]> code.delx.au - gnu-emacs/blob - src/search.c
Merge from emacs-24; up to 2014-07-17T10:18:19Z!dmantipov@yandex.ru
[gnu-emacs] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23
24 #include "lisp.h"
25 #include "category.h"
26 #include "character.h"
27 #include "buffer.h"
28 #include "syntax.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* True means regexp was compiled to do full POSIX backtracking. */
53 bool posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, bool);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is true if we want full backtracking (POSIX style) for this pattern.
116 False means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern,
122 Lisp_Object translate, bool posix)
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
136
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
144
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
149
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
152
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
156
157 re_set_whitespace_regexp (NULL);
158
159 re_set_syntax (old);
160 /* unblock_input (); */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
163
164 cp->regexp = Fcopy_sequence (pattern);
165 }
166
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
170
171 void
172 shrink_regexp_cache (void)
173 {
174 struct regexp_cache *cp;
175
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
177 {
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer = xrealloc (cp->buf.buffer, cp->buf.used);
180 }
181 }
182
183 /* Clear the regexp cache w.r.t. a particular syntax table,
184 because it was changed.
185 There is no danger of memory leak here because re_compile_pattern
186 automagically manages the memory in each re_pattern_buffer struct,
187 based on its `allocated' and `buffer' values. */
188 void
189 clear_regexp_cache (void)
190 {
191 int i;
192
193 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
194 /* It's tempting to compare with the syntax-table we've actually changed,
195 but it's not sufficient because char-table inheritance means that
196 modifying one syntax-table can change others at the same time. */
197 if (!EQ (searchbufs[i].syntax_table, Qt))
198 searchbufs[i].regexp = Qnil;
199 }
200
201 /* Compile a regexp if necessary, but first check to see if there's one in
202 the cache.
203 PATTERN is the pattern to compile.
204 TRANSLATE is a translation table for ignoring case, or nil for none.
205 REGP is the structure that says where to store the "register"
206 values that will result from matching this pattern.
207 If it is 0, we should compile the pattern not to record any
208 subexpression bounds.
209 POSIX is true if we want full backtracking (POSIX style) for this pattern.
210 False means backtrack only enough to get a valid match. */
211
212 struct re_pattern_buffer *
213 compile_pattern (Lisp_Object pattern, struct re_registers *regp,
214 Lisp_Object translate, bool posix, bool multibyte)
215 {
216 struct regexp_cache *cp, **cpp;
217
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
219 {
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
238
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
243 {
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
247 }
248 }
249
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
256
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
261
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
265
266 return &cp->buf;
267 }
268
269 \f
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, bool posix)
272 {
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 ptrdiff_t s1, s2;
276 register ptrdiff_t i;
277 struct re_pattern_buffer *bufp;
278
279 if (running_asynch_code)
280 save_search_regs ();
281
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
284 BVAR (current_buffer, case_eqv_table));
285
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
294
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
297
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
300
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
306 {
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
310 }
311 if (s2 < 0)
312 {
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
315 }
316
317 re_match_object = Qnil;
318
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
325
326 if (i == -2)
327 matcher_overflow ();
328
329 val = (i >= 0 ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 {
332 for (i = 0; i < search_regs.num_regs; i++)
333 if (search_regs.start[i] >= 0)
334 {
335 search_regs.start[i]
336 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
337 search_regs.end[i]
338 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
339 }
340 /* Set last_thing_searched only when match data is changed. */
341 XSETBUFFER (last_thing_searched, current_buffer);
342 }
343
344 return val;
345 }
346
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
353 {
354 return looking_at_1 (regexp, 0);
355 }
356
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
364 {
365 return looking_at_1 (regexp, 1);
366 }
367 \f
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start,
370 bool posix)
371 {
372 ptrdiff_t val;
373 struct re_pattern_buffer *bufp;
374 EMACS_INT pos;
375 ptrdiff_t pos_byte, i;
376
377 if (running_asynch_code)
378 save_search_regs ();
379
380 CHECK_STRING (regexp);
381 CHECK_STRING (string);
382
383 if (NILP (start))
384 pos = 0, pos_byte = 0;
385 else
386 {
387 ptrdiff_t len = SCHARS (string);
388
389 CHECK_NUMBER (start);
390 pos = XINT (start);
391 if (pos < 0 && -pos <= len)
392 pos = len + pos;
393 else if (0 > pos || pos > len)
394 args_out_of_range (string, start);
395 pos_byte = string_char_to_byte (string, pos);
396 }
397
398 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
399 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
400 BVAR (current_buffer, case_eqv_table));
401
402 bufp = compile_pattern (regexp,
403 (NILP (Vinhibit_changing_match_data)
404 ? &search_regs : NULL),
405 (!NILP (BVAR (current_buffer, case_fold_search))
406 ? BVAR (current_buffer, case_canon_table) : Qnil),
407 posix,
408 STRING_MULTIBYTE (string));
409 immediate_quit = 1;
410 re_match_object = string;
411
412 val = re_search (bufp, SSDATA (string),
413 SBYTES (string), pos_byte,
414 SBYTES (string) - pos_byte,
415 (NILP (Vinhibit_changing_match_data)
416 ? &search_regs : NULL));
417 immediate_quit = 0;
418
419 /* Set last_thing_searched only when match data is changed. */
420 if (NILP (Vinhibit_changing_match_data))
421 last_thing_searched = Qt;
422
423 if (val == -2)
424 matcher_overflow ();
425 if (val < 0) return Qnil;
426
427 if (NILP (Vinhibit_changing_match_data))
428 for (i = 0; i < search_regs.num_regs; i++)
429 if (search_regs.start[i] >= 0)
430 {
431 search_regs.start[i]
432 = string_byte_to_char (string, search_regs.start[i]);
433 search_regs.end[i]
434 = string_byte_to_char (string, search_regs.end[i]);
435 }
436
437 return make_number (string_byte_to_char (string, val));
438 }
439
440 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
441 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
442 Matching ignores case if `case-fold-search' is non-nil.
443 If third arg START is non-nil, start search at that index in STRING.
444 For index of first char beyond the match, do (match-end 0).
445 `match-end' and `match-beginning' also give indices of substrings
446 matched by parenthesis constructs in the pattern.
447
448 You can use the function `match-string' to extract the substrings
449 matched by the parenthesis constructions in REGEXP. */)
450 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
451 {
452 return string_match_1 (regexp, string, start, 0);
453 }
454
455 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
456 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
457 Find the longest match, in accord with Posix regular expression rules.
458 Case is ignored if `case-fold-search' is non-nil in the current buffer.
459 If third arg START is non-nil, start search at that index in STRING.
460 For index of first char beyond the match, do (match-end 0).
461 `match-end' and `match-beginning' also give indices of substrings
462 matched by parenthesis constructs in the pattern. */)
463 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
464 {
465 return string_match_1 (regexp, string, start, 1);
466 }
467
468 /* Match REGEXP against STRING, searching all of STRING,
469 and return the index of the match, or negative on failure.
470 This does not clobber the match data. */
471
472 ptrdiff_t
473 fast_string_match (Lisp_Object regexp, Lisp_Object string)
474 {
475 ptrdiff_t val;
476 struct re_pattern_buffer *bufp;
477
478 bufp = compile_pattern (regexp, 0, Qnil,
479 0, STRING_MULTIBYTE (string));
480 immediate_quit = 1;
481 re_match_object = string;
482
483 val = re_search (bufp, SSDATA (string),
484 SBYTES (string), 0,
485 SBYTES (string), 0);
486 immediate_quit = 0;
487 return val;
488 }
489
490 /* Match REGEXP against STRING, searching all of STRING ignoring case,
491 and return the index of the match, or negative on failure.
492 This does not clobber the match data.
493 We assume that STRING contains single-byte characters. */
494
495 ptrdiff_t
496 fast_c_string_match_ignore_case (Lisp_Object regexp,
497 const char *string, ptrdiff_t len)
498 {
499 ptrdiff_t val;
500 struct re_pattern_buffer *bufp;
501
502 regexp = string_make_unibyte (regexp);
503 re_match_object = Qt;
504 bufp = compile_pattern (regexp, 0,
505 Vascii_canon_table, 0,
506 0);
507 immediate_quit = 1;
508 val = re_search (bufp, string, len, 0, len, 0);
509 immediate_quit = 0;
510 return val;
511 }
512
513 /* Like fast_string_match but ignore case. */
514
515 ptrdiff_t
516 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
517 {
518 ptrdiff_t val;
519 struct re_pattern_buffer *bufp;
520
521 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
522 0, STRING_MULTIBYTE (string));
523 immediate_quit = 1;
524 re_match_object = string;
525
526 val = re_search (bufp, SSDATA (string),
527 SBYTES (string), 0,
528 SBYTES (string), 0);
529 immediate_quit = 0;
530 return val;
531 }
532 \f
533 /* Match REGEXP against the characters after POS to LIMIT, and return
534 the number of matched characters. If STRING is non-nil, match
535 against the characters in it. In that case, POS and LIMIT are
536 indices into the string. This function doesn't modify the match
537 data. */
538
539 ptrdiff_t
540 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte,
541 ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
542 {
543 bool multibyte;
544 struct re_pattern_buffer *buf;
545 unsigned char *p1, *p2;
546 ptrdiff_t s1, s2;
547 ptrdiff_t len;
548
549 if (STRINGP (string))
550 {
551 if (pos_byte < 0)
552 pos_byte = string_char_to_byte (string, pos);
553 if (limit_byte < 0)
554 limit_byte = string_char_to_byte (string, limit);
555 p1 = NULL;
556 s1 = 0;
557 p2 = SDATA (string);
558 s2 = SBYTES (string);
559 re_match_object = string;
560 multibyte = STRING_MULTIBYTE (string);
561 }
562 else
563 {
564 if (pos_byte < 0)
565 pos_byte = CHAR_TO_BYTE (pos);
566 if (limit_byte < 0)
567 limit_byte = CHAR_TO_BYTE (limit);
568 pos_byte -= BEGV_BYTE;
569 limit_byte -= BEGV_BYTE;
570 p1 = BEGV_ADDR;
571 s1 = GPT_BYTE - BEGV_BYTE;
572 p2 = GAP_END_ADDR;
573 s2 = ZV_BYTE - GPT_BYTE;
574 if (s1 < 0)
575 {
576 p2 = p1;
577 s2 = ZV_BYTE - BEGV_BYTE;
578 s1 = 0;
579 }
580 if (s2 < 0)
581 {
582 s1 = ZV_BYTE - BEGV_BYTE;
583 s2 = 0;
584 }
585 re_match_object = Qnil;
586 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
587 }
588
589 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
590 immediate_quit = 1;
591 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
592 pos_byte, NULL, limit_byte);
593 immediate_quit = 0;
594
595 return len;
596 }
597
598 \f
599 /* The newline cache: remembering which sections of text have no newlines. */
600
601 /* If the user has requested the long scans caching, make sure it's on.
602 Otherwise, make sure it's off.
603 This is our cheezy way of associating an action with the change of
604 state of a buffer-local variable. */
605 static struct region_cache *
606 newline_cache_on_off (struct buffer *buf)
607 {
608 struct buffer *base_buf = buf;
609 bool indirect_p = false;
610
611 if (buf->base_buffer)
612 {
613 base_buf = buf->base_buffer;
614 indirect_p = true;
615 }
616
617 /* Don't turn on or off the cache in the base buffer, if the value
618 of cache-long-scans of the base buffer is inconsistent with that.
619 This is because doing so will just make the cache pure overhead,
620 since if we turn it on via indirect buffer, it will be
621 immediately turned off by its base buffer. */
622 if (NILP (BVAR (buf, cache_long_scans)))
623 {
624 if (!indirect_p
625 || NILP (BVAR (base_buf, cache_long_scans)))
626 {
627 /* It should be off. */
628 if (base_buf->newline_cache)
629 {
630 free_region_cache (base_buf->newline_cache);
631 base_buf->newline_cache = 0;
632 }
633 }
634 return NULL;
635 }
636 else
637 {
638 if (!indirect_p
639 || !NILP (BVAR (base_buf, cache_long_scans)))
640 {
641 /* It should be on. */
642 if (base_buf->newline_cache == 0)
643 base_buf->newline_cache = new_region_cache ();
644 }
645 return base_buf->newline_cache;
646 }
647 }
648
649 \f
650 /* Search for COUNT newlines between START/START_BYTE and END/END_BYTE.
651
652 If COUNT is positive, search forwards; END must be >= START.
653 If COUNT is negative, search backwards for the -COUNTth instance;
654 END must be <= START.
655 If COUNT is zero, do anything you please; run rogue, for all I care.
656
657 If END is zero, use BEGV or ZV instead, as appropriate for the
658 direction indicated by COUNT.
