]> code.delx.au - gnu-emacs/blob - src/regex.c
*** empty log message ***
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
21 USA. */
22
23 /* TODO:
24 - structure the opcode space into opcode+flag.
25 - merge with glibc's regex.[ch].
26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
30 */
31
32 /* AIX requires this to be the first thing in the file. */
33 #if defined _AIX && !defined REGEX_MALLOC
34 #pragma alloca
35 #endif
36
37 #ifdef HAVE_CONFIG_H
38 # include <config.h>
39 #endif
40
41 #if defined STDC_HEADERS && !defined emacs
42 # include <stddef.h>
43 #else
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
45 # include <sys/types.h>
46 #endif
47
48 /* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
50 #if defined _LIBC
51 #define WIDE_CHAR_SUPPORT 1
52 #else
53 #define WIDE_CHAR_SUPPORT \
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55 #endif
56
57 /* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
59 #if WIDE_CHAR_SUPPORT
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61 # include <wchar.h>
62 # include <wctype.h>
63 #endif
64
65 #ifdef _LIBC
66 /* We have to keep the namespace clean. */
67 # define regfree(preg) __regfree (preg)
68 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 # define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72 # define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 # define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78 # define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80 # define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82 # define re_set_syntax(syntax) __re_set_syntax (syntax)
83 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
87 /* Make sure we call libc's function even if the user overrides them. */
88 # define btowc __btowc
89 # define iswctype __iswctype
90 # define wctype __wctype
91
92 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94 /* We are also using some library internals. */
95 # include <locale/localeinfo.h>
96 # include <locale/elem-hash.h>
97 # include <langinfo.h>
98 #else
99 # define WEAK_ALIAS(a,b)
100 #endif
101
102 /* This is for other GNU distributions with internationalized messages. */
103 #if HAVE_LIBINTL_H || defined _LIBC
104 # include <libintl.h>
105 #else
106 # define gettext(msgid) (msgid)
107 #endif
108
109 #ifndef gettext_noop
110 /* This define is so xgettext can find the internationalizable
111 strings. */
112 # define gettext_noop(String) String
113 #endif
114
115 /* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117 #ifdef emacs
118
119 # include "lisp.h"
120 # include "buffer.h"
121
122 /* Make syntax table lookup grant data in gl_state. */
123 # define SYNTAX_ENTRY_VIA_PROPERTY
124
125 # include "syntax.h"
126 # include "charset.h"
127 # include "category.h"
128
129 # ifdef malloc
130 # undef malloc
131 # endif
132 # define malloc xmalloc
133 # ifdef realloc
134 # undef realloc
135 # endif
136 # define realloc xrealloc
137 # ifdef free
138 # undef free
139 # endif
140 # define free xfree
141
142 /* Converts the pointer to the char to BEG-based offset from the start. */
143 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147 # define RE_STRING_CHAR(p, s) \
148 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
149 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
150 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151
152 /* Set C a (possibly multibyte) character before P. P points into a
153 string which is the virtual concatenation of STR1 (which ends at
154 END1) or STR2 (which ends at END2). */
155 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
156 do { \
157 if (multibyte) \
158 { \
159 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
160 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
161 re_char *d0 = dtemp; \
162 PREV_CHAR_BOUNDARY (d0, dlimit); \
163 c = STRING_CHAR (d0, dtemp - d0); \
164 } \
165 else \
166 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
167 } while (0)
168
169
170 #else /* not emacs */
171
172 /* If we are not linking with Emacs proper,
173 we can't use the relocating allocator
174 even if config.h says that we can. */
175 # undef REL_ALLOC
176
177 # if defined STDC_HEADERS || defined _LIBC
178 # include <stdlib.h>
179 # else
180 char *malloc ();
181 char *realloc ();
182 # endif
183
184 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
185
186 void *
187 xmalloc (size)
188 size_t size;
189 {
190 register void *val;
191 val = (void *) malloc (size);
192 if (!val && size)
193 {
194 write (2, "virtual memory exhausted\n", 25);
195 exit (1);
196 }
197 return val;
198 }
199
200 void *
201 xrealloc (block, size)
202 void *block;
203 size_t size;
204 {
205 register void *val;
206 /* We must call malloc explicitly when BLOCK is 0, since some
207 reallocs don't do this. */
208 if (! block)
209 val = (void *) malloc (size);
210 else
211 val = (void *) realloc (block, size);
212 if (!val && size)
213 {
214 write (2, "virtual memory exhausted\n", 25);
215 exit (1);
216 }
217 return val;
218 }
219
220 # ifdef malloc
221 # undef malloc
222 # endif
223 # define malloc xmalloc
224 # ifdef realloc
225 # undef realloc
226 # endif
227 # define realloc xrealloc
228
229 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
230 If nothing else has been done, use the method below. */
231 # ifdef INHIBIT_STRING_HEADER
232 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
233 # if !defined bzero && !defined bcopy
234 # undef INHIBIT_STRING_HEADER
235 # endif
236 # endif
237 # endif
238
239 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
240 This is used in most programs--a few other programs avoid this
241 by defining INHIBIT_STRING_HEADER. */
242 # ifndef INHIBIT_STRING_HEADER
243 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
244 # include <string.h>
245 # ifndef bzero
246 # ifndef _LIBC
247 # define bzero(s, n) (memset (s, '\0', n), (s))
248 # else
249 # define bzero(s, n) __bzero (s, n)
250 # endif
251 # endif
252 # else
253 # include <strings.h>
254 # ifndef memcmp
255 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
256 # endif
257 # ifndef memcpy
258 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
259 # endif
260 # endif
261 # endif
262
263 /* Define the syntax stuff for \<, \>, etc. */
264
265 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
266 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
267
268 # ifdef SWITCH_ENUM_BUG
269 # define SWITCH_ENUM_CAST(x) ((int)(x))
270 # else
271 # define SWITCH_ENUM_CAST(x) (x)
272 # endif
273
274 /* Dummy macros for non-Emacs environments. */
275 # define BASE_LEADING_CODE_P(c) (0)
276 # define CHAR_CHARSET(c) 0
277 # define CHARSET_LEADING_CODE_BASE(c) 0
278 # define MAX_MULTIBYTE_LENGTH 1
279 # define RE_MULTIBYTE_P(x) 0
280 # define WORD_BOUNDARY_P(c1, c2) (0)
281 # define CHAR_HEAD_P(p) (1)
282 # define SINGLE_BYTE_CHAR_P(c) (1)
283 # define SAME_CHARSET_P(c1, c2) (1)
284 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
285 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
286 # define STRING_CHAR(p, s) (*(p))
287 # define RE_STRING_CHAR STRING_CHAR
288 # define CHAR_STRING(c, s) (*(s) = (c), 1)
289 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
290 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
291 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
292 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
293 # define MAKE_CHAR(charset, c1, c2) (c1)
294 #endif /* not emacs */
295
296 #ifndef RE_TRANSLATE
297 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
298 # define RE_TRANSLATE_P(TBL) (TBL)
299 #endif
300 \f
301 /* Get the interface, including the syntax bits. */
302 #include "regex.h"
303
304 /* isalpha etc. are used for the character classes. */
305 #include <ctype.h>
306
307 #ifdef emacs
308
309 /* 1 if C is an ASCII character. */
310 # define IS_REAL_ASCII(c) ((c) < 0200)
311
312 /* 1 if C is a unibyte character. */
313 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
314
315 /* The Emacs definitions should not be directly affected by locales. */
316
317 /* In Emacs, these are only used for single-byte characters. */
318 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
319 # define ISCNTRL(c) ((c) < ' ')
320 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
321 || ((c) >= 'a' && (c) <= 'f') \
322 || ((c) >= 'A' && (c) <= 'F'))
323
324 /* This is only used for single-byte characters. */
325 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
326
327 /* The rest must handle multibyte characters. */
328
329 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
330 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
331 : 1)
332
333 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
334 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
335 : 1)
336
337 # define ISALNUM(c) (IS_REAL_ASCII (c) \
338 ? (((c) >= 'a' && (c) <= 'z') \
339 || ((c) >= 'A' && (c) <= 'Z') \
340 || ((c) >= '0' && (c) <= '9')) \
341 : SYNTAX (c) == Sword)
342
343 # define ISALPHA(c) (IS_REAL_ASCII (c) \
344 ? (((c) >= 'a' && (c) <= 'z') \
345 || ((c) >= 'A' && (c) <= 'Z')) \
346 : SYNTAX (c) == Sword)
347
348 # define ISLOWER(c) (LOWERCASEP (c))
349
350 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
351 ? ((c) > ' ' && (c) < 0177 \
352 && !(((c) >= 'a' && (c) <= 'z') \
353 || ((c) >= 'A' && (c) <= 'Z') \
354 || ((c) >= '0' && (c) <= '9'))) \
355 : SYNTAX (c) != Sword)
356
357 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
358
359 # define ISUPPER(c) (UPPERCASEP (c))
360
361 # define ISWORD(c) (SYNTAX (c) == Sword)
362
363 #else /* not emacs */
364
365 /* Jim Meyering writes:
366
367 "... Some ctype macros are valid only for character codes that
368 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
369 using /bin/cc or gcc but without giving an ansi option). So, all
370 ctype uses should be through macros like ISPRINT... If
371 STDC_HEADERS is defined, then autoconf has verified that the ctype
372 macros don't need to be guarded with references to isascii. ...
373 Defining isascii to 1 should let any compiler worth its salt
374 eliminate the && through constant folding."
375 Solaris defines some of these symbols so we must undefine them first. */
376
377 # undef ISASCII
378 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
379 # define ISASCII(c) 1
380 # else
381 # define ISASCII(c) isascii(c)
382 # endif
383
384 /* 1 if C is an ASCII character. */
385 # define IS_REAL_ASCII(c) ((c) < 0200)
386
387 /* This distinction is not meaningful, except in Emacs. */
388 # define ISUNIBYTE(c) 1
389
390 # ifdef isblank
391 # define ISBLANK(c) (ISASCII (c) && isblank (c))
392 # else
393 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
394 # endif
395 # ifdef isgraph
396 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
397 # else
398 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
399 # endif
400
401 # undef ISPRINT
402 # define ISPRINT(c) (ISASCII (c) && isprint (c))
403 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
404 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
405 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
406 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
407 # define ISLOWER(c) (ISASCII (c) && islower (c))
408 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
409 # define ISSPACE(c) (ISASCII (c) && isspace (c))
410 # define ISUPPER(c) (ISASCII (c) && isupper (c))
411 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
412
413 # define ISWORD(c) ISALPHA(c)
414
415 # ifdef _tolower
416 # define TOLOWER(c) _tolower(c)
417 # else
418 # define TOLOWER(c) tolower(c)
419 # endif
420
421 /* How many characters in the character set. */
422 # define CHAR_SET_SIZE 256
423
424 # ifdef SYNTAX_TABLE
425
426 extern char *re_syntax_table;
427
428 # else /* not SYNTAX_TABLE */
429
430 static char re_syntax_table[CHAR_SET_SIZE];
431
432 static void
433 init_syntax_once ()
434 {
435 register int c;
436 static int done = 0;
437
438 if (done)
439 return;
440
441 bzero (re_syntax_table, sizeof re_syntax_table);
442
443 for (c = 0; c < CHAR_SET_SIZE; ++c)
444 if (ISALNUM (c))
445 re_syntax_table[c] = Sword;
446
447 re_syntax_table['_'] = Ssymbol;
448
449 done = 1;
450 }
451
452 # endif /* not SYNTAX_TABLE */
453
454 # define SYNTAX(c) re_syntax_table[(c)]
455
456 #endif /* not emacs */
457 \f
458 #ifndef NULL
459 # define NULL (void *)0
460 #endif
461
462 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
463 since ours (we hope) works properly with all combinations of
464 machines, compilers, `char' and `unsigned char' argument types.
465 (Per Bothner suggested the basic approach.) */
466 #undef SIGN_EXTEND_CHAR
467 #if __STDC__
468 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
469 #else /* not __STDC__ */
470 /* As in Harbison and Steele. */
471 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
472 #endif
473 \f
474 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
475 use `alloca' instead of `malloc'. This is because using malloc in
476 re_search* or re_match* could cause memory leaks when C-g is used in
477 Emacs; also, malloc is slower and causes storage fragmentation. On
478 the other hand, malloc is more portable, and easier to debug.
479
480 Because we sometimes use alloca, some routines have to be macros,
481 not functions -- `alloca'-allocated space disappears at the end of the
482 function it is called in. */
483
484 #ifdef REGEX_MALLOC
485
486 # define REGEX_ALLOCATE malloc
487 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
488 # define REGEX_FREE free
489
490 #else /* not REGEX_MALLOC */
491
492 /* Emacs already defines alloca, sometimes. */
493 # ifndef alloca
494
495 /* Make alloca work the best possible way. */
496 # ifdef __GNUC__
497 # define alloca __builtin_alloca
498 # else /* not __GNUC__ */
499 # if HAVE_ALLOCA_H
500 # include <alloca.h>
501 # endif /* HAVE_ALLOCA_H */
502 # endif /* not __GNUC__ */
503
504 # endif /* not alloca */
505
506 # define REGEX_ALLOCATE alloca
507
508 /* Assumes a `char *destination' variable. */
509 # define REGEX_REALLOCATE(source, osize, nsize) \
510 (destination = (char *) alloca (nsize), \
511 memcpy (destination, source, osize))
512
513 /* No need to do anything to free, after alloca. */
514 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
515
516 #endif /* not REGEX_MALLOC */
517
518 /* Define how to allocate the failure stack. */
519
520 #if defined REL_ALLOC && defined REGEX_MALLOC
521
522 # define REGEX_ALLOCATE_STACK(size) \
523 r_alloc (&failure_stack_ptr, (size))
524 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
525 r_re_alloc (&failure_stack_ptr, (nsize))
526 # define REGEX_FREE_STACK(ptr) \
527 r_alloc_free (&failure_stack_ptr)
528
529 #else /* not using relocating allocator */
530
531 # ifdef REGEX_MALLOC
532
533 # define REGEX_ALLOCATE_STACK malloc
534 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
535 # define REGEX_FREE_STACK free
536
537 # else /* not REGEX_MALLOC */
538
539 # define REGEX_ALLOCATE_STACK alloca
540
541 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
542 REGEX_REALLOCATE (source, osize, nsize)
543 /* No need to explicitly free anything. */
544 # define REGEX_FREE_STACK(arg) ((void)0)
545
546 # endif /* not REGEX_MALLOC */
547 #endif /* not using relocating allocator */
548
549
550 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
551 `string1' or just past its end. This works if PTR is NULL, which is
552 a good thing. */
553 #define FIRST_STRING_P(ptr) \
554 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
555
556 /* (Re)Allocate N items of type T using malloc, or fail. */
557 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
558 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
559 #define RETALLOC_IF(addr, n, t) \
560 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
561 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
562
563 #define BYTEWIDTH 8 /* In bits. */
564
565 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
566
567 #undef MAX
568 #undef MIN
569 #define MAX(a, b) ((a) > (b) ? (a) : (b))
570 #define MIN(a, b) ((a) < (b) ? (a) : (b))
571
572 /* Type of source-pattern and string chars. */
573 typedef const unsigned char re_char;
574
575 typedef char boolean;
576 #define false 0
577 #define true 1
578
579 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
580 re_char *string1, int size1,
581 re_char *string2, int size2,
582 int pos,
583 struct re_registers *regs,
584 int stop));
585 \f
586 /* These are the command codes that appear in compiled regular
587 expressions. Some opcodes are followed by argument bytes. A
588 command code can specify any interpretation whatsoever for its
589 arguments. Zero bytes may appear in the compiled regular expression. */
590
591 typedef enum
592 {
593 no_op = 0,
594
595 /* Succeed right away--no more backtracking. */
596 succeed,
597
598 /* Followed by one byte giving n, then by n literal bytes. */
599 exactn,
600
601 /* Matches any (more or less) character. */
602 anychar,
603
604 /* Matches any one char belonging to specified set. First
605 following byte is number of bitmap bytes. Then come bytes
606 for a bitmap saying which chars are in. Bits in each byte
607 are ordered low-bit-first. A character is in the set if its
608 bit is 1. A character too large to have a bit in the map is
609 automatically not in the set.
610
611 If the length byte has the 0x80 bit set, then that stuff
612 is followed by a range table:
613 2 bytes of flags for character sets (low 8 bits, high 8 bits)
614 See RANGE_TABLE_WORK_BITS below.
615 2 bytes, the number of pairs that follow (upto 32767)
616 pairs, each 2 multibyte characters,
617 each multibyte character represented as 3 bytes. */
618 charset,
619
620 /* Same parameters as charset, but match any character that is
621 not one of those specified. */
622 charset_not,
623
624 /* Start remembering the text that is matched, for storing in a
625 register. Followed by one byte with the register number, in
626 the range 0 to one less than the pattern buffer's re_nsub
627 field. */
628 start_memory,
629
630 /* Stop remembering the text that is matched and store it in a
631 memory register. Followed by one byte with the register
632 number, in the range 0 to one less than `re_nsub' in the
633 pattern buffer. */
634 stop_memory,
635
636 /* Match a duplicate of something remembered. Followed by one
637 byte containing the register number. */
638 duplicate,
639
640 /* Fail unless at beginning of line. */
641 begline,
642
643 /* Fail unless at end of line. */
644 endline,
645
646 /* Succeeds if at beginning of buffer (if emacs) or at beginning
647 of string to be matched (if not). */
648 begbuf,
649
650 /* Analogously, for end of buffer/string. */
651 endbuf,
652
653 /* Followed by two byte relative address to which to jump. */
654 jump,
655
656 /* Followed by two-byte relative address of place to resume at
657 in case of failure. */
658 on_failure_jump,
659
660 /* Like on_failure_jump, but pushes a placeholder instead of the
661 current string position when executed. */
662 on_failure_keep_string_jump,
663
664 /* Just like `on_failure_jump', except that it checks that we
665 don't get stuck in an infinite loop (matching an empty string
666 indefinitely). */
667 on_failure_jump_loop,
668
669 /* Just like `on_failure_jump_loop', except that it checks for
670 a different kind of loop (the kind that shows up with non-greedy
671 operators). This operation has to be immediately preceded
672 by a `no_op'. */
673 on_failure_jump_nastyloop,
674
675 /* A smart `on_failure_jump' used for greedy * and + operators.
676 It analyses the loop before which it is put and if the
677 loop does not require backtracking, it changes itself to
678 `on_failure_keep_string_jump' and short-circuits the loop,
679 else it just defaults to changing itself into `on_failure_jump'.
680 It assumes that it is pointing to just past a `jump'. */
681 on_failure_jump_smart,
682
683 /* Followed by two-byte relative address and two-byte number n.
684 After matching N times, jump to the address upon failure.
685 Does not work if N starts at 0: use on_failure_jump_loop
686 instead. */
687 succeed_n,
688
689 /* Followed by two-byte relative address, and two-byte number n.
