]> code.delx.au - gnu-emacs/blob - src/editfns.c
Allow `text-quoting-style' to be `leave', i.e. no translation of quotes.
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1989, 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or (at
10 your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <errno.h>
48 #include <float.h>
49 #include <limits.h>
50
51 #include <intprops.h>
52 #include <strftime.h>
53 #include <verify.h>
54
55 #include "composite.h"
56 #include "intervals.h"
57 #include "character.h"
58 #include "buffer.h"
59 #include "coding.h"
60 #include "window.h"
61 #include "blockinput.h"
62
63 #define TM_YEAR_BASE 1900
64
65 #ifdef WINDOWSNT
66 extern Lisp_Object w32_get_internal_run_time (void);
67 #endif
68
69 static struct lisp_time lisp_time_struct (Lisp_Object, int *);
70 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
71 Lisp_Object, struct tm *);
72 static long int tm_gmtoff (struct tm *);
73 static int tm_diff (struct tm *, struct tm *);
74 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
75 static Lisp_Object styled_format (ptrdiff_t, Lisp_Object *, bool);
76
77 #ifndef HAVE_TM_GMTOFF
78 # define HAVE_TM_GMTOFF false
79 #endif
80
81 enum { tzeqlen = sizeof "TZ=" - 1 };
82
83 /* Time zones equivalent to current local time, to wall clock time,
84 and to UTC, respectively. */
85 static timezone_t local_tz;
86 static timezone_t wall_clock_tz;
87 static timezone_t const utc_tz = 0;
88
89 /* A valid but unlikely setting for the TZ environment variable.
90 It is OK (though a bit slower) if the user chooses this value. */
91 static char dump_tz_string[] = "TZ=UtC0";
92
93 /* The cached value of Vsystem_name. This is used only to compare it
94 to Vsystem_name, so it need not be visible to the GC. */
95 static Lisp_Object cached_system_name;
96
97 static void
98 init_and_cache_system_name (void)
99 {
100 init_system_name ();
101 cached_system_name = Vsystem_name;
102 }
103
104 static struct tm *
105 emacs_localtime_rz (timezone_t tz, time_t const *t, struct tm *tm)
106 {
107 tm = localtime_rz (tz, t, tm);
108 if (!tm && errno == ENOMEM)
109 memory_full (SIZE_MAX);
110 return tm;
111 }
112
113 static time_t
114 emacs_mktime_z (timezone_t tz, struct tm *tm)
115 {
116 errno = 0;
117 time_t t = mktime_z (tz, tm);
118 if (t == (time_t) -1 && errno == ENOMEM)
119 memory_full (SIZE_MAX);
120 return t;
121 }
122
123 /* Allocate a timezone, signaling on failure. */
124 static timezone_t
125 xtzalloc (char const *name)
126 {
127 timezone_t tz = tzalloc (name);
128 if (!tz)
129 memory_full (SIZE_MAX);
130 return tz;
131 }
132
133 /* Free a timezone, except do not free the time zone for local time.
134 Freeing utc_tz is also a no-op. */
135 static void
136 xtzfree (timezone_t tz)
137 {
138 if (tz != local_tz)
139 tzfree (tz);
140 }
141
142 /* Convert the Lisp time zone rule ZONE to a timezone_t object.
143 The returned value either is 0, or is LOCAL_TZ, or is newly allocated.
144 If SETTZ, set Emacs local time to the time zone rule; otherwise,
145 the caller should eventually pass the returned value to xtzfree. */
146 static timezone_t
147 tzlookup (Lisp_Object zone, bool settz)
148 {
149 char const *zone_string;
150 timezone_t new_tz;
151
152 if (NILP (zone))
153 return local_tz;
154 else if (EQ (zone, Qt))
155 {
156 zone_string = "UTC0";
157 new_tz = utc_tz;
158 }
159 else
160 {
161 static char const tzbuf_format[] = "<%+.*"pI"d>%s%"pI"d:%02d:%02d";
162 char const *trailing_tzbuf_format = tzbuf_format + sizeof "<%+.*"pI"d" - 1;
163 char tzbuf[sizeof tzbuf_format + 2 * INT_STRLEN_BOUND (EMACS_INT)];
164 bool plain_integer = INTEGERP (zone);
165
166 if (EQ (zone, Qwall))
167 zone_string = 0;
168 else if (STRINGP (zone))
169 zone_string = SSDATA (ENCODE_SYSTEM (zone));
170 else if (plain_integer || (CONSP (zone) && INTEGERP (XCAR (zone))
171 && CONSP (XCDR (zone))))
172 {
173 Lisp_Object abbr;
174 if (!plain_integer)
175 {
176 abbr = XCAR (XCDR (zone));
177 zone = XCAR (zone);
178 }
179
180 EMACS_INT abszone = eabs (XINT (zone)), hour = abszone / (60 * 60);
181 int hour_remainder = abszone % (60 * 60);
182 int min = hour_remainder / 60, sec = hour_remainder % 60;
183
184 if (plain_integer)
185 {
186 int prec = 2;
187 EMACS_INT numzone = hour;
188 if (hour_remainder != 0)
189 {
190 prec += 2, numzone = 100 * numzone + min;
191 if (sec != 0)
192 prec += 2, numzone = 100 * numzone + sec;
193 }
194 sprintf (tzbuf, tzbuf_format, prec, numzone,
195 &"-"[XINT (zone) < 0], hour, min, sec);
196 zone_string = tzbuf;
197 }
198 else
199 {
200 AUTO_STRING (leading, "<");
201 AUTO_STRING_WITH_LEN (trailing, tzbuf,
202 sprintf (tzbuf, trailing_tzbuf_format,
203 &"-"[XINT (zone) < 0],
204 hour, min, sec));
205 zone_string = SSDATA (concat3 (leading, ENCODE_SYSTEM (abbr),
206 trailing));
207 }
208 }
209 else
210 xsignal2 (Qerror, build_string ("Invalid time zone specification"),
211 zone);
212 new_tz = xtzalloc (zone_string);
213 }
214
215 if (settz)
216 {
217 block_input ();
218 emacs_setenv_TZ (zone_string);
219 timezone_t old_tz = local_tz;
220 local_tz = new_tz;
221 tzfree (old_tz);
222 unblock_input ();
223 }
224
225 return new_tz;
226 }
227
228 void
229 init_editfns (bool dumping)
230 {
231 const char *user_name;
232 register char *p;
233 struct passwd *pw; /* password entry for the current user */
234 Lisp_Object tem;
235
236 /* Set up system_name even when dumping. */
237 init_and_cache_system_name ();
238
239 #ifndef CANNOT_DUMP
240 /* When just dumping out, set the time zone to a known unlikely value
241 and skip the rest of this function. */
242 if (dumping)
243 {
244 # ifdef HAVE_TZSET
245 xputenv (dump_tz_string);
246 tzset ();
247 # endif
248 return;
249 }
250 #endif
251
252 char *tz = getenv ("TZ");
253
254 #if !defined CANNOT_DUMP && defined HAVE_TZSET
255 /* If the execution TZ happens to be the same as the dump TZ,
256 change it to some other value and then change it back,
257 to force the underlying implementation to reload the TZ info.
258 This is needed on implementations that load TZ info from files,
259 since the TZ file contents may differ between dump and execution. */
260 if (tz && strcmp (tz, &dump_tz_string[tzeqlen]) == 0)
261 {
262 ++*tz;
263 tzset ();
264 --*tz;
265 }
266 #endif
267
268 /* Set the time zone rule now, so that the call to putenv is done
269 before multiple threads are active. */
270 wall_clock_tz = xtzalloc (0);
271 tzlookup (tz ? build_string (tz) : Qwall, true);
272
273 pw = getpwuid (getuid ());
274 #ifdef MSDOS
275 /* We let the real user name default to "root" because that's quite
276 accurate on MS-DOS and because it lets Emacs find the init file.
277 (The DVX libraries override the Djgpp libraries here.) */
278 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
279 #else
280 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
281 #endif
282
283 /* Get the effective user name, by consulting environment variables,
284 or the effective uid if those are unset. */
285 user_name = getenv ("LOGNAME");
286 if (!user_name)
287 #ifdef WINDOWSNT
288 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
289 #else /* WINDOWSNT */
290 user_name = getenv ("USER");
291 #endif /* WINDOWSNT */
292 if (!user_name)
293 {
294 pw = getpwuid (geteuid ());
295 user_name = pw ? pw->pw_name : "unknown";
296 }
297 Vuser_login_name = build_string (user_name);
298
299 /* If the user name claimed in the environment vars differs from
300 the real uid, use the claimed name to find the full name. */
301 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
302 if (! NILP (tem))
303 tem = Vuser_login_name;
304 else
305 {
306 uid_t euid = geteuid ();
307 tem = make_fixnum_or_float (euid);
308 }
309 Vuser_full_name = Fuser_full_name (tem);
310
311 p = getenv ("NAME");
312 if (p)
313 Vuser_full_name = build_string (p);
314 else if (NILP (Vuser_full_name))
315 Vuser_full_name = build_string ("unknown");
316
317 #ifdef HAVE_SYS_UTSNAME_H
318 {
319 struct utsname uts;
320 uname (&uts);
321 Voperating_system_release = build_string (uts.release);
322 }
323 #else
324 Voperating_system_release = Qnil;
325 #endif
326 }
327 \f
328 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
329 doc: /* Convert arg CHAR to a string containing that character.
330 usage: (char-to-string CHAR) */)
331 (Lisp_Object character)
332 {
333 int c, len;
334 unsigned char str[MAX_MULTIBYTE_LENGTH];
335
336 CHECK_CHARACTER (character);
337 c = XFASTINT (character);
338
339 len = CHAR_STRING (c, str);
340 return make_string_from_bytes ((char *) str, 1, len);
341 }
342
343 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
344 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
345 (Lisp_Object byte)
346 {
347 unsigned char b;
348 CHECK_NUMBER (byte);
349 if (XINT (byte) < 0 || XINT (byte) > 255)
350 error ("Invalid byte");
351 b = XINT (byte);
352 return make_string_from_bytes ((char *) &b, 1, 1);
353 }
354
355 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
356 doc: /* Return the first character in STRING. */)
357 (register Lisp_Object string)
358 {
359 register Lisp_Object val;
360 CHECK_STRING (string);
361 if (SCHARS (string))
362 {
363 if (STRING_MULTIBYTE (string))
364 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
365 else
366 XSETFASTINT (val, SREF (string, 0));
367 }
368 else
369 XSETFASTINT (val, 0);
370 return val;
371 }
372
373 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
374 doc: /* Return value of point, as an integer.
375 Beginning of buffer is position (point-min). */)
376 (void)
377 {
378 Lisp_Object temp;
379 XSETFASTINT (temp, PT);
380 return temp;
381 }
382
383 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
384 doc: /* Return value of point, as a marker object. */)
385 (void)
386 {
387 return build_marker (current_buffer, PT, PT_BYTE);
388 }
389
390 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
391 doc: /* Set point to POSITION, a number or marker.
392 Beginning of buffer is position (point-min), end is (point-max).
393
394 The return value is POSITION. */)
395 (register Lisp_Object position)
396 {
397 if (MARKERP (position))
398 set_point_from_marker (position);
399 else if (INTEGERP (position))
400 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
401 else
402 wrong_type_argument (Qinteger_or_marker_p, position);
403 return position;
404 }
405
406
407 /* Return the start or end position of the region.
408 BEGINNINGP means return the start.
409 If there is no region active, signal an error. */
410
411 static Lisp_Object
412 region_limit (bool beginningp)
413 {
414 Lisp_Object m;
415
416 if (!NILP (Vtransient_mark_mode)
417 && NILP (Vmark_even_if_inactive)
418 && NILP (BVAR (current_buffer, mark_active)))
419 xsignal0 (Qmark_inactive);
420
421 m = Fmarker_position (BVAR (current_buffer, mark));
422 if (NILP (m))
423 error ("The mark is not set now, so there is no region");
424
425 /* Clip to the current narrowing (bug#11770). */
426 return make_number ((PT < XFASTINT (m)) == beginningp
427 ? PT
428 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
429 }
430
431 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
432 doc: /* Return the integer value of point or mark, whichever is smaller. */)
433 (void)
434 {
435 return region_limit (1);
436 }
437
438 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
439 doc: /* Return the integer value of point or mark, whichever is larger. */)
440 (void)
441 {
442 return region_limit (0);
443 }
444
445 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
446 doc: /* Return this buffer's mark, as a marker object.