659
660 If we find COUNT instances, set *SHORTAGE to zero, and return the
661 position past the COUNTth match. Note that for reverse motion
662 this is not the same as the usual convention for Emacs motion commands.
663
664 If we don't find COUNT instances before reaching END, set *SHORTAGE
665 to the number of newlines left unfound, and return END.
666
667 If BYTEPOS is not NULL, set *BYTEPOS to the byte position corresponding
668 to the returned character position.
669
670 If ALLOW_QUIT, set immediate_quit. That's good to do
671 except when inside redisplay. */
672
673 ptrdiff_t
674 find_newline (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
675 ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *shortage,
676 ptrdiff_t *bytepos, bool allow_quit)
677 {
678 struct region_cache *newline_cache;
679 int direction;
680 struct buffer *cache_buffer;
681
682 if (count > 0)
683 {
684 direction = 1;
685 if (!end)
686 end = ZV, end_byte = ZV_BYTE;
687 }
688 else
689 {
690 direction = -1;
691 if (!end)
692 end = BEGV, end_byte = BEGV_BYTE;
693 }
694 if (end_byte == -1)
695 end_byte = CHAR_TO_BYTE (end);
696
697 newline_cache = newline_cache_on_off (current_buffer);
698 if (current_buffer->base_buffer)
699 cache_buffer = current_buffer->base_buffer;
700 else
701 cache_buffer = current_buffer;
702
703 if (shortage != 0)
704 *shortage = 0;
705
706 immediate_quit = allow_quit;
707
708 if (count > 0)
709 while (start != end)
710 {
711 /* Our innermost scanning loop is very simple; it doesn't know
712 about gaps, buffer ends, or the newline cache. ceiling is
713 the position of the last character before the next such
714 obstacle --- the last character the dumb search loop should
715 examine. */
716 ptrdiff_t tem, ceiling_byte = end_byte - 1;
717
718 /* If we're using the newline cache, consult it to see whether
719 we can avoid some scanning. */
720 if (newline_cache)
721 {
722 ptrdiff_t next_change;
723 int result = 1;
724
725 immediate_quit = 0;
726 while (start < end && result)
727 {
728 ptrdiff_t lim1;
729
730 result = region_cache_forward (cache_buffer, newline_cache,
731 start, &next_change);
732 if (result)
733 {
734 start = next_change;
735 lim1 = next_change = end;
736 }
737 else
738 lim1 = min (next_change, end);
739
740 /* The cache returned zero for this region; see if
741 this is because the region is known and includes
742 only newlines. While at that, count any newlines
743 we bump into, and exit if we found enough off them. */
744 start_byte = CHAR_TO_BYTE (start);
745 while (start < lim1
746 && FETCH_BYTE (start_byte) == '\n')
747 {
748 start_byte++;
749 start++;
750 if (--count == 0)
751 {
752 if (bytepos)
753 *bytepos = start_byte;
754 return start;
755 }
756 }
757 /* If we found a non-newline character before hitting
758 position where the cache will again return non-zero
759 (i.e. no newlines beyond that position), it means
760 this region is not yet known to the cache, and we
761 must resort to the "dumb loop" method. */
762 if (start < next_change && !result)
763 break;
764 result = 1;
765 }
766 if (start >= end)
767 {
768 start = end;
769 start_byte = end_byte;
770 break;
771 }
772 immediate_quit = allow_quit;
773
774 /* START should never be after END. */
775 if (start_byte > ceiling_byte)
776 start_byte = ceiling_byte;
777
778 /* Now the text after start is an unknown region, and
779 next_change is the position of the next known region. */
780 ceiling_byte = min (CHAR_TO_BYTE (next_change) - 1, ceiling_byte);
781 }
782 else if (start_byte == -1)
783 start_byte = CHAR_TO_BYTE (start);
784
785 /* The dumb loop can only scan text stored in contiguous
786 bytes. BUFFER_CEILING_OF returns the last character
787 position that is contiguous, so the ceiling is the
788 position after that. */
789 tem = BUFFER_CEILING_OF (start_byte);
790 ceiling_byte = min (tem, ceiling_byte);
791
792 {
793 /* The termination address of the dumb loop. */
794 unsigned char *lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
795 ptrdiff_t lim_byte = ceiling_byte + 1;
796
797 /* Nonpositive offsets (relative to LIM_ADDR and LIM_BYTE)
798 of the base, the cursor, and the next line. */
799 ptrdiff_t base = start_byte - lim_byte;
800 ptrdiff_t cursor, next;
801
802 for (cursor = base; cursor < 0; cursor = next)
803 {
804 /* The dumb loop. */
805 unsigned char *nl = memchr (lim_addr + cursor, '\n', - cursor);
806 next = nl ? nl - lim_addr : 0;
807
808 /* If we're using the newline cache, cache the fact that
809 the region we just traversed is free of newlines. */
810 if (newline_cache && cursor != next)
811 {
812 know_region_cache (cache_buffer, newline_cache,
813 BYTE_TO_CHAR (lim_byte + cursor),
814 BYTE_TO_CHAR (lim_byte + next));
815 /* know_region_cache can relocate buffer text. */
816 lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
817 }
818
819 if (! nl)
820 break;
821 next++;
822
823 if (--count == 0)
824 {
825 immediate_quit = 0;
826 if (bytepos)
827 *bytepos = lim_byte + next;
828 return BYTE_TO_CHAR (lim_byte + next);
829 }
830 }
831
832 start_byte = lim_byte;
833 start = BYTE_TO_CHAR (start_byte);
834 }
835 }
836 else
837 while (start > end)
838 {
839 /* The last character to check before the next obstacle. */
840 ptrdiff_t tem, ceiling_byte = end_byte;
841
842 /* Consult the newline cache, if appropriate. */
843 if (newline_cache)
844 {
845 ptrdiff_t next_change;
846 int result = 1;
847
848 immediate_quit = 0;
849 while (start > end && result)
850 {
851 ptrdiff_t lim1;
852
853 result = region_cache_backward (cache_buffer, newline_cache,
854 start, &next_change);
855 if (result)
856 {
857 start = next_change;
858 lim1 = next_change = end;
859 }
860 else
861 lim1 = max (next_change, end);
862 start_byte = CHAR_TO_BYTE (start);
863 while (start > lim1
864 && FETCH_BYTE (start_byte - 1) == '\n')
865 {
866 if (++count == 0)
867 {
868 if (bytepos)
869 *bytepos = start_byte;
870 return start;
871 }
872 start_byte--;
873 start--;
874 }
875 if (start > next_change && !result)
876 break;
877 result = 1;
878 }
879 if (start <= end)
880 {
881 start = end;
882 start_byte = end_byte;
883 break;
884 }
885 immediate_quit = allow_quit;
886
887 /* Start should never be at or before end. */
888 if (start_byte <= ceiling_byte)
889 start_byte = ceiling_byte + 1;
890
891 /* Now the text before start is an unknown region, and
892 next_change is the position of the next known region. */
893 ceiling_byte = max (CHAR_TO_BYTE (next_change), ceiling_byte);
894 }
895 else if (start_byte == -1)
896 start_byte = CHAR_TO_BYTE (start);
897
898 /* Stop scanning before the gap. */
899 tem = BUFFER_FLOOR_OF (start_byte - 1);
900 ceiling_byte = max (tem, ceiling_byte);
901
902 {
903 /* The termination address of the dumb loop. */
904 unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
905
906 /* Offsets (relative to CEILING_ADDR and CEILING_BYTE) of
907 the base, the cursor, and the previous line. These
908 offsets are at least -1. */
909 ptrdiff_t base = start_byte - ceiling_byte;
910 ptrdiff_t cursor, prev;
911
912 for (cursor = base; 0 < cursor; cursor = prev)
913 {
914 unsigned char *nl = memrchr (ceiling_addr, '\n', cursor);
915 prev = nl ? nl - ceiling_addr : -1;
916
917 /* If we're looking for newlines, cache the fact that
918 this line's region is free of them. */
919 if (newline_cache && cursor != prev + 1)
920 {
921 know_region_cache (cache_buffer, newline_cache,
922 BYTE_TO_CHAR (ceiling_byte + prev + 1),
923 BYTE_TO_CHAR (ceiling_byte + cursor));
924 /* know_region_cache can relocate buffer text. */
925 ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
926 }
927
928 if (! nl)
929 break;
930
931 if (++count >= 0)
932 {
933 immediate_quit = 0;
934 if (bytepos)
935 *bytepos = ceiling_byte + prev + 1;
936 return BYTE_TO_CHAR (ceiling_byte + prev + 1);
937 }
938 }
939
940 start_byte = ceiling_byte;
941 start = BYTE_TO_CHAR (start_byte);
942 }
943 }
944
945 immediate_quit = 0;
946 if (shortage)
947 *shortage = count * direction;
948 if (bytepos)
949 {
950 *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
951 eassert (*bytepos == CHAR_TO_BYTE (start));
952 }
953 return start;
954 }
955 \f
956 /* Search for COUNT instances of a line boundary.
957 Start at START. If COUNT is negative, search backwards.
958
959 We report the resulting position by calling TEMP_SET_PT_BOTH.
960
961 If we find COUNT instances. we position after (always after,
962 even if scanning backwards) the COUNTth match, and return 0.
963
964 If we don't find COUNT instances before reaching the end of the
965 buffer (or the beginning, if scanning backwards), we return
966 the number of line boundaries left unfound, and position at
967 the limit we bumped up against.
968
969 If ALLOW_QUIT, set immediate_quit. That's good to do
970 except in special cases. */
971
972 ptrdiff_t
973 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
974 ptrdiff_t limit, ptrdiff_t limit_byte,
975 ptrdiff_t count, bool allow_quit)
976 {
977 ptrdiff_t charpos, bytepos, shortage;
978
979 charpos = find_newline (start, start_byte, limit, limit_byte,
980 count, &shortage, &bytepos, allow_quit);
981 if (shortage)
982 TEMP_SET_PT_BOTH (limit, limit_byte);
983 else
984 TEMP_SET_PT_BOTH (charpos, bytepos);
985 return shortage;
986 }
987
988 /* Like find_newline, but doesn't allow QUITting and doesn't return
989 SHORTAGE. */
990 ptrdiff_t
991 find_newline_no_quit (ptrdiff_t from, ptrdiff_t frombyte,
992 ptrdiff_t cnt, ptrdiff_t *bytepos)
993 {
994 return find_newline (from, frombyte, 0, -1, cnt, NULL, bytepos, 0);
995 }
996
997 /* Like find_newline, but returns position before the newline, not
998 after, and only search up to TO.