690 Jump to the address N times, then fail. */
691 jump_n,
692
693 /* Set the following two-byte relative address to the
694 subsequent two-byte number. The address *includes* the two
695 bytes of number. */
696 set_number_at,
697
698 wordbeg, /* Succeeds if at word beginning. */
699 wordend, /* Succeeds if at word end. */
700
701 wordbound, /* Succeeds if at a word boundary. */
702 notwordbound, /* Succeeds if not at a word boundary. */
703
704 symbeg, /* Succeeds if at symbol beginning. */
705 symend, /* Succeeds if at symbol end. */
706
707 /* Matches any character whose syntax is specified. Followed by
708 a byte which contains a syntax code, e.g., Sword. */
709 syntaxspec,
710
711 /* Matches any character whose syntax is not that specified. */
712 notsyntaxspec
713
714 #ifdef emacs
715 ,before_dot, /* Succeeds if before point. */
716 at_dot, /* Succeeds if at point. */
717 after_dot, /* Succeeds if after point. */
718
719 /* Matches any character whose category-set contains the specified
720 category. The operator is followed by a byte which contains a
721 category code (mnemonic ASCII character). */
722 categoryspec,
723
724 /* Matches any character whose category-set does not contain the
725 specified category. The operator is followed by a byte which
726 contains the category code (mnemonic ASCII character). */
727 notcategoryspec
728 #endif /* emacs */
729 } re_opcode_t;
730 \f
731 /* Common operations on the compiled pattern. */
732
733 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
734
735 #define STORE_NUMBER(destination, number) \
736 do { \
737 (destination)[0] = (number) & 0377; \
738 (destination)[1] = (number) >> 8; \
739 } while (0)
740
741 /* Same as STORE_NUMBER, except increment DESTINATION to
742 the byte after where the number is stored. Therefore, DESTINATION
743 must be an lvalue. */
744
745 #define STORE_NUMBER_AND_INCR(destination, number) \
746 do { \
747 STORE_NUMBER (destination, number); \
748 (destination) += 2; \
749 } while (0)
750
751 /* Put into DESTINATION a number stored in two contiguous bytes starting
752 at SOURCE. */
753
754 #define EXTRACT_NUMBER(destination, source) \
755 do { \
756 (destination) = *(source) & 0377; \
757 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
758 } while (0)
759
760 #ifdef DEBUG
761 static void extract_number _RE_ARGS ((int *dest, re_char *source));
762 static void
763 extract_number (dest, source)
764 int *dest;
765 re_char *source;
766 {
767 int temp = SIGN_EXTEND_CHAR (*(source + 1));
768 *dest = *source & 0377;
769 *dest += temp << 8;
770 }
771
772 # ifndef EXTRACT_MACROS /* To debug the macros. */
773 # undef EXTRACT_NUMBER
774 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
775 # endif /* not EXTRACT_MACROS */
776
777 #endif /* DEBUG */
778
779 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
780 SOURCE must be an lvalue. */
781
782 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
783 do { \
784 EXTRACT_NUMBER (destination, source); \
785 (source) += 2; \
786 } while (0)
787
788 #ifdef DEBUG
789 static void extract_number_and_incr _RE_ARGS ((int *destination,
790 re_char **source));
791 static void
792 extract_number_and_incr (destination, source)
793 int *destination;
794 re_char **source;
795 {
796 extract_number (destination, *source);
797 *source += 2;
798 }
799
800 # ifndef EXTRACT_MACROS
801 # undef EXTRACT_NUMBER_AND_INCR
802 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
803 extract_number_and_incr (&dest, &src)
804 # endif /* not EXTRACT_MACROS */
805
806 #endif /* DEBUG */
807 \f
808 /* Store a multibyte character in three contiguous bytes starting
809 DESTINATION, and increment DESTINATION to the byte after where the
810 character is stored. Therefore, DESTINATION must be an lvalue. */
811
812 #define STORE_CHARACTER_AND_INCR(destination, character) \
813 do { \
814 (destination)[0] = (character) & 0377; \
815 (destination)[1] = ((character) >> 8) & 0377; \
816 (destination)[2] = (character) >> 16; \
817 (destination) += 3; \
818 } while (0)
819
820 /* Put into DESTINATION a character stored in three contiguous bytes
821 starting at SOURCE. */
822
823 #define EXTRACT_CHARACTER(destination, source) \
824 do { \
825 (destination) = ((source)[0] \
826 | ((source)[1] << 8) \
827 | ((source)[2] << 16)); \
828 } while (0)
829
830
831 /* Macros for charset. */
832
833 /* Size of bitmap of charset P in bytes. P is a start of charset,
834 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
835 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
836
837 /* Nonzero if charset P has range table. */
838 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
839
840 /* Return the address of range table of charset P. But not the start
841 of table itself, but the before where the number of ranges is
842 stored. `2 +' means to skip re_opcode_t and size of bitmap,
843 and the 2 bytes of flags at the start of the range table. */
844 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
845
846 /* Extract the bit flags that start a range table. */
847 #define CHARSET_RANGE_TABLE_BITS(p) \
848 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
849 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
850
851 /* Test if C is listed in the bitmap of charset P. */
852 #define CHARSET_LOOKUP_BITMAP(p, c) \
853 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
854 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
855
856 /* Return the address of end of RANGE_TABLE. COUNT is number of
857 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
858 is start of range and end of range. `* 3' is size of each start
859 and end. */
860 #define CHARSET_RANGE_TABLE_END(range_table, count) \
861 ((range_table) + (count) * 2 * 3)
862
863 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
864 COUNT is number of ranges in RANGE_TABLE. */
865 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
866 do \
867 { \
868 re_wchar_t range_start, range_end; \
869 re_char *p; \
870 re_char *range_table_end \
871 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
872 \
873 for (p = (range_table); p < range_table_end; p += 2 * 3) \
874 { \
875 EXTRACT_CHARACTER (range_start, p); \
876 EXTRACT_CHARACTER (range_end, p + 3); \
877 \
878 if (range_start <= (c) && (c) <= range_end) \
879 { \
880 (not) = !(not); \
881 break; \
882 } \
883 } \
884 } \
885 while (0)
886
887 /* Test if C is in range table of CHARSET. The flag NOT is negated if
888 C is listed in it. */
889 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
890 do \
891 { \
892 /* Number of ranges in range table. */ \
893 int count; \
894 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
895 \
896 EXTRACT_NUMBER_AND_INCR (count, range_table); \
897 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
898 } \
899 while (0)
900 \f
901 /* If DEBUG is defined, Regex prints many voluminous messages about what
902 it is doing (if the variable `debug' is nonzero). If linked with the
903 main program in `iregex.c', you can enter patterns and strings
904 interactively. And if linked with the main program in `main.c' and
905 the other test files, you can run the already-written tests. */
906
907 #ifdef DEBUG
908
909 /* We use standard I/O for debugging. */
910 # include <stdio.h>
911
912 /* It is useful to test things that ``must'' be true when debugging. */
913 # include <assert.h>
914
915 static int debug = -100000;
916
917 # define DEBUG_STATEMENT(e) e
918 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
919 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
920 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
921 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
922 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
923 if (debug > 0) print_partial_compiled_pattern (s, e)
924 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
925 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
926
927
928 /* Print the fastmap in human-readable form. */
929
930 void
931 print_fastmap (fastmap)
932 char *fastmap;
933 {
934 unsigned was_a_range = 0;
935 unsigned i = 0;
936
937 while (i < (1 << BYTEWIDTH))
938 {
939 if (fastmap[i++])
940 {
941 was_a_range = 0;
942 putchar (i - 1);
943 while (i < (1 << BYTEWIDTH) && fastmap[i])
944 {
945 was_a_range = 1;
946 i++;
947 }
948 if (was_a_range)
949 {
950 printf ("-");
951 putchar (i - 1);
952 }
953 }
954 }
955 putchar ('\n');
956 }
957
958
959 /* Print a compiled pattern string in human-readable form, starting at
960 the START pointer into it and ending just before the pointer END. */
961
962 void
963 print_partial_compiled_pattern (start, end)
964 re_char *start;
965 re_char *end;
966 {
967 int mcnt, mcnt2;
968 re_char *p = start;
969 re_char *pend = end;
970
971 if (start == NULL)
972 {
973 fprintf (stderr, "(null)\n");
974 return;
975 }
976
977 /* Loop over pattern commands. */
978 while (p < pend)
979 {
980 fprintf (stderr, "%d:\t", p - start);
981
982 switch ((re_opcode_t) *p++)
983 {
984 case no_op:
985 fprintf (stderr, "/no_op");
986 break;
987
988 case succeed:
989 fprintf (stderr, "/succeed");
990 break;
991
992 case exactn:
993 mcnt = *p++;
994 fprintf (stderr, "/exactn/%d", mcnt);
995 do
996 {
997 fprintf (stderr, "/%c", *p++);
998 }
999 while (--mcnt);
1000 break;
1001
1002 case start_memory:
1003 fprintf (stderr, "/start_memory/%d", *p++);
1004 break;
1005
1006 case stop_memory:
1007 fprintf (stderr, "/stop_memory/%d", *p++);
1008 break;
1009
1010 case duplicate:
1011 fprintf (stderr, "/duplicate/%d", *p++);
1012 break;
1013
1014 case anychar:
1015 fprintf (stderr, "/anychar");
1016 break;
1017
1018 case charset:
1019 case charset_not:
1020 {
1021 register int c, last = -100;
1022 register int in_range = 0;
1023 int length = CHARSET_BITMAP_SIZE (p - 1);
1024 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1025
1026 fprintf (stderr, "/charset [%s",
1027 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1028
1029 if (p + *p >= pend)
1030 fprintf (stderr, " !extends past end of pattern! ");
1031
1032 for (c = 0; c < 256; c++)
1033 if (c / 8 < length
1034 && (p[1 + (c/8)] & (1 << (c % 8))))
1035 {
1036 /* Are we starting a range? */
1037 if (last + 1 == c && ! in_range)
1038 {
1039 fprintf (stderr, "-");
1040 in_range = 1;
1041 }
1042 /* Have we broken a range? */
1043 else if (last + 1 != c && in_range)
1044 {
1045 fprintf (stderr, "%c", last);
1046 in_range = 0;
1047 }
1048
1049 if (! in_range)
1050 fprintf (stderr, "%c", c);
1051
1052 last = c;
1053 }
1054
1055 if (in_range)
1056 fprintf (stderr, "%c", last);
1057
1058 fprintf (stderr, "]");
1059
1060 p += 1 + length;
1061
1062 if (has_range_table)
1063 {
1064 int count;
1065 fprintf (stderr, "has-range-table");
1066
1067 /* ??? Should print the range table; for now, just skip it. */
1068 p += 2; /* skip range table bits */
1069 EXTRACT_NUMBER_AND_INCR (count, p);
1070 p = CHARSET_RANGE_TABLE_END (p, count);
1071 }
1072 }
1073 break;
1074
1075 case begline:
1076 fprintf (stderr, "/begline");
1077 break;
1078
1079 case endline:
1080 fprintf (stderr, "/endline");
1081 break;
1082
1083 case on_failure_jump:
1084 extract_number_and_incr (&mcnt, &p);
1085 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1086 break;
1087
1088 case on_failure_keep_string_jump:
1089 extract_number_and_incr (&mcnt, &p);
1090 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1091 break;
1092
1093 case on_failure_jump_nastyloop:
1094 extract_number_and_incr (&mcnt, &p);
1095 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1096 break;
1097
1098 case on_failure_jump_loop:
1099 extract_number_and_incr (&mcnt, &p);
1100 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1101 break;
1102
1103 case on_failure_jump_smart:
1104 extract_number_and_incr (&mcnt, &p);
1105 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1106 break;
1107
1108 case jump:
1109 extract_number_and_incr (&mcnt, &p);
1110 fprintf (stderr, "/jump to %d", p + mcnt - start);
1111 break;
1112
1113 case succeed_n:
1114 extract_number_and_incr (&mcnt, &p);
1115 extract_number_and_incr (&mcnt2, &p);
1116 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1117 break;
1118
1119 case jump_n:
1120 extract_number_and_incr (&mcnt, &p);
1121 extract_number_and_incr (&mcnt2, &p);
1122 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1123 break;
1124
1125 case set_number_at:
1126 extract_number_and_incr (&mcnt, &p);
1127 extract_number_and_incr (&mcnt2, &p);
1128 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1129 break;
1130
1131 case wordbound:
1132 fprintf (stderr, "/wordbound");
1133 break;
1134
1135 case notwordbound:
1136 fprintf (stderr, "/notwordbound");
1137 break;
1138
1139 case wordbeg:
1140 fprintf (stderr, "/wordbeg");
1141 break;
1142
1143 case wordend:
1144 fprintf (stderr, "/wordend");
1145 break;
1146
1147 case symbeg:
1148 fprintf (stderr, "/symbeg");
1149 break;
1150
1151 case symend:
1152 fprintf (stderr, "/symend");
1153 break;
1154
1155 case syntaxspec:
1156 fprintf (stderr, "/syntaxspec");
1157 mcnt = *p++;
1158 fprintf (stderr, "/%d", mcnt);
1159 break;
1160
1161 case notsyntaxspec:
1162 fprintf (stderr, "/notsyntaxspec");
1163 mcnt = *p++;
1164 fprintf (stderr, "/%d", mcnt);
1165 break;
1166
1167 # ifdef emacs
1168 case before_dot:
1169 fprintf (stderr, "/before_dot");
1170 break;
1171
1172 case at_dot:
1173 fprintf (stderr, "/at_dot");
1174 break;
1175
1176 case after_dot:
1177 fprintf (stderr, "/after_dot");
1178 break;
1179
1180 case categoryspec:
1181 fprintf (stderr, "/categoryspec");
1182 mcnt = *p++;
1183 fprintf (stderr, "/%d", mcnt);
1184 break;
1185
1186 case notcategoryspec:
1187 fprintf (stderr, "/notcategoryspec");
1188 mcnt = *p++;
1189 fprintf (stderr, "/%d", mcnt);
1190 break;
1191 # endif /* emacs */
1192
1193 case begbuf:
1194 fprintf (stderr, "/begbuf");
1195 break;
1196
1197 case endbuf:
1198 fprintf (stderr, "/endbuf");
1199 break;
1200
1201 default:
1202 fprintf (stderr, "?%d", *(p-1));
1203 }
1204
1205 fprintf (stderr, "\n");
1206 }
1207
1208 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1209 }
1210
1211
1212 void
1213 print_compiled_pattern (bufp)
1214 struct re_pattern_buffer *bufp;
1215 {
1216 re_char *buffer = bufp->buffer;
1217
1218 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1219 printf ("%ld bytes used/%ld bytes allocated.\n",
1220 bufp->used, bufp->allocated);
1221
1222 if (bufp->fastmap_accurate && bufp->fastmap)
1223 {
1224 printf ("fastmap: ");
1225 print_fastmap (bufp->fastmap);
1226 }
1227
1228 printf ("re_nsub: %d\t", bufp->re_nsub);
1229 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1230 printf ("can_be_null: %d\t", bufp->can_be_null);
1231 printf ("no_sub: %d\t", bufp->no_sub);
1232 printf ("not_bol: %d\t", bufp->not_bol);
1233 printf ("not_eol: %d\t", bufp->not_eol);
1234 printf ("syntax: %lx\n", bufp->syntax);
1235 fflush (stdout);
1236 /* Perhaps we should print the translate table? */
1237 }
1238
1239
1240 void
1241 print_double_string (where, string1, size1, string2, size2)
1242 re_char *where;
1243 re_char *string1;
1244 re_char *string2;
1245 int size1;
1246 int size2;
1247 {
1248 int this_char;
1249
1250 if (where == NULL)
1251 printf ("(null)");
1252 else
1253 {
1254 if (FIRST_STRING_P (where))
1255 {
1256 for (this_char = where - string1; this_char < size1; this_char++)
1257 putchar (string1[this_char]);
1258
1259 where = string2;
1260 }
1261
1262 for (this_char = where - string2; this_char < size2; this_char++)
1263 putchar (string2[this_char]);
1264 }
1265 }
1266
1267 #else /* not DEBUG */
1268
1269 # undef assert
1270 # define assert(e)
1271
1272 # define DEBUG_STATEMENT(e)
1273 # define DEBUG_PRINT1(x)
1274 # define DEBUG_PRINT2(x1, x2)
1275 # define DEBUG_PRINT3(x1, x2, x3)
1276 # define DEBUG_PRINT4(x1, x2, x3, x4)
1277 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1278 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1279
1280 #endif /* not DEBUG */
1281 \f
1282 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1283 also be assigned to arbitrarily: each pattern buffer stores its own
1284 syntax, so it can be changed between regex compilations. */
1285 /* This has no initializer because initialized variables in Emacs
1286 become read-only after dumping. */
1287 reg_syntax_t re_syntax_options;
1288
1289
1290 /* Specify the precise syntax of regexps for compilation. This provides
1291 for compatibility for various utilities which historically have
1292 different, incompatible syntaxes.
1293
1294 The argument SYNTAX is a bit mask comprised of the various bits
1295 defined in regex.h. We return the old syntax. */
1296
1297 reg_syntax_t
1298 re_set_syntax (syntax)
1299 reg_syntax_t syntax;
1300 {
1301 reg_syntax_t ret = re_syntax_options;
1302
1303 re_syntax_options = syntax;
1304 return ret;
1305 }
1306 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1307
1308 /* Regexp to use to replace spaces, or NULL meaning don't. */
1309 static re_char *whitespace_regexp;
1310
1311 void
1312 re_set_whitespace_regexp (regexp)
1313 const char *regexp;
1314 {
1315 whitespace_regexp = (re_char *) regexp;
1316 }
1317 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1318 \f
1319 /* This table gives an error message for each of the error codes listed
1320 in regex.h. Obviously the order here has to be same as there.
1321 POSIX doesn't require that we do anything for REG_NOERROR,
1322 but why not be nice? */
1323
1324 static const char *re_error_msgid[] =
1325 {
1326 gettext_noop ("Success"), /* REG_NOERROR */
1327 gettext_noop ("No match"), /* REG_NOMATCH */
1328 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1329 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1330 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1331 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1332 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1333 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1334 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1335 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1336 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1337 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1338 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1339 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1340 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1341 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1342 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1343 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1344 };
1345 \f
1346 /* Avoiding alloca during matching, to placate r_alloc. */
1347
1348 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1349 searching and matching functions should not call alloca. On some
1350 systems, alloca is implemented in terms of malloc, and if we're
1351 using the relocating allocator routines, then malloc could cause a
1352 relocation, which might (if the strings being searched are in the
1353 ralloc heap) shift the data out from underneath the regexp
1354 routines.
1355
1356 Here's another reason to avoid allocation: Emacs
1357 processes input from X in a signal handler; processing X input may
1358 call malloc; if input arrives while a matching routine is calling
1359 malloc, then we're scrod. But Emacs can't just block input while
1360 calling matching routines; then we don't notice interrupts when
1361 they come in. So, Emacs blocks input around all regexp calls
1362 except the matching calls, which it leaves unprotected, in the
1363 faith that they will not malloc. */
1364
1365 /* Normally, this is fine. */
1366 #define MATCH_MAY_ALLOCATE
1367
1368 /* When using GNU C, we are not REALLY using the C alloca, no matter
1369 what config.h may say. So don't take precautions for it. */
1370 #ifdef __GNUC__
1371 # undef C_ALLOCA
1372 #endif
1373
1374 /* The match routines may not allocate if (1) they would do it with malloc
1375 and (2) it's not safe for them to use malloc.
1376 Note that if REL_ALLOC is defined, matching would not use malloc for the
1377 failure stack, but we would still use it for the register vectors;
1378 so REL_ALLOC should not affect this. */
1379 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1380 # undef MATCH_MAY_ALLOCATE
1381 #endif
1382
1383 \f
1384 /* Failure stack declarations and macros; both re_compile_fastmap and
1385 re_match_2 use a failure stack. These have to be macros because of
1386 REGEX_ALLOCATE_STACK. */
1387
1388
1389 /* Approximate number of failure points for which to initially allocate space
1390 when matching. If this number is exceeded, we allocate more
1391 space, so it is not a hard limit. */
1392 #ifndef INIT_FAILURE_ALLOC
1393 # define INIT_FAILURE_ALLOC 20
1394 #endif
1395
1396 /* Roughly the maximum number of failure points on the stack. Would be
1397 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1398 This is a variable only so users of regex can assign to it; we never
1399 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1400 before using it, so it should probably be a byte-count instead. */
1401 # if defined MATCH_MAY_ALLOCATE
1402 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1403 whose default stack limit is 2mb. In order for a larger
1404 value to work reliably, you have to try to make it accord
1405 with the process stack limit. */
1406 size_t re_max_failures = 40000;
1407 # else
1408 size_t re_max_failures = 4000;
1409 # endif
1410
1411 union fail_stack_elt
1412 {
1413 re_char *pointer;
1414 /* This should be the biggest `int' that's no bigger than a pointer. */
1415 long integer;
1416 };
1417
1418 typedef union fail_stack_elt fail_stack_elt_t;
1419
1420 typedef struct
1421 {
1422 fail_stack_elt_t *stack;
1423 size_t size;
1424 size_t avail; /* Offset of next open position. */
1425 size_t frame; /* Offset of the cur constructed frame. */
1426 } fail_stack_type;
1427
1428 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1429 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1430
1431
1432 /* Define macros to initialize and free the failure stack.
1433 Do `return -2' if the alloc fails. */
1434
1435 #ifdef MATCH_MAY_ALLOCATE
1436 # define INIT_FAIL_STACK() \
1437 do { \
1438 fail_stack.stack = (fail_stack_elt_t *) \
1439 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1440 * sizeof (fail_stack_elt_t)); \
1441 \
1442 if (fail_stack.stack == NULL) \
1443 return -2; \
1444 \
1445 fail_stack.size = INIT_FAILURE_ALLOC; \
1446 fail_stack.avail = 0; \
1447 fail_stack.frame = 0; \
1448 } while (0)
1449
1450 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1451 #else
1452 # define INIT_FAIL_STACK() \
1453 do { \
1454 fail_stack.avail = 0; \
1455 fail_stack.frame = 0; \
1456 } while (0)
1457
1458 # define RESET_FAIL_STACK() ((void)0)
1459 #endif
1460
1461
1462 /* Double the size of FAIL_STACK, up to a limit
1463 which allows approximately `re_max_failures' items.
1464
1465 Return 1 if succeeds, and 0 if either ran out of memory
1466 allocating space for it or it was already too large.
1467
1468 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1469
1470 /* Factor to increase the failure stack size by
1471 when we increase it.
1472 This used to be 2, but 2 was too wasteful
1473 because the old discarded stacks added up to as much space
1474 were as ultimate, maximum-size stack. */
1475 #define FAIL_STACK_GROWTH_FACTOR 4
1476
1477 #define GROW_FAIL_STACK(fail_stack) \
1478 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1479 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1480 ? 0 \
1481 : ((fail_stack).stack \
1482 = (fail_stack_elt_t *) \
1483 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1484 (fail_stack).size * sizeof (fail_stack_elt_t), \
1485 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1486 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1487 * FAIL_STACK_GROWTH_FACTOR))), \
1488 \
1489 (fail_stack).stack == NULL \
1490 ? 0 \
1491 : ((fail_stack).size \
1492 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1493 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1494 * FAIL_STACK_GROWTH_FACTOR)) \
1495 / sizeof (fail_stack_elt_t)), \
1496 1)))
1497
1498
1499 /* Push a pointer value onto the failure stack.
1500 Assumes the variable `fail_stack'. Probably should only
1501 be called from within `PUSH_FAILURE_POINT'. */
1502 #define PUSH_FAILURE_POINTER(item) \
1503 fail_stack.stack[fail_stack.avail++].pointer = (item)
1504
1505 /* This pushes an integer-valued item onto the failure stack.
1506 Assumes the variable `fail_stack'. Probably should only
1507 be called from within `PUSH_FAILURE_POINT'. */
1508 #define PUSH_FAILURE_INT(item) \
1509 fail_stack.stack[fail_stack.avail++].integer = (item)
1510
1511 /* Push a fail_stack_elt_t value onto the failure stack.
1512 Assumes the variable `fail_stack'. Probably should only
1513 be called from within `PUSH_FAILURE_POINT'. */
1514 #define PUSH_FAILURE_ELT(item) \
1515 fail_stack.stack[fail_stack.avail++] = (item)
1516
1517 /* These three POP... operations complement the three PUSH... operations.
1518 All assume that `fail_stack' is nonempty. */
1519 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1520 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1521 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1522
1523 /* Individual items aside from the registers. */
1524 #define NUM_NONREG_ITEMS 3
1525
1526 /* Used to examine the stack (to detect infinite loops). */
1527 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1528 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1529 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1530 #define TOP_FAILURE_HANDLE() fail_stack.frame
1531
1532
1533 #define ENSURE_FAIL_STACK(space) \
1534 while (REMAINING_AVAIL_SLOTS <= space) { \
1535 if (!GROW_FAIL_STACK (fail_stack)) \
1536 return -2; \
1537 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1538 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1539 }
1540
1541 /* Push register NUM onto the stack. */
1542 #define PUSH_FAILURE_REG(num) \
1543 do { \
1544 char *destination; \
1545 ENSURE_FAIL_STACK(3); \
1546 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1547 num, regstart[num], regend[num]); \
1548 PUSH_FAILURE_POINTER (regstart[num]); \
1549 PUSH_FAILURE_POINTER (regend[num]); \
1550 PUSH_FAILURE_INT (num); \
1551 } while (0)
1552
1553 /* Change the counter's value to VAL, but make sure that it will
1554 be reset when backtracking. */
1555 #define PUSH_NUMBER(ptr,val) \
1556 do { \
1557 char *destination; \
1558 int c; \
1559 ENSURE_FAIL_STACK(3); \
1560 EXTRACT_NUMBER (c, ptr); \
1561 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1562 PUSH_FAILURE_INT (c); \
1563 PUSH_FAILURE_POINTER (ptr); \
1564 PUSH_FAILURE_INT (-1); \
1565 STORE_NUMBER (ptr, val); \
1566 } while (0)
1567
1568 /* Pop a saved register off the stack. */
1569 #define POP_FAILURE_REG_OR_COUNT() \
1570 do { \
1571 int reg = POP_FAILURE_INT (); \
1572 if (reg == -1) \
1573 { \
1574 /* It's a counter. */ \
1575 /* Here, we discard `const', making re_match non-reentrant. */ \
1576 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1577 reg = POP_FAILURE_INT (); \
1578 STORE_NUMBER (ptr, reg); \
1579 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1580 } \
1581 else \
1582 { \
1583 regend[reg] = POP_FAILURE_POINTER (); \
1584 regstart[reg] = POP_FAILURE_POINTER (); \
1585 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1586 reg, regstart[reg], regend[reg]); \
1587 } \
1588 } while (0)
1589
1590 /* Check that we are not stuck in an infinite loop. */
1591 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1592 do { \
1593 int failure = TOP_FAILURE_HANDLE (); \
1594 /* Check for infinite matching loops */ \
1595 while (failure > 0 \
1596 && (FAILURE_STR (failure) == string_place \
1597 || FAILURE_STR (failure) == NULL)) \
1598 { \
1599 assert (FAILURE_PAT (failure) >= bufp->buffer \
1600 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1601 if (FAILURE_PAT (failure) == pat_cur) \
1602 { \
1603 cycle = 1; \
1604 break; \
1605 } \
1606 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1607 failure = NEXT_FAILURE_HANDLE(failure); \
1608 } \
1609 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1610 } while (0)
1611
1612 /* Push the information about the state we will need
1613 if we ever fail back to it.
1614
1615 Requires variables fail_stack, regstart, regend and
1616 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1617 declared.
1618
1619 Does `return FAILURE_CODE' if runs out of memory. */
1620
1621 #define PUSH_FAILURE_POINT(pattern, string_place) \
1622 do { \
1623 char *destination; \
1624 /* Must be int, so when we don't save any registers, the arithmetic \
1625 of 0 + -1 isn't done as unsigned. */ \
1626 \
1627 DEBUG_STATEMENT (nfailure_points_pushed++); \
1628 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1629 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1630 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1631 \
1632 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1633 \
1634 DEBUG_PRINT1 ("\n"); \
1635 \
1636 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1637 PUSH_FAILURE_INT (fail_stack.frame); \
1638 \
1639 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1640 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1641 DEBUG_PRINT1 ("'\n"); \
1642 PUSH_FAILURE_POINTER (string_place); \
1643 \
1644 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1645 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1646 PUSH_FAILURE_POINTER (pattern); \
1647 \
1648 /* Close the frame by moving the frame pointer past it. */ \
1649 fail_stack.frame = fail_stack.avail; \
1650 } while (0)
1651
1652 /* Estimate the size of data pushed by a typical failure stack entry.
1653 An estimate is all we need, because all we use this for
1654 is to choose a limit for how big to make the failure stack. */
1655 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1656 #define TYPICAL_FAILURE_SIZE 20
1657
1658 /* How many items can still be added to the stack without overflowing it. */
1659 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1660
1661
1662 /* Pops what PUSH_FAIL_STACK pushes.