447 Watch out! Moving this marker changes the mark position.
448 If you set the marker not to point anywhere, the buffer will have no mark. */)
449 (void)
450 {
451 return BVAR (current_buffer, mark);
452 }
453
454 \f
455 /* Find all the overlays in the current buffer that touch position POS.
456 Return the number found, and store them in a vector in VEC
457 of length LEN. */
458
459 static ptrdiff_t
460 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
461 {
462 Lisp_Object overlay, start, end;
463 struct Lisp_Overlay *tail;
464 ptrdiff_t startpos, endpos;
465 ptrdiff_t idx = 0;
466
467 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
468 {
469 XSETMISC (overlay, tail);
470
471 end = OVERLAY_END (overlay);
472 endpos = OVERLAY_POSITION (end);
473 if (endpos < pos)
474 break;
475 start = OVERLAY_START (overlay);
476 startpos = OVERLAY_POSITION (start);
477 if (startpos <= pos)
478 {
479 if (idx < len)
480 vec[idx] = overlay;
481 /* Keep counting overlays even if we can't return them all. */
482 idx++;
483 }
484 }
485
486 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
487 {
488 XSETMISC (overlay, tail);
489
490 start = OVERLAY_START (overlay);
491 startpos = OVERLAY_POSITION (start);
492 if (pos < startpos)
493 break;
494 end = OVERLAY_END (overlay);
495 endpos = OVERLAY_POSITION (end);
496 if (pos <= endpos)
497 {
498 if (idx < len)
499 vec[idx] = overlay;
500 idx++;
501 }
502 }
503
504 return idx;
505 }
506
507 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
508 doc: /* Return the value of POSITION's property PROP, in OBJECT.
509 Almost identical to `get-char-property' except for the following difference:
510 Whereas `get-char-property' returns the property of the char at (i.e. right
511 after) POSITION, this pays attention to properties's stickiness and overlays's
512 advancement settings, in order to find the property of POSITION itself,
513 i.e. the property that a char would inherit if it were inserted
514 at POSITION. */)
515 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
516 {
517 CHECK_NUMBER_COERCE_MARKER (position);
518
519 if (NILP (object))
520 XSETBUFFER (object, current_buffer);
521 else if (WINDOWP (object))
522 object = XWINDOW (object)->contents;
523
524 if (!BUFFERP (object))
525 /* pos-property only makes sense in buffers right now, since strings
526 have no overlays and no notion of insertion for which stickiness
527 could be obeyed. */
528 return Fget_text_property (position, prop, object);
529 else
530 {
531 EMACS_INT posn = XINT (position);
532 ptrdiff_t noverlays;
533 Lisp_Object *overlay_vec, tem;
534 struct buffer *obuf = current_buffer;
535 USE_SAFE_ALLOCA;
536
537 set_buffer_temp (XBUFFER (object));
538
539 /* First try with room for 40 overlays. */
540 Lisp_Object overlay_vecbuf[40];
541 noverlays = ARRAYELTS (overlay_vecbuf);
542 overlay_vec = overlay_vecbuf;
543 noverlays = overlays_around (posn, overlay_vec, noverlays);
544
545 /* If there are more than 40,
546 make enough space for all, and try again. */
547 if (ARRAYELTS (overlay_vecbuf) < noverlays)
548 {
549 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
550 noverlays = overlays_around (posn, overlay_vec, noverlays);
551 }
552 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
553
554 set_buffer_temp (obuf);
555
556 /* Now check the overlays in order of decreasing priority. */
557 while (--noverlays >= 0)
558 {
559 Lisp_Object ol = overlay_vec[noverlays];
560 tem = Foverlay_get (ol, prop);
561 if (!NILP (tem))
562 {
563 /* Check the overlay is indeed active at point. */
564 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
565 if ((OVERLAY_POSITION (start) == posn
566 && XMARKER (start)->insertion_type == 1)
567 || (OVERLAY_POSITION (finish) == posn
568 && XMARKER (finish)->insertion_type == 0))
569 ; /* The overlay will not cover a char inserted at point. */
570 else
571 {
572 SAFE_FREE ();
573 return tem;
574 }
575 }
576 }
577 SAFE_FREE ();
578
579 { /* Now check the text properties. */
580 int stickiness = text_property_stickiness (prop, position, object);
581 if (stickiness > 0)
582 return Fget_text_property (position, prop, object);
583 else if (stickiness < 0
584 && XINT (position) > BUF_BEGV (XBUFFER (object)))
585 return Fget_text_property (make_number (XINT (position) - 1),
586 prop, object);
587 else
588 return Qnil;
589 }
590 }
591 }
592
593 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
594 the value of point is used instead. If BEG or END is null,
595 means don't store the beginning or end of the field.
596
597 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
598 results; they do not effect boundary behavior.
599
600 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
601 position of a field, then the beginning of the previous field is
602 returned instead of the beginning of POS's field (since the end of a
603 field is actually also the beginning of the next input field, this
604 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
605 non-nil case, if two fields are separated by a field with the special
606 value `boundary', and POS lies within it, then the two separated
607 fields are considered to be adjacent, and POS between them, when
608 finding the beginning and ending of the "merged" field.
609
610 Either BEG or END may be 0, in which case the corresponding value
611 is not stored. */
612
613 static void
614 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
615 Lisp_Object beg_limit,
616 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
617 {
618 /* Fields right before and after the point. */
619 Lisp_Object before_field, after_field;
620 /* True if POS counts as the start of a field. */
621 bool at_field_start = 0;
622 /* True if POS counts as the end of a field. */
623 bool at_field_end = 0;
624
625 if (NILP (pos))
626 XSETFASTINT (pos, PT);
627 else
628 CHECK_NUMBER_COERCE_MARKER (pos);
629
630 after_field
631 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
632 before_field
633 = (XFASTINT (pos) > BEGV
634 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
635 Qfield, Qnil, NULL)
636 /* Using nil here would be a more obvious choice, but it would
637 fail when the buffer starts with a non-sticky field. */
638 : after_field);
639
640 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
641 and POS is at beginning of a field, which can also be interpreted
642 as the end of the previous field. Note that the case where if
643 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
644 more natural one; then we avoid treating the beginning of a field
645 specially. */
646 if (NILP (merge_at_boundary))
647 {
648 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
649 if (!EQ (field, after_field))
650 at_field_end = 1;
651 if (!EQ (field, before_field))
652 at_field_start = 1;
653 if (NILP (field) && at_field_start && at_field_end)
654 /* If an inserted char would have a nil field while the surrounding
655 text is non-nil, we're probably not looking at a
656 zero-length field, but instead at a non-nil field that's
657 not intended for editing (such as comint's prompts). */
658 at_field_end = at_field_start = 0;
659 }
660
661 /* Note about special `boundary' fields:
662
663 Consider the case where the point (`.') is between the fields `x' and `y':
664
665 xxxx.yyyy
666
667 In this situation, if merge_at_boundary is non-nil, consider the
668 `x' and `y' fields as forming one big merged field, and so the end
669 of the field is the end of `y'.
670
671 However, if `x' and `y' are separated by a special `boundary' field
672 (a field with a `field' char-property of 'boundary), then ignore
673 this special field when merging adjacent fields. Here's the same
674 situation, but with a `boundary' field between the `x' and `y' fields:
675
676 xxx.BBBByyyy
677
678 Here, if point is at the end of `x', the beginning of `y', or
679 anywhere in-between (within the `boundary' field), merge all
680 three fields and consider the beginning as being the beginning of
681 the `x' field, and the end as being the end of the `y' field. */
682
683 if (beg)
684 {
685 if (at_field_start)
686 /* POS is at the edge of a field, and we should consider it as
687 the beginning of the following field. */
688 *beg = XFASTINT (pos);
689 else
690 /* Find the previous field boundary. */
691 {
692 Lisp_Object p = pos;
693 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
694 /* Skip a `boundary' field. */
695 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
696 beg_limit);
697
698 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
699 beg_limit);
700 *beg = NILP (p) ? BEGV : XFASTINT (p);
701 }
702 }
703
704 if (end)
705 {
706 if (at_field_end)
707 /* POS is at the edge of a field, and we should consider it as
708 the end of the previous field. */
709 *end = XFASTINT (pos);
710 else
711 /* Find the next field boundary. */
712 {
713 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
714 /* Skip a `boundary' field. */
715 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
716 end_limit);
717
718 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
719 end_limit);
720 *end = NILP (pos) ? ZV : XFASTINT (pos);
721 }
722 }
723 }
724
725 \f
726 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
727 doc: /* Delete the field surrounding POS.
728 A field is a region of text with the same `field' property.
729 If POS is nil, the value of point is used for POS. */)
730 (Lisp_Object pos)
731 {
732 ptrdiff_t beg, end;
733 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
734 if (beg != end)
735 del_range (beg, end);
736 return Qnil;
737 }
738
739 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
740 doc: /* Return the contents of the field surrounding POS as a string.
741 A field is a region of text with the same `field' property.
742 If POS is nil, the value of point is used for POS. */)
743 (Lisp_Object pos)
744 {
745 ptrdiff_t beg, end;
746 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
747 return make_buffer_string (beg, end, 1);
748 }
749
750 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
751 doc: /* Return the contents of the field around POS, without text properties.
752 A field is a region of text with the same `field' property.
753 If POS is nil, the value of point is used for POS. */)
754 (Lisp_Object pos)
755 {
756 ptrdiff_t beg, end;
757 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
758 return make_buffer_string (beg, end, 0);
759 }
760
761 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
762 doc: /* Return the beginning of the field surrounding POS.
763 A field is a region of text with the same `field' property.
764 If POS is nil, the value of point is used for POS.
765 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
766 field, then the beginning of the *previous* field is returned.
767 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
768 is before LIMIT, then LIMIT will be returned instead. */)
769 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
770 {
771 ptrdiff_t beg;
772 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
773 return make_number (beg);
774 }
775
776 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
777 doc: /* Return the end of the field surrounding POS.
778 A field is a region of text with the same `field' property.
779 If POS is nil, the value of point is used for POS.
780 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
781 then the end of the *following* field is returned.
782 If LIMIT is non-nil, it is a buffer position; if the end of the field
783 is after LIMIT, then LIMIT will be returned instead. */)
784 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
785 {
786 ptrdiff_t end;
787 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
788 return make_number (end);
789 }
790
791 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
792 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
793 A field is a region of text with the same `field' property.
794
795 If NEW-POS is nil, then use the current point instead, and move point
796 to the resulting constrained position, in addition to returning that
797 position.
798
799 If OLD-POS is at the boundary of two fields, then the allowable
800 positions for NEW-POS depends on the value of the optional argument
801 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
802 constrained to the field that has the same `field' char-property
803 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
804 is non-nil, NEW-POS is constrained to the union of the two adjacent
805 fields. Additionally, if two fields are separated by another field with
806 the special value `boundary', then any point within this special field is
807 also considered to be `on the boundary'.
808
809 If the optional argument ONLY-IN-LINE is non-nil and constraining
810 NEW-POS would move it to a different line, NEW-POS is returned
811 unconstrained. This is useful for commands that move by line, like
812 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
813 only in the case where they can still move to the right line.
814
815 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
816 a non-nil property of that name, then any field boundaries are ignored.
