]> code.delx.au - gnu-emacs/blob - src/editfns.c
2ac0537eddbdd1f9268d2ff2bc291d858e0ccfc7
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1989, 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or (at
10 your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <errno.h>
48 #include <float.h>
49 #include <limits.h>
50
51 #include <intprops.h>
52 #include <strftime.h>
53 #include <verify.h>
54
55 #include "composite.h"
56 #include "intervals.h"
57 #include "character.h"
58 #include "buffer.h"
59 #include "coding.h"
60 #include "window.h"
61 #include "blockinput.h"
62
63 #define TM_YEAR_BASE 1900
64
65 #ifdef WINDOWSNT
66 extern Lisp_Object w32_get_internal_run_time (void);
67 #endif
68
69 static struct lisp_time lisp_time_struct (Lisp_Object, int *);
70 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
71 Lisp_Object, struct tm *);
72 static long int tm_gmtoff (struct tm *);
73 static int tm_diff (struct tm *, struct tm *);
74 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
75 static Lisp_Object styled_format (ptrdiff_t, Lisp_Object *, bool);
76
77 #ifndef HAVE_TM_GMTOFF
78 # define HAVE_TM_GMTOFF false
79 #endif
80
81 enum { tzeqlen = sizeof "TZ=" - 1 };
82
83 /* Time zones equivalent to current local time, to wall clock time,
84 and to UTC, respectively. */
85 static timezone_t local_tz;
86 static timezone_t wall_clock_tz;
87 static timezone_t const utc_tz = 0;
88
89 /* A valid but unlikely setting for the TZ environment variable.
90 It is OK (though a bit slower) if the user chooses this value. */
91 static char dump_tz_string[] = "TZ=UtC0";
92
93 /* The cached value of Vsystem_name. This is used only to compare it
94 to Vsystem_name, so it need not be visible to the GC. */
95 static Lisp_Object cached_system_name;
96
97 static void
98 init_and_cache_system_name (void)
99 {
100 init_system_name ();
101 cached_system_name = Vsystem_name;
102 }
103
104 static struct tm *
105 emacs_localtime_rz (timezone_t tz, time_t const *t, struct tm *tm)
106 {
107 tm = localtime_rz (tz, t, tm);
108 if (!tm && errno == ENOMEM)
109 memory_full (SIZE_MAX);
110 return tm;
111 }
112
113 static time_t
114 emacs_mktime_z (timezone_t tz, struct tm *tm)
115 {
116 errno = 0;
117 time_t t = mktime_z (tz, tm);
118 if (t == (time_t) -1 && errno == ENOMEM)
119 memory_full (SIZE_MAX);
120 return t;
121 }
122
123 /* Allocate a timezone, signaling on failure. */
124 static timezone_t
125 xtzalloc (char const *name)
126 {
127 timezone_t tz = tzalloc (name);
128 if (!tz)
129 memory_full (SIZE_MAX);
130 return tz;
131 }
132
133 /* Free a timezone, except do not free the time zone for local time.
134 Freeing utc_tz is also a no-op. */
135 static void
136 xtzfree (timezone_t tz)
137 {
138 if (tz != local_tz)
139 tzfree (tz);
140 }
141
142 /* Convert the Lisp time zone rule ZONE to a timezone_t object.
143 The returned value either is 0, or is LOCAL_TZ, or is newly allocated.
144 If SETTZ, set Emacs local time to the time zone rule; otherwise,
145 the caller should eventually pass the returned value to xtzfree. */
146 static timezone_t
147 tzlookup (Lisp_Object zone, bool settz)
148 {
149 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
150 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
151 char const *zone_string;
152 timezone_t new_tz;
153
154 if (NILP (zone))
155 return local_tz;
156 else if (EQ (zone, Qt))
157 {
158 zone_string = "UTC0";
159 new_tz = utc_tz;
160 }
161 else
162 {
163 if (EQ (zone, Qwall))
164 zone_string = 0;
165 else if (STRINGP (zone))
166 zone_string = SSDATA (zone);
167 else if (INTEGERP (zone))
168 {
169 EMACS_INT abszone = eabs (XINT (zone)), hour = abszone / (60 * 60);
170 int min = (abszone / 60) % 60, sec = abszone % 60;
171 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0], hour, min, sec);
172 zone_string = tzbuf;
173 }
174 else
175 xsignal2 (Qerror, build_string ("Invalid time zone specification"),
176 zone);
177 new_tz = xtzalloc (zone_string);
178 }
179
180 if (settz)
181 {
182 block_input ();
183 emacs_setenv_TZ (zone_string);
184 timezone_t old_tz = local_tz;
185 local_tz = new_tz;
186 tzfree (old_tz);
187 unblock_input ();
188 }
189
190 return new_tz;
191 }
192
193 void
194 init_editfns (bool dumping)
195 {
196 const char *user_name;
197 register char *p;
198 struct passwd *pw; /* password entry for the current user */
199 Lisp_Object tem;
200
201 /* Set up system_name even when dumping. */
202 init_and_cache_system_name ();
203
204 #ifndef CANNOT_DUMP
205 /* When just dumping out, set the time zone to a known unlikely value
206 and skip the rest of this function. */
207 if (dumping)
208 {
209 # ifdef HAVE_TZSET
210 xputenv (dump_tz_string);
211 tzset ();
212 # endif
213 return;
214 }
215 #endif
216
217 char *tz = getenv ("TZ");
218
219 #if !defined CANNOT_DUMP && defined HAVE_TZSET
220 /* If the execution TZ happens to be the same as the dump TZ,
221 change it to some other value and then change it back,
222 to force the underlying implementation to reload the TZ info.
223 This is needed on implementations that load TZ info from files,
224 since the TZ file contents may differ between dump and execution. */
225 if (tz && strcmp (tz, &dump_tz_string[tzeqlen]) == 0)
226 {
227 ++*tz;
228 tzset ();
229 --*tz;
230 }
231 #endif
232
233 /* Set the time zone rule now, so that the call to putenv is done
234 before multiple threads are active. */
235 wall_clock_tz = xtzalloc (0);
236 tzlookup (tz ? build_string (tz) : Qwall, true);
237
238 pw = getpwuid (getuid ());
239 #ifdef MSDOS
240 /* We let the real user name default to "root" because that's quite
241 accurate on MS-DOS and because it lets Emacs find the init file.
242 (The DVX libraries override the Djgpp libraries here.) */
243 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
244 #else
245 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
246 #endif
247
248 /* Get the effective user name, by consulting environment variables,
249 or the effective uid if those are unset. */
250 user_name = getenv ("LOGNAME");
251 if (!user_name)
252 #ifdef WINDOWSNT
253 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
254 #else /* WINDOWSNT */
255 user_name = getenv ("USER");
256 #endif /* WINDOWSNT */
257 if (!user_name)
258 {
259 pw = getpwuid (geteuid ());
260 user_name = pw ? pw->pw_name : "unknown";
261 }
262 Vuser_login_name = build_string (user_name);
263
264 /* If the user name claimed in the environment vars differs from
265 the real uid, use the claimed name to find the full name. */
266 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
267 if (! NILP (tem))
268 tem = Vuser_login_name;
269 else
270 {
271 uid_t euid = geteuid ();
272 tem = make_fixnum_or_float (euid);
273 }
274 Vuser_full_name = Fuser_full_name (tem);
275
276 p = getenv ("NAME");
277 if (p)
278 Vuser_full_name = build_string (p);
279 else if (NILP (Vuser_full_name))
280 Vuser_full_name = build_string ("unknown");
281
282 #ifdef HAVE_SYS_UTSNAME_H
283 {
284 struct utsname uts;
285 uname (&uts);
286 Voperating_system_release = build_string (uts.release);
287 }
288 #else
289 Voperating_system_release = Qnil;
290 #endif
291 }
292 \f
293 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
294 doc: /* Convert arg CHAR to a string containing that character.
295 usage: (char-to-string CHAR) */)
296 (Lisp_Object character)
297 {
298 int c, len;
299 unsigned char str[MAX_MULTIBYTE_LENGTH];
300
301 CHECK_CHARACTER (character);
302 c = XFASTINT (character);
303
304 len = CHAR_STRING (c, str);
305 return make_string_from_bytes ((char *) str, 1, len);
306 }
307
308 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
309 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
310 (Lisp_Object byte)
311 {
312 unsigned char b;
313 CHECK_NUMBER (byte);
314 if (XINT (byte) < 0 || XINT (byte) > 255)
315 error ("Invalid byte");
316 b = XINT (byte);
317 return make_string_from_bytes ((char *) &b, 1, 1);
318 }
319
320 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
321 doc: /* Return the first character in STRING. */)
322 (register Lisp_Object string)
323 {
324 register Lisp_Object val;
325 CHECK_STRING (string);
326 if (SCHARS (string))
327 {
328 if (STRING_MULTIBYTE (string))
329 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
330 else
331 XSETFASTINT (val, SREF (string, 0));
332 }
333 else
334 XSETFASTINT (val, 0);
335 return val;
336 }
337
338 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
339 doc: /* Return value of point, as an integer.
340 Beginning of buffer is position (point-min). */)
341 (void)
342 {
343 Lisp_Object temp;
344 XSETFASTINT (temp, PT);
345 return temp;
346 }
347
348 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
349 doc: /* Return value of point, as a marker object. */)
350 (void)
351 {
352 return build_marker (current_buffer, PT, PT_BYTE);
353 }
354
355 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
356 doc: /* Set point to POSITION, a number or marker.
357 Beginning of buffer is position (point-min), end is (point-max).
358
359 The return value is POSITION. */)
360 (register Lisp_Object position)
361 {
362 if (MARKERP (position))
363 set_point_from_marker (position);
364 else if (INTEGERP (position))
365 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
366 else
367 wrong_type_argument (Qinteger_or_marker_p, position);
368 return position;
369 }
370
371
372 /* Return the start or end position of the region.
373 BEGINNINGP means return the start.
374 If there is no region active, signal an error. */
375
376 static Lisp_Object
377 region_limit (bool beginningp)
378 {
379 Lisp_Object m;
380
381 if (!NILP (Vtransient_mark_mode)
382 && NILP (Vmark_even_if_inactive)
383 && NILP (BVAR (current_buffer, mark_active)))
384 xsignal0 (Qmark_inactive);
385
386 m = Fmarker_position (BVAR (current_buffer, mark));
387 if (NILP (m))
388 error ("The mark is not set now, so there is no region");
389
390 /* Clip to the current narrowing (bug#11770). */
391 return make_number ((PT < XFASTINT (m)) == beginningp
392 ? PT
393 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
394 }
395
396 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
397 doc: /* Return the integer value of point or mark, whichever is smaller. */)
398 (void)
399 {
400 return region_limit (1);
401 }
402
403 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
404 doc: /* Return the integer value of point or mark, whichever is larger. */)
405 (void)
406 {
407 return region_limit (0);
408 }
409
410 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
411 doc: /* Return this buffer's mark, as a marker object.
412 Watch out! Moving this marker changes the mark position.
413 If you set the marker not to point anywhere, the buffer will have no mark. */)
414 (void)
415 {
416 return BVAR (current_buffer, mark);
417 }
418
419 \f
420 /* Find all the overlays in the current buffer that touch position POS.
421 Return the number found, and store them in a vector in VEC
422 of length LEN. */
423
424 static ptrdiff_t
425 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
426 {
427 Lisp_Object overlay, start, end;
428 struct Lisp_Overlay *tail;
429 ptrdiff_t startpos, endpos;
430 ptrdiff_t idx = 0;
431
432 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
433 {
434 XSETMISC (overlay, tail);
435
436 end = OVERLAY_END (overlay);
437 endpos = OVERLAY_POSITION (end);
438 if (endpos < pos)
439 break;
440 start = OVERLAY_START (overlay);
441 startpos = OVERLAY_POSITION (start);
442 if (startpos <= pos)
443 {
444 if (idx < len)
445 vec[idx] = overlay;
446 /* Keep counting overlays even if we can't return them all. */
447 idx++;
448 }
449 }
450
451 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
452 {
453 XSETMISC (overlay, tail);
454
455 start = OVERLAY_START (overlay);
456 startpos = OVERLAY_POSITION (start);
457 if (pos < startpos)
458 break;
459 end = OVERLAY_END (overlay);
460 endpos = OVERLAY_POSITION (end);
461 if (pos <= endpos)
462 {
463 if (idx < len)
464 vec[idx] = overlay;
465 idx++;
466 }
467 }
468
469 return idx;
470 }
471
472 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
473 doc: /* Return the value of POSITION's property PROP, in OBJECT.
474 Almost identical to `get-char-property' except for the following difference:
475 Whereas `get-char-property' returns the property of the char at (i.e. right
476 after) POSITION, this pays attention to properties's stickiness and overlays's
477 advancement settings, in order to find the property of POSITION itself,
478 i.e. the property that a char would inherit if it were inserted
479 at POSITION. */)
480 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
481 {
482 CHECK_NUMBER_COERCE_MARKER (position);
483
484 if (NILP (object))
485 XSETBUFFER (object, current_buffer);
486 else if (WINDOWP (object))
487 object = XWINDOW (object)->contents;
488
489 if (!BUFFERP (object))
490 /* pos-property only makes sense in buffers right now, since strings
491 have no overlays and no notion of insertion for which stickiness
492 could be obeyed. */
493 return Fget_text_property (position, prop, object);
494 else
495 {
496 EMACS_INT posn = XINT (position);
497 ptrdiff_t noverlays;
498 Lisp_Object *overlay_vec, tem;
499 struct buffer *obuf = current_buffer;
500 USE_SAFE_ALLOCA;
501
502 set_buffer_temp (XBUFFER (object));
503
504 /* First try with room for 40 overlays. */
505 Lisp_Object overlay_vecbuf[40];
506 noverlays = ARRAYELTS (overlay_vecbuf);
507 overlay_vec = overlay_vecbuf;
508 noverlays = overlays_around (posn, overlay_vec, noverlays);
509
510 /* If there are more than 40,
511 make enough space for all, and try again. */
512 if (ARRAYELTS (overlay_vecbuf) < noverlays)
513 {
514 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
515 noverlays = overlays_around (posn, overlay_vec, noverlays);
516 }
517 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
518
519 set_buffer_temp (obuf);
520
521 /* Now check the overlays in order of decreasing priority. */
522 while (--noverlays >= 0)
523 {
524 Lisp_Object ol = overlay_vec[noverlays];
525 tem = Foverlay_get (ol, prop);
526 if (!NILP (tem))
527 {
528 /* Check the overlay is indeed active at point. */
529 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
530 if ((OVERLAY_POSITION (start) == posn
531 && XMARKER (start)->insertion_type == 1)
532 || (OVERLAY_POSITION (finish) == posn
533 && XMARKER (finish)->insertion_type == 0))
534 ; /* The overlay will not cover a char inserted at point. */
535 else
536 {
537 SAFE_FREE ();
538 return tem;
539 }
540 }
541 }
542 SAFE_FREE ();
543
544 { /* Now check the text properties. */
545 int stickiness = text_property_stickiness (prop, position, object);
546 if (stickiness > 0)
547 return Fget_text_property (position, prop, object);
548 else if (stickiness < 0
549 && XINT (position) > BUF_BEGV (XBUFFER (object)))
550 return Fget_text_property (make_number (XINT (position) - 1),
551 prop, object);
552 else
553 return Qnil;
554 }
555 }
556 }
557
558 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
559 the value of point is used instead. If BEG or END is null,
560 means don't store the beginning or end of the field.
561
562 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
563 results; they do not effect boundary behavior.
564
565 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
566 position of a field, then the beginning of the previous field is
567 returned instead of the beginning of POS's field (since the end of a
568 field is actually also the beginning of the next input field, this
569 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
570 non-nil case, if two fields are separated by a field with the special
571 value `boundary', and POS lies within it, then the two separated
572 fields are considered to be adjacent, and POS between them, when
573 finding the beginning and ending of the "merged" field.
574
575 Either BEG or END may be 0, in which case the corresponding value
576 is not stored. */
577
578 static void
579 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
580 Lisp_Object beg_limit,
581 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
582 {
583 /* Fields right before and after the point. */
584 Lisp_Object before_field, after_field;
585 /* True if POS counts as the start of a field. */
586 bool at_field_start = 0;
587 /* True if POS counts as the end of a field. */
588 bool at_field_end = 0;
589
590 if (NILP (pos))
591 XSETFASTINT (pos, PT);
592 else
593 CHECK_NUMBER_COERCE_MARKER (pos);
594
595 after_field
596 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
597 before_field
598 = (XFASTINT (pos) > BEGV
599 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
600 Qfield, Qnil, NULL)
601 /* Using nil here would be a more obvious choice, but it would
602 fail when the buffer starts with a non-sticky field. */
603 : after_field);
604
605 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
606 and POS is at beginning of a field, which can also be interpreted
607 as the end of the previous field. Note that the case where if
608 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
609 more natural one; then we avoid treating the beginning of a field
610 specially. */
611 if (NILP (merge_at_boundary))
612 {
613 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
614 if (!EQ (field, after_field))
615 at_field_end = 1;
616 if (!EQ (field, before_field))
617 at_field_start = 1;
618 if (NILP (field) && at_field_start && at_field_end)
619 /* If an inserted char would have a nil field while the surrounding
620 text is non-nil, we're probably not looking at a
621 zero-length field, but instead at a non-nil field that's
622 not intended for editing (such as comint's prompts). */
623 at_field_end = at_field_start = 0;
624 }
625
626 /* Note about special `boundary' fields:
627
628 Consider the case where the point (`.') is between the fields `x' and `y':
629
630 xxxx.yyyy
631
632 In this situation, if merge_at_boundary is non-nil, consider the
633 `x' and `y' fields as forming one big merged field, and so the end
634 of the field is the end of `y'.
635
636 However, if `x' and `y' are separated by a special `boundary' field
637 (a field with a `field' char-property of 'boundary), then ignore
638 this special field when merging adjacent fields. Here's the same
639 situation, but with a `boundary' field between the `x' and `y' fields:
640
641 xxx.BBBByyyy
642
643 Here, if point is at the end of `x', the beginning of `y', or
644 anywhere in-between (within the `boundary' field), merge all
645 three fields and consider the beginning as being the beginning of
646 the `x' field, and the end as being the end of the `y' field. */
647
648 if (beg)
649 {
650 if (at_field_start)
651 /* POS is at the edge of a field, and we should consider it as
652 the beginning of the following field. */
653 *beg = XFASTINT (pos);
654 else
655 /* Find the previous field boundary. */
656 {
657 Lisp_Object p = pos;
658 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
659 /* Skip a `boundary' field. */
660 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
661 beg_limit);
662
663 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
664 beg_limit);
665 *beg = NILP (p) ? BEGV : XFASTINT (p);
666 }
667 }
668
669 if (end)
670 {
671 if (at_field_end)
672 /* POS is at the edge of a field, and we should consider it as
673 the end of the previous field. */
674 *end = XFASTINT (pos);
675 else
676 /* Find the next field boundary. */
677 {
678 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
679 /* Skip a `boundary' field. */
680 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
681 end_limit);
682
683 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
684 end_limit);
685 *end = NILP (pos) ? ZV : XFASTINT (pos);
686 }
687 }
688 }
689
690 \f
691 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
692 doc: /* Delete the field surrounding POS.
693 A field is a region of text with the same `field' property.
694 If POS is nil, the value of point is used for POS. */)
695 (Lisp_Object pos)
696 {
697 ptrdiff_t beg, end;
698 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
699 if (beg != end)
700 del_range (beg, end);
701 return Qnil;
702 }
703
704 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
705 doc: /* Return the contents of the field surrounding POS as a string.
706 A field is a region of text with the same `field' property.
707 If POS is nil, the value of point is used for POS. */)
708 (Lisp_Object pos)
709 {
710 ptrdiff_t beg, end;
711 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
712 return make_buffer_string (beg, end, 1);
713 }
714
715 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
716 doc: /* Return the contents of the field around POS, without text properties.
717 A field is a region of text with the same `field' property.
718 If POS is nil, the value of point is used for POS. */)
719 (Lisp_Object pos)
720 {
721 ptrdiff_t beg, end;
722 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
723 return make_buffer_string (beg, end, 0);
724 }
725
726 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
727 doc: /* Return the beginning of the field surrounding POS.
728 A field is a region of text with the same `field' property.
729 If POS is nil, the value of point is used for POS.
730 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
731 field, then the beginning of the *previous* field is returned.
732 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
733 is before LIMIT, then LIMIT will be returned instead. */)
734 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
735 {
736 ptrdiff_t beg;
737 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
738 return make_number (beg);
739 }
740
741 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
742 doc: /* Return the end of the field surrounding POS.
743 A field is a region of text with the same `field' property.
744 If POS is nil, the value of point is used for POS.
745 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
746 then the end of the *following* field is returned.