999 This isn't just find_newline_no_quit (...)-1, because you might hit TO. */
1000
1001 ptrdiff_t
1002 find_before_next_newline (ptrdiff_t from, ptrdiff_t to,
1003 ptrdiff_t cnt, ptrdiff_t *bytepos)
1004 {
1005 ptrdiff_t shortage;
1006 ptrdiff_t pos = find_newline (from, -1, to, -1, cnt, &shortage, bytepos, 1);
1007
1008 if (shortage == 0)
1009 {
1010 if (bytepos)
1011 DEC_BOTH (pos, *bytepos);
1012 else
1013 pos--;
1014 }
1015 return pos;
1016 }
1017 \f
1018 /* Subroutines of Lisp buffer search functions. */
1019
1020 static Lisp_Object
1021 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
1022 Lisp_Object count, int direction, int RE, bool posix)
1023 {
1024 EMACS_INT np;
1025 EMACS_INT lim;
1026 ptrdiff_t lim_byte;
1027 EMACS_INT n = direction;
1028
1029 if (!NILP (count))
1030 {
1031 CHECK_NUMBER (count);
1032 n *= XINT (count);
1033 }
1034
1035 CHECK_STRING (string);
1036 if (NILP (bound))
1037 {
1038 if (n > 0)
1039 lim = ZV, lim_byte = ZV_BYTE;
1040 else
1041 lim = BEGV, lim_byte = BEGV_BYTE;
1042 }
1043 else
1044 {
1045 CHECK_NUMBER_COERCE_MARKER (bound);
1046 lim = XINT (bound);
1047 if (n > 0 ? lim < PT : lim > PT)
1048 error ("Invalid search bound (wrong side of point)");
1049 if (lim > ZV)
1050 lim = ZV, lim_byte = ZV_BYTE;
1051 else if (lim < BEGV)
1052 lim = BEGV, lim_byte = BEGV_BYTE;
1053 else
1054 lim_byte = CHAR_TO_BYTE (lim);
1055 }
1056
1057 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
1058 set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
1059 BVAR (current_buffer, case_eqv_table));
1060
1061 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
1062 (!NILP (BVAR (current_buffer, case_fold_search))
1063 ? BVAR (current_buffer, case_canon_table)
1064 : Qnil),
1065 (!NILP (BVAR (current_buffer, case_fold_search))
1066 ? BVAR (current_buffer, case_eqv_table)
1067 : Qnil),
1068 posix);
1069 if (np <= 0)
1070 {
1071 if (NILP (noerror))
1072 xsignal1 (Qsearch_failed, string);
1073
1074 if (!EQ (noerror, Qt))
1075 {
1076 eassert (BEGV <= lim && lim <= ZV);
1077 SET_PT_BOTH (lim, lim_byte);
1078 return Qnil;
1079 #if 0 /* This would be clean, but maybe programs depend on
1080 a value of nil here. */
1081 np = lim;
1082 #endif
1083 }
1084 else
1085 return Qnil;
1086 }
1087
1088 eassert (BEGV <= np && np <= ZV);
1089 SET_PT (np);
1090
1091 return make_number (np);
1092 }
1093 \f
1094 /* Return true if REGEXP it matches just one constant string. */
1095
1096 static bool
1097 trivial_regexp_p (Lisp_Object regexp)
1098 {
1099 ptrdiff_t len = SBYTES (regexp);
1100 unsigned char *s = SDATA (regexp);
1101 while (--len >= 0)
1102 {
1103 switch (*s++)
1104 {
1105 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1106 return 0;
1107 case '\\':
1108 if (--len < 0)
1109 return 0;
1110 switch (*s++)
1111 {
1112 case '|': case '(': case ')': case '`': case '\'': case 'b':
1113 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1114 case 'S': case '=': case '{': case '}': case '_':
1115 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1116 case '1': case '2': case '3': case '4': case '5':
1117 case '6': case '7': case '8': case '9':
1118 return 0;
1119 }
1120 }
1121 }
1122 return 1;
1123 }
1124
1125 /* Search for the n'th occurrence of STRING in the current buffer,
1126 starting at position POS and stopping at position LIM,
1127 treating STRING as a literal string if RE is false or as
1128 a regular expression if RE is true.
1129
1130 If N is positive, searching is forward and LIM must be greater than POS.
1131 If N is negative, searching is backward and LIM must be less than POS.
1132
1133 Returns -x if x occurrences remain to be found (x > 0),
1134 or else the position at the beginning of the Nth occurrence
1135 (if searching backward) or the end (if searching forward).
1136
1137 POSIX is nonzero if we want full backtracking (POSIX style)
1138 for this pattern. 0 means backtrack only enough to get a valid match. */
1139
1140 #define TRANSLATE(out, trt, d) \
1141 do \
1142 { \
1143 if (! NILP (trt)) \
1144 { \
1145 Lisp_Object temp; \
1146 temp = Faref (trt, make_number (d)); \
1147 if (INTEGERP (temp)) \
1148 out = XINT (temp); \
1149 else \
1150 out = d; \
1151 } \
1152 else \
1153 out = d; \
1154 } \
1155 while (0)
1156
1157 /* Only used in search_buffer, to record the end position of the match
1158 when searching regexps and SEARCH_REGS should not be changed
1159 (i.e. Vinhibit_changing_match_data is non-nil). */
1160 static struct re_registers search_regs_1;
1161
1162 static EMACS_INT
1163 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1164 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1165 int RE, Lisp_Object trt, Lisp_Object inverse_trt, bool posix)
1166 {
1167 ptrdiff_t len = SCHARS (string);
1168 ptrdiff_t len_byte = SBYTES (string);
1169 register ptrdiff_t i;
1170
1171 if (running_asynch_code)
1172 save_search_regs ();
1173
1174 /* Searching 0 times means don't move. */
1175 /* Null string is found at starting position. */
1176 if (len == 0 || n == 0)
1177 {
1178 set_search_regs (pos_byte, 0);
1179 return pos;
1180 }
1181
1182 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1183 {
1184 unsigned char *p1, *p2;
1185 ptrdiff_t s1, s2;
1186 struct re_pattern_buffer *bufp;
1187
1188 bufp = compile_pattern (string,
1189 (NILP (Vinhibit_changing_match_data)
1190 ? &search_regs : &search_regs_1),
1191 trt, posix,
1192 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1193
1194 immediate_quit = 1; /* Quit immediately if user types ^G,
1195 because letting this function finish
1196 can take too long. */
1197 QUIT; /* Do a pending quit right away,
1198 to avoid paradoxical behavior */
1199 /* Get pointers and sizes of the two strings
1200 that make up the visible portion of the buffer. */
1201
1202 p1 = BEGV_ADDR;
1203 s1 = GPT_BYTE - BEGV_BYTE;
1204 p2 = GAP_END_ADDR;
1205 s2 = ZV_BYTE - GPT_BYTE;
1206 if (s1 < 0)
1207 {
1208 p2 = p1;
1209 s2 = ZV_BYTE - BEGV_BYTE;
1210 s1 = 0;
1211 }
1212 if (s2 < 0)
1213 {
1214 s1 = ZV_BYTE - BEGV_BYTE;
1215 s2 = 0;
1216 }
1217 re_match_object = Qnil;
1218
1219 while (n < 0)
1220 {
1221 ptrdiff_t val;
1222
1223 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1224 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1225 (NILP (Vinhibit_changing_match_data)
1226 ? &search_regs : &search_regs_1),
1227 /* Don't allow match past current point */
1228 pos_byte - BEGV_BYTE);
1229 if (val == -2)
1230 {
1231 matcher_overflow ();
1232 }
1233 if (val >= 0)
1234 {
1235 if (NILP (Vinhibit_changing_match_data))
1236 {
1237 pos_byte = search_regs.start[0] + BEGV_BYTE;
1238 for (i = 0; i < search_regs.num_regs; i++)
1239 if (search_regs.start[i] >= 0)
1240 {
1241 search_regs.start[i]
1242 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1243 search_regs.end[i]
1244 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1245 }
1246 XSETBUFFER (last_thing_searched, current_buffer);
1247 /* Set pos to the new position. */
1248 pos = search_regs.start[0];
1249 }
1250 else
1251 {
1252 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1253 /* Set pos to the new position. */
1254 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1255 }
1256 }
1257 else
1258 {
1259 immediate_quit = 0;
1260 return (n);
1261 }
1262 n++;
1263 }
1264 while (n > 0)
1265 {
1266 ptrdiff_t val;
1267
1268 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1269 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1270 (NILP (Vinhibit_changing_match_data)
1271 ? &search_regs : &search_regs_1),
1272 lim_byte - BEGV_BYTE);
1273 if (val == -2)
1274 {
1275 matcher_overflow ();
1276 }
1277 if (val >= 0)
1278 {
1279 if (NILP (Vinhibit_changing_match_data))
1280 {
1281 pos_byte = search_regs.end[0] + BEGV_BYTE;
1282 for (i = 0; i < search_regs.num_regs; i++)
1283 if (search_regs.start[i] >= 0)
1284 {
1285 search_regs.start[i]
1286 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1287 search_regs.end[i]
1288 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1289 }
1290 XSETBUFFER (last_thing_searched, current_buffer);
1291 pos = search_regs.end[0];
1292 }
1293 else
1294 {
1295 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1296 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1297 }
1298 }
1299 else
1300 {
1301 immediate_quit = 0;
1302 return (0 - n);
1303 }
1304 n--;
1305 }
1306 immediate_quit = 0;
1307 return (pos);
1308 }
1309 else /* non-RE case */
1310 {
1311 unsigned char *raw_pattern, *pat;
1312 ptrdiff_t raw_pattern_size;
1313 ptrdiff_t raw_pattern_size_byte;
1314 unsigned char *patbuf;
1315 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1316 unsigned char *base_pat;
1317 /* Set to positive if we find a non-ASCII char that need
1318 translation. Otherwise set to zero later. */
1319 int char_base = -1;
1320 bool boyer_moore_ok = 1;
1321 USE_SAFE_ALLOCA;
1322
1323 /* MULTIBYTE says whether the text to be searched is multibyte.
1324 We must convert PATTERN to match that, or we will not really
1325 find things right. */
1326
1327 if (multibyte == STRING_MULTIBYTE (string))
1328 {
1329 raw_pattern = SDATA (string);
1330 raw_pattern_size = SCHARS (string);
1331 raw_pattern_size_byte = SBYTES (string);
1332 }
1333 else if (multibyte)
1334 {
1335 raw_pattern_size = SCHARS (string);
1336 raw_pattern_size_byte
1337 = count_size_as_multibyte (SDATA (string),
1338 raw_pattern_size);
1339 raw_pattern = SAFE_ALLOCA (raw_pattern_size_byte + 1);
1340 copy_text (SDATA (string), raw_pattern,
1341 SCHARS (string), 0, 1);
1342 }
1343 else
1344 {
1345 /* Converting multibyte to single-byte.
1346
1347 ??? Perhaps this conversion should be done in a special way
1348 by subtracting nonascii-insert-offset from each non-ASCII char,
1349 so that only the multibyte chars which really correspond to
1350 the chosen single-byte character set can possibly match. */
1351 raw_pattern_size = SCHARS (string);
1352 raw_pattern_size_byte = SCHARS (string);
1353 raw_pattern = SAFE_ALLOCA (raw_pattern_size + 1);
1354 copy_text (SDATA (string), raw_pattern,
1355 SBYTES (string), 1, 0);
1356 }
1357
1358 /* Copy and optionally translate the pattern. */
1359 len = raw_pattern_size;
1360 len_byte = raw_pattern_size_byte;
1361 SAFE_NALLOCA (patbuf, MAX_MULTIBYTE_LENGTH, len);
1362 pat = patbuf;
1363 base_pat = raw_pattern;
1364 if (multibyte)
1365 {
1366 /* Fill patbuf by translated characters in STRING while
1367 checking if we can use boyer-moore search. If TRT is
1368 non-nil, we can use boyer-moore search only if TRT can be
1369 represented by the byte array of 256 elements. For that,
1370 all non-ASCII case-equivalents of all case-sensitive
1371 characters in STRING must belong to the same character
1372 group (two characters belong to the same group iff their
1373 multibyte forms are the same except for the last byte;
1374 i.e. every 64 characters form a group; U+0000..U+003F,
1375 U+0040..U+007F, U+0080..U+00BF, ...). */
1376
1377 while (--len >= 0)
1378 {
1379 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1380 int c, translated, inverse;
1381 int in_charlen, charlen;
1382
1383 /* If we got here and the RE flag is set, it's because we're
1384 dealing with a regexp known to be trivial, so the backslash
1385 just quotes the next character. */
1386 if (RE && *base_pat == '\\')
1387 {
1388 len--;
1389 raw_pattern_size--;
1390 len_byte--;
1391 base_pat++;
1392 }
1393
1394 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1395
1396 if (NILP (trt))
1397 {
1398 str = base_pat;
1399 charlen = in_charlen;
1400 }
1401 else
1402 {
1403 /* Translate the character. */
1404 TRANSLATE (translated, trt, c);
1405 charlen = CHAR_STRING (translated, str_base);
1406 str = str_base;
1407
1408 /* Check if C has any other case-equivalents. */
1409 TRANSLATE (inverse, inverse_trt, c);
1410 /* If so, check if we can use boyer-moore. */
1411 if (c != inverse && boyer_moore_ok)
1412 {
1413 /* Check if all equivalents belong to the same
1414 group of characters. Note that the check of C
1415 itself is done by the last iteration. */
1416 int this_char_base = -1;
1417
1418 while (boyer_moore_ok)
1419 {
1420 if (ASCII_CHAR_P (inverse))
1421 {
1422 if (this_char_base > 0)
1423 boyer_moore_ok = 0;
1424 else
1425 this_char_base = 0;
1426 }
1427 else if (CHAR_BYTE8_P (inverse))
1428 /* Boyer-moore search can't handle a
1429 translation of an eight-bit
1430 character. */
1431 boyer_moore_ok = 0;
1432 else if (this_char_base < 0)
1433 {
1434 this_char_base = inverse & ~0x3F;
1435 if (char_base < 0)
1436 char_base = this_char_base;
1437 else if (this_char_base != char_base)
1438 boyer_moore_ok = 0;
1439 }
1440 else if ((inverse & ~0x3F) != this_char_base)
1441 boyer_moore_ok = 0;
1442 if (c == inverse)
1443 break;
1444 TRANSLATE (inverse, inverse_trt, inverse);
1445 }
1446 }
1447 }
1448
1449 /* Store this character into the translated pattern. */
1450 memcpy (pat, str, charlen);
1451 pat += charlen;
1452 base_pat += in_charlen;
1453 len_byte -= in_charlen;
1454 }
1455
1456 /* If char_base is still negative we didn't find any translated
1457 non-ASCII characters. */
1458 if (char_base < 0)
1459 char_base = 0;
1460 }
1461 else
1462 {
1463 /* Unibyte buffer. */
1464 char_base = 0;
1465 while (--len >= 0)
1466 {
1467 int c, translated, inverse;
1468
1469 /* If we got here and the RE flag is set, it's because we're
1470 dealing with a regexp known to be trivial, so the backslash
1471 just quotes the next character. */
1472 if (RE && *base_pat == '\\')
1473 {
1474 len--;
1475 raw_pattern_size--;
1476 base_pat++;
1477 }
1478 c = *base_pat++;
1479 TRANSLATE (translated, trt, c);
1480 *pat++ = translated;
1481 /* Check that none of C's equivalents violates the
1482 assumptions of boyer_moore. */
1483 TRANSLATE (inverse, inverse_trt, c);
1484 while (1)
1485 {
1486 if (inverse >= 0200)
1487 {
1488 boyer_moore_ok = 0;
1489 break;
1490 }
1491 if (c == inverse)
1492 break;
1493 TRANSLATE (inverse, inverse_trt, inverse);
1494 }
1495 }
1496 }
1497
1498 len_byte = pat - patbuf;
1499 pat = base_pat = patbuf;
1500
1501 EMACS_INT result
1502 = (boyer_moore_ok
1503 ? boyer_moore (n, pat, len_byte, trt, inverse_trt,
1504 pos_byte, lim_byte,
1505 char_base)
1506 : simple_search (n, pat, raw_pattern_size, len_byte, trt,
1507 pos, pos_byte, lim, lim_byte));
1508 SAFE_FREE ();
1509 return result;
1510 }
1511 }
1512 \f
1513 /* Do a simple string search N times for the string PAT,
1514 whose length is LEN/LEN_BYTE,
1515 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1516 TRT is the translation table.
