best that we can easily do. */
615 #define COMMON_MULTIPLE(a, b) \
616 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
617
618 #ifndef XMALLOC_OVERRUN_CHECK
619 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
620 #else
621
622 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
623 around each block.
624
625 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
626 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
627 block size in little-endian order. The trailer consists of
628 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
629
630 The header is used to detect whether this block has been allocated
631 through these functions, as some low-level libc functions may
632 bypass the malloc hooks. */
633
634 #define XMALLOC_OVERRUN_CHECK_SIZE 16
635 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
636 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
637
638 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
639 hold a size_t value and (2) the header size is a multiple of the
640 alignment that Emacs needs for C types and for USE_LSB_TAG. */
641 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
642
643 #define XMALLOC_HEADER_ALIGNMENT \
644 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
645 #define XMALLOC_OVERRUN_SIZE_SIZE \
646 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
647 + XMALLOC_HEADER_ALIGNMENT - 1) \
648 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
649 - XMALLOC_OVERRUN_CHECK_SIZE)
650
651 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
652 { '\x9a', '\x9b', '\xae', '\xaf',
653 '\xbf', '\xbe', '\xce', '\xcf',
654 '\xea', '\xeb', '\xec', '\xed',
655 '\xdf', '\xde', '\x9c', '\x9d' };
656
657 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
658 { '\xaa', '\xab', '\xac', '\xad',
659 '\xba', '\xbb', '\xbc', '\xbd',
660 '\xca', '\xcb', '\xcc', '\xcd',
661 '\xda', '\xdb', '\xdc', '\xdd' };
662
663 /* Insert and extract the block size in the header. */
664
665 static void
666 xmalloc_put_size (unsigned char *ptr, size_t size)
667 {
668 int i;
669 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
670 {
671 *--ptr = size & ((1 << CHAR_BIT) - 1);
672 size >>= CHAR_BIT;
673 }
674 }
675
676 static size_t
677 xmalloc_get_size (unsigned char *ptr)
678 {
679 size_t size = 0;
680 int i;
681 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
683 {
684 size <<= CHAR_BIT;
685 size += *ptr++;
686 }
687 return size;
688 }
689
690
691 /* Like malloc, but wraps allocated block with header and trailer. */
692
693 static void *
694 overrun_check_malloc (size_t size)
695 {
696 register unsigned char *val;
697 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
698 emacs_abort ();
699
700 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 if (val)
702 {
703 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
704 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
705 xmalloc_put_size (val, size);
706 memcpy (val + size, xmalloc_overrun_check_trailer,
707 XMALLOC_OVERRUN_CHECK_SIZE);
708 }
709 return val;
710 }
711
712
713 /* Like realloc, but checks old block for overrun, and wraps new block
714 with header and trailer. */
715
716 static void *
717 overrun_check_realloc (void *block, size_t size)
718 {
719 register unsigned char *val = (unsigned char *) block;
720 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
721 emacs_abort ();
722
723 if (val
724 && memcmp (xmalloc_overrun_check_header,
725 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
726 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
727 {
728 size_t osize = xmalloc_get_size (val);
729 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
730 XMALLOC_OVERRUN_CHECK_SIZE))
731 emacs_abort ();
732 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
733 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
734 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
735 }
736
737 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
738
739 if (val)
740 {
741 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
742 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
743 xmalloc_put_size (val, size);
744 memcpy (val + size, xmalloc_overrun_check_trailer,
745 XMALLOC_OVERRUN_CHECK_SIZE);
746 }
747 return val;
748 }
749
750 /* Like free, but checks block for overrun. */
751
752 static void
753 overrun_check_free (void *block)
754 {
755 unsigned char *val = (unsigned char *) block;
756
757 if (val
758 && memcmp (xmalloc_overrun_check_header,
759 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
760 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
761 {
762 size_t osize = xmalloc_get_size (val);
763 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
764 XMALLOC_OVERRUN_CHECK_SIZE))
765 emacs_abort ();
766 #ifdef XMALLOC_CLEAR_FREE_MEMORY
767 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
768 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
769 #else
770 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
771 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
772 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
773 #endif
774 }
775
776 free (val);
777 }
778
779 #undef malloc
780 #undef realloc
781 #undef free
782 #define malloc overrun_check_malloc
783 #define realloc overrun_check_realloc
784 #define free overrun_check_free
785 #endif
786
787 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
788 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
789 If that variable is set, block input while in one of Emacs's memory
790 allocation functions. There should be no need for this debugging
791 option, since signal handlers do not allocate memory, but Emacs
792 formerly allocated memory in signal handlers and this compile-time
793 option remains as a way to help debug the issue should it rear its
794 ugly head again. */
795 #ifdef XMALLOC_BLOCK_INPUT_CHECK
796 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
797 static void
798 malloc_block_input (void)
799 {
800 if (block_input_in_memory_allocators)
801 block_input ();
802 }
803 static void
804 malloc_unblock_input (void)
805 {
806 if (block_input_in_memory_allocators)
807 unblock_input ();
808 }
809 # define MALLOC_BLOCK_INPUT malloc_block_input ()
810 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
811 #else
812 # define MALLOC_BLOCK_INPUT ((void) 0)
813 # define MALLOC_UNBLOCK_INPUT ((void) 0)
814 #endif
815
816 #define MALLOC_PROBE(size) \
817 do { \
818 if (profiler_memory_running) \
819 malloc_probe (size); \
820 } while (0)
821
822 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
823 static void *lrealloc (void *, size_t);
824
825 /* Like malloc but check for no memory and block interrupt input. */
826
827 void *
828 xmalloc (size_t size)
829 {
830 void *val;
831
832 MALLOC_BLOCK_INPUT;
833 val = lmalloc (size);
834 MALLOC_UNBLOCK_INPUT;
835
836 if (!val && size)
837 memory_full (size);
838 MALLOC_PROBE (size);
839 return val;
840 }
841
842 /* Like the above, but zeroes out the memory just allocated. */
843
844 void *
845 xzalloc (size_t size)
846 {
847 void *val;
848
849 MALLOC_BLOCK_INPUT;
850 val = lmalloc (size);
851 MALLOC_UNBLOCK_INPUT;
852
853 if (!val && size)
854 memory_full (size);
855 memset (val, 0, size);
856 MALLOC_PROBE (size);
857 return val;
858 }
859
860 /* Like realloc but check for no memory and block interrupt input.. */
861
862 void *
863 xrealloc (void *block, size_t size)
864 {
865 void *val;
866
867 MALLOC_BLOCK_INPUT;
868 /* We must call malloc explicitly when BLOCK is 0, since some
869 reallocs don't do this. */
870 if (! block)
871 val = lmalloc (size);
872 else
873 val = lrealloc (block, size);
874 MALLOC_UNBLOCK_INPUT;
875
876 if (!val && size)
877 memory_full (size);
878 MALLOC_PROBE (size);
879 return val;
880 }
881
882
883 /* Like free but block interrupt input. */
884
885 void
886 xfree (void *block)
887 {
888 if (!block)
889 return;
890 MALLOC_BLOCK_INPUT;
891 free (block);
892 MALLOC_UNBLOCK_INPUT;
893 /* We don't call refill_memory_reserve here
894 because in practice the call in r_alloc_free seems to suffice. */
895 }
896
897
898 /* Other parts of Emacs pass large int values to allocator functions
899 expecting ptrdiff_t. This is portable in practice, but check it to
900 be safe. */
901 verify (INT_MAX <= PTRDIFF_MAX);
902
903
904 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
905 Signal an error on memory exhaustion, and block interrupt input. */
906
907 void *
908 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
909 {
910 eassert (0 <= nitems && 0 < item_size);
911 ptrdiff_t nbytes;
912 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
913 memory_full (SIZE_MAX);
914 return xmalloc (nbytes);
915 }
916
917
918 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
919 Signal an error on memory exhaustion, and block interrupt input. */
920
921 void *
922 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
923 {
924 eassert (0 <= nitems && 0 < item_size);
925 ptrdiff_t nbytes;
926 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
927 memory_full (SIZE_MAX);
928 return xrealloc (pa, nbytes);
929 }
930
931
932 /* Grow PA, which points to an array of *NITEMS items, and return the
933 location of the reallocated array, updating *NITEMS to reflect its
934 new size. The new array will contain at least NITEMS_INCR_MIN more
935 items, but will not contain more than NITEMS_MAX items total.
936 ITEM_SIZE is the size of each item, in bytes.
937
938 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
939 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
940 infinity.
941
942 If PA is null, then allocate a new array instead of reallocating
943 the old one.
944
945 Block interrupt input as needed. If memory exhaustion occurs, set
946 *NITEMS to zero if PA is null, and signal an error (i.e., do not
947 return).
948
949 Thus, to grow an array A without saving its old contents, do
950 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
951 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
952 and signals an error, and later this code is reexecuted and
953 attempts to free A. */
954
955 void *
956 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
957 ptrdiff_t nitems_max, ptrdiff_t item_size)
958 {
959 ptrdiff_t n0 = *nitems;
960 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
961
962 /* The approximate size to use for initial small allocation
963 requests. This is the largest "small" request for the GNU C
964 library malloc. */
965 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
966
967 /* If the array is tiny, grow it to about (but no greater than)
968 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
969 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
970 NITEMS_MAX, and what the C language can represent safely. */
971
972 ptrdiff_t n, nbytes;
973 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
974 n = PTRDIFF_MAX;
975 if (0 <= nitems_max && nitems_max < n)
976 n = nitems_max;
977
978 ptrdiff_t adjusted_nbytes
979 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
980 ? min (PTRDIFF_MAX, SIZE_MAX)
981 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
982 if (adjusted_nbytes)
983 {
984 n = adjusted_nbytes / item_size;
985 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
986 }
987
988 if (! pa)
989 *nitems = 0;
990 if (n - n0 < nitems_incr_min
991 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
992 || (0 <= nitems_max && nitems_max < n)
993 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
994 memory_full (SIZE_MAX);
995 pa = xrealloc (pa, nbytes);
996 *nitems = n;
997 return pa;
998 }
999
1000
1001 /* Like strdup, but uses xmalloc. */
1002
1003 char *
1004 xstrdup (const char *s)
1005 {
1006 ptrdiff_t size;
1007 eassert (s);
1008 size = strlen (s) + 1;
1009 return memcpy (xmalloc (size), s, size);
1010 }
1011
1012 /* Like above, but duplicates Lisp string to C string. */
1013
1014 char *
1015 xlispstrdup (Lisp_Object string)
1016 {
1017 ptrdiff_t size = SBYTES (string) + 1;
1018 return memcpy (xmalloc (size), SSDATA (string), size);
1019 }
1020
1021 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1022 pointed to. If STRING is null, assign it without copying anything.
1023 Allocate before freeing, to avoid a dangling pointer if allocation
1024 fails. */
1025
1026 void
1027 dupstring (char **ptr, char const *string)
1028 {
1029 char *old = *ptr;
1030 *ptr = string ? xstrdup (string) : 0;
1031 xfree (old);
1032 }
1033
1034
1035 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1036 argument is a const pointer. */
1037
1038 void
1039 xputenv (char const *string)
1040 {
1041 if (putenv ((char *) string) != 0)
1042 memory_full (0);
1043 }
1044
1045 /* Return a newly allocated memory block of SIZE bytes, remembering
1046 to free it when unwinding. */
1047 void *
1048 record_xmalloc (size_t size)
1049 {
1050 void *p = xmalloc (size);
1051 record_unwind_protect_ptr (xfree, p);
1052 return p;
1053 }
1054
1055
1056 /* Like malloc but used for allocating Lisp data. NBYTES is the
1057 number of bytes to allocate, TYPE describes the intended use of the
1058 allocated memory block (for strings, for conses, ...). */
1059
1060 #if ! USE_LSB_TAG
1061 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1062 #endif
1063
1064 static void *
1065 lisp_malloc (size_t nbytes, enum mem_type type)
1066 {
1067 register void *val;
1068
1069 MALLOC_BLOCK_INPUT;
1070
1071 #ifdef GC_MALLOC_CHECK
1072 allocated_mem_type = type;
1073 #endif
1074
1075 val = lmalloc (nbytes);
1076
1077 #if ! USE_LSB_TAG
1078 /* If the memory just allocated cannot be addressed thru a Lisp
1079 object's pointer, and it needs to be,
1080 that's equivalent to running out of memory. */
1081 if (val && type != MEM_TYPE_NON_LISP)
1082 {
1083 Lisp_Object tem;
1084 XSETCONS (tem, (char *) val + nbytes - 1);
1085 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1086 {
1087 lisp_malloc_loser = val;
1088 free (val);
1089 val = 0;
1090 }
1091 }
1092 #endif
1093
1094 #ifndef GC_MALLOC_CHECK
1095 if (val && type != MEM_TYPE_NON_LISP)
1096 mem_insert (val, (char *) val + nbytes, type);
1097 #endif
1098
1099 MALLOC_UNBLOCK_INPUT;
1100 if (!val && nbytes)
1101 memory_full (nbytes);
1102 MALLOC_PROBE (nbytes);
1103 return val;
1104 }
1105
1106 /* Free BLOCK. This must be called to free memory allocated with a
1107 call to lisp_malloc. */
1108
1109 static void
1110 lisp_free (void *block)
1111 {
1112 MALLOC_BLOCK_INPUT;
1113 free (block);
1114 #ifndef GC_MALLOC_CHECK
1115 mem_delete (mem_find (block));
1116 #endif
1117 MALLOC_UNBLOCK_INPUT;
1118 }
1119
1120 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1121
1122 /* The entry point is lisp_align_malloc which returns blocks of at most
1123 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1124
1125 /* Use aligned_alloc if it or a simple substitute is available.
1126 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1127 clang 3.3 anyway. Aligned allocation is incompatible with
1128 unexmacosx.c, so don't use it on Darwin. */
1129
1130 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1131 # if (defined HAVE_ALIGNED_ALLOC \
1132 || (defined HYBRID_MALLOC \
1133 ? defined HAVE_POSIX_MEMALIGN \
1134 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1135 # define USE_ALIGNED_ALLOC 1
1136 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1137 # define USE_ALIGNED_ALLOC 1
1138 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1139 static void *
1140 aligned_alloc (size_t alignment, size_t size)
1141 {
1142 void *p;
1143 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1144 }
1145 # endif
1146 #endif
1147
1148 /* BLOCK_ALIGN has to be a power of 2. */
1149 #define BLOCK_ALIGN (1 << 10)
1150
1151 /* Padding to leave at the end of a malloc'd block. This is to give
1152 malloc a chance to minimize the amount of memory wasted to alignment.
1153 It should be tuned to the particular malloc library used.
1154 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1155 aligned_alloc on the other hand would ideally prefer a value of 4
1156 because otherwise, there's 1020 bytes wasted between each ablocks.
1157 In Emacs, testing shows that those 1020 can most of the time be
1158 efficiently used by malloc to place other objects, so a value of 0 can
1159 still preferable unless you have a lot of aligned blocks and virtually
1160 nothing else. */
1161 #define BLOCK_PADDING 0
1162 #define BLOCK_BYTES \
1163 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1164
1165 /* Internal data structures and constants. */
1166
1167 #define ABLOCKS_SIZE 16
1168
1169 /* An aligned block of memory. */
1170 struct ablock
1171 {
1172 union
1173 {
1174 char payload[BLOCK_BYTES];
1175 struct ablock *next_free;
1176 } x;
1177 /* `abase' is the aligned base of the ablocks. */
1178 /* It is overloaded to hold the virtual `busy' field that counts
1179 the number of used ablock in the parent ablocks.
1180 The first ablock has the `busy' field, the others have the `abase'
1181 field. To tell the difference, we assume that pointers will have
1182 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1183 is used to tell whether the real base of the parent ablocks is `abase'
1184 (if not, the word before the first ablock holds a pointer to the
1185 real base). */
1186 struct ablocks *abase;
1187 /* The padding of all but the last ablock is unused. The padding of
1188 the last ablock in an ablocks is not allocated. */
1189 #if BLOCK_PADDING
1190 char padding[BLOCK_PADDING];
1191 #endif
1192 };
1193
1194 /* A bunch of consecutive aligned blocks. */
1195 struct ablocks
1196 {
1197 struct ablock blocks[ABLOCKS_SIZE];
1198 };
1199
1200 /* Size of the block requested from malloc or aligned_alloc. */
1201 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1202
1203 #define ABLOCK_ABASE(block) \
1204 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1205 ? (struct ablocks *)(block) \
1206 : (block)->abase)
1207
1208 /* Virtual `busy' field. */
1209 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1210
1211 /* Pointer to the (not necessarily aligned) malloc block. */
1212 #ifdef USE_ALIGNED_ALLOC
1213 #define ABLOCKS_BASE(abase) (abase)
1214 #else
1215 #define ABLOCKS_BASE(abase) \
1216 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1217 #endif
1218
1219 /* The list of free ablock. */
1220 static struct ablock *free_ablock;
1221
1222 /* Allocate an aligned block of nbytes.
1223 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1224 smaller or equal to BLOCK_BYTES. */
1225 static void *
1226 lisp_align_malloc (size_t nbytes, enum mem_type type)
1227 {
1228 void *base, *val;
1229 struct ablocks *abase;
1230
1231 eassert (nbytes <= BLOCK_BYTES);
1232
1233 MALLOC_BLOCK_INPUT;
1234
1235 #ifdef GC_MALLOC_CHECK
1236 allocated_mem_type = type;
1237 #endif
1238
1239 if (!free_ablock)
1240 {
1241 int i;
1242 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1243
1244 #ifdef DOUG_LEA_MALLOC
1245 if (!mmap_lisp_allowed_p ())
1246 mallopt (M_MMAP_MAX, 0);
1247 #endif
1248
1249 #ifdef USE_ALIGNED_ALLOC
1250 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1251 #else
1252 base = malloc (ABLOCKS_BYTES);
1253 abase = ALIGN (base, BLOCK_ALIGN);
1254 #endif
1255
1256 if (base == 0)
1257 {
1258 MALLOC_UNBLOCK_INPUT;
1259 memory_full (ABLOCKS_BYTES);
1260 }
1261
1262 aligned = (base == abase);
1263 if (!aligned)
1264 ((void **) abase)[-1] = base;
1265
1266 #ifdef DOUG_LEA_MALLOC
1267 if (!mmap_lisp_allowed_p ())
1268 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1269 #endif
1270
1271 #if ! USE_LSB_TAG
1272 /* If the memory just allocated cannot be addressed thru a Lisp
1273 object's pointer, and it needs to be, that's equivalent to
1274 running out of memory. */
1275 if (type != MEM_TYPE_NON_LISP)
1276 {
1277 Lisp_Object tem;
1278 char *end = (char *) base + ABLOCKS_BYTES - 1;
1279 XSETCONS (tem, end);
1280 if ((char *) XCONS (tem) != end)
1281 {
1282 lisp_malloc_loser = base;
1283 free (base);
1284 MALLOC_UNBLOCK_INPUT;
1285 memory_full (SIZE_MAX);
1286 }
1287 }
1288 #endif
1289
1290 /* Initialize the blocks and put them on the free list.
1291 If `base' was not properly aligned, we can't use the last block. */
1292 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1293 {
1294 abase->blocks[i].abase = abase;
1295 abase->blocks[i].x.next_free = free_ablock;
1296 free_ablock = &abase->blocks[i];
1297 }
1298 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1299
1300 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1301 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1302 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1303 eassert (ABLOCKS_BASE (abase) == base);
1304 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1305 }
1306
1307 abase = ABLOCK_ABASE (free_ablock);
1308 ABLOCKS_BUSY (abase)
1309 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1310 val = free_ablock;
1311 free_ablock = free_ablock->x.next_free;
1312
1313 #ifndef GC_MALLOC_CHECK
1314 if (type != MEM_TYPE_NON_LISP)
1315 mem_insert (val, (char *) val + nbytes, type);
1316 #endif
1317
1318 MALLOC_UNBLOCK_INPUT;
1319
1320 MALLOC_PROBE (nbytes);
1321
1322 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1323 return val;
1324 }
1325
1326 static void
1327 lisp_align_free (void *block)
1328 {
1329 struct ablock *ablock = block;
1330 struct ablocks *abase = ABLOCK_ABASE (ablock);
1331
1332 MALLOC_BLOCK_INPUT;
1333 #ifndef GC_MALLOC_CHECK
1334 mem_delete (mem_find (block));
1335 #endif
1336 /* Put on free list. */
1337 ablock->x.next_free = free_ablock;
1338 free_ablock = ablock;
1339 /* Update busy count. */
1340 ABLOCKS_BUSY (abase)
1341 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1342
1343 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1344 { /* All the blocks are free. */
1345 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1346 struct ablock **tem = &free_ablock;
1347 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1348
1349 while (*tem)
1350 {
1351 if (*tem >= (struct ablock *) abase && *tem < atop)
1352 {
1353 i++;
1354 *tem = (*tem)->x.next_free;
1355 }
1356 else
1357 tem = &(*tem)->x.next_free;
1358 }
1359 eassert ((aligned & 1) == aligned);
1360 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1361 #ifdef USE_POSIX_MEMALIGN
1362 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1363 #endif
1364 free (ABLOCKS_BASE (abase));
1365 }
1366 MALLOC_UNBLOCK_INPUT;
1367 }
1368
1369 #if !defined __GNUC__ && !defined __alignof__
1370 # define __alignof__(type) alignof (type)
1371 #endif
1372
1373 /* True if malloc returns a multiple of GCALIGNMENT. In practice this
1374 holds if __alignof__ (max_align_t) is a multiple. Use __alignof__
1375 if available, as otherwise this check would fail with GCC x86.
1376 This is a macro, not an enum constant, for portability to HP-UX
1377 10.20 cc and AIX 3.2.5 xlc. */
1378 #define MALLOC_IS_GC_ALIGNED (__alignof__ (max_align_t) % GCALIGNMENT == 0)
1379
1380 /* True if P is suitably aligned for SIZE, where Lisp alignment may be
1381 needed if SIZE is Lisp-aligned. */
1382
1383 static bool
1384 laligned (void *p, size_t size)
1385 {
1386 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1387 || size % GCALIGNMENT != 0);
1388 }
1389
1390 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1391 sure the result is too, if necessary by reallocating (typically
1392 with larger and larger sizes) until the allocator returns a
1393 Lisp-aligned pointer. Code that needs to allocate C heap memory
1394 for a Lisp object should use one of these functions to obtain a
1395 pointer P; that way, if T is an enum Lisp_Type value and L ==
1396 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1397
1398 On typical modern platforms these functions' loops do not iterate.
1399 On now-rare (and perhaps nonexistent) platforms, the loops in
1400 theory could repeat forever. If an infinite loop is possible on a
1401 platform, a build would surely loop and the builder can then send
1402 us a bug report. Adding a counter to try to detect any such loop
1403 would complicate the code (and possibly introduce bugs, in code
1404 that's never really exercised) for little benefit. */
1405
1406 static void *
1407 lmalloc (size_t size)
1408 {
1409 #if USE_ALIGNED_ALLOC
1410 if (! MALLOC_IS_GC_ALIGNED)
1411 return aligned_alloc (GCALIGNMENT, size);
1412 #endif
1413
1414 void *p;
1415 while (true)
1416 {
1417 p = malloc (size);
1418 if (laligned (p, size))
1419 break;
1420 free (p);
1421 size_t bigger;
1422 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1423 size = bigger;
1424 }
1425
1426 eassert ((intptr_t) p % GCALIGNMENT == 0);
1427 return p;
1428 }
1429
1430 static void *
1431 lrealloc (void *p, size_t size)
1432 {
1433 while (true)
1434 {
1435 p = realloc (p, size);
1436 if (laligned (p, size))
1437 break;
1438 size_t bigger;
1439 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1440 size = bigger;
1441 }
1442
1443 eassert ((intptr_t) p % GCALIGNMENT == 0);
1444 return p;
1445 }
1446
1447 \f
1448 /***********************************************************************
1449 Interval Allocation
1450 ***********************************************************************/
1451
1452 /* Number of intervals allocated in an interval_block structure.