747 If LIMIT is non-nil, it is a buffer position; if the end of the field
748 is after LIMIT, then LIMIT will be returned instead. */)
749 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
750 {
751 ptrdiff_t end;
752 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
753 return make_number (end);
754 }
755
756 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
757 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
758 A field is a region of text with the same `field' property.
759
760 If NEW-POS is nil, then use the current point instead, and move point
761 to the resulting constrained position, in addition to returning that
762 position.
763
764 If OLD-POS is at the boundary of two fields, then the allowable
765 positions for NEW-POS depends on the value of the optional argument
766 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
767 constrained to the field that has the same `field' char-property
768 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
769 is non-nil, NEW-POS is constrained to the union of the two adjacent
770 fields. Additionally, if two fields are separated by another field with
771 the special value `boundary', then any point within this special field is
772 also considered to be `on the boundary'.
773
774 If the optional argument ONLY-IN-LINE is non-nil and constraining
775 NEW-POS would move it to a different line, NEW-POS is returned
776 unconstrained. This is useful for commands that move by line, like
777 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
778 only in the case where they can still move to the right line.
779
780 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
781 a non-nil property of that name, then any field boundaries are ignored.
782
783 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
784 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
785 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
786 {
787 /* If non-zero, then the original point, before re-positioning. */
788 ptrdiff_t orig_point = 0;
789 bool fwd;
790 Lisp_Object prev_old, prev_new;
791
792 if (NILP (new_pos))
793 /* Use the current point, and afterwards, set it. */
794 {
795 orig_point = PT;
796 XSETFASTINT (new_pos, PT);
797 }
798
799 CHECK_NUMBER_COERCE_MARKER (new_pos);
800 CHECK_NUMBER_COERCE_MARKER (old_pos);
801
802 fwd = (XINT (new_pos) > XINT (old_pos));
803
804 prev_old = make_number (XINT (old_pos) - 1);
805 prev_new = make_number (XINT (new_pos) - 1);
806
807 if (NILP (Vinhibit_field_text_motion)
808 && !EQ (new_pos, old_pos)
809 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
810 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
811 /* To recognize field boundaries, we must also look at the
812 previous positions; we could use `Fget_pos_property'
813 instead, but in itself that would fail inside non-sticky
814 fields (like comint prompts). */
815 || (XFASTINT (new_pos) > BEGV
816 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
817 || (XFASTINT (old_pos) > BEGV
818 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
819 && (NILP (inhibit_capture_property)
820 /* Field boundaries are again a problem; but now we must
821 decide the case exactly, so we need to call
822 `get_pos_property' as well. */
823 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
824 && (XFASTINT (old_pos) <= BEGV
825 || NILP (Fget_char_property
826 (old_pos, inhibit_capture_property, Qnil))
827 || NILP (Fget_char_property
828 (prev_old, inhibit_capture_property, Qnil))))))
829 /* It is possible that NEW_POS is not within the same field as
830 OLD_POS; try to move NEW_POS so that it is. */
831 {
832 ptrdiff_t shortage;
833 Lisp_Object field_bound;
834
835 if (fwd)
836 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
837 else
838 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
839
840 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
841 other side of NEW_POS, which would mean that NEW_POS is
842 already acceptable, and it's not necessary to constrain it
843 to FIELD_BOUND. */
844 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
845 /* NEW_POS should be constrained, but only if either
846 ONLY_IN_LINE is nil (in which case any constraint is OK),
847 or NEW_POS and FIELD_BOUND are on the same line (in which
848 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
849 && (NILP (only_in_line)
850 /* This is the ONLY_IN_LINE case, check that NEW_POS and
851 FIELD_BOUND are on the same line by seeing whether
852 there's an intervening newline or not. */
853 || (find_newline (XFASTINT (new_pos), -1,
854 XFASTINT (field_bound), -1,
855 fwd ? -1 : 1, &shortage, NULL, 1),
856 shortage != 0)))
857 /* Constrain NEW_POS to FIELD_BOUND. */
858 new_pos = field_bound;
859
860 if (orig_point && XFASTINT (new_pos) != orig_point)
861 /* The NEW_POS argument was originally nil, so automatically set PT. */
862 SET_PT (XFASTINT (new_pos));
863 }
864
865 return new_pos;
866 }
867
868 \f
869 DEFUN ("line-beginning-position",
870 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
871 doc: /* Return the character position of the first character on the current line.
872 With optional argument N, scan forward N - 1 lines first.
873 If the scan reaches the end of the buffer, return that position.
874
875 This function ignores text display directionality; it returns the
876 position of the first character in logical order, i.e. the smallest
877 character position on the line.
878
879 This function constrains the returned position to the current field
880 unless that position would be on a different line than the original,
881 unconstrained result. If N is nil or 1, and a front-sticky field
882 starts at point, the scan stops as soon as it starts. To ignore field
883 boundaries, bind `inhibit-field-text-motion' to t.
884
885 This function does not move point. */)
886 (Lisp_Object n)
887 {
888 ptrdiff_t charpos, bytepos;
889
890 if (NILP (n))
891 XSETFASTINT (n, 1);
892 else
893 CHECK_NUMBER (n);
894
895 scan_newline_from_point (XINT (n) - 1, &charpos, &bytepos);
896
897 /* Return END constrained to the current input field. */
898 return Fconstrain_to_field (make_number (charpos), make_number (PT),
899 XINT (n) != 1 ? Qt : Qnil,
900 Qt, Qnil);
901 }
902
903 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
904 doc: /* Return the character position of the last character on the current line.
905 With argument N not nil or 1, move forward N - 1 lines first.
906 If scan reaches end of buffer, return that position.
907
908 This function ignores text display directionality; it returns the
909 position of the last character in logical order, i.e. the largest
910 character position on the line.
911
912 This function constrains the returned position to the current field
913 unless that would be on a different line than the original,
914 unconstrained result. If N is nil or 1, and a rear-sticky field ends
915 at point, the scan stops as soon as it starts. To ignore field
916 boundaries bind `inhibit-field-text-motion' to t.
917
918 This function does not move point. */)
919 (Lisp_Object n)
920 {
921 ptrdiff_t clipped_n;
922 ptrdiff_t end_pos;
923 ptrdiff_t orig = PT;
924
925 if (NILP (n))
926 XSETFASTINT (n, 1);
927 else
928 CHECK_NUMBER (n);
929
930 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
931 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
932 NULL);
933
934 /* Return END_POS constrained to the current input field. */
935 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
936 Qnil, Qt, Qnil);
937 }
938
939 /* Save current buffer state for `save-excursion' special form.
940 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
941 offload some work from GC. */
942
943 Lisp_Object
944 save_excursion_save (void)
945 {
946 return make_save_obj_obj_obj_obj
947 (Fpoint_marker (),
948 Qnil,
949 /* Selected window if current buffer is shown in it, nil otherwise. */
950 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
951 ? selected_window : Qnil),
952 Qnil);
953 }
954
955 /* Restore saved buffer before leaving `save-excursion' special form. */
956
957 void
958 save_excursion_restore (Lisp_Object info)
959 {
960 Lisp_Object tem, tem1;
961
962 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
963 /* If we're unwinding to top level, saved buffer may be deleted. This
964 means that all of its markers are unchained and so tem is nil. */
965 if (NILP (tem))
966 goto out;
967
968 Fset_buffer (tem);
969
970 /* Point marker. */
971 tem = XSAVE_OBJECT (info, 0);
972 Fgoto_char (tem);
973 unchain_marker (XMARKER (tem));
974
975 /* If buffer was visible in a window, and a different window was
976 selected, and the old selected window is still showing this
977 buffer, restore point in that window. */
978 tem = XSAVE_OBJECT (info, 2);
979 if (WINDOWP (tem)
980 && !EQ (tem, selected_window)
981 && (tem1 = XWINDOW (tem)->contents,
982 (/* Window is live... */
983 BUFFERP (tem1)
984 /* ...and it shows the current buffer. */
985 && XBUFFER (tem1) == current_buffer)))
986 Fset_window_point (tem, make_number (PT));
987
988 out:
989
990 free_misc (info);
991 }
992
993 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
994 doc: /* Save point, and current buffer; execute BODY; restore those things.
995 Executes BODY just like `progn'.
996 The values of point and the current buffer are restored
997 even in case of abnormal exit (throw or error).
998
999 If you only want to save the current buffer but not point,
1000 then just use `save-current-buffer', or even `with-current-buffer'.
1001
1002 Before Emacs 25.1, `save-excursion' used to save the mark state.
1003 To save the marker state as well as the point and buffer, use
1004 `save-mark-and-excursion'.
1005
1006 usage: (save-excursion &rest BODY) */)
1007 (Lisp_Object args)
1008 {
1009 register Lisp_Object val;
1010 ptrdiff_t count = SPECPDL_INDEX ();
1011
1012 record_unwind_protect (save_excursion_restore, save_excursion_save ());
1013
1014 val = Fprogn (args);
1015 return unbind_to (count, val);
1016 }
1017
1018 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1019 doc: /* Record which buffer is current; execute BODY; make that buffer current.
1020 BODY is executed just like `progn'.
1021 usage: (save-current-buffer &rest BODY) */)
1022 (Lisp_Object args)
1023 {
1024 ptrdiff_t count = SPECPDL_INDEX ();
1025
1026 record_unwind_current_buffer ();
1027 return unbind_to (count, Fprogn (args));
1028 }
1029 \f
1030 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
1031 doc: /* Return the number of characters in the current buffer.
1032 If BUFFER, return the number of characters in that buffer instead. */)
1033 (Lisp_Object buffer)
1034 {
1035 if (NILP (buffer))
1036 return make_number (Z - BEG);
1037 else
1038 {
1039 CHECK_BUFFER (buffer);
1040 return make_number (BUF_Z (XBUFFER (buffer))
1041 - BUF_BEG (XBUFFER (buffer)));
1042 }
1043 }
1044
1045 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1046 doc: /* Return the minimum permissible value of point in the current buffer.
1047 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1048 (void)
1049 {
1050 Lisp_Object temp;
1051 XSETFASTINT (temp, BEGV);
1052 return temp;
1053 }
1054
1055 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1056 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1057 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1058 (void)
1059 {
1060 return build_marker (current_buffer, BEGV, BEGV_BYTE);
1061 }
1062
1063 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1064 doc: /* Return the maximum permissible value of point in the current buffer.
1065 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1066 is in effect, in which case it is less. */)
1067 (void)
1068 {
1069 Lisp_Object temp;
1070 XSETFASTINT (temp, ZV);
1071 return temp;
1072 }
1073
1074 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1075 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1076 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1077 is in effect, in which case it is less. */)
1078 (void)
1079 {
1080 return build_marker (current_buffer, ZV, ZV_BYTE);
1081 }
1082
1083 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1084 doc: /* Return the position of the gap, in the current buffer.
1085 See also `gap-size'. */)
1086 (void)
1087 {
1088 Lisp_Object temp;
1089 XSETFASTINT (temp, GPT);
1090 return temp;
1091 }
1092
1093 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1094 doc: /* Return the size of the current buffer's gap.
1095 See also `gap-position'. */)
1096 (void)
1097 {
1098 Lisp_Object temp;
1099 XSETFASTINT (temp, GAP_SIZE);
1100 return temp;
1101 }
1102
1103 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1104 doc: /* Return the byte position for character position POSITION.
1105 If POSITION is out of range, the value is nil. */)
1106 (Lisp_Object position)
1107 {
1108 CHECK_NUMBER_COERCE_MARKER (position);
1109 if (XINT (position) < BEG || XINT (position) > Z)
1110 return Qnil;
1111 return make_number (CHAR_TO_BYTE (XINT (position)));
1112 }
1113
1114 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1115 doc: /* Return the character position for byte position BYTEPOS.
1116 If BYTEPOS is out of range, the value is nil. */)
1117 (Lisp_Object bytepos)
1118 {
1119 ptrdiff_t pos_byte;
1120
1121 CHECK_NUMBER (bytepos);
1122 pos_byte = XINT (bytepos);
1123 if (pos_byte < BEG_BYTE || pos_byte > Z_BYTE)
1124 return Qnil;
1125 if (Z != Z_BYTE)
1126 /* There are multibyte characters in the buffer.
1127 The argument of BYTE_TO_CHAR must be a byte position at
1128 a character boundary, so search for the start of the current
1129 character. */
1130 while (!CHAR_HEAD_P (FETCH_BYTE (pos_byte)))
1131 pos_byte--;
1132 return make_number (BYTE_TO_CHAR (pos_byte));
1133 }
1134 \f
1135 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1136 doc: /* Return the character following point, as a number.
1137 At the end of the buffer or accessible region, return 0. */)
1138 (void)
1139 {
1140 Lisp_Object temp;
1141 if (PT >= ZV)
1142 XSETFASTINT (temp, 0);
1143 else
1144 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1145 return temp;
1146 }
1147
1148 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1149 doc: /* Return the character preceding point, as a number.
1150 At the beginning of the buffer or accessible region, return 0. */)
1151 (void)
1152 {
1153 Lisp_Object temp;
1154 if (PT <= BEGV)
1155 XSETFASTINT (temp, 0);
1156 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1157 {
1158 ptrdiff_t pos = PT_BYTE;
1159 DEC_POS (pos);
1160 XSETFASTINT (temp, FETCH_CHAR (pos));
1161 }
1162 else
1163 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1164 return temp;
1165 }
1166
1167 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1168 doc: /* Return t if point is at the beginning of the buffer.
1169 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1170 (void)
1171 {
1172 if (PT == BEGV)
1173 return Qt;
1174 return Qnil;
1175 }
1176
1177 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1178 doc: /* Return t if point is at the end of the buffer.
1179 If the buffer is narrowed, this means the end of the narrowed part. */)
1180 (void)
1181 {
1182 if (PT == ZV)
1183 return Qt;
1184 return Qnil;
1185 }
1186
1187 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1188 doc: /* Return t if point is at the beginning of a line. */)
1189 (void)
1190 {
1191 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1192 return Qt;
1193 return Qnil;
1194 }
1195
1196 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1197 doc: /* Return t if point is at the end of a line.
1198 `End of a line' includes point being at the end of the buffer. */)
1199 (void)
1200 {
1201 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1202 return Qt;
1203 return Qnil;
1204 }
1205
1206 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1207 doc: /* Return character in current buffer at position POS.
1208 POS is an integer or a marker and defaults to point.
1209 If POS is out of range, the value is nil. */)
1210 (Lisp_Object pos)
1211 {
1212 register ptrdiff_t pos_byte;
1213
1214 if (NILP (pos))
1215 {
1216 pos_byte = PT_BYTE;
1217 XSETFASTINT (pos, PT);
1218 }
1219
1220 if (MARKERP (pos))
1221 {
1222 pos_byte = marker_byte_position (pos);
1223 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1224 return Qnil;
1225 }
1226 else
1227 {
1228 CHECK_NUMBER_COERCE_MARKER (pos);
1229 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1230 return Qnil;
1231
1232 pos_byte = CHAR_TO_BYTE (XINT (pos));
1233 }
1234
1235 return make_number (FETCH_CHAR (pos_byte));
1236 }
1237
1238 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1239 doc: /* Return character in current buffer preceding position POS.
1240 POS is an integer or a marker and defaults to point.
1241 If POS is out of range, the value is nil. */)
1242 (Lisp_Object pos)
1243 {
1244 register Lisp_Object val;
1245 register ptrdiff_t pos_byte;
1246
1247 if (NILP (pos))
1248 {
1249 pos_byte = PT_BYTE;
1250 XSETFASTINT (pos, PT);
1251 }
1252
1253 if (MARKERP (pos))
1254 {
1255 pos_byte = marker_byte_position (pos);
1256
1257 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1258 return Qnil;
1259 }
1260 else
1261 {
1262 CHECK_NUMBER_COERCE_MARKER (pos);
1263
1264 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1265 return Qnil;
1266
1267 pos_byte = CHAR_TO_BYTE (XINT (pos));
1268 }
1269
1270 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1271 {
1272 DEC_POS (pos_byte);
1273 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1274 }
1275 else
1276 {
1277 pos_byte--;
1278 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1279 }
1280 return val;
1281 }
1282 \f
1283 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1284 doc: /* Return the name under which the user logged in, as a string.
1285 This is based on the effective uid, not the real uid.
1286 Also, if the environment variables LOGNAME or USER are set,
1287 that determines the value of this function.
1288
1289 If optional argument UID is an integer or a float, return the login name
1290 of the user with that uid, or nil if there is no such user. */)
1291 (Lisp_Object uid)
1292 {
1293 struct passwd *pw;
1294 uid_t id;
1295
1296 /* Set up the user name info if we didn't do it before.
1297 (That can happen if Emacs is dumpable
1298 but you decide to run `temacs -l loadup' and not dump. */
1299 if (NILP (Vuser_login_name))
1300 init_editfns (false);
1301
1302 if (NILP (uid))
1303 return Vuser_login_name;
1304
1305 CONS_TO_INTEGER (uid, uid_t, id);
1306 block_input ();
1307 pw = getpwuid (id);
1308 unblock_input ();
1309 return (pw ? build_string (pw->pw_name) : Qnil);
1310 }
1311
1312 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1313 0, 0, 0,
1314 doc: /* Return the name of the user's real uid, as a string.
1315 This ignores the environment variables LOGNAME and USER, so it differs from
1316 `user-login-name' when running under `su'. */)
1317 (void)
1318 {
1319 /* Set up the user name info if we didn't do it before.
1320 (That can happen if Emacs is dumpable
1321 but you decide to run `temacs -l loadup' and not dump. */
1322 if (NILP (Vuser_login_name))
1323 init_editfns (false);
1324 return Vuser_real_login_name;
1325 }
1326
1327 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1328 doc: /* Return the effective uid of Emacs.
1329 Value is an integer or a float, depending on the value. */)
1330 (void)
1331 {
1332 uid_t euid = geteuid ();
1333 return make_fixnum_or_float (euid);
1334 }
1335
1336 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1337 doc: /* Return the real uid of Emacs.
1338 Value is an integer or a float, depending on the value. */)
1339 (void)
1340 {
1341 uid_t uid = getuid ();
1342 return make_fixnum_or_float (uid);
1343 }
1344
1345 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1346 doc: /* Return the effective gid of Emacs.
1347 Value is an integer or a float, depending on the value. */)
1348 (void)
1349 {
1350 gid_t egid = getegid ();
1351 return make_fixnum_or_float (egid);
1352 }
1353
1354 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1355 doc: /* Return the real gid of Emacs.
1356 Value is an integer or a float, depending on the value. */)
1357 (void)
1358 {
1359 gid_t gid = getgid ();
1360 return make_fixnum_or_float (gid);
1361 }
1362
1363 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1364 doc: /* Return the full name of the user logged in, as a string.
1365 If the full name corresponding to Emacs's userid is not known,
1366 return "unknown".
1367
1368 If optional argument UID is an integer or float, return the full name
1369 of the user with that uid, or nil if there is no such user.