1517
1518 Return the character position where the match is found.
1519 Otherwise, if M matches remained to be found, return -M.
1520
1521 This kind of search works regardless of what is in PAT and
1522 regardless of what is in TRT. It is used in cases where
1523 boyer_moore cannot work. */
1524
1525 static EMACS_INT
1526 simple_search (EMACS_INT n, unsigned char *pat,
1527 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1528 ptrdiff_t pos, ptrdiff_t pos_byte,
1529 ptrdiff_t lim, ptrdiff_t lim_byte)
1530 {
1531 bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1532 bool forward = n > 0;
1533 /* Number of buffer bytes matched. Note that this may be different
1534 from len_byte in a multibyte buffer. */
1535 ptrdiff_t match_byte = PTRDIFF_MIN;
1536
1537 if (lim > pos && multibyte)
1538 while (n > 0)
1539 {
1540 while (1)
1541 {
1542 /* Try matching at position POS. */
1543 ptrdiff_t this_pos = pos;
1544 ptrdiff_t this_pos_byte = pos_byte;
1545 ptrdiff_t this_len = len;
1546 unsigned char *p = pat;
1547 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1548 goto stop;
1549
1550 while (this_len > 0)
1551 {
1552 int charlen, buf_charlen;
1553 int pat_ch, buf_ch;
1554
1555 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1556 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1557 buf_charlen);
1558 TRANSLATE (buf_ch, trt, buf_ch);
1559
1560 if (buf_ch != pat_ch)
1561 break;
1562
1563 this_len--;
1564 p += charlen;
1565
1566 this_pos_byte += buf_charlen;
1567 this_pos++;
1568 }
1569
1570 if (this_len == 0)
1571 {
1572 match_byte = this_pos_byte - pos_byte;
1573 pos += len;
1574 pos_byte += match_byte;
1575 break;
1576 }
1577
1578 INC_BOTH (pos, pos_byte);
1579 }
1580
1581 n--;
1582 }
1583 else if (lim > pos)
1584 while (n > 0)
1585 {
1586 while (1)
1587 {
1588 /* Try matching at position POS. */
1589 ptrdiff_t this_pos = pos;
1590 ptrdiff_t this_len = len;
1591 unsigned char *p = pat;
1592
1593 if (pos + len > lim)
1594 goto stop;
1595
1596 while (this_len > 0)
1597 {
1598 int pat_ch = *p++;
1599 int buf_ch = FETCH_BYTE (this_pos);
1600 TRANSLATE (buf_ch, trt, buf_ch);
1601
1602 if (buf_ch != pat_ch)
1603 break;
1604
1605 this_len--;
1606 this_pos++;
1607 }
1608
1609 if (this_len == 0)
1610 {
1611 match_byte = len;
1612 pos += len;
1613 break;
1614 }
1615
1616 pos++;
1617 }
1618
1619 n--;
1620 }
1621 /* Backwards search. */
1622 else if (lim < pos && multibyte)
1623 while (n < 0)
1624 {
1625 while (1)
1626 {
1627 /* Try matching at position POS. */
1628 ptrdiff_t this_pos = pos;
1629 ptrdiff_t this_pos_byte = pos_byte;
1630 ptrdiff_t this_len = len;
1631 const unsigned char *p = pat + len_byte;
1632
1633 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1634 goto stop;
1635
1636 while (this_len > 0)
1637 {
1638 int pat_ch, buf_ch;
1639
1640 DEC_BOTH (this_pos, this_pos_byte);
1641 PREV_CHAR_BOUNDARY (p, pat);
1642 pat_ch = STRING_CHAR (p);
1643 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1644 TRANSLATE (buf_ch, trt, buf_ch);
1645
1646 if (buf_ch != pat_ch)
1647 break;
1648
1649 this_len--;
1650 }
1651
1652 if (this_len == 0)
1653 {
1654 match_byte = pos_byte - this_pos_byte;
1655 pos = this_pos;
1656 pos_byte = this_pos_byte;
1657 break;
1658 }
1659
1660 DEC_BOTH (pos, pos_byte);
1661 }
1662
1663 n++;
1664 }
1665 else if (lim < pos)
1666 while (n < 0)
1667 {
1668 while (1)
1669 {
1670 /* Try matching at position POS. */
1671 ptrdiff_t this_pos = pos - len;
1672 ptrdiff_t this_len = len;
1673 unsigned char *p = pat;
1674
1675 if (this_pos < lim)
1676 goto stop;
1677
1678 while (this_len > 0)
1679 {
1680 int pat_ch = *p++;
1681 int buf_ch = FETCH_BYTE (this_pos);
1682 TRANSLATE (buf_ch, trt, buf_ch);
1683
1684 if (buf_ch != pat_ch)
1685 break;
1686 this_len--;
1687 this_pos++;
1688 }
1689
1690 if (this_len == 0)
1691 {
1692 match_byte = len;
1693 pos -= len;
1694 break;
1695 }
1696
1697 pos--;
1698 }
1699
1700 n++;
1701 }
1702
1703 stop:
1704 if (n == 0)
1705 {
1706 eassert (match_byte != PTRDIFF_MIN);
1707 if (forward)
1708 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1709 else
1710 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1711
1712 return pos;
1713 }
1714 else if (n > 0)
1715 return -n;
1716 else
1717 return n;
1718 }
1719 \f
1720 /* Do Boyer-Moore search N times for the string BASE_PAT,
1721 whose length is LEN_BYTE,
1722 from buffer position POS_BYTE until LIM_BYTE.
1723 DIRECTION says which direction we search in.
1724 TRT and INVERSE_TRT are translation tables.
1725 Characters in PAT are already translated by TRT.
1726
1727 This kind of search works if all the characters in BASE_PAT that
1728 have nontrivial translation are the same aside from the last byte.
1729 This makes it possible to translate just the last byte of a
1730 character, and do so after just a simple test of the context.
1731 CHAR_BASE is nonzero if there is such a non-ASCII character.
1732
1733 If that criterion is not satisfied, do not call this function. */
1734
1735 static EMACS_INT
1736 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1737 ptrdiff_t len_byte,
1738 Lisp_Object trt, Lisp_Object inverse_trt,
1739 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1740 int char_base)
1741 {
1742 int direction = ((n > 0) ? 1 : -1);
1743 register ptrdiff_t dirlen;
1744 ptrdiff_t limit;
1745 int stride_for_teases = 0;
1746 int BM_tab[0400];
1747 register unsigned char *cursor, *p_limit;
1748 register ptrdiff_t i;
1749 register int j;
1750 unsigned char *pat, *pat_end;
1751 bool multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1752
1753 unsigned char simple_translate[0400];
1754 /* These are set to the preceding bytes of a byte to be translated
1755 if char_base is nonzero. As the maximum byte length of a
1756 multibyte character is 5, we have to check at most four previous
1757 bytes. */
1758 int translate_prev_byte1 = 0;
1759 int translate_prev_byte2 = 0;
1760 int translate_prev_byte3 = 0;
1761
1762 /* The general approach is that we are going to maintain that we know
1763 the first (closest to the present position, in whatever direction
1764 we're searching) character that could possibly be the last
1765 (furthest from present position) character of a valid match. We
1766 advance the state of our knowledge by looking at that character
1767 and seeing whether it indeed matches the last character of the
1768 pattern. If it does, we take a closer look. If it does not, we
1769 move our pointer (to putative last characters) as far as is
1770 logically possible. This amount of movement, which I call a
1771 stride, will be the length of the pattern if the actual character
1772 appears nowhere in the pattern, otherwise it will be the distance
1773 from the last occurrence of that character to the end of the
1774 pattern. If the amount is zero we have a possible match. */
1775
1776 /* Here we make a "mickey mouse" BM table. The stride of the search
1777 is determined only by the last character of the putative match.
1778 If that character does not match, we will stride the proper
1779 distance to propose a match that superimposes it on the last
1780 instance of a character that matches it (per trt), or misses
1781 it entirely if there is none. */
1782
1783 dirlen = len_byte * direction;
1784
1785 /* Record position after the end of the pattern. */
1786 pat_end = base_pat + len_byte;
1787 /* BASE_PAT points to a character that we start scanning from.
1788 It is the first character in a forward search,
1789 the last character in a backward search. */
1790 if (direction < 0)
1791 base_pat = pat_end - 1;
1792
1793 /* A character that does not appear in the pattern induces a
1794 stride equal to the pattern length. */
1795 for (i = 0; i < 0400; i++)
1796 BM_tab[i] = dirlen;
1797
1798 /* We use this for translation, instead of TRT itself.
1799 We fill this in to handle the characters that actually
1800 occur in the pattern. Others don't matter anyway! */
1801 for (i = 0; i < 0400; i++)
1802 simple_translate[i] = i;
1803
1804 if (char_base)
1805 {
1806 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1807 byte following them are the target of translation. */
1808 unsigned char str[MAX_MULTIBYTE_LENGTH];
1809 int cblen = CHAR_STRING (char_base, str);
1810
1811 translate_prev_byte1 = str[cblen - 2];
1812 if (cblen > 2)
1813 {
1814 translate_prev_byte2 = str[cblen - 3];
1815 if (cblen > 3)
1816 translate_prev_byte3 = str[cblen - 4];
1817 }
1818 }
1819
1820 i = 0;
1821 while (i != dirlen)
1822 {
1823 unsigned char *ptr = base_pat + i;
1824 i += direction;
1825 if (! NILP (trt))
1826 {
1827 /* If the byte currently looking at is the last of a
1828 character to check case-equivalents, set CH to that
1829 character. An ASCII character and a non-ASCII character
1830 matching with CHAR_BASE are to be checked. */
1831 int ch = -1;
1832
1833 if (ASCII_CHAR_P (*ptr) || ! multibyte)
1834 ch = *ptr;
1835 else if (char_base
1836 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1837 {
1838 unsigned char *charstart = ptr - 1;
1839
1840 while (! (CHAR_HEAD_P (*charstart)))
1841 charstart--;
1842 ch = STRING_CHAR (charstart);
1843 if (char_base != (ch & ~0x3F))
1844 ch = -1;
1845 }
1846
1847 if (ch >= 0200 && multibyte)
1848 j = (ch & 0x3F) | 0200;
1849 else
1850 j = *ptr;
1851
1852 if (i == dirlen)
1853 stride_for_teases = BM_tab[j];
1854
1855 BM_tab[j] = dirlen - i;
1856 /* A translation table is accompanied by its inverse -- see
1857 comment following downcase_table for details. */
1858 if (ch >= 0)
1859 {
1860 int starting_ch = ch;
1861 int starting_j = j;
1862
1863 while (1)
1864 {
1865 TRANSLATE (ch, inverse_trt, ch);
1866 if (ch >= 0200 && multibyte)
1867 j = (ch & 0x3F) | 0200;
1868 else
1869 j = ch;
1870
1871 /* For all the characters that map into CH,
1872 set up simple_translate to map the last byte
1873 into STARTING_J. */
1874 simple_translate[j] = starting_j;
1875 if (ch == starting_ch)
1876 break;
1877 BM_tab[j] = dirlen - i;
1878 }
1879 }
1880 }
1881 else
1882 {
1883 j = *ptr;
1884
1885 if (i == dirlen)
1886 stride_for_teases = BM_tab[j];
1887 BM_tab[j] = dirlen - i;
1888 }
1889 /* stride_for_teases tells how much to stride if we get a
1890 match on the far character but are subsequently
1891 disappointed, by recording what the stride would have been
1892 for that character if the last character had been
1893 different. */
1894 }
1895 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1896 /* loop invariant - POS_BYTE points at where last char (first
1897 char if reverse) of pattern would align in a possible match. */
1898 while (n != 0)
1899 {
1900 ptrdiff_t tail_end;
1901 unsigned char *tail_end_ptr;