1453 The 1020 is 1024 minus malloc overhead. */
1454
1455 #define INTERVAL_BLOCK_SIZE \
1456 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1457
1458 /* Intervals are allocated in chunks in the form of an interval_block
1459 structure. */
1460
1461 struct interval_block
1462 {
1463 /* Place `intervals' first, to preserve alignment. */
1464 struct interval intervals[INTERVAL_BLOCK_SIZE];
1465 struct interval_block *next;
1466 };
1467
1468 /* Current interval block. Its `next' pointer points to older
1469 blocks. */
1470
1471 static struct interval_block *interval_block;
1472
1473 /* Index in interval_block above of the next unused interval
1474 structure. */
1475
1476 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1477
1478 /* Number of free and live intervals. */
1479
1480 static EMACS_INT total_free_intervals, total_intervals;
1481
1482 /* List of free intervals. */
1483
1484 static INTERVAL interval_free_list;
1485
1486 /* Return a new interval. */
1487
1488 INTERVAL
1489 make_interval (void)
1490 {
1491 INTERVAL val;
1492
1493 MALLOC_BLOCK_INPUT;
1494
1495 if (interval_free_list)
1496 {
1497 val = interval_free_list;
1498 interval_free_list = INTERVAL_PARENT (interval_free_list);
1499 }
1500 else
1501 {
1502 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1503 {
1504 struct interval_block *newi
1505 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1506
1507 newi->next = interval_block;
1508 interval_block = newi;
1509 interval_block_index = 0;
1510 total_free_intervals += INTERVAL_BLOCK_SIZE;
1511 }
1512 val = &interval_block->intervals[interval_block_index++];
1513 }
1514
1515 MALLOC_UNBLOCK_INPUT;
1516
1517 consing_since_gc += sizeof (struct interval);
1518 intervals_consed++;
1519 total_free_intervals--;
1520 RESET_INTERVAL (val);
1521 val->gcmarkbit = 0;
1522 return val;
1523 }
1524
1525
1526 /* Mark Lisp objects in interval I. */
1527
1528 static void
1529 mark_interval (register INTERVAL i, Lisp_Object dummy)
1530 {
1531 /* Intervals should never be shared. So, if extra internal checking is
1532 enabled, GC aborts if it seems to have visited an interval twice. */
1533 eassert (!i->gcmarkbit);
1534 i->gcmarkbit = 1;
1535 mark_object (i->plist);
1536 }
1537
1538 /* Mark the interval tree rooted in I. */
1539
1540 #define MARK_INTERVAL_TREE(i) \
1541 do { \
1542 if (i && !i->gcmarkbit) \
1543 traverse_intervals_noorder (i, mark_interval, Qnil); \
1544 } while (0)
1545
1546 /***********************************************************************
1547 String Allocation
1548 ***********************************************************************/
1549
1550 /* Lisp_Strings are allocated in string_block structures. When a new
1551 string_block is allocated, all the Lisp_Strings it contains are
1552 added to a free-list string_free_list. When a new Lisp_String is
1553 needed, it is taken from that list. During the sweep phase of GC,
1554 string_blocks that are entirely free are freed, except two which
1555 we keep.
1556
1557 String data is allocated from sblock structures. Strings larger
1558 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1559 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1560
1561 Sblocks consist internally of sdata structures, one for each
1562 Lisp_String. The sdata structure points to the Lisp_String it
1563 belongs to. The Lisp_String points back to the `u.data' member of
1564 its sdata structure.
1565
1566 When a Lisp_String is freed during GC, it is put back on
1567 string_free_list, and its `data' member and its sdata's `string'
1568 pointer is set to null. The size of the string is recorded in the
1569 `n.nbytes' member of the sdata. So, sdata structures that are no
1570 longer used, can be easily recognized, and it's easy to compact the
1571 sblocks of small strings which we do in compact_small_strings. */
1572
1573 /* Size in bytes of an sblock structure used for small strings. This
1574 is 8192 minus malloc overhead. */
1575
1576 #define SBLOCK_SIZE 8188
1577
1578 /* Strings larger than this are considered large strings. String data
1579 for large strings is allocated from individual sblocks. */
1580
1581 #define LARGE_STRING_BYTES 1024
1582
1583 /* The SDATA typedef is a struct or union describing string memory
1584 sub-allocated from an sblock. This is where the contents of Lisp
1585 strings are stored. */
1586
1587 struct sdata
1588 {
1589 /* Back-pointer to the string this sdata belongs to. If null, this
1590 structure is free, and NBYTES (in this structure or in the union below)
1591 contains the string's byte size (the same value that STRING_BYTES
1592 would return if STRING were non-null). If non-null, STRING_BYTES
1593 (STRING) is the size of the data, and DATA contains the string's
1594 contents. */
1595 struct Lisp_String *string;
1596
1597 #ifdef GC_CHECK_STRING_BYTES
1598 ptrdiff_t nbytes;
1599 #endif
1600
1601 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1602 };
1603
1604 #ifdef GC_CHECK_STRING_BYTES
1605
1606 typedef struct sdata sdata;
1607 #define SDATA_NBYTES(S) (S)->nbytes
1608 #define SDATA_DATA(S) (S)->data
1609
1610 #else
1611
1612 typedef union
1613 {
1614 struct Lisp_String *string;
1615
1616 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1617 which has a flexible array member. However, if implemented by
1618 giving this union a member of type 'struct sdata', the union
1619 could not be the last (flexible) member of 'struct sblock',
1620 because C99 prohibits a flexible array member from having a type
1621 that is itself a flexible array. So, comment this member out here,
1622 but remember that the option's there when using this union. */
1623 #if 0
1624 struct sdata u;
1625 #endif
1626
1627 /* When STRING is null. */
1628 struct
1629 {
1630 struct Lisp_String *string;
1631 ptrdiff_t nbytes;
1632 } n;
1633 } sdata;
1634
1635 #define SDATA_NBYTES(S) (S)->n.nbytes
1636 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1637
1638 #endif /* not GC_CHECK_STRING_BYTES */
1639
1640 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1641
1642 /* Structure describing a block of memory which is sub-allocated to
1643 obtain string data memory for strings. Blocks for small strings
1644 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1645 as large as needed. */
1646
1647 struct sblock
1648 {
1649 /* Next in list. */
1650 struct sblock *next;
1651
1652 /* Pointer to the next free sdata block. This points past the end
1653 of the sblock if there isn't any space left in this block. */
1654 sdata *next_free;
1655
1656 /* String data. */
1657 sdata data[FLEXIBLE_ARRAY_MEMBER];
1658 };
1659
1660 /* Number of Lisp strings in a string_block structure. The 1020 is
1661 1024 minus malloc overhead. */
1662
1663 #define STRING_BLOCK_SIZE \
1664 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1665
1666 /* Structure describing a block from which Lisp_String structures
1667 are allocated. */
1668
1669 struct string_block
1670 {
1671 /* Place `strings' first, to preserve alignment. */
1672 struct Lisp_String strings[STRING_BLOCK_SIZE];
1673 struct string_block *next;
1674 };
1675
1676 /* Head and tail of the list of sblock structures holding Lisp string
1677 data. We always allocate from current_sblock. The NEXT pointers
1678 in the sblock structures go from oldest_sblock to current_sblock. */
1679
1680 static struct sblock *oldest_sblock, *current_sblock;
1681
1682 /* List of sblocks for large strings. */
1683
1684 static struct sblock *large_sblocks;
1685
1686 /* List of string_block structures. */
1687
1688 static struct string_block *string_blocks;
1689
1690 /* Free-list of Lisp_Strings. */
1691
1692 static struct Lisp_String *string_free_list;
1693
1694 /* Number of live and free Lisp_Strings. */
1695
1696 static EMACS_INT total_strings, total_free_strings;
1697
1698 /* Number of bytes used by live strings. */
1699
1700 static EMACS_INT total_string_bytes;
1701
1702 /* Given a pointer to a Lisp_String S which is on the free-list
1703 string_free_list, return a pointer to its successor in the
1704 free-list. */
1705
1706 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1707
1708 /* Return a pointer to the sdata structure belonging to Lisp string S.
1709 S must be live, i.e. S->data must not be null. S->data is actually
1710 a pointer to the `u.data' member of its sdata structure; the
1711 structure starts at a constant offset in front of that. */
1712
1713 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1714
1715
1716 #ifdef GC_CHECK_STRING_OVERRUN
1717
1718 /* We check for overrun in string data blocks by appending a small
1719 "cookie" after each allocated string data block, and check for the
1720 presence of this cookie during GC. */
1721
1722 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1723 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1724 { '\xde', '\xad', '\xbe', '\xef' };
1725
1726 #else
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1728 #endif
1729
1730 /* Value is the size of an sdata structure large enough to hold NBYTES
1731 bytes of string data. The value returned includes a terminating
1732 NUL byte, the size of the sdata structure, and padding. */
1733
1734 #ifdef GC_CHECK_STRING_BYTES
1735
1736 #define SDATA_SIZE(NBYTES) \
1737 ((SDATA_DATA_OFFSET \
1738 + (NBYTES) + 1 \
1739 + sizeof (ptrdiff_t) - 1) \
1740 & ~(sizeof (ptrdiff_t) - 1))
1741
1742 #else /* not GC_CHECK_STRING_BYTES */
1743
1744 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1745 less than the size of that member. The 'max' is not needed when
1746 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1747 alignment code reserves enough space. */
1748
1749 #define SDATA_SIZE(NBYTES) \
1750 ((SDATA_DATA_OFFSET \
1751 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1752 ? NBYTES \
1753 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1754 + 1 \
1755 + sizeof (ptrdiff_t) - 1) \
1756 & ~(sizeof (ptrdiff_t) - 1))
1757
1758 #endif /* not GC_CHECK_STRING_BYTES */
1759
1760 /* Extra bytes to allocate for each string. */
1761
1762 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1763
1764 /* Exact bound on the number of bytes in a string, not counting the
1765 terminating null. A string cannot contain more bytes than
1766 STRING_BYTES_BOUND, nor can it be so long that the size_t
1767 arithmetic in allocate_string_data would overflow while it is
1768 calculating a value to be passed to malloc. */
1769 static ptrdiff_t const STRING_BYTES_MAX =
1770 min (STRING_BYTES_BOUND,
1771 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1772 - GC_STRING_EXTRA
1773 - offsetof (struct sblock, data)
1774 - SDATA_DATA_OFFSET)
1775 & ~(sizeof (EMACS_INT) - 1)));
1776
1777 /* Initialize string allocation. Called from init_alloc_once. */
1778
1779 static void
1780 init_strings (void)
1781 {
1782 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1783 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1784 }
1785
1786
1787 #ifdef GC_CHECK_STRING_BYTES
1788
1789 static int check_string_bytes_count;
1790
1791 /* Like STRING_BYTES, but with debugging check. Can be
1792 called during GC, so pay attention to the mark bit. */
1793
1794 ptrdiff_t
1795 string_bytes (struct Lisp_String *s)
1796 {
1797 ptrdiff_t nbytes =
1798 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1799
1800 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1801 emacs_abort ();
1802 return nbytes;
1803 }
1804
1805 /* Check validity of Lisp strings' string_bytes member in B. */
1806
1807 static void
1808 check_sblock (struct sblock *b)
1809 {
1810 sdata *from, *end, *from_end;
1811
1812 end = b->next_free;
1813
1814 for (from = b->data; from < end; from = from_end)
1815 {
1816 /* Compute the next FROM here because copying below may
1817 overwrite data we need to compute it. */
1818 ptrdiff_t nbytes;
1819
1820 /* Check that the string size recorded in the string is the
1821 same as the one recorded in the sdata structure. */
1822 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1823 : SDATA_NBYTES (from));
1824 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1825 }
1826 }
1827
1828
1829 /* Check validity of Lisp strings' string_bytes member. ALL_P
1830 means check all strings, otherwise check only most
1831 recently allocated strings. Used for hunting a bug. */
1832
1833 static void
1834 check_string_bytes (bool all_p)
1835 {
1836 if (all_p)
1837 {
1838 struct sblock *b;
1839
1840 for (b = large_sblocks; b; b = b->next)
1841 {
1842 struct Lisp_String *s = b->data[0].string;
1843 if (s)
1844 string_bytes (s);
1845 }
1846
1847 for (b = oldest_sblock; b; b = b->next)
1848 check_sblock (b);
1849 }
1850 else if (current_sblock)
1851 check_sblock (current_sblock);
1852 }
1853
1854 #else /* not GC_CHECK_STRING_BYTES */
1855
1856 #define check_string_bytes(all) ((void) 0)
1857
1858 #endif /* GC_CHECK_STRING_BYTES */
1859
1860 #ifdef GC_CHECK_STRING_FREE_LIST
1861
1862 /* Walk through the string free list looking for bogus next pointers.
1863 This may catch buffer overrun from a previous string. */
1864
1865 static void
1866 check_string_free_list (void)
1867 {
1868 struct Lisp_String *s;
1869
1870 /* Pop a Lisp_String off the free-list. */
1871 s = string_free_list;
1872 while (s != NULL)
1873 {
1874 if ((uintptr_t) s < 1024)
1875 emacs_abort ();
1876 s = NEXT_FREE_LISP_STRING (s);
1877 }
1878 }
1879 #else
1880 #define check_string_free_list()
1881 #endif
1882
1883 /* Return a new Lisp_String. */
1884
1885 static struct Lisp_String *
1886 allocate_string (void)
1887 {
1888 struct Lisp_String *s;
1889
1890 MALLOC_BLOCK_INPUT;
1891
1892 /* If the free-list is empty, allocate a new string_block, and
1893 add all the Lisp_Strings in it to the free-list. */
1894 if (string_free_list == NULL)
1895 {
1896 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1897 int i;
1898
1899 b->next = string_blocks;
1900 string_blocks = b;
1901
1902 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1903 {
1904 s = b->strings + i;
1905 /* Every string on a free list should have NULL data pointer. */
1906 s->data = NULL;
1907 NEXT_FREE_LISP_STRING (s) = string_free_list;
1908 string_free_list = s;
1909 }
1910
1911 total_free_strings += STRING_BLOCK_SIZE;
1912 }
1913
1914 check_string_free_list ();
1915
1916 /* Pop a Lisp_String off the free-list. */
1917 s = string_free_list;
1918 string_free_list = NEXT_FREE_LISP_STRING (s);
1919
1920 MALLOC_UNBLOCK_INPUT;
1921
1922 --total_free_strings;
1923 ++total_strings;
1924 ++strings_consed;
1925 consing_since_gc += sizeof *s;
1926
1927 #ifdef GC_CHECK_STRING_BYTES
1928 if (!noninteractive)
1929 {
1930 if (++check_string_bytes_count == 200)
1931 {
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1934 }
1935 else
1936 check_string_bytes (0);
1937 }
1938 #endif /* GC_CHECK_STRING_BYTES */
1939
1940 return s;
1941 }
1942
1943
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1949
1950 void
1951 allocate_string_data (struct Lisp_String *s,
1952 EMACS_INT nchars, EMACS_INT nbytes)
1953 {
1954 sdata *data, *old_data;
1955 struct sblock *b;
1956 ptrdiff_t needed, old_nbytes;
1957
1958 if (STRING_BYTES_MAX < nbytes)
1959 string_overflow ();
1960
1961 /* Determine the number of bytes needed to store NBYTES bytes
1962 of string data. */
1963 needed = SDATA_SIZE (nbytes);
1964 if (s->data)
1965 {
1966 old_data = SDATA_OF_STRING (s);
1967 old_nbytes = STRING_BYTES (s);
1968 }
1969 else
1970 old_data = NULL;
1971
1972 MALLOC_BLOCK_INPUT;
1973
1974 if (nbytes > LARGE_STRING_BYTES)
1975 {
1976 size_t size = offsetof (struct sblock, data) + needed;
1977
1978 #ifdef DOUG_LEA_MALLOC
1979 if (!mmap_lisp_allowed_p ())
1980 mallopt (M_MMAP_MAX, 0);
1981 #endif
1982
1983 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1984
1985 #ifdef DOUG_LEA_MALLOC
1986 if (!mmap_lisp_allowed_p ())
1987 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1988 #endif
1989
1990 b->next_free = b->data;
1991 b->data[0].string = NULL;
1992 b->next = large_sblocks;
1993 large_sblocks = b;
1994 }
1995 else if (current_sblock == NULL
1996 || (((char *) current_sblock + SBLOCK_SIZE
1997 - (char *) current_sblock->next_free)
1998 < (needed + GC_STRING_EXTRA)))
1999 {
2000 /* Not enough room in the current sblock. */
2001 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2002 b->next_free = b->data;
2003 b->data[0].string = NULL;
2004 b->next = NULL;
2005
2006 if (current_sblock)
2007 current_sblock->next = b;
2008 else
2009 oldest_sblock = b;
2010 current_sblock = b;
2011 }
2012 else
2013 b = current_sblock;
2014
2015 data = b->next_free;
2016 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2017
2018 MALLOC_UNBLOCK_INPUT;
2019
2020 data->string = s;
2021 s->data = SDATA_DATA (data);
2022 #ifdef GC_CHECK_STRING_BYTES
2023 SDATA_NBYTES (data) = nbytes;
2024 #endif
2025 s->size = nchars;
2026 s->size_byte = nbytes;
2027 s->data[nbytes] = '\0';
2028 #ifdef GC_CHECK_STRING_OVERRUN
2029 memcpy ((char *) data + needed, string_overrun_cookie,
2030 GC_STRING_OVERRUN_COOKIE_SIZE);
2031 #endif
2032
2033 /* Note that Faset may call to this function when S has already data
2034 assigned. In this case, mark data as free by setting it's string
2035 back-pointer to null, and record the size of the data in it. */
2036 if (old_data)
2037 {
2038 SDATA_NBYTES (old_data) = old_nbytes;
2039 old_data->string = NULL;
2040 }
2041
2042 consing_since_gc += needed;
2043 }
2044
2045
2046 /* Sweep and compact strings. */
2047
2048 NO_INLINE /* For better stack traces */
2049 static void
2050 sweep_strings (void)
2051 {
2052 struct string_block *b, *next;
2053 struct string_block *live_blocks = NULL;
2054
2055 string_free_list = NULL;
2056 total_strings = total_free_strings = 0;
2057 total_string_bytes = 0;
2058
2059 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2060 for (b = string_blocks; b; b = next)
2061 {
2062 int i, nfree = 0;
2063 struct Lisp_String *free_list_before = string_free_list;
2064
2065 next = b->next;
2066
2067 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2068 {
2069 struct Lisp_String *s = b->strings + i;
2070
2071 if (s->data)
2072 {
2073 /* String was not on free-list before. */
2074 if (STRING_MARKED_P (s))
2075 {
2076 /* String is live; unmark it and its intervals. */
2077 UNMARK_STRING (s);
2078
2079 /* Do not use string_(set|get)_intervals here. */
2080 s->intervals = balance_intervals (s->intervals);
2081
2082 ++total_strings;
2083 total_string_bytes += STRING_BYTES (s);
2084 }
2085 else
2086 {
2087 /* String is dead. Put it on the free-list. */
2088 sdata *data = SDATA_OF_STRING (s);
2089
2090 /* Save the size of S in its sdata so that we know
2091 how large that is. Reset the sdata's string
2092 back-pointer so that we know it's free. */
2093 #ifdef GC_CHECK_STRING_BYTES
2094 if (string_bytes (s) != SDATA_NBYTES (data))
2095 emacs_abort ();
2096 #else
2097 data->n.nbytes = STRING_BYTES (s);
2098 #endif
2099 data->string = NULL;
2100
2101 /* Reset the strings's `data' member so that we
2102 know it's free. */
2103 s->data = NULL;
2104
2105 /* Put the string on the free-list. */
2106 NEXT_FREE_LISP_STRING (s) = string_free_list;
2107 string_free_list = s;
2108 ++nfree;
2109 }
2110 }
2111 else
2112 {
2113 /* S was on the free-list before. Put it there again. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2117 }
2118 }
2119
2120 /* Free blocks that contain free Lisp_Strings only, except
2121 the first two of them. */
2122 if (nfree == STRING_BLOCK_SIZE
2123 && total_free_strings > STRING_BLOCK_SIZE)
2124 {
2125 lisp_free (b);
2126 string_free_list = free_list_before;
2127 }
2128 else
2129 {
2130 total_free_strings += nfree;
2131 b->next = live_blocks;
2132 live_blocks = b;
2133 }
2134 }
2135
2136 check_string_free_list ();
2137
2138 string_blocks = live_blocks;
2139 free_large_strings ();
2140 compact_small_strings ();
2141
2142 check_string_free_list ();
2143 }
2144
2145
2146 /* Free dead large strings. */
2147
2148 static void
2149 free_large_strings (void)
2150 {
2151 struct sblock *b, *next;
2152 struct sblock *live_blocks = NULL;
2153
2154 for (b = large_sblocks; b; b = next)
2155 {
2156 next = b->next;
2157
2158 if (b->data[0].string == NULL)
2159 lisp_free (b);
2160 else
2161 {
2162 b->next = live_blocks;
2163 live_blocks = b;
2164 }
2165 }
2166
2167 large_sblocks = live_blocks;
2168 }
2169
2170
2171 /* Compact data of small strings. Free sblocks that don't contain
2172 data of live strings after compaction. */
2173
2174 static void
2175 compact_small_strings (void)
2176 {
2177 struct sblock *b, *tb, *next;
2178 sdata *from, *to, *end, *tb_end;
2179 sdata *to_end, *from_end;
2180
2181 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2182 to, and TB_END is the end of TB. */
2183 tb = oldest_sblock;
2184 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2185 to = tb->data;
2186
2187 /* Step through the blocks from the oldest to the youngest. We
2188 expect that old blocks will stabilize over time, so that less
2189 copying will happen this way. */
2190 for (b = oldest_sblock; b; b = b->next)
2191 {
2192 end = b->next_free;
2193 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2194
2195 for (from = b->data; from < end; from = from_end)
2196 {
2197 /* Compute the next FROM here because copying below may
2198 overwrite data we need to compute it. */
2199 ptrdiff_t nbytes;
2200 struct Lisp_String *s = from->string;
2201
2202 #ifdef GC_CHECK_STRING_BYTES
2203 /* Check that the string size recorded in the string is the
2204 same as the one recorded in the sdata structure. */
2205 if (s && string_bytes (s) != SDATA_NBYTES (from))
2206 emacs_abort ();
2207 #endif /* GC_CHECK_STRING_BYTES */
2208
2209 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2210 eassert (nbytes <= LARGE_STRING_BYTES);
2211
2212 nbytes = SDATA_SIZE (nbytes);
2213 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2214
2215 #ifdef GC_CHECK_STRING_OVERRUN
2216 if (memcmp (string_overrun_cookie,
2217 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2218 GC_STRING_OVERRUN_COOKIE_SIZE))
2219 emacs_abort ();
2220 #endif
2221
2222 /* Non-NULL S means it's alive. Copy its data. */
2223 if (s)
2224 {
2225 /* If TB is full, proceed with the next sblock. */
2226 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2227 if (to_end > tb_end)
2228 {
2229 tb->next_free = to;
2230 tb = tb->next;
2231 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2232 to = tb->data;
2233 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2234 }
2235
2236 /* Copy, and update the string's `data' pointer. */
2237 if (from != to)
2238 {
2239 eassert (tb != b || to < from);
2240 memmove (to, from, nbytes + GC_STRING_EXTRA);
2241 to->string->data = SDATA_DATA (to);
2242 }
2243
2244 /* Advance past the sdata we copied to. */
2245 to = to_end;
2246 }
2247 }
2248 }
2249
2250 /* The rest of the sblocks following TB don't contain live data, so
2251 we can free them. */
2252 for (b = tb->next; b; b = next)
2253 {
2254 next = b->next;
2255 lisp_free (b);
2256 }
2257
2258 tb->next_free = to;
2259 tb->next = NULL;
2260 current_sblock = tb;
2261 }
2262
2263 void
2264 string_overflow (void)
2265 {
2266 error ("Maximum string size exceeded");
2267 }
2268
2269 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2270 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2271 LENGTH must be an integer.
2272 INIT must be an integer that represents a character. */)
2273 (Lisp_Object length, Lisp_Object init)
2274 {
2275 register Lisp_Object val;
2276 int c;
2277 EMACS_INT nbytes;
2278
2279 CHECK_NATNUM (length);
2280 CHECK_CHARACTER (init);
2281
2282 c = XFASTINT (init);
2283 if (ASCII_CHAR_P (c))
2284 {
2285 nbytes = XINT (length);
2286 val = make_uninit_string (nbytes);
2287 if (nbytes)
2288 {
2289 memset (SDATA (val), c, nbytes);
2290 SDATA (val)[nbytes] = 0;
2291 }
2292 }
2293 else
2294 {
2295 unsigned char str[MAX_MULTIBYTE_LENGTH];
2296 ptrdiff_t len = CHAR_STRING (c, str);
2297 EMACS_INT string_len = XINT (length);
2298 unsigned char *p, *beg, *end;
2299
2300 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2301 string_overflow ();
2302 val = make_uninit_multibyte_string (string_len, nbytes);
2303 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2304 {
2305 /* First time we just copy `str' to the data of `val'. */
2306 if (p == beg)
2307 memcpy (p, str, len);
2308 else
2309 {
2310 /* Next time we copy largest possible chunk from
2311 initialized to uninitialized part of `val'. */
2312 len = min (p - beg, end - p);
2313 memcpy (p, beg, len);
2314 }
2315 }
2316 if (nbytes)
2317 *p = 0;
2318 }
2319
2320 return val;
2321 }
2322
2323 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2324 Return A. */
2325
2326 Lisp_Object
2327 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2328 {
2329 EMACS_INT nbits = bool_vector_size (a);
2330 if (0 < nbits)
2331 {
2332 unsigned char *data = bool_vector_uchar_data (a);
2333 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2334 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2335 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2336 memset (data, pattern, nbytes - 1);
2337 data[nbytes - 1] = pattern & last_mask;
2338 }
2339 return a;
2340 }
2341
2342 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2343
2344 Lisp_Object
2345 make_uninit_bool_vector (EMACS_INT nbits)
2346 {
2347 Lisp_Object val;
2348 EMACS_INT words = bool_vector_words (nbits);
2349 EMACS_INT word_bytes = words * sizeof (bits_word);
2350 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2351 + word_size - 1)
2352 / word_size);
2353 struct Lisp_Bool_Vector *p
2354 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2355 XSETVECTOR (val, p);
2356 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2357 p->size = nbits;
2358
2359 /* Clear padding at the end. */
2360 if (words)
2361 p->data[words - 1] = 0;
2362
2363 return val;
2364 }
2365
2366 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2367 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2368 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2369 (Lisp_Object length, Lisp_Object init)
2370 {
2371 Lisp_Object val;
2372
2373 CHECK_NATNUM (length);
2374 val = make_uninit_bool_vector (XFASTINT (length));
2375 return bool_vector_fill (val, init);
2376 }
2377
2378 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2379 doc: /* Return a new bool-vector with specified arguments as elements.