1370 If UID is a string, return the full name of the user with that login
1371 name, or nil if there is no such user. */)
1372 (Lisp_Object uid)
1373 {
1374 struct passwd *pw;
1375 register char *p, *q;
1376 Lisp_Object full;
1377
1378 if (NILP (uid))
1379 return Vuser_full_name;
1380 else if (NUMBERP (uid))
1381 {
1382 uid_t u;
1383 CONS_TO_INTEGER (uid, uid_t, u);
1384 block_input ();
1385 pw = getpwuid (u);
1386 unblock_input ();
1387 }
1388 else if (STRINGP (uid))
1389 {
1390 block_input ();
1391 pw = getpwnam (SSDATA (uid));
1392 unblock_input ();
1393 }
1394 else
1395 error ("Invalid UID specification");
1396
1397 if (!pw)
1398 return Qnil;
1399
1400 p = USER_FULL_NAME;
1401 /* Chop off everything after the first comma. */
1402 q = strchr (p, ',');
1403 full = make_string (p, q ? q - p : strlen (p));
1404
1405 #ifdef AMPERSAND_FULL_NAME
1406 p = SSDATA (full);
1407 q = strchr (p, '&');
1408 /* Substitute the login name for the &, upcasing the first character. */
1409 if (q)
1410 {
1411 Lisp_Object login = Fuser_login_name (make_number (pw->pw_uid));
1412 USE_SAFE_ALLOCA;
1413 char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1);
1414 memcpy (r, p, q - p);
1415 char *s = lispstpcpy (&r[q - p], login);
1416 r[q - p] = upcase ((unsigned char) r[q - p]);
1417 strcpy (s, q + 1);
1418 full = build_string (r);
1419 SAFE_FREE ();
1420 }
1421 #endif /* AMPERSAND_FULL_NAME */
1422
1423 return full;
1424 }
1425
1426 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1427 doc: /* Return the host name of the machine you are running on, as a string. */)
1428 (void)
1429 {
1430 if (EQ (Vsystem_name, cached_system_name))
1431 init_and_cache_system_name ();
1432 return Vsystem_name;
1433 }
1434
1435 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1436 doc: /* Return the process ID of Emacs, as a number. */)
1437 (void)
1438 {
1439 pid_t pid = getpid ();
1440 return make_fixnum_or_float (pid);
1441 }
1442
1443 \f
1444
1445 #ifndef TIME_T_MIN
1446 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1447 #endif
1448 #ifndef TIME_T_MAX
1449 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1450 #endif
1451
1452 /* Report that a time value is out of range for Emacs. */
1453 void
1454 time_overflow (void)
1455 {
1456 error ("Specified time is not representable");
1457 }
1458
1459 static _Noreturn void
1460 invalid_time (void)
1461 {
1462 error ("Invalid time specification");
1463 }
1464
1465 /* Check a return value compatible with that of decode_time_components. */
1466 static void
1467 check_time_validity (int validity)
1468 {
1469 if (validity <= 0)
1470 {
1471 if (validity < 0)
1472 time_overflow ();
1473 else
1474 invalid_time ();
1475 }
1476 }
1477
1478 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1479 static EMACS_INT
1480 hi_time (time_t t)
1481 {
1482 time_t hi = t >> LO_TIME_BITS;
1483
1484 /* Check for overflow, helping the compiler for common cases where
1485 no runtime check is needed, and taking care not to convert
1486 negative numbers to unsigned before comparing them. */
1487 if (! ((! TYPE_SIGNED (time_t)
1488 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> LO_TIME_BITS
1489 || MOST_NEGATIVE_FIXNUM <= hi)
1490 && (TIME_T_MAX >> LO_TIME_BITS <= MOST_POSITIVE_FIXNUM
1491 || hi <= MOST_POSITIVE_FIXNUM)))
1492 time_overflow ();
1493
1494 return hi;
1495 }
1496
1497 /* Return the bottom bits of the time T. */
1498 static int
1499 lo_time (time_t t)
1500 {
1501 return t & ((1 << LO_TIME_BITS) - 1);
1502 }
1503
1504 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1505 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1506 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1507 HIGH has the most significant bits of the seconds, while LOW has the
1508 least significant 16 bits. USEC and PSEC are the microsecond and
1509 picosecond counts. */)
1510 (void)
1511 {
1512 return make_lisp_time (current_timespec ());
1513 }
1514
1515 static struct lisp_time
1516 time_add (struct lisp_time ta, struct lisp_time tb)
1517 {
1518 EMACS_INT hi = ta.hi + tb.hi;
1519 int lo = ta.lo + tb.lo;
1520 int us = ta.us + tb.us;
1521 int ps = ta.ps + tb.ps;
1522 us += (1000000 <= ps);
1523 ps -= (1000000 <= ps) * 1000000;
1524 lo += (1000000 <= us);
1525 us -= (1000000 <= us) * 1000000;
1526 hi += (1 << LO_TIME_BITS <= lo);
1527 lo -= (1 << LO_TIME_BITS <= lo) << LO_TIME_BITS;
1528 return (struct lisp_time) { hi, lo, us, ps };
1529 }
1530
1531 static struct lisp_time
1532 time_subtract (struct lisp_time ta, struct lisp_time tb)
1533 {
1534 EMACS_INT hi = ta.hi - tb.hi;
1535 int lo = ta.lo - tb.lo;
1536 int us = ta.us - tb.us;
1537 int ps = ta.ps - tb.ps;
1538 us -= (ps < 0);
1539 ps += (ps < 0) * 1000000;
1540 lo -= (us < 0);
1541 us += (us < 0) * 1000000;
1542 hi -= (lo < 0);
1543 lo += (lo < 0) << LO_TIME_BITS;
1544 return (struct lisp_time) { hi, lo, us, ps };
1545 }
1546
1547 static Lisp_Object
1548 time_arith (Lisp_Object a, Lisp_Object b,
1549 struct lisp_time (*op) (struct lisp_time, struct lisp_time))
1550 {
1551 int alen, blen;
1552 struct lisp_time ta = lisp_time_struct (a, &alen);
1553 struct lisp_time tb = lisp_time_struct (b, &blen);
1554 struct lisp_time t = op (ta, tb);
1555 if (! (MOST_NEGATIVE_FIXNUM <= t.hi && t.hi <= MOST_POSITIVE_FIXNUM))
1556 time_overflow ();
1557 Lisp_Object val = Qnil;
1558
1559 switch (max (alen, blen))
1560 {
1561 default:
1562 val = Fcons (make_number (t.ps), val);
1563 /* Fall through. */
1564 case 3:
1565 val = Fcons (make_number (t.us), val);
1566 /* Fall through. */
1567 case 2:
1568 val = Fcons (make_number (t.lo), val);
1569 val = Fcons (make_number (t.hi), val);
1570 break;
1571 }
1572
1573 return val;
1574 }
1575
1576 DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0,
1577 doc: /* Return the sum of two time values A and B, as a time value. */)
1578 (Lisp_Object a, Lisp_Object b)
1579 {
1580 return time_arith (a, b, time_add);
1581 }
1582
1583 DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0,
1584 doc: /* Return the difference between two time values A and B, as a time value. */)
1585 (Lisp_Object a, Lisp_Object b)
1586 {
1587 return time_arith (a, b, time_subtract);
1588 }
1589
1590 DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0,
1591 doc: /* Return non-nil if time value T1 is earlier than time value T2. */)
1592 (Lisp_Object t1, Lisp_Object t2)
1593 {
1594 int t1len, t2len;
1595 struct lisp_time a = lisp_time_struct (t1, &t1len);
1596 struct lisp_time b = lisp_time_struct (t2, &t2len);
1597 return ((a.hi != b.hi ? a.hi < b.hi
1598 : a.lo != b.lo ? a.lo < b.lo
1599 : a.us != b.us ? a.us < b.us
1600 : a.ps < b.ps)
1601 ? Qt : Qnil);
1602 }
1603
1604
1605 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1606 0, 0, 0,
1607 doc: /* Return the current run time used by Emacs.
1608 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1609 style as (current-time).
1610
1611 On systems that can't determine the run time, `get-internal-run-time'
1612 does the same thing as `current-time'. */)
1613 (void)
1614 {
1615 #ifdef HAVE_GETRUSAGE
1616 struct rusage usage;
1617 time_t secs;
1618 int usecs;
1619
1620 if (getrusage (RUSAGE_SELF, &usage) < 0)
1621 /* This shouldn't happen. What action is appropriate? */
1622 xsignal0 (Qerror);
1623
1624 /* Sum up user time and system time. */
1625 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1626 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1627 if (usecs >= 1000000)
1628 {
1629 usecs -= 1000000;
1630 secs++;
1631 }
1632 return make_lisp_time (make_timespec (secs, usecs * 1000));
1633 #else /* ! HAVE_GETRUSAGE */
1634 #ifdef WINDOWSNT
1635 return w32_get_internal_run_time ();
1636 #else /* ! WINDOWSNT */
1637 return Fcurrent_time ();
1638 #endif /* WINDOWSNT */
1639 #endif /* HAVE_GETRUSAGE */
1640 }
1641 \f
1642
1643 /* Make a Lisp list that represents the Emacs time T. T may be an
1644 invalid time, with a slightly negative tv_nsec value such as
1645 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1646 correspondingly negative picosecond count. */
1647 Lisp_Object
1648 make_lisp_time (struct timespec t)
1649 {
1650 time_t s = t.tv_sec;
1651 int ns = t.tv_nsec;
1652 return list4i (hi_time (s), lo_time (s), ns / 1000, ns % 1000 * 1000);
1653 }
1654
1655 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1656 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1657 Return 2, 3, or 4 to indicate the effective length of SPECIFIED_TIME
1658 if successful, 0 if unsuccessful. */
1659 static int
1660 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1661 Lisp_Object *plow, Lisp_Object *pusec,
1662 Lisp_Object *ppsec)
1663 {
1664 Lisp_Object high = make_number (0);
1665 Lisp_Object low = specified_time;
1666 Lisp_Object usec = make_number (0);
1667 Lisp_Object psec = make_number (0);
1668 int len = 4;
1669
1670 if (CONSP (specified_time))
1671 {
1672 high = XCAR (specified_time);
1673 low = XCDR (specified_time);
1674 if (CONSP (low))
1675 {
1676 Lisp_Object low_tail = XCDR (low);
1677 low = XCAR (low);
1678 if (CONSP (low_tail))
1679 {
1680 usec = XCAR (low_tail);
1681 low_tail = XCDR (low_tail);
1682 if (CONSP (low_tail))
1683 psec = XCAR (low_tail);
1684 else
1685 len = 3;
1686 }
1687 else if (!NILP (low_tail))
1688 {
1689 usec = low_tail;
1690 len = 3;
1691 }
1692 else
1693 len = 2;
1694 }
1695 else
1696 len = 2;
1697
1698 /* When combining components, require LOW to be an integer,
1699 as otherwise it would be a pain to add up times. */
1700 if (! INTEGERP (low))
1701 return 0;
1702 }
1703 else if (INTEGERP (specified_time))
1704 len = 2;
1705
1706 *phigh = high;
1707 *plow = low;
1708 *pusec = usec;
1709 *ppsec = psec;
1710 return len;
1711 }
1712
1713 /* Convert T into an Emacs time *RESULT, truncating toward minus infinity.
1714 Return true if T is in range, false otherwise. */
1715 static bool
1716 decode_float_time (double t, struct lisp_time *result)
1717 {
1718 double lo_multiplier = 1 << LO_TIME_BITS;
1719 double emacs_time_min = MOST_NEGATIVE_FIXNUM * lo_multiplier;
1720 if (! (emacs_time_min <= t && t < -emacs_time_min))
1721 return false;
1722
1723 double small_t = t / lo_multiplier;
1724 EMACS_INT hi = small_t;
1725 double t_sans_hi = t - hi * lo_multiplier;
1726 int lo = t_sans_hi;
1727 long double fracps = (t_sans_hi - lo) * 1e12L;
1728 #ifdef INT_FAST64_MAX
1729 int_fast64_t ifracps = fracps;
1730 int us = ifracps / 1000000;
1731 int ps = ifracps % 1000000;
1732 #else
1733 int us = fracps / 1e6L;
1734 int ps = fracps - us * 1e6L;
1735 #endif
1736 us -= (ps < 0);
1737 ps += (ps < 0) * 1000000;
1738 lo -= (us < 0);
1739 us += (us < 0) * 1000000;
1740 hi -= (lo < 0);
1741 lo += (lo < 0) << LO_TIME_BITS;
1742 result->hi = hi;
1743 result->lo = lo;
1744 result->us = us;
1745 result->ps = ps;
1746 return true;
1747 }
1748
1749 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1750 list, generate the corresponding time value.
1751 If LOW is floating point, the other components should be zero.
1752
1753 If RESULT is not null, store into *RESULT the converted time.
1754 If *DRESULT is not null, store into *DRESULT the number of
1755 seconds since the start of the POSIX Epoch.
1756
1757 Return 1 if successful, 0 if the components are of the
1758 wrong type, and -1 if the time is out of range. */
1759 int
1760 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1761 Lisp_Object psec,
1762 struct lisp_time *result, double *dresult)
1763 {
1764 EMACS_INT hi, lo, us, ps;
1765 if (! (INTEGERP (high)
1766 && INTEGERP (usec) && INTEGERP (psec)))
1767 return 0;
1768 if (! INTEGERP (low))
1769 {
1770 if (FLOATP (low))
1771 {
1772 double t = XFLOAT_DATA (low);
1773 if (result && ! decode_float_time (t, result))
1774 return -1;
1775 if (dresult)
1776 *dresult = t;
1777 return 1;
1778 }
1779 else if (NILP (low))
1780 {
1781 struct timespec now = current_timespec ();
1782 if (result)
1783 {
1784 result->hi = hi_time (now.tv_sec);
1785 result->lo = lo_time (now.tv_sec);
1786 result->us = now.tv_nsec / 1000;
1787 result->ps = now.tv_nsec % 1000 * 1000;
1788 }
1789 if (dresult)
1790 *dresult = now.tv_sec + now.tv_nsec / 1e9;
1791 return 1;
1792 }
1793 else
1794 return 0;
1795 }
1796
1797 hi = XINT (high);
1798 lo = XINT (low);
1799 us = XINT (usec);
1800 ps = XINT (psec);
1801
1802 /* Normalize out-of-range lower-order components by carrying
1803 each overflow into the next higher-order component. */
1804 us += ps / 1000000 - (ps % 1000000 < 0);
1805 lo += us / 1000000 - (us % 1000000 < 0);
1806 hi += lo >> LO_TIME_BITS;
1807 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1808 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1809 lo &= (1 << LO_TIME_BITS) - 1;
1810
1811 if (result)
1812 {
1813 if (! (MOST_NEGATIVE_FIXNUM <= hi && hi <= MOST_POSITIVE_FIXNUM))
1814 return -1;
1815 result->hi = hi;
1816 result->lo = lo;
1817 result->us = us;
1818 result->ps = ps;
1819 }
1820
1821 if (dresult)
1822 {
1823 double dhi = hi;
1824 *dresult = (us * 1e6 + ps) / 1e12 + lo + dhi * (1 << LO_TIME_BITS);
1825 }
1826
1827 return 1;
1828 }
1829
1830 struct timespec
1831 lisp_to_timespec (struct lisp_time t)
1832 {
1833 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1834 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1835 return invalid_timespec ();
1836 time_t s = (t.hi << LO_TIME_BITS) + t.lo;
1837 int ns = t.us * 1000 + t.ps / 1000;
1838 return make_timespec (s, ns);
1839 }
1840
1841 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1842 Store its effective length into *PLEN.
1843 If SPECIFIED_TIME is nil, use the current time.
1844 Signal an error if SPECIFIED_TIME does not represent a time. */
1845 static struct lisp_time
1846 lisp_time_struct (Lisp_Object specified_time, int *plen)
1847 {
1848 Lisp_Object high, low, usec, psec;
1849 struct lisp_time t;
1850 int len = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1851 if (!len)
1852 invalid_time ();
1853 int val = decode_time_components (high, low, usec, psec, &t, 0);
1854 check_time_validity (val);
1855 *plen = len;
1856 return t;
1857 }
1858
1859 /* Like lisp_time_struct, except return a struct timespec.
1860 Discard any low-order digits. */
1861 struct timespec
1862 lisp_time_argument (Lisp_Object specified_time)
1863 {
1864 int len;
1865 struct lisp_time lt = lisp_time_struct (specified_time, &len);
1866 struct timespec t = lisp_to_timespec (lt);
1867 if (! timespec_valid_p (t))
1868 time_overflow ();
1869 return t;
1870 }
1871
1872 /* Like lisp_time_argument, except decode only the seconds part,
1873 and do not check the subseconds part. */
1874 static time_t
1875 lisp_seconds_argument (Lisp_Object specified_time)
1876 {
1877 Lisp_Object high, low, usec, psec;
1878 struct lisp_time t;
1879
1880 int val = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1881 if (val != 0)
1882 {
1883 val = decode_time_components (high, low, make_number (0),
1884 make_number (0), &t, 0);
1885 if (0 < val
1886 && ! ((TYPE_SIGNED (time_t)
1887 ? TIME_T_MIN >> LO_TIME_BITS <= t.hi
1888 : 0 <= t.hi)
1889 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1890 val = -1;
1891 }
1892 check_time_validity (val);
1893 return (t.hi << LO_TIME_BITS) + t.lo;
1894 }
1895
1896 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1897 doc: /* Return the current time, as a float number of seconds since the epoch.
1898 If SPECIFIED-TIME is given, it is the time to convert to float
1899 instead of the current time. The argument should have the form
1900 \(HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1901 you can use times from `current-time' and from `file-attributes'.
1902 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1903 considered obsolete.
1904
1905 WARNING: Since the result is floating point, it may not be exact.
1906 If precise time stamps are required, use either `current-time',
1907 or (if you need time as a string) `format-time-string'. */)
1908 (Lisp_Object specified_time)
1909 {
1910 double t;
1911 Lisp_Object high, low, usec, psec;
1912 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1913 && decode_time_components (high, low, usec, psec, 0, &t)))
1914 invalid_time ();
1915 return make_float (t);
1916 }
1917
1918 /* Write information into buffer S of size MAXSIZE, according to the
1919 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1920 Use the time zone specified by TZ.
1921 Use NS as the number of nanoseconds in the %N directive.
1922 Return the number of bytes written, not including the terminating
1923 '\0'. If S is NULL, nothing will be written anywhere; so to
1924 determine how many bytes would be written, use NULL for S and
1925 ((size_t) -1) for MAXSIZE.
1926
1927 This function behaves like nstrftime, except it allows null
1928 bytes in FORMAT and it does not support nanoseconds. */
1929 static size_t
1930 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1931 size_t format_len, const struct tm *tp, timezone_t tz, int ns)
1932 {
1933 size_t total = 0;
1934
1935 /* Loop through all the null-terminated strings in the format
1936 argument. Normally there's just one null-terminated string, but
1937 there can be arbitrarily many, concatenated together, if the
1938 format contains '\0' bytes. nstrftime stops at the first
1939 '\0' byte so we must invoke it separately for each such string. */
1940 for (;;)
1941 {
1942 size_t len;
1943 size_t result;
1944
1945 if (s)
1946 s[0] = '\1';
1947
1948 result = nstrftime (s, maxsize, format, tp, tz, ns);
1949
1950 if (s)
1951 {
1952 if (result == 0 && s[0] != '\0')
1953 return 0;
1954 s += result + 1;
1955 }
1956
1957 maxsize -= result + 1;
1958 total += result;
1959 len = strlen (format);
1960 if (len == format_len)
1961 return total;
1962 total++;
1963 format += len + 1;
1964 format_len -= len + 1;
1965 }
1966 }
1967
1968 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1969 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1970 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1971 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1972 is also still accepted.
1973 The optional ZONE is omitted or nil for Emacs local time, t for
1974 Universal Time, `wall' for system wall clock time, or a string as in
1975 `set-time-zone-rule' for a time zone rule.
1976 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1977 by text that describes the specified date and time in TIME:
1978
1979 %Y is the year, %y within the century, %C the century.
1980 %G is the year corresponding to the ISO week, %g within the century.
1981 %m is the numeric month.
1982 %b and %h are the locale's abbreviated month name, %B the full name.
1983 (%h is not supported on MS-Windows.)
1984 %d is the day of the month, zero-padded, %e is blank-padded.
1985 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1986 %a is the locale's abbreviated name of the day of week, %A the full name.
1987 %U is the week number starting on Sunday, %W starting on Monday,
1988 %V according to ISO 8601.
1989 %j is the day of the year.
1990
1991 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1992 only blank-padded, %l is like %I blank-padded.
1993 %p is the locale's equivalent of either AM or PM.
1994 %M is the minute.
1995 %S is the second.
1996 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1997 %Z is the time zone name, %z is the numeric form.
1998 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1999
2000 %c is the locale's date and time format.
2001 %x is the locale's "preferred" date format.
2002 %D is like "%m/%d/%y".
2003 %F is the ISO 8601 date format (like "%Y-%m-%d").
2004
2005 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
2006 %X is the locale's "preferred" time format.
2007
2008 Finally, %n is a newline, %t is a tab, %% is a literal %.
2009
2010 Certain flags and modifiers are available with some format controls.
2011 The flags are `_', `-', `^' and `#'. For certain characters X,
2012 %_X is like %X, but padded with blanks; %-X is like %X,
2013 but without padding. %^X is like %X, but with all textual
2014 characters up-cased; %#X is like %X, but with letter-case of
2015 all textual characters reversed.
2016 %NX (where N stands for an integer) is like %X,
2017 but takes up at least N (a number) positions.
2018 The modifiers are `E' and `O'. For certain characters X,
2019 %EX is a locale's alternative version of %X;
2020 %OX is like %X, but uses the locale's number symbols.
2021
2022 For example, to produce full ISO 8601 format, use "%FT%T%z".
2023
2024 usage: (format-time-string FORMAT-STRING &optional TIME ZONE) */)
2025 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object zone)
2026 {
2027 struct timespec t = lisp_time_argument (timeval);
2028 struct tm tm;
2029
2030 CHECK_STRING (format_string);
2031 format_string = code_convert_string_norecord (format_string,
2032 Vlocale_coding_system, 1);
2033 return format_time_string (SSDATA (format_string), SBYTES (format_string),
2034 t, zone, &tm);
2035 }
2036
2037 static Lisp_Object
2038 format_time_string (char const *format, ptrdiff_t formatlen,
2039 struct timespec t, Lisp_Object zone, struct tm *tmp)
2040 {
2041 char buffer[4000];
2042 char *buf = buffer;
2043 ptrdiff_t size = sizeof buffer;
2044 size_t len;
2045 Lisp_Object bufstring;
2046 int ns = t.tv_nsec;
2047 USE_SAFE_ALLOCA;
2048
2049 timezone_t tz = tzlookup (zone, false);
2050 tmp = emacs_localtime_rz (tz, &t.tv_sec, tmp);
2051 if (! tmp)
2052 {
2053 xtzfree (tz);
2054 time_overflow ();
2055 }
2056 synchronize_system_time_locale ();
2057
2058 while (true)
2059 {
2060 buf[0] = '\1';
2061 len = emacs_nmemftime (buf, size, format, formatlen, tmp, tz, ns);
2062 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
2063 break;
2064
2065 /* Buffer was too small, so make it bigger and try again. */
2066 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, tz, ns);
2067 if (STRING_BYTES_BOUND <= len)
2068 {
2069 xtzfree (tz);
2070 string_overflow ();
2071 }
2072 size = len + 1;
2073 buf = SAFE_ALLOCA (size);
2074 }
2075
2076 xtzfree (tz);
2077 bufstring = make_unibyte_string (buf, len);
2078 SAFE_FREE ();
2079 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
2080 }
2081
2082 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 2, 0,
2083 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST UTCOFF).