817
818 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
819 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
820 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
821 {
822 /* If non-zero, then the original point, before re-positioning. */
823 ptrdiff_t orig_point = 0;
824 bool fwd;
825 Lisp_Object prev_old, prev_new;
826
827 if (NILP (new_pos))
828 /* Use the current point, and afterwards, set it. */
829 {
830 orig_point = PT;
831 XSETFASTINT (new_pos, PT);
832 }
833
834 CHECK_NUMBER_COERCE_MARKER (new_pos);
835 CHECK_NUMBER_COERCE_MARKER (old_pos);
836
837 fwd = (XINT (new_pos) > XINT (old_pos));
838
839 prev_old = make_number (XINT (old_pos) - 1);
840 prev_new = make_number (XINT (new_pos) - 1);
841
842 if (NILP (Vinhibit_field_text_motion)
843 && !EQ (new_pos, old_pos)
844 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
845 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
846 /* To recognize field boundaries, we must also look at the
847 previous positions; we could use `Fget_pos_property'
848 instead, but in itself that would fail inside non-sticky
849 fields (like comint prompts). */
850 || (XFASTINT (new_pos) > BEGV
851 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
852 || (XFASTINT (old_pos) > BEGV
853 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
854 && (NILP (inhibit_capture_property)
855 /* Field boundaries are again a problem; but now we must
856 decide the case exactly, so we need to call
857 `get_pos_property' as well. */
858 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
859 && (XFASTINT (old_pos) <= BEGV
860 || NILP (Fget_char_property
861 (old_pos, inhibit_capture_property, Qnil))
862 || NILP (Fget_char_property
863 (prev_old, inhibit_capture_property, Qnil))))))
864 /* It is possible that NEW_POS is not within the same field as
865 OLD_POS; try to move NEW_POS so that it is. */
866 {
867 ptrdiff_t shortage;
868 Lisp_Object field_bound;
869
870 if (fwd)
871 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
872 else
873 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
874
875 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
876 other side of NEW_POS, which would mean that NEW_POS is
877 already acceptable, and it's not necessary to constrain it
878 to FIELD_BOUND. */
879 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
880 /* NEW_POS should be constrained, but only if either
881 ONLY_IN_LINE is nil (in which case any constraint is OK),
882 or NEW_POS and FIELD_BOUND are on the same line (in which
883 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
884 && (NILP (only_in_line)
885 /* This is the ONLY_IN_LINE case, check that NEW_POS and
886 FIELD_BOUND are on the same line by seeing whether
887 there's an intervening newline or not. */
888 || (find_newline (XFASTINT (new_pos), -1,
889 XFASTINT (field_bound), -1,
890 fwd ? -1 : 1, &shortage, NULL, 1),
891 shortage != 0)))
892 /* Constrain NEW_POS to FIELD_BOUND. */
893 new_pos = field_bound;
894
895 if (orig_point && XFASTINT (new_pos) != orig_point)
896 /* The NEW_POS argument was originally nil, so automatically set PT. */
897 SET_PT (XFASTINT (new_pos));
898 }
899
900 return new_pos;
901 }
902
903 \f
904 DEFUN ("line-beginning-position",
905 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
906 doc: /* Return the character position of the first character on the current line.
907 With optional argument N, scan forward N - 1 lines first.
908 If the scan reaches the end of the buffer, return that position.
909
910 This function ignores text display directionality; it returns the
911 position of the first character in logical order, i.e. the smallest
912 character position on the line.
913
914 This function constrains the returned position to the current field
915 unless that position would be on a different line than the original,
916 unconstrained result. If N is nil or 1, and a front-sticky field
917 starts at point, the scan stops as soon as it starts. To ignore field
918 boundaries, bind `inhibit-field-text-motion' to t.
919
920 This function does not move point. */)
921 (Lisp_Object n)
922 {
923 ptrdiff_t charpos, bytepos;
924
925 if (NILP (n))
926 XSETFASTINT (n, 1);
927 else
928 CHECK_NUMBER (n);
929
930 scan_newline_from_point (XINT (n) - 1, &charpos, &bytepos);
931
932 /* Return END constrained to the current input field. */
933 return Fconstrain_to_field (make_number (charpos), make_number (PT),
934 XINT (n) != 1 ? Qt : Qnil,
935 Qt, Qnil);
936 }
937
938 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
939 doc: /* Return the character position of the last character on the current line.
940 With argument N not nil or 1, move forward N - 1 lines first.
941 If scan reaches end of buffer, return that position.
942
943 This function ignores text display directionality; it returns the
944 position of the last character in logical order, i.e. the largest
945 character position on the line.
946
947 This function constrains the returned position to the current field
948 unless that would be on a different line than the original,
949 unconstrained result. If N is nil or 1, and a rear-sticky field ends
950 at point, the scan stops as soon as it starts. To ignore field
951 boundaries bind `inhibit-field-text-motion' to t.
952
953 This function does not move point. */)
954 (Lisp_Object n)
955 {
956 ptrdiff_t clipped_n;
957 ptrdiff_t end_pos;
958 ptrdiff_t orig = PT;
959
960 if (NILP (n))
961 XSETFASTINT (n, 1);
962 else
963 CHECK_NUMBER (n);
964
965 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
966 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
967 NULL);
968
969 /* Return END_POS constrained to the current input field. */
970 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
971 Qnil, Qt, Qnil);
972 }
973
974 /* Save current buffer state for `save-excursion' special form.
975 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
976 offload some work from GC. */
977
978 Lisp_Object
979 save_excursion_save (void)
980 {
981 return make_save_obj_obj_obj_obj
982 (Fpoint_marker (),
983 Qnil,
984 /* Selected window if current buffer is shown in it, nil otherwise. */
985 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
986 ? selected_window : Qnil),
987 Qnil);
988 }
989
990 /* Restore saved buffer before leaving `save-excursion' special form. */
991
992 void
993 save_excursion_restore (Lisp_Object info)
994 {
995 Lisp_Object tem, tem1;
996
997 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
998 /* If we're unwinding to top level, saved buffer may be deleted. This
999 means that all of its markers are unchained and so tem is nil. */
1000 if (NILP (tem))
1001 goto out;
1002
1003 Fset_buffer (tem);
1004
1005 /* Point marker. */
1006 tem = XSAVE_OBJECT (info, 0);
1007 Fgoto_char (tem);
1008 unchain_marker (XMARKER (tem));
1009
1010 /* If buffer was visible in a window, and a different window was
1011 selected, and the old selected window is still showing this
1012 buffer, restore point in that window. */
1013 tem = XSAVE_OBJECT (info, 2);
1014 if (WINDOWP (tem)
1015 && !EQ (tem, selected_window)
1016 && (tem1 = XWINDOW (tem)->contents,
1017 (/* Window is live... */
1018 BUFFERP (tem1)
1019 /* ...and it shows the current buffer. */
1020 && XBUFFER (tem1) == current_buffer)))
1021 Fset_window_point (tem, make_number (PT));
1022
1023 out:
1024
1025 free_misc (info);
1026 }
1027
1028 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
1029 doc: /* Save point, and current buffer; execute BODY; restore those things.
1030 Executes BODY just like `progn'.
1031 The values of point and the current buffer are restored
1032 even in case of abnormal exit (throw or error).
1033
1034 If you only want to save the current buffer but not point,
1035 then just use `save-current-buffer', or even `with-current-buffer'.
1036
1037 Before Emacs 25.1, `save-excursion' used to save the mark state.
1038 To save the marker state as well as the point and buffer, use
1039 `save-mark-and-excursion'.
1040
1041 usage: (save-excursion &rest BODY) */)
1042 (Lisp_Object args)
1043 {
1044 register Lisp_Object val;
1045 ptrdiff_t count = SPECPDL_INDEX ();
1046
1047 record_unwind_protect (save_excursion_restore, save_excursion_save ());
1048
1049 val = Fprogn (args);
1050 return unbind_to (count, val);
1051 }
1052
1053 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1054 doc: /* Record which buffer is current; execute BODY; make that buffer current.
1055 BODY is executed just like `progn'.
1056 usage: (save-current-buffer &rest BODY) */)
1057 (Lisp_Object args)
1058 {
1059 ptrdiff_t count = SPECPDL_INDEX ();
1060
1061 record_unwind_current_buffer ();
1062 return unbind_to (count, Fprogn (args));
1063 }
1064 \f
1065 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
1066 doc: /* Return the number of characters in the current buffer.
1067 If BUFFER, return the number of characters in that buffer instead. */)
1068 (Lisp_Object buffer)
1069 {
1070 if (NILP (buffer))
1071 return make_number (Z - BEG);
1072 else
1073 {
1074 CHECK_BUFFER (buffer);
1075 return make_number (BUF_Z (XBUFFER (buffer))
1076 - BUF_BEG (XBUFFER (buffer)));
1077 }
1078 }
1079
1080 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1081 doc: /* Return the minimum permissible value of point in the current buffer.
1082 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1083 (void)
1084 {
1085 Lisp_Object temp;
1086 XSETFASTINT (temp, BEGV);
1087 return temp;
1088 }
1089
1090 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1091 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1092 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1093 (void)
1094 {
1095 return build_marker (current_buffer, BEGV, BEGV_BYTE);
1096 }
1097
1098 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1099 doc: /* Return the maximum permissible value of point in the current buffer.
1100 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1101 is in effect, in which case it is less. */)
1102 (void)
1103 {
1104 Lisp_Object temp;
1105 XSETFASTINT (temp, ZV);
1106 return temp;
1107 }
1108
1109 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1110 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1111 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1112 is in effect, in which case it is less. */)
1113 (void)
1114 {
1115 return build_marker (current_buffer, ZV, ZV_BYTE);
1116 }
1117
1118 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1119 doc: /* Return the position of the gap, in the current buffer.
1120 See also `gap-size'. */)
1121 (void)
1122 {
1123 Lisp_Object temp;
1124 XSETFASTINT (temp, GPT);
1125 return temp;
1126 }
1127
1128 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1129 doc: /* Return the size of the current buffer's gap.
1130 See also `gap-position'. */)
1131 (void)
1132 {
1133 Lisp_Object temp;
1134 XSETFASTINT (temp, GAP_SIZE);
1135 return temp;
1136 }
1137
1138 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1139 doc: /* Return the byte position for character position POSITION.
1140 If POSITION is out of range, the value is nil. */)
1141 (Lisp_Object position)
1142 {
1143 CHECK_NUMBER_COERCE_MARKER (position);
1144 if (XINT (position) < BEG || XINT (position) > Z)
1145 return Qnil;
1146 return make_number (CHAR_TO_BYTE (XINT (position)));
1147 }
1148
1149 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1150 doc: /* Return the character position for byte position BYTEPOS.
1151 If BYTEPOS is out of range, the value is nil. */)
1152 (Lisp_Object bytepos)
1153 {
1154 ptrdiff_t pos_byte;
1155
1156 CHECK_NUMBER (bytepos);
1157 pos_byte = XINT (bytepos);
1158 if (pos_byte < BEG_BYTE || pos_byte > Z_BYTE)
1159 return Qnil;
1160 if (Z != Z_BYTE)
1161 /* There are multibyte characters in the buffer.
1162 The argument of BYTE_TO_CHAR must be a byte position at
1163 a character boundary, so search for the start of the current
1164 character. */
1165 while (!CHAR_HEAD_P (FETCH_BYTE (pos_byte)))
1166 pos_byte--;
1167 return make_number (BYTE_TO_CHAR (pos_byte));
1168 }
1169 \f
1170 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1171 doc: /* Return the character following point, as a number.
1172 At the end of the buffer or accessible region, return 0. */)
1173 (void)
1174 {
1175 Lisp_Object temp;
1176 if (PT >= ZV)
1177 XSETFASTINT (temp, 0);
1178 else
1179 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1180 return temp;
1181 }
1182
1183 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1184 doc: /* Return the character preceding point, as a number.
1185 At the beginning of the buffer or accessible region, return 0. */)
1186 (void)
1187 {
1188 Lisp_Object temp;
1189 if (PT <= BEGV)
1190 XSETFASTINT (temp, 0);
1191 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1192 {
1193 ptrdiff_t pos = PT_BYTE;
1194 DEC_POS (pos);
1195 XSETFASTINT (temp, FETCH_CHAR (pos));
1196 }
1197 else
1198 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1199 return temp;
1200 }
1201
1202 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1203 doc: /* Return t if point is at the beginning of the buffer.
1204 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1205 (void)
1206 {
1207 if (PT == BEGV)
1208 return Qt;
1209 return Qnil;
1210 }
1211
1212 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1213 doc: /* Return t if point is at the end of the buffer.