2380 Any number of arguments, even zero arguments, are allowed.
2381 usage: (bool-vector &rest OBJECTS) */)
2382 (ptrdiff_t nargs, Lisp_Object *args)
2383 {
2384 ptrdiff_t i;
2385 Lisp_Object vector;
2386
2387 vector = make_uninit_bool_vector (nargs);
2388 for (i = 0; i < nargs; i++)
2389 bool_vector_set (vector, i, !NILP (args[i]));
2390
2391 return vector;
2392 }
2393
2394 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2395 of characters from the contents. This string may be unibyte or
2396 multibyte, depending on the contents. */
2397
2398 Lisp_Object
2399 make_string (const char *contents, ptrdiff_t nbytes)
2400 {
2401 register Lisp_Object val;
2402 ptrdiff_t nchars, multibyte_nbytes;
2403
2404 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2405 &nchars, &multibyte_nbytes);
2406 if (nbytes == nchars || nbytes != multibyte_nbytes)
2407 /* CONTENTS contains no multibyte sequences or contains an invalid
2408 multibyte sequence. We must make unibyte string. */
2409 val = make_unibyte_string (contents, nbytes);
2410 else
2411 val = make_multibyte_string (contents, nchars, nbytes);
2412 return val;
2413 }
2414
2415 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2416
2417 Lisp_Object
2418 make_unibyte_string (const char *contents, ptrdiff_t length)
2419 {
2420 register Lisp_Object val;
2421 val = make_uninit_string (length);
2422 memcpy (SDATA (val), contents, length);
2423 return val;
2424 }
2425
2426
2427 /* Make a multibyte string from NCHARS characters occupying NBYTES
2428 bytes at CONTENTS. */
2429
2430 Lisp_Object
2431 make_multibyte_string (const char *contents,
2432 ptrdiff_t nchars, ptrdiff_t nbytes)
2433 {
2434 register Lisp_Object val;
2435 val = make_uninit_multibyte_string (nchars, nbytes);
2436 memcpy (SDATA (val), contents, nbytes);
2437 return val;
2438 }
2439
2440
2441 /* Make a string from NCHARS characters occupying NBYTES bytes at
2442 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2443
2444 Lisp_Object
2445 make_string_from_bytes (const char *contents,
2446 ptrdiff_t nchars, ptrdiff_t nbytes)
2447 {
2448 register Lisp_Object val;
2449 val = make_uninit_multibyte_string (nchars, nbytes);
2450 memcpy (SDATA (val), contents, nbytes);
2451 if (SBYTES (val) == SCHARS (val))
2452 STRING_SET_UNIBYTE (val);
2453 return val;
2454 }
2455
2456
2457 /* Make a string from NCHARS characters occupying NBYTES bytes at
2458 CONTENTS. The argument MULTIBYTE controls whether to label the
2459 string as multibyte. If NCHARS is negative, it counts the number of
2460 characters by itself. */
2461
2462 Lisp_Object
2463 make_specified_string (const char *contents,
2464 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2465 {
2466 Lisp_Object val;
2467
2468 if (nchars < 0)
2469 {
2470 if (multibyte)
2471 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2472 nbytes);
2473 else
2474 nchars = nbytes;
2475 }
2476 val = make_uninit_multibyte_string (nchars, nbytes);
2477 memcpy (SDATA (val), contents, nbytes);
2478 if (!multibyte)
2479 STRING_SET_UNIBYTE (val);
2480 return val;
2481 }
2482
2483
2484 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2485 occupying LENGTH bytes. */
2486
2487 Lisp_Object
2488 make_uninit_string (EMACS_INT length)
2489 {
2490 Lisp_Object val;
2491
2492 if (!length)
2493 return empty_unibyte_string;
2494 val = make_uninit_multibyte_string (length, length);
2495 STRING_SET_UNIBYTE (val);
2496 return val;
2497 }
2498
2499
2500 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2501 which occupy NBYTES bytes. */
2502
2503 Lisp_Object
2504 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2505 {
2506 Lisp_Object string;
2507 struct Lisp_String *s;
2508
2509 if (nchars < 0)
2510 emacs_abort ();
2511 if (!nbytes)
2512 return empty_multibyte_string;
2513
2514 s = allocate_string ();
2515 s->intervals = NULL;
2516 allocate_string_data (s, nchars, nbytes);
2517 XSETSTRING (string, s);
2518 string_chars_consed += nbytes;
2519 return string;
2520 }
2521
2522 /* Print arguments to BUF according to a FORMAT, then return
2523 a Lisp_String initialized with the data from BUF. */
2524
2525 Lisp_Object
2526 make_formatted_string (char *buf, const char *format, ...)
2527 {
2528 va_list ap;
2529 int length;
2530
2531 va_start (ap, format);
2532 length = vsprintf (buf, format, ap);
2533 va_end (ap);
2534 return make_string (buf, length);
2535 }
2536
2537 \f
2538 /***********************************************************************
2539 Float Allocation
2540 ***********************************************************************/
2541
2542 /* We store float cells inside of float_blocks, allocating a new
2543 float_block with malloc whenever necessary. Float cells reclaimed
2544 by GC are put on a free list to be reallocated before allocating
2545 any new float cells from the latest float_block. */
2546
2547 #define FLOAT_BLOCK_SIZE \
2548 (((BLOCK_BYTES - sizeof (struct float_block *) \
2549 /* The compiler might add padding at the end. */ \
2550 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2551 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2552
2553 #define GETMARKBIT(block,n) \
2554 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2555 >> ((n) % BITS_PER_BITS_WORD)) \
2556 & 1)
2557
2558 #define SETMARKBIT(block,n) \
2559 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2560 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2561
2562 #define UNSETMARKBIT(block,n) \
2563 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2564 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2565
2566 #define FLOAT_BLOCK(fptr) \
2567 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2568
2569 #define FLOAT_INDEX(fptr) \
2570 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2571
2572 struct float_block
2573 {
2574 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2575 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2576 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2577 struct float_block *next;
2578 };
2579
2580 #define FLOAT_MARKED_P(fptr) \
2581 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2582
2583 #define FLOAT_MARK(fptr) \
2584 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2585
2586 #define FLOAT_UNMARK(fptr) \
2587 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2588
2589 /* Current float_block. */
2590
2591 static struct float_block *float_block;
2592
2593 /* Index of first unused Lisp_Float in the current float_block. */
2594
2595 static int float_block_index = FLOAT_BLOCK_SIZE;
2596
2597 /* Free-list of Lisp_Floats. */
2598
2599 static struct Lisp_Float *float_free_list;
2600
2601 /* Return a new float object with value FLOAT_VALUE. */
2602
2603 Lisp_Object
2604 make_float (double float_value)
2605 {
2606 register Lisp_Object val;
2607
2608 MALLOC_BLOCK_INPUT;
2609
2610 if (float_free_list)
2611 {
2612 /* We use the data field for chaining the free list
2613 so that we won't use the same field that has the mark bit. */
2614 XSETFLOAT (val, float_free_list);
2615 float_free_list = float_free_list->u.chain;
2616 }
2617 else
2618 {
2619 if (float_block_index == FLOAT_BLOCK_SIZE)
2620 {
2621 struct float_block *new
2622 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2623 new->next = float_block;
2624 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2625 float_block = new;
2626 float_block_index = 0;
2627 total_free_floats += FLOAT_BLOCK_SIZE;
2628 }
2629 XSETFLOAT (val, &float_block->floats[float_block_index]);
2630 float_block_index++;
2631 }
2632
2633 MALLOC_UNBLOCK_INPUT;
2634
2635 XFLOAT_INIT (val, float_value);
2636 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2637 consing_since_gc += sizeof (struct Lisp_Float);
2638 floats_consed++;
2639 total_free_floats--;
2640 return val;
2641 }
2642
2643
2644 \f
2645 /***********************************************************************
2646 Cons Allocation
2647 ***********************************************************************/
2648
2649 /* We store cons cells inside of cons_blocks, allocating a new
2650 cons_block with malloc whenever necessary. Cons cells reclaimed by
2651 GC are put on a free list to be reallocated before allocating
2652 any new cons cells from the latest cons_block. */
2653
2654 #define CONS_BLOCK_SIZE \
2655 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2656 /* The compiler might add padding at the end. */ \
2657 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2658 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2659
2660 #define CONS_BLOCK(fptr) \
2661 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2662
2663 #define CONS_INDEX(fptr) \
2664 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2665
2666 struct cons_block
2667 {
2668 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2669 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2670 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2671 struct cons_block *next;
2672 };
2673
2674 #define CONS_MARKED_P(fptr) \
2675 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2676
2677 #define CONS_MARK(fptr) \
2678 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2679
2680 #define CONS_UNMARK(fptr) \
2681 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2682
2683 /* Current cons_block. */
2684
2685 static struct cons_block *cons_block;
2686
2687 /* Index of first unused Lisp_Cons in the current block. */
2688
2689 static int cons_block_index = CONS_BLOCK_SIZE;
2690
2691 /* Free-list of Lisp_Cons structures. */
2692
2693 static struct Lisp_Cons *cons_free_list;
2694
2695 /* Explicitly free a cons cell by putting it on the free-list. */
2696
2697 void
2698 free_cons (struct Lisp_Cons *ptr)
2699 {
2700 ptr->u.chain = cons_free_list;
2701 ptr->car = Vdead;
2702 cons_free_list = ptr;
2703 consing_since_gc -= sizeof *ptr;
2704 total_free_conses++;
2705 }
2706
2707 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2708 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2709 (Lisp_Object car, Lisp_Object cdr)
2710 {
2711 register Lisp_Object val;
2712
2713 MALLOC_BLOCK_INPUT;
2714
2715 if (cons_free_list)
2716 {
2717 /* We use the cdr for chaining the free list
2718 so that we won't use the same field that has the mark bit. */
2719 XSETCONS (val, cons_free_list);
2720 cons_free_list = cons_free_list->u.chain;
2721 }
2722 else
2723 {
2724 if (cons_block_index == CONS_BLOCK_SIZE)
2725 {
2726 struct cons_block *new
2727 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2728 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2729 new->next = cons_block;
2730 cons_block = new;
2731 cons_block_index = 0;
2732 total_free_conses += CONS_BLOCK_SIZE;
2733 }
2734 XSETCONS (val, &cons_block->conses[cons_block_index]);
2735 cons_block_index++;
2736 }
2737
2738 MALLOC_UNBLOCK_INPUT;
2739
2740 XSETCAR (val, car);
2741 XSETCDR (val, cdr);
2742 eassert (!CONS_MARKED_P (XCONS (val)));
2743 consing_since_gc += sizeof (struct Lisp_Cons);
2744 total_free_conses--;
2745 cons_cells_consed++;
2746 return val;
2747 }
2748
2749 #ifdef GC_CHECK_CONS_LIST
2750 /* Get an error now if there's any junk in the cons free list. */
2751 void
2752 check_cons_list (void)
2753 {
2754 struct Lisp_Cons *tail = cons_free_list;
2755
2756 while (tail)
2757 tail = tail->u.chain;
2758 }
2759 #endif
2760
2761 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2762
2763 Lisp_Object
2764 list1 (Lisp_Object arg1)
2765 {
2766 return Fcons (arg1, Qnil);
2767 }
2768
2769 Lisp_Object
2770 list2 (Lisp_Object arg1, Lisp_Object arg2)
2771 {
2772 return Fcons (arg1, Fcons (arg2, Qnil));
2773 }
2774
2775
2776 Lisp_Object
2777 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2778 {
2779 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2780 }
2781
2782
2783 Lisp_Object
2784 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2785 {
2786 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2787 }
2788
2789
2790 Lisp_Object
2791 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2792 {
2793 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2794 Fcons (arg5, Qnil)))));
2795 }
2796
2797 /* Make a list of COUNT Lisp_Objects, where ARG is the
2798 first one. Allocate conses from pure space if TYPE
2799 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2800
2801 Lisp_Object
2802 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2803 {
2804 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2805 switch (type)
2806 {
2807 case CONSTYPE_PURE: cons = pure_cons; break;
2808 case CONSTYPE_HEAP: cons = Fcons; break;
2809 default: emacs_abort ();
2810 }
2811
2812 eassume (0 < count);
2813 Lisp_Object val = cons (arg, Qnil);
2814 Lisp_Object tail = val;
2815
2816 va_list ap;
2817 va_start (ap, arg);
2818 for (ptrdiff_t i = 1; i < count; i++)
2819 {
2820 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2821 XSETCDR (tail, elem);
2822 tail = elem;
2823 }
2824 va_end (ap);
2825
2826 return val;
2827 }
2828
2829 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2830 doc: /* Return a newly created list with specified arguments as elements.
2831 Any number of arguments, even zero arguments, are allowed.
2832 usage: (list &rest OBJECTS) */)
2833 (ptrdiff_t nargs, Lisp_Object *args)
2834 {
2835 register Lisp_Object val;
2836 val = Qnil;
2837
2838 while (nargs > 0)
2839 {
2840 nargs--;
2841 val = Fcons (args[nargs], val);
2842 }
2843 return val;
2844 }
2845
2846
2847 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2848 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2849 (register Lisp_Object length, Lisp_Object init)
2850 {
2851 register Lisp_Object val;
2852 register EMACS_INT size;
2853
2854 CHECK_NATNUM (length);
2855 size = XFASTINT (length);
2856
2857 val = Qnil;
2858 while (size > 0)
2859 {
2860 val = Fcons (init, val);
2861 --size;
2862
2863 if (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
2872
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882 }
2883 }
2884 }
2885 }
2886
2887 QUIT;
2888 }
2889
2890 return val;
2891 }
2892
2893
2894 \f
2895 /***********************************************************************
2896 Vector Allocation
2897 ***********************************************************************/
2898
2899 /* Sometimes a vector's contents are merely a pointer internally used
2900 in vector allocation code. On the rare platforms where a null
2901 pointer cannot be tagged, represent it with a Lisp 0.
2902 Usually you don't want to touch this. */
2903
2904 static struct Lisp_Vector *
2905 next_vector (struct Lisp_Vector *v)
2906 {
2907 return XUNTAG (v->contents[0], Lisp_Int0);
2908 }
2909
2910 static void
2911 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2912 {
2913 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2914 }
2915
2916 /* This value is balanced well enough to avoid too much internal overhead
2917 for the most common cases; it's not required to be a power of two, but
2918 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2919
2920 #define VECTOR_BLOCK_SIZE 4096
2921
2922 enum
2923 {
2924 /* Alignment of struct Lisp_Vector objects. */
2925 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2926 GCALIGNMENT),
2927
2928 /* Vector size requests are a multiple of this. */
2929 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2930 };
2931
2932 /* Verify assumptions described above. */
2933 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2934 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2935
2936 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2937 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2938 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2939 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2940
2941 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2942
2943 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2944
2945 /* Size of the minimal vector allocated from block. */
2946
2947 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2948
2949 /* Size of the largest vector allocated from block. */
2950
2951 #define VBLOCK_BYTES_MAX \
2952 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2953
2954 /* We maintain one free list for each possible block-allocated
2955 vector size, and this is the number of free lists we have. */
2956
2957 #define VECTOR_MAX_FREE_LIST_INDEX \
2958 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2959
2960 /* Common shortcut to advance vector pointer over a block data. */
2961
2962 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2963
2964 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2965
2966 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2967
2968 /* Common shortcut to setup vector on a free list. */
2969
2970 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2971 do { \
2972 (tmp) = ((nbytes - header_size) / word_size); \
2973 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2974 eassert ((nbytes) % roundup_size == 0); \
2975 (tmp) = VINDEX (nbytes); \
2976 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2977 set_next_vector (v, vector_free_lists[tmp]); \
2978 vector_free_lists[tmp] = (v); \
2979 total_free_vector_slots += (nbytes) / word_size; \
2980 } while (0)
2981
2982 /* This internal type is used to maintain the list of large vectors
2983 which are allocated at their own, e.g. outside of vector blocks.
2984
2985 struct large_vector itself cannot contain a struct Lisp_Vector, as
2986 the latter contains a flexible array member and C99 does not allow
2987 such structs to be nested. Instead, each struct large_vector
2988 object LV is followed by a struct Lisp_Vector, which is at offset
2989 large_vector_offset from LV, and whose address is therefore
2990 large_vector_vec (&LV). */
2991
2992 struct large_vector
2993 {
2994 struct large_vector *next;
2995 };
2996
2997 enum
2998 {
2999 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
3000 };
3001
3002 static struct Lisp_Vector *
3003 large_vector_vec (struct large_vector *p)
3004 {
3005 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3006 }
3007
3008 /* This internal type is used to maintain an underlying storage
3009 for small vectors. */
3010
3011 struct vector_block
3012 {
3013 char data[VECTOR_BLOCK_BYTES];
3014 struct vector_block *next;
3015 };
3016
3017 /* Chain of vector blocks. */
3018
3019 static struct vector_block *vector_blocks;
3020
3021 /* Vector free lists, where NTH item points to a chain of free
3022 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3023
3024 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3025
3026 /* Singly-linked list of large vectors. */
3027
3028 static struct large_vector *large_vectors;
3029
3030 /* The only vector with 0 slots, allocated from pure space. */
3031
3032 Lisp_Object zero_vector;
3033
3034 /* Number of live vectors. */
3035
3036 static EMACS_INT total_vectors;
3037
3038 /* Total size of live and free vectors, in Lisp_Object units. */
3039
3040 static EMACS_INT total_vector_slots, total_free_vector_slots;
3041
3042 /* Get a new vector block. */
3043
3044 static struct vector_block *
3045 allocate_vector_block (void)
3046 {
3047 struct vector_block *block = xmalloc (sizeof *block);
3048
3049 #ifndef GC_MALLOC_CHECK
3050 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3051 MEM_TYPE_VECTOR_BLOCK);
3052 #endif
3053
3054 block->next = vector_blocks;
3055 vector_blocks = block;
3056 return block;
3057 }
3058
3059 /* Called once to initialize vector allocation. */
3060
3061 static void
3062 init_vectors (void)
3063 {
3064 zero_vector = make_pure_vector (0);
3065 }
3066
3067 /* Allocate vector from a vector block. */
3068
3069 static struct Lisp_Vector *
3070 allocate_vector_from_block (size_t nbytes)
3071 {
3072 struct Lisp_Vector *vector;
3073 struct vector_block *block;
3074 size_t index, restbytes;
3075
3076 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3077 eassert (nbytes % roundup_size == 0);
3078
3079 /* First, try to allocate from a free list
3080 containing vectors of the requested size. */
3081 index = VINDEX (nbytes);
3082 if (vector_free_lists[index])
3083 {
3084 vector = vector_free_lists[index];
3085 vector_free_lists[index] = next_vector (vector);
3086 total_free_vector_slots -= nbytes / word_size;
3087 return vector;
3088 }
3089
3090 /* Next, check free lists containing larger vectors. Since
3091 we will split the result, we should have remaining space
3092 large enough to use for one-slot vector at least. */
3093 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3094 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3095 if (vector_free_lists[index])
3096 {
3097 /* This vector is larger than requested. */
3098 vector = vector_free_lists[index];
3099 vector_free_lists[index] = next_vector (vector);
3100 total_free_vector_slots -= nbytes / word_size;
3101
3102 /* Excess bytes are used for the smaller vector,
3103 which should be set on an appropriate free list. */
3104 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3105 eassert (restbytes % roundup_size == 0);
3106 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3107 return vector;
3108 }
3109
3110 /* Finally, need a new vector block. */
3111 block = allocate_vector_block ();
3112
3113 /* New vector will be at the beginning of this block. */
3114 vector = (struct Lisp_Vector *) block->data;
3115
3116 /* If the rest of space from this block is large enough
3117 for one-slot vector at least, set up it on a free list. */
3118 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3119 if (restbytes >= VBLOCK_BYTES_MIN)
3120 {
3121 eassert (restbytes % roundup_size == 0);
3122 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3123 }
3124 return vector;
3125 }
3126
3127 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3128
3129 #define VECTOR_IN_BLOCK(vector, block) \
3130 ((char *) (vector) <= (block)->data \
3131 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3132
3133 /* Return the memory footprint of V in bytes. */
3134
3135 static ptrdiff_t
3136 vector_nbytes (struct Lisp_Vector *v)
3137 {
3138 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3139 ptrdiff_t nwords;
3140
3141 if (size & PSEUDOVECTOR_FLAG)
3142 {
3143 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3144 {
3145 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3146 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3147 * sizeof (bits_word));
3148 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3149 verify (header_size <= bool_header_size);
3150 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3151 }
3152 else
3153 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3154 + ((size & PSEUDOVECTOR_REST_MASK)
3155 >> PSEUDOVECTOR_SIZE_BITS));
3156 }
3157 else
3158 nwords = size;
3159 return vroundup (header_size + word_size * nwords);
3160 }
3161
3162 /* Release extra resources still in use by VECTOR, which may be any
3163 vector-like object. For now, this is used just to free data in
3164 font objects. */
3165
3166 static void
3167 cleanup_vector (struct Lisp_Vector *vector)
3168 {
3169 detect_suspicious_free (vector);
3170 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3171 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3172 == FONT_OBJECT_MAX))
3173 {
3174 struct font_driver *drv = ((struct font *) vector)->driver;
3175
3176 /* The font driver might sometimes be NULL, e.g. if Emacs was
3177 interrupted before it had time to set it up. */
3178 if (drv)
3179 {
3180 /* Attempt to catch subtle bugs like Bug#16140. */
3181 eassert (valid_font_driver (drv));
3182 drv->close ((struct font *) vector);
3183 }
3184 }
3185 }
3186
3187 /* Reclaim space used by unmarked vectors. */
3188
3189 NO_INLINE /* For better stack traces */
3190 static void
3191 sweep_vectors (void)
3192 {
3193 struct vector_block *block, **bprev = &vector_blocks;
3194 struct large_vector *lv, **lvprev = &large_vectors;
3195 struct Lisp_Vector *vector, *next;
3196
3197 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3198 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3199
3200 /* Looking through vector blocks. */
3201
3202 for (block = vector_blocks; block; block = *bprev)
3203 {
3204 bool free_this_block = 0;
3205 ptrdiff_t nbytes;
3206
3207 for (vector = (struct Lisp_Vector *) block->data;
3208 VECTOR_IN_BLOCK (vector, block); vector = next)
3209 {
3210 if (VECTOR_MARKED_P (vector))
3211 {
3212 VECTOR_UNMARK (vector);
3213 total_vectors++;
3214 nbytes = vector_nbytes (vector);
3215 total_vector_slots += nbytes / word_size;
3216 next = ADVANCE (vector, nbytes);
3217 }
3218 else
3219 {
3220 ptrdiff_t total_bytes;
3221
3222 cleanup_vector (vector);
3223 nbytes = vector_nbytes (vector);
3224 total_bytes = nbytes;
3225 next = ADVANCE (vector, nbytes);
3226
3227 /* While NEXT is not marked, try to coalesce with VECTOR,
3228 thus making VECTOR of the largest possible size. */
3229
3230 while (VECTOR_IN_BLOCK (next, block))
3231 {
3232 if (VECTOR_MARKED_P (next))
3233 break;
3234 cleanup_vector (next);
3235 nbytes = vector_nbytes (next);
3236 total_bytes += nbytes;
3237 next = ADVANCE (next, nbytes);
3238 }
3239
3240 eassert (total_bytes % roundup_size == 0);
3241
3242 if (vector == (struct Lisp_Vector *) block->data
3243 && !VECTOR_IN_BLOCK (next, block))
3244 /* This block should be freed because all of its
3245 space was coalesced into the only free vector. */
3246 free_this_block = 1;
3247 else
3248 {
3249 size_t tmp;
3250 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3251 }
3252 }
3253 }
3254
3255 if (free_this_block)
3256 {
3257 *bprev = block->next;
3258 #ifndef GC_MALLOC_CHECK
3259 mem_delete (mem_find (block->data));
3260 #endif
3261 xfree (block);
3262 }
3263 else
3264 bprev = &block->next;
3265 }
3266
3267 /* Sweep large vectors. */
3268
3269 for (lv = large_vectors; lv; lv = *lvprev)
3270 {
3271 vector = large_vector_vec (lv);
3272 if (VECTOR_MARKED_P (vector))
3273 {
3274 VECTOR_UNMARK (vector);
3275 total_vectors++;
3276 if (vector->header.size & PSEUDOVECTOR_FLAG)
3277 {
3278 /* All non-bool pseudovectors are small enough to be allocated
3279 from vector blocks. This code should be redesigned if some
3280 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3281 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3282 total_vector_slots += vector_nbytes (vector) / word_size;
3283 }
3284 else
3285 total_vector_slots
3286 += header_size / word_size + vector->header.size;
3287 lvprev = &lv->next;
3288 }
3289 else
3290 {
3291 *lvprev = lv->next;
3292 lisp_free (lv);
3293 }
3294 }
3295 }
3296
3297 /* Value is a pointer to a newly allocated Lisp_Vector structure
3298 with room for LEN Lisp_Objects. */
3299
3300 static struct Lisp_Vector *
3301 allocate_vectorlike (ptrdiff_t len)
3302 {
3303 struct Lisp_Vector *p;
3304
3305 MALLOC_BLOCK_INPUT;
3306
3307 if (len == 0)
3308 p = XVECTOR (zero_vector);
3309 else
3310 {
3311 size_t nbytes = header_size + len * word_size;
3312
3313 #ifdef DOUG_LEA_MALLOC
3314 if (!mmap_lisp_allowed_p ())
3315 mallopt (M_MMAP_MAX, 0);
3316 #endif
3317
3318 if (nbytes <= VBLOCK_BYTES_MAX)
3319 p = allocate_vector_from_block (vroundup (nbytes));
3320 else
3321 {
3322 struct large_vector *lv
3323 = lisp_malloc ((large_vector_offset + header_size
3324 + len * word_size),
3325 MEM_TYPE_VECTORLIKE);
3326 lv->next = large_vectors;
3327 large_vectors = lv;
3328 p = large_vector_vec (lv);
3329 }
3330
3331 #ifdef DOUG_LEA_MALLOC
3332 if (!mmap_lisp_allowed_p ())
3333 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3334 #endif
3335
3336 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3337 emacs_abort ();
3338
3339 consing_since_gc += nbytes;
3340 vector_cells_consed += len;
3341 }
3342
3343 MALLOC_UNBLOCK_INPUT;
3344
3345 return p;
3346 }
3347
3348
3349 /* Allocate a vector with LEN slots. */
3350
3351 struct Lisp_Vector *
3352 allocate_vector (EMACS_INT len)
3353 {
3354 struct Lisp_Vector *v;
3355 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3356
3357 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3358 memory_full (SIZE_MAX);
3359 v = allocate_vectorlike (len);
3360 if (len)
3361 v->header.size = len;
3362 return v;
3363 }
3364
3365
3366 /* Allocate other vector-like structures. */
3367
3368 struct Lisp_Vector *
3369 allocate_pseudovector (int memlen, int lisplen,
3370 int zerolen, enum pvec_type tag)
3371 {
3372 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3373
3374 /* Catch bogus values. */
3375 eassert (0 <= tag && tag <= PVEC_FONT);
3376 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3377 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3378 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3379
3380 /* Only the first LISPLEN slots will be traced normally by the GC. */
3381 memclear (v->contents, zerolen * word_size);
3382 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3383 return v;
3384 }
3385
3386 struct buffer *
3387 allocate_buffer (void)
3388 {
3389 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3390
3391 BUFFER_PVEC_INIT (b);
3392 /* Put B on the chain of all buffers including killed ones. */
3393 b->next = all_buffers;
3394 all_buffers = b;
3395 /* Note that the rest fields of B are not initialized. */
3396 return b;
3397 }
3398
3399 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3400 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3401 See also the function `vector'. */)
3402 (Lisp_Object length, Lisp_Object init)
3403 {
3404 CHECK_NATNUM (length);
3405 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3406 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3407 p->contents[i] = init;
3408 return make_lisp_ptr (p, Lisp_Vectorlike);
3409 }
3410
3411 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3412 doc: /* Return a newly created vector with specified arguments as elements.