2084 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
2085 as from `current-time' and `file-attributes', or nil to use the
2086 current time. The obsolete form (HIGH . LOW) is also still accepted.
2087 The optional ZONE is omitted or nil for Emacs local time, t for
2088 Universal Time, `wall' for system wall clock time, or a string as in
2089 `set-time-zone-rule' for a time zone rule.
2090
2091 The list has the following nine members: SEC is an integer between 0
2092 and 60; SEC is 60 for a leap second, which only some operating systems
2093 support. MINUTE is an integer between 0 and 59. HOUR is an integer
2094 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
2095 integer between 1 and 12. YEAR is an integer indicating the
2096 four-digit year. DOW is the day of week, an integer between 0 and 6,
2097 where 0 is Sunday. DST is t if daylight saving time is in effect,
2098 otherwise nil. UTCOFF is an integer indicating the UTC offset in
2099 seconds, i.e., the number of seconds east of Greenwich. (Note that
2100 Common Lisp has different meanings for DOW and UTCOFF.)
2101
2102 usage: (decode-time &optional TIME ZONE) */)
2103 (Lisp_Object specified_time, Lisp_Object zone)
2104 {
2105 time_t time_spec = lisp_seconds_argument (specified_time);
2106 struct tm local_tm, gmt_tm;
2107 timezone_t tz = tzlookup (zone, false);
2108 struct tm *tm = emacs_localtime_rz (tz, &time_spec, &local_tm);
2109 xtzfree (tz);
2110
2111 if (! (tm
2112 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year
2113 && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
2114 time_overflow ();
2115
2116 /* Avoid overflow when INT_MAX < EMACS_INT_MAX. */
2117 EMACS_INT tm_year_base = TM_YEAR_BASE;
2118
2119 return CALLN (Flist,
2120 make_number (local_tm.tm_sec),
2121 make_number (local_tm.tm_min),
2122 make_number (local_tm.tm_hour),
2123 make_number (local_tm.tm_mday),
2124 make_number (local_tm.tm_mon + 1),
2125 make_number (local_tm.tm_year + tm_year_base),
2126 make_number (local_tm.tm_wday),
2127 local_tm.tm_isdst ? Qt : Qnil,
2128 (HAVE_TM_GMTOFF
2129 ? make_number (tm_gmtoff (&local_tm))
2130 : gmtime_r (&time_spec, &gmt_tm)
2131 ? make_number (tm_diff (&local_tm, &gmt_tm))
2132 : Qnil));
2133 }
2134
2135 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
2136 the result is representable as an int. Assume OFFSET is small and
2137 nonnegative. */
2138 static int
2139 check_tm_member (Lisp_Object obj, int offset)
2140 {
2141 EMACS_INT n;
2142 CHECK_NUMBER (obj);
2143 n = XINT (obj);
2144 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
2145 time_overflow ();
2146 return n - offset;
2147 }
2148
2149 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
2150 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
2151 This is the reverse operation of `decode-time', which see.
2152 The optional ZONE is omitted or nil for Emacs local time, t for
2153 Universal Time, `wall' for system wall clock time, or a string as in
2154 `set-time-zone-rule' for a time zone rule. It can also be a list (as
2155 from `current-time-zone') or an integer (as from `decode-time')
2156 applied without consideration for daylight saving time.
2157
2158 You can pass more than 7 arguments; then the first six arguments
2159 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
2160 The intervening arguments are ignored.
2161 This feature lets (apply \\='encode-time (decode-time ...)) work.
2162
2163 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
2164 for example, a DAY of 0 means the day preceding the given month.
2165 Year numbers less than 100 are treated just like other year numbers.
2166 If you want them to stand for years in this century, you must do that yourself.
2167
2168 Years before 1970 are not guaranteed to work. On some systems,
2169 year values as low as 1901 do work.
2170
2171 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
2172 (ptrdiff_t nargs, Lisp_Object *args)
2173 {
2174 time_t value;
2175 struct tm tm;
2176 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
2177
2178 tm.tm_sec = check_tm_member (args[0], 0);
2179 tm.tm_min = check_tm_member (args[1], 0);
2180 tm.tm_hour = check_tm_member (args[2], 0);
2181 tm.tm_mday = check_tm_member (args[3], 0);
2182 tm.tm_mon = check_tm_member (args[4], 1);
2183 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
2184 tm.tm_isdst = -1;
2185
2186 if (CONSP (zone))
2187 zone = XCAR (zone);
2188 timezone_t tz = tzlookup (zone, false);
2189 value = emacs_mktime_z (tz, &tm);
2190 xtzfree (tz);
2191
2192 if (value == (time_t) -1)
2193 time_overflow ();
2194
2195 return list2i (hi_time (value), lo_time (value));
2196 }
2197
2198 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string,
2199 0, 2, 0,
2200 doc: /* Return the current local time, as a human-readable string.
2201 Programs can use this function to decode a time,
2202 since the number of columns in each field is fixed
2203 if the year is in the range 1000-9999.
2204 The format is `Sun Sep 16 01:03:52 1973'.
2205 However, see also the functions `decode-time' and `format-time-string'
2206 which provide a much more powerful and general facility.
2207
2208 If SPECIFIED-TIME is given, it is a time to format instead of the
2209 current time. The argument should have the form (HIGH LOW . IGNORED).
2210 Thus, you can use times obtained from `current-time' and from
2211 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
2212 but this is considered obsolete.
2213
2214 The optional ZONE is omitted or nil for Emacs local time, t for
2215 Universal Time, `wall' for system wall clock time, or a string as in
2216 `set-time-zone-rule' for a time zone rule. */)
2217 (Lisp_Object specified_time, Lisp_Object zone)
2218 {
2219 time_t value = lisp_seconds_argument (specified_time);
2220 timezone_t tz = tzlookup (zone, false);
2221
2222 /* Convert to a string in ctime format, except without the trailing
2223 newline, and without the 4-digit year limit. Don't use asctime
2224 or ctime, as they might dump core if the year is outside the
2225 range -999 .. 9999. */
2226 struct tm tm;
2227 struct tm *tmp = emacs_localtime_rz (tz, &value, &tm);
2228 xtzfree (tz);
2229 if (! tmp)
2230 time_overflow ();
2231
2232 static char const wday_name[][4] =
2233 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2234 static char const mon_name[][4] =
2235 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2236 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2237 printmax_t year_base = TM_YEAR_BASE;
2238 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2239 int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2240 wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday,
2241 tm.tm_hour, tm.tm_min, tm.tm_sec,
2242 tm.tm_year + year_base);
2243
2244 return make_unibyte_string (buf, len);
2245 }
2246
2247 /* Yield A - B, measured in seconds.
2248 This function is copied from the GNU C Library. */
2249 static int
2250 tm_diff (struct tm *a, struct tm *b)
2251 {
2252 /* Compute intervening leap days correctly even if year is negative.
2253 Take care to avoid int overflow in leap day calculations,
2254 but it's OK to assume that A and B are close to each other. */
2255 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2256 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2257 int a100 = a4 / 25 - (a4 % 25 < 0);
2258 int b100 = b4 / 25 - (b4 % 25 < 0);
2259 int a400 = a100 >> 2;
2260 int b400 = b100 >> 2;
2261 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2262 int years = a->tm_year - b->tm_year;
2263 int days = (365 * years + intervening_leap_days
2264 + (a->tm_yday - b->tm_yday));
2265 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2266 + (a->tm_min - b->tm_min))
2267 + (a->tm_sec - b->tm_sec));
2268 }
2269
2270 /* Yield A's UTC offset, or an unspecified value if unknown. */
2271 static long int
2272 tm_gmtoff (struct tm *a)
2273 {
2274 #if HAVE_TM_GMTOFF
2275 return a->tm_gmtoff;
2276 #else
2277 return 0;
2278 #endif
2279 }
2280
2281 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 2, 0,
2282 doc: /* Return the offset and name for the local time zone.
2283 This returns a list of the form (OFFSET NAME).
2284 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2285 A negative value means west of Greenwich.
2286 NAME is a string giving the name of the time zone.
2287 If SPECIFIED-TIME is given, the time zone offset is determined from it
2288 instead of using the current time. The argument should have the form
2289 \(HIGH LOW . IGNORED). Thus, you can use times obtained from
2290 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2291 have the form (HIGH . LOW), but this is considered obsolete.
2292 Optional second arg ZONE is omitted or nil for the local time zone, or
2293 a string as in `set-time-zone-rule'.
2294
2295 Some operating systems cannot provide all this information to Emacs;
2296 in this case, `current-time-zone' returns a list containing nil for
2297 the data it can't find. */)
2298 (Lisp_Object specified_time, Lisp_Object zone)
2299 {
2300 struct timespec value;
2301 struct tm local_tm, gmt_tm;
2302 Lisp_Object zone_offset, zone_name;
2303
2304 zone_offset = Qnil;
2305 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2306 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value,
2307 zone, &local_tm);
2308
2309 if (HAVE_TM_GMTOFF || gmtime_r (&value.tv_sec, &gmt_tm))
2310 {
2311 long int offset = (HAVE_TM_GMTOFF
2312 ? tm_gmtoff (&local_tm)
2313 : tm_diff (&local_tm, &gmt_tm));
2314 zone_offset = make_number (offset);
2315 if (SCHARS (zone_name) == 0)
2316 {
2317 /* No local time zone name is available; use "+-NNNN" instead. */
2318 long int m = offset / 60;
2319 long int am = offset < 0 ? - m : m;
2320 long int hour = am / 60;
2321 int min = am % 60;
2322 char buf[sizeof "+00" + INT_STRLEN_BOUND (long int)];
2323 zone_name = make_formatted_string (buf, "%c%02ld%02d",
2324 (offset < 0 ? '-' : '+'),
2325 hour, min);
2326 }
2327 }
2328
2329 return list2 (zone_offset, zone_name);
2330 }
2331
2332 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2333 doc: /* Set the Emacs local time zone using TZ, a string specifying a time zone rule.
2334 If TZ is nil or `wall', use system wall clock time. If TZ is t, use
2335 Universal Time. If TZ is an integer, treat it as in `encode-time'.
2336
2337 Instead of calling this function, you typically want something else.
2338 To temporarily use a different time zone rule for just one invocation
2339 of `decode-time', `encode-time', or `format-time-string', pass the
2340 function a ZONE argument. To change local time consistently
2341 throughout Emacs, call (setenv "TZ" TZ): this changes both the
2342 environment of the Emacs process and the variable
2343 `process-environment', whereas `set-time-zone-rule' affects only the
2344 former. */)
2345 (Lisp_Object tz)
2346 {
2347 tzlookup (NILP (tz) ? Qwall : tz, true);
2348 return Qnil;
2349 }
2350
2351 /* A buffer holding a string of the form "TZ=value", intended
2352 to be part of the environment. If TZ is supposed to be unset,
2353 the buffer string is "tZ=". */
2354 static char *tzvalbuf;
2355
2356 /* Get the local time zone rule. */
2357 char *
2358 emacs_getenv_TZ (void)
2359 {
2360 return tzvalbuf[0] == 'T' ? tzvalbuf + tzeqlen : 0;
2361 }
2362
2363 /* Set the local time zone rule to TZSTRING, which can be null to
2364 denote wall clock time. Do not record the setting in LOCAL_TZ.
2365
2366 This function is not thread-safe, in theory because putenv is not,
2367 but mostly because of the static storage it updates. Other threads
2368 that invoke localtime etc. may be adversely affected while this
2369 function is executing. */
2370
2371 int
2372 emacs_setenv_TZ (const char *tzstring)
2373 {
2374 static ptrdiff_t tzvalbufsize;
2375 ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0;
2376 char *tzval = tzvalbuf;
2377 bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen;
2378
2379 if (new_tzvalbuf)
2380 {
2381 /* Do not attempt to free the old tzvalbuf, since another thread
2382 may be using it. In practice, the first allocation is large
2383 enough and memory does not leak. */
2384 tzval = xpalloc (NULL, &tzvalbufsize,
2385 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2386 tzvalbuf = tzval;
2387 tzval[1] = 'Z';
2388 tzval[2] = '=';
2389 }
2390
2391 if (tzstring)
2392 {
2393 /* Modify TZVAL in place. Although this is dicey in a
2394 multithreaded environment, we know of no portable alternative.
2395 Calling putenv or setenv could crash some other thread. */
2396 tzval[0] = 'T';
2397 strcpy (tzval + tzeqlen, tzstring);
2398 }
2399 else
2400 {
2401 /* Turn 'TZ=whatever' into an empty environment variable 'tZ='.
2402 Although this is also dicey, calling unsetenv here can crash Emacs.
2403 See Bug#8705. */
2404 tzval[0] = 't';
2405 tzval[tzeqlen] = 0;
2406 }
2407
2408 if (new_tzvalbuf
2409 #ifdef WINDOWSNT
2410 /* MS-Windows implementation of 'putenv' copies the argument
2411 string into a block it allocates, so modifying tzval string
2412 does not change the environment. OTOH, the other threads run
2413 by Emacs on MS-Windows never call 'xputenv' or 'putenv' or
2414 'unsetenv', so the original cause for the dicey in-place
2415 modification technique doesn't exist there in the first
2416 place. */
2417 || 1
2418 #endif
2419 )
2420 {
2421 /* Although this is not thread-safe, in practice this runs only
2422 on startup when there is only one thread. */
2423 xputenv (tzval);
2424 }
2425
2426 return 0;
2427 }
2428 \f
2429 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2430 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2431 type of object is Lisp_String). INHERIT is passed to
2432 INSERT_FROM_STRING_FUNC as the last argument. */
2433
2434 static void
2435 general_insert_function (void (*insert_func)
2436 (const char *, ptrdiff_t),
2437 void (*insert_from_string_func)
2438 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2439 ptrdiff_t, ptrdiff_t, bool),
2440 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2441 {
2442 ptrdiff_t argnum;
2443 Lisp_Object val;
2444
2445 for (argnum = 0; argnum < nargs; argnum++)
2446 {
2447 val = args[argnum];
2448 if (CHARACTERP (val))
2449 {
2450 int c = XFASTINT (val);
2451 unsigned char str[MAX_MULTIBYTE_LENGTH];
2452 int len;
2453
2454 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2455 len = CHAR_STRING (c, str);
2456 else
2457 {
2458 str[0] = CHAR_TO_BYTE8 (c);
2459 len = 1;
2460 }
2461 (*insert_func) ((char *) str, len);
2462 }
2463 else if (STRINGP (val))
2464 {
2465 (*insert_from_string_func) (val, 0, 0,
2466 SCHARS (val),
2467 SBYTES (val),
2468 inherit);
2469 }
2470 else
2471 wrong_type_argument (Qchar_or_string_p, val);
2472 }
2473 }
2474
2475 void
2476 insert1 (Lisp_Object arg)
2477 {
2478 Finsert (1, &arg);
2479 }
2480
2481
2482 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2483 doc: /* Insert the arguments, either strings or characters, at point.
2484 Point and before-insertion markers move forward to end up
2485 after the inserted text.
2486 Any other markers at the point of insertion remain before the text.
2487
2488 If the current buffer is multibyte, unibyte strings are converted
2489 to multibyte for insertion (see `string-make-multibyte').
2490 If the current buffer is unibyte, multibyte strings are converted
2491 to unibyte for insertion (see `string-make-unibyte').
2492
2493 When operating on binary data, it may be necessary to preserve the
2494 original bytes of a unibyte string when inserting it into a multibyte
2495 buffer; to accomplish this, apply `string-as-multibyte' to the string
2496 and insert the result.
2497
2498 usage: (insert &rest ARGS) */)
2499 (ptrdiff_t nargs, Lisp_Object *args)
2500 {
2501 general_insert_function (insert, insert_from_string, 0, nargs, args);
2502 return Qnil;
2503 }
2504
2505 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2506 0, MANY, 0,
2507 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2508 Point and before-insertion markers move forward to end up
2509 after the inserted text.
2510 Any other markers at the point of insertion remain before the text.
2511
2512 If the current buffer is multibyte, unibyte strings are converted
2513 to multibyte for insertion (see `unibyte-char-to-multibyte').
2514 If the current buffer is unibyte, multibyte strings are converted
2515 to unibyte for insertion.
2516
2517 usage: (insert-and-inherit &rest ARGS) */)
2518 (ptrdiff_t nargs, Lisp_Object *args)
2519 {
2520 general_insert_function (insert_and_inherit, insert_from_string, 1,
2521 nargs, args);
2522 return Qnil;
2523 }
2524
2525 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2526 doc: /* Insert strings or characters at point, relocating markers after the text.
2527 Point and markers move forward to end up after the inserted text.
2528
2529 If the current buffer is multibyte, unibyte strings are converted
2530 to multibyte for insertion (see `unibyte-char-to-multibyte').
2531 If the current buffer is unibyte, multibyte strings are converted
2532 to unibyte for insertion.
2533
2534 If an overlay begins at the insertion point, the inserted text falls
2535 outside the overlay; if a nonempty overlay ends at the insertion
2536 point, the inserted text falls inside that overlay.
2537
2538 usage: (insert-before-markers &rest ARGS) */)
2539 (ptrdiff_t nargs, Lisp_Object *args)
2540 {
2541 general_insert_function (insert_before_markers,
2542 insert_from_string_before_markers, 0,
2543 nargs, args);
2544 return Qnil;
2545 }
2546
2547 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2548 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2549 doc: /* Insert text at point, relocating markers and inheriting properties.
2550 Point and markers move forward to end up after the inserted text.
2551
2552 If the current buffer is multibyte, unibyte strings are converted
2553 to multibyte for insertion (see `unibyte-char-to-multibyte').
2554 If the current buffer is unibyte, multibyte strings are converted
2555 to unibyte for insertion.
2556
2557 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2558 (ptrdiff_t nargs, Lisp_Object *args)
2559 {
2560 general_insert_function (insert_before_markers_and_inherit,
2561 insert_from_string_before_markers, 1,
2562 nargs, args);
2563 return Qnil;
2564 }
2565 \f
2566 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2567 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2568 (prefix-numeric-value current-prefix-arg)\
2569 t))",
2570 doc: /* Insert COUNT copies of CHARACTER.
2571 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2572 of these ways:
2573
2574 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2575 Completion is available; if you type a substring of the name
2576 preceded by an asterisk `*', Emacs shows all names which include
2577 that substring, not necessarily at the beginning of the name.
2578
2579 - As a hexadecimal code point, e.g. 263A. Note that code points in
2580 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2581 the Unicode code space).
2582
2583 - As a code point with a radix specified with #, e.g. #o21430
2584 (octal), #x2318 (hex), or #10r8984 (decimal).
2585
2586 If called interactively, COUNT is given by the prefix argument. If
2587 omitted or nil, it defaults to 1.
2588
2589 Inserting the character(s) relocates point and before-insertion
2590 markers in the same ways as the function `insert'.
2591
2592 The optional third argument INHERIT, if non-nil, says to inherit text
2593 properties from adjoining text, if those properties are sticky. If
2594 called interactively, INHERIT is t. */)
2595 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2596 {
2597 int i, stringlen;
2598 register ptrdiff_t n;
2599 int c, len;
2600 unsigned char str[MAX_MULTIBYTE_LENGTH];
2601 char string[4000];
2602
2603 CHECK_CHARACTER (character);
2604 if (NILP (count))
2605 XSETFASTINT (count, 1);
2606 CHECK_NUMBER (count);
2607 c = XFASTINT (character);
2608
2609 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2610 len = CHAR_STRING (c, str);
2611 else
2612 str[0] = c, len = 1;
2613 if (XINT (count) <= 0)
2614 return Qnil;
2615 if (BUF_BYTES_MAX / len < XINT (count))
2616 buffer_overflow ();
2617 n = XINT (count) * len;
2618 stringlen = min (n, sizeof string - sizeof string % len);
2619 for (i = 0; i < stringlen; i++)
2620 string[i] = str[i % len];
2621 while (n > stringlen)
2622 {
2623 QUIT;
2624 if (!NILP (inherit))
2625 insert_and_inherit (string, stringlen);
2626 else
2627 insert (string, stringlen);
2628 n -= stringlen;
2629 }
2630 if (!NILP (inherit))
2631 insert_and_inherit (string, n);
2632 else
2633 insert (string, n);
2634 return Qnil;
2635 }
2636
2637 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2638 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2639 Both arguments are required.