1663
1664 We restore into the parameters, all of which should be lvalues:
1665 STR -- the saved data position.
1666 PAT -- the saved pattern position.
1667 REGSTART, REGEND -- arrays of string positions.
1668
1669 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1670 `pend', `string1', `size1', `string2', and `size2'. */
1671
1672 #define POP_FAILURE_POINT(str, pat) \
1673 do { \
1674 assert (!FAIL_STACK_EMPTY ()); \
1675 \
1676 /* Remove failure points and point to how many regs pushed. */ \
1677 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1678 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1679 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1680 \
1681 /* Pop the saved registers. */ \
1682 while (fail_stack.frame < fail_stack.avail) \
1683 POP_FAILURE_REG_OR_COUNT (); \
1684 \
1685 pat = POP_FAILURE_POINTER (); \
1686 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1687 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1688 \
1689 /* If the saved string location is NULL, it came from an \
1690 on_failure_keep_string_jump opcode, and we want to throw away the \
1691 saved NULL, thus retaining our current position in the string. */ \
1692 str = POP_FAILURE_POINTER (); \
1693 DEBUG_PRINT2 (" Popping string %p: `", str); \
1694 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1695 DEBUG_PRINT1 ("'\n"); \
1696 \
1697 fail_stack.frame = POP_FAILURE_INT (); \
1698 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1699 \
1700 assert (fail_stack.avail >= 0); \
1701 assert (fail_stack.frame <= fail_stack.avail); \
1702 \
1703 DEBUG_STATEMENT (nfailure_points_popped++); \
1704 } while (0) /* POP_FAILURE_POINT */
1705
1706
1707 \f
1708 /* Registers are set to a sentinel when they haven't yet matched. */
1709 #define REG_UNSET(e) ((e) == NULL)
1710 \f
1711 /* Subroutine declarations and macros for regex_compile. */
1712
1713 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1714 reg_syntax_t syntax,
1715 struct re_pattern_buffer *bufp));
1716 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1717 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1718 int arg1, int arg2));
1719 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1720 int arg, unsigned char *end));
1721 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1722 int arg1, int arg2, unsigned char *end));
1723 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1724 re_char *p,
1725 reg_syntax_t syntax));
1726 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1727 re_char *pend,
1728 reg_syntax_t syntax));
1729 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1730 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1731 char *fastmap, const int multibyte));
1732
1733 /* Fetch the next character in the uncompiled pattern, with no
1734 translation. */
1735 #define PATFETCH(c) \
1736 do { \
1737 int len; \
1738 if (p == pend) return REG_EEND; \
1739 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1740 p += len; \
1741 } while (0)
1742
1743
1744 /* If `translate' is non-null, return translate[D], else just D. We
1745 cast the subscript to translate because some data is declared as
1746 `char *', to avoid warnings when a string constant is passed. But
1747 when we use a character as a subscript we must make it unsigned. */
1748 #ifndef TRANSLATE
1749 # define TRANSLATE(d) \
1750 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1751 #endif
1752
1753
1754 /* Macros for outputting the compiled pattern into `buffer'. */
1755
1756 /* If the buffer isn't allocated when it comes in, use this. */
1757 #define INIT_BUF_SIZE 32
1758
1759 /* Make sure we have at least N more bytes of space in buffer. */
1760 #define GET_BUFFER_SPACE(n) \
1761 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1762 EXTEND_BUFFER ()
1763
1764 /* Make sure we have one more byte of buffer space and then add C to it. */
1765 #define BUF_PUSH(c) \
1766 do { \
1767 GET_BUFFER_SPACE (1); \
1768 *b++ = (unsigned char) (c); \
1769 } while (0)
1770
1771
1772 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1773 #define BUF_PUSH_2(c1, c2) \
1774 do { \
1775 GET_BUFFER_SPACE (2); \
1776 *b++ = (unsigned char) (c1); \
1777 *b++ = (unsigned char) (c2); \
1778 } while (0)
1779
1780
1781 /* As with BUF_PUSH_2, except for three bytes. */
1782 #define BUF_PUSH_3(c1, c2, c3) \
1783 do { \
1784 GET_BUFFER_SPACE (3); \
1785 *b++ = (unsigned char) (c1); \
1786 *b++ = (unsigned char) (c2); \
1787 *b++ = (unsigned char) (c3); \
1788 } while (0)
1789
1790
1791 /* Store a jump with opcode OP at LOC to location TO. We store a
1792 relative address offset by the three bytes the jump itself occupies. */
1793 #define STORE_JUMP(op, loc, to) \
1794 store_op1 (op, loc, (to) - (loc) - 3)
1795
1796 /* Likewise, for a two-argument jump. */
1797 #define STORE_JUMP2(op, loc, to, arg) \
1798 store_op2 (op, loc, (to) - (loc) - 3, arg)
1799
1800 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1801 #define INSERT_JUMP(op, loc, to) \
1802 insert_op1 (op, loc, (to) - (loc) - 3, b)
1803
1804 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1805 #define INSERT_JUMP2(op, loc, to, arg) \
1806 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1807
1808
1809 /* This is not an arbitrary limit: the arguments which represent offsets
1810 into the pattern are two bytes long. So if 2^15 bytes turns out to
1811 be too small, many things would have to change. */
1812 # define MAX_BUF_SIZE (1L << 15)
1813
1814 #if 0 /* This is when we thought it could be 2^16 bytes. */
1815 /* Any other compiler which, like MSC, has allocation limit below 2^16
1816 bytes will have to use approach similar to what was done below for
1817 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1818 reallocating to 0 bytes. Such thing is not going to work too well.
1819 You have been warned!! */
1820 #if defined _MSC_VER && !defined WIN32
1821 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1822 # define MAX_BUF_SIZE 65500L
1823 #else
1824 # define MAX_BUF_SIZE (1L << 16)
1825 #endif
1826 #endif /* 0 */
1827
1828 /* Extend the buffer by twice its current size via realloc and
1829 reset the pointers that pointed into the old block to point to the
1830 correct places in the new one. If extending the buffer results in it
1831 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1832 #if __BOUNDED_POINTERS__
1833 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1834 # define MOVE_BUFFER_POINTER(P) \
1835 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1836 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1837 else \
1838 { \
1839 SET_HIGH_BOUND (b); \
1840 SET_HIGH_BOUND (begalt); \
1841 if (fixup_alt_jump) \
1842 SET_HIGH_BOUND (fixup_alt_jump); \
1843 if (laststart) \
1844 SET_HIGH_BOUND (laststart); \
1845 if (pending_exact) \
1846 SET_HIGH_BOUND (pending_exact); \
1847 }
1848 #else
1849 # define MOVE_BUFFER_POINTER(P) (P) += incr
1850 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1851 #endif
1852 #define EXTEND_BUFFER() \
1853 do { \
1854 re_char *old_buffer = bufp->buffer; \
1855 if (bufp->allocated == MAX_BUF_SIZE) \
1856 return REG_ESIZE; \
1857 bufp->allocated <<= 1; \
1858 if (bufp->allocated > MAX_BUF_SIZE) \
1859 bufp->allocated = MAX_BUF_SIZE; \
1860 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1861 if (bufp->buffer == NULL) \
1862 return REG_ESPACE; \
1863 /* If the buffer moved, move all the pointers into it. */ \
1864 if (old_buffer != bufp->buffer) \
1865 { \
1866 int incr = bufp->buffer - old_buffer; \
1867 MOVE_BUFFER_POINTER (b); \
1868 MOVE_BUFFER_POINTER (begalt); \
1869 if (fixup_alt_jump) \
1870 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1871 if (laststart) \
1872 MOVE_BUFFER_POINTER (laststart); \
1873 if (pending_exact) \
1874 MOVE_BUFFER_POINTER (pending_exact); \
1875 } \
1876 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1877 } while (0)
1878
1879
1880 /* Since we have one byte reserved for the register number argument to
1881 {start,stop}_memory, the maximum number of groups we can report
1882 things about is what fits in that byte. */
1883 #define MAX_REGNUM 255
1884
1885 /* But patterns can have more than `MAX_REGNUM' registers. We just
1886 ignore the excess. */
1887 typedef int regnum_t;
1888
1889
1890 /* Macros for the compile stack. */
1891
1892 /* Since offsets can go either forwards or backwards, this type needs to
1893 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1894 /* int may be not enough when sizeof(int) == 2. */
1895 typedef long pattern_offset_t;
1896
1897 typedef struct
1898 {
1899 pattern_offset_t begalt_offset;
1900 pattern_offset_t fixup_alt_jump;
1901 pattern_offset_t laststart_offset;
1902 regnum_t regnum;
1903 } compile_stack_elt_t;
1904
1905
1906 typedef struct
1907 {
1908 compile_stack_elt_t *stack;
1909 unsigned size;
1910 unsigned avail; /* Offset of next open position. */
1911 } compile_stack_type;
1912
1913
1914 #define INIT_COMPILE_STACK_SIZE 32
1915
1916 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1917 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1918
1919 /* The next available element. */
1920 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1921
1922 /* Explicit quit checking is only used on NTemacs and whenever we
1923 use polling to process input events. */
1924 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1925 extern int immediate_quit;
1926 # define IMMEDIATE_QUIT_CHECK \
1927 do { \
1928 if (immediate_quit) QUIT; \
1929 } while (0)
1930 #else
1931 # define IMMEDIATE_QUIT_CHECK ((void)0)
1932 #endif
1933 \f
1934 /* Structure to manage work area for range table. */
1935 struct range_table_work_area
1936 {
1937 int *table; /* actual work area. */
1938 int allocated; /* allocated size for work area in bytes. */
1939 int used; /* actually used size in words. */
1940 int bits; /* flag to record character classes */
1941 };
1942
1943 /* Make sure that WORK_AREA can hold more N multibyte characters.
1944 This is used only in set_image_of_range and set_image_of_range_1.
1945 It expects WORK_AREA to be a pointer.
1946 If it can't get the space, it returns from the surrounding function. */
1947
1948 #define EXTEND_RANGE_TABLE(work_area, n) \
1949 do { \
1950 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1951 { \
1952 extend_range_table_work_area (work_area); \
1953 if ((work_area)->table == 0) \
1954 return (REG_ESPACE); \
1955 } \
1956 } while (0)
1957
1958 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1959 (work_area).bits |= (bit)
1960
1961 /* Bits used to implement the multibyte-part of the various character classes
1962 such as [:alnum:] in a charset's range table. */
1963 #define BIT_WORD 0x1
1964 #define BIT_LOWER 0x2
1965 #define BIT_PUNCT 0x4
1966 #define BIT_SPACE 0x8
1967 #define BIT_UPPER 0x10
1968 #define BIT_MULTIBYTE 0x20
1969
1970 /* Set a range START..END to WORK_AREA.
1971 The range is passed through TRANSLATE, so START and END
1972 should be untranslated. */
1973 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1974 do { \
1975 int tem; \
1976 tem = set_image_of_range (&work_area, start, end, translate); \
1977 if (tem > 0) \
1978 FREE_STACK_RETURN (tem); \
1979 } while (0)
1980
1981 /* Free allocated memory for WORK_AREA. */
1982 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1983 do { \
1984 if ((work_area).table) \
1985 free ((work_area).table); \
1986 } while (0)
1987
1988 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1989 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1990 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1991 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1992 \f
1993
1994 /* Set the bit for character C in a list. */
1995 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1996
1997
1998 /* Get the next unsigned number in the uncompiled pattern. */
1999 #define GET_UNSIGNED_NUMBER(num) \
2000 do { \
2001 if (p == pend) \
2002 FREE_STACK_RETURN (REG_EBRACE); \
2003 else \
2004 { \
2005 PATFETCH (c); \
2006 while ('0' <= c && c <= '9') \
2007 { \
2008 int prev; \
2009 if (num < 0) \
2010 num = 0; \
2011 prev = num; \
2012 num = num * 10 + c - '0'; \
2013 if (num / 10 != prev) \
2014 FREE_STACK_RETURN (REG_BADBR); \
2015 if (p == pend) \
2016 FREE_STACK_RETURN (REG_EBRACE); \
2017 PATFETCH (c); \
2018 } \
2019 } \
2020 } while (0)
2021 \f
2022 #if ! WIDE_CHAR_SUPPORT
2023
2024 /* Map a string to the char class it names (if any). */
2025 re_wctype_t
2026 re_wctype (str)
2027 re_char *str;
2028 {
2029 const char *string = str;
2030 if (STREQ (string, "alnum")) return RECC_ALNUM;
2031 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2032 else if (STREQ (string, "word")) return RECC_WORD;
2033 else if (STREQ (string, "ascii")) return RECC_ASCII;
2034 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2035 else if (STREQ (string, "graph")) return RECC_GRAPH;
2036 else if (STREQ (string, "lower")) return RECC_LOWER;
2037 else if (STREQ (string, "print")) return RECC_PRINT;
2038 else if (STREQ (string, "punct")) return RECC_PUNCT;
2039 else if (STREQ (string, "space")) return RECC_SPACE;
2040 else if (STREQ (string, "upper")) return RECC_UPPER;
2041 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2042 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2043 else if (STREQ (string, "digit")) return RECC_DIGIT;
2044 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2045 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2046 else if (STREQ (string, "blank")) return RECC_BLANK;
2047 else return 0;
2048 }
2049
2050 /* True iff CH is in the char class CC. */
2051 boolean
2052 re_iswctype (ch, cc)
2053 int ch;
2054 re_wctype_t cc;
2055 {
2056 switch (cc)
2057 {
2058 case RECC_ALNUM: return ISALNUM (ch);
2059 case RECC_ALPHA: return ISALPHA (ch);
2060 case RECC_BLANK: return ISBLANK (ch);
2061 case RECC_CNTRL: return ISCNTRL (ch);
2062 case RECC_DIGIT: return ISDIGIT (ch);
2063 case RECC_GRAPH: return ISGRAPH (ch);
2064 case RECC_LOWER: return ISLOWER (ch);
2065 case RECC_PRINT: return ISPRINT (ch);
2066 case RECC_PUNCT: return ISPUNCT (ch);
2067 case RECC_SPACE: return ISSPACE (ch);
2068 case RECC_UPPER: return ISUPPER (ch);
2069 case RECC_XDIGIT: return ISXDIGIT (ch);
2070 case RECC_ASCII: return IS_REAL_ASCII (ch);
2071 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2072 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2073 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2074 case RECC_WORD: return ISWORD (ch);
2075 case RECC_ERROR: return false;
2076 default:
2077 abort();
2078 }
2079 }
2080
2081 /* Return a bit-pattern to use in the range-table bits to match multibyte
2082 chars of class CC. */
2083 static int
2084 re_wctype_to_bit (cc)
2085 re_wctype_t cc;
2086 {
2087 switch (cc)
2088 {
2089 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2090 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2091 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2092 case RECC_LOWER: return BIT_LOWER;
2093 case RECC_UPPER: return BIT_UPPER;
2094 case RECC_PUNCT: return BIT_PUNCT;
2095 case RECC_SPACE: return BIT_SPACE;
2096 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2097 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2098 default:
2099 abort();
2100 }
2101 }
2102 #endif
2103 \f
2104 /* Filling in the work area of a range. */
2105
2106 /* Actually extend the space in WORK_AREA. */
2107
2108 static void
2109 extend_range_table_work_area (work_area)
2110 struct range_table_work_area *work_area;
2111 {
2112 work_area->allocated += 16 * sizeof (int);
2113 if (work_area->table)
2114 work_area->table
2115 = (int *) realloc (work_area->table, work_area->allocated);
2116 else
2117 work_area->table
2118 = (int *) malloc (work_area->allocated);
2119 }
2120
2121 #ifdef emacs
2122
2123 /* Carefully find the ranges of codes that are equivalent
2124 under case conversion to the range start..end when passed through
2125 TRANSLATE. Handle the case where non-letters can come in between
2126 two upper-case letters (which happens in Latin-1).
2127 Also handle the case of groups of more than 2 case-equivalent chars.
2128
2129 The basic method is to look at consecutive characters and see
2130 if they can form a run that can be handled as one.
2131
2132 Returns -1 if successful, REG_ESPACE if ran out of space. */
2133
2134 static int
2135 set_image_of_range_1 (work_area, start, end, translate)
2136 RE_TRANSLATE_TYPE translate;
2137 struct range_table_work_area *work_area;
2138 re_wchar_t start, end;
2139 {
2140 /* `one_case' indicates a character, or a run of characters,
2141 each of which is an isolate (no case-equivalents).
2142 This includes all ASCII non-letters.
2143
2144 `two_case' indicates a character, or a run of characters,
2145 each of which has two case-equivalent forms.
2146 This includes all ASCII letters.
2147
2148 `strange' indicates a character that has more than one
2149 case-equivalent. */
2150
2151 enum case_type {one_case, two_case, strange};
2152
2153 /* Describe the run that is in progress,
2154 which the next character can try to extend.
2155 If run_type is strange, that means there really is no run.
2156 If run_type is one_case, then run_start...run_end is the run.
2157 If run_type is two_case, then the run is run_start...run_end,
2158 and the case-equivalents end at run_eqv_end. */
2159
2160 enum case_type run_type = strange;
2161 int run_start, run_end, run_eqv_end;
2162
2163 Lisp_Object eqv_table;
2164
2165 if (!RE_TRANSLATE_P (translate))
2166 {
2167 EXTEND_RANGE_TABLE (work_area, 2);
2168 work_area->table[work_area->used++] = (start);
2169 work_area->table[work_area->used++] = (end);
2170 return -1;
2171 }
2172
2173 eqv_table = XCHAR_TABLE (translate)->extras[2];
2174
2175 for (; start <= end; start++)
2176 {
2177 enum case_type this_type;
2178 int eqv = RE_TRANSLATE (eqv_table, start);
2179 int minchar, maxchar;
2180
2181 /* Classify this character */
2182 if (eqv == start)
2183 this_type = one_case;
2184 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2185 this_type = two_case;
2186 else
2187 this_type = strange;
2188
2189 if (start < eqv)
2190 minchar = start, maxchar = eqv;
2191 else
2192 minchar = eqv, maxchar = start;
2193
2194 /* Can this character extend the run in progress? */
2195 if (this_type == strange || this_type != run_type
2196 || !(minchar == run_end + 1
2197 && (run_type == two_case
2198 ? maxchar == run_eqv_end + 1 : 1)))
2199 {
2200 /* No, end the run.
2201 Record each of its equivalent ranges. */
2202 if (run_type == one_case)
2203 {
2204 EXTEND_RANGE_TABLE (work_area, 2);
2205 work_area->table[work_area->used++] = run_start;
2206 work_area->table[work_area->used++] = run_end;
2207 }
2208 else if (run_type == two_case)
2209 {
2210 EXTEND_RANGE_TABLE (work_area, 4);
2211 work_area->table[work_area->used++] = run_start;
2212 work_area->table[work_area->used++] = run_end;
2213 work_area->table[work_area->used++]
2214 = RE_TRANSLATE (eqv_table, run_start);
2215 work_area->table[work_area->used++]
2216 = RE_TRANSLATE (eqv_table, run_end);
2217 }
2218 run_type = strange;
2219 }
2220
2221 if (this_type == strange)
2222 {
2223 /* For a strange character, add each of its equivalents, one
2224 by one. Don't start a range. */
2225 do
2226 {
2227 EXTEND_RANGE_TABLE (work_area, 2);
2228 work_area->table[work_area->used++] = eqv;
2229 work_area->table[work_area->used++] = eqv;
2230 eqv = RE_TRANSLATE (eqv_table, eqv);
2231 }
2232 while (eqv != start);
2233 }
2234
2235 /* Add this char to the run, or start a new run. */
2236 else if (run_type == strange)
2237 {
2238 /* Initialize a new range. */
2239 run_type = this_type;
2240 run_start = start;
2241 run_end = start;
2242 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2243 }
2244 else
2245 {
2246 /* Extend a running range. */
2247 run_end = minchar;
2248 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2249 }
2250 }
2251
2252 /* If a run is still in progress at the end, finish it now
2253 by recording its equivalent ranges. */
2254 if (run_type == one_case)
2255 {
2256 EXTEND_RANGE_TABLE (work_area, 2);
2257 work_area->table[work_area->used++] = run_start;
2258 work_area->table[work_area->used++] = run_end;
2259 }
2260 else if (run_type == two_case)
2261 {
2262 EXTEND_RANGE_TABLE (work_area, 4);
2263 work_area->table[work_area->used++] = run_start;
2264 work_area->table[work_area->used++] = run_end;
2265 work_area->table[work_area->used++]
2266 = RE_TRANSLATE (eqv_table, run_start);
2267 work_area->table[work_area->used++]
2268 = RE_TRANSLATE (eqv_table, run_end);
2269 }
2270
2271 return -1;
2272 }
2273
2274 #endif /* emacs */
2275
2276 /* Record the the image of the range start..end when passed through
2277 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2278 and is not even necessarily contiguous.
2279 Normally we approximate it with the smallest contiguous range that contains
2280 all the chars we need. However, for Latin-1 we go to extra effort
2281 to do a better job.
2282
2283 This function is not called for ASCII ranges.
2284
2285 Returns -1 if successful, REG_ESPACE if ran out of space. */
2286
2287 static int
2288 set_image_of_range (work_area, start, end, translate)
2289 RE_TRANSLATE_TYPE translate;
2290 struct range_table_work_area *work_area;
2291 re_wchar_t start, end;
2292 {
2293 re_wchar_t cmin, cmax;
2294
2295 #ifdef emacs
2296 /* For Latin-1 ranges, use set_image_of_range_1
2297 to get proper handling of ranges that include letters and nonletters.
2298 For a range that includes the whole of Latin-1, this is not necessary.
2299 For other character sets, we don't bother to get this right. */
2300 if (RE_TRANSLATE_P (translate) && start < 04400
2301 && !(start < 04200 && end >= 04377))
2302 {
2303 int newend;
2304 int tem;
2305 newend = end;
2306 if (newend > 04377)
2307 newend = 04377;
2308 tem = set_image_of_range_1 (work_area, start, newend, translate);
2309 if (tem > 0)
2310 return tem;
2311
2312 start = 04400;
2313 if (end < 04400)
2314 return -1;
2315 }
2316 #endif
2317
2318 EXTEND_RANGE_TABLE (work_area, 2);
2319 work_area->table[work_area->used++] = (start);
2320 work_area->table[work_area->used++] = (end);
2321
2322 cmin = -1, cmax = -1;
2323
2324 if (RE_TRANSLATE_P (translate))
2325 {
2326 int ch;
2327
2328 for (ch = start; ch <= end; ch++)
2329 {
2330 re_wchar_t c = TRANSLATE (ch);
2331 if (! (start <= c && c <= end))
2332 {
2333 if (cmin == -1)
2334 cmin = c, cmax = c;
2335 else
2336 {
2337 cmin = MIN (cmin, c);
2338 cmax = MAX (cmax, c);
2339 }
2340 }
2341 }
2342
2343 if (cmin != -1)
2344 {
2345 EXTEND_RANGE_TABLE (work_area, 2);
2346 work_area->table[work_area->used++] = (cmin);
2347 work_area->table[work_area->used++] = (cmax);
2348 }
2349 }
2350
2351 return -1;
2352 }
2353 \f
2354 #ifndef MATCH_MAY_ALLOCATE
2355
2356 /* If we cannot allocate large objects within re_match_2_internal,
2357 we make the fail stack and register vectors global.
2358 The fail stack, we grow to the maximum size when a regexp
2359 is compiled.
2360 The register vectors, we adjust in size each time we
2361 compile a regexp, according to the number of registers it needs. */
2362
2363 static fail_stack_type fail_stack;
2364
2365 /* Size with which the following vectors are currently allocated.
2366 That is so we can make them bigger as needed,
2367 but never make them smaller. */
2368 static int regs_allocated_size;
2369
2370 static re_char ** regstart, ** regend;
2371 static re_char **best_regstart, **best_regend;
2372
2373 /* Make the register vectors big enough for NUM_REGS registers,
2374 but don't make them smaller. */
2375
2376 static
2377 regex_grow_registers (num_regs)
2378 int num_regs;
2379 {
2380 if (num_regs > regs_allocated_size)
2381 {
2382 RETALLOC_IF (regstart, num_regs, re_char *);
2383 RETALLOC_IF (regend, num_regs, re_char *);
2384 RETALLOC_IF (best_regstart, num_regs, re_char *);
2385 RETALLOC_IF (best_regend, num_regs, re_char *);
2386
2387 regs_allocated_size = num_regs;
2388 }
2389 }
2390
2391 #endif /* not MATCH_MAY_ALLOCATE */
2392 \f
2393 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2394 compile_stack,
2395 regnum_t regnum));
2396
2397 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2398 Returns one of error codes defined in `regex.h', or zero for success.
2399
2400 Assumes the `allocated' (and perhaps `buffer') and `translate'
2401 fields are set in BUFP on entry.
2402
2403 If it succeeds, results are put in BUFP (if it returns an error, the
2404 contents of BUFP are undefined):
2405 `buffer' is the compiled pattern;
2406 `syntax' is set to SYNTAX;
2407 `used' is set to the length of the compiled pattern;
2408 `fastmap_accurate' is zero;
2409 `re_nsub' is the number of subexpressions in PATTERN;
2410 `not_bol' and `not_eol' are zero;
2411
2412 The `fastmap' field is neither examined nor set. */
2413
2414 /* Insert the `jump' from the end of last alternative to "here".
2415 The space for the jump has already been allocated. */
2416 #define FIXUP_ALT_JUMP() \
2417 do { \
2418 if (fixup_alt_jump) \
2419 STORE_JUMP (jump, fixup_alt_jump, b); \
2420 } while (0)
2421
2422
2423 /* Return, freeing storage we allocated. */
2424 #define FREE_STACK_RETURN(value) \
2425 do { \
2426 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2427 free (compile_stack.stack); \
2428 return value; \
2429 } while (0)
2430
2431 static reg_errcode_t
2432 regex_compile (pattern, size, syntax, bufp)
2433 re_char *pattern;
2434 size_t size;
2435 reg_syntax_t syntax;
2436 struct re_pattern_buffer *bufp;
2437 {
2438 /* We fetch characters from PATTERN here. */
2439 register re_wchar_t c, c1;
2440
2441 /* A random temporary spot in PATTERN. */
2442 re_char *p1;
2443
2444 /* Points to the end of the buffer, where we should append. */
2445 register unsigned char *b;
2446
2447 /* Keeps track of unclosed groups. */
2448 compile_stack_type compile_stack;
2449
2450 /* Points to the current (ending) position in the pattern. */
2451 #ifdef AIX
2452 /* `const' makes AIX compiler fail. */
2453 unsigned char *p = pattern;
2454 #else
2455 re_char *p = pattern;
2456 #endif
2457 re_char *pend = pattern + size;
2458
2459 /* How to translate the characters in the pattern. */
2460 RE_TRANSLATE_TYPE translate = bufp->translate;
2461
2462 /* Address of the count-byte of the most recently inserted `exactn'
2463 command. This makes it possible to tell if a new exact-match
2464 character can be added to that command or if the character requires
2465 a new `exactn' command. */
2466 unsigned char *pending_exact = 0;
2467
2468 /* Address of start of the most recently finished expression.