3413 Any number of arguments, even zero arguments, are allowed.
3414 usage: (vector &rest OBJECTS) */)
3415 (ptrdiff_t nargs, Lisp_Object *args)
3416 {
3417 Lisp_Object val = make_uninit_vector (nargs);
3418 struct Lisp_Vector *p = XVECTOR (val);
3419 memcpy (p->contents, args, nargs * sizeof *args);
3420 return val;
3421 }
3422
3423 void
3424 make_byte_code (struct Lisp_Vector *v)
3425 {
3426 /* Don't allow the global zero_vector to become a byte code object. */
3427 eassert (0 < v->header.size);
3428
3429 if (v->header.size > 1 && STRINGP (v->contents[1])
3430 && STRING_MULTIBYTE (v->contents[1]))
3431 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3432 earlier because they produced a raw 8-bit string for byte-code
3433 and now such a byte-code string is loaded as multibyte while
3434 raw 8-bit characters converted to multibyte form. Thus, now we
3435 must convert them back to the original unibyte form. */
3436 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3437 XSETPVECTYPE (v, PVEC_COMPILED);
3438 }
3439
3440 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3441 doc: /* Create a byte-code object with specified arguments as elements.
3442 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3443 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3444 and (optional) INTERACTIVE-SPEC.
3445 The first four arguments are required; at most six have any
3446 significance.
3447 The ARGLIST can be either like the one of `lambda', in which case the arguments
3448 will be dynamically bound before executing the byte code, or it can be an
3449 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3450 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3451 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3452 argument to catch the left-over arguments. If such an integer is used, the
3453 arguments will not be dynamically bound but will be instead pushed on the
3454 stack before executing the byte-code.
3455 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3456 (ptrdiff_t nargs, Lisp_Object *args)
3457 {
3458 Lisp_Object val = make_uninit_vector (nargs);
3459 struct Lisp_Vector *p = XVECTOR (val);
3460
3461 /* We used to purecopy everything here, if purify-flag was set. This worked
3462 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3463 dangerous, since make-byte-code is used during execution to build
3464 closures, so any closure built during the preload phase would end up
3465 copied into pure space, including its free variables, which is sometimes
3466 just wasteful and other times plainly wrong (e.g. those free vars may want
3467 to be setcar'd). */
3468
3469 memcpy (p->contents, args, nargs * sizeof *args);
3470 make_byte_code (p);
3471 XSETCOMPILED (val, p);
3472 return val;
3473 }
3474
3475
3476 \f
3477 /***********************************************************************
3478 Symbol Allocation
3479 ***********************************************************************/
3480
3481 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3482 of the required alignment. */
3483
3484 union aligned_Lisp_Symbol
3485 {
3486 struct Lisp_Symbol s;
3487 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3488 & -GCALIGNMENT];
3489 };
3490
3491 /* Each symbol_block is just under 1020 bytes long, since malloc
3492 really allocates in units of powers of two and uses 4 bytes for its
3493 own overhead. */
3494
3495 #define SYMBOL_BLOCK_SIZE \
3496 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3497
3498 struct symbol_block
3499 {
3500 /* Place `symbols' first, to preserve alignment. */
3501 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3502 struct symbol_block *next;
3503 };
3504
3505 /* Current symbol block and index of first unused Lisp_Symbol
3506 structure in it. */
3507
3508 static struct symbol_block *symbol_block;
3509 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3510 /* Pointer to the first symbol_block that contains pinned symbols.
3511 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3512 10K of which are pinned (and all but 250 of them are interned in obarray),
3513 whereas a "typical session" has in the order of 30K symbols.
3514 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3515 than 30K to find the 10K symbols we need to mark. */
3516 static struct symbol_block *symbol_block_pinned;
3517
3518 /* List of free symbols. */
3519
3520 static struct Lisp_Symbol *symbol_free_list;
3521
3522 static void
3523 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3524 {
3525 XSYMBOL (sym)->name = name;
3526 }
3527
3528 void
3529 init_symbol (Lisp_Object val, Lisp_Object name)
3530 {
3531 struct Lisp_Symbol *p = XSYMBOL (val);
3532 set_symbol_name (val, name);
3533 set_symbol_plist (val, Qnil);
3534 p->redirect = SYMBOL_PLAINVAL;
3535 SET_SYMBOL_VAL (p, Qunbound);
3536 set_symbol_function (val, Qnil);
3537 set_symbol_next (val, NULL);
3538 p->gcmarkbit = false;
3539 p->interned = SYMBOL_UNINTERNED;
3540 p->constant = 0;
3541 p->declared_special = false;
3542 p->pinned = false;
3543 }
3544
3545 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3546 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3547 Its value is void, and its function definition and property list are nil. */)
3548 (Lisp_Object name)
3549 {
3550 Lisp_Object val;
3551
3552 CHECK_STRING (name);
3553
3554 MALLOC_BLOCK_INPUT;
3555
3556 if (symbol_free_list)
3557 {
3558 XSETSYMBOL (val, symbol_free_list);
3559 symbol_free_list = symbol_free_list->next;
3560 }
3561 else
3562 {
3563 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3564 {
3565 struct symbol_block *new
3566 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3567 new->next = symbol_block;
3568 symbol_block = new;
3569 symbol_block_index = 0;
3570 total_free_symbols += SYMBOL_BLOCK_SIZE;
3571 }
3572 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3573 symbol_block_index++;
3574 }
3575
3576 MALLOC_UNBLOCK_INPUT;
3577
3578 init_symbol (val, name);
3579 consing_since_gc += sizeof (struct Lisp_Symbol);
3580 symbols_consed++;
3581 total_free_symbols--;
3582 return val;
3583 }
3584
3585
3586 \f
3587 /***********************************************************************
3588 Marker (Misc) Allocation
3589 ***********************************************************************/
3590
3591 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3592 the required alignment. */
3593
3594 union aligned_Lisp_Misc
3595 {
3596 union Lisp_Misc m;
3597 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3598 & -GCALIGNMENT];
3599 };
3600
3601 /* Allocation of markers and other objects that share that structure.
3602 Works like allocation of conses. */
3603
3604 #define MARKER_BLOCK_SIZE \
3605 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3606
3607 struct marker_block
3608 {
3609 /* Place `markers' first, to preserve alignment. */
3610 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3611 struct marker_block *next;
3612 };
3613
3614 static struct marker_block *marker_block;
3615 static int marker_block_index = MARKER_BLOCK_SIZE;
3616
3617 static union Lisp_Misc *marker_free_list;
3618
3619 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3620
3621 static Lisp_Object
3622 allocate_misc (enum Lisp_Misc_Type type)
3623 {
3624 Lisp_Object val;
3625
3626 MALLOC_BLOCK_INPUT;
3627
3628 if (marker_free_list)
3629 {
3630 XSETMISC (val, marker_free_list);
3631 marker_free_list = marker_free_list->u_free.chain;
3632 }
3633 else
3634 {
3635 if (marker_block_index == MARKER_BLOCK_SIZE)
3636 {
3637 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3638 new->next = marker_block;
3639 marker_block = new;
3640 marker_block_index = 0;
3641 total_free_markers += MARKER_BLOCK_SIZE;
3642 }
3643 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3644 marker_block_index++;
3645 }
3646
3647 MALLOC_UNBLOCK_INPUT;
3648
3649 --total_free_markers;
3650 consing_since_gc += sizeof (union Lisp_Misc);
3651 misc_objects_consed++;
3652 XMISCANY (val)->type = type;
3653 XMISCANY (val)->gcmarkbit = 0;
3654 return val;
3655 }
3656
3657 /* Free a Lisp_Misc object. */
3658
3659 void
3660 free_misc (Lisp_Object misc)
3661 {
3662 XMISCANY (misc)->type = Lisp_Misc_Free;
3663 XMISC (misc)->u_free.chain = marker_free_list;
3664 marker_free_list = XMISC (misc);
3665 consing_since_gc -= sizeof (union Lisp_Misc);
3666 total_free_markers++;
3667 }
3668
3669 /* Verify properties of Lisp_Save_Value's representation
3670 that are assumed here and elsewhere. */
3671
3672 verify (SAVE_UNUSED == 0);
3673 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3674 >> SAVE_SLOT_BITS)
3675 == 0);
3676
3677 /* Return Lisp_Save_Value objects for the various combinations
3678 that callers need. */
3679
3680 Lisp_Object
3681 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3682 {
3683 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3684 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3685 p->save_type = SAVE_TYPE_INT_INT_INT;
3686 p->data[0].integer = a;
3687 p->data[1].integer = b;
3688 p->data[2].integer = c;
3689 return val;
3690 }
3691
3692 Lisp_Object
3693 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3694 Lisp_Object d)
3695 {
3696 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3697 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3698 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3699 p->data[0].object = a;
3700 p->data[1].object = b;
3701 p->data[2].object = c;
3702 p->data[3].object = d;
3703 return val;
3704 }
3705
3706 Lisp_Object
3707 make_save_ptr (void *a)
3708 {
3709 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3710 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3711 p->save_type = SAVE_POINTER;
3712 p->data[0].pointer = a;
3713 return val;
3714 }
3715
3716 Lisp_Object
3717 make_save_ptr_int (void *a, ptrdiff_t b)
3718 {
3719 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3720 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3721 p->save_type = SAVE_TYPE_PTR_INT;
3722 p->data[0].pointer = a;
3723 p->data[1].integer = b;
3724 return val;
3725 }
3726
3727 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3728 Lisp_Object
3729 make_save_ptr_ptr (void *a, void *b)
3730 {
3731 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3732 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3733 p->save_type = SAVE_TYPE_PTR_PTR;
3734 p->data[0].pointer = a;
3735 p->data[1].pointer = b;
3736 return val;
3737 }
3738 #endif
3739
3740 Lisp_Object
3741 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3742 {
3743 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3744 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3745 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3746 p->data[0].funcpointer = a;
3747 p->data[1].pointer = b;
3748 p->data[2].object = c;
3749 return val;
3750 }
3751
3752 /* Return a Lisp_Save_Value object that represents an array A
3753 of N Lisp objects. */
3754
3755 Lisp_Object
3756 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3757 {
3758 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3759 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3760 p->save_type = SAVE_TYPE_MEMORY;
3761 p->data[0].pointer = a;
3762 p->data[1].integer = n;
3763 return val;
3764 }
3765
3766 /* Free a Lisp_Save_Value object. Do not use this function
3767 if SAVE contains pointer other than returned by xmalloc. */
3768
3769 void
3770 free_save_value (Lisp_Object save)
3771 {
3772 xfree (XSAVE_POINTER (save, 0));
3773 free_misc (save);
3774 }
3775
3776 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3777
3778 Lisp_Object
3779 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3780 {
3781 register Lisp_Object overlay;
3782
3783 overlay = allocate_misc (Lisp_Misc_Overlay);
3784 OVERLAY_START (overlay) = start;
3785 OVERLAY_END (overlay) = end;
3786 set_overlay_plist (overlay, plist);
3787 XOVERLAY (overlay)->next = NULL;
3788 return overlay;
3789 }
3790
3791 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3792 doc: /* Return a newly allocated marker which does not point at any place. */)
3793 (void)
3794 {
3795 register Lisp_Object val;
3796 register struct Lisp_Marker *p;
3797
3798 val = allocate_misc (Lisp_Misc_Marker);
3799 p = XMARKER (val);
3800 p->buffer = 0;
3801 p->bytepos = 0;
3802 p->charpos = 0;
3803 p->next = NULL;
3804 p->insertion_type = 0;
3805 p->need_adjustment = 0;
3806 return val;
3807 }
3808
3809 /* Return a newly allocated marker which points into BUF
3810 at character position CHARPOS and byte position BYTEPOS. */
3811
3812 Lisp_Object
3813 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3814 {
3815 Lisp_Object obj;
3816 struct Lisp_Marker *m;
3817
3818 /* No dead buffers here. */
3819 eassert (BUFFER_LIVE_P (buf));
3820
3821 /* Every character is at least one byte. */
3822 eassert (charpos <= bytepos);
3823
3824 obj = allocate_misc (Lisp_Misc_Marker);
3825 m = XMARKER (obj);
3826 m->buffer = buf;
3827 m->charpos = charpos;
3828 m->bytepos = bytepos;
3829 m->insertion_type = 0;
3830 m->need_adjustment = 0;
3831 m->next = BUF_MARKERS (buf);
3832 BUF_MARKERS (buf) = m;
3833 return obj;
3834 }
3835
3836 /* Put MARKER back on the free list after using it temporarily. */
3837
3838 void
3839 free_marker (Lisp_Object marker)
3840 {
3841 unchain_marker (XMARKER (marker));
3842 free_misc (marker);
3843 }
3844
3845 \f
3846 /* Return a newly created vector or string with specified arguments as
3847 elements. If all the arguments are characters that can fit
3848 in a string of events, make a string; otherwise, make a vector.
3849
3850 Any number of arguments, even zero arguments, are allowed. */
3851
3852 Lisp_Object
3853 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3854 {
3855 ptrdiff_t i;
3856
3857 for (i = 0; i < nargs; i++)
3858 /* The things that fit in a string
3859 are characters that are in 0...127,
3860 after discarding the meta bit and all the bits above it. */
3861 if (!INTEGERP (args[i])
3862 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3863 return Fvector (nargs, args);
3864
3865 /* Since the loop exited, we know that all the things in it are
3866 characters, so we can make a string. */
3867 {
3868 Lisp_Object result;
3869
3870 result = Fmake_string (make_number (nargs), make_number (0));
3871 for (i = 0; i < nargs; i++)
3872 {
3873 SSET (result, i, XINT (args[i]));
3874 /* Move the meta bit to the right place for a string char. */
3875 if (XINT (args[i]) & CHAR_META)
3876 SSET (result, i, SREF (result, i) | 0x80);
3877 }
3878
3879 return result;
3880 }
3881 }
3882
3883 #ifdef HAVE_MODULES
3884 /* Create a new module user ptr object. */
3885 Lisp_Object
3886 make_user_ptr (void (*finalizer) (void *), void *p)
3887 {
3888 Lisp_Object obj;
3889 struct Lisp_User_Ptr *uptr;
3890
3891 obj = allocate_misc (Lisp_Misc_User_Ptr);
3892 uptr = XUSER_PTR (obj);
3893 uptr->finalizer = finalizer;
3894 uptr->p = p;
3895 return obj;
3896 }
3897
3898 #endif
3899
3900 static void
3901 init_finalizer_list (struct Lisp_Finalizer *head)
3902 {
3903 head->prev = head->next = head;
3904 }
3905
3906 /* Insert FINALIZER before ELEMENT. */
3907
3908 static void
3909 finalizer_insert (struct Lisp_Finalizer *element,
3910 struct Lisp_Finalizer *finalizer)
3911 {
3912 eassert (finalizer->prev == NULL);
3913 eassert (finalizer->next == NULL);
3914 finalizer->next = element;
3915 finalizer->prev = element->prev;
3916 finalizer->prev->next = finalizer;
3917 element->prev = finalizer;
3918 }
3919
3920 static void
3921 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3922 {
3923 if (finalizer->prev != NULL)
3924 {
3925 eassert (finalizer->next != NULL);
3926 finalizer->prev->next = finalizer->next;
3927 finalizer->next->prev = finalizer->prev;
3928 finalizer->prev = finalizer->next = NULL;
3929 }
3930 }
3931
3932 static void
3933 mark_finalizer_list (struct Lisp_Finalizer *head)
3934 {
3935 for (struct Lisp_Finalizer *finalizer = head->next;
3936 finalizer != head;
3937 finalizer = finalizer->next)
3938 {
3939 finalizer->base.gcmarkbit = true;
3940 mark_object (finalizer->function);
3941 }
3942 }
3943
3944 /* Move doomed finalizers to list DEST from list SRC. A doomed
3945 finalizer is one that is not GC-reachable and whose
3946 finalizer->function is non-nil. */
3947
3948 static void
3949 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3950 struct Lisp_Finalizer *src)
3951 {
3952 struct Lisp_Finalizer *finalizer = src->next;
3953 while (finalizer != src)
3954 {
3955 struct Lisp_Finalizer *next = finalizer->next;
3956 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3957 {
3958 unchain_finalizer (finalizer);
3959 finalizer_insert (dest, finalizer);
3960 }
3961
3962 finalizer = next;
3963 }
3964 }
3965
3966 static Lisp_Object
3967 run_finalizer_handler (Lisp_Object args)
3968 {
3969 add_to_log ("finalizer failed: %S", args);
3970 return Qnil;
3971 }
3972
3973 static void
3974 run_finalizer_function (Lisp_Object function)
3975 {
3976 ptrdiff_t count = SPECPDL_INDEX ();
3977
3978 specbind (Qinhibit_quit, Qt);
3979 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3980 unbind_to (count, Qnil);
3981 }
3982
3983 static void
3984 run_finalizers (struct Lisp_Finalizer *finalizers)
3985 {
3986 struct Lisp_Finalizer *finalizer;
3987 Lisp_Object function;
3988
3989 while (finalizers->next != finalizers)
3990 {
3991 finalizer = finalizers->next;
3992 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3993 unchain_finalizer (finalizer);
3994 function = finalizer->function;
3995 if (!NILP (function))
3996 {
3997 finalizer->function = Qnil;
3998 run_finalizer_function (function);
3999 }
4000 }
4001 }
4002
4003 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4004 doc: /* Make a finalizer that will run FUNCTION.
4005 FUNCTION will be called after garbage collection when the returned
4006 finalizer object becomes unreachable. If the finalizer object is
4007 reachable only through references from finalizer objects, it does not
4008 count as reachable for the purpose of deciding whether to run
4009 FUNCTION. FUNCTION will be run once per finalizer object. */)
4010 (Lisp_Object function)
4011 {
4012 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4013 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4014 finalizer->function = function;
4015 finalizer->prev = finalizer->next = NULL;
4016 finalizer_insert (&finalizers, finalizer);
4017 return val;
4018 }
4019
4020 \f
4021 /************************************************************************
4022 Memory Full Handling
4023 ************************************************************************/
4024
4025
4026 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4027 there may have been size_t overflow so that malloc was never
4028 called, or perhaps malloc was invoked successfully but the
4029 resulting pointer had problems fitting into a tagged EMACS_INT. In
4030 either case this counts as memory being full even though malloc did
4031 not fail. */
4032
4033 void
4034 memory_full (size_t nbytes)
4035 {
4036 /* Do not go into hysterics merely because a large request failed. */
4037 bool enough_free_memory = 0;
4038 if (SPARE_MEMORY < nbytes)
4039 {
4040 void *p;
4041
4042 MALLOC_BLOCK_INPUT;
4043 p = malloc (SPARE_MEMORY);
4044 if (p)
4045 {
4046 free (p);
4047 enough_free_memory = 1;
4048 }
4049 MALLOC_UNBLOCK_INPUT;
4050 }
4051
4052 if (! enough_free_memory)
4053 {
4054 int i;
4055
4056 Vmemory_full = Qt;
4057
4058 memory_full_cons_threshold = sizeof (struct cons_block);
4059
4060 /* The first time we get here, free the spare memory. */
4061 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4062 if (spare_memory[i])
4063 {
4064 if (i == 0)
4065 free (spare_memory[i]);
4066 else if (i >= 1 && i <= 4)
4067 lisp_align_free (spare_memory[i]);
4068 else
4069 lisp_free (spare_memory[i]);
4070 spare_memory[i] = 0;
4071 }
4072 }
4073
4074 /* This used to call error, but if we've run out of memory, we could
4075 get infinite recursion trying to build the string. */
4076 xsignal (Qnil, Vmemory_signal_data);
4077 }
4078
4079 /* If we released our reserve (due to running out of memory),
4080 and we have a fair amount free once again,
4081 try to set aside another reserve in case we run out once more.