1214 If the buffer is narrowed, this means the end of the narrowed part. */)
1215 (void)
1216 {
1217 if (PT == ZV)
1218 return Qt;
1219 return Qnil;
1220 }
1221
1222 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1223 doc: /* Return t if point is at the beginning of a line. */)
1224 (void)
1225 {
1226 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1227 return Qt;
1228 return Qnil;
1229 }
1230
1231 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1232 doc: /* Return t if point is at the end of a line.
1233 `End of a line' includes point being at the end of the buffer. */)
1234 (void)
1235 {
1236 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1237 return Qt;
1238 return Qnil;
1239 }
1240
1241 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1242 doc: /* Return character in current buffer at position POS.
1243 POS is an integer or a marker and defaults to point.
1244 If POS is out of range, the value is nil. */)
1245 (Lisp_Object pos)
1246 {
1247 register ptrdiff_t pos_byte;
1248
1249 if (NILP (pos))
1250 {
1251 pos_byte = PT_BYTE;
1252 XSETFASTINT (pos, PT);
1253 }
1254
1255 if (MARKERP (pos))
1256 {
1257 pos_byte = marker_byte_position (pos);
1258 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1259 return Qnil;
1260 }
1261 else
1262 {
1263 CHECK_NUMBER_COERCE_MARKER (pos);
1264 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1265 return Qnil;
1266
1267 pos_byte = CHAR_TO_BYTE (XINT (pos));
1268 }
1269
1270 return make_number (FETCH_CHAR (pos_byte));
1271 }
1272
1273 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1274 doc: /* Return character in current buffer preceding position POS.
1275 POS is an integer or a marker and defaults to point.
1276 If POS is out of range, the value is nil. */)
1277 (Lisp_Object pos)
1278 {
1279 register Lisp_Object val;
1280 register ptrdiff_t pos_byte;
1281
1282 if (NILP (pos))
1283 {
1284 pos_byte = PT_BYTE;
1285 XSETFASTINT (pos, PT);
1286 }
1287
1288 if (MARKERP (pos))
1289 {
1290 pos_byte = marker_byte_position (pos);
1291
1292 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1293 return Qnil;
1294 }
1295 else
1296 {
1297 CHECK_NUMBER_COERCE_MARKER (pos);
1298
1299 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1300 return Qnil;
1301
1302 pos_byte = CHAR_TO_BYTE (XINT (pos));
1303 }
1304
1305 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1306 {
1307 DEC_POS (pos_byte);
1308 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1309 }
1310 else
1311 {
1312 pos_byte--;
1313 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1314 }
1315 return val;
1316 }
1317 \f
1318 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1319 doc: /* Return the name under which the user logged in, as a string.
1320 This is based on the effective uid, not the real uid.
1321 Also, if the environment variables LOGNAME or USER are set,
1322 that determines the value of this function.
1323
1324 If optional argument UID is an integer or a float, return the login name
1325 of the user with that uid, or nil if there is no such user. */)
1326 (Lisp_Object uid)
1327 {
1328 struct passwd *pw;
1329 uid_t id;
1330
1331 /* Set up the user name info if we didn't do it before.
1332 (That can happen if Emacs is dumpable
1333 but you decide to run `temacs -l loadup' and not dump. */
1334 if (NILP (Vuser_login_name))
1335 init_editfns (false);
1336
1337 if (NILP (uid))
1338 return Vuser_login_name;
1339
1340 CONS_TO_INTEGER (uid, uid_t, id);
1341 block_input ();
1342 pw = getpwuid (id);
1343 unblock_input ();
1344 return (pw ? build_string (pw->pw_name) : Qnil);
1345 }
1346
1347 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1348 0, 0, 0,
1349 doc: /* Return the name of the user's real uid, as a string.
1350 This ignores the environment variables LOGNAME and USER, so it differs from
1351 `user-login-name' when running under `su'. */)
1352 (void)
1353 {
1354 /* Set up the user name info if we didn't do it before.
1355 (That can happen if Emacs is dumpable
1356 but you decide to run `temacs -l loadup' and not dump. */
1357 if (NILP (Vuser_login_name))
1358 init_editfns (false);
1359 return Vuser_real_login_name;
1360 }
1361
1362 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1363 doc: /* Return the effective uid of Emacs.
1364 Value is an integer or a float, depending on the value. */)
1365 (void)
1366 {
1367 uid_t euid = geteuid ();
1368 return make_fixnum_or_float (euid);
1369 }
1370
1371 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1372 doc: /* Return the real uid of Emacs.
1373 Value is an integer or a float, depending on the value. */)
1374 (void)
1375 {
1376 uid_t uid = getuid ();
1377 return make_fixnum_or_float (uid);
1378 }
1379
1380 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1381 doc: /* Return the effective gid of Emacs.
1382 Value is an integer or a float, depending on the value. */)
1383 (void)
1384 {
1385 gid_t egid = getegid ();
1386 return make_fixnum_or_float (egid);
1387 }
1388
1389 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1390 doc: /* Return the real gid of Emacs.
1391 Value is an integer or a float, depending on the value. */)
1392 (void)
1393 {
1394 gid_t gid = getgid ();
1395 return make_fixnum_or_float (gid);
1396 }
1397
1398 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1399 doc: /* Return the full name of the user logged in, as a string.
1400 If the full name corresponding to Emacs's userid is not known,
1401 return "unknown".
1402
1403 If optional argument UID is an integer or float, return the full name
1404 of the user with that uid, or nil if there is no such user.
1405 If UID is a string, return the full name of the user with that login
1406 name, or nil if there is no such user. */)
1407 (Lisp_Object uid)
1408 {
1409 struct passwd *pw;
1410 register char *p, *q;
1411 Lisp_Object full;
1412
1413 if (NILP (uid))
1414 return Vuser_full_name;
1415 else if (NUMBERP (uid))
1416 {
1417 uid_t u;
1418 CONS_TO_INTEGER (uid, uid_t, u);
1419 block_input ();
1420 pw = getpwuid (u);
1421 unblock_input ();
1422 }
1423 else if (STRINGP (uid))
1424 {
1425 block_input ();
1426 pw = getpwnam (SSDATA (uid));
1427 unblock_input ();
1428 }
1429 else
1430 error ("Invalid UID specification");
1431
1432 if (!pw)
1433 return Qnil;
1434
1435 p = USER_FULL_NAME;
1436 /* Chop off everything after the first comma. */
1437 q = strchr (p, ',');
1438 full = make_string (p, q ? q - p : strlen (p));
1439
1440 #ifdef AMPERSAND_FULL_NAME
1441 p = SSDATA (full);
1442 q = strchr (p, '&');
1443 /* Substitute the login name for the &, upcasing the first character. */
1444 if (q)
1445 {
1446 Lisp_Object login = Fuser_login_name (make_number (pw->pw_uid));
1447 USE_SAFE_ALLOCA;
1448 char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1);
1449 memcpy (r, p, q - p);
1450 char *s = lispstpcpy (&r[q - p], login);
1451 r[q - p] = upcase ((unsigned char) r[q - p]);
1452 strcpy (s, q + 1);
1453 full = build_string (r);
1454 SAFE_FREE ();
1455 }
1456 #endif /* AMPERSAND_FULL_NAME */
1457
1458 return full;
1459 }
1460
1461 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1462 doc: /* Return the host name of the machine you are running on, as a string. */)
1463 (void)
1464 {
1465 if (EQ (Vsystem_name, cached_system_name))
1466 init_and_cache_system_name ();
1467 return Vsystem_name;
1468 }
1469
1470 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1471 doc: /* Return the process ID of Emacs, as a number. */)
1472 (void)
1473 {
1474 pid_t pid = getpid ();
1475 return make_fixnum_or_float (pid);
1476 }
1477
1478 \f
1479
1480 #ifndef TIME_T_MIN
1481 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1482 #endif
1483 #ifndef TIME_T_MAX
1484 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1485 #endif
1486
1487 /* Report that a time value is out of range for Emacs. */
1488 void
1489 time_overflow (void)
1490 {
1491 error ("Specified time is not representable");
1492 }
1493
1494 static _Noreturn void
1495 invalid_time (void)
1496 {
1497 error ("Invalid time specification");
1498 }
1499
1500 /* Check a return value compatible with that of decode_time_components. */
1501 static void
1502 check_time_validity (int validity)
1503 {
1504 if (validity <= 0)
1505 {
1506 if (validity < 0)
1507 time_overflow ();
1508 else
1509 invalid_time ();
1510 }
1511 }
1512
1513 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1514 static EMACS_INT
1515 hi_time (time_t t)
1516 {
1517 time_t hi = t >> LO_TIME_BITS;
1518
1519 /* Check for overflow, helping the compiler for common cases where
1520 no runtime check is needed, and taking care not to convert
1521 negative numbers to unsigned before comparing them. */
1522 if (! ((! TYPE_SIGNED (time_t)
1523 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> LO_TIME_BITS
1524 || MOST_NEGATIVE_FIXNUM <= hi)
1525 && (TIME_T_MAX >> LO_TIME_BITS <= MOST_POSITIVE_FIXNUM
1526 || hi <= MOST_POSITIVE_FIXNUM)))
1527 time_overflow ();
1528
1529 return hi;
1530 }
1531
1532 /* Return the bottom bits of the time T. */
1533 static int
1534 lo_time (time_t t)
1535 {
1536 return t & ((1 << LO_TIME_BITS) - 1);
1537 }
1538
1539 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1540 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1541 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1542 HIGH has the most significant bits of the seconds, while LOW has the
1543 least significant 16 bits. USEC and PSEC are the microsecond and
1544 picosecond counts. */)
1545 (void)
1546 {
1547 return make_lisp_time (current_timespec ());
1548 }
1549
1550 static struct lisp_time
1551 time_add (struct lisp_time ta, struct lisp_time tb)
1552 {
1553 EMACS_INT hi = ta.hi + tb.hi;
1554 int lo = ta.lo + tb.lo;
1555 int us = ta.us + tb.us;
1556 int ps = ta.ps + tb.ps;
1557 us += (1000000 <= ps);
1558 ps -= (1000000 <= ps) * 1000000;
1559 lo += (1000000 <= us);
1560 us -= (1000000 <= us) * 1000000;
1561 hi += (1 << LO_TIME_BITS <= lo);
1562 lo -= (1 << LO_TIME_BITS <= lo) << LO_TIME_BITS;
1563 return (struct lisp_time) { hi, lo, us, ps };
1564 }
1565
1566 static struct lisp_time
1567 time_subtract (struct lisp_time ta, struct lisp_time tb)
1568 {
1569 EMACS_INT hi = ta.hi - tb.hi;
1570 int lo = ta.lo - tb.lo;
1571 int us = ta.us - tb.us;
1572 int ps = ta.ps - tb.ps;
1573 us -= (ps < 0);
1574 ps += (ps < 0) * 1000000;
1575 lo -= (us < 0);
1576 us += (us < 0) * 1000000;
1577 hi -= (lo < 0);
1578 lo += (lo < 0) << LO_TIME_BITS;
1579 return (struct lisp_time) { hi, lo, us, ps };
1580 }
1581
1582 static Lisp_Object
1583 time_arith (Lisp_Object a, Lisp_Object b,
1584 struct lisp_time (*op) (struct lisp_time, struct lisp_time))
1585 {
1586 int alen, blen;
1587 struct lisp_time ta = lisp_time_struct (a, &alen);
1588 struct lisp_time tb = lisp_time_struct (b, &blen);
1589 struct lisp_time t = op (ta, tb);
1590 if (! (MOST_NEGATIVE_FIXNUM <= t.hi && t.hi <= MOST_POSITIVE_FIXNUM))
1591 time_overflow ();
1592 Lisp_Object val = Qnil;
1593
1594 switch (max (alen, blen))
1595 {
1596 default:
1597 val = Fcons (make_number (t.ps), val);
1598 /* Fall through. */
1599 case 3:
1600 val = Fcons (make_number (t.us), val);
1601 /* Fall through. */
1602 case 2:
1603 val = Fcons (make_number (t.lo), val);
1604 val = Fcons (make_number (t.hi), val);
1605 break;
1606 }
1607
1608 return val;
1609 }
1610
1611 DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0,
1612 doc: /* Return the sum of two time values A and B, as a time value. */)
1613 (Lisp_Object a, Lisp_Object b)
1614 {
1615 return time_arith (a, b, time_add);
1616 }
1617
1618 DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0,
1619 doc: /* Return the difference between two time values A and B, as a time value. */)
1620 (Lisp_Object a, Lisp_Object b)
1621 {
1622 return time_arith (a, b, time_subtract);
1623 }
1624
1625 DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0,
1626 doc: /* Return non-nil if time value T1 is earlier than time value T2. */)
1627 (Lisp_Object t1, Lisp_Object t2)
1628 {
1629 int t1len, t2len;
1630 struct lisp_time a = lisp_time_struct (t1, &t1len);
1631 struct lisp_time b = lisp_time_struct (t2, &t2len);
1632 return ((a.hi != b.hi ? a.hi < b.hi
1633 : a.lo != b.lo ? a.lo < b.lo
1634 : a.us != b.us ? a.us < b.us
1635 : a.ps < b.ps)
1636 ? Qt : Qnil);
1637 }
1638
1639
1640 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1641 0, 0, 0,
1642 doc: /* Return the current run time used by Emacs.