2469 This tells, e.g., postfix * where to find the start of its
2470 operand. Reset at the beginning of groups and alternatives. */
2471 unsigned char *laststart = 0;
2472
2473 /* Address of beginning of regexp, or inside of last group. */
2474 unsigned char *begalt;
2475
2476 /* Place in the uncompiled pattern (i.e., the {) to
2477 which to go back if the interval is invalid. */
2478 re_char *beg_interval;
2479
2480 /* Address of the place where a forward jump should go to the end of
2481 the containing expression. Each alternative of an `or' -- except the
2482 last -- ends with a forward jump of this sort. */
2483 unsigned char *fixup_alt_jump = 0;
2484
2485 /* Counts open-groups as they are encountered. Remembered for the
2486 matching close-group on the compile stack, so the same register
2487 number is put in the stop_memory as the start_memory. */
2488 regnum_t regnum = 0;
2489
2490 /* Work area for range table of charset. */
2491 struct range_table_work_area range_table_work;
2492
2493 /* If the object matched can contain multibyte characters. */
2494 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2495
2496 /* Nonzero if we have pushed down into a subpattern. */
2497 int in_subpattern = 0;
2498
2499 /* These hold the values of p, pattern, and pend from the main
2500 pattern when we have pushed into a subpattern. */
2501 re_char *main_p;
2502 re_char *main_pattern;
2503 re_char *main_pend;
2504
2505 #ifdef DEBUG
2506 debug++;
2507 DEBUG_PRINT1 ("\nCompiling pattern: ");
2508 if (debug > 0)
2509 {
2510 unsigned debug_count;
2511
2512 for (debug_count = 0; debug_count < size; debug_count++)
2513 putchar (pattern[debug_count]);
2514 putchar ('\n');
2515 }
2516 #endif /* DEBUG */
2517
2518 /* Initialize the compile stack. */
2519 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2520 if (compile_stack.stack == NULL)
2521 return REG_ESPACE;
2522
2523 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2524 compile_stack.avail = 0;
2525
2526 range_table_work.table = 0;
2527 range_table_work.allocated = 0;
2528
2529 /* Initialize the pattern buffer. */
2530 bufp->syntax = syntax;
2531 bufp->fastmap_accurate = 0;
2532 bufp->not_bol = bufp->not_eol = 0;
2533 bufp->used_syntax = 0;
2534
2535 /* Set `used' to zero, so that if we return an error, the pattern
2536 printer (for debugging) will think there's no pattern. We reset it
2537 at the end. */
2538 bufp->used = 0;
2539
2540 /* Always count groups, whether or not bufp->no_sub is set. */
2541 bufp->re_nsub = 0;
2542
2543 #if !defined emacs && !defined SYNTAX_TABLE
2544 /* Initialize the syntax table. */
2545 init_syntax_once ();
2546 #endif
2547
2548 if (bufp->allocated == 0)
2549 {
2550 if (bufp->buffer)
2551 { /* If zero allocated, but buffer is non-null, try to realloc
2552 enough space. This loses if buffer's address is bogus, but
2553 that is the user's responsibility. */
2554 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2555 }
2556 else
2557 { /* Caller did not allocate a buffer. Do it for them. */
2558 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2559 }
2560 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2561
2562 bufp->allocated = INIT_BUF_SIZE;
2563 }
2564
2565 begalt = b = bufp->buffer;
2566
2567 /* Loop through the uncompiled pattern until we're at the end. */
2568 while (1)
2569 {
2570 if (p == pend)
2571 {
2572 /* If this is the end of an included regexp,
2573 pop back to the main regexp and try again. */
2574 if (in_subpattern)
2575 {
2576 in_subpattern = 0;
2577 pattern = main_pattern;
2578 p = main_p;
2579 pend = main_pend;
2580 continue;
2581 }
2582 /* If this is the end of the main regexp, we are done. */
2583 break;
2584 }
2585
2586 PATFETCH (c);
2587
2588 switch (c)
2589 {
2590 case ' ':
2591 {
2592 re_char *p1 = p;
2593
2594 /* If there's no special whitespace regexp, treat
2595 spaces normally. And don't try to do this recursively. */
2596 if (!whitespace_regexp || in_subpattern)
2597 goto normal_char;
2598
2599 /* Peek past following spaces. */
2600 while (p1 != pend)
2601 {
2602 if (*p1 != ' ')
2603 break;
2604 p1++;
2605 }
2606 /* If the spaces are followed by a repetition op,
2607 treat them normally. */
2608 if (p1 != pend
2609 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2610 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2611 goto normal_char;
2612
2613 /* Replace the spaces with the whitespace regexp. */
2614 in_subpattern = 1;
2615 main_p = p1;
2616 main_pend = pend;
2617 main_pattern = pattern;
2618 p = pattern = whitespace_regexp;
2619 pend = p + strlen (p);
2620 break;
2621 }
2622
2623 case '^':
2624 {
2625 if ( /* If at start of pattern, it's an operator. */
2626 p == pattern + 1
2627 /* If context independent, it's an operator. */
2628 || syntax & RE_CONTEXT_INDEP_ANCHORS
2629 /* Otherwise, depends on what's come before. */
2630 || at_begline_loc_p (pattern, p, syntax))
2631 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2632 else
2633 goto normal_char;
2634 }
2635 break;
2636
2637
2638 case '$':
2639 {
2640 if ( /* If at end of pattern, it's an operator. */
2641 p == pend
2642 /* If context independent, it's an operator. */
2643 || syntax & RE_CONTEXT_INDEP_ANCHORS
2644 /* Otherwise, depends on what's next. */
2645 || at_endline_loc_p (p, pend, syntax))
2646 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2647 else
2648 goto normal_char;
2649 }
2650 break;
2651
2652
2653 case '+':
2654 case '?':
2655 if ((syntax & RE_BK_PLUS_QM)
2656 || (syntax & RE_LIMITED_OPS))
2657 goto normal_char;
2658 handle_plus:
2659 case '*':
2660 /* If there is no previous pattern... */
2661 if (!laststart)
2662 {
2663 if (syntax & RE_CONTEXT_INVALID_OPS)
2664 FREE_STACK_RETURN (REG_BADRPT);
2665 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2666 goto normal_char;
2667 }
2668
2669 {
2670 /* 1 means zero (many) matches is allowed. */
2671 boolean zero_times_ok = 0, many_times_ok = 0;
2672 boolean greedy = 1;
2673
2674 /* If there is a sequence of repetition chars, collapse it
2675 down to just one (the right one). We can't combine
2676 interval operators with these because of, e.g., `a{2}*',
2677 which should only match an even number of `a's. */
2678
2679 for (;;)
2680 {
2681 if ((syntax & RE_FRUGAL)
2682 && c == '?' && (zero_times_ok || many_times_ok))
2683 greedy = 0;
2684 else
2685 {
2686 zero_times_ok |= c != '+';
2687 many_times_ok |= c != '?';
2688 }
2689
2690 if (p == pend)
2691 break;
2692 else if (*p == '*'
2693 || (!(syntax & RE_BK_PLUS_QM)
2694 && (*p == '+' || *p == '?')))
2695 ;
2696 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2697 {
2698 if (p+1 == pend)
2699 FREE_STACK_RETURN (REG_EESCAPE);
2700 if (p[1] == '+' || p[1] == '?')
2701 PATFETCH (c); /* Gobble up the backslash. */
2702 else
2703 break;
2704 }
2705 else
2706 break;
2707 /* If we get here, we found another repeat character. */
2708 PATFETCH (c);
2709 }
2710
2711 /* Star, etc. applied to an empty pattern is equivalent
2712 to an empty pattern. */
2713 if (!laststart || laststart == b)
2714 break;
2715
2716 /* Now we know whether or not zero matches is allowed
2717 and also whether or not two or more matches is allowed. */
2718 if (greedy)
2719 {
2720 if (many_times_ok)
2721 {
2722 boolean simple = skip_one_char (laststart) == b;
2723 unsigned int startoffset = 0;
2724 re_opcode_t ofj =
2725 /* Check if the loop can match the empty string. */
2726 (simple || !analyse_first (laststart, b, NULL, 0))
2727 ? on_failure_jump : on_failure_jump_loop;
2728 assert (skip_one_char (laststart) <= b);
2729
2730 if (!zero_times_ok && simple)
2731 { /* Since simple * loops can be made faster by using
2732 on_failure_keep_string_jump, we turn simple P+
2733 into PP* if P is simple. */
2734 unsigned char *p1, *p2;
2735 startoffset = b - laststart;
2736 GET_BUFFER_SPACE (startoffset);
2737 p1 = b; p2 = laststart;
2738 while (p2 < p1)
2739 *b++ = *p2++;
2740 zero_times_ok = 1;
2741 }
2742
2743 GET_BUFFER_SPACE (6);
2744 if (!zero_times_ok)
2745 /* A + loop. */
2746 STORE_JUMP (ofj, b, b + 6);
2747 else
2748 /* Simple * loops can use on_failure_keep_string_jump
2749 depending on what follows. But since we don't know
2750 that yet, we leave the decision up to
2751 on_failure_jump_smart. */
2752 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2753 laststart + startoffset, b + 6);
2754 b += 3;
2755 STORE_JUMP (jump, b, laststart + startoffset);
2756 b += 3;
2757 }
2758 else
2759 {
2760 /* A simple ? pattern. */
2761 assert (zero_times_ok);
2762 GET_BUFFER_SPACE (3);
2763 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2764 b += 3;
2765 }
2766 }
2767 else /* not greedy */
2768 { /* I wish the greedy and non-greedy cases could be merged. */
2769
2770 GET_BUFFER_SPACE (7); /* We might use less. */
2771 if (many_times_ok)
2772 {
2773 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2774
2775 /* The non-greedy multiple match looks like
2776 a repeat..until: we only need a conditional jump
2777 at the end of the loop. */
2778 if (emptyp) BUF_PUSH (no_op);
2779 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2780 : on_failure_jump, b, laststart);
2781 b += 3;
2782 if (zero_times_ok)
2783 {
2784 /* The repeat...until naturally matches one or more.
2785 To also match zero times, we need to first jump to
2786 the end of the loop (its conditional jump). */
2787 INSERT_JUMP (jump, laststart, b);
2788 b += 3;
2789 }
2790 }
2791 else
2792 {
2793 /* non-greedy a?? */
2794 INSERT_JUMP (jump, laststart, b + 3);
2795 b += 3;
2796 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2797 b += 3;
2798 }
2799 }
2800 }
2801 pending_exact = 0;
2802 break;
2803
2804
2805 case '.':
2806 laststart = b;
2807 BUF_PUSH (anychar);
2808 break;
2809
2810
2811 case '[':
2812 {
2813 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2814
2815 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2816
2817 /* Ensure that we have enough space to push a charset: the
2818 opcode, the length count, and the bitset; 34 bytes in all. */
2819 GET_BUFFER_SPACE (34);
2820
2821 laststart = b;
2822
2823 /* We test `*p == '^' twice, instead of using an if
2824 statement, so we only need one BUF_PUSH. */
2825 BUF_PUSH (*p == '^' ? charset_not : charset);
2826 if (*p == '^')
2827 p++;
2828
2829 /* Remember the first position in the bracket expression. */
2830 p1 = p;
2831
2832 /* Push the number of bytes in the bitmap. */
2833 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2834
2835 /* Clear the whole map. */
2836 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2837
2838 /* charset_not matches newline according to a syntax bit. */
2839 if ((re_opcode_t) b[-2] == charset_not
2840 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2841 SET_LIST_BIT ('\n');
2842
2843 /* Read in characters and ranges, setting map bits. */
2844 for (;;)
2845 {
2846 boolean escaped_char = false;
2847 const unsigned char *p2 = p;
2848
2849 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2850
2851 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2852 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2853 So the translation is done later in a loop. Example:
2854 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2855 PATFETCH (c);
2856
2857 /* \ might escape characters inside [...] and [^...]. */
2858 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2859 {
2860 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2861
2862 PATFETCH (c);
2863 escaped_char = true;
2864 }
2865 else
2866 {
2867 /* Could be the end of the bracket expression. If it's
2868 not (i.e., when the bracket expression is `[]' so
2869 far), the ']' character bit gets set way below. */
2870 if (c == ']' && p2 != p1)
2871 break;
2872 }
2873
2874 /* What should we do for the character which is
2875 greater than 0x7F, but not BASE_LEADING_CODE_P?
2876 XXX */
2877
2878 /* See if we're at the beginning of a possible character
2879 class. */
2880
2881 if (!escaped_char &&
2882 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2883 {
2884 /* Leave room for the null. */
2885 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2886 const unsigned char *class_beg;
2887
2888 PATFETCH (c);
2889 c1 = 0;
2890 class_beg = p;
2891
2892 /* If pattern is `[[:'. */
2893 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2894
2895 for (;;)
2896 {
2897 PATFETCH (c);
2898 if ((c == ':' && *p == ']') || p == pend)
2899 break;
2900 if (c1 < CHAR_CLASS_MAX_LENGTH)
2901 str[c1++] = c;
2902 else
2903 /* This is in any case an invalid class name. */
2904 str[0] = '\0';
2905 }
2906 str[c1] = '\0';
2907
2908 /* If isn't a word bracketed by `[:' and `:]':
2909 undo the ending character, the letters, and
2910 leave the leading `:' and `[' (but set bits for
2911 them). */
2912 if (c == ':' && *p == ']')
2913 {
2914 re_wchar_t ch;
2915 re_wctype_t cc;
2916
2917 cc = re_wctype (str);
2918
2919 if (cc == 0)
2920 FREE_STACK_RETURN (REG_ECTYPE);
2921
2922 /* Throw away the ] at the end of the character
2923 class. */
2924 PATFETCH (c);
2925
2926 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2927
2928 /* Most character classes in a multibyte match
2929 just set a flag. Exceptions are is_blank,
2930 is_digit, is_cntrl, and is_xdigit, since
2931 they can only match ASCII characters. We
2932 don't need to handle them for multibyte.
2933 They are distinguished by a negative wctype. */
2934
2935 if (multibyte)
2936 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2937 re_wctype_to_bit (cc));
2938
2939 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2940 {
2941 int translated = TRANSLATE (ch);
2942 if (re_iswctype (btowc (ch), cc))
2943 SET_LIST_BIT (translated);
2944 }
2945
2946 /* In most cases the matching rule for char classes
2947 only uses the syntax table for multibyte chars,
2948 so that the content of the syntax-table it is not
2949 hardcoded in the range_table. SPACE and WORD are
2950 the two exceptions. */
2951 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2952 bufp->used_syntax = 1;
2953
2954 /* Repeat the loop. */
2955 continue;
2956 }
2957 else
2958 {
2959 /* Go back to right after the "[:". */
2960 p = class_beg;
2961 SET_LIST_BIT ('[');
2962
2963 /* Because the `:' may starts the range, we
2964 can't simply set bit and repeat the loop.
2965 Instead, just set it to C and handle below. */
2966 c = ':';
2967 }
2968 }
2969
2970 if (p < pend && p[0] == '-' && p[1] != ']')
2971 {
2972
2973 /* Discard the `-'. */
2974 PATFETCH (c1);
2975
2976 /* Fetch the character which ends the range. */
2977 PATFETCH (c1);
2978
2979 if (SINGLE_BYTE_CHAR_P (c))
2980 {
2981 if (! SINGLE_BYTE_CHAR_P (c1))
2982 {
2983 /* Handle a range starting with a
2984 character of less than 256, and ending
2985 with a character of not less than 256.
2986 Split that into two ranges, the low one
2987 ending at 0377, and the high one
2988 starting at the smallest character in
2989 the charset of C1 and ending at C1. */
2990 int charset = CHAR_CHARSET (c1);
2991 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2992
2993 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2994 c2, c1);
2995 c1 = 0377;
2996 }
2997 }
2998 else if (!SAME_CHARSET_P (c, c1))
2999 FREE_STACK_RETURN (REG_ERANGEX);
3000 }
3001 else
3002 /* Range from C to C. */
3003 c1 = c;
3004
3005 /* Set the range ... */
3006 if (SINGLE_BYTE_CHAR_P (c))
3007 /* ... into bitmap. */
3008 {
3009 re_wchar_t this_char;
3010 re_wchar_t range_start = c, range_end = c1;
3011
3012 /* If the start is after the end, the range is empty. */
3013 if (range_start > range_end)
3014 {
3015 if (syntax & RE_NO_EMPTY_RANGES)
3016 FREE_STACK_RETURN (REG_ERANGE);
3017 /* Else, repeat the loop. */
3018 }
3019 else
3020 {
3021 for (this_char = range_start; this_char <= range_end;
3022 this_char++)
3023 SET_LIST_BIT (TRANSLATE (this_char));
3024 }
3025 }
3026 else
3027 /* ... into range table. */
3028 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
3029 }
3030
3031 /* Discard any (non)matching list bytes that are all 0 at the
3032 end of the map. Decrease the map-length byte too. */
3033 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3034 b[-1]--;
3035 b += b[-1];
3036
3037 /* Build real range table from work area. */
3038 if (RANGE_TABLE_WORK_USED (range_table_work)
3039 || RANGE_TABLE_WORK_BITS (range_table_work))
3040 {
3041 int i;
3042 int used = RANGE_TABLE_WORK_USED (range_table_work);
3043
3044 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3045 bytes for flags, two for COUNT, and three bytes for
3046 each character. */
3047 GET_BUFFER_SPACE (4 + used * 3);
3048
3049 /* Indicate the existence of range table. */
3050 laststart[1] |= 0x80;
3051
3052 /* Store the character class flag bits into the range table.
3053 If not in emacs, these flag bits are always 0. */
3054 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3055 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3056
3057 STORE_NUMBER_AND_INCR (b, used / 2);
3058 for (i = 0; i < used; i++)
3059 STORE_CHARACTER_AND_INCR
3060 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3061 }
3062 }
3063 break;
3064
3065
3066 case '(':
3067 if (syntax & RE_NO_BK_PARENS)
3068 goto handle_open;
3069 else
3070 goto normal_char;
3071
3072
3073 case ')':
3074 if (syntax & RE_NO_BK_PARENS)
3075 goto handle_close;
3076 else
3077 goto normal_char;
3078
3079
3080 case '\n':
3081 if (syntax & RE_NEWLINE_ALT)
3082 goto handle_alt;
3083 else
3084 goto normal_char;
3085
3086
3087 case '|':
3088 if (syntax & RE_NO_BK_VBAR)
3089 goto handle_alt;
3090 else
3091 goto normal_char;
3092
3093
3094 case '{':
3095 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3096 goto handle_interval;
3097 else
3098 goto normal_char;
3099
3100
3101 case '\\':
3102 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3103
3104 /* Do not translate the character after the \, so that we can
3105 distinguish, e.g., \B from \b, even if we normally would
3106 translate, e.g., B to b. */
3107 PATFETCH (c);
3108
3109 switch (c)
3110 {
3111 case '(':
3112 if (syntax & RE_NO_BK_PARENS)
3113 goto normal_backslash;
3114
3115 handle_open:
3116 {
3117 int shy = 0;
3118 if (p+1 < pend)
3119 {
3120 /* Look for a special (?...) construct */
3121 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3122 {
3123 PATFETCH (c); /* Gobble up the '?'. */
3124 PATFETCH (c);
3125 switch (c)
3126 {
3127 case ':': shy = 1; break;
3128 default:
3129 /* Only (?:...) is supported right now. */
3130 FREE_STACK_RETURN (REG_BADPAT);
3131 }
3132 }
3133 }
3134
3135 if (!shy)
3136 {
3137 bufp->re_nsub++;
3138 regnum++;
3139 }
3140
3141 if (COMPILE_STACK_FULL)
3142 {
3143 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3144 compile_stack_elt_t);
3145 if (compile_stack.stack == NULL) return REG_ESPACE;
3146
3147 compile_stack.size <<= 1;
3148 }
3149
3150 /* These are the values to restore when we hit end of this
3151 group. They are all relative offsets, so that if the
3152 whole pattern moves because of realloc, they will still
3153 be valid. */
3154 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3155 COMPILE_STACK_TOP.fixup_alt_jump
3156 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3157 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3158 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3159
3160 /* Do not push a
3161 start_memory for groups beyond the last one we can
3162 represent in the compiled pattern. */
3163 if (regnum <= MAX_REGNUM && !shy)
3164 BUF_PUSH_2 (start_memory, regnum);
3165
3166 compile_stack.avail++;
3167
3168 fixup_alt_jump = 0;
3169 laststart = 0;
3170 begalt = b;
3171 /* If we've reached MAX_REGNUM groups, then this open
3172 won't actually generate any code, so we'll have to
3173 clear pending_exact explicitly. */
3174 pending_exact = 0;
3175 break;
3176 }
3177
3178 case ')':
3179 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3180
3181 if (COMPILE_STACK_EMPTY)
3182 {
3183 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3184 goto normal_backslash;
3185 else
3186 FREE_STACK_RETURN (REG_ERPAREN);
3187 }
3188
3189 handle_close:
3190 FIXUP_ALT_JUMP ();
3191
3192 /* See similar code for backslashed left paren above. */
3193 if (COMPILE_STACK_EMPTY)
3194 {
3195 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3196 goto normal_char;
3197 else
3198 FREE_STACK_RETURN (REG_ERPAREN);
3199 }
3200
3201 /* Since we just checked for an empty stack above, this
3202 ``can't happen''. */
3203 assert (compile_stack.avail != 0);
3204 {
3205 /* We don't just want to restore into `regnum', because
3206 later groups should continue to be numbered higher,
3207 as in `(ab)c(de)' -- the second group is #2. */
3208 regnum_t this_group_regnum;
3209
3210 compile_stack.avail--;
3211 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3212 fixup_alt_jump
3213 = COMPILE_STACK_TOP.fixup_alt_jump
3214 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3215 : 0;
3216 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3217 this_group_regnum = COMPILE_STACK_TOP.regnum;
3218 /* If we've reached MAX_REGNUM groups, then this open
3219 won't actually generate any code, so we'll have to
3220 clear pending_exact explicitly. */
3221 pending_exact = 0;
3222
3223 /* We're at the end of the group, so now we know how many
3224 groups were inside this one. */
3225 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3226 BUF_PUSH_2 (stop_memory, this_group_regnum);
3227 }
3228 break;
3229
3230
3231 case '|': /* `\|'. */
3232 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3233 goto normal_backslash;
3234 handle_alt:
3235 if (syntax & RE_LIMITED_OPS)
3236 goto normal_char;
3237
3238 /* Insert before the previous alternative a jump which
3239 jumps to this alternative if the former fails. */
3240 GET_BUFFER_SPACE (3);
3241 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3242 pending_exact = 0;
3243 b += 3;
3244
3245 /* The alternative before this one has a jump after it
3246 which gets executed if it gets matched. Adjust that
3247 jump so it will jump to this alternative's analogous
3248 jump (put in below, which in turn will jump to the next
3249 (if any) alternative's such jump, etc.). The last such
3250 jump jumps to the correct final destination. A picture:
3251 _____ _____
3252 | | | |
3253 | v | v
3254 a | b | c
3255
3256 If we are at `b', then fixup_alt_jump right now points to a
3257 three-byte space after `a'. We'll put in the jump, set
3258 fixup_alt_jump to right after `b', and leave behind three
3259 bytes which we'll fill in when we get to after `c'. */
3260
3261 FIXUP_ALT_JUMP ();
3262
3263 /* Mark and leave space for a jump after this alternative,
3264 to be filled in later either by next alternative or
3265 when know we're at the end of a series of alternatives. */
3266 fixup_alt_jump = b;
3267 GET_BUFFER_SPACE (3);
3268 b += 3;
3269
3270 laststart = 0;
3271 begalt = b;
3272 break;
3273
3274
3275 case '{':
3276 /* If \{ is a literal. */
3277 if (!(syntax & RE_INTERVALS)
3278 /* If we're at `\{' and it's not the open-interval
3279 operator. */
3280 || (syntax & RE_NO_BK_BRACES))
3281 goto normal_backslash;
3282
3283 handle_interval:
3284 {
3285 /* If got here, then the syntax allows intervals. */
3286
3287 /* At least (most) this many matches must be made. */
3288 int lower_bound = 0, upper_bound = -1;
3289
3290 beg_interval = p;
3291
3292 GET_UNSIGNED_NUMBER (lower_bound);
3293
3294 if (c == ',')
3295 GET_UNSIGNED_NUMBER (upper_bound);
3296 else
3297 /* Interval such as `{1}' => match exactly once. */
3298 upper_bound = lower_bound;
3299
3300 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3301 || (upper_bound >= 0 && lower_bound > upper_bound))
3302 FREE_STACK_RETURN (REG_BADBR);
3303
3304 if (!(syntax & RE_NO_BK_BRACES))
3305 {
3306 if (c != '\\')
3307 FREE_STACK_RETURN (REG_BADBR);
3308 if (p == pend)
3309 FREE_STACK_RETURN (REG_EESCAPE);
3310 PATFETCH (c);
3311 }
3312
3313 if (c != '}')
3314 FREE_STACK_RETURN (REG_BADBR);
3315
3316 /* We just parsed a valid interval. */
3317
3318 /* If it's invalid to have no preceding re. */
3319 if (!laststart)
3320 {
3321 if (syntax & RE_CONTEXT_INVALID_OPS)
3322 FREE_STACK_RETURN (REG_BADRPT);
3323 else if (syntax & RE_CONTEXT_INDEP_OPS)
3324 laststart = b;
3325 else
3326 goto unfetch_interval;
3327 }
3328
3329 if (upper_bound == 0)
3330 /* If the upper bound is zero, just drop the sub pattern
3331 altogether. */
3332 b = laststart;
3333 else if (lower_bound == 1 && upper_bound == 1)
3334 /* Just match it once: nothing to do here. */
3335 ;
3336
3337 /* Otherwise, we have a nontrivial interval. When
3338 we're all done, the pattern will look like:
3339 set_number_at <jump count> <upper bound>
3340 set_number_at <succeed_n count> <lower bound>
3341 succeed_n <after jump addr> <succeed_n count>
3342 <body of loop>
3343 jump_n <succeed_n addr> <jump count>
3344 (The upper bound and `jump_n' are omitted if
3345 `upper_bound' is 1, though.) */
3346 else
3347 { /* If the upper bound is > 1, we need to insert
3348 more at the end of the loop. */
3349 unsigned int nbytes = (upper_bound < 0 ? 3
3350 : upper_bound > 1 ? 5 : 0);
3351 unsigned int startoffset = 0;
3352
3353 GET_BUFFER_SPACE (20); /* We might use less. */
3354
3355 if (lower_bound == 0)
3356 {
3357 /* A succeed_n that starts with 0 is really a
3358 a simple on_failure_jump_loop. */
3359 INSERT_JUMP (on_failure_jump_loop, laststart,
3360 b + 3 + nbytes);
3361 b += 3;
3362 }
3363 else
3364 {
3365 /* Initialize lower bound of the `succeed_n', even
3366 though it will be set during matching by its
3367 attendant `set_number_at' (inserted next),
3368 because `re_compile_fastmap' needs to know.