4082
4083 This is called when a relocatable block is freed in ralloc.c,
4084 and also directly from this file, in case we're not using ralloc.c. */
4085
4086 void
4087 refill_memory_reserve (void)
4088 {
4089 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4090 if (spare_memory[0] == 0)
4091 spare_memory[0] = malloc (SPARE_MEMORY);
4092 if (spare_memory[1] == 0)
4093 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4094 MEM_TYPE_SPARE);
4095 if (spare_memory[2] == 0)
4096 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4097 MEM_TYPE_SPARE);
4098 if (spare_memory[3] == 0)
4099 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4100 MEM_TYPE_SPARE);
4101 if (spare_memory[4] == 0)
4102 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4103 MEM_TYPE_SPARE);
4104 if (spare_memory[5] == 0)
4105 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4106 MEM_TYPE_SPARE);
4107 if (spare_memory[6] == 0)
4108 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4109 MEM_TYPE_SPARE);
4110 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4111 Vmemory_full = Qnil;
4112 #endif
4113 }
4114 \f
4115 /************************************************************************
4116 C Stack Marking
4117 ************************************************************************/
4118
4119 /* Conservative C stack marking requires a method to identify possibly
4120 live Lisp objects given a pointer value. We do this by keeping
4121 track of blocks of Lisp data that are allocated in a red-black tree
4122 (see also the comment of mem_node which is the type of nodes in
4123 that tree). Function lisp_malloc adds information for an allocated
4124 block to the red-black tree with calls to mem_insert, and function
4125 lisp_free removes it with mem_delete. Functions live_string_p etc
4126 call mem_find to lookup information about a given pointer in the
4127 tree, and use that to determine if the pointer points to a Lisp
4128 object or not. */
4129
4130 /* Initialize this part of alloc.c. */
4131
4132 static void
4133 mem_init (void)
4134 {
4135 mem_z.left = mem_z.right = MEM_NIL;
4136 mem_z.parent = NULL;
4137 mem_z.color = MEM_BLACK;
4138 mem_z.start = mem_z.end = NULL;
4139 mem_root = MEM_NIL;
4140 }
4141
4142
4143 /* Value is a pointer to the mem_node containing START. Value is
4144 MEM_NIL if there is no node in the tree containing START. */
4145
4146 static struct mem_node *
4147 mem_find (void *start)
4148 {
4149 struct mem_node *p;
4150
4151 if (start < min_heap_address || start > max_heap_address)
4152 return MEM_NIL;
4153
4154 /* Make the search always successful to speed up the loop below. */
4155 mem_z.start = start;
4156 mem_z.end = (char *) start + 1;
4157
4158 p = mem_root;
4159 while (start < p->start || start >= p->end)
4160 p = start < p->start ? p->left : p->right;
4161 return p;
4162 }
4163
4164
4165 /* Insert a new node into the tree for a block of memory with start
4166 address START, end address END, and type TYPE. Value is a
4167 pointer to the node that was inserted. */
4168
4169 static struct mem_node *
4170 mem_insert (void *start, void *end, enum mem_type type)
4171 {
4172 struct mem_node *c, *parent, *x;
4173
4174 if (min_heap_address == NULL || start < min_heap_address)
4175 min_heap_address = start;
4176 if (max_heap_address == NULL || end > max_heap_address)
4177 max_heap_address = end;
4178
4179 /* See where in the tree a node for START belongs. In this
4180 particular application, it shouldn't happen that a node is already
4181 present. For debugging purposes, let's check that. */
4182 c = mem_root;
4183 parent = NULL;
4184
4185 while (c != MEM_NIL)
4186 {
4187 parent = c;
4188 c = start < c->start ? c->left : c->right;
4189 }
4190
4191 /* Create a new node. */
4192 #ifdef GC_MALLOC_CHECK
4193 x = malloc (sizeof *x);
4194 if (x == NULL)
4195 emacs_abort ();
4196 #else
4197 x = xmalloc (sizeof *x);
4198 #endif
4199 x->start = start;
4200 x->end = end;
4201 x->type = type;
4202 x->parent = parent;
4203 x->left = x->right = MEM_NIL;
4204 x->color = MEM_RED;
4205
4206 /* Insert it as child of PARENT or install it as root. */
4207 if (parent)
4208 {
4209 if (start < parent->start)
4210 parent->left = x;
4211 else
4212 parent->right = x;
4213 }
4214 else
4215 mem_root = x;
4216
4217 /* Re-establish red-black tree properties. */
4218 mem_insert_fixup (x);
4219
4220 return x;
4221 }
4222
4223
4224 /* Re-establish the red-black properties of the tree, and thereby
4225 balance the tree, after node X has been inserted; X is always red. */
4226
4227 static void
4228 mem_insert_fixup (struct mem_node *x)
4229 {
4230 while (x != mem_root && x->parent->color == MEM_RED)
4231 {
4232 /* X is red and its parent is red. This is a violation of
4233 red-black tree property #3. */
4234
4235 if (x->parent == x->parent->parent->left)
4236 {
4237 /* We're on the left side of our grandparent, and Y is our
4238 "uncle". */
4239 struct mem_node *y = x->parent->parent->right;
4240
4241 if (y->color == MEM_RED)
4242 {
4243 /* Uncle and parent are red but should be black because
4244 X is red. Change the colors accordingly and proceed
4245 with the grandparent. */
4246 x->parent->color = MEM_BLACK;
4247 y->color = MEM_BLACK;
4248 x->parent->parent->color = MEM_RED;
4249 x = x->parent->parent;
4250 }
4251 else
4252 {
4253 /* Parent and uncle have different colors; parent is
4254 red, uncle is black. */
4255 if (x == x->parent->right)
4256 {
4257 x = x->parent;
4258 mem_rotate_left (x);
4259 }
4260
4261 x->parent->color = MEM_BLACK;
4262 x->parent->parent->color = MEM_RED;
4263 mem_rotate_right (x->parent->parent);
4264 }
4265 }
4266 else
4267 {
4268 /* This is the symmetrical case of above. */
4269 struct mem_node *y = x->parent->parent->left;
4270
4271 if (y->color == MEM_RED)
4272 {
4273 x->parent->color = MEM_BLACK;
4274 y->color = MEM_BLACK;
4275 x->parent->parent->color = MEM_RED;
4276 x = x->parent->parent;
4277 }
4278 else
4279 {
4280 if (x == x->parent->left)
4281 {
4282 x = x->parent;
4283 mem_rotate_right (x);
4284 }
4285
4286 x->parent->color = MEM_BLACK;
4287 x->parent->parent->color = MEM_RED;
4288 mem_rotate_left (x->parent->parent);
4289 }
4290 }
4291 }
4292
4293 /* The root may have been changed to red due to the algorithm. Set
4294 it to black so that property #5 is satisfied. */
4295 mem_root->color = MEM_BLACK;
4296 }
4297
4298
4299 /* (x) (y)
4300 / \ / \
4301 a (y) ===> (x) c
4302 / \ / \
4303 b c a b */
4304
4305 static void
4306 mem_rotate_left (struct mem_node *x)
4307 {
4308 struct mem_node *y;
4309
4310 /* Turn y's left sub-tree into x's right sub-tree. */
4311 y = x->right;
4312 x->right = y->left;
4313 if (y->left != MEM_NIL)
4314 y->left->parent = x;
4315
4316 /* Y's parent was x's parent. */
4317 if (y != MEM_NIL)
4318 y->parent = x->parent;
4319
4320 /* Get the parent to point to y instead of x. */
4321 if (x->parent)
4322 {
4323 if (x == x->parent->left)
4324 x->parent->left = y;
4325 else
4326 x->parent->right = y;
4327 }
4328 else
4329 mem_root = y;
4330
4331 /* Put x on y's left. */
4332 y->left = x;
4333 if (x != MEM_NIL)
4334 x->parent = y;
4335 }
4336
4337
4338 /* (x) (Y)
4339 / \ / \
4340 (y) c ===> a (x)
4341 / \ / \
4342 a b b c */
4343
4344 static void
4345 mem_rotate_right (struct mem_node *x)
4346 {
4347 struct mem_node *y = x->left;
4348
4349 x->left = y->right;
4350 if (y->right != MEM_NIL)
4351 y->right->parent = x;
4352
4353 if (y != MEM_NIL)
4354 y->parent = x->parent;
4355 if (x->parent)
4356 {
4357 if (x == x->parent->right)
4358 x->parent->right = y;
4359 else
4360 x->parent->left = y;
4361 }
4362 else
4363 mem_root = y;
4364
4365 y->right = x;
4366 if (x != MEM_NIL)
4367 x->parent = y;
4368 }
4369
4370
4371 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4372
4373 static void
4374 mem_delete (struct mem_node *z)
4375 {
4376 struct mem_node *x, *y;
4377
4378 if (!z || z == MEM_NIL)
4379 return;
4380
4381 if (z->left == MEM_NIL || z->right == MEM_NIL)
4382 y = z;
4383 else
4384 {
4385 y = z->right;
4386 while (y->left != MEM_NIL)
4387 y = y->left;
4388 }
4389
4390 if (y->left != MEM_NIL)
4391 x = y->left;
4392 else
4393 x = y->right;
4394
4395 x->parent = y->parent;
4396 if (y->parent)
4397 {
4398 if (y == y->parent->left)
4399 y->parent->left = x;
4400 else
4401 y->parent->right = x;
4402 }
4403 else
4404 mem_root = x;
4405
4406 if (y != z)
4407 {
4408 z->start = y->start;
4409 z->end = y->end;
4410 z->type = y->type;
4411 }
4412
4413 if (y->color == MEM_BLACK)
4414 mem_delete_fixup (x);
4415
4416 #ifdef GC_MALLOC_CHECK
4417 free (y);
4418 #else
4419 xfree (y);
4420 #endif
4421 }
4422
4423
4424 /* Re-establish the red-black properties of the tree, after a
4425 deletion. */
4426
4427 static void
4428 mem_delete_fixup (struct mem_node *x)
4429 {
4430 while (x != mem_root && x->color == MEM_BLACK)
4431 {
4432 if (x == x->parent->left)
4433 {
4434 struct mem_node *w = x->parent->right;
4435
4436 if (w->color == MEM_RED)
4437 {
4438 w->color = MEM_BLACK;
4439 x->parent->color = MEM_RED;
4440 mem_rotate_left (x->parent);
4441 w = x->parent->right;
4442 }
4443
4444 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4445 {
4446 w->color = MEM_RED;
4447 x = x->parent;
4448 }
4449 else
4450 {
4451 if (w->right->color == MEM_BLACK)
4452 {
4453 w->left->color = MEM_BLACK;
4454 w->color = MEM_RED;
4455 mem_rotate_right (w);
4456 w = x->parent->right;
4457 }
4458 w->color = x->parent->color;
4459 x->parent->color = MEM_BLACK;
4460 w->right->color = MEM_BLACK;
4461 mem_rotate_left (x->parent);
4462 x = mem_root;
4463 }
4464 }
4465 else
4466 {
4467 struct mem_node *w = x->parent->left;
4468
4469 if (w->color == MEM_RED)
4470 {
4471 w->color = MEM_BLACK;
4472 x->parent->color = MEM_RED;
4473 mem_rotate_right (x->parent);
4474 w = x->parent->left;
4475 }
4476
4477 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4478 {
4479 w->color = MEM_RED;
4480 x = x->parent;
4481 }
4482 else
4483 {
4484 if (w->left->color == MEM_BLACK)
4485 {
4486 w->right->color = MEM_BLACK;
4487 w->color = MEM_RED;
4488 mem_rotate_left (w);
4489 w = x->parent->left;
4490 }
4491
4492 w->color = x->parent->color;
4493 x->parent->color = MEM_BLACK;
4494 w->left->color = MEM_BLACK;
4495 mem_rotate_right (x->parent);
4496 x = mem_root;
4497 }
4498 }
4499 }
4500
4501 x->color = MEM_BLACK;
4502 }
4503
4504
4505 /* Value is non-zero if P is a pointer to a live Lisp string on
4506 the heap. M is a pointer to the mem_block for P. */
4507
4508 static bool
4509 live_string_p (struct mem_node *m, void *p)
4510 {
4511 if (m->type == MEM_TYPE_STRING)
4512 {
4513 struct string_block *b = m->start;
4514 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4515
4516 /* P must point to the start of a Lisp_String structure, and it
4517 must not be on the free-list. */
4518 return (offset >= 0
4519 && offset % sizeof b->strings[0] == 0
4520 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4521 && ((struct Lisp_String *) p)->data != NULL);
4522 }
4523 else
4524 return 0;
4525 }
4526
4527
4528 /* Value is non-zero if P is a pointer to a live Lisp cons on
4529 the heap. M is a pointer to the mem_block for P. */
4530
4531 static bool
4532 live_cons_p (struct mem_node *m, void *p)
4533 {
4534 if (m->type == MEM_TYPE_CONS)
4535 {
4536 struct cons_block *b = m->start;
4537 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4538
4539 /* P must point to the start of a Lisp_Cons, not be
4540 one of the unused cells in the current cons block,
4541 and not be on the free-list. */
4542 return (offset >= 0
4543 && offset % sizeof b->conses[0] == 0
4544 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4545 && (b != cons_block
4546 || offset / sizeof b->conses[0] < cons_block_index)
4547 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4548 }
4549 else
4550 return 0;
4551 }
4552
4553
4554 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4555 the heap. M is a pointer to the mem_block for P. */
4556
4557 static bool
4558 live_symbol_p (struct mem_node *m, void *p)
4559 {
4560 if (m->type == MEM_TYPE_SYMBOL)
4561 {
4562 struct symbol_block *b = m->start;
4563 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4564
4565 /* P must point to the start of a Lisp_Symbol, not be
4566 one of the unused cells in the current symbol block,
4567 and not be on the free-list. */
4568 return (offset >= 0
4569 && offset % sizeof b->symbols[0] == 0
4570 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4571 && (b != symbol_block
4572 || offset / sizeof b->symbols[0] < symbol_block_index)
4573 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4574 }
4575 else
4576 return 0;
4577 }
4578
4579
4580 /* Value is non-zero if P is a pointer to a live Lisp float on
4581 the heap. M is a pointer to the mem_block for P. */
4582
4583 static bool
4584 live_float_p (struct mem_node *m, void *p)
4585 {
4586 if (m->type == MEM_TYPE_FLOAT)
4587 {
4588 struct float_block *b = m->start;
4589 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4590
4591 /* P must point to the start of a Lisp_Float and not be
4592 one of the unused cells in the current float block. */
4593 return (offset >= 0
4594 && offset % sizeof b->floats[0] == 0
4595 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4596 && (b != float_block
4597 || offset / sizeof b->floats[0] < float_block_index));
4598 }
4599 else
4600 return 0;
4601 }
4602
4603
4604 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4605 the heap. M is a pointer to the mem_block for P. */
4606
4607 static bool
4608 live_misc_p (struct mem_node *m, void *p)
4609 {
4610 if (m->type == MEM_TYPE_MISC)
4611 {
4612 struct marker_block *b = m->start;
4613 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4614
4615 /* P must point to the start of a Lisp_Misc, not be
4616 one of the unused cells in the current misc block,
4617 and not be on the free-list. */
4618 return (offset >= 0
4619 && offset % sizeof b->markers[0] == 0
4620 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4621 && (b != marker_block
4622 || offset / sizeof b->markers[0] < marker_block_index)
4623 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4624 }
4625 else
4626 return 0;
4627 }
4628
4629
4630 /* Value is non-zero if P is a pointer to a live vector-like object.
4631 M is a pointer to the mem_block for P. */
4632
4633 static bool
4634 live_vector_p (struct mem_node *m, void *p)
4635 {
4636 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4637 {
4638 /* This memory node corresponds to a vector block. */
4639 struct vector_block *block = m->start;
4640 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4641
4642 /* P is in the block's allocation range. Scan the block
4643 up to P and see whether P points to the start of some
4644 vector which is not on a free list. FIXME: check whether
4645 some allocation patterns (probably a lot of short vectors)
4646 may cause a substantial overhead of this loop. */
4647 while (VECTOR_IN_BLOCK (vector, block)
4648 && vector <= (struct Lisp_Vector *) p)
4649 {
4650 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4651 return 1;
4652 else
4653 vector = ADVANCE (vector, vector_nbytes (vector));
4654 }
4655 }
4656 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4657 /* This memory node corresponds to a large vector. */
4658 return 1;
4659 return 0;
4660 }
4661
4662
4663 /* Value is non-zero if P is a pointer to a live buffer. M is a
4664 pointer to the mem_block for P. */
4665
4666 static bool
4667 live_buffer_p (struct mem_node *m, void *p)
4668 {
4669 /* P must point to the start of the block, and the buffer
4670 must not have been killed. */
4671 return (m->type == MEM_TYPE_BUFFER
4672 && p == m->start
4673 && !NILP (((struct buffer *) p)->name_));
4674 }
4675
4676 /* Mark OBJ if we can prove it's a Lisp_Object. */
4677
4678 static void
4679 mark_maybe_object (Lisp_Object obj)
4680 {
4681 #if USE_VALGRIND
4682 if (valgrind_p)
4683 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4684 #endif
4685
4686 if (INTEGERP (obj))
4687 return;
4688
4689 void *po = XPNTR (obj);
4690 struct mem_node *m = mem_find (po);
4691
4692 if (m != MEM_NIL)
4693 {
4694 bool mark_p = false;
4695
4696 switch (XTYPE (obj))
4697 {
4698 case Lisp_String:
4699 mark_p = (live_string_p (m, po)
4700 && !STRING_MARKED_P ((struct Lisp_String *) po));
4701 break;
4702
4703 case Lisp_Cons:
4704 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4705 break;
4706
4707 case Lisp_Symbol:
4708 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4709 break;
4710
4711 case Lisp_Float:
4712 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4713 break;
4714
4715 case Lisp_Vectorlike:
4716 /* Note: can't check BUFFERP before we know it's a
4717 buffer because checking that dereferences the pointer
4718 PO which might point anywhere. */
4719 if (live_vector_p (m, po))
4720 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4721 else if (live_buffer_p (m, po))
4722 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4723 break;
4724
4725 case Lisp_Misc:
4726 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4727 break;
4728
4729 default:
4730 break;
4731 }
4732
4733 if (mark_p)
4734 mark_object (obj);
4735 }
4736 }
4737
4738 /* Return true if P can point to Lisp data, and false otherwise.
4739 Symbols are implemented via offsets not pointers, but the offsets
4740 are also multiples of GCALIGNMENT. */
4741
4742 static bool
4743 maybe_lisp_pointer (void *p)
4744 {
4745 return (uintptr_t) p % GCALIGNMENT == 0;
4746 }
4747
4748 #ifndef HAVE_MODULES
4749 enum { HAVE_MODULES = false };
4750 #endif
4751
4752 /* If P points to Lisp data, mark that as live if it isn't already
4753 marked. */
4754
4755 static void
4756 mark_maybe_pointer (void *p)
4757 {
4758 struct mem_node *m;
4759
4760 #if USE_VALGRIND
4761 if (valgrind_p)
4762 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4763 #endif
4764
4765 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4766 {
4767 if (!maybe_lisp_pointer (p))
4768 return;
4769 }
4770 else
4771 {
4772 /* For the wide-int case, also mark emacs_value tagged pointers,
4773 which can be generated by emacs-module.c's value_to_lisp. */
4774 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4775 }
4776
4777 m = mem_find (p);
4778 if (m != MEM_NIL)
4779 {
4780 Lisp_Object obj = Qnil;
4781
4782 switch (m->type)
4783 {
4784 case MEM_TYPE_NON_LISP:
4785 case MEM_TYPE_SPARE:
4786 /* Nothing to do; not a pointer to Lisp memory. */
4787 break;
4788
4789 case MEM_TYPE_BUFFER:
4790 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4791 XSETVECTOR (obj, p);
4792 break;
4793
4794 case MEM_TYPE_CONS:
4795 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4796 XSETCONS (obj, p);
4797 break;
4798
4799 case MEM_TYPE_STRING:
4800 if (live_string_p (m, p)
4801 && !STRING_MARKED_P ((struct Lisp_String *) p))
4802 XSETSTRING (obj, p);
4803 break;
4804
4805 case MEM_TYPE_MISC:
4806 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4807 XSETMISC (obj, p);
4808 break;
4809
4810 case MEM_TYPE_SYMBOL:
4811 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4812 XSETSYMBOL (obj, p);
4813 break;
4814
4815 case MEM_TYPE_FLOAT:
4816 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4817 XSETFLOAT (obj, p);
4818 break;
4819
4820 case MEM_TYPE_VECTORLIKE:
4821 case MEM_TYPE_VECTOR_BLOCK:
4822 if (live_vector_p (m, p))
4823 {
4824 Lisp_Object tem;
4825 XSETVECTOR (tem, p);
4826 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4827 obj = tem;
4828 }
4829 break;
4830
4831 default:
4832 emacs_abort ();
4833 }
4834
4835 if (!NILP (obj))
4836 mark_object (obj);
4837 }
4838 }
4839
4840
4841 /* Alignment of pointer values. Use alignof, as it sometimes returns
4842 a smaller alignment than GCC's __alignof__ and mark_memory might
4843 miss objects if __alignof__ were used. */
4844 #define GC_POINTER_ALIGNMENT alignof (void *)
4845
4846 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4847 or END+OFFSET..START. */
4848
4849 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4850 mark_memory (void *start, void *end)
4851 {
4852 char *pp;
4853
4854 /* Make START the pointer to the start of the memory region,
4855 if it isn't already. */
4856 if (end < start)
4857 {
4858 void *tem = start;
4859 start = end;
4860 end = tem;
4861 }
4862
4863 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4864
4865 /* Mark Lisp data pointed to. This is necessary because, in some
4866 situations, the C compiler optimizes Lisp objects away, so that
4867 only a pointer to them remains. Example:
4868
4869 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4870 ()
4871 {
4872 Lisp_Object obj = build_string ("test");
4873 struct Lisp_String *s = XSTRING (obj);
4874 Fgarbage_collect ();
4875 fprintf (stderr, "test '%s'\n", s->data);
4876 return Qnil;
4877 }
4878
4879 Here, `obj' isn't really used, and the compiler optimizes it
4880 away. The only reference to the life string is through the
4881 pointer `s'. */
4882
4883 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4884 {
4885 mark_maybe_pointer (*(void **) pp);
4886 mark_maybe_object (*(Lisp_Object *) pp);
4887 }
4888 }
4889
4890 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4891
4892 static bool setjmp_tested_p;
4893 static int longjmps_done;
4894
4895 #define SETJMP_WILL_LIKELY_WORK "\
4896 \n\
4897 Emacs garbage collector has been changed to use conservative stack\n\
4898 marking. Emacs has determined that the method it uses to do the\n\
4899 marking will likely work on your system, but this isn't sure.\n\
4900 \n\
4901 If you are a system-programmer, or can get the help of a local wizard\n\
4902 who is, please take a look at the function mark_stack in alloc.c, and\n\
4903 verify that the methods used are appropriate for your system.\n\
4904 \n\
4905 Please mail the result to <emacs-devel@gnu.org>.\n\
4906 "
4907
4908 #define SETJMP_WILL_NOT_WORK "\
4909 \n\
4910 Emacs garbage collector has been changed to use conservative stack\n\
4911 marking. Emacs has determined that the default method it uses to do the\n\
4912 marking will not work on your system. We will need a system-dependent\n\
4913 solution for your system.\n\
4914 \n\
4915 Please take a look at the function mark_stack in alloc.c, and\n\
4916 try to find a way to make it work on your system.\n\
4917 \n\
4918 Note that you may get false negatives, depending on the compiler.\n\
4919 In particular, you need to use -O with GCC for this test.\n\
4920 \n\
4921 Please mail the result to <emacs-devel@gnu.org>.\n\
4922 "
4923
4924
4925 /* Perform a quick check if it looks like setjmp saves registers in a
4926 jmp_buf. Print a message to stderr saying so. When this test
4927 succeeds, this is _not_ a proof that setjmp is sufficient for
4928 conservative stack marking. Only the sources or a disassembly
4929 can prove that. */
4930
4931 static void
4932 test_setjmp (void)
4933 {
4934 char buf[10];
4935 register int x;
4936 sys_jmp_buf jbuf;
4937
4938 /* Arrange for X to be put in a register. */
4939 sprintf (buf, "1");
4940 x = strlen (buf);
4941 x = 2 * x - 1;
4942
4943 sys_setjmp (jbuf);
4944 if (longjmps_done == 1)
4945 {
4946 /* Came here after the longjmp at the end of the function.
4947
4948 If x == 1, the longjmp has restored the register to its
4949 value before the setjmp, and we can hope that setjmp
4950 saves all such registers in the jmp_buf, although that
4951 isn't sure.
4952
4953 For other values of X, either something really strange is
4954 taking place, or the setjmp just didn't save the register. */
4955
4956 if (x == 1)
4957 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4958 else
4959 {
4960 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4961 exit (1);
4962 }
4963 }
4964
4965 ++longjmps_done;
4966 x = 2;
4967 if (longjmps_done == 1)
4968 sys_longjmp (jbuf, 1);
4969 }
4970
4971 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4972
4973
4974 /* Mark live Lisp objects on the C stack.