1643 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1644 style as (current-time).
1645
1646 On systems that can't determine the run time, `get-internal-run-time'
1647 does the same thing as `current-time'. */)
1648 (void)
1649 {
1650 #ifdef HAVE_GETRUSAGE
1651 struct rusage usage;
1652 time_t secs;
1653 int usecs;
1654
1655 if (getrusage (RUSAGE_SELF, &usage) < 0)
1656 /* This shouldn't happen. What action is appropriate? */
1657 xsignal0 (Qerror);
1658
1659 /* Sum up user time and system time. */
1660 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1661 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1662 if (usecs >= 1000000)
1663 {
1664 usecs -= 1000000;
1665 secs++;
1666 }
1667 return make_lisp_time (make_timespec (secs, usecs * 1000));
1668 #else /* ! HAVE_GETRUSAGE */
1669 #ifdef WINDOWSNT
1670 return w32_get_internal_run_time ();
1671 #else /* ! WINDOWSNT */
1672 return Fcurrent_time ();
1673 #endif /* WINDOWSNT */
1674 #endif /* HAVE_GETRUSAGE */
1675 }
1676 \f
1677
1678 /* Make a Lisp list that represents the Emacs time T. T may be an
1679 invalid time, with a slightly negative tv_nsec value such as
1680 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1681 correspondingly negative picosecond count. */
1682 Lisp_Object
1683 make_lisp_time (struct timespec t)
1684 {
1685 time_t s = t.tv_sec;
1686 int ns = t.tv_nsec;
1687 return list4i (hi_time (s), lo_time (s), ns / 1000, ns % 1000 * 1000);
1688 }
1689
1690 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1691 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1692 Return 2, 3, or 4 to indicate the effective length of SPECIFIED_TIME
1693 if successful, 0 if unsuccessful. */
1694 static int
1695 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1696 Lisp_Object *plow, Lisp_Object *pusec,
1697 Lisp_Object *ppsec)
1698 {
1699 Lisp_Object high = make_number (0);
1700 Lisp_Object low = specified_time;
1701 Lisp_Object usec = make_number (0);
1702 Lisp_Object psec = make_number (0);
1703 int len = 4;
1704
1705 if (CONSP (specified_time))
1706 {
1707 high = XCAR (specified_time);
1708 low = XCDR (specified_time);
1709 if (CONSP (low))
1710 {
1711 Lisp_Object low_tail = XCDR (low);
1712 low = XCAR (low);
1713 if (CONSP (low_tail))
1714 {
1715 usec = XCAR (low_tail);
1716 low_tail = XCDR (low_tail);
1717 if (CONSP (low_tail))
1718 psec = XCAR (low_tail);
1719 else
1720 len = 3;
1721 }
1722 else if (!NILP (low_tail))
1723 {
1724 usec = low_tail;
1725 len = 3;
1726 }
1727 else
1728 len = 2;
1729 }
1730 else
1731 len = 2;
1732
1733 /* When combining components, require LOW to be an integer,
1734 as otherwise it would be a pain to add up times. */
1735 if (! INTEGERP (low))
1736 return 0;
1737 }
1738 else if (INTEGERP (specified_time))
1739 len = 2;
1740
1741 *phigh = high;
1742 *plow = low;
1743 *pusec = usec;
1744 *ppsec = psec;
1745 return len;
1746 }
1747
1748 /* Convert T into an Emacs time *RESULT, truncating toward minus infinity.
1749 Return true if T is in range, false otherwise. */
1750 static bool
1751 decode_float_time (double t, struct lisp_time *result)
1752 {
1753 double lo_multiplier = 1 << LO_TIME_BITS;
1754 double emacs_time_min = MOST_NEGATIVE_FIXNUM * lo_multiplier;
1755 if (! (emacs_time_min <= t && t < -emacs_time_min))
1756 return false;
1757
1758 double small_t = t / lo_multiplier;
1759 EMACS_INT hi = small_t;
1760 double t_sans_hi = t - hi * lo_multiplier;
1761 int lo = t_sans_hi;
1762 long double fracps = (t_sans_hi - lo) * 1e12L;
1763 #ifdef INT_FAST64_MAX
1764 int_fast64_t ifracps = fracps;
1765 int us = ifracps / 1000000;
1766 int ps = ifracps % 1000000;
1767 #else
1768 int us = fracps / 1e6L;
1769 int ps = fracps - us * 1e6L;
1770 #endif
1771 us -= (ps < 0);
1772 ps += (ps < 0) * 1000000;
1773 lo -= (us < 0);
1774 us += (us < 0) * 1000000;
1775 hi -= (lo < 0);
1776 lo += (lo < 0) << LO_TIME_BITS;
1777 result->hi = hi;
1778 result->lo = lo;
1779 result->us = us;
1780 result->ps = ps;
1781 return true;
1782 }
1783
1784 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1785 list, generate the corresponding time value.
1786 If LOW is floating point, the other components should be zero.
1787
1788 If RESULT is not null, store into *RESULT the converted time.
1789 If *DRESULT is not null, store into *DRESULT the number of
1790 seconds since the start of the POSIX Epoch.
1791
1792 Return 1 if successful, 0 if the components are of the
1793 wrong type, and -1 if the time is out of range. */
1794 int
1795 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1796 Lisp_Object psec,
1797 struct lisp_time *result, double *dresult)
1798 {
1799 EMACS_INT hi, lo, us, ps;
1800 if (! (INTEGERP (high)
1801 && INTEGERP (usec) && INTEGERP (psec)))
1802 return 0;
1803 if (! INTEGERP (low))
1804 {
1805 if (FLOATP (low))
1806 {
1807 double t = XFLOAT_DATA (low);
1808 if (result && ! decode_float_time (t, result))
1809 return -1;
1810 if (dresult)
1811 *dresult = t;
1812 return 1;
1813 }
1814 else if (NILP (low))
1815 {
1816 struct timespec now = current_timespec ();
1817 if (result)
1818 {
1819 result->hi = hi_time (now.tv_sec);
1820 result->lo = lo_time (now.tv_sec);
1821 result->us = now.tv_nsec / 1000;
1822 result->ps = now.tv_nsec % 1000 * 1000;
1823 }
1824 if (dresult)
1825 *dresult = now.tv_sec + now.tv_nsec / 1e9;
1826 return 1;
1827 }
1828 else
1829 return 0;
1830 }
1831
1832 hi = XINT (high);
1833 lo = XINT (low);
1834 us = XINT (usec);
1835 ps = XINT (psec);
1836
1837 /* Normalize out-of-range lower-order components by carrying
1838 each overflow into the next higher-order component. */
1839 us += ps / 1000000 - (ps % 1000000 < 0);
1840 lo += us / 1000000 - (us % 1000000 < 0);
1841 hi += lo >> LO_TIME_BITS;
1842 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1843 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1844 lo &= (1 << LO_TIME_BITS) - 1;
1845
1846 if (result)
1847 {
1848 if (! (MOST_NEGATIVE_FIXNUM <= hi && hi <= MOST_POSITIVE_FIXNUM))
1849 return -1;
1850 result->hi = hi;
1851 result->lo = lo;
1852 result->us = us;
1853 result->ps = ps;
1854 }
1855
1856 if (dresult)
1857 {
1858 double dhi = hi;
1859 *dresult = (us * 1e6 + ps) / 1e12 + lo + dhi * (1 << LO_TIME_BITS);
1860 }
1861
1862 return 1;
1863 }
1864
1865 struct timespec
1866 lisp_to_timespec (struct lisp_time t)
1867 {
1868 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1869 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1870 return invalid_timespec ();
1871 time_t s = (t.hi << LO_TIME_BITS) + t.lo;
1872 int ns = t.us * 1000 + t.ps / 1000;
1873 return make_timespec (s, ns);
1874 }
1875
1876 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1877 Store its effective length into *PLEN.
1878 If SPECIFIED_TIME is nil, use the current time.
1879 Signal an error if SPECIFIED_TIME does not represent a time. */
1880 static struct lisp_time
1881 lisp_time_struct (Lisp_Object specified_time, int *plen)
1882 {
1883 Lisp_Object high, low, usec, psec;
1884 struct lisp_time t;
1885 int len = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1886 if (!len)
1887 invalid_time ();
1888 int val = decode_time_components (high, low, usec, psec, &t, 0);
1889 check_time_validity (val);
1890 *plen = len;
1891 return t;
1892 }
1893
1894 /* Like lisp_time_struct, except return a struct timespec.
1895 Discard any low-order digits. */
1896 struct timespec
1897 lisp_time_argument (Lisp_Object specified_time)
1898 {
1899 int len;
1900 struct lisp_time lt = lisp_time_struct (specified_time, &len);
1901 struct timespec t = lisp_to_timespec (lt);
1902 if (! timespec_valid_p (t))
1903 time_overflow ();
1904 return t;
1905 }
1906
1907 /* Like lisp_time_argument, except decode only the seconds part,
1908 and do not check the subseconds part. */
1909 static time_t
1910 lisp_seconds_argument (Lisp_Object specified_time)
1911 {
1912 Lisp_Object high, low, usec, psec;
1913 struct lisp_time t;
1914
1915 int val = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1916 if (val != 0)
1917 {
1918 val = decode_time_components (high, low, make_number (0),
1919 make_number (0), &t, 0);
1920 if (0 < val
1921 && ! ((TYPE_SIGNED (time_t)
1922 ? TIME_T_MIN >> LO_TIME_BITS <= t.hi
1923 : 0 <= t.hi)
1924 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1925 val = -1;
1926 }
1927 check_time_validity (val);
1928 return (t.hi << LO_TIME_BITS) + t.lo;
1929 }
1930
1931 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1932 doc: /* Return the current time, as a float number of seconds since the epoch.
1933 If SPECIFIED-TIME is given, it is the time to convert to float
1934 instead of the current time. The argument should have the form
1935 \(HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1936 you can use times from `current-time' and from `file-attributes'.
1937 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1938 considered obsolete.
1939
1940 WARNING: Since the result is floating point, it may not be exact.
1941 If precise time stamps are required, use either `current-time',
1942 or (if you need time as a string) `format-time-string'. */)
1943 (Lisp_Object specified_time)
1944 {
1945 double t;
1946 Lisp_Object high, low, usec, psec;
1947 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1948 && decode_time_components (high, low, usec, psec, 0, &t)))
1949 invalid_time ();
1950 return make_float (t);
1951 }
1952
1953 /* Write information into buffer S of size MAXSIZE, according to the
1954 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1955 Use the time zone specified by TZ.
1956 Use NS as the number of nanoseconds in the %N directive.
1957 Return the number of bytes written, not including the terminating
1958 '\0'. If S is NULL, nothing will be written anywhere; so to
1959 determine how many bytes would be written, use NULL for S and
1960 ((size_t) -1) for MAXSIZE.