1902
1903 /* It's been reported that some (broken) compiler thinks that
1904 Boolean expressions in an arithmetic context are unsigned.
1905 Using an explicit ?1:0 prevents this. */
1906 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1907 < 0)
1908 return (n * (0 - direction));
1909 /* First we do the part we can by pointers (maybe nothing) */
1910 QUIT;
1911 pat = base_pat;
1912 limit = pos_byte - dirlen + direction;
1913 if (direction > 0)
1914 {
1915 limit = BUFFER_CEILING_OF (limit);
1916 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1917 can take on without hitting edge of buffer or the gap. */
1918 limit = min (limit, pos_byte + 20000);
1919 limit = min (limit, lim_byte - 1);
1920 }
1921 else
1922 {
1923 limit = BUFFER_FLOOR_OF (limit);
1924 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1925 can take on without hitting edge of buffer or the gap. */
1926 limit = max (limit, pos_byte - 20000);
1927 limit = max (limit, lim_byte);
1928 }
1929 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1930 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1931
1932 if ((limit - pos_byte) * direction > 20)
1933 {
1934 unsigned char *p2;
1935
1936 p_limit = BYTE_POS_ADDR (limit);
1937 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1938 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1939 while (1) /* use one cursor setting as long as i can */
1940 {
1941 if (direction > 0) /* worth duplicating */
1942 {
1943 while (cursor <= p_limit)
1944 {
1945 if (BM_tab[*cursor] == 0)
1946 goto hit;
1947 cursor += BM_tab[*cursor];
1948 }
1949 }
1950 else
1951 {
1952 while (cursor >= p_limit)
1953 {
1954 if (BM_tab[*cursor] == 0)
1955 goto hit;
1956 cursor += BM_tab[*cursor];
1957 }
1958 }
1959 /* If you are here, cursor is beyond the end of the
1960 searched region. You fail to match within the
1961 permitted region and would otherwise try a character
1962 beyond that region. */
1963 break;
1964
1965 hit:
1966 i = dirlen - direction;
1967 if (! NILP (trt))
1968 {
1969 while ((i -= direction) + direction != 0)
1970 {
1971 int ch;
1972 cursor -= direction;
1973 /* Translate only the last byte of a character. */
1974 if (! multibyte
1975 || ((cursor == tail_end_ptr
1976 || CHAR_HEAD_P (cursor[1]))
1977 && (CHAR_HEAD_P (cursor[0])
1978 /* Check if this is the last byte of
1979 a translatable character. */
1980 || (translate_prev_byte1 == cursor[-1]
1981 && (CHAR_HEAD_P (translate_prev_byte1)
1982 || (translate_prev_byte2 == cursor[-2]
1983 && (CHAR_HEAD_P (translate_prev_byte2)
1984 || (translate_prev_byte3 == cursor[-3]))))))))
1985 ch = simple_translate[*cursor];
1986 else
1987 ch = *cursor;
1988 if (pat[i] != ch)
1989 break;
1990 }
1991 }
1992 else
1993 {
1994 while ((i -= direction) + direction != 0)
1995 {
1996 cursor -= direction;
1997 if (pat[i] != *cursor)
1998 break;
1999 }
2000 }
2001 cursor += dirlen - i - direction; /* fix cursor */
2002 if (i + direction == 0)
2003 {
2004 ptrdiff_t position, start, end;
2005
2006 cursor -= direction;
2007
2008 position = pos_byte + cursor - p2 + ((direction > 0)
2009 ? 1 - len_byte : 0);
2010 set_search_regs (position, len_byte);
2011
2012 if (NILP (Vinhibit_changing_match_data))
2013 {
2014 start = search_regs.start[0];
2015 end = search_regs.end[0];
2016 }
2017 else
2018 /* If Vinhibit_changing_match_data is non-nil,
2019 search_regs will not be changed. So let's
2020 compute start and end here. */
2021 {
2022 start = BYTE_TO_CHAR (position);
2023 end = BYTE_TO_CHAR (position + len_byte);
2024 }
2025
2026 if ((n -= direction) != 0)
2027 cursor += dirlen; /* to resume search */
2028 else
2029 return direction > 0 ? end : start;
2030 }
2031 else
2032 cursor += stride_for_teases; /* <sigh> we lose - */
2033 }
2034 pos_byte += cursor - p2;
2035 }
2036 else
2037 /* Now we'll pick up a clump that has to be done the hard
2038 way because it covers a discontinuity. */
2039 {
2040 limit = ((direction > 0)
2041 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
2042 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
2043 limit = ((direction > 0)
2044 ? min (limit + len_byte, lim_byte - 1)
2045 : max (limit - len_byte, lim_byte));
2046 /* LIMIT is now the last value POS_BYTE can have
2047 and still be valid for a possible match. */
2048 while (1)
2049 {
2050 /* This loop can be coded for space rather than
2051 speed because it will usually run only once.
2052 (the reach is at most len + 21, and typically
2053 does not exceed len). */
2054 while ((limit - pos_byte) * direction >= 0)
2055 {
2056 int ch = FETCH_BYTE (pos_byte);
2057 if (BM_tab[ch] == 0)
2058 goto hit2;
2059 pos_byte += BM_tab[ch];
2060 }
2061 break; /* ran off the end */
2062
2063 hit2:
2064 /* Found what might be a match. */
2065 i = dirlen - direction;
2066 while ((i -= direction) + direction != 0)
2067 {
2068 int ch;
2069 unsigned char *ptr;
2070 pos_byte -= direction;
2071 ptr = BYTE_POS_ADDR (pos_byte);
2072 /* Translate only the last byte of a character. */
2073 if (! multibyte
2074 || ((ptr == tail_end_ptr
2075 || CHAR_HEAD_P (ptr[1]))
2076 && (CHAR_HEAD_P (ptr[0])
2077 /* Check if this is the last byte of a
2078 translatable character. */
2079 || (translate_prev_byte1 == ptr[-1]
2080 && (CHAR_HEAD_P (translate_prev_byte1)
2081 || (translate_prev_byte2 == ptr[-2]
2082 && (CHAR_HEAD_P (translate_prev_byte2)
2083 || translate_prev_byte3 == ptr[-3])))))))
2084 ch = simple_translate[*ptr];
2085 else
2086 ch = *ptr;
2087 if (pat[i] != ch)
2088 break;
2089 }
2090 /* Above loop has moved POS_BYTE part or all the way
2091 back to the first pos (last pos if reverse).
2092 Set it once again at the last (first if reverse) char. */
2093 pos_byte += dirlen - i - direction;
2094 if (i + direction == 0)
2095 {
2096 ptrdiff_t position, start, end;
2097 pos_byte -= direction;
2098
2099 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2100 set_search_regs (position, len_byte);
2101
2102 if (NILP (Vinhibit_changing_match_data))
2103 {
2104 start = search_regs.start[0];
2105 end = search_regs.end[0];
2106 }
2107 else
2108 /* If Vinhibit_changing_match_data is non-nil,
2109 search_regs will not be changed. So let's
2110 compute start and end here. */
2111 {
2112 start = BYTE_TO_CHAR (position);
2113 end = BYTE_TO_CHAR (position + len_byte);
2114 }
2115
2116 if ((n -= direction) != 0)
2117 pos_byte += dirlen; /* to resume search */
2118 else
2119 return direction > 0 ? end : start;
2120 }
2121 else
2122 pos_byte += stride_for_teases;
2123 }
2124 }
2125 /* We have done one clump. Can we continue? */
2126 if ((lim_byte - pos_byte) * direction < 0)
2127 return ((0 - n) * direction);
2128 }
2129 return BYTE_TO_CHAR (pos_byte);
2130 }
2131
2132 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2133 for the overall match just found in the current buffer.
2134 Also clear out the match data for registers 1 and up. */
2135
2136 static void
2137 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2138 {
2139 ptrdiff_t i;
2140
2141 if (!NILP (Vinhibit_changing_match_data))
2142 return;
2143
2144 /* Make sure we have registers in which to store
2145 the match position. */
2146 if (search_regs.num_regs == 0)
2147 {
2148 search_regs.start = xmalloc (2 * sizeof (regoff_t));
2149 search_regs.end = xmalloc (2 * sizeof (regoff_t));
2150 search_regs.num_regs = 2;
2151 }
2152
2153 /* Clear out the other registers. */
2154 for (i = 1; i < search_regs.num_regs; i++)
2155 {
2156 search_regs.start[i] = -1;
2157 search_regs.end[i] = -1;
2158 }
2159
2160 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2161 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2162 XSETBUFFER (last_thing_searched, current_buffer);
2163 }
2164 \f
2165 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2166 "MSearch backward: ",
2167 doc: /* Search backward from point for STRING.
2168 Set point to the beginning of the occurrence found, and return point.
2169 An optional second argument bounds the search; it is a buffer position.
2170 The match found must not extend before that position.
2171 Optional third argument, if t, means if fail just return nil (no error).
2172 If not nil and not t, position at limit of search and return nil.
2173 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2174 successive occurrences. If COUNT is negative, search forward,
2175 instead of backward, for -COUNT occurrences.
2176
2177 Search case-sensitivity is determined by the value of the variable
2178 `case-fold-search', which see.
2179
2180 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2181 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2182 {
2183 return search_command (string, bound, noerror, count, -1, 0, 0);
2184 }
2185
2186 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2187 doc: /* Search forward from point for STRING.
2188 Set point to the end of the occurrence found, and return point.
2189 An optional second argument bounds the search; it is a buffer position.
2190 The match found must not extend after that position. A value of nil is
2191 equivalent to (point-max).
2192 Optional third argument, if t, means if fail just return nil (no error).
2193 If not nil and not t, move to limit of search and return nil.
2194 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2195 successive occurrences. If COUNT is negative, search backward,
2196 instead of forward, for -COUNT occurrences.
2197
2198 Search case-sensitivity is determined by the value of the variable
2199 `case-fold-search', which see.
2200
2201 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2202 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2203 {
2204 return search_command (string, bound, noerror, count, 1, 0, 0);
2205 }
2206
2207 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2208 "sRE search backward: ",
2209 doc: /* Search backward from point for match for regular expression REGEXP.
2210 Set point to the beginning of the match, and return point.
2211 The match found is the one starting last in the buffer
2212 and yet ending before the origin of the search.
2213 An optional second argument bounds the search; it is a buffer position.
2214 The match found must start at or after that position.
2215 Optional third argument, if t, means if fail just return nil (no error).
2216 If not nil and not t, move to limit of search and return nil.
2217 Optional fourth argument is repeat count--search for successive occurrences.
2218
2219 Search case-sensitivity is determined by the value of the variable
2220 `case-fold-search', which see.
2221
2222 See also the functions `match-beginning', `match-end', `match-string',
2223 and `replace-match'. */)
2224 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2225 {
2226 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2227 }
2228
2229 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2230 "sRE search: ",
2231 doc: /* Search forward from point for regular expression REGEXP.
2232 Set point to the end of the occurrence found, and return point.
2233 An optional second argument bounds the search; it is a buffer position.
2234 The match found must not extend after that position.
2235 Optional third argument, if t, means if fail just return nil (no error).
2236 If not nil and not t, move to limit of search and return nil.
2237 Optional fourth argument is repeat count--search for successive occurrences.
2238
2239 Search case-sensitivity is determined by the value of the variable
2240 `case-fold-search', which see.
2241
2242 See also the functions `match-beginning', `match-end', `match-string',
2243 and `replace-match'. */)
2244 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2245 {
2246 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2247 }
2248
2249 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2250 "sPosix search backward: ",
2251 doc: /* Search backward from point for match for regular expression REGEXP.