4975
4976 There are several system-dependent problems to consider when
4977 porting this to new architectures:
4978
4979 Processor Registers
4980
4981 We have to mark Lisp objects in CPU registers that can hold local
4982 variables or are used to pass parameters.
4983
4984 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4985 something that either saves relevant registers on the stack, or
4986 calls mark_maybe_object passing it each register's contents.
4987
4988 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4989 implementation assumes that calling setjmp saves registers we need
4990 to see in a jmp_buf which itself lies on the stack. This doesn't
4991 have to be true! It must be verified for each system, possibly
4992 by taking a look at the source code of setjmp.
4993
4994 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4995 can use it as a machine independent method to store all registers
4996 to the stack. In this case the macros described in the previous
4997 two paragraphs are not used.
4998
4999 Stack Layout
5000
5001 Architectures differ in the way their processor stack is organized.
5002 For example, the stack might look like this
5003
5004 +----------------+
5005 | Lisp_Object | size = 4
5006 +----------------+
5007 | something else | size = 2
5008 +----------------+
5009 | Lisp_Object | size = 4
5010 +----------------+
5011 | ... |
5012
5013 In such a case, not every Lisp_Object will be aligned equally. To
5014 find all Lisp_Object on the stack it won't be sufficient to walk
5015 the stack in steps of 4 bytes. Instead, two passes will be
5016 necessary, one starting at the start of the stack, and a second
5017 pass starting at the start of the stack + 2. Likewise, if the
5018 minimal alignment of Lisp_Objects on the stack is 1, four passes
5019 would be necessary, each one starting with one byte more offset
5020 from the stack start. */
5021
5022 static void
5023 mark_stack (void *end)
5024 {
5025
5026 /* This assumes that the stack is a contiguous region in memory. If
5027 that's not the case, something has to be done here to iterate
5028 over the stack segments. */
5029 mark_memory (stack_base, end);
5030
5031 /* Allow for marking a secondary stack, like the register stack on the
5032 ia64. */
5033 #ifdef GC_MARK_SECONDARY_STACK
5034 GC_MARK_SECONDARY_STACK ();
5035 #endif
5036 }
5037
5038 static bool
5039 c_symbol_p (struct Lisp_Symbol *sym)
5040 {
5041 char *lispsym_ptr = (char *) lispsym;
5042 char *sym_ptr = (char *) sym;
5043 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5044 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5045 }
5046
5047 /* Determine whether it is safe to access memory at address P. */
5048 static int
5049 valid_pointer_p (void *p)
5050 {
5051 #ifdef WINDOWSNT
5052 return w32_valid_pointer_p (p, 16);
5053 #else
5054
5055 if (ADDRESS_SANITIZER)
5056 return p ? -1 : 0;
5057
5058 int fd[2];
5059
5060 /* Obviously, we cannot just access it (we would SEGV trying), so we
5061 trick the o/s to tell us whether p is a valid pointer.
5062 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5063 not validate p in that case. */
5064
5065 if (emacs_pipe (fd) == 0)
5066 {
5067 bool valid = emacs_write (fd[1], p, 16) == 16;
5068 emacs_close (fd[1]);
5069 emacs_close (fd[0]);
5070 return valid;
5071 }
5072
5073 return -1;
5074 #endif
5075 }
5076
5077 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5078 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5079 cannot validate OBJ. This function can be quite slow, so its primary
5080 use is the manual debugging. The only exception is print_object, where
5081 we use it to check whether the memory referenced by the pointer of
5082 Lisp_Save_Value object contains valid objects. */
5083
5084 int
5085 valid_lisp_object_p (Lisp_Object obj)
5086 {
5087 if (INTEGERP (obj))
5088 return 1;
5089
5090 void *p = XPNTR (obj);
5091 if (PURE_P (p))
5092 return 1;
5093
5094 if (SYMBOLP (obj) && c_symbol_p (p))
5095 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5096
5097 if (p == &buffer_defaults || p == &buffer_local_symbols)
5098 return 2;
5099
5100 struct mem_node *m = mem_find (p);
5101
5102 if (m == MEM_NIL)
5103 {
5104 int valid = valid_pointer_p (p);
5105 if (valid <= 0)
5106 return valid;
5107
5108 if (SUBRP (obj))
5109 return 1;
5110
5111 return 0;
5112 }
5113
5114 switch (m->type)
5115 {
5116 case MEM_TYPE_NON_LISP:
5117 case MEM_TYPE_SPARE:
5118 return 0;
5119
5120 case MEM_TYPE_BUFFER:
5121 return live_buffer_p (m, p) ? 1 : 2;
5122
5123 case MEM_TYPE_CONS:
5124 return live_cons_p (m, p);
5125
5126 case MEM_TYPE_STRING:
5127 return live_string_p (m, p);
5128
5129 case MEM_TYPE_MISC:
5130 return live_misc_p (m, p);
5131
5132 case MEM_TYPE_SYMBOL:
5133 return live_symbol_p (m, p);
5134
5135 case MEM_TYPE_FLOAT:
5136 return live_float_p (m, p);
5137
5138 case MEM_TYPE_VECTORLIKE:
5139 case MEM_TYPE_VECTOR_BLOCK:
5140 return live_vector_p (m, p);
5141
5142 default:
5143 break;
5144 }
5145
5146 return 0;
5147 }
5148
5149 /***********************************************************************
5150 Pure Storage Management
5151 ***********************************************************************/
5152
5153 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5154 pointer to it. TYPE is the Lisp type for which the memory is
5155 allocated. TYPE < 0 means it's not used for a Lisp object. */
5156
5157 static void *
5158 pure_alloc (size_t size, int type)
5159 {
5160 void *result;
5161
5162 again:
5163 if (type >= 0)
5164 {
5165 /* Allocate space for a Lisp object from the beginning of the free
5166 space with taking account of alignment. */
5167 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5168 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5169 }
5170 else
5171 {
5172 /* Allocate space for a non-Lisp object from the end of the free
5173 space. */
5174 pure_bytes_used_non_lisp += size;
5175 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5176 }
5177 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5178
5179 if (pure_bytes_used <= pure_size)
5180 return result;
5181
5182 /* Don't allocate a large amount here,
5183 because it might get mmap'd and then its address
5184 might not be usable. */
5185 purebeg = xmalloc (10000);
5186 pure_size = 10000;
5187 pure_bytes_used_before_overflow += pure_bytes_used - size;
5188 pure_bytes_used = 0;
5189 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5190 goto again;
5191 }
5192
5193
5194 /* Print a warning if PURESIZE is too small. */
5195
5196 void
5197 check_pure_size (void)
5198 {
5199 if (pure_bytes_used_before_overflow)
5200 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5201 " bytes needed)"),
5202 pure_bytes_used + pure_bytes_used_before_overflow);
5203 }
5204
5205
5206 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5207 the non-Lisp data pool of the pure storage, and return its start
5208 address. Return NULL if not found. */
5209
5210 static char *
5211 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5212 {
5213 int i;
5214 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5215 const unsigned char *p;
5216 char *non_lisp_beg;
5217
5218 if (pure_bytes_used_non_lisp <= nbytes)
5219 return NULL;
5220
5221 /* Set up the Boyer-Moore table. */
5222 skip = nbytes + 1;
5223 for (i = 0; i < 256; i++)
5224 bm_skip[i] = skip;
5225
5226 p = (const unsigned char *) data;
5227 while (--skip > 0)
5228 bm_skip[*p++] = skip;
5229
5230 last_char_skip = bm_skip['\0'];
5231
5232 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5233 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5234
5235 /* See the comments in the function `boyer_moore' (search.c) for the
5236 use of `infinity'. */
5237 infinity = pure_bytes_used_non_lisp + 1;
5238 bm_skip['\0'] = infinity;
5239
5240 p = (const unsigned char *) non_lisp_beg + nbytes;
5241 start = 0;
5242 do
5243 {
5244 /* Check the last character (== '\0'). */
5245 do
5246 {
5247 start += bm_skip[*(p + start)];
5248 }
5249 while (start <= start_max);
5250
5251 if (start < infinity)
5252 /* Couldn't find the last character. */
5253 return NULL;
5254
5255 /* No less than `infinity' means we could find the last
5256 character at `p[start - infinity]'. */
5257 start -= infinity;
5258
5259 /* Check the remaining characters. */
5260 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5261 /* Found. */
5262 return non_lisp_beg + start;
5263
5264 start += last_char_skip;
5265 }
5266 while (start <= start_max);
5267
5268 return NULL;
5269 }
5270
5271
5272 /* Return a string allocated in pure space. DATA is a buffer holding
5273 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5274 means make the result string multibyte.
5275
5276 Must get an error if pure storage is full, since if it cannot hold
5277 a large string it may be able to hold conses that point to that
5278 string; then the string is not protected from gc. */
5279
5280 Lisp_Object
5281 make_pure_string (const char *data,
5282 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5283 {
5284 Lisp_Object string;
5285 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5286 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5287 if (s->data == NULL)
5288 {
5289 s->data = pure_alloc (nbytes + 1, -1);
5290 memcpy (s->data, data, nbytes);
5291 s->data[nbytes] = '\0';
5292 }
5293 s->size = nchars;
5294 s->size_byte = multibyte ? nbytes : -1;
5295 s->intervals = NULL;
5296 XSETSTRING (string, s);
5297 return string;
5298 }
5299
5300 /* Return a string allocated in pure space. Do not
5301 allocate the string data, just point to DATA. */
5302
5303 Lisp_Object
5304 make_pure_c_string (const char *data, ptrdiff_t nchars)
5305 {
5306 Lisp_Object string;
5307 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5308 s->size = nchars;
5309 s->size_byte = -1;
5310 s->data = (unsigned char *) data;
5311 s->intervals = NULL;
5312 XSETSTRING (string, s);
5313 return string;
5314 }
5315
5316 static Lisp_Object purecopy (Lisp_Object obj);
5317
5318 /* Return a cons allocated from pure space. Give it pure copies
5319 of CAR as car and CDR as cdr. */
5320
5321 Lisp_Object
5322 pure_cons (Lisp_Object car, Lisp_Object cdr)
5323 {
5324 Lisp_Object new;
5325 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5326 XSETCONS (new, p);
5327 XSETCAR (new, purecopy (car));
5328 XSETCDR (new, purecopy (cdr));
5329 return new;
5330 }
5331
5332
5333 /* Value is a float object with value NUM allocated from pure space. */
5334
5335 static Lisp_Object
5336 make_pure_float (double num)
5337 {
5338 Lisp_Object new;
5339 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5340 XSETFLOAT (new, p);
5341 XFLOAT_INIT (new, num);
5342 return new;
5343 }
5344
5345
5346 /* Return a vector with room for LEN Lisp_Objects allocated from
5347 pure space. */
5348
5349 static Lisp_Object
5350 make_pure_vector (ptrdiff_t len)
5351 {
5352 Lisp_Object new;
5353 size_t size = header_size + len * word_size;
5354 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5355 XSETVECTOR (new, p);
5356 XVECTOR (new)->header.size = len;
5357 return new;
5358 }
5359
5360 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5361 doc: /* Make a copy of object OBJ in pure storage.
5362 Recursively copies contents of vectors and cons cells.
5363 Does not copy symbols. Copies strings without text properties. */)
5364 (register Lisp_Object obj)
5365 {
5366 if (NILP (Vpurify_flag))
5367 return obj;
5368 else if (MARKERP (obj) || OVERLAYP (obj)
5369 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5370 /* Can't purify those. */
5371 return obj;
5372 else
5373 return purecopy (obj);
5374 }
5375
5376 static Lisp_Object
5377 purecopy (Lisp_Object obj)
5378 {
5379 if (INTEGERP (obj)
5380 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5381 || SUBRP (obj))
5382 return obj; /* Already pure. */
5383
5384 if (STRINGP (obj) && XSTRING (obj)->intervals)
5385 message_with_string ("Dropping text-properties while making string `%s' pure",
5386 obj, true);
5387
5388 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5389 {
5390 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5391 if (!NILP (tmp))
5392 return tmp;
5393 }
5394
5395 if (CONSP (obj))
5396 obj = pure_cons (XCAR (obj), XCDR (obj));
5397 else if (FLOATP (obj))
5398 obj = make_pure_float (XFLOAT_DATA (obj));
5399 else if (STRINGP (obj))
5400 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5401 SBYTES (obj),
5402 STRING_MULTIBYTE (obj));
5403 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5404 {
5405 struct Lisp_Vector *objp = XVECTOR (obj);
5406 ptrdiff_t nbytes = vector_nbytes (objp);
5407 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5408 register ptrdiff_t i;
5409 ptrdiff_t size = ASIZE (obj);
5410 if (size & PSEUDOVECTOR_FLAG)
5411 size &= PSEUDOVECTOR_SIZE_MASK;
5412 memcpy (vec, objp, nbytes);
5413 for (i = 0; i < size; i++)
5414 vec->contents[i] = purecopy (vec->contents[i]);
5415 XSETVECTOR (obj, vec);
5416 }
5417 else if (SYMBOLP (obj))
5418 {
5419 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5420 { /* We can't purify them, but they appear in many pure objects.
5421 Mark them as `pinned' so we know to mark them at every GC cycle. */
5422 XSYMBOL (obj)->pinned = true;
5423 symbol_block_pinned = symbol_block;
5424 }
5425 /* Don't hash-cons it. */
5426 return obj;
5427 }
5428 else
5429 {
5430 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5431 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5432 }
5433
5434 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5435 Fputhash (obj, obj, Vpurify_flag);
5436
5437 return obj;
5438 }
5439
5440
5441 \f
5442 /***********************************************************************
5443 Protection from GC
5444 ***********************************************************************/
5445
5446 /* Put an entry in staticvec, pointing at the variable with address
5447 VARADDRESS. */
5448
5449 void
5450 staticpro (Lisp_Object *varaddress)
5451 {
5452 if (staticidx >= NSTATICS)
5453 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5454 staticvec[staticidx++] = varaddress;
5455 }
5456
5457 \f
5458 /***********************************************************************
5459 Protection from GC
5460 ***********************************************************************/
5461
5462 /* Temporarily prevent garbage collection. */
5463
5464 ptrdiff_t
5465 inhibit_garbage_collection (void)
5466 {
5467 ptrdiff_t count = SPECPDL_INDEX ();
5468
5469 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5470 return count;
5471 }
5472
5473 /* Used to avoid possible overflows when
5474 converting from C to Lisp integers. */
5475
5476 static Lisp_Object
5477 bounded_number (EMACS_INT number)
5478 {
5479 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5480 }
5481
5482 /* Calculate total bytes of live objects. */
5483
5484 static size_t
5485 total_bytes_of_live_objects (void)
5486 {
5487 size_t tot = 0;
5488 tot += total_conses * sizeof (struct Lisp_Cons);
5489 tot += total_symbols * sizeof (struct Lisp_Symbol);
5490 tot += total_markers * sizeof (union Lisp_Misc);
5491 tot += total_string_bytes;
5492 tot += total_vector_slots * word_size;
5493 tot += total_floats * sizeof (struct Lisp_Float);
5494 tot += total_intervals * sizeof (struct interval);
5495 tot += total_strings * sizeof (struct Lisp_String);
5496 return tot;
5497 }
5498
5499 #ifdef HAVE_WINDOW_SYSTEM
5500
5501 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5502 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5503
5504 static Lisp_Object
5505 compact_font_cache_entry (Lisp_Object entry)
5506 {
5507 Lisp_Object tail, *prev = &entry;
5508
5509 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5510 {
5511 bool drop = 0;
5512 Lisp_Object obj = XCAR (tail);
5513
5514 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5515 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5516 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5517 /* Don't use VECTORP here, as that calls ASIZE, which could
5518 hit assertion violation during GC. */
5519 && (VECTORLIKEP (XCDR (obj))
5520 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5521 {
5522 ptrdiff_t i, size = gc_asize (XCDR (obj));
5523 Lisp_Object obj_cdr = XCDR (obj);
5524
5525 /* If font-spec is not marked, most likely all font-entities
5526 are not marked too. But we must be sure that nothing is
5527 marked within OBJ before we really drop it. */
5528 for (i = 0; i < size; i++)
5529 {
5530 Lisp_Object objlist;
5531
5532 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5533 break;
5534
5535 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5536 for (; CONSP (objlist); objlist = XCDR (objlist))
5537 {
5538 Lisp_Object val = XCAR (objlist);
5539 struct font *font = GC_XFONT_OBJECT (val);
5540
5541 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5542 && VECTOR_MARKED_P(font))
5543 break;
5544 }
5545 if (CONSP (objlist))
5546 {
5547 /* Found a marked font, bail out. */
5548 break;
5549 }
5550 }
5551
5552 if (i == size)
5553 {
5554 /* No marked fonts were found, so this entire font
5555 entity can be dropped. */
5556 drop = 1;
5557 }
5558 }
5559 if (drop)
5560 *prev = XCDR (tail);
5561 else
5562 prev = xcdr_addr (tail);
5563 }
5564 return entry;
5565 }
5566
5567 /* Compact font caches on all terminals and mark
5568 everything which is still here after compaction. */
5569
5570 static void
5571 compact_font_caches (void)
5572 {
5573 struct terminal *t;
5574
5575 for (t = terminal_list; t; t = t->next_terminal)
5576 {
5577 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5578 if (CONSP (cache))
5579 {
5580 Lisp_Object entry;
5581
5582 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5583 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5584 }
5585 mark_object (cache);
5586 }
5587 }
5588
5589 #else /* not HAVE_WINDOW_SYSTEM */
5590
5591 #define compact_font_caches() (void)(0)
5592
5593 #endif /* HAVE_WINDOW_SYSTEM */
5594
5595 /* Remove (MARKER . DATA) entries with unmarked MARKER
5596 from buffer undo LIST and return changed list. */
5597
5598 static Lisp_Object
5599 compact_undo_list (Lisp_Object list)
5600 {
5601 Lisp_Object tail, *prev = &list;
5602
5603 for (tail = list; CONSP (tail); tail = XCDR (tail))
5604 {
5605 if (CONSP (XCAR (tail))
5606 && MARKERP (XCAR (XCAR (tail)))
5607 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5608 *prev = XCDR (tail);
5609 else
5610 prev = xcdr_addr (tail);
5611 }
5612 return list;
5613 }
5614
5615 static void
5616 mark_pinned_symbols (void)
5617 {
5618 struct symbol_block *sblk;
5619 int lim = (symbol_block_pinned == symbol_block
5620 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5621
5622 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5623 {
5624 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5625 for (; sym < end; ++sym)
5626 if (sym->s.pinned)
5627 mark_object (make_lisp_symbol (&sym->s));
5628
5629 lim = SYMBOL_BLOCK_SIZE;
5630 }
5631 }
5632
5633 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5634 separate function so that we could limit mark_stack in searching
5635 the stack frames below this function, thus avoiding the rare cases
5636 where mark_stack finds values that look like live Lisp objects on
5637 portions of stack that couldn't possibly contain such live objects.
5638 For more details of this, see the discussion at
5639 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5640 static Lisp_Object
5641 garbage_collect_1 (void *end)
5642 {
5643 struct buffer *nextb;
5644 char stack_top_variable;
5645 ptrdiff_t i;
5646 bool message_p;
5647 ptrdiff_t count = SPECPDL_INDEX ();
5648 struct timespec start;
5649 Lisp_Object retval = Qnil;
5650 size_t tot_before = 0;
5651
5652 if (abort_on_gc)
5653 emacs_abort ();
5654
5655 /* Can't GC if pure storage overflowed because we can't determine
5656 if something is a pure object or not. */
5657 if (pure_bytes_used_before_overflow)
5658 return Qnil;
5659
5660 /* Record this function, so it appears on the profiler's backtraces. */
5661 record_in_backtrace (Qautomatic_gc, 0, 0);
5662
5663 check_cons_list ();
5664
5665 /* Don't keep undo information around forever.
5666 Do this early on, so it is no problem if the user quits. */
5667 FOR_EACH_BUFFER (nextb)
5668 compact_buffer (nextb);
5669
5670 if (profiler_memory_running)
5671 tot_before = total_bytes_of_live_objects ();
5672
5673 start = current_timespec ();
5674
5675 /* In case user calls debug_print during GC,
5676 don't let that cause a recursive GC. */
5677 consing_since_gc = 0;
5678
5679 /* Save what's currently displayed in the echo area. Don't do that
5680 if we are GC'ing because we've run out of memory, since
5681 push_message will cons, and we might have no memory for that. */
5682 if (NILP (Vmemory_full))
5683 {
5684 message_p = push_message ();
5685 record_unwind_protect_void (pop_message_unwind);
5686 }
5687 else
5688 message_p = false;
5689
5690 /* Save a copy of the contents of the stack, for debugging. */
5691 #if MAX_SAVE_STACK > 0
5692 if (NILP (Vpurify_flag))
5693 {
5694 char *stack;
5695 ptrdiff_t stack_size;
5696 if (&stack_top_variable < stack_bottom)
5697 {
5698 stack = &stack_top_variable;
5699 stack_size = stack_bottom - &stack_top_variable;
5700 }
5701 else
5702 {
5703 stack = stack_bottom;
5704 stack_size = &stack_top_variable - stack_bottom;
5705 }
5706 if (stack_size <= MAX_SAVE_STACK)
5707 {
5708 if (stack_copy_size < stack_size)
5709 {
5710 stack_copy = xrealloc (stack_copy, stack_size);
5711 stack_copy_size = stack_size;
5712 }
5713 no_sanitize_memcpy (stack_copy, stack, stack_size);
5714 }
5715 }
5716 #endif /* MAX_SAVE_STACK > 0 */
5717
5718 if (garbage_collection_messages)
5719 message1_nolog ("Garbage collecting...");
5720
5721 block_input ();
5722
5723 shrink_regexp_cache ();
5724
5725 gc_in_progress = 1;
5726
5727 /* Mark all the special slots that serve as the roots of accessibility. */
5728
5729 mark_buffer (&buffer_defaults);
5730 mark_buffer (&buffer_local_symbols);
5731
5732 for (i = 0; i < ARRAYELTS (lispsym); i++)
5733 mark_object (builtin_lisp_symbol (i));
5734
5735 for (i = 0; i < staticidx; i++)
5736 mark_object (*staticvec[i]);
5737
5738 mark_pinned_symbols ();
5739 mark_specpdl ();
5740 mark_terminals ();
5741 mark_kboards ();
5742
5743 #ifdef USE_GTK
5744 xg_mark_data ();
5745 #endif
5746
5747 mark_stack (end);
5748
5749 {
5750 struct handler *handler;
5751 for (handler = handlerlist; handler; handler = handler->next)
5752 {
5753 mark_object (handler->tag_or_ch);
5754 mark_object (handler->val);
5755 }
5756 }
5757 #ifdef HAVE_WINDOW_SYSTEM
5758 mark_fringe_data ();
5759 #endif
5760
5761 /* Everything is now marked, except for the data in font caches,
5762 undo lists, and finalizers. The first two are compacted by
5763 removing an items which aren't reachable otherwise. */
5764
5765 compact_font_caches ();
5766
5767 FOR_EACH_BUFFER (nextb)
5768 {
5769 if (!EQ (BVAR (nextb, undo_list), Qt))
5770 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5771 /* Now that we have stripped the elements that need not be
5772 in the undo_list any more, we can finally mark the list. */
5773 mark_object (BVAR (nextb, undo_list));
5774 }
5775
5776 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5777 to doomed_finalizers so we can run their associated functions
5778 after GC. It's important to scan finalizers at this stage so
5779 that we can be sure that unmarked finalizers are really
5780 unreachable except for references from their associated functions
5781 and from other finalizers. */
5782
5783 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5784 mark_finalizer_list (&doomed_finalizers);
5785
5786 gc_sweep ();
5787
5788 relocate_byte_stack ();
5789
5790 /* Clear the mark bits that we set in certain root slots. */
5791 VECTOR_UNMARK (&buffer_defaults);
5792 VECTOR_UNMARK (&buffer_local_symbols);
5793
5794 check_cons_list ();
5795
5796 gc_in_progress = 0;
5797
5798 unblock_input ();
5799
5800 consing_since_gc = 0;
5801 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5802 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5803
5804 gc_relative_threshold = 0;
5805 if (FLOATP (Vgc_cons_percentage))
5806 { /* Set gc_cons_combined_threshold. */
5807 double tot = total_bytes_of_live_objects ();
5808
5809 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5810 if (0 < tot)
5811 {
5812 if (tot < TYPE_MAXIMUM (EMACS_INT))
5813 gc_relative_threshold = tot;
5814 else
5815 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5816 }
5817 }
5818
5819 if (garbage_collection_messages && NILP (Vmemory_full))
5820 {
5821 if (message_p || minibuf_level > 0)
5822 restore_message ();
5823 else
5824 message1_nolog ("Garbage collecting...done");
5825 }
5826
5827 unbind_to (count, Qnil);
5828
5829 Lisp_Object total[] = {
5830 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5831 bounded_number (total_conses),
5832 bounded_number (total_free_conses)),
5833 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5834 bounded_number (total_symbols),
5835 bounded_number (total_free_symbols)),
5836 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5837 bounded_number (total_markers),
5838 bounded_number (total_free_markers)),
5839 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5840 bounded_number (total_strings),
5841 bounded_number (total_free_strings)),
5842 list3 (Qstring_bytes, make_number (1),
5843 bounded_number (total_string_bytes)),
5844 list3 (Qvectors,
5845 make_number (header_size + sizeof (Lisp_Object)),
5846 bounded_number (total_vectors)),
5847 list4 (Qvector_slots, make_number (word_size),
5848 bounded_number (total_vector_slots),
5849 bounded_number (total_free_vector_slots)),
5850 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5851 bounded_number (total_floats),
5852 bounded_number (total_free_floats)),
5853 list4 (Qintervals, make_number (sizeof (struct interval)),
5854 bounded_number (total_intervals),
5855 bounded_number (total_free_intervals)),
5856 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5857 bounded_number (total_buffers)),
5858
5859 #ifdef DOUG_LEA_MALLOC
5860 list4 (Qheap, make_number (1024),
5861 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5862 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5863 #endif
5864 };
5865 retval = CALLMANY (Flist, total);
5866
5867 /* GC is complete: now we can run our finalizer callbacks. */
5868 run_finalizers (&doomed_finalizers);
5869
5870 if (!NILP (Vpost_gc_hook))
5871 {
5872 ptrdiff_t gc_count = inhibit_garbage_collection ();
5873 safe_run_hooks (Qpost_gc_hook);
5874 unbind_to (gc_count, Qnil);
5875 }
5876
5877 /* Accumulate statistics. */
5878 if (FLOATP (Vgc_elapsed))
5879 {
5880 struct timespec since_start = timespec_sub (current_timespec (), start);
5881 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5882 + timespectod (since_start));
5883 }
5884
5885 gcs_done++;
5886
5887 /* Collect profiling data. */
5888 if (profiler_memory_running)
5889 {
5890 size_t swept = 0;
5891 size_t tot_after = total_bytes_of_live_objects ();
5892 if (tot_before > tot_after)
5893 swept = tot_before - tot_after;
5894 malloc_probe (swept);
5895 }
5896
5897 return retval;
5898 }
5899
5900 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5901 doc: /* Reclaim storage for Lisp objects no longer needed.