2640 BYTE is a number of the range 0..255.
2641
2642 If BYTE is 128..255 and the current buffer is multibyte, the
2643 corresponding eight-bit character is inserted.
2644
2645 Point, and before-insertion markers, are relocated as in the function `insert'.
2646 The optional third arg INHERIT, if non-nil, says to inherit text properties
2647 from adjoining text, if those properties are sticky. */)
2648 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2649 {
2650 CHECK_NUMBER (byte);
2651 if (XINT (byte) < 0 || XINT (byte) > 255)
2652 args_out_of_range_3 (byte, make_number (0), make_number (255));
2653 if (XINT (byte) >= 128
2654 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2655 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2656 return Finsert_char (byte, count, inherit);
2657 }
2658
2659 \f
2660 /* Making strings from buffer contents. */
2661
2662 /* Return a Lisp_String containing the text of the current buffer from
2663 START to END. If text properties are in use and the current buffer
2664 has properties in the range specified, the resulting string will also
2665 have them, if PROPS is true.
2666
2667 We don't want to use plain old make_string here, because it calls
2668 make_uninit_string, which can cause the buffer arena to be
2669 compacted. make_string has no way of knowing that the data has
2670 been moved, and thus copies the wrong data into the string. This
2671 doesn't effect most of the other users of make_string, so it should
2672 be left as is. But we should use this function when conjuring
2673 buffer substrings. */
2674
2675 Lisp_Object
2676 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2677 {
2678 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2679 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2680
2681 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2682 }
2683
2684 /* Return a Lisp_String containing the text of the current buffer from
2685 START / START_BYTE to END / END_BYTE.
2686
2687 If text properties are in use and the current buffer
2688 has properties in the range specified, the resulting string will also
2689 have them, if PROPS is true.
2690
2691 We don't want to use plain old make_string here, because it calls
2692 make_uninit_string, which can cause the buffer arena to be
2693 compacted. make_string has no way of knowing that the data has
2694 been moved, and thus copies the wrong data into the string. This
2695 doesn't effect most of the other users of make_string, so it should
2696 be left as is. But we should use this function when conjuring
2697 buffer substrings. */
2698
2699 Lisp_Object
2700 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2701 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2702 {
2703 Lisp_Object result, tem, tem1;
2704 ptrdiff_t beg0, end0, beg1, end1, size;
2705
2706 if (start_byte < GPT_BYTE && GPT_BYTE < end_byte)
2707 {
2708 /* Two regions, before and after the gap. */
2709 beg0 = start_byte;
2710 end0 = GPT_BYTE;
2711 beg1 = GPT_BYTE + GAP_SIZE - BEG_BYTE;
2712 end1 = end_byte + GAP_SIZE - BEG_BYTE;
2713 }
2714 else
2715 {
2716 /* The only region. */
2717 beg0 = start_byte;
2718 end0 = end_byte;
2719 beg1 = -1;
2720 end1 = -1;
2721 }
2722
2723 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2724 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2725 else
2726 result = make_uninit_string (end - start);
2727
2728 size = end0 - beg0;
2729 memcpy (SDATA (result), BYTE_POS_ADDR (beg0), size);
2730 if (beg1 != -1)
2731 memcpy (SDATA (result) + size, BEG_ADDR + beg1, end1 - beg1);
2732
2733 /* If desired, update and copy the text properties. */
2734 if (props)
2735 {
2736 update_buffer_properties (start, end);
2737
2738 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2739 tem1 = Ftext_properties_at (make_number (start), Qnil);
2740
2741 if (XINT (tem) != end || !NILP (tem1))
2742 copy_intervals_to_string (result, current_buffer, start,
2743 end - start);
2744 }
2745
2746 return result;
2747 }
2748
2749 /* Call Vbuffer_access_fontify_functions for the range START ... END
2750 in the current buffer, if necessary. */
2751
2752 static void
2753 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2754 {
2755 /* If this buffer has some access functions,
2756 call them, specifying the range of the buffer being accessed. */
2757 if (!NILP (Vbuffer_access_fontify_functions))
2758 {
2759 /* But don't call them if we can tell that the work
2760 has already been done. */
2761 if (!NILP (Vbuffer_access_fontified_property))
2762 {
2763 Lisp_Object tem
2764 = Ftext_property_any (make_number (start), make_number (end),
2765 Vbuffer_access_fontified_property,
2766 Qnil, Qnil);
2767 if (NILP (tem))
2768 return;
2769 }
2770
2771 CALLN (Frun_hook_with_args, Qbuffer_access_fontify_functions,
2772 make_number (start), make_number (end));
2773 }
2774 }
2775
2776 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2777 doc: /* Return the contents of part of the current buffer as a string.
2778 The two arguments START and END are character positions;
2779 they can be in either order.
2780 The string returned is multibyte if the buffer is multibyte.
2781
2782 This function copies the text properties of that part of the buffer
2783 into the result string; if you don't want the text properties,
2784 use `buffer-substring-no-properties' instead. */)
2785 (Lisp_Object start, Lisp_Object end)
2786 {
2787 register ptrdiff_t b, e;
2788
2789 validate_region (&start, &end);
2790 b = XINT (start);
2791 e = XINT (end);
2792
2793 return make_buffer_string (b, e, 1);
2794 }
2795
2796 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2797 Sbuffer_substring_no_properties, 2, 2, 0,
2798 doc: /* Return the characters of part of the buffer, without the text properties.
2799 The two arguments START and END are character positions;
2800 they can be in either order. */)
2801 (Lisp_Object start, Lisp_Object end)
2802 {
2803 register ptrdiff_t b, e;
2804
2805 validate_region (&start, &end);
2806 b = XINT (start);
2807 e = XINT (end);
2808
2809 return make_buffer_string (b, e, 0);
2810 }
2811
2812 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2813 doc: /* Return the contents of the current buffer as a string.
2814 If narrowing is in effect, this function returns only the visible part
2815 of the buffer. */)
2816 (void)
2817 {
2818 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2819 }
2820
2821 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2822 1, 3, 0,
2823 doc: /* Insert before point a substring of the contents of BUFFER.
2824 BUFFER may be a buffer or a buffer name.
2825 Arguments START and END are character positions specifying the substring.
2826 They default to the values of (point-min) and (point-max) in BUFFER.
2827
2828 Point and before-insertion markers move forward to end up after the
2829 inserted text.
2830 Any other markers at the point of insertion remain before the text.
2831
2832 If the current buffer is multibyte and BUFFER is unibyte, or vice
2833 versa, strings are converted from unibyte to multibyte or vice versa
2834 using `string-make-multibyte' or `string-make-unibyte', which see. */)
2835 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2836 {
2837 register EMACS_INT b, e, temp;
2838 register struct buffer *bp, *obuf;
2839 Lisp_Object buf;
2840
2841 buf = Fget_buffer (buffer);
2842 if (NILP (buf))
2843 nsberror (buffer);
2844 bp = XBUFFER (buf);
2845 if (!BUFFER_LIVE_P (bp))
2846 error ("Selecting deleted buffer");
2847
2848 if (NILP (start))
2849 b = BUF_BEGV (bp);
2850 else
2851 {
2852 CHECK_NUMBER_COERCE_MARKER (start);
2853 b = XINT (start);
2854 }
2855 if (NILP (end))
2856 e = BUF_ZV (bp);
2857 else
2858 {
2859 CHECK_NUMBER_COERCE_MARKER (end);
2860 e = XINT (end);
2861 }
2862
2863 if (b > e)
2864 temp = b, b = e, e = temp;
2865
2866 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2867 args_out_of_range (start, end);
2868
2869 obuf = current_buffer;
2870 set_buffer_internal_1 (bp);
2871 update_buffer_properties (b, e);
2872 set_buffer_internal_1 (obuf);
2873
2874 insert_from_buffer (bp, b, e - b, 0);
2875 return Qnil;
2876 }
2877
2878 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2879 6, 6, 0,
2880 doc: /* Compare two substrings of two buffers; return result as number.
2881 Return -N if first string is less after N-1 chars, +N if first string is
2882 greater after N-1 chars, or 0 if strings match. Each substring is
2883 represented as three arguments: BUFFER, START and END. That makes six
2884 args in all, three for each substring.
2885
2886 The value of `case-fold-search' in the current buffer
2887 determines whether case is significant or ignored. */)
2888 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2889 {
2890 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2891 register struct buffer *bp1, *bp2;
2892 register Lisp_Object trt
2893 = (!NILP (BVAR (current_buffer, case_fold_search))
2894 ? BVAR (current_buffer, case_canon_table) : Qnil);
2895 ptrdiff_t chars = 0;
2896 ptrdiff_t i1, i2, i1_byte, i2_byte;
2897
2898 /* Find the first buffer and its substring. */
2899
2900 if (NILP (buffer1))
2901 bp1 = current_buffer;
2902 else
2903 {
2904 Lisp_Object buf1;
2905 buf1 = Fget_buffer (buffer1);
2906 if (NILP (buf1))
2907 nsberror (buffer1);
2908 bp1 = XBUFFER (buf1);
2909 if (!BUFFER_LIVE_P (bp1))
2910 error ("Selecting deleted buffer");
2911 }
2912
2913 if (NILP (start1))
2914 begp1 = BUF_BEGV (bp1);
2915 else
2916 {
2917 CHECK_NUMBER_COERCE_MARKER (start1);
2918 begp1 = XINT (start1);
2919 }
2920 if (NILP (end1))
2921 endp1 = BUF_ZV (bp1);
2922 else
2923 {
2924 CHECK_NUMBER_COERCE_MARKER (end1);
2925 endp1 = XINT (end1);
2926 }
2927
2928 if (begp1 > endp1)
2929 temp = begp1, begp1 = endp1, endp1 = temp;
2930
2931 if (!(BUF_BEGV (bp1) <= begp1
2932 && begp1 <= endp1
2933 && endp1 <= BUF_ZV (bp1)))
2934 args_out_of_range (start1, end1);
2935
2936 /* Likewise for second substring. */
2937
2938 if (NILP (buffer2))
2939 bp2 = current_buffer;
2940 else
2941 {
2942 Lisp_Object buf2;
2943 buf2 = Fget_buffer (buffer2);
2944 if (NILP (buf2))
2945 nsberror (buffer2);
2946 bp2 = XBUFFER (buf2);
2947 if (!BUFFER_LIVE_P (bp2))
2948 error ("Selecting deleted buffer");
2949 }
2950
2951 if (NILP (start2))
2952 begp2 = BUF_BEGV (bp2);
2953 else
2954 {
2955 CHECK_NUMBER_COERCE_MARKER (start2);
2956 begp2 = XINT (start2);
2957 }
2958 if (NILP (end2))
2959 endp2 = BUF_ZV (bp2);
2960 else
2961 {
2962 CHECK_NUMBER_COERCE_MARKER (end2);
2963 endp2 = XINT (end2);
2964 }
2965
2966 if (begp2 > endp2)
2967 temp = begp2, begp2 = endp2, endp2 = temp;
2968
2969 if (!(BUF_BEGV (bp2) <= begp2
2970 && begp2 <= endp2
2971 && endp2 <= BUF_ZV (bp2)))
2972 args_out_of_range (start2, end2);
2973
2974 i1 = begp1;
2975 i2 = begp2;
2976 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2977 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2978
2979 while (i1 < endp1 && i2 < endp2)
2980 {
2981 /* When we find a mismatch, we must compare the
2982 characters, not just the bytes. */
2983 int c1, c2;
2984
2985 QUIT;
2986
2987 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2988 {
2989 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2990 BUF_INC_POS (bp1, i1_byte);
2991 i1++;
2992 }
2993 else
2994 {
2995 c1 = BUF_FETCH_BYTE (bp1, i1);
2996 MAKE_CHAR_MULTIBYTE (c1);
2997 i1++;
2998 }
2999
3000 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
3001 {
3002 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
3003 BUF_INC_POS (bp2, i2_byte);
3004 i2++;
3005 }
3006 else
3007 {
3008 c2 = BUF_FETCH_BYTE (bp2, i2);
3009 MAKE_CHAR_MULTIBYTE (c2);
3010 i2++;
3011 }
3012
3013 if (!NILP (trt))
3014 {
3015 c1 = char_table_translate (trt, c1);
3016 c2 = char_table_translate (trt, c2);
3017 }
3018 if (c1 < c2)
3019 return make_number (- 1 - chars);
3020 if (c1 > c2)
3021 return make_number (chars + 1);
3022
3023 chars++;
3024 }
3025
3026 /* The strings match as far as they go.
3027 If one is shorter, that one is less. */
3028 if (chars < endp1 - begp1)
3029 return make_number (chars + 1);
3030 else if (chars < endp2 - begp2)
3031 return make_number (- chars - 1);
3032
3033 /* Same length too => they are equal. */
3034 return make_number (0);
3035 }
3036 \f
3037 static void
3038 subst_char_in_region_unwind (Lisp_Object arg)
3039 {
3040 bset_undo_list (current_buffer, arg);
3041 }
3042
3043 static void
3044 subst_char_in_region_unwind_1 (Lisp_Object arg)
3045 {
3046 bset_filename (current_buffer, arg);
3047 }
3048
3049 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
3050 Ssubst_char_in_region, 4, 5, 0,
3051 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
3052 If optional arg NOUNDO is non-nil, don't record this change for undo
3053 and don't mark the buffer as really changed.
3054 Both characters must have the same length of multi-byte form. */)
3055 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
3056 {
3057 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
3058 /* Keep track of the first change in the buffer:
3059 if 0 we haven't found it yet.
3060 if < 0 we've found it and we've run the before-change-function.
3061 if > 0 we've actually performed it and the value is its position. */
3062 ptrdiff_t changed = 0;
3063 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
3064 unsigned char *p;
3065 ptrdiff_t count = SPECPDL_INDEX ();
3066 #define COMBINING_NO 0
3067 #define COMBINING_BEFORE 1
3068 #define COMBINING_AFTER 2
3069 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
3070 int maybe_byte_combining = COMBINING_NO;
3071 ptrdiff_t last_changed = 0;
3072 bool multibyte_p
3073 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3074 int fromc, toc;
3075
3076 restart:
3077
3078 validate_region (&start, &end);
3079 CHECK_CHARACTER (fromchar);
3080 CHECK_CHARACTER (tochar);
3081 fromc = XFASTINT (fromchar);
3082 toc = XFASTINT (tochar);
3083
3084 if (multibyte_p)
3085 {
3086 len = CHAR_STRING (fromc, fromstr);
3087 if (CHAR_STRING (toc, tostr) != len)
3088 error ("Characters in `subst-char-in-region' have different byte-lengths");
3089 if (!ASCII_CHAR_P (*tostr))
3090 {
3091 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
3092 complete multibyte character, it may be combined with the
3093 after bytes. If it is in the range 0xA0..0xFF, it may be
3094 combined with the before and after bytes. */
3095 if (!CHAR_HEAD_P (*tostr))
3096 maybe_byte_combining = COMBINING_BOTH;
3097 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
3098 maybe_byte_combining = COMBINING_AFTER;
3099 }
3100 }
3101 else
3102 {
3103 len = 1;
3104 fromstr[0] = fromc;
3105 tostr[0] = toc;
3106 }
3107
3108 pos = XINT (start);
3109 pos_byte = CHAR_TO_BYTE (pos);
3110 stop = CHAR_TO_BYTE (XINT (end));
3111 end_byte = stop;
3112
3113 /* If we don't want undo, turn off putting stuff on the list.
3114 That's faster than getting rid of things,
3115 and it prevents even the entry for a first change.
3116 Also inhibit locking the file. */
3117 if (!changed && !NILP (noundo))
3118 {
3119 record_unwind_protect (subst_char_in_region_unwind,
3120 BVAR (current_buffer, undo_list));
3121 bset_undo_list (current_buffer, Qt);
3122 /* Don't do file-locking. */
3123 record_unwind_protect (subst_char_in_region_unwind_1,
3124 BVAR (current_buffer, filename));
3125 bset_filename (current_buffer, Qnil);
3126 }
3127
3128 if (pos_byte < GPT_BYTE)
3129 stop = min (stop, GPT_BYTE);
3130 while (1)
3131 {
3132 ptrdiff_t pos_byte_next = pos_byte;
3133
3134 if (pos_byte >= stop)
3135 {
3136 if (pos_byte >= end_byte) break;
3137 stop = end_byte;
3138 }
3139 p = BYTE_POS_ADDR (pos_byte);
3140 if (multibyte_p)
3141 INC_POS (pos_byte_next);
3142 else
3143 ++pos_byte_next;
3144 if (pos_byte_next - pos_byte == len
3145 && p[0] == fromstr[0]
3146 && (len == 1
3147 || (p[1] == fromstr[1]
3148 && (len == 2 || (p[2] == fromstr[2]
3149 && (len == 3 || p[3] == fromstr[3]))))))
3150 {
3151 if (changed < 0)
3152 /* We've already seen this and run the before-change-function;
3153 this time we only need to record the actual position. */
3154 changed = pos;
3155 else if (!changed)
3156 {
3157 changed = -1;
3158 modify_text (pos, XINT (end));
3159
3160 if (! NILP (noundo))
3161 {
3162 if (MODIFF - 1 == SAVE_MODIFF)
3163 SAVE_MODIFF++;
3164 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
3165 BUF_AUTOSAVE_MODIFF (current_buffer)++;
3166 }
3167
3168 /* The before-change-function may have moved the gap
3169 or even modified the buffer so we should start over. */
3170 goto restart;
3171 }
3172
3173 /* Take care of the case where the new character
3174 combines with neighboring bytes. */
3175 if (maybe_byte_combining
3176 && (maybe_byte_combining == COMBINING_AFTER
3177 ? (pos_byte_next < Z_BYTE
3178 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3179 : ((pos_byte_next < Z_BYTE
3180 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3181 || (pos_byte > BEG_BYTE
3182 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
3183 {
3184 Lisp_Object tem, string;
3185
3186 tem = BVAR (current_buffer, undo_list);
3187
3188 /* Make a multibyte string containing this single character. */
3189 string = make_multibyte_string ((char *) tostr, 1, len);
3190 /* replace_range is less efficient, because it moves the gap,
3191 but it handles combining correctly. */
3192 replace_range (pos, pos + 1, string,
3193 0, 0, 1);
3194 pos_byte_next = CHAR_TO_BYTE (pos);
3195 if (pos_byte_next > pos_byte)
3196 /* Before combining happened. We should not increment
3197 POS. So, to cancel the later increment of POS,
3198 decrease it now. */
3199 pos--;
3200 else
3201 INC_POS (pos_byte_next);
3202
3203 if (! NILP (noundo))
3204 bset_undo_list (current_buffer, tem);
3205 }
3206 else
3207 {
3208 if (NILP (noundo))
3209 record_change (pos, 1);
3210 for (i = 0; i < len; i++) *p++ = tostr[i];
3211 }
3212 last_changed = pos + 1;
3213 }
3214 pos_byte = pos_byte_next;
3215 pos++;
3216 }
3217
3218 if (changed > 0)
3219 {
3220 signal_after_change (changed,
3221 last_changed - changed, last_changed - changed);
3222 update_compositions (changed, last_changed, CHECK_ALL);
3223 }
3224
3225 unbind_to (count, Qnil);
3226 return Qnil;
3227 }
3228
3229
3230 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3231 Lisp_Object);
3232
3233 /* Helper function for Ftranslate_region_internal.
3234
3235 Check if a character sequence at POS (POS_BYTE) matches an element
3236 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3237 element is found, return it. Otherwise return Qnil. */
3238
3239 static Lisp_Object
3240 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3241 Lisp_Object val)
3242 {
3243 int initial_buf[16];
3244 int *buf = initial_buf;
3245 ptrdiff_t buf_size = ARRAYELTS (initial_buf);
3246 int *bufalloc = 0;
3247 ptrdiff_t buf_used = 0;
3248 Lisp_Object result = Qnil;
3249
3250 for (; CONSP (val); val = XCDR (val))
3251 {
3252 Lisp_Object elt;
3253 ptrdiff_t len, i;
3254
3255 elt = XCAR (val);
3256 if (! CONSP (elt))
3257 continue;
3258 elt = XCAR (elt);
3259 if (! VECTORP (elt))
3260 continue;
3261 len = ASIZE (elt);
3262 if (len <= end - pos)
3263 {
3264 for (i = 0; i < len; i++)
3265 {
3266 if (buf_used <= i)
3267 {
3268 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3269 int len1;
3270
3271 if (buf_used == buf_size)
3272 {
3273 bufalloc = xpalloc (bufalloc, &buf_size, 1, -1,
3274 sizeof *bufalloc);
3275 if (buf == initial_buf)
3276 memcpy (bufalloc, buf, sizeof initial_buf);
3277 buf = bufalloc;
3278 }
3279 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3280 pos_byte += len1;
3281 }
3282 if (XINT (AREF (elt, i)) != buf[i])
3283 break;
3284 }
3285 if (i == len)
3286 {
3287 result = XCAR (val);
3288 break;
3289 }
3290 }
3291 }
3292
3293 xfree (bufalloc);
3294 return result;
3295 }
3296
3297
3298 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3299 Stranslate_region_internal, 3, 3, 0,
3300 doc: /* Internal use only.