3369 Jump to the `jump_n' we might insert below. */
3370 INSERT_JUMP2 (succeed_n, laststart,
3371 b + 5 + nbytes,
3372 lower_bound);
3373 b += 5;
3374
3375 /* Code to initialize the lower bound. Insert
3376 before the `succeed_n'. The `5' is the last two
3377 bytes of this `set_number_at', plus 3 bytes of
3378 the following `succeed_n'. */
3379 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3380 b += 5;
3381 startoffset += 5;
3382 }
3383
3384 if (upper_bound < 0)
3385 {
3386 /* A negative upper bound stands for infinity,
3387 in which case it degenerates to a plain jump. */
3388 STORE_JUMP (jump, b, laststart + startoffset);
3389 b += 3;
3390 }
3391 else if (upper_bound > 1)
3392 { /* More than one repetition is allowed, so
3393 append a backward jump to the `succeed_n'
3394 that starts this interval.
3395
3396 When we've reached this during matching,
3397 we'll have matched the interval once, so
3398 jump back only `upper_bound - 1' times. */
3399 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3400 upper_bound - 1);
3401 b += 5;
3402
3403 /* The location we want to set is the second
3404 parameter of the `jump_n'; that is `b-2' as
3405 an absolute address. `laststart' will be
3406 the `set_number_at' we're about to insert;
3407 `laststart+3' the number to set, the source
3408 for the relative address. But we are
3409 inserting into the middle of the pattern --
3410 so everything is getting moved up by 5.
3411 Conclusion: (b - 2) - (laststart + 3) + 5,
3412 i.e., b - laststart.
3413
3414 We insert this at the beginning of the loop
3415 so that if we fail during matching, we'll
3416 reinitialize the bounds. */
3417 insert_op2 (set_number_at, laststart, b - laststart,
3418 upper_bound - 1, b);
3419 b += 5;
3420 }
3421 }
3422 pending_exact = 0;
3423 beg_interval = NULL;
3424 }
3425 break;
3426
3427 unfetch_interval:
3428 /* If an invalid interval, match the characters as literals. */
3429 assert (beg_interval);
3430 p = beg_interval;
3431 beg_interval = NULL;
3432
3433 /* normal_char and normal_backslash need `c'. */
3434 c = '{';
3435
3436 if (!(syntax & RE_NO_BK_BRACES))
3437 {
3438 assert (p > pattern && p[-1] == '\\');
3439 goto normal_backslash;
3440 }
3441 else
3442 goto normal_char;
3443
3444 #ifdef emacs
3445 /* There is no way to specify the before_dot and after_dot
3446 operators. rms says this is ok. --karl */
3447 case '=':
3448 BUF_PUSH (at_dot);
3449 break;
3450
3451 case 's':
3452 laststart = b;
3453 PATFETCH (c);
3454 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3455 break;
3456
3457 case 'S':
3458 laststart = b;
3459 PATFETCH (c);
3460 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3461 break;
3462
3463 case 'c':
3464 laststart = b;
3465 PATFETCH (c);
3466 BUF_PUSH_2 (categoryspec, c);
3467 break;
3468
3469 case 'C':
3470 laststart = b;
3471 PATFETCH (c);
3472 BUF_PUSH_2 (notcategoryspec, c);
3473 break;
3474 #endif /* emacs */
3475
3476
3477 case 'w':
3478 if (syntax & RE_NO_GNU_OPS)
3479 goto normal_char;
3480 laststart = b;
3481 BUF_PUSH_2 (syntaxspec, Sword);
3482 break;
3483
3484
3485 case 'W':
3486 if (syntax & RE_NO_GNU_OPS)
3487 goto normal_char;
3488 laststart = b;
3489 BUF_PUSH_2 (notsyntaxspec, Sword);
3490 break;
3491
3492
3493 case '<':
3494 if (syntax & RE_NO_GNU_OPS)
3495 goto normal_char;
3496 BUF_PUSH (wordbeg);
3497 break;
3498
3499 case '>':
3500 if (syntax & RE_NO_GNU_OPS)
3501 goto normal_char;
3502 BUF_PUSH (wordend);
3503 break;
3504
3505 case '_':
3506 if (syntax & RE_NO_GNU_OPS)
3507 goto normal_char;
3508 laststart = b;
3509 PATFETCH (c);
3510 if (c == '<')
3511 BUF_PUSH (symbeg);
3512 else if (c == '>')
3513 BUF_PUSH (symend);
3514 else
3515 FREE_STACK_RETURN (REG_BADPAT);
3516 break;
3517
3518 case 'b':
3519 if (syntax & RE_NO_GNU_OPS)
3520 goto normal_char;
3521 BUF_PUSH (wordbound);
3522 break;
3523
3524 case 'B':
3525 if (syntax & RE_NO_GNU_OPS)
3526 goto normal_char;
3527 BUF_PUSH (notwordbound);
3528 break;
3529
3530 case '`':
3531 if (syntax & RE_NO_GNU_OPS)
3532 goto normal_char;
3533 BUF_PUSH (begbuf);
3534 break;
3535
3536 case '\'':
3537 if (syntax & RE_NO_GNU_OPS)
3538 goto normal_char;
3539 BUF_PUSH (endbuf);
3540 break;
3541
3542 case '1': case '2': case '3': case '4': case '5':
3543 case '6': case '7': case '8': case '9':
3544 {
3545 regnum_t reg;
3546
3547 if (syntax & RE_NO_BK_REFS)
3548 goto normal_backslash;
3549
3550 reg = c - '0';
3551
3552 /* Can't back reference to a subexpression before its end. */
3553 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3554 FREE_STACK_RETURN (REG_ESUBREG);
3555
3556 laststart = b;
3557 BUF_PUSH_2 (duplicate, reg);
3558 }
3559 break;
3560
3561
3562 case '+':
3563 case '?':
3564 if (syntax & RE_BK_PLUS_QM)
3565 goto handle_plus;
3566 else
3567 goto normal_backslash;
3568
3569 default:
3570 normal_backslash:
3571 /* You might think it would be useful for \ to mean
3572 not to translate; but if we don't translate it
3573 it will never match anything. */
3574 goto normal_char;
3575 }
3576 break;
3577
3578
3579 default:
3580 /* Expects the character in `c'. */
3581 normal_char:
3582 /* If no exactn currently being built. */
3583 if (!pending_exact
3584
3585 /* If last exactn not at current position. */
3586 || pending_exact + *pending_exact + 1 != b
3587
3588 /* We have only one byte following the exactn for the count. */
3589 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3590
3591 /* If followed by a repetition operator. */
3592 || (p != pend && (*p == '*' || *p == '^'))
3593 || ((syntax & RE_BK_PLUS_QM)
3594 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3595 : p != pend && (*p == '+' || *p == '?'))
3596 || ((syntax & RE_INTERVALS)
3597 && ((syntax & RE_NO_BK_BRACES)
3598 ? p != pend && *p == '{'
3599 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3600 {
3601 /* Start building a new exactn. */
3602
3603 laststart = b;
3604
3605 BUF_PUSH_2 (exactn, 0);
3606 pending_exact = b - 1;
3607 }
3608
3609 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3610 {
3611 int len;
3612
3613 c = TRANSLATE (c);
3614 if (multibyte)
3615 len = CHAR_STRING (c, b);
3616 else
3617 *b = c, len = 1;
3618 b += len;
3619 (*pending_exact) += len;
3620 }
3621
3622 break;
3623 } /* switch (c) */
3624 } /* while p != pend */
3625
3626
3627 /* Through the pattern now. */
3628
3629 FIXUP_ALT_JUMP ();
3630
3631 if (!COMPILE_STACK_EMPTY)
3632 FREE_STACK_RETURN (REG_EPAREN);
3633
3634 /* If we don't want backtracking, force success
3635 the first time we reach the end of the compiled pattern. */
3636 if (syntax & RE_NO_POSIX_BACKTRACKING)
3637 BUF_PUSH (succeed);
3638
3639 /* We have succeeded; set the length of the buffer. */
3640 bufp->used = b - bufp->buffer;
3641
3642 #ifdef DEBUG
3643 if (debug > 0)
3644 {
3645 re_compile_fastmap (bufp);
3646 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3647 print_compiled_pattern (bufp);
3648 }
3649 debug--;
3650 #endif /* DEBUG */
3651
3652 #ifndef MATCH_MAY_ALLOCATE
3653 /* Initialize the failure stack to the largest possible stack. This
3654 isn't necessary unless we're trying to avoid calling alloca in
3655 the search and match routines. */
3656 {
3657 int num_regs = bufp->re_nsub + 1;
3658
3659 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3660 {
3661 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3662
3663 if (! fail_stack.stack)
3664 fail_stack.stack
3665 = (fail_stack_elt_t *) malloc (fail_stack.size
3666 * sizeof (fail_stack_elt_t));
3667 else
3668 fail_stack.stack
3669 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3670 (fail_stack.size
3671 * sizeof (fail_stack_elt_t)));
3672 }
3673
3674 regex_grow_registers (num_regs);
3675 }
3676 #endif /* not MATCH_MAY_ALLOCATE */
3677
3678 FREE_STACK_RETURN (REG_NOERROR);
3679 } /* regex_compile */
3680 \f
3681 /* Subroutines for `regex_compile'. */
3682
3683 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3684
3685 static void
3686 store_op1 (op, loc, arg)
3687 re_opcode_t op;
3688 unsigned char *loc;
3689 int arg;
3690 {
3691 *loc = (unsigned char) op;
3692 STORE_NUMBER (loc + 1, arg);
3693 }
3694
3695
3696 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3697
3698 static void
3699 store_op2 (op, loc, arg1, arg2)
3700 re_opcode_t op;
3701 unsigned char *loc;
3702 int arg1, arg2;
3703 {
3704 *loc = (unsigned char) op;
3705 STORE_NUMBER (loc + 1, arg1);
3706 STORE_NUMBER (loc + 3, arg2);
3707 }
3708
3709
3710 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3711 for OP followed by two-byte integer parameter ARG. */
3712
3713 static void
3714 insert_op1 (op, loc, arg, end)
3715 re_opcode_t op;
3716 unsigned char *loc;
3717 int arg;
3718 unsigned char *end;
3719 {
3720 register unsigned char *pfrom = end;
3721 register unsigned char *pto = end + 3;
3722
3723 while (pfrom != loc)
3724 *--pto = *--pfrom;
3725
3726 store_op1 (op, loc, arg);
3727 }
3728
3729
3730 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3731
3732 static void
3733 insert_op2 (op, loc, arg1, arg2, end)
3734 re_opcode_t op;
3735 unsigned char *loc;
3736 int arg1, arg2;
3737 unsigned char *end;
3738 {
3739 register unsigned char *pfrom = end;
3740 register unsigned char *pto = end + 5;
3741
3742 while (pfrom != loc)
3743 *--pto = *--pfrom;
3744
3745 store_op2 (op, loc, arg1, arg2);
3746 }
3747
3748
3749 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3750 after an alternative or a begin-subexpression. We assume there is at
3751 least one character before the ^. */
3752
3753 static boolean
3754 at_begline_loc_p (pattern, p, syntax)
3755 re_char *pattern, *p;
3756 reg_syntax_t syntax;
3757 {
3758 re_char *prev = p - 2;
3759 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3760
3761 return
3762 /* After a subexpression? */
3763 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3764 /* After an alternative? */
3765 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3766 /* After a shy subexpression? */
3767 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3768 && prev[-1] == '?' && prev[-2] == '('
3769 && (syntax & RE_NO_BK_PARENS
3770 || (prev - 3 >= pattern && prev[-3] == '\\')));
3771 }
3772
3773
3774 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3775 at least one character after the $, i.e., `P < PEND'. */
3776
3777 static boolean
3778 at_endline_loc_p (p, pend, syntax)
3779 re_char *p, *pend;
3780 reg_syntax_t syntax;
3781 {
3782 re_char *next = p;
3783 boolean next_backslash = *next == '\\';
3784 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3785
3786 return
3787 /* Before a subexpression? */
3788 (syntax & RE_NO_BK_PARENS ? *next == ')'
3789 : next_backslash && next_next && *next_next == ')')
3790 /* Before an alternative? */
3791 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3792 : next_backslash && next_next && *next_next == '|');
3793 }
3794
3795
3796 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3797 false if it's not. */
3798
3799 static boolean
3800 group_in_compile_stack (compile_stack, regnum)
3801 compile_stack_type compile_stack;
3802 regnum_t regnum;
3803 {
3804 int this_element;
3805
3806 for (this_element = compile_stack.avail - 1;
3807 this_element >= 0;
3808 this_element--)
3809 if (compile_stack.stack[this_element].regnum == regnum)
3810 return true;
3811
3812 return false;
3813 }
3814 \f
3815 /* analyse_first.
3816 If fastmap is non-NULL, go through the pattern and fill fastmap
3817 with all the possible leading chars. If fastmap is NULL, don't
3818 bother filling it up (obviously) and only return whether the
3819 pattern could potentially match the empty string.
3820
3821 Return 1 if p..pend might match the empty string.
3822 Return 0 if p..pend matches at least one char.
3823 Return -1 if fastmap was not updated accurately. */
3824
3825 static int
3826 analyse_first (p, pend, fastmap, multibyte)
3827 re_char *p, *pend;
3828 char *fastmap;
3829 const int multibyte;
3830 {
3831 int j, k;
3832 boolean not;
3833
3834 /* If all elements for base leading-codes in fastmap is set, this
3835 flag is set true. */
3836 boolean match_any_multibyte_characters = false;
3837
3838 assert (p);
3839
3840 /* The loop below works as follows:
3841 - It has a working-list kept in the PATTERN_STACK and which basically
3842 starts by only containing a pointer to the first operation.
3843 - If the opcode we're looking at is a match against some set of
3844 chars, then we add those chars to the fastmap and go on to the
3845 next work element from the worklist (done via `break').
3846 - If the opcode is a control operator on the other hand, we either
3847 ignore it (if it's meaningless at this point, such as `start_memory')
3848 or execute it (if it's a jump). If the jump has several destinations
3849 (i.e. `on_failure_jump'), then we push the other destination onto the
3850 worklist.
3851 We guarantee termination by ignoring backward jumps (more or less),
3852 so that `p' is monotonically increasing. More to the point, we
3853 never set `p' (or push) anything `<= p1'. */
3854
3855 while (p < pend)
3856 {
3857 /* `p1' is used as a marker of how far back a `on_failure_jump'
3858 can go without being ignored. It is normally equal to `p'
3859 (which prevents any backward `on_failure_jump') except right
3860 after a plain `jump', to allow patterns such as:
3861 0: jump 10
3862 3..9: <body>
3863 10: on_failure_jump 3
3864 as used for the *? operator. */
3865 re_char *p1 = p;
3866
3867 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3868 {
3869 case succeed:
3870 return 1;
3871 continue;
3872
3873 case duplicate:
3874 /* If the first character has to match a backreference, that means
3875 that the group was empty (since it already matched). Since this
3876 is the only case that interests us here, we can assume that the
3877 backreference must match the empty string. */
3878 p++;
3879 continue;
3880
3881
3882 /* Following are the cases which match a character. These end
3883 with `break'. */
3884
3885 case exactn:
3886 if (fastmap)
3887 {
3888 int c = RE_STRING_CHAR (p + 1, pend - p);
3889 /* When fast-scanning, the fastmap can be indexed either with
3890 a char (smaller than 256) or with the first byte of
3891 a char's byte sequence. So we have to conservatively add
3892 both to the table. */
3893 if (SINGLE_BYTE_CHAR_P (c))
3894 fastmap[c] = 1;
3895 fastmap[p[1]] = 1;
3896 }
3897 break;
3898
3899
3900 case anychar:
3901 /* We could put all the chars except for \n (and maybe \0)
3902 but we don't bother since it is generally not worth it. */
3903 if (!fastmap) break;
3904 return -1;
3905
3906
3907 case charset_not:
3908 /* Chars beyond end of bitmap are possible matches.
3909 All the single-byte codes can occur in multibyte buffers.
3910 So any that are not listed in the charset
3911 are possible matches, even in multibyte buffers. */
3912 if (!fastmap) break;
3913 /* We don't need to mark LEADING_CODE_8_BIT_CONTROL specially
3914 because it will automatically be set when needed by virtue of
3915 being larger than the highest char of its charset (0xbf) but
3916 smaller than (1<<BYTEWIDTH). */
3917 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3918 j < (1 << BYTEWIDTH); j++)
3919 fastmap[j] = 1;
3920 /* Fallthrough */
3921 case charset:
3922 if (!fastmap) break;
3923 not = (re_opcode_t) *(p - 1) == charset_not;
3924 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3925 j >= 0; j--)
3926 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3927 {
3928 fastmap[j] = 1;
3929 #ifdef emacs
3930 if (j >= 0x80 && j < 0xa0)
3931 fastmap[LEADING_CODE_8_BIT_CONTROL] = 1;
3932 #endif
3933 }
3934
3935 if ((not && multibyte)
3936 /* Any character set can possibly contain a character
3937 which doesn't match the specified set of characters. */
3938 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3939 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3940 /* If we can match a character class, we can match
3941 any character set. */
3942 {
3943 set_fastmap_for_multibyte_characters:
3944 if (match_any_multibyte_characters == false)
3945 {
3946 for (j = 0x80; j < 0xA0; j++) /* XXX */
3947 if (BASE_LEADING_CODE_P (j))
3948 fastmap[j] = 1;
3949 match_any_multibyte_characters = true;
3950 }
3951 }
3952
3953 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3954 && match_any_multibyte_characters == false)
3955 {
3956 /* Set fastmap[I] 1 where I is a base leading code of each
3957 multibyte character in the range table. */
3958 int c, count;
3959
3960 /* Make P points the range table. `+ 2' is to skip flag
3961 bits for a character class. */
3962 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3963
3964 /* Extract the number of ranges in range table into COUNT. */
3965 EXTRACT_NUMBER_AND_INCR (count, p);
3966 for (; count > 0; count--, p += 2 * 3) /* XXX */
3967 {
3968 /* Extract the start of each range. */
3969 EXTRACT_CHARACTER (c, p);
3970 j = CHAR_CHARSET (c);
3971 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3972 }
3973 }
3974 break;
3975
3976 case syntaxspec:
3977 case notsyntaxspec:
3978 if (!fastmap) break;
3979 #ifndef emacs
3980 not = (re_opcode_t)p[-1] == notsyntaxspec;
3981 k = *p++;
3982 for (j = 0; j < (1 << BYTEWIDTH); j++)
3983 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3984 fastmap[j] = 1;
3985 break;
3986 #else /* emacs */
3987 /* This match depends on text properties. These end with
3988 aborting optimizations. */
3989 return -1;
3990
3991 case categoryspec:
3992 case notcategoryspec:
3993 if (!fastmap) break;
3994 not = (re_opcode_t)p[-1] == notcategoryspec;
3995 k = *p++;
3996 for (j = 0; j < (1 << BYTEWIDTH); j++)
3997 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3998 fastmap[j] = 1;
3999
4000 if (multibyte)
4001 /* Any character set can possibly contain a character
4002 whose category is K (or not). */
4003 goto set_fastmap_for_multibyte_characters;
4004 break;
4005
4006 /* All cases after this match the empty string. These end with
4007 `continue'. */
4008
4009 case before_dot:
4010 case at_dot:
4011 case after_dot:
4012 #endif /* !emacs */
4013 case no_op:
4014 case begline:
4015 case endline:
4016 case begbuf:
4017 case endbuf:
4018 case wordbound:
4019 case notwordbound:
4020 case wordbeg:
4021 case wordend:
4022 case symbeg:
4023 case symend:
4024 continue;
4025
4026
4027 case jump:
4028 EXTRACT_NUMBER_AND_INCR (j, p);
4029 if (j < 0)
4030 /* Backward jumps can only go back to code that we've already
4031 visited. `re_compile' should make sure this is true. */
4032 break;
4033 p += j;
4034 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4035 {
4036 case on_failure_jump:
4037 case on_failure_keep_string_jump:
4038 case on_failure_jump_loop:
4039 case on_failure_jump_nastyloop:
4040 case on_failure_jump_smart:
4041 p++;
4042 break;
4043 default:
4044 continue;
4045 };
4046 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4047 to jump back to "just after here". */
4048 /* Fallthrough */
4049
4050 case on_failure_jump:
4051 case on_failure_keep_string_jump:
4052 case on_failure_jump_nastyloop:
4053 case on_failure_jump_loop:
4054 case on_failure_jump_smart:
4055 EXTRACT_NUMBER_AND_INCR (j, p);
4056 if (p + j <= p1)
4057 ; /* Backward jump to be ignored. */
4058 else
4059 { /* We have to look down both arms.
4060 We first go down the "straight" path so as to minimize
4061 stack usage when going through alternatives. */
4062 int r = analyse_first (p, pend, fastmap, multibyte);
4063 if (r) return r;
4064 p += j;
4065 }
4066 continue;
4067
4068
4069 case jump_n:
4070 /* This code simply does not properly handle forward jump_n. */
4071 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4072 p += 4;
4073 /* jump_n can either jump or fall through. The (backward) jump
4074 case has already been handled, so we only need to look at the
4075 fallthrough case. */
4076 continue;
4077
4078 case succeed_n:
4079 /* If N == 0, it should be an on_failure_jump_loop instead. */
4080 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4081 p += 4;
4082 /* We only care about one iteration of the loop, so we don't
4083 need to consider the case where this behaves like an
4084 on_failure_jump. */
4085 continue;
4086
4087
4088 case set_number_at:
4089 p += 4;
4090 continue;
4091
4092
4093 case start_memory:
4094 case stop_memory:
4095 p += 1;
4096 continue;
4097
4098
4099 default:
4100 abort (); /* We have listed all the cases. */
4101 } /* switch *p++ */
4102
4103 /* Getting here means we have found the possible starting
4104 characters for one path of the pattern -- and that the empty
4105 string does not match. We need not follow this path further. */
4106 return 0;
4107 } /* while p */
4108
4109 /* We reached the end without matching anything. */
4110 return 1;
4111
4112 } /* analyse_first */
4113 \f
4114 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4115 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4116 characters can start a string that matches the pattern. This fastmap
4117 is used by re_search to skip quickly over impossible starting points.