2252 Find the longest match in accord with Posix regular expression rules.
2253 Set point to the beginning of the match, and return point.
2254 The match found is the one starting last in the buffer
2255 and yet ending before the origin of the search.
2256 An optional second argument bounds the search; it is a buffer position.
2257 The match found must start at or after that position.
2258 Optional third argument, if t, means if fail just return nil (no error).
2259 If not nil and not t, move to limit of search and return nil.
2260 Optional fourth argument is repeat count--search for successive occurrences.
2261
2262 Search case-sensitivity is determined by the value of the variable
2263 `case-fold-search', which see.
2264
2265 See also the functions `match-beginning', `match-end', `match-string',
2266 and `replace-match'. */)
2267 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2268 {
2269 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2270 }
2271
2272 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2273 "sPosix search: ",
2274 doc: /* Search forward from point for regular expression REGEXP.
2275 Find the longest match in accord with Posix regular expression rules.
2276 Set point to the end of the occurrence found, and return point.
2277 An optional second argument bounds the search; it is a buffer position.
2278 The match found must not extend after that position.
2279 Optional third argument, if t, means if fail just return nil (no error).
2280 If not nil and not t, move to limit of search and return nil.
2281 Optional fourth argument is repeat count--search for successive occurrences.
2282
2283 Search case-sensitivity is determined by the value of the variable
2284 `case-fold-search', which see.
2285
2286 See also the functions `match-beginning', `match-end', `match-string',
2287 and `replace-match'. */)
2288 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2289 {
2290 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2291 }
2292 \f
2293 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2294 doc: /* Replace text matched by last search with NEWTEXT.
2295 Leave point at the end of the replacement text.
2296
2297 If optional second arg FIXEDCASE is non-nil, do not alter the case of
2298 the replacement text. Otherwise, maybe capitalize the whole text, or
2299 maybe just word initials, based on the replaced text. If the replaced
2300 text has only capital letters and has at least one multiletter word,
2301 convert NEWTEXT to all caps. Otherwise if all words are capitalized
2302 in the replaced text, capitalize each word in NEWTEXT.
2303
2304 If optional third arg LITERAL is non-nil, insert NEWTEXT literally.
2305 Otherwise treat `\\' as special:
2306 `\\&' in NEWTEXT means substitute original matched text.
2307 `\\N' means substitute what matched the Nth `\\(...\\)'.
2308 If Nth parens didn't match, substitute nothing.
2309 `\\\\' means insert one `\\'.
2310 `\\?' is treated literally
2311 (for compatibility with `query-replace-regexp').
2312 Any other character following `\\' signals an error.
2313 Case conversion does not apply to these substitutions.
2314
2315 If optional fourth argument STRING is non-nil, it should be a string
2316 to act on; this should be the string on which the previous match was
2317 done via `string-match'. In this case, `replace-match' creates and
2318 returns a new string, made by copying STRING and replacing the part of
2319 STRING that was matched (the original STRING itself is not altered).
2320
2321 The optional fifth argument SUBEXP specifies a subexpression;
2322 it says to replace just that subexpression with NEWTEXT,
2323 rather than replacing the entire matched text.
2324 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2325 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2326 NEWTEXT in place of subexp N.
2327 This is useful only after a regular expression search or match,
2328 since only regular expressions have distinguished subexpressions. */)
2329 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2330 {
2331 enum { nochange, all_caps, cap_initial } case_action;
2332 ptrdiff_t pos, pos_byte;
2333 bool some_multiletter_word;
2334 bool some_lowercase;
2335 bool some_uppercase;
2336 bool some_nonuppercase_initial;
2337 int c, prevc;
2338 ptrdiff_t sub;
2339 ptrdiff_t opoint, newpoint;
2340
2341 CHECK_STRING (newtext);
2342
2343 if (! NILP (string))
2344 CHECK_STRING (string);
2345
2346 case_action = nochange; /* We tried an initialization */
2347 /* but some C compilers blew it */
2348
2349 if (search_regs.num_regs <= 0)
2350 error ("`replace-match' called before any match found");
2351
2352 if (NILP (subexp))
2353 sub = 0;
2354 else
2355 {
2356 CHECK_NUMBER (subexp);
2357 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2358 args_out_of_range (subexp, make_number (search_regs.num_regs));
2359 sub = XINT (subexp);
2360 }
2361
2362 if (NILP (string))
2363 {
2364 if (search_regs.start[sub] < BEGV
2365 || search_regs.start[sub] > search_regs.end[sub]
2366 || search_regs.end[sub] > ZV)
2367 args_out_of_range (make_number (search_regs.start[sub]),
2368 make_number (search_regs.end[sub]));
2369 }
2370 else
2371 {
2372 if (search_regs.start[sub] < 0
2373 || search_regs.start[sub] > search_regs.end[sub]
2374 || search_regs.end[sub] > SCHARS (string))
2375 args_out_of_range (make_number (search_regs.start[sub]),
2376 make_number (search_regs.end[sub]));
2377 }
2378
2379 if (NILP (fixedcase))
2380 {
2381 /* Decide how to casify by examining the matched text. */
2382 ptrdiff_t last;
2383
2384 pos = search_regs.start[sub];
2385 last = search_regs.end[sub];
2386
2387 if (NILP (string))
2388 pos_byte = CHAR_TO_BYTE (pos);
2389 else
2390 pos_byte = string_char_to_byte (string, pos);
2391
2392 prevc = '\n';
2393 case_action = all_caps;
2394
2395 /* some_multiletter_word is set nonzero if any original word
2396 is more than one letter long. */
2397 some_multiletter_word = 0;
2398 some_lowercase = 0;
2399 some_nonuppercase_initial = 0;
2400 some_uppercase = 0;
2401
2402 while (pos < last)
2403 {
2404 if (NILP (string))
2405 {
2406 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2407 INC_BOTH (pos, pos_byte);
2408 }
2409 else
2410 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2411
2412 if (lowercasep (c))
2413 {
2414 /* Cannot be all caps if any original char is lower case */
2415
2416 some_lowercase = 1;
2417 if (SYNTAX (prevc) != Sword)
2418 some_nonuppercase_initial = 1;
2419 else
2420 some_multiletter_word = 1;
2421 }
2422 else if (uppercasep (c))
2423 {
2424 some_uppercase = 1;
2425 if (SYNTAX (prevc) != Sword)
2426 ;
2427 else
2428 some_multiletter_word = 1;
2429 }
2430 else
2431 {
2432 /* If the initial is a caseless word constituent,
2433 treat that like a lowercase initial. */
2434 if (SYNTAX (prevc) != Sword)
2435 some_nonuppercase_initial = 1;
2436 }
2437
2438 prevc = c;
2439 }
2440
2441 /* Convert to all caps if the old text is all caps
2442 and has at least one multiletter word. */
2443 if (! some_lowercase && some_multiletter_word)
2444 case_action = all_caps;
2445 /* Capitalize each word, if the old text has all capitalized words. */
2446 else if (!some_nonuppercase_initial && some_multiletter_word)
2447 case_action = cap_initial;
2448 else if (!some_nonuppercase_initial && some_uppercase)
2449 /* Should x -> yz, operating on X, give Yz or YZ?
2450 We'll assume the latter. */
2451 case_action = all_caps;
2452 else
2453 case_action = nochange;
2454 }
2455
2456 /* Do replacement in a string. */
2457 if (!NILP (string))
2458 {
2459 Lisp_Object before, after;
2460
2461 before = Fsubstring (string, make_number (0),
2462 make_number (search_regs.start[sub]));
2463 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2464
2465 /* Substitute parts of the match into NEWTEXT
2466 if desired. */
2467 if (NILP (literal))
2468 {
2469 ptrdiff_t lastpos = 0;
2470 ptrdiff_t lastpos_byte = 0;
2471 /* We build up the substituted string in ACCUM. */
2472 Lisp_Object accum;
2473 Lisp_Object middle;
2474 ptrdiff_t length = SBYTES (newtext);
2475
2476 accum = Qnil;
2477
2478 for (pos_byte = 0, pos = 0; pos_byte < length;)
2479 {
2480 ptrdiff_t substart = -1;
2481 ptrdiff_t subend = 0;
2482 bool delbackslash = 0;
2483
2484 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2485
2486 if (c == '\\')
2487 {
2488 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2489
2490 if (c == '&')
2491 {
2492 substart = search_regs.start[sub];
2493 subend = search_regs.end[sub];
2494 }
2495 else if (c >= '1' && c <= '9')
2496 {
2497 if (c - '0' < search_regs.num_regs
2498 && search_regs.start[c - '0'] >= 0)
2499 {
2500 substart = search_regs.start[c - '0'];
2501 subend = search_regs.end[c - '0'];
2502 }
2503 else
2504 {
2505 /* If that subexp did not match,
2506 replace \\N with nothing. */
2507 substart = 0;
2508 subend = 0;
2509 }
2510 }
2511 else if (c == '\\')
2512 delbackslash = 1;
2513 else if (c != '?')