3301 From START to END, translate characters according to TABLE.
3302 TABLE is a string or a char-table; the Nth character in it is the
3303 mapping for the character with code N.
3304 It returns the number of characters changed. */)
3305 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3306 {
3307 register unsigned char *tt; /* Trans table. */
3308 register int nc; /* New character. */
3309 int cnt; /* Number of changes made. */
3310 ptrdiff_t size; /* Size of translate table. */
3311 ptrdiff_t pos, pos_byte, end_pos;
3312 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3313 bool string_multibyte IF_LINT (= 0);
3314
3315 validate_region (&start, &end);
3316 if (CHAR_TABLE_P (table))
3317 {
3318 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3319 error ("Not a translation table");
3320 size = MAX_CHAR;
3321 tt = NULL;
3322 }
3323 else
3324 {
3325 CHECK_STRING (table);
3326
3327 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3328 table = string_make_unibyte (table);
3329 string_multibyte = SCHARS (table) < SBYTES (table);
3330 size = SBYTES (table);
3331 tt = SDATA (table);
3332 }
3333
3334 pos = XINT (start);
3335 pos_byte = CHAR_TO_BYTE (pos);
3336 end_pos = XINT (end);
3337 modify_text (pos, end_pos);
3338
3339 cnt = 0;
3340 for (; pos < end_pos; )
3341 {
3342 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3343 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3344 int len, str_len;
3345 int oc;
3346 Lisp_Object val;
3347
3348 if (multibyte)
3349 oc = STRING_CHAR_AND_LENGTH (p, len);
3350 else
3351 oc = *p, len = 1;
3352 if (oc < size)
3353 {
3354 if (tt)
3355 {
3356 /* Reload as signal_after_change in last iteration may GC. */
3357 tt = SDATA (table);
3358 if (string_multibyte)
3359 {
3360 str = tt + string_char_to_byte (table, oc);
3361 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3362 }
3363 else
3364 {
3365 nc = tt[oc];
3366 if (! ASCII_CHAR_P (nc) && multibyte)
3367 {
3368 str_len = BYTE8_STRING (nc, buf);
3369 str = buf;
3370 }
3371 else
3372 {
3373 str_len = 1;
3374 str = tt + oc;
3375 }
3376 }
3377 }
3378 else
3379 {
3380 nc = oc;
3381 val = CHAR_TABLE_REF (table, oc);
3382 if (CHARACTERP (val))
3383 {
3384 nc = XFASTINT (val);
3385 str_len = CHAR_STRING (nc, buf);
3386 str = buf;
3387 }
3388 else if (VECTORP (val) || (CONSP (val)))
3389 {
3390 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3391 where TO is TO-CHAR or [TO-CHAR ...]. */
3392 nc = -1;
3393 }
3394 }
3395
3396 if (nc != oc && nc >= 0)
3397 {
3398 /* Simple one char to one char translation. */
3399 if (len != str_len)
3400 {
3401 Lisp_Object string;
3402
3403 /* This is less efficient, because it moves the gap,
3404 but it should handle multibyte characters correctly. */
3405 string = make_multibyte_string ((char *) str, 1, str_len);
3406 replace_range (pos, pos + 1, string, 1, 0, 1);
3407 len = str_len;
3408 }
3409 else
3410 {
3411 record_change (pos, 1);
3412 while (str_len-- > 0)
3413 *p++ = *str++;
3414 signal_after_change (pos, 1, 1);
3415 update_compositions (pos, pos + 1, CHECK_BORDER);
3416 }
3417 ++cnt;
3418 }
3419 else if (nc < 0)
3420 {
3421 Lisp_Object string;
3422
3423 if (CONSP (val))
3424 {
3425 val = check_translation (pos, pos_byte, end_pos, val);
3426 if (NILP (val))
3427 {
3428 pos_byte += len;
3429 pos++;
3430 continue;
3431 }
3432 /* VAL is ([FROM-CHAR ...] . TO). */
3433 len = ASIZE (XCAR (val));
3434 val = XCDR (val);
3435 }
3436 else
3437 len = 1;
3438
3439 if (VECTORP (val))
3440 {
3441 string = Fconcat (1, &val);
3442 }
3443 else
3444 {
3445 string = Fmake_string (make_number (1), val);
3446 }
3447 replace_range (pos, pos + len, string, 1, 0, 1);
3448 pos_byte += SBYTES (string);
3449 pos += SCHARS (string);
3450 cnt += SCHARS (string);
3451 end_pos += SCHARS (string) - len;
3452 continue;
3453 }
3454 }
3455 pos_byte += len;
3456 pos++;
3457 }
3458
3459 return make_number (cnt);
3460 }
3461
3462 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3463 doc: /* Delete the text between START and END.
3464 If called interactively, delete the region between point and mark.
3465 This command deletes buffer text without modifying the kill ring. */)
3466 (Lisp_Object start, Lisp_Object end)
3467 {
3468 validate_region (&start, &end);
3469 del_range (XINT (start), XINT (end));
3470 return Qnil;
3471 }
3472
3473 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3474 Sdelete_and_extract_region, 2, 2, 0,
3475 doc: /* Delete the text between START and END and return it. */)
3476 (Lisp_Object start, Lisp_Object end)
3477 {
3478 validate_region (&start, &end);
3479 if (XINT (start) == XINT (end))
3480 return empty_unibyte_string;
3481 return del_range_1 (XINT (start), XINT (end), 1, 1);
3482 }
3483 \f
3484 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3485 doc: /* Remove restrictions (narrowing) from current buffer.
3486 This allows the buffer's full text to be seen and edited. */)
3487 (void)
3488 {
3489 if (BEG != BEGV || Z != ZV)
3490 current_buffer->clip_changed = 1;
3491 BEGV = BEG;
3492 BEGV_BYTE = BEG_BYTE;
3493 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3494 /* Changing the buffer bounds invalidates any recorded current column. */
3495 invalidate_current_column ();
3496 return Qnil;
3497 }
3498
3499 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3500 doc: /* Restrict editing in this buffer to the current region.
3501 The rest of the text becomes temporarily invisible and untouchable
3502 but is not deleted; if you save the buffer in a file, the invisible
3503 text is included in the file. \\[widen] makes all visible again.
3504 See also `save-restriction'.
3505
3506 When calling from a program, pass two arguments; positions (integers
3507 or markers) bounding the text that should remain visible. */)
3508 (register Lisp_Object start, Lisp_Object end)
3509 {
3510 CHECK_NUMBER_COERCE_MARKER (start);
3511 CHECK_NUMBER_COERCE_MARKER (end);
3512
3513 if (XINT (start) > XINT (end))
3514 {
3515 Lisp_Object tem;
3516 tem = start; start = end; end = tem;
3517 }
3518
3519 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3520 args_out_of_range (start, end);
3521
3522 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3523 current_buffer->clip_changed = 1;
3524
3525 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3526 SET_BUF_ZV (current_buffer, XFASTINT (end));
3527 if (PT < XFASTINT (start))
3528 SET_PT (XFASTINT (start));
3529 if (PT > XFASTINT (end))
3530 SET_PT (XFASTINT (end));
3531 /* Changing the buffer bounds invalidates any recorded current column. */
3532 invalidate_current_column ();
3533 return Qnil;
3534 }
3535
3536 Lisp_Object
3537 save_restriction_save (void)
3538 {
3539 if (BEGV == BEG && ZV == Z)
3540 /* The common case that the buffer isn't narrowed.
3541 We return just the buffer object, which save_restriction_restore
3542 recognizes as meaning `no restriction'. */
3543 return Fcurrent_buffer ();
3544 else
3545 /* We have to save a restriction, so return a pair of markers, one
3546 for the beginning and one for the end. */
3547 {
3548 Lisp_Object beg, end;
3549
3550 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3551 end = build_marker (current_buffer, ZV, ZV_BYTE);
3552
3553 /* END must move forward if text is inserted at its exact location. */
3554 XMARKER (end)->insertion_type = 1;
3555
3556 return Fcons (beg, end);
3557 }
3558 }
3559
3560 void
3561 save_restriction_restore (Lisp_Object data)
3562 {
3563 struct buffer *cur = NULL;
3564 struct buffer *buf = (CONSP (data)
3565 ? XMARKER (XCAR (data))->buffer
3566 : XBUFFER (data));
3567
3568 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3569 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3570 is the case if it is or has an indirect buffer), then make
3571 sure it is current before we update BEGV, so
3572 set_buffer_internal takes care of managing those markers. */
3573 cur = current_buffer;
3574 set_buffer_internal (buf);
3575 }
3576
3577 if (CONSP (data))
3578 /* A pair of marks bounding a saved restriction. */
3579 {
3580 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3581 struct Lisp_Marker *end = XMARKER (XCDR (data));
3582 eassert (buf == end->buffer);
3583
3584 if (buf /* Verify marker still points to a buffer. */
3585 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3586 /* The restriction has changed from the saved one, so restore
3587 the saved restriction. */
3588 {
3589 ptrdiff_t pt = BUF_PT (buf);
3590
3591 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3592 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3593
3594 if (pt < beg->charpos || pt > end->charpos)
3595 /* The point is outside the new visible range, move it inside. */
3596 SET_BUF_PT_BOTH (buf,
3597 clip_to_bounds (beg->charpos, pt, end->charpos),
3598 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3599 end->bytepos));
3600
3601 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3602 }
3603 /* These aren't needed anymore, so don't wait for GC. */
3604 free_marker (XCAR (data));
3605 free_marker (XCDR (data));
3606 free_cons (XCONS (data));
3607 }
3608 else
3609 /* A buffer, which means that there was no old restriction. */
3610 {
3611 if (buf /* Verify marker still points to a buffer. */
3612 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3613 /* The buffer has been narrowed, get rid of the narrowing. */
3614 {
3615 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3616 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3617
3618 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3619 }
3620 }
3621
3622 /* Changing the buffer bounds invalidates any recorded current column. */
3623 invalidate_current_column ();
3624
3625 if (cur)
3626 set_buffer_internal (cur);
3627 }
3628
3629 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3630 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3631 The buffer's restrictions make parts of the beginning and end invisible.
3632 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3633 This special form, `save-restriction', saves the current buffer's restrictions
3634 when it is entered, and restores them when it is exited.
3635 So any `narrow-to-region' within BODY lasts only until the end of the form.
3636 The old restrictions settings are restored
3637 even in case of abnormal exit (throw or error).
3638
3639 The value returned is the value of the last form in BODY.
3640
3641 Note: if you are using both `save-excursion' and `save-restriction',
3642 use `save-excursion' outermost:
3643 (save-excursion (save-restriction ...))
3644
3645 usage: (save-restriction &rest BODY) */)
3646 (Lisp_Object body)
3647 {
3648 register Lisp_Object val;
3649 ptrdiff_t count = SPECPDL_INDEX ();
3650
3651 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3652 val = Fprogn (body);
3653 return unbind_to (count, val);
3654 }
3655 \f
3656 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3657 doc: /* Display a message at the bottom of the screen.
3658 The message also goes into the `*Messages*' buffer, if `message-log-max'
3659 is non-nil. (In keyboard macros, that's all it does.)
3660 Return the message.
3661
3662 In batch mode, the message is printed to the standard error stream,
3663 followed by a newline.
3664
3665 The first argument is a format control string, and the rest are data
3666 to be formatted under control of the string. See `format' for details.
3667
3668 Note: Use (message "%s" VALUE) to print the value of expressions and
3669 variables to avoid accidentally interpreting `%' as format specifiers.
3670
3671 If the first argument is nil or the empty string, the function clears
3672 any existing message; this lets the minibuffer contents show. See
3673 also `current-message'.
3674
3675 usage: (message FORMAT-STRING &rest ARGS) */)
3676 (ptrdiff_t nargs, Lisp_Object *args)
3677 {
3678 if (NILP (args[0])
3679 || (STRINGP (args[0])
3680 && SBYTES (args[0]) == 0))
3681 {
3682 message1 (0);
3683 return args[0];
3684 }
3685 else
3686 {
3687 Lisp_Object val = Fformat_message (nargs, args);
3688 message3 (val);
3689 return val;
3690 }
3691 }
3692
3693 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3694 doc: /* Display a message, in a dialog box if possible.
3695 If a dialog box is not available, use the echo area.
3696 The first argument is a format control string, and the rest are data
3697 to be formatted under control of the string. See `format' for details.
3698
3699 If the first argument is nil or the empty string, clear any existing
3700 message; let the minibuffer contents show.
3701
3702 usage: (message-box FORMAT-STRING &rest ARGS) */)
3703 (ptrdiff_t nargs, Lisp_Object *args)
3704 {
3705 if (NILP (args[0]))
3706 {
3707 message1 (0);
3708 return Qnil;
3709 }
3710 else
3711 {
3712 Lisp_Object val = Fformat_message (nargs, args);
3713 Lisp_Object pane, menu;
3714
3715 pane = list1 (Fcons (build_string ("OK"), Qt));
3716 menu = Fcons (val, pane);
3717 Fx_popup_dialog (Qt, menu, Qt);
3718 return val;
3719 }
3720 }
3721
3722 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3723 doc: /* Display a message in a dialog box or in the echo area.
3724 If this command was invoked with the mouse, use a dialog box if
3725 `use-dialog-box' is non-nil.
3726 Otherwise, use the echo area.
3727 The first argument is a format control string, and the rest are data
3728 to be formatted under control of the string. See `format' for details.
3729
3730 If the first argument is nil or the empty string, clear any existing
3731 message; let the minibuffer contents show.
3732
3733 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3734 (ptrdiff_t nargs, Lisp_Object *args)
3735 {
3736 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3737 && use_dialog_box)
3738 return Fmessage_box (nargs, args);
3739 return Fmessage (nargs, args);
3740 }
3741
3742 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3743 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3744 (void)
3745 {
3746 return current_message ();
3747 }
3748
3749
3750 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3751 doc: /* Return a copy of STRING with text properties added.
3752 First argument is the string to copy.
3753 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3754 properties to add to the result.
3755 usage: (propertize STRING &rest PROPERTIES) */)
3756 (ptrdiff_t nargs, Lisp_Object *args)
3757 {
3758 Lisp_Object properties, string;
3759 ptrdiff_t i;
3760
3761 /* Number of args must be odd. */
3762 if ((nargs & 1) == 0)
3763 error ("Wrong number of arguments");
3764
3765 properties = string = Qnil;
3766
3767 /* First argument must be a string. */
3768 CHECK_STRING (args[0]);
3769 string = Fcopy_sequence (args[0]);
3770
3771 for (i = 1; i < nargs; i += 2)
3772 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3773
3774 Fadd_text_properties (make_number (0),
3775 make_number (SCHARS (string)),
3776 properties, string);
3777 return string;
3778 }
3779
3780 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3781 doc: /* Format a string out of a format-string and arguments.
3782 The first argument is a format control string.
3783 The other arguments are substituted into it to make the result, a string.
3784
3785 The format control string may contain %-sequences meaning to substitute
3786 the next available argument:
3787
3788 %s means print a string argument. Actually, prints any object, with `princ'.
3789 %d means print as number in decimal (%o octal, %x hex).
3790 %X is like %x, but uses upper case.
3791 %e means print a number in exponential notation.
3792 %f means print a number in decimal-point notation.
3793 %g means print a number in exponential notation
3794 or decimal-point notation, whichever uses fewer characters.
3795 %c means print a number as a single character.
3796 %S means print any object as an s-expression (using `prin1').
3797
3798 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3799 Use %% to put a single % into the output.
3800
3801 A %-sequence may contain optional flag, width, and precision
3802 specifiers, as follows:
3803
3804 %<flags><width><precision>character
3805
3806 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3807
3808 The + flag character inserts a + before any positive number, while a
3809 space inserts a space before any positive number; these flags only
3810 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3811 The - and 0 flags affect the width specifier, as described below.
3812
3813 The # flag means to use an alternate display form for %o, %x, %X, %e,
3814 %f, and %g sequences: for %o, it ensures that the result begins with
3815 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3816 for %e, %f, and %g, it causes a decimal point to be included even if
3817 the precision is zero.
3818
3819 The width specifier supplies a lower limit for the length of the
3820 printed representation. The padding, if any, normally goes on the
3821 left, but it goes on the right if the - flag is present. The padding
3822 character is normally a space, but it is 0 if the 0 flag is present.
3823 The 0 flag is ignored if the - flag is present, or the format sequence
3824 is something other than %d, %e, %f, and %g.
3825
3826 For %e, %f, and %g sequences, the number after the "." in the
3827 precision specifier says how many decimal places to show; if zero, the
3828 decimal point itself is omitted. For %s and %S, the precision
3829 specifier truncates the string to the given width.
3830
3831 usage: (format STRING &rest OBJECTS) */)
3832 (ptrdiff_t nargs, Lisp_Object *args)
3833 {
3834 return styled_format (nargs, args, false);
3835 }
3836
3837 DEFUN ("format-message", Fformat_message, Sformat_message, 1, MANY, 0,
3838 doc: /* Format a string out of a format-string and arguments.
3839 The first argument is a format control string.
3840 The other arguments are substituted into it to make the result, a string.
3841
3842 This acts like `format', except it also replaces each left single
3843 quotation mark (\\=‘) and grave accent (\\=`) by a left quote, and each
3844 right single quotation mark (\\=’) and apostrophe (\\=') by a right quote.
3845 The left and right quote replacement characters are specified by
3846 `text-quoting-style'.
3847
3848 usage: (format-message STRING &rest OBJECTS) */)
3849 (ptrdiff_t nargs, Lisp_Object *args)
3850 {
3851 return styled_format (nargs, args, true);
3852 }
3853
3854 /* Implement ‘format-message’ if MESSAGE is true, ‘format’ otherwise. */
3855
3856 static Lisp_Object
3857 styled_format (ptrdiff_t nargs, Lisp_Object *args, bool message)
3858 {
3859 ptrdiff_t n; /* The number of the next arg to substitute. */
3860 char initial_buffer[4000];
3861 char *buf = initial_buffer;
3862 ptrdiff_t bufsize = sizeof initial_buffer;
3863 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3864 char *p;
3865 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3866 char *format, *end;
3867 ptrdiff_t nchars;
3868 /* When we make a multibyte string, we must pay attention to the
3869 byte combining problem, i.e., a byte may be combined with a
3870 multibyte character of the previous string. This flag tells if we
3871 must consider such a situation or not. */
3872 bool maybe_combine_byte;
3873 bool arg_intervals = false;
3874 USE_SAFE_ALLOCA;
3875
3876 /* Each element records, for one argument,
3877 the start and end bytepos in the output string,
3878 whether the argument has been converted to string (e.g., due to "%S"),
3879 and whether the argument is a string with intervals. */
3880 struct info
3881 {
3882 ptrdiff_t start, end;
3883 bool_bf converted_to_string : 1;
3884 bool_bf intervals : 1;
3885 } *info;
3886
3887 CHECK_STRING (args[0]);
3888 char *format_start = SSDATA (args[0]);
3889 ptrdiff_t formatlen = SBYTES (args[0]);
3890
3891 /* Allocate the info and discarded tables. */
3892 ptrdiff_t alloca_size;
3893 if (INT_MULTIPLY_WRAPV (nargs, sizeof *info, &alloca_size)
3894 || INT_ADD_WRAPV (sizeof *info, alloca_size, &alloca_size)
3895 || INT_ADD_WRAPV (formatlen, alloca_size, &alloca_size)
3896 || SIZE_MAX < alloca_size)
3897 memory_full (SIZE_MAX);
3898 /* info[0] is unused. Unused elements have -1 for start. */
3899 info = SAFE_ALLOCA (alloca_size);
3900 memset (info, 0, alloca_size);
3901 for (ptrdiff_t i = 0; i < nargs + 1; i++)
3902 info[i].start = -1;
3903 /* discarded[I] is 1 if byte I of the format
3904 string was not copied into the output.
3905 It is 2 if byte I was not the first byte of its character. */
3906 char *discarded = (char *) &info[nargs + 1];
3907
3908 /* Try to determine whether the result should be multibyte.
3909 This is not always right; sometimes the result needs to be multibyte
3910 because of an object that we will pass through prin1.