4118
4119 Character codes above (1 << BYTEWIDTH) are not represented in the
4120 fastmap, but the leading codes are represented. Thus, the fastmap
4121 indicates which character sets could start a match.
4122
4123 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4124 area as BUFP->fastmap.
4125
4126 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4127 the pattern buffer.
4128
4129 Returns 0 if we succeed, -2 if an internal error. */
4130
4131 int
4132 re_compile_fastmap (bufp)
4133 struct re_pattern_buffer *bufp;
4134 {
4135 char *fastmap = bufp->fastmap;
4136 int analysis;
4137
4138 assert (fastmap && bufp->buffer);
4139
4140 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4141 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4142
4143 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4144 fastmap, RE_MULTIBYTE_P (bufp));
4145 bufp->can_be_null = (analysis != 0);
4146 return 0;
4147 } /* re_compile_fastmap */
4148 \f
4149 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4150 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4151 this memory for recording register information. STARTS and ENDS
4152 must be allocated using the malloc library routine, and must each
4153 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4154
4155 If NUM_REGS == 0, then subsequent matches should allocate their own
4156 register data.
4157
4158 Unless this function is called, the first search or match using
4159 PATTERN_BUFFER will allocate its own register data, without
4160 freeing the old data. */
4161
4162 void
4163 re_set_registers (bufp, regs, num_regs, starts, ends)
4164 struct re_pattern_buffer *bufp;
4165 struct re_registers *regs;
4166 unsigned num_regs;
4167 regoff_t *starts, *ends;
4168 {
4169 if (num_regs)
4170 {
4171 bufp->regs_allocated = REGS_REALLOCATE;
4172 regs->num_regs = num_regs;
4173 regs->start = starts;
4174 regs->end = ends;
4175 }
4176 else
4177 {
4178 bufp->regs_allocated = REGS_UNALLOCATED;
4179 regs->num_regs = 0;
4180 regs->start = regs->end = (regoff_t *) 0;
4181 }
4182 }
4183 WEAK_ALIAS (__re_set_registers, re_set_registers)
4184 \f
4185 /* Searching routines. */
4186
4187 /* Like re_search_2, below, but only one string is specified, and
4188 doesn't let you say where to stop matching. */
4189
4190 int
4191 re_search (bufp, string, size, startpos, range, regs)
4192 struct re_pattern_buffer *bufp;
4193 const char *string;
4194 int size, startpos, range;
4195 struct re_registers *regs;
4196 {
4197 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4198 regs, size);
4199 }
4200 WEAK_ALIAS (__re_search, re_search)
4201
4202 /* Head address of virtual concatenation of string. */
4203 #define HEAD_ADDR_VSTRING(P) \
4204 (((P) >= size1 ? string2 : string1))
4205
4206 /* End address of virtual concatenation of string. */
4207 #define STOP_ADDR_VSTRING(P) \
4208 (((P) >= size1 ? string2 + size2 : string1 + size1))
4209
4210 /* Address of POS in the concatenation of virtual string. */
4211 #define POS_ADDR_VSTRING(POS) \
4212 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4213
4214 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4215 virtual concatenation of STRING1 and STRING2, starting first at index
4216 STARTPOS, then at STARTPOS + 1, and so on.
4217
4218 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4219
4220 RANGE is how far to scan while trying to match. RANGE = 0 means try
4221 only at STARTPOS; in general, the last start tried is STARTPOS +
4222 RANGE.
4223
4224 In REGS, return the indices of the virtual concatenation of STRING1
4225 and STRING2 that matched the entire BUFP->buffer and its contained
4226 subexpressions.
4227
4228 Do not consider matching one past the index STOP in the virtual
4229 concatenation of STRING1 and STRING2.
4230
4231 We return either the position in the strings at which the match was
4232 found, -1 if no match, or -2 if error (such as failure
4233 stack overflow). */
4234
4235 int
4236 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4237 struct re_pattern_buffer *bufp;
4238 const char *str1, *str2;
4239 int size1, size2;
4240 int startpos;
4241 int range;
4242 struct re_registers *regs;
4243 int stop;
4244 {
4245 int val;
4246 re_char *string1 = (re_char*) str1;
4247 re_char *string2 = (re_char*) str2;
4248 register char *fastmap = bufp->fastmap;
4249 register RE_TRANSLATE_TYPE translate = bufp->translate;
4250 int total_size = size1 + size2;
4251 int endpos = startpos + range;
4252 boolean anchored_start;
4253
4254 /* Nonzero if we have to concern multibyte character. */
4255 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4256
4257 /* Check for out-of-range STARTPOS. */
4258 if (startpos < 0 || startpos > total_size)
4259 return -1;
4260
4261 /* Fix up RANGE if it might eventually take us outside
4262 the virtual concatenation of STRING1 and STRING2.
4263 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4264 if (endpos < 0)
4265 range = 0 - startpos;
4266 else if (endpos > total_size)
4267 range = total_size - startpos;
4268
4269 /* If the search isn't to be a backwards one, don't waste time in a
4270 search for a pattern anchored at beginning of buffer. */
4271 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4272 {
4273 if (startpos > 0)
4274 return -1;
4275 else
4276 range = 0;
4277 }
4278
4279 #ifdef emacs
4280 /* In a forward search for something that starts with \=.
4281 don't keep searching past point. */
4282 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4283 {
4284 range = PT_BYTE - BEGV_BYTE - startpos;
4285 if (range < 0)
4286 return -1;
4287 }
4288 #endif /* emacs */
4289
4290 /* Update the fastmap now if not correct already. */
4291 if (fastmap && !bufp->fastmap_accurate)
4292 re_compile_fastmap (bufp);
4293
4294 /* See whether the pattern is anchored. */
4295 anchored_start = (bufp->buffer[0] == begline);
4296
4297 #ifdef emacs
4298 gl_state.object = re_match_object;
4299 {
4300 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4301
4302 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4303 }
4304 #endif
4305
4306 /* Loop through the string, looking for a place to start matching. */
4307 for (;;)
4308 {
4309 /* If the pattern is anchored,
4310 skip quickly past places we cannot match.
4311 We don't bother to treat startpos == 0 specially
4312 because that case doesn't repeat. */
4313 if (anchored_start && startpos > 0)
4314 {
4315 if (! ((startpos <= size1 ? string1[startpos - 1]
4316 : string2[startpos - size1 - 1])
4317 == '\n'))
4318 goto advance;
4319 }
4320
4321 /* If a fastmap is supplied, skip quickly over characters that
4322 cannot be the start of a match. If the pattern can match the
4323 null string, however, we don't need to skip characters; we want
4324 the first null string. */
4325 if (fastmap && startpos < total_size && !bufp->can_be_null)
4326 {
4327 register re_char *d;
4328 register re_wchar_t buf_ch;
4329
4330 d = POS_ADDR_VSTRING (startpos);
4331
4332 if (range > 0) /* Searching forwards. */
4333 {
4334 register int lim = 0;
4335 int irange = range;
4336
4337 if (startpos < size1 && startpos + range >= size1)
4338 lim = range - (size1 - startpos);
4339
4340 /* Written out as an if-else to avoid testing `translate'
4341 inside the loop. */
4342 if (RE_TRANSLATE_P (translate))
4343 {
4344 if (multibyte)
4345 while (range > lim)
4346 {
4347 int buf_charlen;
4348
4349 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4350 buf_charlen);
4351
4352 buf_ch = RE_TRANSLATE (translate, buf_ch);
4353 if (buf_ch >= 0400
4354 || fastmap[buf_ch])
4355 break;
4356
4357 range -= buf_charlen;
4358 d += buf_charlen;
4359 }
4360 else
4361 {
4362 /* Convert *d to integer to shut up GCC's
4363 whining about comparison that is always
4364 true. */
4365 int di = *d;
4366
4367 while (range > lim
4368 && !fastmap[RE_TRANSLATE (translate, di)])
4369 {
4370 di = *(++d);
4371 range--;
4372 }
4373 }
4374 }
4375 else
4376 do
4377 {
4378 re_char *d_start = d;
4379 while (range > lim && !fastmap[*d])
4380 {
4381 d++;
4382 range--;
4383 }
4384 #ifdef emacs
4385 if (multibyte && range > lim)
4386 {
4387 /* Check that we are at the beginning of a char. */
4388 int at_boundary;
4389 AT_CHAR_BOUNDARY_P (at_boundary, d, d_start);
4390 if (at_boundary)
4391 break;
4392 else
4393 { /* We have matched an internal byte of a char
4394 rather than the leading byte, so it's a false
4395 positive: we should keep scanning. */
4396 d++; range--;
4397 }
4398 }
4399 else
4400 #endif
4401 break;
4402 } while (1);
4403
4404 startpos += irange - range;
4405 }
4406 else /* Searching backwards. */
4407 {
4408 int room = (startpos >= size1
4409 ? size2 + size1 - startpos
4410 : size1 - startpos);
4411 buf_ch = RE_STRING_CHAR (d, room);
4412 buf_ch = TRANSLATE (buf_ch);
4413
4414 if (! (buf_ch >= 0400
4415 || fastmap[buf_ch]))
4416 goto advance;
4417 }
4418 }
4419
4420 /* If can't match the null string, and that's all we have left, fail. */
4421 if (range >= 0 && startpos == total_size && fastmap
4422 && !bufp->can_be_null)
4423 return -1;
4424
4425 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4426 startpos, regs, stop);
4427 #ifndef REGEX_MALLOC
4428 # ifdef C_ALLOCA
4429 alloca (0);
4430 # endif
4431 #endif
4432
4433 if (val >= 0)
4434 return startpos;
4435
4436 if (val == -2)
4437 return -2;
4438
4439 advance:
4440 if (!range)
4441 break;
4442 else if (range > 0)
4443 {
4444 /* Update STARTPOS to the next character boundary. */
4445 if (multibyte)
4446 {
4447 re_char *p = POS_ADDR_VSTRING (startpos);
4448 re_char *pend = STOP_ADDR_VSTRING (startpos);
4449 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4450
4451 range -= len;
4452 if (range < 0)
4453 break;
4454 startpos += len;
4455 }
4456 else
4457 {
4458 range--;
4459 startpos++;
4460 }
4461 }
4462 else
4463 {
4464 range++;
4465 startpos--;
4466
4467 /* Update STARTPOS to the previous character boundary. */
4468 if (multibyte)
4469 {
4470 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4471 re_char *p0 = p;
4472 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4473
4474 /* Find the head of multibyte form. */
4475 PREV_CHAR_BOUNDARY (p, phead);
4476 range += p0 - 1 - p;
4477 if (range > 0)
4478 break;
4479
4480 startpos -= p0 - 1 - p;
4481 }
4482 }
4483 }
4484 return -1;
4485 } /* re_search_2 */
4486 WEAK_ALIAS (__re_search_2, re_search_2)
4487 \f
4488 /* Declarations and macros for re_match_2. */
4489
4490 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4491 register int len,
4492 RE_TRANSLATE_TYPE translate,
4493 const int multibyte));
4494
4495 /* This converts PTR, a pointer into one of the search strings `string1'
4496 and `string2' into an offset from the beginning of that string. */
4497 #define POINTER_TO_OFFSET(ptr) \
4498 (FIRST_STRING_P (ptr) \
4499 ? ((regoff_t) ((ptr) - string1)) \
4500 : ((regoff_t) ((ptr) - string2 + size1)))
4501
4502 /* Call before fetching a character with *d. This switches over to
4503 string2 if necessary.
4504 Check re_match_2_internal for a discussion of why end_match_2 might
4505 not be within string2 (but be equal to end_match_1 instead). */
4506 #define PREFETCH() \
4507 while (d == dend) \
4508 { \
4509 /* End of string2 => fail. */ \
4510 if (dend == end_match_2) \
4511 goto fail; \
4512 /* End of string1 => advance to string2. */ \
4513 d = string2; \
4514 dend = end_match_2; \
4515 }
4516
4517 /* Call before fetching a char with *d if you already checked other limits.
4518 This is meant for use in lookahead operations like wordend, etc..
4519 where we might need to look at parts of the string that might be
4520 outside of the LIMITs (i.e past `stop'). */
4521 #define PREFETCH_NOLIMIT() \
4522 if (d == end1) \
4523 { \
4524 d = string2; \
4525 dend = end_match_2; \
4526 } \
4527
4528 /* Test if at very beginning or at very end of the virtual concatenation
4529 of `string1' and `string2'. If only one string, it's `string2'. */
4530 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4531 #define AT_STRINGS_END(d) ((d) == end2)
4532
4533
4534 /* Test if D points to a character which is word-constituent. We have
4535 two special cases to check for: if past the end of string1, look at
4536 the first character in string2; and if before the beginning of
4537 string2, look at the last character in string1. */
4538 #define WORDCHAR_P(d) \
4539 (SYNTAX ((d) == end1 ? *string2 \
4540 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4541 == Sword)
4542
4543 /* Disabled due to a compiler bug -- see comment at case wordbound */
4544
4545 /* The comment at case wordbound is following one, but we don't use
4546 AT_WORD_BOUNDARY anymore to support multibyte form.
4547
4548 The DEC Alpha C compiler 3.x generates incorrect code for the
4549 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4550 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4551 macro and introducing temporary variables works around the bug. */
4552
4553 #if 0
4554 /* Test if the character before D and the one at D differ with respect
4555 to being word-constituent. */
4556 #define AT_WORD_BOUNDARY(d) \
4557 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4558 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4559 #endif
4560
4561 /* Free everything we malloc. */
4562 #ifdef MATCH_MAY_ALLOCATE
4563 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4564 # define FREE_VARIABLES() \
4565 do { \
4566 REGEX_FREE_STACK (fail_stack.stack); \
4567 FREE_VAR (regstart); \
4568 FREE_VAR (regend); \
4569 FREE_VAR (best_regstart); \
4570 FREE_VAR (best_regend); \
4571 } while (0)
4572 #else
4573 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4574 #endif /* not MATCH_MAY_ALLOCATE */
4575
4576 \f
4577 /* Optimization routines. */
4578
4579 /* If the operation is a match against one or more chars,
4580 return a pointer to the next operation, else return NULL. */
4581 static re_char *
4582 skip_one_char (p)
4583 re_char *p;
4584 {
4585 switch (SWITCH_ENUM_CAST (*p++))
4586 {
4587 case anychar:
4588 break;
4589
4590 case exactn:
4591 p += *p + 1;
4592 break;
4593
4594 case charset_not:
4595 case charset:
4596 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4597 {
4598 int mcnt;
4599 p = CHARSET_RANGE_TABLE (p - 1);
4600 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4601 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4602 }
4603 else
4604 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4605 break;
4606
4607 case syntaxspec:
4608 case notsyntaxspec:
4609 #ifdef emacs
4610 case categoryspec:
4611 case notcategoryspec:
4612 #endif /* emacs */
4613 p++;
4614 break;
4615
4616 default:
4617 p = NULL;
4618 }
4619 return p;
4620 }
4621
4622
4623 /* Jump over non-matching operations. */
4624 static re_char *
4625 skip_noops (p, pend)
4626 re_char *p, *pend;
4627 {
4628 int mcnt;
4629 while (p < pend)
4630 {
4631 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4632 {
4633 case start_memory:
4634 case stop_memory:
4635 p += 2; break;
4636 case no_op:
4637 p += 1; break;
4638 case jump:
4639 p += 1;
4640 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4641 p += mcnt;
4642 break;
4643 default:
4644 return p;
4645 }
4646 }
4647 assert (p == pend);
4648 return p;
4649 }
4650
4651 /* Non-zero if "p1 matches something" implies "p2 fails". */
4652 static int
4653 mutually_exclusive_p (bufp, p1, p2)
4654 struct re_pattern_buffer *bufp;
4655 re_char *p1, *p2;
4656 {
4657 re_opcode_t op2;
4658 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4659 unsigned char *pend = bufp->buffer + bufp->used;
4660
4661 assert (p1 >= bufp->buffer && p1 < pend
4662 && p2 >= bufp->buffer && p2 <= pend);
4663
4664 /* Skip over open/close-group commands.
4665 If what follows this loop is a ...+ construct,
4666 look at what begins its body, since we will have to
4667 match at least one of that. */
4668 p2 = skip_noops (p2, pend);
4669 /* The same skip can be done for p1, except that this function
4670 is only used in the case where p1 is a simple match operator. */
4671 /* p1 = skip_noops (p1, pend); */
4672
4673 assert (p1 >= bufp->buffer && p1 < pend
4674 && p2 >= bufp->buffer && p2 <= pend);
4675
4676 op2 = p2 == pend ? succeed : *p2;
4677
4678 switch (SWITCH_ENUM_CAST (op2))
4679 {
4680 case succeed:
4681 case endbuf:
4682 /* If we're at the end of the pattern, we can change. */
4683 if (skip_one_char (p1))
4684 {
4685 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4686 return 1;
4687 }
4688 break;
4689
4690 case endline:
4691 case exactn:
4692 {
4693 register re_wchar_t c
4694 = (re_opcode_t) *p2 == endline ? '\n'
4695 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4696
4697 if ((re_opcode_t) *p1 == exactn)
4698 {
4699 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4700 {
4701 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4702 return 1;
4703 }
4704 }
4705
4706 else if ((re_opcode_t) *p1 == charset
4707 || (re_opcode_t) *p1 == charset_not)
4708 {
4709 int not = (re_opcode_t) *p1 == charset_not;
4710
4711 /* Test if C is listed in charset (or charset_not)
4712 at `p1'. */
4713 if (SINGLE_BYTE_CHAR_P (c))
4714 {
4715 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4716 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4717 not = !not;
4718 }
4719 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4720 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4721
4722 /* `not' is equal to 1 if c would match, which means
4723 that we can't change to pop_failure_jump. */
4724 if (!not)
4725 {
4726 DEBUG_PRINT1 (" No match => fast loop.\n");
4727 return 1;
4728 }
4729 }
4730 else if ((re_opcode_t) *p1 == anychar
4731 && c == '\n')
4732 {
4733 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4734 return 1;
4735 }
4736 }
4737 break;
4738
4739 case charset:
4740 {
4741 if ((re_opcode_t) *p1 == exactn)
4742 /* Reuse the code above. */
4743 return mutually_exclusive_p (bufp, p2, p1);
4744
4745 /* It is hard to list up all the character in charset
4746 P2 if it includes multibyte character. Give up in
4747 such case. */
4748 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4749 {
4750 /* Now, we are sure that P2 has no range table.
4751 So, for the size of bitmap in P2, `p2[1]' is
4752 enough. But P1 may have range table, so the
4753 size of bitmap table of P1 is extracted by
4754 using macro `CHARSET_BITMAP_SIZE'.
4755
4756 Since we know that all the character listed in
4757 P2 is ASCII, it is enough to test only bitmap
4758 table of P1. */
4759
4760 if ((re_opcode_t) *p1 == charset)
4761 {
4762 int idx;
4763 /* We win if the charset inside the loop
4764 has no overlap with the one after the loop. */
4765 for (idx = 0;
4766 (idx < (int) p2[1]
4767 && idx < CHARSET_BITMAP_SIZE (p1));
4768 idx++)
4769 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4770 break;
4771
4772 if (idx == p2[1]
4773 || idx == CHARSET_BITMAP_SIZE (p1))
4774 {
4775 DEBUG_PRINT1 (" No match => fast loop.\n");
4776 return 1;
4777 }
4778 }
4779 else if ((re_opcode_t) *p1 == charset_not)
4780 {
4781 int idx;
4782 /* We win if the charset_not inside the loop lists
4783 every character listed in the charset after. */
4784 for (idx = 0; idx < (int) p2[1]; idx++)
4785 if (! (p2[2 + idx] == 0
4786 || (idx < CHARSET_BITMAP_SIZE (p1)
4787 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4788 break;
4789
4790 if (idx == p2[1])
4791 {
4792 DEBUG_PRINT1 (" No match => fast loop.\n");
4793 return 1;
4794 }
4795 }
4796 }
4797 }
4798 break;
4799
4800 case charset_not:
4801 switch (SWITCH_ENUM_CAST (*p1))
4802 {
4803 case exactn:
4804 case charset:
4805 /* Reuse the code above. */
4806 return mutually_exclusive_p (bufp, p2, p1);
4807 case charset_not:
4808 /* When we have two charset_not, it's very unlikely that
4809 they don't overlap. The union of the two sets of excluded
4810 chars should cover all possible chars, which, as a matter of
4811 fact, is virtually impossible in multibyte buffers. */
4812 break;
4813 }
4814 break;
4815
4816 case wordend:
4817 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4818 case symend:
4819 return ((re_opcode_t) *p1 == syntaxspec
4820 && (p1[1] == Ssymbol || p1[1] == Sword));
4821 case notsyntaxspec:
4822 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4823
4824 case wordbeg:
4825 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4826 case symbeg:
4827 return ((re_opcode_t) *p1 == notsyntaxspec
4828 && (p1[1] == Ssymbol || p1[1] == Sword));
4829 case syntaxspec:
4830 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4831
4832 case wordbound:
4833 return (((re_opcode_t) *p1 == notsyntaxspec
4834 || (re_opcode_t) *p1 == syntaxspec)
4835 && p1[1] == Sword);
4836
4837 #ifdef emacs
4838 case categoryspec:
4839 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4840 case notcategoryspec:
4841 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4842 #endif /* emacs */
4843
4844 default:
4845 ;
4846 }
4847
4848 /* Safe default. */
4849 return 0;
4850 }
4851
4852 \f
4853 /* Matching routines. */
4854
4855 #ifndef emacs /* Emacs never uses this. */
4856 /* re_match is like re_match_2 except it takes only a single string. */
4857
4858 int
4859 re_match (bufp, string, size, pos, regs)
4860 struct re_pattern_buffer *bufp;
4861 const char *string;
4862 int size, pos;
4863 struct re_registers *regs;
4864 {
4865 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4866 pos, regs, size);
4867 # if defined C_ALLOCA && !defined REGEX_MALLOC
4868 alloca (0);
4869 # endif
4870 return result;
4871 }
4872 WEAK_ALIAS (__re_match, re_match)
4873 #endif /* not emacs */
4874
4875 #ifdef emacs
4876 /* In Emacs, this is the string or buffer in which we
4877 are matching. It is used for looking up syntax properties. */
4878 Lisp_Object re_match_object;
4879 #endif
4880
4881 /* re_match_2 matches the compiled pattern in BUFP against the
4882 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4883 and SIZE2, respectively). We start matching at POS, and stop
4884 matching at STOP.
4885
4886 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4887 store offsets for the substring each group matched in REGS. See the
4888 documentation for exactly how many groups we fill.
4889
4890 We return -1 if no match, -2 if an internal error (such as the
4891 failure stack overflowing). Otherwise, we return the length of the
4892 matched substring. */
4893
4894 int
4895 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4896 struct re_pattern_buffer *bufp;
4897 const char *string1, *string2;
4898 int size1, size2;
4899 int pos;
4900 struct re_registers *regs;
4901 int stop;
4902 {
4903 int result;
4904
4905 #ifdef emacs
4906 int charpos;
4907 gl_state.object = re_match_object;
4908 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4909 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4910 #endif
4911
4912 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4913 (re_char*) string2, size2,
4914 pos, regs, stop);
4915 #if defined C_ALLOCA && !defined REGEX_MALLOC
4916 alloca (0);
4917 #endif
4918 return result;
4919 }
4920 WEAK_ALIAS (__re_match_2, re_match_2)
4921
4922 /* This is a separate function so that we can force an alloca cleanup
4923 afterwards. */
4924 static int
4925 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4926 struct re_pattern_buffer *bufp;
4927 re_char *string1, *string2;
4928 int size1, size2;
4929 int pos;
4930 struct re_registers *regs;
4931 int stop;
4932 {
4933 /* General temporaries. */
4934 int mcnt;
4935 size_t reg;
4936 boolean not;
4937
4938 /* Just past the end of the corresponding string. */
4939 re_char *end1, *end2;
4940
4941 /* Pointers into string1 and string2, just past the last characters in
4942 each to consider matching. */
4943 re_char *end_match_1, *end_match_2;
4944
4945 /* Where we are in the data, and the end of the current string. */
4946 re_char *d, *dend;
4947
4948 /* Used sometimes to remember where we were before starting matching
4949 an operator so that we can go back in case of failure. This "atomic"
4950 behavior of matching opcodes is indispensable to the correctness
4951 of the on_failure_keep_string_jump optimization. */
4952 re_char *dfail;
4953
4954 /* Where we are in the pattern, and the end of the pattern. */
4955 re_char *p = bufp->buffer;
4956 re_char *pend = p + bufp->used;
4957
4958 /* We use this to map every character in the string. */
4959 RE_TRANSLATE_TYPE translate = bufp->translate;
4960
4961 /* Nonzero if we have to concern multibyte character. */
4962 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4963
4964 /* Failure point stack. Each place that can handle a failure further
4965 down the line pushes a failure point on this stack. It consists of
4966 regstart, and regend for all registers corresponding to
4967 the subexpressions we're currently inside, plus the number of such
4968 registers, and, finally, two char *'s. The first char * is where
4969 to resume scanning the pattern; the second one is where to resume
4970 scanning the strings. */
4971 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4972 fail_stack_type fail_stack;
4973 #endif
4974 #ifdef DEBUG
4975 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4976 #endif
4977
4978 #if defined REL_ALLOC && defined REGEX_MALLOC
4979 /* This holds the pointer to the failure stack, when
4980 it is allocated relocatably. */
4981 fail_stack_elt_t *failure_stack_ptr;
4982 #endif
4983
4984 /* We fill all the registers internally, independent of what we
4985 return, for use in backreferences. The number here includes
4986 an element for register zero. */
4987 size_t num_regs = bufp->re_nsub + 1;
4988
4989 /* Information on the contents of registers. These are pointers into
4990 the input strings; they record just what was matched (on this
4991 attempt) by a subexpression part of the pattern, that is, the
4992 regnum-th regstart pointer points to where in the pattern we began
4993 matching and the regnum-th regend points to right after where we
4994 stopped matching the regnum-th subexpression. (The zeroth register
4995 keeps track of what the whole pattern matches.) */
4996 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4997 re_char **regstart, **regend;
4998 #endif
4999
5000 /* The following record the register info as found in the above
5001 variables when we find a match better than any we've seen before.