2514 error ("Invalid use of `\\' in replacement text");
2515 }
2516 if (substart >= 0)
2517 {
2518 if (pos - 2 != lastpos)
2519 middle = substring_both (newtext, lastpos,
2520 lastpos_byte,
2521 pos - 2, pos_byte - 2);
2522 else
2523 middle = Qnil;
2524 accum = concat3 (accum, middle,
2525 Fsubstring (string,
2526 make_number (substart),
2527 make_number (subend)));
2528 lastpos = pos;
2529 lastpos_byte = pos_byte;
2530 }
2531 else if (delbackslash)
2532 {
2533 middle = substring_both (newtext, lastpos,
2534 lastpos_byte,
2535 pos - 1, pos_byte - 1);
2536
2537 accum = concat2 (accum, middle);
2538 lastpos = pos;
2539 lastpos_byte = pos_byte;
2540 }
2541 }
2542
2543 if (pos != lastpos)
2544 middle = substring_both (newtext, lastpos,
2545 lastpos_byte,
2546 pos, pos_byte);
2547 else
2548 middle = Qnil;
2549
2550 newtext = concat2 (accum, middle);
2551 }
2552
2553 /* Do case substitution in NEWTEXT if desired. */
2554 if (case_action == all_caps)
2555 newtext = Fupcase (newtext);
2556 else if (case_action == cap_initial)
2557 newtext = Fupcase_initials (newtext);
2558
2559 return concat3 (before, newtext, after);
2560 }
2561
2562 /* Record point, then move (quietly) to the start of the match. */
2563 if (PT >= search_regs.end[sub])
2564 opoint = PT - ZV;
2565 else if (PT > search_regs.start[sub])
2566 opoint = search_regs.end[sub] - ZV;
2567 else
2568 opoint = PT;
2569
2570 /* If we want non-literal replacement,
2571 perform substitution on the replacement string. */
2572 if (NILP (literal))
2573 {
2574 ptrdiff_t length = SBYTES (newtext);
2575 unsigned char *substed;
2576 ptrdiff_t substed_alloc_size, substed_len;
2577 bool buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2578 bool str_multibyte = STRING_MULTIBYTE (newtext);
2579 bool really_changed = 0;
2580
2581 substed_alloc_size = (length <= (STRING_BYTES_BOUND - 100) / 2
2582 ? length * 2 + 100
2583 : STRING_BYTES_BOUND);
2584 substed = xmalloc (substed_alloc_size);
2585 substed_len = 0;
2586
2587 /* Go thru NEWTEXT, producing the actual text to insert in
2588 SUBSTED while adjusting multibyteness to that of the current
2589 buffer. */
2590
2591 for (pos_byte = 0, pos = 0; pos_byte < length;)
2592 {
2593 unsigned char str[MAX_MULTIBYTE_LENGTH];
2594 const unsigned char *add_stuff = NULL;
2595 ptrdiff_t add_len = 0;
2596 ptrdiff_t idx = -1;
2597
2598 if (str_multibyte)
2599 {
2600 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2601 if (!buf_multibyte)
2602 c = CHAR_TO_BYTE8 (c);
2603 }
2604 else
2605 {
2606 /* Note that we don't have to increment POS. */
2607 c = SREF (newtext, pos_byte++);
2608 if (buf_multibyte)
2609 MAKE_CHAR_MULTIBYTE (c);
2610 }
2611
2612 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2613 or set IDX to a match index, which means put that part
2614 of the buffer text into SUBSTED. */
2615
2616 if (c == '\\')
2617 {
2618 really_changed = 1;
2619
2620 if (str_multibyte)
2621 {
2622 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2623 pos, pos_byte);
2624 if (!buf_multibyte && !ASCII_CHAR_P (c))
2625 c = CHAR_TO_BYTE8 (c);
2626 }
2627 else
2628 {
2629 c = SREF (newtext, pos_byte++);
2630 if (buf_multibyte)
2631 MAKE_CHAR_MULTIBYTE (c);
2632 }
2633
2634 if (c == '&')
2635 idx = sub;
2636 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2637 {
2638 if (search_regs.start[c - '0'] >= 1)
2639 idx = c - '0';
2640 }
2641 else if (c == '\\')
2642 add_len = 1, add_stuff = (unsigned char *) "\\";
2643 else
2644 {
2645 xfree (substed);
2646 error ("Invalid use of `\\' in replacement text");
2647 }
2648 }
2649 else
2650 {
2651 add_len = CHAR_STRING (c, str);
2652 add_stuff = str;
2653 }
2654
2655 /* If we want to copy part of a previous match,
2656 set up ADD_STUFF and ADD_LEN to point to it. */
2657 if (idx >= 0)
2658 {
2659 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2660 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2661 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2662 move_gap_both (search_regs.start[idx], begbyte);
2663 add_stuff = BYTE_POS_ADDR (begbyte);
2664 }
2665
2666 /* Now the stuff we want to add to SUBSTED
2667 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2668
2669 /* Make sure SUBSTED is big enough. */
2670 if (substed_alloc_size - substed_len < add_len)
2671 substed =
2672 xpalloc (substed, &substed_alloc_size,
2673 add_len - (substed_alloc_size - substed_len),
2674 STRING_BYTES_BOUND, 1);
2675
2676 /* Now add to the end of SUBSTED. */
2677 if (add_stuff)
2678 {
2679 memcpy (substed + substed_len, add_stuff, add_len);
2680 substed_len += add_len;
2681 }
2682 }
2683
2684 if (really_changed)
2685 newtext = make_specified_string ((const char *) substed, -1,
2686 substed_len, buf_multibyte);
2687 xfree (substed);
2688 }
2689
2690 /* Replace the old text with the new in the cleanest possible way. */
2691 replace_range (search_regs.start[sub], search_regs.end[sub],
2692 newtext, 1, 0, 1);
2693 newpoint = search_regs.start[sub] + SCHARS (newtext);
2694
2695 if (case_action == all_caps)
2696 Fupcase_region (make_number (search_regs.start[sub]),
2697 make_number (newpoint));
2698 else if (case_action == cap_initial)
2699 Fupcase_initials_region (make_number (search_regs.start[sub]),
2700 make_number (newpoint));
2701
2702 /* Adjust search data for this change. */
2703 {
2704 ptrdiff_t oldend = search_regs.end[sub];
2705 ptrdiff_t oldstart = search_regs.start[sub];
2706 ptrdiff_t change = newpoint - search_regs.end[sub];
2707 ptrdiff_t i;
2708
2709 for (i = 0; i < search_regs.num_regs; i++)
2710 {
2711 if (search_regs.start[i] >= oldend)
2712 search_regs.start[i] += change;
2713 else if (search_regs.start[i] > oldstart)
2714 search_regs.start[i] = oldstart;
2715 if (search_regs.end[i] >= oldend)
2716 search_regs.end[i] += change;
2717 else if (search_regs.end[i] > oldstart)
2718 search_regs.end[i] = oldstart;
2719 }
2720 }
2721
2722 /* Put point back where it was in the text. */
2723 if (opoint <= 0)
2724 TEMP_SET_PT (opoint + ZV);
2725 else
2726 TEMP_SET_PT (opoint);
2727
2728 /* Now move point "officially" to the start of the inserted replacement. */
2729 move_if_not_intangible (newpoint);
2730
2731 return Qnil;
2732 }
2733 \f
2734 static Lisp_Object
2735 match_limit (Lisp_Object num, bool beginningp)
2736 {
2737 EMACS_INT n;
2738
2739 CHECK_NUMBER (num);
2740 n = XINT (num);
2741 if (n < 0)
2742 args_out_of_range (num, make_number (0));
2743 if (search_regs.num_regs <= 0)
2744 error ("No match data, because no search succeeded");
2745 if (n >= search_regs.num_regs
2746 || search_regs.start[n] < 0)
2747 return Qnil;
2748 return (make_number ((beginningp) ? search_regs.start[n]
2749 : search_regs.end[n]));
2750 }
2751
2752 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2753 doc: /* Return position of start of text matched by last search.
2754 SUBEXP, a number, specifies which parenthesized expression in the last
2755 regexp.
2756 Value is nil if SUBEXPth pair didn't match, or there were less than
2757 SUBEXP pairs.
2758 Zero means the entire text matched by the whole regexp or whole string. */)
2759 (Lisp_Object subexp)
2760 {
2761 return match_limit (subexp, 1);
2762 }
2763
2764 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2765 doc: /* Return position of end of text matched by last search.
2766 SUBEXP, a number, specifies which parenthesized expression in the last
2767 regexp.
2768 Value is nil if SUBEXPth pair didn't match, or there were less than
2769 SUBEXP pairs.
2770 Zero means the entire text matched by the whole regexp or whole string. */)
2771 (Lisp_Object subexp)
2772 {
2773 return match_limit (subexp, 0);
2774 }
2775
2776 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2777 doc: /* Return a list containing all info on what the last search matched.
2778 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2779 All the elements are markers or nil (nil if the Nth pair didn't match)
2780 if the last match was on a buffer; integers or nil if a string was matched.
2781 Use `set-match-data' to reinstate the data in this list.
2782
2783 If INTEGERS (the optional first argument) is non-nil, always use
2784 integers \(rather than markers) to represent buffer positions. In
2785 this case, and if the last match was in a buffer, the buffer will get
2786 stored as one additional element at the end of the list.
2787
2788 If REUSE is a list, reuse it as part of the value. If REUSE is long
2789 enough to hold all the values, and if INTEGERS is non-nil, no consing
2790 is done.
2791
2792 If optional third arg RESEAT is non-nil, any previous markers on the
2793 REUSE list will be modified to point to nowhere.
2794
2795 Return value is undefined if the last search failed. */)
2796 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2797 {
2798 Lisp_Object tail, prev;
2799 Lisp_Object *data;
2800 ptrdiff_t i, len;
2801
2802 if (!NILP (reseat))
2803 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2804 if (MARKERP (XCAR (tail)))
2805 {
2806 unchain_marker (XMARKER (XCAR (tail)));
2807 XSETCAR (tail, Qnil);
2808 }
2809
2810 if (NILP (last_thing_searched))
2811 return Qnil;
2812
2813 prev = Qnil;
2814
2815 USE_SAFE_ALLOCA;
2816 SAFE_NALLOCA (data, 1, 2 * search_regs.num_regs + 1);
2817
2818 len = 0;
2819 for (i = 0; i < search_regs.num_regs; i++)
2820 {
2821 ptrdiff_t start = search_regs.start[i];
2822 if (start >= 0)
2823 {
2824 if (EQ (last_thing_searched, Qt)
2825 || ! NILP (integers))
2826 {
2827 XSETFASTINT (data[2 * i], start);
2828 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2829 }
2830 else if (BUFFERP (last_thing_searched))
2831 {
2832 data[2 * i] = Fmake_marker ();
2833 Fset_marker (data[2 * i],
2834 make_number (start),
2835 last_thing_searched);
2836 data[2 * i + 1] = Fmake_marker ();
2837 Fset_marker (data[2 * i + 1],
2838 make_number (search_regs.end[i]),
2839 last_thing_searched);
2840 }
2841 else
2842 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2843 emacs_abort ();
2844
2845 len = 2 * i + 2;
2846 }
2847 else
2848 data[2 * i] = data[2 * i + 1] = Qnil;
2849 }
2850
2851 if (BUFFERP (last_thing_searched) && !NILP (integers))
2852 {
2853 data[len] = last_thing_searched;
2854 len++;
2855 }
2856
2857 /* If REUSE is not usable, cons up the values and return them. */
2858 if (! CONSP (reuse))
2859 reuse = Flist (len, data);
2860 else
2861 {
2862 /* If REUSE is a list, store as many value elements as will fit
2863 into the elements of REUSE. */
2864 for (i = 0, tail = reuse; CONSP (tail);
2865 i++, tail = XCDR (tail))
2866 {
2867 if (i < len)
2868 XSETCAR (tail, data[i]);
2869 else
2870 XSETCAR (tail, Qnil);
2871 prev = tail;
2872 }
2873
2874 /* If we couldn't fit all value elements into REUSE,
2875 cons up the rest of them and add them to the end of REUSE. */
2876 if (i < len)
2877 XSETCDR (prev, Flist (len - i, data + i));
2878 }
2879
2880 SAFE_FREE ();
2881 return reuse;
2882 }
2883
2884 /* We used to have an internal use variant of `reseat' described as:
2885
2886 If RESEAT is `evaporate', put the markers back on the free list
2887 immediately. No other references to the markers must exist in this
2888 case, so it is used only internally on the unwind stack and
2889 save-match-data from Lisp.
2890
2891 But it was ill-conceived: those supposedly-internal markers get exposed via
2892 the undo-list, so freeing them here is unsafe. */
2893
2894 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2895 doc: /* Set internal data on last search match from elements of LIST.