1961
1962 This function behaves like nstrftime, except it allows null
1963 bytes in FORMAT and it does not support nanoseconds. */
1964 static size_t
1965 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1966 size_t format_len, const struct tm *tp, timezone_t tz, int ns)
1967 {
1968 size_t total = 0;
1969
1970 /* Loop through all the null-terminated strings in the format
1971 argument. Normally there's just one null-terminated string, but
1972 there can be arbitrarily many, concatenated together, if the
1973 format contains '\0' bytes. nstrftime stops at the first
1974 '\0' byte so we must invoke it separately for each such string. */
1975 for (;;)
1976 {
1977 size_t len;
1978 size_t result;
1979
1980 if (s)
1981 s[0] = '\1';
1982
1983 result = nstrftime (s, maxsize, format, tp, tz, ns);
1984
1985 if (s)
1986 {
1987 if (result == 0 && s[0] != '\0')
1988 return 0;
1989 s += result + 1;
1990 }
1991
1992 maxsize -= result + 1;
1993 total += result;
1994 len = strlen (format);
1995 if (len == format_len)
1996 return total;
1997 total++;
1998 format += len + 1;
1999 format_len -= len + 1;
2000 }
2001 }
2002
2003 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
2004 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
2005 TIME is specified as (HIGH LOW USEC PSEC), as returned by
2006 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
2007 is also still accepted.
2008
2009 The optional ZONE is omitted or nil for Emacs local time, t for
2010 Universal Time, `wall' for system wall clock time, or a string as in
2011 the TZ environment variable. It can also be a list (as from
2012 `current-time-zone') or an integer (as from `decode-time') applied
2013 without consideration for daylight saving time.
2014
2015 The value is a copy of FORMAT-STRING, but with certain constructs replaced
2016 by text that describes the specified date and time in TIME:
2017
2018 %Y is the year, %y within the century, %C the century.
2019 %G is the year corresponding to the ISO week, %g within the century.
2020 %m is the numeric month.
2021 %b and %h are the locale's abbreviated month name, %B the full name.
2022 (%h is not supported on MS-Windows.)
2023 %d is the day of the month, zero-padded, %e is blank-padded.
2024 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
2025 %a is the locale's abbreviated name of the day of week, %A the full name.
2026 %U is the week number starting on Sunday, %W starting on Monday,
2027 %V according to ISO 8601.
2028 %j is the day of the year.
2029
2030 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
2031 only blank-padded, %l is like %I blank-padded.
2032 %p is the locale's equivalent of either AM or PM.
2033 %M is the minute.
2034 %S is the second.
2035 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
2036 %Z is the time zone name, %z is the numeric form.
2037 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
2038
2039 %c is the locale's date and time format.
2040 %x is the locale's "preferred" date format.
2041 %D is like "%m/%d/%y".
2042 %F is the ISO 8601 date format (like "%Y-%m-%d").
2043
2044 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
2045 %X is the locale's "preferred" time format.
2046
2047 Finally, %n is a newline, %t is a tab, %% is a literal %.
2048
2049 Certain flags and modifiers are available with some format controls.
2050 The flags are `_', `-', `^' and `#'. For certain characters X,
2051 %_X is like %X, but padded with blanks; %-X is like %X,
2052 but without padding. %^X is like %X, but with all textual
2053 characters up-cased; %#X is like %X, but with letter-case of
2054 all textual characters reversed.
2055 %NX (where N stands for an integer) is like %X,
2056 but takes up at least N (a number) positions.
2057 The modifiers are `E' and `O'. For certain characters X,
2058 %EX is a locale's alternative version of %X;
2059 %OX is like %X, but uses the locale's number symbols.
2060
2061 For example, to produce full ISO 8601 format, use "%FT%T%z".
2062
2063 usage: (format-time-string FORMAT-STRING &optional TIME ZONE) */)
2064 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object zone)
2065 {
2066 struct timespec t = lisp_time_argument (timeval);
2067 struct tm tm;
2068
2069 CHECK_STRING (format_string);
2070 format_string = code_convert_string_norecord (format_string,
2071 Vlocale_coding_system, 1);
2072 return format_time_string (SSDATA (format_string), SBYTES (format_string),
2073 t, zone, &tm);
2074 }
2075
2076 static Lisp_Object
2077 format_time_string (char const *format, ptrdiff_t formatlen,
2078 struct timespec t, Lisp_Object zone, struct tm *tmp)
2079 {
2080 char buffer[4000];
2081 char *buf = buffer;
2082 ptrdiff_t size = sizeof buffer;
2083 size_t len;
2084 int ns = t.tv_nsec;
2085 USE_SAFE_ALLOCA;
2086
2087 timezone_t tz = tzlookup (zone, false);
2088 tmp = emacs_localtime_rz (tz, &t.tv_sec, tmp);
2089 if (! tmp)
2090 {
2091 xtzfree (tz);
2092 time_overflow ();
2093 }
2094 synchronize_system_time_locale ();
2095
2096 while (true)
2097 {
2098 buf[0] = '\1';
2099 len = emacs_nmemftime (buf, size, format, formatlen, tmp, tz, ns);
2100 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
2101 break;
2102
2103 /* Buffer was too small, so make it bigger and try again. */
2104 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, tz, ns);
2105 if (STRING_BYTES_BOUND <= len)
2106 {
2107 xtzfree (tz);
2108 string_overflow ();
2109 }
2110 size = len + 1;
2111 buf = SAFE_ALLOCA (size);
2112 }
2113
2114 xtzfree (tz);
2115 AUTO_STRING_WITH_LEN (bufstring, buf, len);
2116 Lisp_Object result = code_convert_string_norecord (bufstring,
2117 Vlocale_coding_system, 0);
2118 SAFE_FREE ();
2119 return result;
2120 }
2121
2122 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 2, 0,
2123 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST UTCOFF).
2124 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
2125 as from `current-time' and `file-attributes', or nil to use the
2126 current time. The obsolete form (HIGH . LOW) is also still accepted.
2127
2128 The optional ZONE is omitted or nil for Emacs local time, t for
2129 Universal Time, `wall' for system wall clock time, or a string as in
2130 the TZ environment variable. It can also be a list (as from
2131 `current-time-zone') or an integer (as from `decode-time') applied
2132 without consideration for daylight saving time.
2133
2134 The list has the following nine members: SEC is an integer between 0
2135 and 60; SEC is 60 for a leap second, which only some operating systems
2136 support. MINUTE is an integer between 0 and 59. HOUR is an integer
2137 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
2138 integer between 1 and 12. YEAR is an integer indicating the
2139 four-digit year. DOW is the day of week, an integer between 0 and 6,
2140 where 0 is Sunday. DST is t if daylight saving time is in effect,
2141 otherwise nil. UTCOFF is an integer indicating the UTC offset in
2142 seconds, i.e., the number of seconds east of Greenwich. (Note that
2143 Common Lisp has different meanings for DOW and UTCOFF.)
2144
2145 usage: (decode-time &optional TIME ZONE) */)
2146 (Lisp_Object specified_time, Lisp_Object zone)
2147 {
2148 time_t time_spec = lisp_seconds_argument (specified_time);
2149 struct tm local_tm, gmt_tm;
2150 timezone_t tz = tzlookup (zone, false);
2151 struct tm *tm = emacs_localtime_rz (tz, &time_spec, &local_tm);
2152 xtzfree (tz);
2153
2154 if (! (tm
2155 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year
2156 && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
2157 time_overflow ();
2158
2159 /* Avoid overflow when INT_MAX < EMACS_INT_MAX. */
2160 EMACS_INT tm_year_base = TM_YEAR_BASE;
2161
2162 return CALLN (Flist,
2163 make_number (local_tm.tm_sec),
2164 make_number (local_tm.tm_min),
2165 make_number (local_tm.tm_hour),
2166 make_number (local_tm.tm_mday),
2167 make_number (local_tm.tm_mon + 1),
2168 make_number (local_tm.tm_year + tm_year_base),
2169 make_number (local_tm.tm_wday),
2170 local_tm.tm_isdst ? Qt : Qnil,
2171 (HAVE_TM_GMTOFF
2172 ? make_number (tm_gmtoff (&local_tm))
2173 : gmtime_r (&time_spec, &gmt_tm)
2174 ? make_number (tm_diff (&local_tm, &gmt_tm))
2175 : Qnil));
2176 }
2177
2178 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
2179 the result is representable as an int. Assume OFFSET is small and
2180 nonnegative. */
2181 static int
2182 check_tm_member (Lisp_Object obj, int offset)
2183 {
2184 EMACS_INT n;
2185 CHECK_NUMBER (obj);
2186 n = XINT (obj);
2187 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
2188 time_overflow ();
2189 return n - offset;
2190 }
2191
2192 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
2193 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
2194 This is the reverse operation of `decode-time', which see.
2195
2196 The optional ZONE is omitted or nil for Emacs local time, t for
2197 Universal Time, `wall' for system wall clock time, or a string as in
2198 the TZ environment variable. It can also be a list (as from
2199 `current-time-zone') or an integer (as from `decode-time') applied
2200 without consideration for daylight saving time.
2201
2202 You can pass more than 7 arguments; then the first six arguments
2203 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
2204 The intervening arguments are ignored.
2205 This feature lets (apply \\='encode-time (decode-time ...)) work.
2206
2207 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
2208 for example, a DAY of 0 means the day preceding the given month.
2209 Year numbers less than 100 are treated just like other year numbers.
2210 If you want them to stand for years in this century, you must do that yourself.
2211
2212 Years before 1970 are not guaranteed to work. On some systems,
2213 year values as low as 1901 do work.
2214
2215 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
2216 (ptrdiff_t nargs, Lisp_Object *args)
2217 {
2218 time_t value;
2219 struct tm tm;
2220 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
2221
2222 tm.tm_sec = check_tm_member (args[0], 0);
2223 tm.tm_min = check_tm_member (args[1], 0);
2224 tm.tm_hour = check_tm_member (args[2], 0);
2225 tm.tm_mday = check_tm_member (args[3], 0);
2226 tm.tm_mon = check_tm_member (args[4], 1);
2227 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
2228 tm.tm_isdst = -1;
2229
2230 timezone_t tz = tzlookup (zone, false);
2231 value = emacs_mktime_z (tz, &tm);
2232 xtzfree (tz);
2233
2234 if (value == (time_t) -1)
2235 time_overflow ();
2236
2237 return list2i (hi_time (value), lo_time (value));
2238 }
2239
2240 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string,
2241 0, 2, 0,
2242 doc: /* Return the current local time, as a human-readable string.
2243 Programs can use this function to decode a time,
2244 since the number of columns in each field is fixed
2245 if the year is in the range 1000-9999.
2246 The format is `Sun Sep 16 01:03:52 1973'.
2247 However, see also the functions `decode-time' and `format-time-string'
2248 which provide a much more powerful and general facility.
2249
2250 If SPECIFIED-TIME is given, it is a time to format instead of the
2251 current time. The argument should have the form (HIGH LOW . IGNORED).
2252 Thus, you can use times obtained from `current-time' and from
2253 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
2254 but this is considered obsolete.
2255
2256 The optional ZONE is omitted or nil for Emacs local time, t for
2257 Universal Time, `wall' for system wall clock time, or a string as in
2258 the TZ environment variable. It can also be a list (as from
2259 `current-time-zone') or an integer (as from `decode-time') applied
2260 without consideration for daylight saving time. */)
2261 (Lisp_Object specified_time, Lisp_Object zone)
2262 {
2263 time_t value = lisp_seconds_argument (specified_time);
2264 timezone_t tz = tzlookup (zone, false);
2265
2266 /* Convert to a string in ctime format, except without the trailing
2267 newline, and without the 4-digit year limit. Don't use asctime
2268 or ctime, as they might dump core if the year is outside the
2269 range -999 .. 9999. */
2270 struct tm tm;
2271 struct tm *tmp = emacs_localtime_rz (tz, &value, &tm);
2272 xtzfree (tz);
2273 if (! tmp)
2274 time_overflow ();
2275
2276 static char const wday_name[][4] =
2277 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2278 static char const mon_name[][4] =
2279 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2280 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2281 printmax_t year_base = TM_YEAR_BASE;
2282 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2283 int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2284 wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday,
2285 tm.tm_hour, tm.tm_min, tm.tm_sec,
2286 tm.tm_year + year_base);
2287
2288 return make_unibyte_string (buf, len);
2289 }
2290
2291 /* Yield A - B, measured in seconds.