5002 This happens as we backtrack through the failure points, which in
5003 turn happens only if we have not yet matched the entire string. */
5004 unsigned best_regs_set = false;
5005 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5006 re_char **best_regstart, **best_regend;
5007 #endif
5008
5009 /* Logically, this is `best_regend[0]'. But we don't want to have to
5010 allocate space for that if we're not allocating space for anything
5011 else (see below). Also, we never need info about register 0 for
5012 any of the other register vectors, and it seems rather a kludge to
5013 treat `best_regend' differently than the rest. So we keep track of
5014 the end of the best match so far in a separate variable. We
5015 initialize this to NULL so that when we backtrack the first time
5016 and need to test it, it's not garbage. */
5017 re_char *match_end = NULL;
5018
5019 #ifdef DEBUG
5020 /* Counts the total number of registers pushed. */
5021 unsigned num_regs_pushed = 0;
5022 #endif
5023
5024 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5025
5026 INIT_FAIL_STACK ();
5027
5028 #ifdef MATCH_MAY_ALLOCATE
5029 /* Do not bother to initialize all the register variables if there are
5030 no groups in the pattern, as it takes a fair amount of time. If
5031 there are groups, we include space for register 0 (the whole
5032 pattern), even though we never use it, since it simplifies the
5033 array indexing. We should fix this. */
5034 if (bufp->re_nsub)
5035 {
5036 regstart = REGEX_TALLOC (num_regs, re_char *);
5037 regend = REGEX_TALLOC (num_regs, re_char *);
5038 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5039 best_regend = REGEX_TALLOC (num_regs, re_char *);
5040
5041 if (!(regstart && regend && best_regstart && best_regend))
5042 {
5043 FREE_VARIABLES ();
5044 return -2;
5045 }
5046 }
5047 else
5048 {
5049 /* We must initialize all our variables to NULL, so that
5050 `FREE_VARIABLES' doesn't try to free them. */
5051 regstart = regend = best_regstart = best_regend = NULL;
5052 }
5053 #endif /* MATCH_MAY_ALLOCATE */
5054
5055 /* The starting position is bogus. */
5056 if (pos < 0 || pos > size1 + size2)
5057 {
5058 FREE_VARIABLES ();
5059 return -1;
5060 }
5061
5062 /* Initialize subexpression text positions to -1 to mark ones that no
5063 start_memory/stop_memory has been seen for. Also initialize the
5064 register information struct. */
5065 for (reg = 1; reg < num_regs; reg++)
5066 regstart[reg] = regend[reg] = NULL;
5067
5068 /* We move `string1' into `string2' if the latter's empty -- but not if
5069 `string1' is null. */
5070 if (size2 == 0 && string1 != NULL)
5071 {
5072 string2 = string1;
5073 size2 = size1;
5074 string1 = 0;
5075 size1 = 0;
5076 }
5077 end1 = string1 + size1;
5078 end2 = string2 + size2;
5079
5080 /* `p' scans through the pattern as `d' scans through the data.
5081 `dend' is the end of the input string that `d' points within. `d'
5082 is advanced into the following input string whenever necessary, but
5083 this happens before fetching; therefore, at the beginning of the
5084 loop, `d' can be pointing at the end of a string, but it cannot
5085 equal `string2'. */
5086 if (pos >= size1)
5087 {
5088 /* Only match within string2. */
5089 d = string2 + pos - size1;
5090 dend = end_match_2 = string2 + stop - size1;
5091 end_match_1 = end1; /* Just to give it a value. */
5092 }
5093 else
5094 {
5095 if (stop < size1)
5096 {
5097 /* Only match within string1. */
5098 end_match_1 = string1 + stop;
5099 /* BEWARE!
5100 When we reach end_match_1, PREFETCH normally switches to string2.
5101 But in the present case, this means that just doing a PREFETCH
5102 makes us jump from `stop' to `gap' within the string.
5103 What we really want here is for the search to stop as
5104 soon as we hit end_match_1. That's why we set end_match_2
5105 to end_match_1 (since PREFETCH fails as soon as we hit
5106 end_match_2). */
5107 end_match_2 = end_match_1;
5108 }
5109 else
5110 { /* It's important to use this code when stop == size so that
5111 moving `d' from end1 to string2 will not prevent the d == dend
5112 check from catching the end of string. */
5113 end_match_1 = end1;
5114 end_match_2 = string2 + stop - size1;
5115 }
5116 d = string1 + pos;
5117 dend = end_match_1;
5118 }
5119
5120 DEBUG_PRINT1 ("The compiled pattern is: ");
5121 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5122 DEBUG_PRINT1 ("The string to match is: `");
5123 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5124 DEBUG_PRINT1 ("'\n");
5125
5126 /* This loops over pattern commands. It exits by returning from the
5127 function if the match is complete, or it drops through if the match
5128 fails at this starting point in the input data. */
5129 for (;;)
5130 {
5131 DEBUG_PRINT2 ("\n%p: ", p);
5132
5133 if (p == pend)
5134 { /* End of pattern means we might have succeeded. */
5135 DEBUG_PRINT1 ("end of pattern ... ");
5136
5137 /* If we haven't matched the entire string, and we want the
5138 longest match, try backtracking. */
5139 if (d != end_match_2)
5140 {
5141 /* 1 if this match ends in the same string (string1 or string2)
5142 as the best previous match. */
5143 boolean same_str_p = (FIRST_STRING_P (match_end)
5144 == FIRST_STRING_P (d));
5145 /* 1 if this match is the best seen so far. */
5146 boolean best_match_p;
5147
5148 /* AIX compiler got confused when this was combined
5149 with the previous declaration. */
5150 if (same_str_p)
5151 best_match_p = d > match_end;
5152 else
5153 best_match_p = !FIRST_STRING_P (d);
5154
5155 DEBUG_PRINT1 ("backtracking.\n");
5156
5157 if (!FAIL_STACK_EMPTY ())
5158 { /* More failure points to try. */
5159
5160 /* If exceeds best match so far, save it. */
5161 if (!best_regs_set || best_match_p)
5162 {
5163 best_regs_set = true;
5164 match_end = d;
5165
5166 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5167
5168 for (reg = 1; reg < num_regs; reg++)
5169 {
5170 best_regstart[reg] = regstart[reg];
5171 best_regend[reg] = regend[reg];
5172 }
5173 }
5174 goto fail;
5175 }
5176
5177 /* If no failure points, don't restore garbage. And if
5178 last match is real best match, don't restore second
5179 best one. */
5180 else if (best_regs_set && !best_match_p)
5181 {
5182 restore_best_regs:
5183 /* Restore best match. It may happen that `dend ==
5184 end_match_1' while the restored d is in string2.
5185 For example, the pattern `x.*y.*z' against the
5186 strings `x-' and `y-z-', if the two strings are
5187 not consecutive in memory. */
5188 DEBUG_PRINT1 ("Restoring best registers.\n");
5189
5190 d = match_end;
5191 dend = ((d >= string1 && d <= end1)
5192 ? end_match_1 : end_match_2);
5193
5194 for (reg = 1; reg < num_regs; reg++)
5195 {
5196 regstart[reg] = best_regstart[reg];
5197 regend[reg] = best_regend[reg];
5198 }
5199 }
5200 } /* d != end_match_2 */
5201
5202 succeed_label:
5203 DEBUG_PRINT1 ("Accepting match.\n");
5204
5205 /* If caller wants register contents data back, do it. */
5206 if (regs && !bufp->no_sub)
5207 {
5208 /* Have the register data arrays been allocated? */
5209 if (bufp->regs_allocated == REGS_UNALLOCATED)
5210 { /* No. So allocate them with malloc. We need one
5211 extra element beyond `num_regs' for the `-1' marker
5212 GNU code uses. */
5213 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5214 regs->start = TALLOC (regs->num_regs, regoff_t);
5215 regs->end = TALLOC (regs->num_regs, regoff_t);
5216 if (regs->start == NULL || regs->end == NULL)
5217 {
5218 FREE_VARIABLES ();
5219 return -2;
5220 }
5221 bufp->regs_allocated = REGS_REALLOCATE;
5222 }
5223 else if (bufp->regs_allocated == REGS_REALLOCATE)
5224 { /* Yes. If we need more elements than were already
5225 allocated, reallocate them. If we need fewer, just
5226 leave it alone. */
5227 if (regs->num_regs < num_regs + 1)
5228 {
5229 regs->num_regs = num_regs + 1;
5230 RETALLOC (regs->start, regs->num_regs, regoff_t);
5231 RETALLOC (regs->end, regs->num_regs, regoff_t);
5232 if (regs->start == NULL || regs->end == NULL)
5233 {
5234 FREE_VARIABLES ();
5235 return -2;
5236 }
5237 }
5238 }
5239 else
5240 {
5241 /* These braces fend off a "empty body in an else-statement"
5242 warning under GCC when assert expands to nothing. */
5243 assert (bufp->regs_allocated == REGS_FIXED);
5244 }
5245
5246 /* Convert the pointer data in `regstart' and `regend' to
5247 indices. Register zero has to be set differently,
5248 since we haven't kept track of any info for it. */
5249 if (regs->num_regs > 0)
5250 {
5251 regs->start[0] = pos;
5252 regs->end[0] = POINTER_TO_OFFSET (d);
5253 }
5254
5255 /* Go through the first `min (num_regs, regs->num_regs)'
5256 registers, since that is all we initialized. */
5257 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5258 {
5259 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5260 regs->start[reg] = regs->end[reg] = -1;
5261 else
5262 {
5263 regs->start[reg]
5264 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5265 regs->end[reg]
5266 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5267 }
5268 }
5269
5270 /* If the regs structure we return has more elements than
5271 were in the pattern, set the extra elements to -1. If
5272 we (re)allocated the registers, this is the case,
5273 because we always allocate enough to have at least one
5274 -1 at the end. */
5275 for (reg = num_regs; reg < regs->num_regs; reg++)
5276 regs->start[reg] = regs->end[reg] = -1;
5277 } /* regs && !bufp->no_sub */
5278
5279 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5280 nfailure_points_pushed, nfailure_points_popped,
5281 nfailure_points_pushed - nfailure_points_popped);
5282 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5283
5284 mcnt = POINTER_TO_OFFSET (d) - pos;
5285
5286 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5287
5288 FREE_VARIABLES ();
5289 return mcnt;
5290 }
5291
5292 /* Otherwise match next pattern command. */
5293 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5294 {
5295 /* Ignore these. Used to ignore the n of succeed_n's which
5296 currently have n == 0. */
5297 case no_op:
5298 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5299 break;
5300
5301 case succeed:
5302 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5303 goto succeed_label;
5304
5305 /* Match the next n pattern characters exactly. The following
5306 byte in the pattern defines n, and the n bytes after that
5307 are the characters to match. */
5308 case exactn:
5309 mcnt = *p++;
5310 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5311
5312 /* Remember the start point to rollback upon failure. */
5313 dfail = d;
5314
5315 /* This is written out as an if-else so we don't waste time
5316 testing `translate' inside the loop. */
5317 if (RE_TRANSLATE_P (translate))
5318 {
5319 if (multibyte)
5320 do
5321 {
5322 int pat_charlen, buf_charlen;
5323 unsigned int pat_ch, buf_ch;
5324
5325 PREFETCH ();
5326 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5327 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5328
5329 if (RE_TRANSLATE (translate, buf_ch)
5330 != pat_ch)
5331 {
5332 d = dfail;
5333 goto fail;
5334 }
5335
5336 p += pat_charlen;
5337 d += buf_charlen;
5338 mcnt -= pat_charlen;
5339 }
5340 while (mcnt > 0);
5341 else
5342 do
5343 {
5344 /* Avoid compiler whining about comparison being
5345 always true. */
5346 int di;
5347
5348 PREFETCH ();
5349 di = *d;
5350 if (RE_TRANSLATE (translate, di) != *p++)
5351 {
5352 d = dfail;
5353 goto fail;
5354 }
5355 d++;
5356 }
5357 while (--mcnt);
5358 }
5359 else
5360 {
5361 do
5362 {
5363 PREFETCH ();
5364 if (*d++ != *p++)
5365 {
5366 d = dfail;
5367 goto fail;
5368 }
5369 }
5370 while (--mcnt);
5371 }
5372 break;
5373
5374
5375 /* Match any character except possibly a newline or a null. */
5376 case anychar:
5377 {
5378 int buf_charlen;
5379 re_wchar_t buf_ch;
5380
5381 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5382
5383 PREFETCH ();
5384 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5385 buf_ch = TRANSLATE (buf_ch);
5386
5387 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5388 && buf_ch == '\n')
5389 || ((bufp->syntax & RE_DOT_NOT_NULL)
5390 && buf_ch == '\000'))
5391 goto fail;
5392
5393 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5394 d += buf_charlen;
5395 }
5396 break;
5397
5398
5399 case charset:
5400 case charset_not:
5401 {
5402 register unsigned int c;
5403 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5404 int len;
5405
5406 /* Start of actual range_table, or end of bitmap if there is no
5407 range table. */
5408 re_char *range_table;
5409
5410 /* Nonzero if there is a range table. */
5411 int range_table_exists;
5412
5413 /* Number of ranges of range table. This is not included
5414 in the initial byte-length of the command. */
5415 int count = 0;
5416
5417 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5418
5419 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5420
5421 if (range_table_exists)
5422 {
5423 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5424 EXTRACT_NUMBER_AND_INCR (count, range_table);
5425 }
5426
5427 PREFETCH ();
5428 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5429 c = TRANSLATE (c); /* The character to match. */
5430
5431 if (SINGLE_BYTE_CHAR_P (c))
5432 { /* Lookup bitmap. */
5433 /* Cast to `unsigned' instead of `unsigned char' in
5434 case the bit list is a full 32 bytes long. */
5435 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5436 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5437 not = !not;
5438 }
5439 #ifdef emacs
5440 else if (range_table_exists)
5441 {
5442 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5443
5444 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5445 | (class_bits & BIT_MULTIBYTE)
5446 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5447 | (class_bits & BIT_SPACE && ISSPACE (c))
5448 | (class_bits & BIT_UPPER && ISUPPER (c))
5449 | (class_bits & BIT_WORD && ISWORD (c)))
5450 not = !not;
5451 else
5452 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5453 }
5454 #endif /* emacs */
5455
5456 if (range_table_exists)
5457 p = CHARSET_RANGE_TABLE_END (range_table, count);
5458 else
5459 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5460
5461 if (!not) goto fail;
5462
5463 d += len;
5464 break;
5465 }
5466
5467
5468 /* The beginning of a group is represented by start_memory.
5469 The argument is the register number. The text
5470 matched within the group is recorded (in the internal
5471 registers data structure) under the register number. */
5472 case start_memory:
5473 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5474
5475 /* In case we need to undo this operation (via backtracking). */
5476 PUSH_FAILURE_REG ((unsigned int)*p);
5477
5478 regstart[*p] = d;
5479 regend[*p] = NULL; /* probably unnecessary. -sm */
5480 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5481
5482 /* Move past the register number and inner group count. */
5483 p += 1;
5484 break;
5485
5486
5487 /* The stop_memory opcode represents the end of a group. Its
5488 argument is the same as start_memory's: the register number. */
5489 case stop_memory:
5490 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5491
5492 assert (!REG_UNSET (regstart[*p]));
5493 /* Strictly speaking, there should be code such as:
5494
5495 assert (REG_UNSET (regend[*p]));
5496 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5497
5498 But the only info to be pushed is regend[*p] and it is known to
5499 be UNSET, so there really isn't anything to push.
5500 Not pushing anything, on the other hand deprives us from the
5501 guarantee that regend[*p] is UNSET since undoing this operation
5502 will not reset its value properly. This is not important since
5503 the value will only be read on the next start_memory or at
5504 the very end and both events can only happen if this stop_memory
5505 is *not* undone. */
5506
5507 regend[*p] = d;
5508 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5509
5510 /* Move past the register number and the inner group count. */
5511 p += 1;
5512 break;
5513
5514
5515 /* \<digit> has been turned into a `duplicate' command which is
5516 followed by the numeric value of <digit> as the register number. */
5517 case duplicate:
5518 {
5519 register re_char *d2, *dend2;
5520 int regno = *p++; /* Get which register to match against. */
5521 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5522
5523 /* Can't back reference a group which we've never matched. */
5524 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5525 goto fail;
5526
5527 /* Where in input to try to start matching. */
5528 d2 = regstart[regno];
5529
5530 /* Remember the start point to rollback upon failure. */
5531 dfail = d;
5532
5533 /* Where to stop matching; if both the place to start and
5534 the place to stop matching are in the same string, then
5535 set to the place to stop, otherwise, for now have to use
5536 the end of the first string. */
5537
5538 dend2 = ((FIRST_STRING_P (regstart[regno])
5539 == FIRST_STRING_P (regend[regno]))
5540 ? regend[regno] : end_match_1);
5541 for (;;)
5542 {
5543 /* If necessary, advance to next segment in register
5544 contents. */
5545 while (d2 == dend2)
5546 {
5547 if (dend2 == end_match_2) break;
5548 if (dend2 == regend[regno]) break;
5549
5550 /* End of string1 => advance to string2. */
5551 d2 = string2;
5552 dend2 = regend[regno];
5553 }
5554 /* At end of register contents => success */
5555 if (d2 == dend2) break;
5556
5557 /* If necessary, advance to next segment in data. */
5558 PREFETCH ();
5559
5560 /* How many characters left in this segment to match. */
5561 mcnt = dend - d;
5562
5563 /* Want how many consecutive characters we can match in
5564 one shot, so, if necessary, adjust the count. */
5565 if (mcnt > dend2 - d2)
5566 mcnt = dend2 - d2;
5567
5568 /* Compare that many; failure if mismatch, else move
5569 past them. */
5570 if (RE_TRANSLATE_P (translate)
5571 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5572 : memcmp (d, d2, mcnt))
5573 {
5574 d = dfail;
5575 goto fail;
5576 }
5577 d += mcnt, d2 += mcnt;
5578 }
5579 }
5580 break;
5581
5582
5583 /* begline matches the empty string at the beginning of the string
5584 (unless `not_bol' is set in `bufp'), and after newlines. */
5585 case begline:
5586 DEBUG_PRINT1 ("EXECUTING begline.\n");
5587
5588 if (AT_STRINGS_BEG (d))
5589 {
5590 if (!bufp->not_bol) break;
5591 }
5592 else
5593 {
5594 unsigned char c;
5595 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5596 if (c == '\n')
5597 break;
5598 }
5599 /* In all other cases, we fail. */
5600 goto fail;
5601
5602
5603 /* endline is the dual of begline. */
5604 case endline:
5605 DEBUG_PRINT1 ("EXECUTING endline.\n");
5606
5607 if (AT_STRINGS_END (d))
5608 {
5609 if (!bufp->not_eol) break;
5610 }
5611 else
5612 {
5613 PREFETCH_NOLIMIT ();
5614 if (*d == '\n')
5615 break;
5616 }
5617 goto fail;
5618
5619
5620 /* Match at the very beginning of the data. */
5621 case begbuf:
5622 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5623 if (AT_STRINGS_BEG (d))
5624 break;
5625 goto fail;
5626
5627
5628 /* Match at the very end of the data. */
5629 case endbuf:
5630 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5631 if (AT_STRINGS_END (d))
5632 break;
5633 goto fail;
5634
5635
5636 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5637 pushes NULL as the value for the string on the stack. Then
5638 `POP_FAILURE_POINT' will keep the current value for the
5639 string, instead of restoring it. To see why, consider
5640 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5641 then the . fails against the \n. But the next thing we want
5642 to do is match the \n against the \n; if we restored the
5643 string value, we would be back at the foo.
5644
5645 Because this is used only in specific cases, we don't need to
5646 check all the things that `on_failure_jump' does, to make
5647 sure the right things get saved on the stack. Hence we don't
5648 share its code. The only reason to push anything on the
5649 stack at all is that otherwise we would have to change
5650 `anychar's code to do something besides goto fail in this
5651 case; that seems worse than this. */
5652 case on_failure_keep_string_jump:
5653 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5654 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5655 mcnt, p + mcnt);
5656
5657 PUSH_FAILURE_POINT (p - 3, NULL);
5658 break;
5659
5660 /* A nasty loop is introduced by the non-greedy *? and +?.
5661 With such loops, the stack only ever contains one failure point
5662 at a time, so that a plain on_failure_jump_loop kind of
5663 cycle detection cannot work. Worse yet, such a detection
5664 can not only fail to detect a cycle, but it can also wrongly
5665 detect a cycle (between different instantiations of the same
5666 loop).
5667 So the method used for those nasty loops is a little different:
5668 We use a special cycle-detection-stack-frame which is pushed
5669 when the on_failure_jump_nastyloop failure-point is *popped*.
5670 This special frame thus marks the beginning of one iteration
5671 through the loop and we can hence easily check right here
5672 whether something matched between the beginning and the end of
5673 the loop. */
5674 case on_failure_jump_nastyloop:
5675 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5676 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5677 mcnt, p + mcnt);
5678
5679 assert ((re_opcode_t)p[-4] == no_op);
5680 {
5681 int cycle = 0;
5682 CHECK_INFINITE_LOOP (p - 4, d);
5683 if (!cycle)
5684 /* If there's a cycle, just continue without pushing
5685 this failure point. The failure point is the "try again"
5686 option, which shouldn't be tried.
5687 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5688 PUSH_FAILURE_POINT (p - 3, d);
5689 }
5690 break;
5691
5692 /* Simple loop detecting on_failure_jump: just check on the
5693 failure stack if the same spot was already hit earlier. */
5694 case on_failure_jump_loop:
5695 on_failure:
5696 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5697 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5698 mcnt, p + mcnt);
5699 {
5700 int cycle = 0;
5701 CHECK_INFINITE_LOOP (p - 3, d);
5702 if (cycle)
5703 /* If there's a cycle, get out of the loop, as if the matching
5704 had failed. We used to just `goto fail' here, but that was
5705 aborting the search a bit too early: we want to keep the
5706 empty-loop-match and keep matching after the loop.
5707 We want (x?)*y\1z to match both xxyz and xxyxz. */
5708 p += mcnt;
5709 else
5710 PUSH_FAILURE_POINT (p - 3, d);
5711 }
5712 break;
5713
5714
5715 /* Uses of on_failure_jump:
5716
5717 Each alternative starts with an on_failure_jump that points
5718 to the beginning of the next alternative. Each alternative
5719 except the last ends with a jump that in effect jumps past
5720 the rest of the alternatives. (They really jump to the
5721 ending jump of the following alternative, because tensioning
5722 these jumps is a hassle.)
5723
5724 Repeats start with an on_failure_jump that points past both
5725 the repetition text and either the following jump or
5726 pop_failure_jump back to this on_failure_jump. */
5727 case on_failure_jump:
5728 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5729 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5730 mcnt, p + mcnt);
5731
5732 PUSH_FAILURE_POINT (p -3, d);
5733 break;
5734
5735 /* This operation is used for greedy *.