5902 Garbage collection happens automatically if you cons more than
5903 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5904 `garbage-collect' normally returns a list with info on amount of space in use,
5905 where each entry has the form (NAME SIZE USED FREE), where:
5906 - NAME is a symbol describing the kind of objects this entry represents,
5907 - SIZE is the number of bytes used by each one,
5908 - USED is the number of those objects that were found live in the heap,
5909 - FREE is the number of those objects that are not live but that Emacs
5910 keeps around for future allocations (maybe because it does not know how
5911 to return them to the OS).
5912 However, if there was overflow in pure space, `garbage-collect'
5913 returns nil, because real GC can't be done.
5914 See Info node `(elisp)Garbage Collection'. */)
5915 (void)
5916 {
5917 void *end;
5918
5919 #ifdef HAVE___BUILTIN_UNWIND_INIT
5920 /* Force callee-saved registers and register windows onto the stack.
5921 This is the preferred method if available, obviating the need for
5922 machine dependent methods. */
5923 __builtin_unwind_init ();
5924 end = &end;
5925 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5926 #ifndef GC_SAVE_REGISTERS_ON_STACK
5927 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5928 union aligned_jmpbuf {
5929 Lisp_Object o;
5930 sys_jmp_buf j;
5931 } j;
5932 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5933 #endif
5934 /* This trick flushes the register windows so that all the state of
5935 the process is contained in the stack. */
5936 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5937 needed on ia64 too. See mach_dep.c, where it also says inline
5938 assembler doesn't work with relevant proprietary compilers. */
5939 #ifdef __sparc__
5940 #if defined (__sparc64__) && defined (__FreeBSD__)
5941 /* FreeBSD does not have a ta 3 handler. */
5942 asm ("flushw");
5943 #else
5944 asm ("ta 3");
5945 #endif
5946 #endif
5947
5948 /* Save registers that we need to see on the stack. We need to see
5949 registers used to hold register variables and registers used to
5950 pass parameters. */
5951 #ifdef GC_SAVE_REGISTERS_ON_STACK
5952 GC_SAVE_REGISTERS_ON_STACK (end);
5953 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5954
5955 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5956 setjmp will definitely work, test it
5957 and print a message with the result
5958 of the test. */
5959 if (!setjmp_tested_p)
5960 {
5961 setjmp_tested_p = 1;
5962 test_setjmp ();
5963 }
5964 #endif /* GC_SETJMP_WORKS */
5965
5966 sys_setjmp (j.j);
5967 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5968 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5969 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5970 return garbage_collect_1 (end);
5971 }
5972
5973 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5974 only interesting objects referenced from glyphs are strings. */
5975
5976 static void
5977 mark_glyph_matrix (struct glyph_matrix *matrix)
5978 {
5979 struct glyph_row *row = matrix->rows;
5980 struct glyph_row *end = row + matrix->nrows;
5981
5982 for (; row < end; ++row)
5983 if (row->enabled_p)
5984 {
5985 int area;
5986 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5987 {
5988 struct glyph *glyph = row->glyphs[area];
5989 struct glyph *end_glyph = glyph + row->used[area];
5990
5991 for (; glyph < end_glyph; ++glyph)
5992 if (STRINGP (glyph->object)
5993 && !STRING_MARKED_P (XSTRING (glyph->object)))
5994 mark_object (glyph->object);
5995 }
5996 }
5997 }
5998
5999 /* Mark reference to a Lisp_Object.
6000 If the object referred to has not been seen yet, recursively mark
6001 all the references contained in it. */
6002
6003 #define LAST_MARKED_SIZE 500
6004 static Lisp_Object last_marked[LAST_MARKED_SIZE];
6005 static int last_marked_index;
6006
6007 /* For debugging--call abort when we cdr down this many
6008 links of a list, in mark_object. In debugging,
6009 the call to abort will hit a breakpoint.
6010 Normally this is zero and the check never goes off. */
6011 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6012
6013 static void
6014 mark_vectorlike (struct Lisp_Vector *ptr)
6015 {
6016 ptrdiff_t size = ptr->header.size;
6017 ptrdiff_t i;
6018
6019 eassert (!VECTOR_MARKED_P (ptr));
6020 VECTOR_MARK (ptr); /* Else mark it. */
6021 if (size & PSEUDOVECTOR_FLAG)
6022 size &= PSEUDOVECTOR_SIZE_MASK;
6023
6024 /* Note that this size is not the memory-footprint size, but only
6025 the number of Lisp_Object fields that we should trace.
6026 The distinction is used e.g. by Lisp_Process which places extra
6027 non-Lisp_Object fields at the end of the structure... */
6028 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6029 mark_object (ptr->contents[i]);
6030 }
6031
6032 /* Like mark_vectorlike but optimized for char-tables (and
6033 sub-char-tables) assuming that the contents are mostly integers or
6034 symbols. */
6035
6036 static void
6037 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6038 {
6039 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6040 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6041 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6042
6043 eassert (!VECTOR_MARKED_P (ptr));
6044 VECTOR_MARK (ptr);
6045 for (i = idx; i < size; i++)
6046 {
6047 Lisp_Object val = ptr->contents[i];
6048
6049 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6050 continue;
6051 if (SUB_CHAR_TABLE_P (val))
6052 {
6053 if (! VECTOR_MARKED_P (XVECTOR (val)))
6054 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6055 }
6056 else
6057 mark_object (val);
6058 }
6059 }
6060
6061 NO_INLINE /* To reduce stack depth in mark_object. */
6062 static Lisp_Object
6063 mark_compiled (struct Lisp_Vector *ptr)
6064 {
6065 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6066
6067 VECTOR_MARK (ptr);
6068 for (i = 0; i < size; i++)
6069 if (i != COMPILED_CONSTANTS)
6070 mark_object (ptr->contents[i]);
6071 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6072 }
6073
6074 /* Mark the chain of overlays starting at PTR. */
6075
6076 static void
6077 mark_overlay (struct Lisp_Overlay *ptr)
6078 {
6079 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6080 {
6081 ptr->gcmarkbit = 1;
6082 /* These two are always markers and can be marked fast. */
6083 XMARKER (ptr->start)->gcmarkbit = 1;
6084 XMARKER (ptr->end)->gcmarkbit = 1;
6085 mark_object (ptr->plist);
6086 }
6087 }
6088
6089 /* Mark Lisp_Objects and special pointers in BUFFER. */
6090
6091 static void
6092 mark_buffer (struct buffer *buffer)
6093 {
6094 /* This is handled much like other pseudovectors... */
6095 mark_vectorlike ((struct Lisp_Vector *) buffer);
6096
6097 /* ...but there are some buffer-specific things. */
6098
6099 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6100
6101 /* For now, we just don't mark the undo_list. It's done later in
6102 a special way just before the sweep phase, and after stripping
6103 some of its elements that are not needed any more. */
6104
6105 mark_overlay (buffer->overlays_before);
6106 mark_overlay (buffer->overlays_after);
6107
6108 /* If this is an indirect buffer, mark its base buffer. */
6109 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6110 mark_buffer (buffer->base_buffer);
6111 }
6112
6113 /* Mark Lisp faces in the face cache C. */
6114
6115 NO_INLINE /* To reduce stack depth in mark_object. */
6116 static void
6117 mark_face_cache (struct face_cache *c)
6118 {
6119 if (c)
6120 {
6121 int i, j;
6122 for (i = 0; i < c->used; ++i)
6123 {
6124 struct face *face = FACE_FROM_ID (c->f, i);
6125
6126 if (face)
6127 {
6128 if (face->font && !VECTOR_MARKED_P (face->font))
6129 mark_vectorlike ((struct Lisp_Vector *) face->font);
6130
6131 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6132 mark_object (face->lface[j]);
6133 }
6134 }
6135 }
6136 }
6137
6138 NO_INLINE /* To reduce stack depth in mark_object. */
6139 static void
6140 mark_localized_symbol (struct Lisp_Symbol *ptr)
6141 {
6142 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6143 Lisp_Object where = blv->where;
6144 /* If the value is set up for a killed buffer or deleted
6145 frame, restore its global binding. If the value is
6146 forwarded to a C variable, either it's not a Lisp_Object
6147 var, or it's staticpro'd already. */
6148 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6149 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6150 swap_in_global_binding (ptr);
6151 mark_object (blv->where);
6152 mark_object (blv->valcell);
6153 mark_object (blv->defcell);
6154 }
6155
6156 NO_INLINE /* To reduce stack depth in mark_object. */
6157 static void
6158 mark_save_value (struct Lisp_Save_Value *ptr)
6159 {
6160 /* If `save_type' is zero, `data[0].pointer' is the address
6161 of a memory area containing `data[1].integer' potential
6162 Lisp_Objects. */
6163 if (ptr->save_type == SAVE_TYPE_MEMORY)
6164 {
6165 Lisp_Object *p = ptr->data[0].pointer;
6166 ptrdiff_t nelt;
6167 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6168 mark_maybe_object (*p);
6169 }
6170 else
6171 {
6172 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6173 int i;
6174 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6175 if (save_type (ptr, i) == SAVE_OBJECT)
6176 mark_object (ptr->data[i].object);
6177 }
6178 }
6179
6180 /* Remove killed buffers or items whose car is a killed buffer from
6181 LIST, and mark other items. Return changed LIST, which is marked. */
6182
6183 static Lisp_Object
6184 mark_discard_killed_buffers (Lisp_Object list)
6185 {
6186 Lisp_Object tail, *prev = &list;
6187
6188 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6189 tail = XCDR (tail))
6190 {
6191 Lisp_Object tem = XCAR (tail);
6192 if (CONSP (tem))
6193 tem = XCAR (tem);
6194 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6195 *prev = XCDR (tail);
6196 else
6197 {
6198 CONS_MARK (XCONS (tail));
6199 mark_object (XCAR (tail));
6200 prev = xcdr_addr (tail);
6201 }
6202 }
6203 mark_object (tail);
6204 return list;
6205 }
6206
6207 /* Determine type of generic Lisp_Object and mark it accordingly.
6208
6209 This function implements a straightforward depth-first marking
6210 algorithm and so the recursion depth may be very high (a few
6211 tens of thousands is not uncommon). To minimize stack usage,
6212 a few cold paths are moved out to NO_INLINE functions above.
6213 In general, inlining them doesn't help you to gain more speed. */
6214
6215 void
6216 mark_object (Lisp_Object arg)
6217 {
6218 register Lisp_Object obj;
6219 void *po;
6220 #ifdef GC_CHECK_MARKED_OBJECTS
6221 struct mem_node *m;
6222 #endif
6223 ptrdiff_t cdr_count = 0;
6224
6225 obj = arg;
6226 loop:
6227
6228 po = XPNTR (obj);
6229 if (PURE_P (po))
6230 return;
6231
6232 last_marked[last_marked_index++] = obj;
6233 if (last_marked_index == LAST_MARKED_SIZE)
6234 last_marked_index = 0;
6235
6236 /* Perform some sanity checks on the objects marked here. Abort if
6237 we encounter an object we know is bogus. This increases GC time
6238 by ~80%. */
6239 #ifdef GC_CHECK_MARKED_OBJECTS
6240
6241 /* Check that the object pointed to by PO is known to be a Lisp
6242 structure allocated from the heap. */
6243 #define CHECK_ALLOCATED() \
6244 do { \
6245 m = mem_find (po); \
6246 if (m == MEM_NIL) \
6247 emacs_abort (); \
6248 } while (0)
6249
6250 /* Check that the object pointed to by PO is live, using predicate
6251 function LIVEP. */
6252 #define CHECK_LIVE(LIVEP) \
6253 do { \
6254 if (!LIVEP (m, po)) \
6255 emacs_abort (); \
6256 } while (0)
6257
6258 /* Check both of the above conditions, for non-symbols. */
6259 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6260 do { \
6261 CHECK_ALLOCATED (); \
6262 CHECK_LIVE (LIVEP); \
6263 } while (0) \
6264
6265 /* Check both of the above conditions, for symbols. */
6266 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6267 do { \
6268 if (!c_symbol_p (ptr)) \
6269 { \
6270 CHECK_ALLOCATED (); \
6271 CHECK_LIVE (live_symbol_p); \
6272 } \
6273 } while (0) \
6274
6275 #else /* not GC_CHECK_MARKED_OBJECTS */
6276
6277 #define CHECK_LIVE(LIVEP) ((void) 0)
6278 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6279 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6280
6281 #endif /* not GC_CHECK_MARKED_OBJECTS */
6282
6283 switch (XTYPE (obj))
6284 {
6285 case Lisp_String:
6286 {
6287 register struct Lisp_String *ptr = XSTRING (obj);
6288 if (STRING_MARKED_P (ptr))
6289 break;
6290 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6291 MARK_STRING (ptr);
6292 MARK_INTERVAL_TREE (ptr->intervals);
6293 #ifdef GC_CHECK_STRING_BYTES
6294 /* Check that the string size recorded in the string is the
6295 same as the one recorded in the sdata structure. */
6296 string_bytes (ptr);
6297 #endif /* GC_CHECK_STRING_BYTES */
6298 }
6299 break;
6300
6301 case Lisp_Vectorlike:
6302 {
6303 register struct Lisp_Vector *ptr = XVECTOR (obj);
6304 register ptrdiff_t pvectype;
6305
6306 if (VECTOR_MARKED_P (ptr))
6307 break;
6308
6309 #ifdef GC_CHECK_MARKED_OBJECTS
6310 m = mem_find (po);
6311 if (m == MEM_NIL && !SUBRP (obj))
6312 emacs_abort ();
6313 #endif /* GC_CHECK_MARKED_OBJECTS */
6314
6315 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6316 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6317 >> PSEUDOVECTOR_AREA_BITS);
6318 else
6319 pvectype = PVEC_NORMAL_VECTOR;
6320
6321 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6322 CHECK_LIVE (live_vector_p);
6323
6324 switch (pvectype)
6325 {
6326 case PVEC_BUFFER:
6327 #ifdef GC_CHECK_MARKED_OBJECTS
6328 {
6329 struct buffer *b;
6330 FOR_EACH_BUFFER (b)
6331 if (b == po)
6332 break;
6333 if (b == NULL)
6334 emacs_abort ();
6335 }
6336 #endif /* GC_CHECK_MARKED_OBJECTS */
6337 mark_buffer ((struct buffer *) ptr);
6338 break;
6339
6340 case PVEC_COMPILED:
6341 /* Although we could treat this just like a vector, mark_compiled
6342 returns the COMPILED_CONSTANTS element, which is marked at the
6343 next iteration of goto-loop here. This is done to avoid a few
6344 recursive calls to mark_object. */
6345 obj = mark_compiled (ptr);
6346 if (!NILP (obj))
6347 goto loop;
6348 break;
6349
6350 case PVEC_FRAME:
6351 {
6352 struct frame *f = (struct frame *) ptr;
6353
6354 mark_vectorlike (ptr);
6355 mark_face_cache (f->face_cache);
6356 #ifdef HAVE_WINDOW_SYSTEM
6357 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6358 {
6359 struct font *font = FRAME_FONT (f);
6360
6361 if (font && !VECTOR_MARKED_P (font))
6362 mark_vectorlike ((struct Lisp_Vector *) font);
6363 }
6364 #endif
6365 }
6366 break;
6367
6368 case PVEC_WINDOW:
6369 {
6370 struct window *w = (struct window *) ptr;
6371
6372 mark_vectorlike (ptr);
6373
6374 /* Mark glyph matrices, if any. Marking window
6375 matrices is sufficient because frame matrices
6376 use the same glyph memory. */
6377 if (w->current_matrix)
6378 {
6379 mark_glyph_matrix (w->current_matrix);
6380 mark_glyph_matrix (w->desired_matrix);
6381 }
6382
6383 /* Filter out killed buffers from both buffer lists
6384 in attempt to help GC to reclaim killed buffers faster.
6385 We can do it elsewhere for live windows, but this is the
6386 best place to do it for dead windows. */
6387 wset_prev_buffers
6388 (w, mark_discard_killed_buffers (w->prev_buffers));
6389 wset_next_buffers
6390 (w, mark_discard_killed_buffers (w->next_buffers));
6391 }
6392 break;
6393
6394 case PVEC_HASH_TABLE:
6395 {
6396 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6397
6398 mark_vectorlike (ptr);
6399 mark_object (h->test.name);
6400 mark_object (h->test.user_hash_function);
6401 mark_object (h->test.user_cmp_function);
6402 /* If hash table is not weak, mark all keys and values.
6403 For weak tables, mark only the vector. */
6404 if (NILP (h->weak))
6405 mark_object (h->key_and_value);
6406 else
6407 VECTOR_MARK (XVECTOR (h->key_and_value));
6408 }
6409 break;
6410
6411 case PVEC_CHAR_TABLE:
6412 case PVEC_SUB_CHAR_TABLE:
6413 mark_char_table (ptr, (enum pvec_type) pvectype);
6414 break;
6415
6416 case PVEC_BOOL_VECTOR:
6417 /* No Lisp_Objects to mark in a bool vector. */
6418 VECTOR_MARK (ptr);
6419 break;
6420
6421 case PVEC_SUBR:
6422 break;
6423
6424 case PVEC_FREE:
6425 emacs_abort ();
6426
6427 default:
6428 mark_vectorlike (ptr);
6429 }
6430 }
6431 break;
6432
6433 case Lisp_Symbol:
6434 {
6435 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6436 nextsym:
6437 if (ptr->gcmarkbit)
6438 break;
6439 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6440 ptr->gcmarkbit = 1;
6441 /* Attempt to catch bogus objects. */
6442 eassert (valid_lisp_object_p (ptr->function));
6443 mark_object (ptr->function);
6444 mark_object (ptr->plist);
6445 switch (ptr->redirect)
6446 {
6447 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6448 case SYMBOL_VARALIAS:
6449 {
6450 Lisp_Object tem;
6451 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6452 mark_object (tem);
6453 break;
6454 }
6455 case SYMBOL_LOCALIZED:
6456 mark_localized_symbol (ptr);
6457 break;
6458 case SYMBOL_FORWARDED:
6459 /* If the value is forwarded to a buffer or keyboard field,
6460 these are marked when we see the corresponding object.
6461 And if it's forwarded to a C variable, either it's not
6462 a Lisp_Object var, or it's staticpro'd already. */
6463 break;
6464 default: emacs_abort ();
6465 }
6466 if (!PURE_P (XSTRING (ptr->name)))
6467 MARK_STRING (XSTRING (ptr->name));
6468 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6469 /* Inner loop to mark next symbol in this bucket, if any. */
6470 po = ptr = ptr->next;
6471 if (ptr)
6472 goto nextsym;
6473 }
6474 break;
6475
6476 case Lisp_Misc:
6477 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6478
6479 if (XMISCANY (obj)->gcmarkbit)
6480 break;
6481
6482 switch (XMISCTYPE (obj))
6483 {
6484 case Lisp_Misc_Marker:
6485 /* DO NOT mark thru the marker's chain.
6486 The buffer's markers chain does not preserve markers from gc;
6487 instead, markers are removed from the chain when freed by gc. */
6488 XMISCANY (obj)->gcmarkbit = 1;
6489 break;
6490
6491 case Lisp_Misc_Save_Value:
6492 XMISCANY (obj)->gcmarkbit = 1;
6493 mark_save_value (XSAVE_VALUE (obj));
6494 break;
6495
6496 case Lisp_Misc_Overlay:
6497 mark_overlay (XOVERLAY (obj));
6498 break;
6499
6500 case Lisp_Misc_Finalizer:
6501 XMISCANY (obj)->gcmarkbit = true;
6502 mark_object (XFINALIZER (obj)->function);
6503 break;
6504
6505 #ifdef HAVE_MODULES
6506 case Lisp_Misc_User_Ptr:
6507 XMISCANY (obj)->gcmarkbit = true;
6508 break;
6509 #endif
6510
6511 default:
6512 emacs_abort ();
6513 }
6514 break;
6515
6516 case Lisp_Cons:
6517 {
6518 register struct Lisp_Cons *ptr = XCONS (obj);
6519 if (CONS_MARKED_P (ptr))
6520 break;
6521 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6522 CONS_MARK (ptr);
6523 /* If the cdr is nil, avoid recursion for the car. */
6524 if (EQ (ptr->u.cdr, Qnil))
6525 {
6526 obj = ptr->car;
6527 cdr_count = 0;
6528 goto loop;
6529 }
6530 mark_object (ptr->car);
6531 obj = ptr->u.cdr;
6532 cdr_count++;
6533 if (cdr_count == mark_object_loop_halt)
6534 emacs_abort ();
6535 goto loop;
6536 }
6537
6538 case Lisp_Float:
6539 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6540 FLOAT_MARK (XFLOAT (obj));
6541 break;
6542
6543 case_Lisp_Int:
6544 break;
6545
6546 default:
6547 emacs_abort ();
6548 }
6549
6550 #undef CHECK_LIVE
6551 #undef CHECK_ALLOCATED
6552 #undef CHECK_ALLOCATED_AND_LIVE
6553 }
6554 /* Mark the Lisp pointers in the terminal objects.
6555 Called by Fgarbage_collect. */
6556
6557 static void
6558 mark_terminals (void)
6559 {
6560 struct terminal *t;
6561 for (t = terminal_list; t; t = t->next_terminal)
6562 {
6563 eassert (t->name != NULL);
6564 #ifdef HAVE_WINDOW_SYSTEM
6565 /* If a terminal object is reachable from a stacpro'ed object,
6566 it might have been marked already. Make sure the image cache
6567 gets marked. */
6568 mark_image_cache (t->image_cache);
6569 #endif /* HAVE_WINDOW_SYSTEM */
6570 if (!VECTOR_MARKED_P (t))
6571 mark_vectorlike ((struct Lisp_Vector *)t);
6572 }
6573 }
6574
6575
6576
6577 /* Value is non-zero if OBJ will survive the current GC because it's
6578 either marked or does not need to be marked to survive. */
6579
6580 bool
6581 survives_gc_p (Lisp_Object obj)
6582 {
6583 bool survives_p;
6584
6585 switch (XTYPE (obj))
6586 {
6587 case_Lisp_Int:
6588 survives_p = 1;
6589 break;
6590
6591 case Lisp_Symbol:
6592 survives_p = XSYMBOL (obj)->gcmarkbit;
6593 break;
6594
6595 case Lisp_Misc:
6596 survives_p = XMISCANY (obj)->gcmarkbit;
6597 break;
6598
6599 case Lisp_String:
6600 survives_p = STRING_MARKED_P (XSTRING (obj));
6601 break;
6602
6603 case Lisp_Vectorlike:
6604 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6605 break;
6606
6607 case Lisp_Cons:
6608 survives_p = CONS_MARKED_P (XCONS (obj));
6609 break;
6610
6611 case Lisp_Float:
6612 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6613 break;
6614
6615 default:
6616 emacs_abort ();
6617 }
6618
6619 return survives_p || PURE_P (XPNTR (obj));
6620 }
6621
6622
6623 \f
6624
6625 NO_INLINE /* For better stack traces */
6626 static void
6627 sweep_conses (void)
6628 {
6629 struct cons_block *cblk;
6630 struct cons_block **cprev = &cons_block;
6631 int lim = cons_block_index;
6632 EMACS_INT num_free = 0, num_used = 0;
6633
6634 cons_free_list = 0;
6635
6636 for (cblk = cons_block; cblk; cblk = *cprev)
6637 {
6638 int i = 0;
6639 int this_free = 0;
6640 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6641
6642 /* Scan the mark bits an int at a time. */
6643 for (i = 0; i < ilim; i++)
6644 {
6645 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6646 {
6647 /* Fast path - all cons cells for this int are marked. */
6648 cblk->gcmarkbits[i] = 0;
6649 num_used += BITS_PER_BITS_WORD;
6650 }
6651 else
6652 {
6653 /* Some cons cells for this int are not marked.