2292 This function is copied from the GNU C Library. */
2293 static int
2294 tm_diff (struct tm *a, struct tm *b)
2295 {
2296 /* Compute intervening leap days correctly even if year is negative.
2297 Take care to avoid int overflow in leap day calculations,
2298 but it's OK to assume that A and B are close to each other. */
2299 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2300 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2301 int a100 = a4 / 25 - (a4 % 25 < 0);
2302 int b100 = b4 / 25 - (b4 % 25 < 0);
2303 int a400 = a100 >> 2;
2304 int b400 = b100 >> 2;
2305 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2306 int years = a->tm_year - b->tm_year;
2307 int days = (365 * years + intervening_leap_days
2308 + (a->tm_yday - b->tm_yday));
2309 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2310 + (a->tm_min - b->tm_min))
2311 + (a->tm_sec - b->tm_sec));
2312 }
2313
2314 /* Yield A's UTC offset, or an unspecified value if unknown. */
2315 static long int
2316 tm_gmtoff (struct tm *a)
2317 {
2318 #if HAVE_TM_GMTOFF
2319 return a->tm_gmtoff;
2320 #else
2321 return 0;
2322 #endif
2323 }
2324
2325 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 2, 0,
2326 doc: /* Return the offset and name for the local time zone.
2327 This returns a list of the form (OFFSET NAME).
2328 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2329 A negative value means west of Greenwich.
2330 NAME is a string giving the name of the time zone.
2331 If SPECIFIED-TIME is given, the time zone offset is determined from it
2332 instead of using the current time. The argument should have the form
2333 \(HIGH LOW . IGNORED). Thus, you can use times obtained from
2334 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2335 have the form (HIGH . LOW), but this is considered obsolete.
2336
2337 The optional ZONE is omitted or nil for Emacs local time, t for
2338 Universal Time, `wall' for system wall clock time, or a string as in
2339 the TZ environment variable. It can also be a list (as from
2340 `current-time-zone') or an integer (as from `decode-time') applied
2341 without consideration for daylight saving time.
2342
2343 Some operating systems cannot provide all this information to Emacs;
2344 in this case, `current-time-zone' returns a list containing nil for
2345 the data it can't find. */)
2346 (Lisp_Object specified_time, Lisp_Object zone)
2347 {
2348 struct timespec value;
2349 struct tm local_tm, gmt_tm;
2350 Lisp_Object zone_offset, zone_name;
2351
2352 zone_offset = Qnil;
2353 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2354 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value,
2355 zone, &local_tm);
2356
2357 if (HAVE_TM_GMTOFF || gmtime_r (&value.tv_sec, &gmt_tm))
2358 {
2359 long int offset = (HAVE_TM_GMTOFF
2360 ? tm_gmtoff (&local_tm)
2361 : tm_diff (&local_tm, &gmt_tm));
2362 zone_offset = make_number (offset);
2363 if (SCHARS (zone_name) == 0)
2364 {
2365 /* No local time zone name is available; use numeric zone instead. */
2366 long int hour = offset / 3600;
2367 int min_sec = offset % 3600;
2368 int amin_sec = min_sec < 0 ? - min_sec : min_sec;
2369 int min = amin_sec / 60;
2370 int sec = amin_sec % 60;
2371 int min_prec = min_sec ? 2 : 0;
2372 int sec_prec = sec ? 2 : 0;
2373 char buf[sizeof "+0000" + INT_STRLEN_BOUND (long int)];
2374 zone_name = make_formatted_string (buf, "%c%.2ld%.*d%.*d",
2375 (offset < 0 ? '-' : '+'),
2376 hour, min_prec, min, sec_prec, sec);
2377 }
2378 }
2379
2380 return list2 (zone_offset, zone_name);
2381 }
2382
2383 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2384 doc: /* Set the Emacs local time zone using TZ, a string specifying a time zone rule.
2385 If TZ is nil or `wall', use system wall clock time; this differs from
2386 the usual Emacs convention where nil means current local time. If TZ
2387 is t, use Universal Time. If TZ is a list (as from
2388 `current-time-zone') or an integer (as from `decode-time'), use the
2389 specified time zone without consideration for daylight saving time.
2390
2391 Instead of calling this function, you typically want something else.
2392 To temporarily use a different time zone rule for just one invocation
2393 of `decode-time', `encode-time', or `format-time-string', pass the
2394 function a ZONE argument. To change local time consistently
2395 throughout Emacs, call (setenv "TZ" TZ): this changes both the
2396 environment of the Emacs process and the variable
2397 `process-environment', whereas `set-time-zone-rule' affects only the
2398 former. */)
2399 (Lisp_Object tz)
2400 {
2401 tzlookup (NILP (tz) ? Qwall : tz, true);
2402 return Qnil;
2403 }
2404
2405 /* A buffer holding a string of the form "TZ=value", intended
2406 to be part of the environment. If TZ is supposed to be unset,
2407 the buffer string is "tZ=". */
2408 static char *tzvalbuf;
2409
2410 /* Get the local time zone rule. */
2411 char *
2412 emacs_getenv_TZ (void)
2413 {
2414 return tzvalbuf[0] == 'T' ? tzvalbuf + tzeqlen : 0;
2415 }
2416
2417 /* Set the local time zone rule to TZSTRING, which can be null to
2418 denote wall clock time. Do not record the setting in LOCAL_TZ.
2419
2420 This function is not thread-safe, in theory because putenv is not,
2421 but mostly because of the static storage it updates. Other threads
2422 that invoke localtime etc. may be adversely affected while this
2423 function is executing. */
2424
2425 int
2426 emacs_setenv_TZ (const char *tzstring)
2427 {
2428 static ptrdiff_t tzvalbufsize;
2429 ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0;
2430 char *tzval = tzvalbuf;
2431 bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen;
2432
2433 if (new_tzvalbuf)
2434 {
2435 /* Do not attempt to free the old tzvalbuf, since another thread
2436 may be using it. In practice, the first allocation is large
2437 enough and memory does not leak. */
2438 tzval = xpalloc (NULL, &tzvalbufsize,
2439 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2440 tzvalbuf = tzval;
2441 tzval[1] = 'Z';
2442 tzval[2] = '=';
2443 }
2444
2445 if (tzstring)
2446 {
2447 /* Modify TZVAL in place. Although this is dicey in a
2448 multithreaded environment, we know of no portable alternative.
2449 Calling putenv or setenv could crash some other thread. */
2450 tzval[0] = 'T';
2451 strcpy (tzval + tzeqlen, tzstring);
2452 }
2453 else
2454 {
2455 /* Turn 'TZ=whatever' into an empty environment variable 'tZ='.
2456 Although this is also dicey, calling unsetenv here can crash Emacs.
2457 See Bug#8705. */
2458 tzval[0] = 't';
2459 tzval[tzeqlen] = 0;
2460 }
2461
2462 if (new_tzvalbuf
2463 #ifdef WINDOWSNT
2464 /* MS-Windows implementation of 'putenv' copies the argument
2465 string into a block it allocates, so modifying tzval string
2466 does not change the environment. OTOH, the other threads run
2467 by Emacs on MS-Windows never call 'xputenv' or 'putenv' or
2468 'unsetenv', so the original cause for the dicey in-place
2469 modification technique doesn't exist there in the first
2470 place. */
2471 || 1
2472 #endif
2473 )
2474 {
2475 /* Although this is not thread-safe, in practice this runs only
2476 on startup when there is only one thread. */
2477 xputenv (tzval);
2478 }
2479
2480 return 0;
2481 }
2482 \f
2483 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2484 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2485 type of object is Lisp_String). INHERIT is passed to
2486 INSERT_FROM_STRING_FUNC as the last argument. */
2487
2488 static void
2489 general_insert_function (void (*insert_func)
2490 (const char *, ptrdiff_t),
2491 void (*insert_from_string_func)
2492 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2493 ptrdiff_t, ptrdiff_t, bool),
2494 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2495 {
2496 ptrdiff_t argnum;
2497 Lisp_Object val;
2498
2499 for (argnum = 0; argnum < nargs; argnum++)
2500 {
2501 val = args[argnum];
2502 if (CHARACTERP (val))
2503 {
2504 int c = XFASTINT (val);
2505 unsigned char str[MAX_MULTIBYTE_LENGTH];
2506 int len;
2507
2508 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2509 len = CHAR_STRING (c, str);
2510 else
2511 {
2512 str[0] = CHAR_TO_BYTE8 (c);
2513 len = 1;
2514 }
2515 (*insert_func) ((char *) str, len);
2516 }
2517 else if (STRINGP (val))
2518 {
2519 (*insert_from_string_func) (val, 0, 0,
2520 SCHARS (val),
2521 SBYTES (val),
2522 inherit);
2523 }
2524 else
2525 wrong_type_argument (Qchar_or_string_p, val);
2526 }
2527 }
2528
2529 void
2530 insert1 (Lisp_Object arg)
2531 {
2532 Finsert (1, &arg);
2533 }
2534
2535
2536 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2537 doc: /* Insert the arguments, either strings or characters, at point.
2538 Point and before-insertion markers move forward to end up
2539 after the inserted text.
2540 Any other markers at the point of insertion remain before the text.
2541
2542 If the current buffer is multibyte, unibyte strings are converted
2543 to multibyte for insertion (see `string-make-multibyte').
2544 If the current buffer is unibyte, multibyte strings are converted
2545 to unibyte for insertion (see `string-make-unibyte').
2546
2547 When operating on binary data, it may be necessary to preserve the
2548 original bytes of a unibyte string when inserting it into a multibyte
2549 buffer; to accomplish this, apply `string-as-multibyte' to the string
2550 and insert the result.
2551
2552 usage: (insert &rest ARGS) */)
2553 (ptrdiff_t nargs, Lisp_Object *args)
2554 {
2555 general_insert_function (insert, insert_from_string, 0, nargs, args);
2556 return Qnil;
2557 }
2558
2559 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2560 0, MANY, 0,
2561 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2562 Point and before-insertion markers move forward to end up
2563 after the inserted text.
2564 Any other markers at the point of insertion remain before the text.
2565
2566 If the current buffer is multibyte, unibyte strings are converted
2567 to multibyte for insertion (see `unibyte-char-to-multibyte').
2568 If the current buffer is unibyte, multibyte strings are converted
2569 to unibyte for insertion.
2570
2571 usage: (insert-and-inherit &rest ARGS) */)
2572 (ptrdiff_t nargs, Lisp_Object *args)
2573 {
2574 general_insert_function (insert_and_inherit, insert_from_string, 1,
2575 nargs, args);
2576 return Qnil;
2577 }
2578
2579 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2580 doc: /* Insert strings or characters at point, relocating markers after the text.
2581 Point and markers move forward to end up after the inserted text.
2582
2583 If the current buffer is multibyte, unibyte strings are converted
2584 to multibyte for insertion (see `unibyte-char-to-multibyte').
2585 If the current buffer is unibyte, multibyte strings are converted
2586 to unibyte for insertion.
2587
2588 If an overlay begins at the insertion point, the inserted text falls
2589 outside the overlay; if a nonempty overlay ends at the insertion
2590 point, the inserted text falls inside that overlay.
2591
2592 usage: (insert-before-markers &rest ARGS) */)
2593 (ptrdiff_t nargs, Lisp_Object *args)
2594 {
2595 general_insert_function (insert_before_markers,
2596 insert_from_string_before_markers, 0,
2597 nargs, args);
2598 return Qnil;
2599 }
2600
2601 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2602 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2603 doc: /* Insert text at point, relocating markers and inheriting properties.
2604 Point and markers move forward to end up after the inserted text.
2605
2606 If the current buffer is multibyte, unibyte strings are converted
2607 to multibyte for insertion (see `unibyte-char-to-multibyte').