2896 LIST should have been created by calling `match-data' previously.
2897
2898 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2899 (register Lisp_Object list, Lisp_Object reseat)
2900 {
2901 ptrdiff_t i;
2902 register Lisp_Object marker;
2903
2904 if (running_asynch_code)
2905 save_search_regs ();
2906
2907 CHECK_LIST (list);
2908
2909 /* Unless we find a marker with a buffer or an explicit buffer
2910 in LIST, assume that this match data came from a string. */
2911 last_thing_searched = Qt;
2912
2913 /* Allocate registers if they don't already exist. */
2914 {
2915 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2916
2917 if (length > search_regs.num_regs)
2918 {
2919 ptrdiff_t num_regs = search_regs.num_regs;
2920 if (PTRDIFF_MAX < length)
2921 memory_full (SIZE_MAX);
2922 search_regs.start =
2923 xpalloc (search_regs.start, &num_regs, length - num_regs,
2924 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2925 search_regs.end =
2926 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2927
2928 for (i = search_regs.num_regs; i < num_regs; i++)
2929 search_regs.start[i] = -1;
2930
2931 search_regs.num_regs = num_regs;
2932 }
2933
2934 for (i = 0; CONSP (list); i++)
2935 {
2936 marker = XCAR (list);
2937 if (BUFFERP (marker))
2938 {
2939 last_thing_searched = marker;
2940 break;
2941 }
2942 if (i >= length)
2943 break;
2944 if (NILP (marker))
2945 {
2946 search_regs.start[i] = -1;
2947 list = XCDR (list);
2948 }
2949 else
2950 {
2951 Lisp_Object from;
2952 Lisp_Object m;
2953
2954 m = marker;
2955 if (MARKERP (marker))
2956 {
2957 if (XMARKER (marker)->buffer == 0)
2958 XSETFASTINT (marker, 0);
2959 else
2960 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2961 }
2962
2963 CHECK_NUMBER_COERCE_MARKER (marker);
2964 from = marker;
2965
2966 if (!NILP (reseat) && MARKERP (m))
2967 {
2968 unchain_marker (XMARKER (m));
2969 XSETCAR (list, Qnil);
2970 }
2971
2972 if ((list = XCDR (list), !CONSP (list)))
2973 break;
2974
2975 m = marker = XCAR (list);
2976
2977 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2978 XSETFASTINT (marker, 0);
2979
2980 CHECK_NUMBER_COERCE_MARKER (marker);
2981 if ((XINT (from) < 0
2982 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2983 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2984 && (XINT (marker) < 0
2985 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2986 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2987 {
2988 search_regs.start[i] = XINT (from);
2989 search_regs.end[i] = XINT (marker);
2990 }
2991 else
2992 {
2993 search_regs.start[i] = -1;
2994 }
2995
2996 if (!NILP (reseat) && MARKERP (m))
2997 {
2998 unchain_marker (XMARKER (m));
2999 XSETCAR (list, Qnil);
3000 }
3001 }
3002 list = XCDR (list);
3003 }
3004
3005 for (; i < search_regs.num_regs; i++)
3006 search_regs.start[i] = -1;
3007 }
3008
3009 return Qnil;
3010 }
3011
3012 /* If true the match data have been saved in saved_search_regs
3013 during the execution of a sentinel or filter. */
3014 static bool search_regs_saved;
3015 static struct re_registers saved_search_regs;
3016 static Lisp_Object saved_last_thing_searched;
3017
3018 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3019 if asynchronous code (filter or sentinel) is running. */
3020 static void
3021 save_search_regs (void)
3022 {
3023 if (!search_regs_saved)
3024 {
3025 saved_search_regs.num_regs = search_regs.num_regs;
3026 saved_search_regs.start = search_regs.start;
3027 saved_search_regs.end = search_regs.end;
3028 saved_last_thing_searched = last_thing_searched;
3029 last_thing_searched = Qnil;
3030 search_regs.num_regs = 0;
3031 search_regs.start = 0;
3032 search_regs.end = 0;
3033
3034 search_regs_saved = 1;
3035 }
3036 }
3037
3038 /* Called upon exit from filters and sentinels. */
3039 void
3040 restore_search_regs (void)
3041 {
3042 if (search_regs_saved)
3043 {
3044 if (search_regs.num_regs > 0)
3045 {
3046 xfree (search_regs.start);
3047 xfree (search_regs.end);
3048 }
3049 search_regs.num_regs = saved_search_regs.num_regs;
3050 search_regs.start = saved_search_regs.start;
3051 search_regs.end = saved_search_regs.end;
3052 last_thing_searched = saved_last_thing_searched;
3053 saved_last_thing_searched = Qnil;
3054 search_regs_saved = 0;
3055 }
3056 }
3057
3058 static void
3059 unwind_set_match_data (Lisp_Object list)
3060 {
3061 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3062 Fset_match_data (list, Qt);
3063 }
3064
3065 /* Called to unwind protect the match data. */
3066 void
3067 record_unwind_save_match_data (void)
3068 {
3069 record_unwind_protect (unwind_set_match_data,
3070 Fmatch_data (Qnil, Qnil, Qnil));
3071 }
3072
3073 /* Quote a string to deactivate reg-expr chars */
3074
3075 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3076 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3077 (Lisp_Object string)
3078 {
3079 char *in, *out, *end;
3080 char *temp;
3081 ptrdiff_t backslashes_added = 0;
3082
3083 CHECK_STRING (string);
3084
3085 USE_SAFE_ALLOCA;
3086 SAFE_NALLOCA (temp, 2, SBYTES (string));
3087
3088 /* Now copy the data into the new string, inserting escapes. */
3089
3090 in = SSDATA (string);
3091 end = in + SBYTES (string);
3092 out = temp;
3093
3094 for (; in != end; in++)
3095 {
3096 if (*in == '['
3097 || *in == '*' || *in == '.' || *in == '\\'
3098 || *in == '?' || *in == '+'
3099 || *in == '^' || *in == '$')
3100 *out++ = '\\', backslashes_added++;
3101 *out++ = *in;
3102 }
3103
3104 Lisp_Object result
3105 = make_specified_string (temp,
3106 SCHARS (string) + backslashes_added,
3107 out - temp,
3108 STRING_MULTIBYTE (string));
3109 SAFE_FREE ();
3110 return result;
3111 }
3112
3113 /* Like find_newline, but doesn't use the cache, and only searches forward. */
3114 static ptrdiff_t
3115 find_newline1 (ptrdiff_t start, ptrdiff_t start_byte, ptrdiff_t end,
3116 ptrdiff_t end_byte, ptrdiff_t count, ptrdiff_t *shortage,
3117 ptrdiff_t *bytepos, bool allow_quit)
3118 {
3119 if (count > 0)
3120 {
3121 if (!end)
3122 end = ZV, end_byte = ZV_BYTE;
3123 }
3124 else
3125 {
3126 if (!end)
3127 end = BEGV, end_byte = BEGV_BYTE;
3128 }
3129 if (end_byte == -1)
3130 end_byte = CHAR_TO_BYTE (end);
3131
3132 if (shortage != 0)
3133 *shortage = 0;
3134
3135 immediate_quit = allow_quit;
3136
3137 if (count > 0)
3138 while (start != end)
3139 {
3140 /* Our innermost scanning loop is very simple; it doesn't know
3141 about gaps, buffer ends, or the newline cache. ceiling is
3142 the position of the last character before the next such
3143 obstacle --- the last character the dumb search loop should
3144 examine. */
3145 ptrdiff_t tem, ceiling_byte = end_byte - 1;
3146
3147 if (start_byte == -1)
3148 start_byte = CHAR_TO_BYTE (start);
3149
3150 /* The dumb loop can only scan text stored in contiguous
3151 bytes. BUFFER_CEILING_OF returns the last character
3152 position that is contiguous, so the ceiling is the
3153 position after that. */
3154 tem = BUFFER_CEILING_OF (start_byte);
3155 ceiling_byte = min (tem, ceiling_byte);
3156
3157 {
3158 /* The termination address of the dumb loop. */
3159 unsigned char *lim_addr = BYTE_POS_ADDR (ceiling_byte) + 1;
3160 ptrdiff_t lim_byte = ceiling_byte + 1;
3161
3162 /* Nonpositive offsets (relative to LIM_ADDR and LIM_BYTE)
3163 of the base, the cursor, and the next line. */
3164 ptrdiff_t base = start_byte - lim_byte;
3165 ptrdiff_t cursor, next;
3166
3167 for (cursor = base; cursor < 0; cursor = next)
3168 {
3169 /* The dumb loop. */
3170 unsigned char *nl = memchr (lim_addr + cursor, '\n', - cursor);
3171 next = nl ? nl - lim_addr : 0;
3172
3173 if (! nl)
3174 break;
3175 next++;
3176
3177 if (--count == 0)
3178 {
3179 immediate_quit = 0;
3180 if (bytepos)
3181 *bytepos = lim_byte + next;
3182 return BYTE_TO_CHAR (lim_byte + next);
3183 }
3184 }
3185
3186 start_byte = lim_byte;
3187 start = BYTE_TO_CHAR (start_byte);
3188 }
3189 }
3190
3191 immediate_quit = 0;
3192 if (shortage)
3193 *shortage = count;
3194 if (bytepos)
3195 {
3196 *bytepos = start_byte == -1 ? CHAR_TO_BYTE (start) : start_byte;
3197 eassert (*bytepos == CHAR_TO_BYTE (start));
3198 }
3199 return start;
3200 }
3201
3202 DEFUN ("newline-cache-check", Fnewline_cache_check, Snewline_cache_check,
3203 0, 1, 0,
3204 doc: /* Check the newline cache of BUFFER against buffer contents.
3205
3206 BUFFER defaults to the current buffer.
3207
3208 Value is an array of 2 sub-arrays of buffer positions for newlines,
3209 the first based on the cache, the second based on actually scanning
3210 the buffer. If the buffer doesn't have a cache, the value is nil. */)
3211 (Lisp_Object buffer)
3212 {
3213 struct buffer *buf, *old = NULL;
3214 ptrdiff_t shortage, nl_count_cache, nl_count_buf;
3215 Lisp_Object cache_newlines, buf_newlines, val;
3216 ptrdiff_t from, found, i;
3217
3218 if (NILP (buffer))
3219 buf = current_buffer;
3220 else
3221 {
3222 CHECK_BUFFER (buffer);
3223 buf = XBUFFER (buffer);
3224 old = current_buffer;
3225 }
3226 if (buf->base_buffer)
3227 buf = buf->base_buffer;
3228
3229 /* If the buffer doesn't have a newline cache, return nil. */
3230 if (NILP (BVAR (buf, cache_long_scans))
3231 || buf->newline_cache == NULL)
3232 return Qnil;
3233
3234 /* find_newline can only work on the current buffer. */
3235 if (old != NULL)
3236 set_buffer_internal_1 (buf);
3237
3238 /* How many newlines are there according to the cache? */
3239 find_newline (BEGV, BEGV_BYTE, ZV, ZV_BYTE,
3240 TYPE_MAXIMUM (ptrdiff_t), &shortage, NULL, true);
3241 nl_count_cache = TYPE_MAXIMUM (ptrdiff_t) - shortage;
3242
3243 /* Create vector and populate it. */
3244 cache_newlines = make_uninit_vector (nl_count_cache);
3245
3246 if (nl_count_cache)
3247 {
3248 for (from = BEGV, found = from, i = 0; from < ZV; from = found, i++)
3249 {
3250 ptrdiff_t from_byte = CHAR_TO_BYTE (from);
3251
3252 found = find_newline (from, from_byte, 0, -1, 1, &shortage,
3253 NULL, true);
3254 if (shortage != 0 || i >= nl_count_cache)
3255 break;
3256 ASET (cache_newlines, i, make_number (found - 1));
3257 }
3258 /* Fill the rest of slots with an invalid position. */
3259 for ( ; i < nl_count_cache; i++)
3260 ASET (cache_newlines, i, make_number (-1));
3261 }
3262
3263 /* Now do the same, but without using the cache. */
3264 find_newline1 (BEGV, BEGV_BYTE, ZV, ZV_BYTE,
3265 TYPE_MAXIMUM (ptrdiff_t), &shortage, NULL, true);
3266 nl_count_buf = TYPE_MAXIMUM (ptrdiff_t) - shortage;
3267 buf_newlines = make_uninit_vector (nl_count_buf);
3268 if (nl_count_buf)
3269 {
3270 for (from = BEGV, found = from, i = 0; from < ZV; from = found, i++)
3271 {
3272 ptrdiff_t from_byte = CHAR_TO_BYTE (from);
3273
3274 found = find_newline1 (from, from_byte, 0, -1, 1, &shortage,
3275 NULL, true);
3276 if (shortage != 0 || i >= nl_count_buf)
3277 break;
3278 ASET (buf_newlines, i, make_number (found - 1));
3279 }
3280 for ( ; i < nl_count_buf; i++)
3281 ASET (buf_newlines, i, make_number (-1));
3282 }
3283
3284 /* Construct the value and return it. */
3285 val = make_uninit_vector (2);
3286 ASET (val, 0, cache_newlines);
3287 ASET (val, 1, buf_newlines);
3288
3289 if (old != NULL)
3290 set_buffer_internal_1 (old);
3291 return val;
3292 }
3293 \f
3294 void
3295 syms_of_search (void)
3296 {
3297 register int i;
3298
3299 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3300 {
3301 searchbufs[i].buf.allocated = 100;
3302 searchbufs[i].buf.buffer = xmalloc (100);
3303 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3304 searchbufs[i].regexp = Qnil;
3305 searchbufs[i].whitespace_regexp = Qnil;
3306 searchbufs[i].syntax_table = Qnil;
3307 staticpro (&searchbufs[i].regexp);
3308 staticpro (&searchbufs[i].whitespace_regexp);
3309 staticpro (&searchbufs[i].syntax_table);
3310 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3311 }
3312 searchbuf_head = &searchbufs[0];
3313
3314 DEFSYM (Qsearch_failed, "search-failed");
3315 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3316
3317 Fput (Qsearch_failed, Qerror_conditions,
3318 listn (CONSTYPE_PURE, 2, Qsearch_failed, Qerror));
3319 Fput (Qsearch_failed, Qerror_message,
3320 build_pure_c_string ("Search failed"));
3321
3322 Fput (Qinvalid_regexp, Qerror_conditions,
3323 listn (CONSTYPE_PURE, 2, Qinvalid_regexp, Qerror));
3324 Fput (Qinvalid_regexp, Qerror_message,
3325 build_pure_c_string ("Invalid regexp"));
3326
3327 last_thing_searched = Qnil;
3328 staticpro (&last_thing_searched);
3329
3330 saved_last_thing_searched = Qnil;
3331 staticpro (&saved_last_thing_searched);
3332
3333 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3334 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3335 Some commands use this for user-specified regexps.
3336 Spaces that occur inside character classes or repetition operators
3337 or other such regexp constructs are not replaced with this.
3338 A value of nil (which is the normal value) means treat spaces literally. */);
3339 Vsearch_spaces_regexp = Qnil;
3340
3341 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3342 doc: /* Internal use only.
3343 If non-nil, the primitive searching and matching functions
3344 such as `looking-at', `string-match', `re-search-forward', etc.,
3345 do not set the match data. The proper way to use this variable
3346 is to bind it with `let' around a small expression. */);
3347 Vinhibit_changing_match_data = Qnil;
3348
3349 defsubr (&Slooking_at);
3350 defsubr (&Sposix_looking_at);
3351 defsubr (&Sstring_match);
3352 defsubr (&Sposix_string_match);
3353 defsubr (&Ssearch_forward);
3354 defsubr (&Ssearch_backward);
3355 defsubr (&Sre_search_forward);
3356 defsubr (&Sre_search_backward);
3357 defsubr (&Sposix_search_forward);
3358 defsubr (&Sposix_search_backward);
3359 defsubr (&Sreplace_match);
3360 defsubr (&Smatch_beginning);
3361 defsubr (&Smatch_end);
3362 defsubr (&Smatch_data);
3363 defsubr (&Sset_match_data);
3364 defsubr (&Sregexp_quote);
3365 defsubr (&Snewline_cache_check);
3366 }