3911 or because a grave accent or apostrophe is requoted,
3912 and in that case, we won't know it here. */
3913
3914 /* True if the format is multibyte. */
3915 bool multibyte_format = STRING_MULTIBYTE (args[0]);
3916 /* True if the output should be a multibyte string,
3917 which is true if any of the inputs is one. */
3918 bool multibyte = multibyte_format;
3919 for (ptrdiff_t i = 1; !multibyte && i < nargs; i++)
3920 if (STRINGP (args[i]) && STRING_MULTIBYTE (args[i]))
3921 multibyte = true;
3922
3923 int quoting_style = message ? text_quoting_style () : -1;
3924
3925 /* If we start out planning a unibyte result,
3926 then discover it has to be multibyte, we jump back to retry. */
3927 retry:
3928
3929 p = buf;
3930 nchars = 0;
3931 n = 0;
3932
3933 /* Scan the format and store result in BUF. */
3934 format = format_start;
3935 end = format + formatlen;
3936 maybe_combine_byte = false;
3937
3938 while (format != end)
3939 {
3940 /* The values of N and FORMAT when the loop body is entered. */
3941 ptrdiff_t n0 = n;
3942 char *format0 = format;
3943 char const *convsrc = format;
3944 unsigned char format_char = *format++;
3945
3946 /* Bytes needed to represent the output of this conversion. */
3947 ptrdiff_t convbytes = 1;
3948
3949 if (format_char == '%')
3950 {
3951 /* General format specifications look like
3952
3953 '%' [flags] [field-width] [precision] format
3954
3955 where
3956
3957 flags ::= [-+0# ]+
3958 field-width ::= [0-9]+
3959 precision ::= '.' [0-9]*
3960
3961 If a field-width is specified, it specifies to which width
3962 the output should be padded with blanks, if the output
3963 string is shorter than field-width.
3964
3965 If precision is specified, it specifies the number of
3966 digits to print after the '.' for floats, or the max.
3967 number of chars to print from a string. */
3968
3969 bool minus_flag = false;
3970 bool plus_flag = false;
3971 bool space_flag = false;
3972 bool sharp_flag = false;
3973 bool zero_flag = false;
3974
3975 for (; ; format++)
3976 {
3977 switch (*format)
3978 {
3979 case '-': minus_flag = true; continue;
3980 case '+': plus_flag = true; continue;
3981 case ' ': space_flag = true; continue;
3982 case '#': sharp_flag = true; continue;
3983 case '0': zero_flag = true; continue;
3984 }
3985 break;
3986 }
3987
3988 /* Ignore flags when sprintf ignores them. */
3989 space_flag &= ~ plus_flag;
3990 zero_flag &= ~ minus_flag;
3991
3992 char *num_end;
3993 uintmax_t raw_field_width = strtoumax (format, &num_end, 10);
3994 if (max_bufsize <= raw_field_width)
3995 string_overflow ();
3996 ptrdiff_t field_width = raw_field_width;
3997
3998 bool precision_given = *num_end == '.';
3999 uintmax_t precision = (precision_given
4000 ? strtoumax (num_end + 1, &num_end, 10)
4001 : UINTMAX_MAX);
4002 format = num_end;
4003
4004 if (format == end)
4005 error ("Format string ends in middle of format specifier");
4006
4007 char conversion = *format++;
4008 memset (&discarded[format0 - format_start], 1,
4009 format - format0 - (conversion == '%'));
4010 if (conversion == '%')
4011 goto copy_char;
4012
4013 ++n;
4014 if (! (n < nargs))
4015 error ("Not enough arguments for format string");
4016
4017 /* For 'S', prin1 the argument, and then treat like 's'.
4018 For 's', princ any argument that is not a string or
4019 symbol. But don't do this conversion twice, which might
4020 happen after retrying. */
4021 if ((conversion == 'S'
4022 || (conversion == 's'
4023 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
4024 {
4025 if (! info[n].converted_to_string)
4026 {
4027 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
4028 args[n] = Fprin1_to_string (args[n], noescape);
4029 info[n].converted_to_string = true;
4030 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4031 {
4032 multibyte = true;
4033 goto retry;
4034 }
4035 }
4036 conversion = 's';
4037 }
4038 else if (conversion == 'c')
4039 {
4040 if (FLOATP (args[n]))
4041 {
4042 double d = XFLOAT_DATA (args[n]);
4043 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
4044 }
4045
4046 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
4047 {
4048 if (!multibyte)
4049 {
4050 multibyte = true;
4051 goto retry;
4052 }
4053 args[n] = Fchar_to_string (args[n]);
4054 info[n].converted_to_string = true;
4055 }
4056
4057 if (info[n].converted_to_string)
4058 conversion = 's';
4059 zero_flag = false;
4060 }
4061
4062 if (SYMBOLP (args[n]))
4063 {
4064 args[n] = SYMBOL_NAME (args[n]);
4065 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4066 {
4067 multibyte = true;
4068 goto retry;
4069 }
4070 }
4071
4072 if (conversion == 's')
4073 {
4074 /* handle case (precision[n] >= 0) */
4075
4076 ptrdiff_t prec = -1;
4077 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
4078 prec = precision;
4079
4080 /* lisp_string_width ignores a precision of 0, but GNU
4081 libc functions print 0 characters when the precision
4082 is 0. Imitate libc behavior here. Changing
4083 lisp_string_width is the right thing, and will be
4084 done, but meanwhile we work with it. */
4085
4086 ptrdiff_t width, nbytes;
4087 ptrdiff_t nchars_string;
4088 if (prec == 0)
4089 width = nchars_string = nbytes = 0;
4090 else
4091 {
4092 ptrdiff_t nch, nby;
4093 width = lisp_string_width (args[n], prec, &nch, &nby);
4094 if (prec < 0)
4095 {
4096 nchars_string = SCHARS (args[n]);
4097 nbytes = SBYTES (args[n]);
4098 }
4099 else
4100 {
4101 nchars_string = nch;
4102 nbytes = nby;
4103 }
4104 }
4105
4106 convbytes = nbytes;
4107 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
4108 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
4109
4110 ptrdiff_t padding
4111 = width < field_width ? field_width - width : 0;
4112
4113 if (max_bufsize - padding <= convbytes)
4114 string_overflow ();
4115 convbytes += padding;
4116 if (convbytes <= buf + bufsize - p)
4117 {
4118 if (! minus_flag)
4119 {
4120 memset (p, ' ', padding);
4121 p += padding;
4122 nchars += padding;
4123 }
4124
4125 if (p > buf
4126 && multibyte
4127 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4128 && STRING_MULTIBYTE (args[n])
4129 && !CHAR_HEAD_P (SREF (args[n], 0)))
4130 maybe_combine_byte = true;
4131
4132 p += copy_text (SDATA (args[n]), (unsigned char *) p,
4133 nbytes,
4134 STRING_MULTIBYTE (args[n]), multibyte);
4135
4136 info[n].start = nchars;
4137 nchars += nchars_string;
4138 info[n].end = nchars;
4139
4140 if (minus_flag)
4141 {
4142 memset (p, ' ', padding);
4143 p += padding;
4144 nchars += padding;
4145 }
4146
4147 /* If this argument has text properties, record where
4148 in the result string it appears. */
4149 if (string_intervals (args[n]))
4150 info[n].intervals = arg_intervals = true;
4151
4152 continue;
4153 }
4154 }
4155 else if (! (conversion == 'c' || conversion == 'd'
4156 || conversion == 'e' || conversion == 'f'
4157 || conversion == 'g' || conversion == 'i'
4158 || conversion == 'o' || conversion == 'x'
4159 || conversion == 'X'))
4160 error ("Invalid format operation %%%c",
4161 STRING_CHAR ((unsigned char *) format - 1));
4162 else if (! NUMBERP (args[n]))
4163 error ("Format specifier doesn't match argument type");
4164 else
4165 {
4166 enum
4167 {
4168 /* Maximum precision for a %f conversion such that the
4169 trailing output digit might be nonzero. Any precision
4170 larger than this will not yield useful information. */
4171 USEFUL_PRECISION_MAX =
4172 ((1 - DBL_MIN_EXP)
4173 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
4174 : FLT_RADIX == 16 ? 4
4175 : -1)),
4176
4177 /* Maximum number of bytes generated by any format, if
4178 precision is no more than USEFUL_PRECISION_MAX.
4179 On all practical hosts, %f is the worst case. */
4180 SPRINTF_BUFSIZE =
4181 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
4182
4183 /* Length of pM (that is, of pMd without the
4184 trailing "d"). */
4185 pMlen = sizeof pMd - 2
4186 };
4187 verify (USEFUL_PRECISION_MAX > 0);
4188
4189 /* Avoid undefined behavior in underlying sprintf. */
4190 if (conversion == 'd' || conversion == 'i')
4191 sharp_flag = false;
4192
4193 /* Create the copy of the conversion specification, with
4194 any width and precision removed, with ".*" inserted,
4195 and with pM inserted for integer formats.
4196 At most three flags F can be specified at once. */
4197 char convspec[sizeof "%FFF.*d" + pMlen];
4198 {
4199 char *f = convspec;
4200 *f++ = '%';
4201 *f = '-'; f += minus_flag;
4202 *f = '+'; f += plus_flag;
4203 *f = ' '; f += space_flag;
4204 *f = '#'; f += sharp_flag;
4205 *f = '0'; f += zero_flag;
4206 *f++ = '.';
4207 *f++ = '*';
4208 if (conversion == 'd' || conversion == 'i'
4209 || conversion == 'o' || conversion == 'x'
4210 || conversion == 'X')
4211 {
4212 memcpy (f, pMd, pMlen);
4213 f += pMlen;
4214 zero_flag &= ~ precision_given;
4215 }
4216 *f++ = conversion;
4217 *f = '\0';
4218 }
4219
4220 int prec = -1;
4221 if (precision_given)
4222 prec = min (precision, USEFUL_PRECISION_MAX);
4223
4224 /* Use sprintf to format this number into sprintf_buf. Omit
4225 padding and excess precision, though, because sprintf limits
4226 output length to INT_MAX.
4227
4228 There are four types of conversion: double, unsigned
4229 char (passed as int), wide signed int, and wide
4230 unsigned int. Treat them separately because the
4231 sprintf ABI is sensitive to which type is passed. Be
4232 careful about integer overflow, NaNs, infinities, and
4233 conversions; for example, the min and max macros are
4234 not suitable here. */
4235 char sprintf_buf[SPRINTF_BUFSIZE];
4236 ptrdiff_t sprintf_bytes;
4237 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4238 {
4239 double x = (INTEGERP (args[n])
4240 ? XINT (args[n])
4241 : XFLOAT_DATA (args[n]));
4242 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4243 }
4244 else if (conversion == 'c')
4245 {
4246 /* Don't use sprintf here, as it might mishandle prec. */
4247 sprintf_buf[0] = XINT (args[n]);
4248 sprintf_bytes = prec != 0;
4249 }
4250 else if (conversion == 'd')
4251 {
4252 /* For float, maybe we should use "%1.0f"
4253 instead so it also works for values outside
4254 the integer range. */
4255 printmax_t x;
4256 if (INTEGERP (args[n]))
4257 x = XINT (args[n]);
4258 else
4259 {
4260 double d = XFLOAT_DATA (args[n]);
4261 if (d < 0)
4262 {
4263 x = TYPE_MINIMUM (printmax_t);
4264 if (x < d)
4265 x = d;
4266 }
4267 else
4268 {
4269 x = TYPE_MAXIMUM (printmax_t);
4270 if (d < x)
4271 x = d;
4272 }
4273 }
4274 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4275 }
4276 else
4277 {
4278 /* Don't sign-extend for octal or hex printing. */
4279 uprintmax_t x;
4280 if (INTEGERP (args[n]))
4281 x = XUINT (args[n]);
4282 else
4283 {
4284 double d = XFLOAT_DATA (args[n]);
4285 if (d < 0)
4286 x = 0;
4287 else
4288 {
4289 x = TYPE_MAXIMUM (uprintmax_t);
4290 if (d < x)
4291 x = d;
4292 }
4293 }
4294 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4295 }
4296
4297 /* Now the length of the formatted item is known, except it omits
4298 padding and excess precision. Deal with excess precision
4299 first. This happens only when the format specifies
4300 ridiculously large precision. */
4301 uintmax_t excess_precision = precision - prec;
4302 uintmax_t leading_zeros = 0, trailing_zeros = 0;
4303 if (excess_precision)
4304 {
4305 if (conversion == 'e' || conversion == 'f'
4306 || conversion == 'g')
4307 {
4308 if ((conversion == 'g' && ! sharp_flag)
4309 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4310 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4311 excess_precision = 0;
4312 else
4313 {
4314 if (conversion == 'g')
4315 {
4316 char *dot = strchr (sprintf_buf, '.');
4317 if (!dot)
4318 excess_precision = 0;
4319 }
4320 }
4321 trailing_zeros = excess_precision;
4322 }
4323 else
4324 leading_zeros = excess_precision;
4325 }
4326
4327 /* Compute the total bytes needed for this item, including
4328 excess precision and padding. */
4329 uintmax_t numwidth = sprintf_bytes + excess_precision;
4330 ptrdiff_t padding
4331 = numwidth < field_width ? field_width - numwidth : 0;
4332 if (max_bufsize - sprintf_bytes <= excess_precision
4333 || max_bufsize - padding <= numwidth)
4334 string_overflow ();
4335 convbytes = numwidth + padding;
4336
4337 if (convbytes <= buf + bufsize - p)
4338 {
4339 /* Copy the formatted item from sprintf_buf into buf,
4340 inserting padding and excess-precision zeros. */
4341
4342 char *src = sprintf_buf;
4343 char src0 = src[0];
4344 int exponent_bytes = 0;
4345 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4346 if (zero_flag
4347 && ((src[signedp] >= '0' && src[signedp] <= '9')
4348 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4349 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4350 {
4351 leading_zeros += padding;
4352 padding = 0;
4353 }
4354
4355 if (excess_precision
4356 && (conversion == 'e' || conversion == 'g'))
4357 {
4358 char *e = strchr (src, 'e');
4359 if (e)
4360 exponent_bytes = src + sprintf_bytes - e;
4361 }
4362
4363 if (! minus_flag)
4364 {
4365 memset (p, ' ', padding);
4366 p += padding;
4367 nchars += padding;
4368 }
4369
4370 *p = src0;
4371 src += signedp;
4372 p += signedp;
4373 memset (p, '0', leading_zeros);
4374 p += leading_zeros;
4375 int significand_bytes
4376 = sprintf_bytes - signedp - exponent_bytes;
4377 memcpy (p, src, significand_bytes);
4378 p += significand_bytes;
4379 src += significand_bytes;
4380 memset (p, '0', trailing_zeros);
4381 p += trailing_zeros;
4382 memcpy (p, src, exponent_bytes);
4383 p += exponent_bytes;
4384
4385 info[n].start = nchars;
4386 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4387 info[n].end = nchars;
4388
4389 if (minus_flag)
4390 {
4391 memset (p, ' ', padding);
4392 p += padding;
4393 nchars += padding;
4394 }
4395
4396 continue;
4397 }
4398 }
4399 }
4400 else
4401 {
4402 /* Named constants for the UTF-8 encodings of U+2018 LEFT SINGLE
4403 QUOTATION MARK and U+2019 RIGHT SINGLE QUOTATION MARK. */
4404 enum
4405 {
4406 uLSQM0 = 0xE2, uLSQM1 = 0x80, uLSQM2 = 0x98,
4407 /* uRSQM0 = 0xE2, uRSQM1 = 0x80, */ uRSQM2 = 0x99
4408 };
4409
4410 unsigned char str[MAX_MULTIBYTE_LENGTH];
4411
4412 if ((format_char == '`' || format_char == '\'')
4413 && quoting_style == CURVE_QUOTING_STYLE)
4414 {
4415 if (! multibyte)
4416 {
4417 multibyte = true;
4418 goto retry;
4419 }
4420 convsrc = format_char == '`' ? uLSQM : uRSQM;
4421 convbytes = 3;
4422 }
4423 else if (format_char == '`' && quoting_style == STRAIGHT_QUOTING_STYLE)
4424 convsrc = "'";
4425 else if (format_char == uLSQM0 && CURVE_QUOTING_STYLE < quoting_style
4426 && multibyte_format
4427 && (unsigned char) format[0] == uLSQM1
4428 && ((unsigned char) format[1] == uLSQM2
4429 || (unsigned char) format[1] == uRSQM2))
4430 {
4431 convsrc = (((unsigned char) format[1] == uLSQM2
4432 && quoting_style == GRAVE_QUOTING_STYLE)
4433 ? "`" : "'");
4434 format += 2;
4435 memset (&discarded[format0 + 1 - format_start], 2, 2);
4436 }
4437 else
4438 {
4439 /* Copy a single character from format to buf. */
4440 if (multibyte_format)
4441 {
4442 /* Copy a whole multibyte character. */
4443 if (p > buf
4444 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4445 && !CHAR_HEAD_P (format_char))
4446 maybe_combine_byte = true;
4447
4448 while (! CHAR_HEAD_P (*format))
4449 format++;
4450
4451 convbytes = format - format0;
4452 memset (&discarded[format0 + 1 - format_start], 2,
4453 convbytes - 1);
4454 }
4455 else if (multibyte && !ASCII_CHAR_P (format_char))
4456 {
4457 int c = BYTE8_TO_CHAR (format_char);
4458 convbytes = CHAR_STRING (c, str);
4459 convsrc = (char *) str;
4460 }
4461 }
4462
4463 copy_char:
4464 if (convbytes <= buf + bufsize - p)
4465 {
4466 memcpy (p, convsrc, convbytes);
4467 p += convbytes;
4468 nchars++;
4469 continue;
4470 }
4471 }
4472
4473 /* There wasn't enough room to store this conversion or single
4474 character. CONVBYTES says how much room is needed. Allocate
4475 enough room (and then some) and do it again. */
4476
4477 ptrdiff_t used = p - buf;
4478 if (max_bufsize - used < convbytes)
4479 string_overflow ();
4480 bufsize = used + convbytes;
4481 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4482
4483 if (buf == initial_buffer)
4484 {
4485 buf = xmalloc (bufsize);
4486 sa_must_free = true;
4487 buf_save_value_index = SPECPDL_INDEX ();
4488 record_unwind_protect_ptr (xfree, buf);
4489 memcpy (buf, initial_buffer, used);
4490 }
4491 else
4492 {
4493 buf = xrealloc (buf, bufsize);
4494 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4495 }
4496
4497 p = buf + used;
4498 format = format0;
4499 n = n0;
4500 }
4501
4502 if (bufsize < p - buf)
4503 emacs_abort ();
4504
4505 if (maybe_combine_byte)
4506 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4507 Lisp_Object val = make_specified_string (buf, nchars, p - buf, multibyte);
4508
4509 /* If the format string has text properties, or any of the string
4510 arguments has text properties, set up text properties of the
4511 result string. */
4512
4513 if (string_intervals (args[0]) || arg_intervals)
4514 {
4515 /* Add text properties from the format string. */
4516 Lisp_Object len = make_number (SCHARS (args[0]));
4517 Lisp_Object props = text_property_list (args[0], make_number (0),
4518 len, Qnil);
4519 if (CONSP (props))
4520 {
4521 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4522 ptrdiff_t argn = 1;
4523
4524 /* Adjust the bounds of each text property
4525 to the proper start and end in the output string. */
4526
4527 /* Put the positions in PROPS in increasing order, so that
4528 we can do (effectively) one scan through the position
4529 space of the format string. */
4530 props = Fnreverse (props);
4531
4532 /* BYTEPOS is the byte position in the format string,
4533 POSITION is the untranslated char position in it,
4534 TRANSLATED is the translated char position in BUF,
4535 and ARGN is the number of the next arg we will come to. */
4536 for (Lisp_Object list = props; CONSP (list); list = XCDR (list))
4537 {
4538 Lisp_Object item = XCAR (list);
4539
4540 /* First adjust the property start position. */
4541 ptrdiff_t pos = XINT (XCAR (item));
4542
4543 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4544 up to this position. */
4545 for (; position < pos; bytepos++)
4546 {
4547 if (! discarded[bytepos])
4548 position++, translated++;
4549 else if (discarded[bytepos] == 1)
4550 {
4551 position++;
4552 if (translated == info[argn].start)
4553 {
4554 translated += info[argn].end - info[argn].start;
4555 argn++;
4556 }
4557 }
4558 }
4559
4560 XSETCAR (item, make_number (translated));
4561
4562 /* Likewise adjust the property end position. */
4563 pos = XINT (XCAR (XCDR (item)));
4564
4565 for (; position < pos; bytepos++)
4566 {
4567 if (! discarded[bytepos])
4568 position++, translated++;
4569 else if (discarded[bytepos] == 1)
4570 {
4571 position++;
4572 if (translated == info[argn].start)
4573 {
4574 translated += info[argn].end - info[argn].start;
4575 argn++;
4576 }
4577 }
4578 }
4579
4580 XSETCAR (XCDR (item), make_number (translated));
4581 }
4582
4583 add_text_properties_from_list (val, props, make_number (0));
4584 }
4585
4586 /* Add text properties from arguments. */
4587 if (arg_intervals)
4588 for (ptrdiff_t i = 1; i < nargs; i++)
4589 if (info[i].intervals)
4590 {
4591 len = make_number (SCHARS (args[i]));
4592 Lisp_Object new_len = make_number (info[i].end - info[i].start);
4593 props = text_property_list (args[i], make_number (0), len, Qnil);
4594 props = extend_property_ranges (props, new_len);
4595 /* If successive arguments have properties, be sure that
4596 the value of `composition' property be the copy. */
4597 if (1 < i && info[i - 1].end)
4598 make_composition_value_copy (props);
4599 add_text_properties_from_list (val, props,
4600 make_number (info[i].start));
4601 }
4602 }
4603
4604 /* If we allocated BUF or INFO with malloc, free it too. */
4605 SAFE_FREE ();
4606
4607 return val;
4608 }
4609 \f
4610 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4611 doc: /* Return t if two characters match, optionally ignoring case.