5736 Compare the beginning of the repeat with what in the
5737 pattern follows its end. If we can establish that there
5738 is nothing that they would both match, i.e., that we
5739 would have to backtrack because of (as in, e.g., `a*a')
5740 then we can use a non-backtracking loop based on
5741 on_failure_keep_string_jump instead of on_failure_jump. */
5742 case on_failure_jump_smart:
5743 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5744 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5745 mcnt, p + mcnt);
5746 {
5747 re_char *p1 = p; /* Next operation. */
5748 /* Here, we discard `const', making re_match non-reentrant. */
5749 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5750 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5751
5752 p -= 3; /* Reset so that we will re-execute the
5753 instruction once it's been changed. */
5754
5755 EXTRACT_NUMBER (mcnt, p2 - 2);
5756
5757 /* Ensure this is a indeed the trivial kind of loop
5758 we are expecting. */
5759 assert (skip_one_char (p1) == p2 - 3);
5760 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5761 DEBUG_STATEMENT (debug += 2);
5762 if (mutually_exclusive_p (bufp, p1, p2))
5763 {
5764 /* Use a fast `on_failure_keep_string_jump' loop. */
5765 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5766 *p3 = (unsigned char) on_failure_keep_string_jump;
5767 STORE_NUMBER (p2 - 2, mcnt + 3);
5768 }
5769 else
5770 {
5771 /* Default to a safe `on_failure_jump' loop. */
5772 DEBUG_PRINT1 (" smart default => slow loop.\n");
5773 *p3 = (unsigned char) on_failure_jump;
5774 }
5775 DEBUG_STATEMENT (debug -= 2);
5776 }
5777 break;
5778
5779 /* Unconditionally jump (without popping any failure points). */
5780 case jump:
5781 unconditional_jump:
5782 IMMEDIATE_QUIT_CHECK;
5783 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5784 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5785 p += mcnt; /* Do the jump. */
5786 DEBUG_PRINT2 ("(to %p).\n", p);
5787 break;
5788
5789
5790 /* Have to succeed matching what follows at least n times.
5791 After that, handle like `on_failure_jump'. */
5792 case succeed_n:
5793 /* Signedness doesn't matter since we only compare MCNT to 0. */
5794 EXTRACT_NUMBER (mcnt, p + 2);
5795 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5796
5797 /* Originally, mcnt is how many times we HAVE to succeed. */
5798 if (mcnt != 0)
5799 {
5800 /* Here, we discard `const', making re_match non-reentrant. */
5801 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5802 mcnt--;
5803 p += 4;
5804 PUSH_NUMBER (p2, mcnt);
5805 }
5806 else
5807 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5808 goto on_failure;
5809 break;
5810
5811 case jump_n:
5812 /* Signedness doesn't matter since we only compare MCNT to 0. */
5813 EXTRACT_NUMBER (mcnt, p + 2);
5814 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5815
5816 /* Originally, this is how many times we CAN jump. */
5817 if (mcnt != 0)
5818 {
5819 /* Here, we discard `const', making re_match non-reentrant. */
5820 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5821 mcnt--;
5822 PUSH_NUMBER (p2, mcnt);
5823 goto unconditional_jump;
5824 }
5825 /* If don't have to jump any more, skip over the rest of command. */
5826 else
5827 p += 4;
5828 break;
5829
5830 case set_number_at:
5831 {
5832 unsigned char *p2; /* Location of the counter. */
5833 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5834
5835 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5836 /* Here, we discard `const', making re_match non-reentrant. */
5837 p2 = (unsigned char*) p + mcnt;
5838 /* Signedness doesn't matter since we only copy MCNT's bits . */
5839 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5840 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5841 PUSH_NUMBER (p2, mcnt);
5842 break;
5843 }
5844
5845 case wordbound:
5846 case notwordbound:
5847 not = (re_opcode_t) *(p - 1) == notwordbound;
5848 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5849
5850 /* We SUCCEED (or FAIL) in one of the following cases: */
5851
5852 /* Case 1: D is at the beginning or the end of string. */
5853 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5854 not = !not;
5855 else
5856 {
5857 /* C1 is the character before D, S1 is the syntax of C1, C2
5858 is the character at D, and S2 is the syntax of C2. */
5859 re_wchar_t c1, c2;
5860 int s1, s2;
5861 #ifdef emacs
5862 int offset = PTR_TO_OFFSET (d - 1);
5863 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5864 UPDATE_SYNTAX_TABLE (charpos);
5865 #endif
5866 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5867 s1 = SYNTAX (c1);
5868 #ifdef emacs
5869 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5870 #endif
5871 PREFETCH_NOLIMIT ();
5872 c2 = RE_STRING_CHAR (d, dend - d);
5873 s2 = SYNTAX (c2);
5874
5875 if (/* Case 2: Only one of S1 and S2 is Sword. */
5876 ((s1 == Sword) != (s2 == Sword))
5877 /* Case 3: Both of S1 and S2 are Sword, and macro
5878 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5879 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5880 not = !not;
5881 }
5882 if (not)
5883 break;
5884 else
5885 goto fail;
5886
5887 case wordbeg:
5888 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5889
5890 /* We FAIL in one of the following cases: */
5891
5892 /* Case 1: D is at the end of string. */
5893 if (AT_STRINGS_END (d))
5894 goto fail;
5895 else
5896 {
5897 /* C1 is the character before D, S1 is the syntax of C1, C2
5898 is the character at D, and S2 is the syntax of C2. */
5899 re_wchar_t c1, c2;
5900 int s1, s2;
5901 #ifdef emacs
5902 int offset = PTR_TO_OFFSET (d);
5903 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5904 UPDATE_SYNTAX_TABLE (charpos);
5905 #endif
5906 PREFETCH ();
5907 c2 = RE_STRING_CHAR (d, dend - d);
5908 s2 = SYNTAX (c2);
5909
5910 /* Case 2: S2 is not Sword. */
5911 if (s2 != Sword)
5912 goto fail;
5913
5914 /* Case 3: D is not at the beginning of string ... */
5915 if (!AT_STRINGS_BEG (d))
5916 {
5917 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5918 #ifdef emacs
5919 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5920 #endif
5921 s1 = SYNTAX (c1);
5922
5923 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5924 returns 0. */
5925 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5926 goto fail;
5927 }
5928 }
5929 break;
5930
5931 case wordend:
5932 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5933
5934 /* We FAIL in one of the following cases: */
5935
5936 /* Case 1: D is at the beginning of string. */
5937 if (AT_STRINGS_BEG (d))
5938 goto fail;
5939 else
5940 {
5941 /* C1 is the character before D, S1 is the syntax of C1, C2
5942 is the character at D, and S2 is the syntax of C2. */
5943 re_wchar_t c1, c2;
5944 int s1, s2;
5945 #ifdef emacs
5946 int offset = PTR_TO_OFFSET (d) - 1;
5947 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5948 UPDATE_SYNTAX_TABLE (charpos);
5949 #endif
5950 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5951 s1 = SYNTAX (c1);
5952
5953 /* Case 2: S1 is not Sword. */
5954 if (s1 != Sword)
5955 goto fail;
5956
5957 /* Case 3: D is not at the end of string ... */
5958 if (!AT_STRINGS_END (d))
5959 {
5960 PREFETCH_NOLIMIT ();
5961 c2 = RE_STRING_CHAR (d, dend - d);
5962 #ifdef emacs
5963 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5964 #endif
5965 s2 = SYNTAX (c2);
5966
5967 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5968 returns 0. */
5969 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5970 goto fail;
5971 }
5972 }
5973 break;
5974
5975 case symbeg:
5976 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5977
5978 /* We FAIL in one of the following cases: */
5979
5980 /* Case 1: D is at the end of string. */
5981 if (AT_STRINGS_END (d))
5982 goto fail;
5983 else
5984 {
5985 /* C1 is the character before D, S1 is the syntax of C1, C2
5986 is the character at D, and S2 is the syntax of C2. */
5987 re_wchar_t c1, c2;
5988 int s1, s2;
5989 #ifdef emacs
5990 int offset = PTR_TO_OFFSET (d);
5991 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5992 UPDATE_SYNTAX_TABLE (charpos);
5993 #endif
5994 PREFETCH ();
5995 c2 = RE_STRING_CHAR (d, dend - d);
5996 s2 = SYNTAX (c2);
5997
5998 /* Case 2: S2 is neither Sword nor Ssymbol. */
5999 if (s2 != Sword && s2 != Ssymbol)
6000 goto fail;
6001
6002 /* Case 3: D is not at the beginning of string ... */
6003 if (!AT_STRINGS_BEG (d))
6004 {
6005 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6006 #ifdef emacs
6007 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6008 #endif
6009 s1 = SYNTAX (c1);
6010
6011 /* ... and S1 is Sword or Ssymbol. */
6012 if (s1 == Sword || s1 == Ssymbol)
6013 goto fail;
6014 }
6015 }
6016 break;
6017
6018 case symend:
6019 DEBUG_PRINT1 ("EXECUTING symend.\n");
6020
6021 /* We FAIL in one of the following cases: */
6022
6023 /* Case 1: D is at the beginning of string. */
6024 if (AT_STRINGS_BEG (d))
6025 goto fail;
6026 else
6027 {
6028 /* C1 is the character before D, S1 is the syntax of C1, C2
6029 is the character at D, and S2 is the syntax of C2. */
6030 re_wchar_t c1, c2;
6031 int s1, s2;
6032 #ifdef emacs
6033 int offset = PTR_TO_OFFSET (d) - 1;
6034 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6035 UPDATE_SYNTAX_TABLE (charpos);
6036 #endif
6037 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6038 s1 = SYNTAX (c1);
6039
6040 /* Case 2: S1 is neither Ssymbol nor Sword. */
6041 if (s1 != Sword && s1 != Ssymbol)
6042 goto fail;
6043
6044 /* Case 3: D is not at the end of string ... */
6045 if (!AT_STRINGS_END (d))
6046 {
6047 PREFETCH_NOLIMIT ();
6048 c2 = RE_STRING_CHAR (d, dend - d);
6049 #ifdef emacs
6050 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6051 #endif
6052 s2 = SYNTAX (c2);
6053
6054 /* ... and S2 is Sword or Ssymbol. */
6055 if (s2 == Sword || s2 == Ssymbol)
6056 goto fail;
6057 }
6058 }
6059 break;
6060
6061 case syntaxspec:
6062 case notsyntaxspec:
6063 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6064 mcnt = *p++;
6065 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6066 PREFETCH ();
6067 #ifdef emacs
6068 {
6069 int offset = PTR_TO_OFFSET (d);
6070 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6071 UPDATE_SYNTAX_TABLE (pos1);
6072 }
6073 #endif
6074 {
6075 int len;
6076 re_wchar_t c;
6077
6078 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6079
6080 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6081 goto fail;
6082 d += len;
6083 }
6084 break;
6085
6086 #ifdef emacs
6087 case before_dot:
6088 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6089 if (PTR_BYTE_POS (d) >= PT_BYTE)
6090 goto fail;
6091 break;
6092
6093 case at_dot:
6094 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6095 if (PTR_BYTE_POS (d) != PT_BYTE)
6096 goto fail;
6097 break;
6098
6099 case after_dot:
6100 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6101 if (PTR_BYTE_POS (d) <= PT_BYTE)
6102 goto fail;
6103 break;
6104
6105 case categoryspec:
6106 case notcategoryspec:
6107 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6108 mcnt = *p++;
6109 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6110 PREFETCH ();
6111 {
6112 int len;
6113 re_wchar_t c;
6114
6115 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6116
6117 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6118 goto fail;
6119 d += len;
6120 }
6121 break;
6122
6123 #endif /* emacs */
6124
6125 default:
6126 abort ();
6127 }
6128 continue; /* Successfully executed one pattern command; keep going. */
6129
6130
6131 /* We goto here if a matching operation fails. */
6132 fail:
6133 IMMEDIATE_QUIT_CHECK;
6134 if (!FAIL_STACK_EMPTY ())
6135 {
6136 re_char *str, *pat;
6137 /* A restart point is known. Restore to that state. */
6138 DEBUG_PRINT1 ("\nFAIL:\n");
6139 POP_FAILURE_POINT (str, pat);
6140 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6141 {
6142 case on_failure_keep_string_jump:
6143 assert (str == NULL);
6144 goto continue_failure_jump;
6145
6146 case on_failure_jump_nastyloop:
6147 assert ((re_opcode_t)pat[-2] == no_op);
6148 PUSH_FAILURE_POINT (pat - 2, str);
6149 /* Fallthrough */
6150
6151 case on_failure_jump_loop:
6152 case on_failure_jump:
6153 case succeed_n:
6154 d = str;
6155 continue_failure_jump:
6156 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6157 p = pat + mcnt;
6158 break;
6159
6160 case no_op:
6161 /* A special frame used for nastyloops. */
6162 goto fail;
6163
6164 default:
6165 abort();
6166 }
6167
6168 assert (p >= bufp->buffer && p <= pend);
6169
6170 if (d >= string1 && d <= end1)
6171 dend = end_match_1;
6172 }
6173 else
6174 break; /* Matching at this starting point really fails. */
6175 } /* for (;;) */
6176
6177 if (best_regs_set)
6178 goto restore_best_regs;
6179
6180 FREE_VARIABLES ();
6181
6182 return -1; /* Failure to match. */
6183 } /* re_match_2 */
6184 \f
6185 /* Subroutine definitions for re_match_2. */
6186
6187 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6188 bytes; nonzero otherwise. */
6189
6190 static int
6191 bcmp_translate (s1, s2, len, translate, multibyte)
6192 re_char *s1, *s2;
6193 register int len;
6194 RE_TRANSLATE_TYPE translate;
6195 const int multibyte;
6196 {
6197 register re_char *p1 = s1, *p2 = s2;
6198 re_char *p1_end = s1 + len;
6199 re_char *p2_end = s2 + len;
6200
6201 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6202 different lengths, but relying on a single `len' would break this. -sm */
6203 while (p1 < p1_end && p2 < p2_end)
6204 {
6205 int p1_charlen, p2_charlen;
6206 re_wchar_t p1_ch, p2_ch;
6207
6208 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6209 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6210
6211 if (RE_TRANSLATE (translate, p1_ch)
6212 != RE_TRANSLATE (translate, p2_ch))
6213 return 1;
6214
6215 p1 += p1_charlen, p2 += p2_charlen;
6216 }
6217
6218 if (p1 != p1_end || p2 != p2_end)
6219 return 1;
6220
6221 return 0;
6222 }
6223 \f
6224 /* Entry points for GNU code. */
6225
6226 /* re_compile_pattern is the GNU regular expression compiler: it
6227 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6228 Returns 0 if the pattern was valid, otherwise an error string.
6229
6230 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6231 are set in BUFP on entry.
6232
6233 We call regex_compile to do the actual compilation. */
6234
6235 const char *
6236 re_compile_pattern (pattern, length, bufp)
6237 const char *pattern;
6238 size_t length;
6239 struct re_pattern_buffer *bufp;
6240 {
6241 reg_errcode_t ret;
6242
6243 #ifdef emacs
6244 gl_state.current_syntax_table = current_buffer->syntax_table;
6245 #endif
6246
6247 /* GNU code is written to assume at least RE_NREGS registers will be set
6248 (and at least one extra will be -1). */
6249 bufp->regs_allocated = REGS_UNALLOCATED;
6250
6251 /* And GNU code determines whether or not to get register information
6252 by passing null for the REGS argument to re_match, etc., not by
6253 setting no_sub. */
6254 bufp->no_sub = 0;
6255
6256 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6257
6258 if (!ret)
6259 return NULL;
6260 return gettext (re_error_msgid[(int) ret]);
6261 }
6262 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6263 \f
6264 /* Entry points compatible with 4.2 BSD regex library. We don't define
6265 them unless specifically requested. */
6266
6267 #if defined _REGEX_RE_COMP || defined _LIBC
6268
6269 /* BSD has one and only one pattern buffer. */
6270 static struct re_pattern_buffer re_comp_buf;
6271
6272 char *
6273 # ifdef _LIBC
6274 /* Make these definitions weak in libc, so POSIX programs can redefine
6275 these names if they don't use our functions, and still use
6276 regcomp/regexec below without link errors. */
6277 weak_function
6278 # endif
6279 re_comp (s)
6280 const char *s;
6281 {
6282 reg_errcode_t ret;
6283
6284 if (!s)
6285 {
6286 if (!re_comp_buf.buffer)
6287 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6288 return (char *) gettext ("No previous regular expression");
6289 return 0;
6290 }
6291
6292 if (!re_comp_buf.buffer)
6293 {
6294 re_comp_buf.buffer = (unsigned char *) malloc (200);
6295 if (re_comp_buf.buffer == NULL)
6296 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6297 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6298 re_comp_buf.allocated = 200;
6299
6300 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6301 if (re_comp_buf.fastmap == NULL)
6302 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6303 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6304 }
6305
6306 /* Since `re_exec' always passes NULL for the `regs' argument, we
6307 don't need to initialize the pattern buffer fields which affect it. */
6308
6309 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6310
6311 if (!ret)
6312 return NULL;
6313
6314 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6315 return (char *) gettext (re_error_msgid[(int) ret]);
6316 }
6317
6318
6319 int
6320 # ifdef _LIBC
6321 weak_function
6322 # endif
6323 re_exec (s)
6324 const char *s;
6325 {
6326 const int len = strlen (s);
6327 return
6328 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6329 }
6330 #endif /* _REGEX_RE_COMP */
6331 \f
6332 /* POSIX.2 functions. Don't define these for Emacs. */
6333
6334 #ifndef emacs
6335
6336 /* regcomp takes a regular expression as a string and compiles it.
6337
6338 PREG is a regex_t *. We do not expect any fields to be initialized,
6339 since POSIX says we shouldn't. Thus, we set
6340
6341 `buffer' to the compiled pattern;
6342 `used' to the length of the compiled pattern;
6343 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6344 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6345 RE_SYNTAX_POSIX_BASIC;
6346 `fastmap' to an allocated space for the fastmap;
6347 `fastmap_accurate' to zero;
6348 `re_nsub' to the number of subexpressions in PATTERN.
6349
6350 PATTERN is the address of the pattern string.
6351
6352 CFLAGS is a series of bits which affect compilation.
6353
6354 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6355 use POSIX basic syntax.
6356
6357 If REG_NEWLINE is set, then . and [^...] don't match newline.
6358 Also, regexec will try a match beginning after every newline.
6359
6360 If REG_ICASE is set, then we considers upper- and lowercase
6361 versions of letters to be equivalent when matching.
6362
6363 If REG_NOSUB is set, then when PREG is passed to regexec, that
6364 routine will report only success or failure, and nothing about the
6365 registers.
6366
6367 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6368 the return codes and their meanings.) */
6369
6370 int
6371 regcomp (preg, pattern, cflags)
6372 regex_t *__restrict preg;
6373 const char *__restrict pattern;
6374 int cflags;
6375 {
6376 reg_errcode_t ret;
6377 reg_syntax_t syntax
6378 = (cflags & REG_EXTENDED) ?
6379 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6380
6381 /* regex_compile will allocate the space for the compiled pattern. */
6382 preg->buffer = 0;
6383 preg->allocated = 0;
6384 preg->used = 0;
6385
6386 /* Try to allocate space for the fastmap. */
6387 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6388
6389 if (cflags & REG_ICASE)
6390 {
6391 unsigned i;
6392
6393 preg->translate
6394 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6395 * sizeof (*(RE_TRANSLATE_TYPE)0));
6396 if (preg->translate == NULL)
6397 return (int) REG_ESPACE;
6398
6399 /* Map uppercase characters to corresponding lowercase ones. */
6400 for (i = 0; i < CHAR_SET_SIZE; i++)
6401 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6402 }
6403 else
6404 preg->translate = NULL;
6405
6406 /* If REG_NEWLINE is set, newlines are treated differently. */
6407 if (cflags & REG_NEWLINE)
6408 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6409 syntax &= ~RE_DOT_NEWLINE;
6410 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6411 }
6412 else
6413 syntax |= RE_NO_NEWLINE_ANCHOR;
6414
6415 preg->no_sub = !!(cflags & REG_NOSUB);
6416
6417 /* POSIX says a null character in the pattern terminates it, so we
6418 can use strlen here in compiling the pattern. */
6419 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6420
6421 /* POSIX doesn't distinguish between an unmatched open-group and an
6422 unmatched close-group: both are REG_EPAREN. */
6423 if (ret == REG_ERPAREN)
6424 ret = REG_EPAREN;
6425
6426 if (ret == REG_NOERROR && preg->fastmap)
6427 { /* Compute the fastmap now, since regexec cannot modify the pattern
6428 buffer. */
6429 re_compile_fastmap (preg);
6430 if (preg->can_be_null)
6431 { /* The fastmap can't be used anyway. */
6432 free (preg->fastmap);
6433 preg->fastmap = NULL;
6434 }
6435 }
6436 return (int) ret;
6437 }
6438 WEAK_ALIAS (__regcomp, regcomp)
6439
6440
6441 /* regexec searches for a given pattern, specified by PREG, in the
6442 string STRING.
6443
6444 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6445 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6446 least NMATCH elements, and we set them to the offsets of the
6447 corresponding matched substrings.
6448
6449 EFLAGS specifies `execution flags' which affect matching: if
6450 REG_NOTBOL is set, then ^ does not match at the beginning of the
6451 string; if REG_NOTEOL is set, then $ does not match at the end.
6452
6453 We return 0 if we find a match and REG_NOMATCH if not. */
6454
6455 int
6456 regexec (preg, string, nmatch, pmatch, eflags)
6457 const regex_t *__restrict preg;
6458 const char *__restrict string;
6459 size_t nmatch;
6460 regmatch_t pmatch[__restrict_arr];
6461 int eflags;
6462 {
6463 int ret;
6464 struct re_registers regs;
6465 regex_t private_preg;
6466 int len = strlen (string);
6467 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6468
6469 private_preg = *preg;
6470
6471 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6472 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6473
6474 /* The user has told us exactly how many registers to return
6475 information about, via `nmatch'. We have to pass that on to the
6476 matching routines. */
6477 private_preg.regs_allocated = REGS_FIXED;
6478
6479 if (want_reg_info)
6480 {
6481 regs.num_regs = nmatch;
6482 regs.start = TALLOC (nmatch * 2, regoff_t);
6483 if (regs.start == NULL)
6484 return (int) REG_NOMATCH;
6485 regs.end = regs.start + nmatch;
6486 }
6487
6488 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6489 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6490 was a little bit longer but still only matching the real part.
6491 This works because the `endline' will check for a '\n' and will find a
6492 '\0', correctly deciding that this is not the end of a line.
6493 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6494 a convenient '\0' there. For all we know, the string could be preceded
6495 by '\n' which would throw things off. */
6496
6497 /* Perform the searching operation. */
6498 ret = re_search (&private_preg, string, len,
6499 /* start: */ 0, /* range: */ len,
6500 want_reg_info ? &regs : (struct re_registers *) 0);
6501
6502 /* Copy the register information to the POSIX structure. */
6503 if (want_reg_info)
6504 {
6505 if (ret >= 0)
6506 {
6507 unsigned r;
6508
6509 for (r = 0; r < nmatch; r++)
6510 {
6511 pmatch[r].rm_so = regs.start[r];
6512 pmatch[r].rm_eo = regs.end[r];
6513 }
6514 }
6515
6516 /* If we needed the temporary register info, free the space now. */
6517 free (regs.start);
6518 }
6519
6520 /* We want zero return to mean success, unlike `re_search'. */
6521 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6522 }
6523 WEAK_ALIAS (__regexec, regexec)
6524
6525
6526 /* Returns a message corresponding to an error code, ERRCODE, returned
6527 from either regcomp or regexec. We don't use PREG here. */
6528
6529 size_t
6530 regerror (errcode, preg, errbuf, errbuf_size)
6531 int errcode;
6532 const regex_t *preg;
6533 char *errbuf;
6534 size_t errbuf_size;
6535 {
6536 const char *msg;
6537 size_t msg_size;
6538
6539 if (errcode < 0
6540 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6541 /* Only error codes returned by the rest of the code should be passed
6542 to this routine. If we are given anything else, or if other regex
6543 code generates an invalid error code, then the program has a bug.
6544 Dump core so we can fix it. */
6545 abort ();
6546
6547 msg = gettext (re_error_msgid[errcode]);
6548
6549 msg_size = strlen (msg) + 1; /* Includes the null. */
6550
6551 if (errbuf_size != 0)
6552 {
6553 if (msg_size > errbuf_size)
6554 {
6555 strncpy (errbuf, msg, errbuf_size - 1);
6556 errbuf[errbuf_size - 1] = 0;
6557 }
6558 else
6559 strcpy (errbuf, msg);
6560 }
6561
6562 return msg_size;
6563 }
6564 WEAK_ALIAS (__regerror, regerror)
6565
6566
6567 /* Free dynamically allocated space used by PREG. */
6568
6569 void
6570 regfree (preg)
6571 regex_t *preg;
6572 {
6573 if (preg->buffer != NULL)
6574 free (preg->buffer);
6575 preg->buffer = NULL;
6576
6577 preg->allocated = 0;
6578 preg->used = 0;
6579
6580 if (preg->fastmap != NULL)
6581 free (preg->fastmap);
6582 preg->fastmap = NULL;
6583 preg->fastmap_accurate = 0;
6584
6585 if (preg->translate != NULL)
6586 free (preg->translate);
6587 preg->translate = NULL;
6588 }
6589 WEAK_ALIAS (__regfree, regfree)
6590
6591 #endif /* not emacs */
6592
6593 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6594 (do not change this comment) */