6654 Find which ones, and free them. */
6655 int start, pos, stop;
6656
6657 start = i * BITS_PER_BITS_WORD;
6658 stop = lim - start;
6659 if (stop > BITS_PER_BITS_WORD)
6660 stop = BITS_PER_BITS_WORD;
6661 stop += start;
6662
6663 for (pos = start; pos < stop; pos++)
6664 {
6665 if (!CONS_MARKED_P (&cblk->conses[pos]))
6666 {
6667 this_free++;
6668 cblk->conses[pos].u.chain = cons_free_list;
6669 cons_free_list = &cblk->conses[pos];
6670 cons_free_list->car = Vdead;
6671 }
6672 else
6673 {
6674 num_used++;
6675 CONS_UNMARK (&cblk->conses[pos]);
6676 }
6677 }
6678 }
6679 }
6680
6681 lim = CONS_BLOCK_SIZE;
6682 /* If this block contains only free conses and we have already
6683 seen more than two blocks worth of free conses then deallocate
6684 this block. */
6685 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6686 {
6687 *cprev = cblk->next;
6688 /* Unhook from the free list. */
6689 cons_free_list = cblk->conses[0].u.chain;
6690 lisp_align_free (cblk);
6691 }
6692 else
6693 {
6694 num_free += this_free;
6695 cprev = &cblk->next;
6696 }
6697 }
6698 total_conses = num_used;
6699 total_free_conses = num_free;
6700 }
6701
6702 NO_INLINE /* For better stack traces */
6703 static void
6704 sweep_floats (void)
6705 {
6706 register struct float_block *fblk;
6707 struct float_block **fprev = &float_block;
6708 register int lim = float_block_index;
6709 EMACS_INT num_free = 0, num_used = 0;
6710
6711 float_free_list = 0;
6712
6713 for (fblk = float_block; fblk; fblk = *fprev)
6714 {
6715 register int i;
6716 int this_free = 0;
6717 for (i = 0; i < lim; i++)
6718 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6719 {
6720 this_free++;
6721 fblk->floats[i].u.chain = float_free_list;
6722 float_free_list = &fblk->floats[i];
6723 }
6724 else
6725 {
6726 num_used++;
6727 FLOAT_UNMARK (&fblk->floats[i]);
6728 }
6729 lim = FLOAT_BLOCK_SIZE;
6730 /* If this block contains only free floats and we have already
6731 seen more than two blocks worth of free floats then deallocate
6732 this block. */
6733 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6734 {
6735 *fprev = fblk->next;
6736 /* Unhook from the free list. */
6737 float_free_list = fblk->floats[0].u.chain;
6738 lisp_align_free (fblk);
6739 }
6740 else
6741 {
6742 num_free += this_free;
6743 fprev = &fblk->next;
6744 }
6745 }
6746 total_floats = num_used;
6747 total_free_floats = num_free;
6748 }
6749
6750 NO_INLINE /* For better stack traces */
6751 static void
6752 sweep_intervals (void)
6753 {
6754 register struct interval_block *iblk;
6755 struct interval_block **iprev = &interval_block;
6756 register int lim = interval_block_index;
6757 EMACS_INT num_free = 0, num_used = 0;
6758
6759 interval_free_list = 0;
6760
6761 for (iblk = interval_block; iblk; iblk = *iprev)
6762 {
6763 register int i;
6764 int this_free = 0;
6765
6766 for (i = 0; i < lim; i++)
6767 {
6768 if (!iblk->intervals[i].gcmarkbit)
6769 {
6770 set_interval_parent (&iblk->intervals[i], interval_free_list);
6771 interval_free_list = &iblk->intervals[i];
6772 this_free++;
6773 }
6774 else
6775 {
6776 num_used++;
6777 iblk->intervals[i].gcmarkbit = 0;
6778 }
6779 }
6780 lim = INTERVAL_BLOCK_SIZE;
6781 /* If this block contains only free intervals and we have already
6782 seen more than two blocks worth of free intervals then
6783 deallocate this block. */
6784 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6785 {
6786 *iprev = iblk->next;
6787 /* Unhook from the free list. */
6788 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6789 lisp_free (iblk);
6790 }
6791 else
6792 {
6793 num_free += this_free;
6794 iprev = &iblk->next;
6795 }
6796 }
6797 total_intervals = num_used;
6798 total_free_intervals = num_free;
6799 }
6800
6801 NO_INLINE /* For better stack traces */
6802 static void
6803 sweep_symbols (void)
6804 {
6805 struct symbol_block *sblk;
6806 struct symbol_block **sprev = &symbol_block;
6807 int lim = symbol_block_index;
6808 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6809
6810 symbol_free_list = NULL;
6811
6812 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6813 lispsym[i].gcmarkbit = 0;
6814
6815 for (sblk = symbol_block; sblk; sblk = *sprev)
6816 {
6817 int this_free = 0;
6818 union aligned_Lisp_Symbol *sym = sblk->symbols;
6819 union aligned_Lisp_Symbol *end = sym + lim;
6820
6821 for (; sym < end; ++sym)
6822 {
6823 if (!sym->s.gcmarkbit)
6824 {
6825 if (sym->s.redirect == SYMBOL_LOCALIZED)
6826 xfree (SYMBOL_BLV (&sym->s));
6827 sym->s.next = symbol_free_list;
6828 symbol_free_list = &sym->s;
6829 symbol_free_list->function = Vdead;
6830 ++this_free;
6831 }
6832 else
6833 {
6834 ++num_used;
6835 sym->s.gcmarkbit = 0;
6836 /* Attempt to catch bogus objects. */
6837 eassert (valid_lisp_object_p (sym->s.function));
6838 }
6839 }
6840
6841 lim = SYMBOL_BLOCK_SIZE;
6842 /* If this block contains only free symbols and we have already
6843 seen more than two blocks worth of free symbols then deallocate
6844 this block. */
6845 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6846 {
6847 *sprev = sblk->next;
6848 /* Unhook from the free list. */
6849 symbol_free_list = sblk->symbols[0].s.next;
6850 lisp_free (sblk);
6851 }
6852 else
6853 {
6854 num_free += this_free;
6855 sprev = &sblk->next;
6856 }
6857 }
6858 total_symbols = num_used;
6859 total_free_symbols = num_free;
6860 }
6861
6862 NO_INLINE /* For better stack traces. */
6863 static void
6864 sweep_misc (void)
6865 {
6866 register struct marker_block *mblk;
6867 struct marker_block **mprev = &marker_block;
6868 register int lim = marker_block_index;
6869 EMACS_INT num_free = 0, num_used = 0;
6870
6871 /* Put all unmarked misc's on free list. For a marker, first
6872 unchain it from the buffer it points into. */
6873
6874 marker_free_list = 0;
6875
6876 for (mblk = marker_block; mblk; mblk = *mprev)
6877 {
6878 register int i;
6879 int this_free = 0;
6880
6881 for (i = 0; i < lim; i++)
6882 {
6883 if (!mblk->markers[i].m.u_any.gcmarkbit)
6884 {
6885 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6886 unchain_marker (&mblk->markers[i].m.u_marker);
6887 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6888 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6889 #ifdef HAVE_MODULES
6890 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6891 {
6892 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6893 uptr->finalizer (uptr->p);
6894 }
6895 #endif
6896 /* Set the type of the freed object to Lisp_Misc_Free.
6897 We could leave the type alone, since nobody checks it,
6898 but this might catch bugs faster. */
6899 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6900 mblk->markers[i].m.u_free.chain = marker_free_list;
6901 marker_free_list = &mblk->markers[i].m;
6902 this_free++;
6903 }
6904 else
6905 {
6906 num_used++;
6907 mblk->markers[i].m.u_any.gcmarkbit = 0;
6908 }
6909 }
6910 lim = MARKER_BLOCK_SIZE;
6911 /* If this block contains only free markers and we have already
6912 seen more than two blocks worth of free markers then deallocate
6913 this block. */
6914 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6915 {
6916 *mprev = mblk->next;
6917 /* Unhook from the free list. */
6918 marker_free_list = mblk->markers[0].m.u_free.chain;
6919 lisp_free (mblk);
6920 }
6921 else
6922 {
6923 num_free += this_free;
6924 mprev = &mblk->next;
6925 }
6926 }
6927
6928 total_markers = num_used;
6929 total_free_markers = num_free;
6930 }
6931
6932 NO_INLINE /* For better stack traces */
6933 static void
6934 sweep_buffers (void)
6935 {
6936 register struct buffer *buffer, **bprev = &all_buffers;
6937
6938 total_buffers = 0;
6939 for (buffer = all_buffers; buffer; buffer = *bprev)
6940 if (!VECTOR_MARKED_P (buffer))
6941 {
6942 *bprev = buffer->next;
6943 lisp_free (buffer);
6944 }
6945 else
6946 {
6947 VECTOR_UNMARK (buffer);
6948 /* Do not use buffer_(set|get)_intervals here. */
6949 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6950 total_buffers++;
6951 bprev = &buffer->next;
6952 }
6953 }
6954
6955 /* Sweep: find all structures not marked, and free them. */
6956 static void
6957 gc_sweep (void)
6958 {
6959 /* Remove or mark entries in weak hash tables.
6960 This must be done before any object is unmarked. */
6961 sweep_weak_hash_tables ();
6962
6963 sweep_strings ();
6964 check_string_bytes (!noninteractive);
6965 sweep_conses ();
6966 sweep_floats ();
6967 sweep_intervals ();
6968 sweep_symbols ();
6969 sweep_misc ();
6970 sweep_buffers ();
6971 sweep_vectors ();
6972 check_string_bytes (!noninteractive);
6973 }
6974
6975 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6976 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6977 All values are in Kbytes. If there is no swap space,
6978 last two values are zero. If the system is not supported
6979 or memory information can't be obtained, return nil. */)
6980 (void)
6981 {
6982 #if defined HAVE_LINUX_SYSINFO
6983 struct sysinfo si;
6984 uintmax_t units;
6985
6986 if (sysinfo (&si))
6987 return Qnil;
6988 #ifdef LINUX_SYSINFO_UNIT
6989 units = si.mem_unit;
6990 #else
6991 units = 1;
6992 #endif
6993 return list4i ((uintmax_t) si.totalram * units / 1024,
6994 (uintmax_t) si.freeram * units / 1024,
6995 (uintmax_t) si.totalswap * units / 1024,
6996 (uintmax_t) si.freeswap * units / 1024);
6997 #elif defined WINDOWSNT
6998 unsigned long long totalram, freeram, totalswap, freeswap;
6999
7000 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7001 return list4i ((uintmax_t) totalram / 1024,
7002 (uintmax_t) freeram / 1024,
7003 (uintmax_t) totalswap / 1024,
7004 (uintmax_t) freeswap / 1024);
7005 else
7006 return Qnil;
7007 #elif defined MSDOS
7008 unsigned long totalram, freeram, totalswap, freeswap;
7009
7010 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7011 return list4i ((uintmax_t) totalram / 1024,
7012 (uintmax_t) freeram / 1024,
7013 (uintmax_t) totalswap / 1024,
7014 (uintmax_t) freeswap / 1024);
7015 else
7016 return Qnil;
7017 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7018 /* FIXME: add more systems. */
7019 return Qnil;
7020 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7021 }
7022
7023 /* Debugging aids. */
7024
7025 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7026 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7027 This may be helpful in debugging Emacs's memory usage.
7028 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7029 (void)
7030 {
7031 Lisp_Object end;
7032
7033 #ifdef HAVE_NS
7034 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7035 XSETINT (end, 0);
7036 #else
7037 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7038 #endif
7039
7040 return end;
7041 }
7042
7043 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7044 doc: /* Return a list of counters that measure how much consing there has been.
7045 Each of these counters increments for a certain kind of object.
7046 The counters wrap around from the largest positive integer to zero.
7047 Garbage collection does not decrease them.
7048 The elements of the value are as follows:
7049 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7050 All are in units of 1 = one object consed
7051 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7052 objects consed.
7053 MISCS include overlays, markers, and some internal types.
7054 Frames, windows, buffers, and subprocesses count as vectors
7055 (but the contents of a buffer's text do not count here). */)
7056 (void)
7057 {
7058 return listn (CONSTYPE_HEAP, 8,
7059 bounded_number (cons_cells_consed),
7060 bounded_number (floats_consed),
7061 bounded_number (vector_cells_consed),
7062 bounded_number (symbols_consed),
7063 bounded_number (string_chars_consed),
7064 bounded_number (misc_objects_consed),
7065 bounded_number (intervals_consed),
7066 bounded_number (strings_consed));
7067 }
7068
7069 static bool
7070 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7071 {
7072 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7073 Lisp_Object val = find_symbol_value (symbol);
7074 return (EQ (val, obj)
7075 || EQ (sym->function, obj)
7076 || (!NILP (sym->function)
7077 && COMPILEDP (sym->function)
7078 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7079 || (!NILP (val)
7080 && COMPILEDP (val)
7081 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7082 }
7083
7084 /* Find at most FIND_MAX symbols which have OBJ as their value or
7085 function. This is used in gdbinit's `xwhichsymbols' command. */
7086
7087 Lisp_Object
7088 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7089 {
7090 struct symbol_block *sblk;
7091 ptrdiff_t gc_count = inhibit_garbage_collection ();
7092 Lisp_Object found = Qnil;
7093
7094 if (! DEADP (obj))
7095 {
7096 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7097 {
7098 Lisp_Object sym = builtin_lisp_symbol (i);
7099 if (symbol_uses_obj (sym, obj))
7100 {
7101 found = Fcons (sym, found);
7102 if (--find_max == 0)
7103 goto out;
7104 }
7105 }
7106
7107 for (sblk = symbol_block; sblk; sblk = sblk->next)
7108 {
7109 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7110 int bn;
7111
7112 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7113 {
7114 if (sblk == symbol_block && bn >= symbol_block_index)
7115 break;
7116
7117 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7118 if (symbol_uses_obj (sym, obj))
7119 {
7120 found = Fcons (sym, found);
7121 if (--find_max == 0)
7122 goto out;
7123 }
7124 }
7125 }
7126 }
7127
7128 out:
7129 unbind_to (gc_count, Qnil);
7130 return found;
7131 }
7132
7133 #ifdef SUSPICIOUS_OBJECT_CHECKING
7134
7135 static void *
7136 find_suspicious_object_in_range (void *begin, void *end)
7137 {
7138 char *begin_a = begin;
7139 char *end_a = end;
7140 int i;
7141
7142 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7143 {
7144 char *suspicious_object = suspicious_objects[i];
7145 if (begin_a <= suspicious_object && suspicious_object < end_a)
7146 return suspicious_object;
7147 }
7148
7149 return NULL;
7150 }
7151
7152 static void
7153 note_suspicious_free (void* ptr)
7154 {
7155 struct suspicious_free_record* rec;
7156
7157 rec = &suspicious_free_history[suspicious_free_history_index++];
7158 if (suspicious_free_history_index ==
7159 ARRAYELTS (suspicious_free_history))
7160 {
7161 suspicious_free_history_index = 0;
7162 }
7163
7164 memset (rec, 0, sizeof (*rec));
7165 rec->suspicious_object = ptr;
7166 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7167 }
7168
7169 static void
7170 detect_suspicious_free (void* ptr)
7171 {
7172 int i;
7173
7174 eassert (ptr != NULL);
7175
7176 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7177 if (suspicious_objects[i] == ptr)
7178 {
7179 note_suspicious_free (ptr);
7180 suspicious_objects[i] = NULL;
7181 }
7182 }
7183
7184 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7185
7186 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7187 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7188 If Emacs is compiled with suspicious object checking, capture
7189 a stack trace when OBJ is freed in order to help track down
7190 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7191 (Lisp_Object obj)
7192 {
7193 #ifdef SUSPICIOUS_OBJECT_CHECKING
7194 /* Right now, we care only about vectors. */
7195 if (VECTORLIKEP (obj))
7196 {
7197 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7198 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7199 suspicious_object_index = 0;
7200 }
7201 #endif
7202 return obj;
7203 }
7204
7205 #ifdef ENABLE_CHECKING
7206
7207 bool suppress_checking;
7208
7209 void
7210 die (const char *msg, const char *file, int line)
7211 {
7212 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7213 file, line, msg);
7214 terminate_due_to_signal (SIGABRT, INT_MAX);
7215 }
7216
7217 #endif /* ENABLE_CHECKING */
7218
7219 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7220
7221 /* Debugging check whether STR is ASCII-only. */
7222
7223 const char *
7224 verify_ascii (const char *str)
7225 {
7226 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7227 while (ptr < end)
7228 {
7229 int c = STRING_CHAR_ADVANCE (ptr);
7230 if (!ASCII_CHAR_P (c))
7231 emacs_abort ();
7232 }
7233 return str;
7234 }
7235
7236 /* Stress alloca with inconveniently sized requests and check
7237 whether all allocated areas may be used for Lisp_Object. */
7238
7239 NO_INLINE static void
7240 verify_alloca (void)
7241 {
7242 int i;
7243 enum { ALLOCA_CHECK_MAX = 256 };
7244 /* Start from size of the smallest Lisp object. */
7245 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7246 {
7247 void *ptr = alloca (i);
7248 make_lisp_ptr (ptr, Lisp_Cons);
7249 }
7250 }
7251
7252 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7253
7254 #define verify_alloca() ((void) 0)
7255
7256 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7257
7258 /* Initialization. */
7259
7260 void
7261 init_alloc_once (void)
7262 {
7263 /* Even though Qt's contents are not set up, its address is known. */
7264 Vpurify_flag = Qt;
7265
7266 purebeg = PUREBEG;
7267 pure_size = PURESIZE;
7268
7269 verify_alloca ();
7270 init_finalizer_list (&finalizers);
7271 init_finalizer_list (&doomed_finalizers);
7272
7273 mem_init ();
7274 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7275
7276 #ifdef DOUG_LEA_MALLOC
7277 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7278 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7279 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7280 #endif
7281 init_strings ();
7282 init_vectors ();
7283
7284 refill_memory_reserve ();
7285 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7286 }
7287
7288 void
7289 init_alloc (void)
7290 {
7291 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7292 setjmp_tested_p = longjmps_done = 0;
7293 #endif
7294 Vgc_elapsed = make_float (0.0);
7295 gcs_done = 0;
7296
7297 #if USE_VALGRIND
7298 valgrind_p = RUNNING_ON_VALGRIND != 0;
7299 #endif
7300 }
7301
7302 void
7303 syms_of_alloc (void)
7304 {
7305 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7306 doc: /* Number of bytes of consing between garbage collections.
7307 Garbage collection can happen automatically once this many bytes have been
7308 allocated since the last garbage collection. All data types count.
7309
7310 Garbage collection happens automatically only when `eval' is called.
7311
7312 By binding this temporarily to a large number, you can effectively
7313 prevent garbage collection during a part of the program.
7314 See also `gc-cons-percentage'. */);
7315
7316 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7317 doc: /* Portion of the heap used for allocation.
7318 Garbage collection can happen automatically once this portion of the heap
7319 has been allocated since the last garbage collection.
7320 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7321 Vgc_cons_percentage = make_float (0.1);
7322
7323 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7324 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7325
7326 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7327 doc: /* Number of cons cells that have been consed so far. */);
7328
7329 DEFVAR_INT ("floats-consed", floats_consed,
7330 doc: /* Number of floats that have been consed so far. */);
7331
7332 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7333 doc: /* Number of vector cells that have been consed so far. */);
7334
7335 DEFVAR_INT ("symbols-consed", symbols_consed,
7336 doc: /* Number of symbols that have been consed so far. */);
7337 symbols_consed += ARRAYELTS (lispsym);
7338
7339 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7340 doc: /* Number of string characters that have been consed so far. */);
7341
7342 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7343 doc: /* Number of miscellaneous objects that have been consed so far.
7344 These include markers and overlays, plus certain objects not visible
7345 to users. */);
7346
7347 DEFVAR_INT ("intervals-consed", intervals_consed,
7348 doc: /* Number of intervals that have been consed so far. */);
7349
7350 DEFVAR_INT ("strings-consed", strings_consed,
7351 doc: /* Number of strings that have been consed so far. */);
7352
7353 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7354 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7355 This means that certain objects should be allocated in shared (pure) space.
7356 It can also be set to a hash-table, in which case this table is used to
7357 do hash-consing of the objects allocated to pure space. */);
7358
7359 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7360 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7361 garbage_collection_messages = 0;
7362
7363 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7364 doc: /* Hook run after garbage collection has finished. */);
7365 Vpost_gc_hook = Qnil;
7366 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7367
7368 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7369 doc: /* Precomputed `signal' argument for memory-full error. */);
7370 /* We build this in advance because if we wait until we need it, we might
7371 not be able to allocate the memory to hold it. */
7372 Vmemory_signal_data
7373 = listn (CONSTYPE_PURE, 2, Qerror,
7374 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7375
7376 DEFVAR_LISP ("memory-full", Vmemory_full,
7377 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7378 Vmemory_full = Qnil;
7379
7380 DEFSYM (Qconses, "conses");
7381 DEFSYM (Qsymbols, "symbols");
7382 DEFSYM (Qmiscs, "miscs");
7383 DEFSYM (Qstrings, "strings");
7384 DEFSYM (Qvectors, "vectors");
7385 DEFSYM (Qfloats, "floats");
7386 DEFSYM (Qintervals, "intervals");
7387 DEFSYM (Qbuffers, "buffers");
7388 DEFSYM (Qstring_bytes, "string-bytes");
7389 DEFSYM (Qvector_slots, "vector-slots");
7390 DEFSYM (Qheap, "heap");
7391 DEFSYM (Qautomatic_gc, "Automatic GC");
7392
7393 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7394 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7395
7396 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7397 doc: /* Accumulated time elapsed in garbage collections.
7398 The time is in seconds as a floating point value. */);
7399 DEFVAR_INT ("gcs-done", gcs_done,
7400 doc: /* Accumulated number of garbage collections done. */);
7401
7402 defsubr (&Scons);
7403 defsubr (&Slist);
7404 defsubr (&Svector);
7405 defsubr (&Sbool_vector);
7406 defsubr (&Smake_byte_code);
7407 defsubr (&Smake_list);
7408 defsubr (&Smake_vector);
7409 defsubr (&Smake_string);
7410 defsubr (&Smake_bool_vector);
7411 defsubr (&Smake_symbol);
7412 defsubr (&Smake_marker);
7413 defsubr (&Smake_finalizer);
7414 defsubr (&Spurecopy);
7415 defsubr (&Sgarbage_collect);
7416 defsubr (&Smemory_limit);
7417 defsubr (&Smemory_info);
7418 defsubr (&Smemory_use_counts);
7419 defsubr (&Ssuspicious_object);
7420 }
7421
7422 /* When compiled with GCC, GDB might say "No enum type named
7423 pvec_type" if we don't have at least one symbol with that type, and
7424 then xbacktrace could fail. Similarly for the other enums and
7425 their values. Some non-GCC compilers don't like these constructs. */
7426 #ifdef __GNUC__
7427 union
7428 {
7429 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7430 enum char_table_specials char_table_specials;
7431 enum char_bits char_bits;
7432 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7433 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7434 enum Lisp_Bits Lisp_Bits;
7435 enum Lisp_Compiled Lisp_Compiled;
7436 enum maxargs maxargs;
7437 enum MAX_ALLOCA MAX_ALLOCA;
7438 enum More_Lisp_Bits More_Lisp_Bits;
7439 enum pvec_type pvec_type;
7440 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7441 #endif /* __GNUC__ */