4612 Both arguments must be characters (i.e. integers).
4613 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4614 (register Lisp_Object c1, Lisp_Object c2)
4615 {
4616 int i1, i2;
4617 /* Check they're chars, not just integers, otherwise we could get array
4618 bounds violations in downcase. */
4619 CHECK_CHARACTER (c1);
4620 CHECK_CHARACTER (c2);
4621
4622 if (XINT (c1) == XINT (c2))
4623 return Qt;
4624 if (NILP (BVAR (current_buffer, case_fold_search)))
4625 return Qnil;
4626
4627 i1 = XFASTINT (c1);
4628 i2 = XFASTINT (c2);
4629
4630 /* FIXME: It is possible to compare multibyte characters even when
4631 the current buffer is unibyte. Unfortunately this is ambiguous
4632 for characters between 128 and 255, as they could be either
4633 eight-bit raw bytes or Latin-1 characters. Assume the former for
4634 now. See Bug#17011, and also see casefiddle.c's casify_object,
4635 which has a similar problem. */
4636 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4637 {
4638 if (SINGLE_BYTE_CHAR_P (i1))
4639 i1 = UNIBYTE_TO_CHAR (i1);
4640 if (SINGLE_BYTE_CHAR_P (i2))
4641 i2 = UNIBYTE_TO_CHAR (i2);
4642 }
4643
4644 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4645 }
4646 \f
4647 /* Transpose the markers in two regions of the current buffer, and
4648 adjust the ones between them if necessary (i.e.: if the regions
4649 differ in size).
4650
4651 START1, END1 are the character positions of the first region.
4652 START1_BYTE, END1_BYTE are the byte positions.
4653 START2, END2 are the character positions of the second region.
4654 START2_BYTE, END2_BYTE are the byte positions.
4655
4656 Traverses the entire marker list of the buffer to do so, adding an
4657 appropriate amount to some, subtracting from some, and leaving the
4658 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4659
4660 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4661
4662 static void
4663 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4664 ptrdiff_t start2, ptrdiff_t end2,
4665 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4666 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4667 {
4668 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4669 register struct Lisp_Marker *marker;
4670
4671 /* Update point as if it were a marker. */
4672 if (PT < start1)
4673 ;
4674 else if (PT < end1)
4675 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4676 PT_BYTE + (end2_byte - end1_byte));
4677 else if (PT < start2)
4678 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4679 (PT_BYTE + (end2_byte - start2_byte)
4680 - (end1_byte - start1_byte)));
4681 else if (PT < end2)
4682 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4683 PT_BYTE - (start2_byte - start1_byte));
4684
4685 /* We used to adjust the endpoints here to account for the gap, but that
4686 isn't good enough. Even if we assume the caller has tried to move the
4687 gap out of our way, it might still be at start1 exactly, for example;
4688 and that places it `inside' the interval, for our purposes. The amount
4689 of adjustment is nontrivial if there's a `denormalized' marker whose
4690 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4691 the dirty work to Fmarker_position, below. */
4692
4693 /* The difference between the region's lengths */
4694 diff = (end2 - start2) - (end1 - start1);
4695 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4696
4697 /* For shifting each marker in a region by the length of the other
4698 region plus the distance between the regions. */
4699 amt1 = (end2 - start2) + (start2 - end1);
4700 amt2 = (end1 - start1) + (start2 - end1);
4701 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4702 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4703
4704 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4705 {
4706 mpos = marker->bytepos;
4707 if (mpos >= start1_byte && mpos < end2_byte)
4708 {
4709 if (mpos < end1_byte)
4710 mpos += amt1_byte;
4711 else if (mpos < start2_byte)
4712 mpos += diff_byte;
4713 else
4714 mpos -= amt2_byte;
4715 marker->bytepos = mpos;
4716 }
4717 mpos = marker->charpos;
4718 if (mpos >= start1 && mpos < end2)
4719 {
4720 if (mpos < end1)
4721 mpos += amt1;
4722 else if (mpos < start2)
4723 mpos += diff;
4724 else
4725 mpos -= amt2;
4726 }
4727 marker->charpos = mpos;
4728 }
4729 }
4730
4731 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4732 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4733 The regions should not be overlapping, because the size of the buffer is
4734 never changed in a transposition.
4735
4736 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4737 any markers that happen to be located in the regions.
4738
4739 Transposing beyond buffer boundaries is an error. */)
4740 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4741 {
4742 register ptrdiff_t start1, end1, start2, end2;
4743 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4744 ptrdiff_t gap, len1, len_mid, len2;
4745 unsigned char *start1_addr, *start2_addr, *temp;
4746
4747 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4748 Lisp_Object buf;
4749
4750 XSETBUFFER (buf, current_buffer);
4751 cur_intv = buffer_intervals (current_buffer);
4752
4753 validate_region (&startr1, &endr1);
4754 validate_region (&startr2, &endr2);
4755
4756 start1 = XFASTINT (startr1);
4757 end1 = XFASTINT (endr1);
4758 start2 = XFASTINT (startr2);
4759 end2 = XFASTINT (endr2);
4760 gap = GPT;
4761
4762 /* Swap the regions if they're reversed. */
4763 if (start2 < end1)
4764 {
4765 register ptrdiff_t glumph = start1;
4766 start1 = start2;
4767 start2 = glumph;
4768 glumph = end1;
4769 end1 = end2;
4770 end2 = glumph;
4771 }
4772
4773 len1 = end1 - start1;
4774 len2 = end2 - start2;
4775
4776 if (start2 < end1)
4777 error ("Transposed regions overlap");
4778 /* Nothing to change for adjacent regions with one being empty */
4779 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4780 return Qnil;
4781
4782 /* The possibilities are:
4783 1. Adjacent (contiguous) regions, or separate but equal regions
4784 (no, really equal, in this case!), or
4785 2. Separate regions of unequal size.
4786
4787 The worst case is usually No. 2. It means that (aside from
4788 potential need for getting the gap out of the way), there also
4789 needs to be a shifting of the text between the two regions. So
4790 if they are spread far apart, we are that much slower... sigh. */
4791
4792 /* It must be pointed out that the really studly thing to do would
4793 be not to move the gap at all, but to leave it in place and work
4794 around it if necessary. This would be extremely efficient,
4795 especially considering that people are likely to do
4796 transpositions near where they are working interactively, which
4797 is exactly where the gap would be found. However, such code
4798 would be much harder to write and to read. So, if you are
4799 reading this comment and are feeling squirrely, by all means have
4800 a go! I just didn't feel like doing it, so I will simply move
4801 the gap the minimum distance to get it out of the way, and then
4802 deal with an unbroken array. */
4803
4804 start1_byte = CHAR_TO_BYTE (start1);
4805 end2_byte = CHAR_TO_BYTE (end2);
4806
4807 /* Make sure the gap won't interfere, by moving it out of the text
4808 we will operate on. */
4809 if (start1 < gap && gap < end2)
4810 {
4811 if (gap - start1 < end2 - gap)
4812 move_gap_both (start1, start1_byte);
4813 else
4814 move_gap_both (end2, end2_byte);
4815 }
4816
4817 start2_byte = CHAR_TO_BYTE (start2);
4818 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4819 len2_byte = end2_byte - start2_byte;
4820
4821 #ifdef BYTE_COMBINING_DEBUG
4822 if (end1 == start2)
4823 {
4824 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4825 len2_byte, start1, start1_byte)
4826 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4827 len1_byte, end2, start2_byte + len2_byte)
4828 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4829 len1_byte, end2, start2_byte + len2_byte))
4830 emacs_abort ();
4831 }
4832 else
4833 {
4834 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4835 len2_byte, start1, start1_byte)
4836 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4837 len1_byte, start2, start2_byte)
4838 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4839 len2_byte, end1, start1_byte + len1_byte)
4840 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4841 len1_byte, end2, start2_byte + len2_byte))
4842 emacs_abort ();
4843 }
4844 #endif
4845
4846 /* Hmmm... how about checking to see if the gap is large
4847 enough to use as the temporary storage? That would avoid an
4848 allocation... interesting. Later, don't fool with it now. */
4849
4850 /* Working without memmove, for portability (sigh), so must be
4851 careful of overlapping subsections of the array... */
4852
4853 if (end1 == start2) /* adjacent regions */
4854 {
4855 modify_text (start1, end2);
4856 record_change (start1, len1 + len2);
4857
4858 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4859 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4860 /* Don't use Fset_text_properties: that can cause GC, which can
4861 clobber objects stored in the tmp_intervals. */
4862 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4863 if (tmp_interval3)
4864 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4865
4866 USE_SAFE_ALLOCA;
4867
4868 /* First region smaller than second. */
4869 if (len1_byte < len2_byte)
4870 {
4871 temp = SAFE_ALLOCA (len2_byte);
4872
4873 /* Don't precompute these addresses. We have to compute them
4874 at the last minute, because the relocating allocator might
4875 have moved the buffer around during the xmalloc. */
4876 start1_addr = BYTE_POS_ADDR (start1_byte);
4877 start2_addr = BYTE_POS_ADDR (start2_byte);
4878
4879 memcpy (temp, start2_addr, len2_byte);
4880 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4881 memcpy (start1_addr, temp, len2_byte);
4882 }
4883 else
4884 /* First region not smaller than second. */
4885 {
4886 temp = SAFE_ALLOCA (len1_byte);
4887 start1_addr = BYTE_POS_ADDR (start1_byte);
4888 start2_addr = BYTE_POS_ADDR (start2_byte);
4889 memcpy (temp, start1_addr, len1_byte);
4890 memcpy (start1_addr, start2_addr, len2_byte);
4891 memcpy (start1_addr + len2_byte, temp, len1_byte);
4892 }
4893
4894 SAFE_FREE ();
4895 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4896 len1, current_buffer, 0);
4897 graft_intervals_into_buffer (tmp_interval2, start1,
4898 len2, current_buffer, 0);
4899 update_compositions (start1, start1 + len2, CHECK_BORDER);
4900 update_compositions (start1 + len2, end2, CHECK_TAIL);
4901 }
4902 /* Non-adjacent regions, because end1 != start2, bleagh... */
4903 else
4904 {
4905 len_mid = start2_byte - (start1_byte + len1_byte);
4906
4907 if (len1_byte == len2_byte)
4908 /* Regions are same size, though, how nice. */
4909 {
4910 USE_SAFE_ALLOCA;
4911
4912 modify_text (start1, end1);
4913 modify_text (start2, end2);
4914 record_change (start1, len1);
4915 record_change (start2, len2);
4916 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4917 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4918
4919 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4920 if (tmp_interval3)
4921 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4922
4923 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4924 if (tmp_interval3)
4925 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4926
4927 temp = SAFE_ALLOCA (len1_byte);
4928 start1_addr = BYTE_POS_ADDR (start1_byte);
4929 start2_addr = BYTE_POS_ADDR (start2_byte);
4930 memcpy (temp, start1_addr, len1_byte);
4931 memcpy (start1_addr, start2_addr, len2_byte);
4932 memcpy (start2_addr, temp, len1_byte);
4933 SAFE_FREE ();
4934
4935 graft_intervals_into_buffer (tmp_interval1, start2,
4936 len1, current_buffer, 0);
4937 graft_intervals_into_buffer (tmp_interval2, start1,
4938 len2, current_buffer, 0);
4939 }
4940
4941 else if (len1_byte < len2_byte) /* Second region larger than first */
4942 /* Non-adjacent & unequal size, area between must also be shifted. */
4943 {
4944 USE_SAFE_ALLOCA;
4945
4946 modify_text (start1, end2);
4947 record_change (start1, (end2 - start1));
4948 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4949 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4950 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4951
4952 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4953 if (tmp_interval3)
4954 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4955
4956 /* holds region 2 */
4957 temp = SAFE_ALLOCA (len2_byte);
4958 start1_addr = BYTE_POS_ADDR (start1_byte);
4959 start2_addr = BYTE_POS_ADDR (start2_byte);
4960 memcpy (temp, start2_addr, len2_byte);
4961 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4962 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4963 memcpy (start1_addr, temp, len2_byte);
4964 SAFE_FREE ();
4965
4966 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4967 len1, current_buffer, 0);
4968 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4969 len_mid, current_buffer, 0);
4970 graft_intervals_into_buffer (tmp_interval2, start1,
4971 len2, current_buffer, 0);
4972 }
4973 else
4974 /* Second region smaller than first. */
4975 {
4976 USE_SAFE_ALLOCA;
4977
4978 record_change (start1, (end2 - start1));
4979 modify_text (start1, end2);
4980
4981 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4982 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4983 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4984
4985 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4986 if (tmp_interval3)
4987 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4988
4989 /* holds region 1 */
4990 temp = SAFE_ALLOCA (len1_byte);
4991 start1_addr = BYTE_POS_ADDR (start1_byte);
4992 start2_addr = BYTE_POS_ADDR (start2_byte);
4993 memcpy (temp, start1_addr, len1_byte);
4994 memcpy (start1_addr, start2_addr, len2_byte);
4995 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4996 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4997 SAFE_FREE ();
4998
4999 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
5000 len1, current_buffer, 0);
5001 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
5002 len_mid, current_buffer, 0);
5003 graft_intervals_into_buffer (tmp_interval2, start1,
5004 len2, current_buffer, 0);
5005 }
5006
5007 update_compositions (start1, start1 + len2, CHECK_BORDER);
5008 update_compositions (end2 - len1, end2, CHECK_BORDER);
5009 }
5010
5011 /* When doing multiple transpositions, it might be nice
5012 to optimize this. Perhaps the markers in any one buffer
5013 should be organized in some sorted data tree. */
5014 if (NILP (leave_markers))
5015 {
5016 transpose_markers (start1, end1, start2, end2,
5017 start1_byte, start1_byte + len1_byte,
5018 start2_byte, start2_byte + len2_byte);
5019 fix_start_end_in_overlays (start1, end2);
5020 }
5021
5022 signal_after_change (start1, end2 - start1, end2 - start1);
5023 return Qnil;
5024 }
5025
5026 \f
5027 void
5028 syms_of_editfns (void)
5029 {
5030 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
5031 DEFSYM (Qwall, "wall");
5032
5033 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
5034 doc: /* Non-nil means text motion commands don't notice fields. */);
5035 Vinhibit_field_text_motion = Qnil;
5036
5037 DEFVAR_LISP ("buffer-access-fontify-functions",
5038 Vbuffer_access_fontify_functions,
5039 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
5040 Each function is called with two arguments which specify the range
5041 of the buffer being accessed. */);
5042 Vbuffer_access_fontify_functions = Qnil;
5043
5044 {
5045 Lisp_Object obuf;
5046 obuf = Fcurrent_buffer ();
5047 /* Do this here, because init_buffer_once is too early--it won't work. */
5048 Fset_buffer (Vprin1_to_string_buffer);
5049 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
5050 Fset (Fmake_local_variable (Qbuffer_access_fontify_functions), Qnil);
5051 Fset_buffer (obuf);
5052 }
5053
5054 DEFVAR_LISP ("buffer-access-fontified-property",
5055 Vbuffer_access_fontified_property,
5056 doc: /* Property which (if non-nil) indicates text has been fontified.
5057 `buffer-substring' need not call the `buffer-access-fontify-functions'
5058 functions if all the text being accessed has this property. */);
5059 Vbuffer_access_fontified_property = Qnil;
5060
5061 DEFVAR_LISP ("system-name", Vsystem_name,
5062 doc: /* The host name of the machine Emacs is running on. */);
5063 Vsystem_name = cached_system_name = Qnil;
5064
5065 DEFVAR_LISP ("user-full-name", Vuser_full_name,
5066 doc: /* The full name of the user logged in. */);
5067
5068 DEFVAR_LISP ("user-login-name", Vuser_login_name,
5069 doc: /* The user's name, taken from environment variables if possible. */);
5070 Vuser_login_name = Qnil;
5071
5072 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
5073 doc: /* The user's name, based upon the real uid only. */);
5074
5075 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
5076 doc: /* The release of the operating system Emacs is running on. */);
5077
5078 defsubr (&Spropertize);
5079 defsubr (&Schar_equal);
5080 defsubr (&Sgoto_char);
5081 defsubr (&Sstring_to_char);
5082 defsubr (&Schar_to_string);
5083 defsubr (&Sbyte_to_string);
5084 defsubr (&Sbuffer_substring);
5085 defsubr (&Sbuffer_substring_no_properties);
5086 defsubr (&Sbuffer_string);
5087 defsubr (&Sget_pos_property);
5088
5089 defsubr (&Spoint_marker);
5090 defsubr (&Smark_marker);
5091 defsubr (&Spoint);
5092 defsubr (&Sregion_beginning);
5093 defsubr (&Sregion_end);
5094
5095 /* Symbol for the text property used to mark fields. */
5096 DEFSYM (Qfield, "field");
5097
5098 /* A special value for Qfield properties. */
5099 DEFSYM (Qboundary, "boundary");
5100
5101 defsubr (&Sfield_beginning);
5102 defsubr (&Sfield_end);
5103 defsubr (&Sfield_string);
5104 defsubr (&Sfield_string_no_properties);
5105 defsubr (&Sdelete_field);
5106 defsubr (&Sconstrain_to_field);
5107
5108 defsubr (&Sline_beginning_position);
5109 defsubr (&Sline_end_position);
5110
5111 defsubr (&Ssave_excursion);
5112 defsubr (&Ssave_current_buffer);
5113
5114 defsubr (&Sbuffer_size);
5115 defsubr (&Spoint_max);
5116 defsubr (&Spoint_min);
5117 defsubr (&Spoint_min_marker);
5118 defsubr (&Spoint_max_marker);
5119 defsubr (&Sgap_position);
5120 defsubr (&Sgap_size);
5121 defsubr (&Sposition_bytes);
5122 defsubr (&Sbyte_to_position);
5123
5124 defsubr (&Sbobp);
5125 defsubr (&Seobp);
5126 defsubr (&Sbolp);
5127 defsubr (&Seolp);
5128 defsubr (&Sfollowing_char);
5129 defsubr (&Sprevious_char);
5130 defsubr (&Schar_after);
5131 defsubr (&Schar_before);
5132 defsubr (&Sinsert);
5133 defsubr (&Sinsert_before_markers);
5134 defsubr (&Sinsert_and_inherit);
5135 defsubr (&Sinsert_and_inherit_before_markers);
5136 defsubr (&Sinsert_char);
5137 defsubr (&Sinsert_byte);
5138
5139 defsubr (&Suser_login_name);
5140 defsubr (&Suser_real_login_name);
5141 defsubr (&Suser_uid);
5142 defsubr (&Suser_real_uid);
5143 defsubr (&Sgroup_gid);
5144 defsubr (&Sgroup_real_gid);
5145 defsubr (&Suser_full_name);
5146 defsubr (&Semacs_pid);
5147 defsubr (&Scurrent_time);
5148 defsubr (&Stime_add);
5149 defsubr (&Stime_subtract);
5150 defsubr (&Stime_less_p);
5151 defsubr (&Sget_internal_run_time);
5152 defsubr (&Sformat_time_string);
5153 defsubr (&Sfloat_time);
5154 defsubr (&Sdecode_time);
5155 defsubr (&Sencode_time);
5156 defsubr (&Scurrent_time_string);
5157 defsubr (&Scurrent_time_zone);
5158 defsubr (&Sset_time_zone_rule);
5159 defsubr (&Ssystem_name);
5160 defsubr (&Smessage);
5161 defsubr (&Smessage_box);
5162 defsubr (&Smessage_or_box);
5163 defsubr (&Scurrent_message);
5164 defsubr (&Sformat);
5165 defsubr (&Sformat_message);
5166
5167 defsubr (&Sinsert_buffer_substring);
5168 defsubr (&Scompare_buffer_substrings);
5169 defsubr (&Ssubst_char_in_region);
5170 defsubr (&Stranslate_region_internal);
5171 defsubr (&Sdelete_region);
5172 defsubr (&Sdelete_and_extract_region);
5173 defsubr (&Swiden);
5174 defsubr (&Snarrow_to_region);
5175 defsubr (&Ssave_restriction);
5176 defsubr (&Stranspose_regions);
5177 }