2608 If the current buffer is unibyte, multibyte strings are converted
2609 to unibyte for insertion.
2610
2611 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2612 (ptrdiff_t nargs, Lisp_Object *args)
2613 {
2614 general_insert_function (insert_before_markers_and_inherit,
2615 insert_from_string_before_markers, 1,
2616 nargs, args);
2617 return Qnil;
2618 }
2619 \f
2620 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2621 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2622 (prefix-numeric-value current-prefix-arg)\
2623 t))",
2624 doc: /* Insert COUNT copies of CHARACTER.
2625 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2626 of these ways:
2627
2628 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2629 Completion is available; if you type a substring of the name
2630 preceded by an asterisk `*', Emacs shows all names which include
2631 that substring, not necessarily at the beginning of the name.
2632
2633 - As a hexadecimal code point, e.g. 263A. Note that code points in
2634 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2635 the Unicode code space).
2636
2637 - As a code point with a radix specified with #, e.g. #o21430
2638 (octal), #x2318 (hex), or #10r8984 (decimal).
2639
2640 If called interactively, COUNT is given by the prefix argument. If
2641 omitted or nil, it defaults to 1.
2642
2643 Inserting the character(s) relocates point and before-insertion
2644 markers in the same ways as the function `insert'.
2645
2646 The optional third argument INHERIT, if non-nil, says to inherit text
2647 properties from adjoining text, if those properties are sticky. If
2648 called interactively, INHERIT is t. */)
2649 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2650 {
2651 int i, stringlen;
2652 register ptrdiff_t n;
2653 int c, len;
2654 unsigned char str[MAX_MULTIBYTE_LENGTH];
2655 char string[4000];
2656
2657 CHECK_CHARACTER (character);
2658 if (NILP (count))
2659 XSETFASTINT (count, 1);
2660 CHECK_NUMBER (count);
2661 c = XFASTINT (character);
2662
2663 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2664 len = CHAR_STRING (c, str);
2665 else
2666 str[0] = c, len = 1;
2667 if (XINT (count) <= 0)
2668 return Qnil;
2669 if (BUF_BYTES_MAX / len < XINT (count))
2670 buffer_overflow ();
2671 n = XINT (count) * len;
2672 stringlen = min (n, sizeof string - sizeof string % len);
2673 for (i = 0; i < stringlen; i++)
2674 string[i] = str[i % len];
2675 while (n > stringlen)
2676 {
2677 QUIT;
2678 if (!NILP (inherit))
2679 insert_and_inherit (string, stringlen);
2680 else
2681 insert (string, stringlen);
2682 n -= stringlen;
2683 }
2684 if (!NILP (inherit))
2685 insert_and_inherit (string, n);
2686 else
2687 insert (string, n);
2688 return Qnil;
2689 }
2690
2691 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2692 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2693 Both arguments are required.
2694 BYTE is a number of the range 0..255.
2695
2696 If BYTE is 128..255 and the current buffer is multibyte, the
2697 corresponding eight-bit character is inserted.
2698
2699 Point, and before-insertion markers, are relocated as in the function `insert'.
2700 The optional third arg INHERIT, if non-nil, says to inherit text properties
2701 from adjoining text, if those properties are sticky. */)
2702 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2703 {
2704 CHECK_NUMBER (byte);
2705 if (XINT (byte) < 0 || XINT (byte) > 255)
2706 args_out_of_range_3 (byte, make_number (0), make_number (255));
2707 if (XINT (byte) >= 128
2708 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2709 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2710 return Finsert_char (byte, count, inherit);
2711 }
2712
2713 \f
2714 /* Making strings from buffer contents. */
2715
2716 /* Return a Lisp_String containing the text of the current buffer from
2717 START to END. If text properties are in use and the current buffer
2718 has properties in the range specified, the resulting string will also
2719 have them, if PROPS is true.
2720
2721 We don't want to use plain old make_string here, because it calls
2722 make_uninit_string, which can cause the buffer arena to be
2723 compacted. make_string has no way of knowing that the data has
2724 been moved, and thus copies the wrong data into the string. This
2725 doesn't effect most of the other users of make_string, so it should
2726 be left as is. But we should use this function when conjuring
2727 buffer substrings. */
2728
2729 Lisp_Object
2730 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2731 {
2732 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2733 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2734
2735 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2736 }
2737
2738 /* Return a Lisp_String containing the text of the current buffer from
2739 START / START_BYTE to END / END_BYTE.
2740
2741 If text properties are in use and the current buffer
2742 has properties in the range specified, the resulting string will also
2743 have them, if PROPS is true.
2744
2745 We don't want to use plain old make_string here, because it calls
2746 make_uninit_string, which can cause the buffer arena to be
2747 compacted. make_string has no way of knowing that the data has
2748 been moved, and thus copies the wrong data into the string. This
2749 doesn't effect most of the other users of make_string, so it should
2750 be left as is. But we should use this function when conjuring
2751 buffer substrings. */
2752
2753 Lisp_Object
2754 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2755 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2756 {
2757 Lisp_Object result, tem, tem1;
2758 ptrdiff_t beg0, end0, beg1, end1, size;
2759
2760 if (start_byte < GPT_BYTE && GPT_BYTE < end_byte)
2761 {
2762 /* Two regions, before and after the gap. */
2763 beg0 = start_byte;
2764 end0 = GPT_BYTE;
2765 beg1 = GPT_BYTE + GAP_SIZE - BEG_BYTE;
2766 end1 = end_byte + GAP_SIZE - BEG_BYTE;
2767 }
2768 else
2769 {
2770 /* The only region. */
2771 beg0 = start_byte;
2772 end0 = end_byte;
2773 beg1 = -1;
2774 end1 = -1;
2775 }
2776
2777 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2778 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2779 else
2780 result = make_uninit_string (end - start);
2781
2782 size = end0 - beg0;
2783 memcpy (SDATA (result), BYTE_POS_ADDR (beg0), size);
2784 if (beg1 != -1)
2785 memcpy (SDATA (result) + size, BEG_ADDR + beg1, end1 - beg1);
2786
2787 /* If desired, update and copy the text properties. */
2788 if (props)
2789 {
2790 update_buffer_properties (start, end);
2791
2792 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2793 tem1 = Ftext_properties_at (make_number (start), Qnil);
2794
2795 if (XINT (tem) != end || !NILP (tem1))
2796 copy_intervals_to_string (result, current_buffer, start,
2797 end - start);
2798 }
2799
2800 return result;
2801 }
2802
2803 /* Call Vbuffer_access_fontify_functions for the range START ... END
2804 in the current buffer, if necessary. */
2805
2806 static void
2807 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2808 {
2809 /* If this buffer has some access functions,
2810 call them, specifying the range of the buffer being accessed. */
2811 if (!NILP (Vbuffer_access_fontify_functions))
2812 {
2813 /* But don't call them if we can tell that the work
2814 has already been done. */
2815 if (!NILP (Vbuffer_access_fontified_property))
2816 {
2817 Lisp_Object tem
2818 = Ftext_property_any (make_number (start), make_number (end),
2819 Vbuffer_access_fontified_property,
2820 Qnil, Qnil);
2821 if (NILP (tem))
2822 return;
2823 }
2824
2825 CALLN (Frun_hook_with_args, Qbuffer_access_fontify_functions,
2826 make_number (start), make_number (end));
2827 }
2828 }
2829
2830 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2831 doc: /* Return the contents of part of the current buffer as a string.
2832 The two arguments START and END are character positions;
2833 they can be in either order.
2834 The string returned is multibyte if the buffer is multibyte.
2835
2836 This function copies the text properties of that part of the buffer
2837 into the result string; if you don't want the text properties,
2838 use `buffer-substring-no-properties' instead. */)
2839 (Lisp_Object start, Lisp_Object end)
2840 {
2841 register ptrdiff_t b, e;
2842
2843 validate_region (&start, &end);
2844 b = XINT (start);
2845 e = XINT (end);
2846
2847 return make_buffer_string (b, e, 1);
2848 }
2849
2850 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2851 Sbuffer_substring_no_properties, 2, 2, 0,
2852 doc: /* Return the characters of part of the buffer, without the text properties.
2853 The two arguments START and END are character positions;
2854 they can be in either order. */)
2855 (Lisp_Object start, Lisp_Object end)
2856 {
2857 register ptrdiff_t b, e;
2858
2859 validate_region (&start, &end);
2860 b = XINT (start);
2861 e = XINT (end);
2862
2863 return make_buffer_string (b, e, 0);
2864 }
2865
2866 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2867 doc: /* Return the contents of the current buffer as a string.
2868 If narrowing is in effect, this function returns only the visible part
2869 of the buffer. */)
2870 (void)
2871 {
2872 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2873 }
2874
2875 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2876 1, 3, 0,
2877 doc: /* Insert before point a substring of the contents of BUFFER.
2878 BUFFER may be a buffer or a buffer name.
2879 Arguments START and END are character positions specifying the substring.
2880 They default to the values of (point-min) and (point-max) in BUFFER.
2881
2882 Point and before-insertion markers move forward to end up after the
2883 inserted text.
2884 Any other markers at the point of insertion remain before the text.
2885
2886 If the current buffer is multibyte and BUFFER is unibyte, or vice
2887 versa, strings are converted from unibyte to multibyte or vice versa
2888 using `string-make-multibyte' or `string-make-unibyte', which see. */)
2889 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2890 {
2891 register EMACS_INT b, e, temp;
2892 register struct buffer *bp, *obuf;
2893 Lisp_Object buf;
2894
2895 buf = Fget_buffer (buffer);
2896 if (NILP (buf))
2897 nsberror (buffer);
2898 bp = XBUFFER (buf);
2899 if (!BUFFER_LIVE_P (bp))
2900 error ("Selecting deleted buffer");
2901
2902 if (NILP (start))
2903 b = BUF_BEGV (bp);
2904 else
2905 {
2906 CHECK_NUMBER_COERCE_MARKER (start);
2907 b = XINT (start);
2908 }
2909 if (NILP (end))
2910 e = BUF_ZV (bp);
2911 else
2912 {
2913 CHECK_NUMBER_COERCE_MARKER (end);
2914 e = XINT (end);
2915 }
2916
2917 if (b > e)
2918 temp = b, b = e, e = temp;
2919
2920 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2921 args_out_of_range (start, end);
2922
2923 obuf = current_buffer;
2924 set_buffer_internal_1 (bp);
2925 update_buffer_properties (b, e);
2926 set_buffer_internal_1 (obuf);
2927
2928 insert_from_buffer (bp, b, e - b, 0);
2929 return Qnil;
2930 }
2931
2932 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2933 6, 6, 0,
2934 doc: /* Compare two substrings of two buffers; return result as number.
2935 Return -N if first string is less after N-1 chars, +N if first string is
2936 greater after N-1 chars, or 0 if strings match.
2937 The first substring is in BUFFER1 from START1 to END1 and the second
2938 is in BUFFER2 from START2 to END2.
2939 The value of `case-fold-search' in the current buffer
2940 determines whether case is significant or ignored. */)
2941 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2942 {
2943 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2944 register struct buffer *bp1, *bp2;
2945 register Lisp_Object trt
2946 = (!NILP (BVAR (current_buffer, case_fold_search))
2947 ? BVAR (current_buffer, case_canon_table) : Qnil);
2948 ptrdiff_t chars = 0;
2949 ptrdiff_t i1, i2, i1_byte, i2_byte;
2950
2951 /* Find the first buffer and its substring. */
2952
2953 if (NILP (buffer1))
2954 bp1 = current_buffer;
2955 else
2956 {
2957 Lisp_Object buf1;
2958 buf1 = Fget_buffer (buffer1);
2959 if (NILP (buf1))
2960 nsberror (buffer1);
2961 bp1 = XBUFFER (buf1);
2962 if (!BUFFER_LIVE_P (bp1))
2963 error ("Selecting deleted buffer");
2964 }
2965
2966 if (NILP (start1))
2967 begp1 = BUF_BEGV (bp1);
2968 else
2969 {
2970 CHECK_NUMBER_COERCE_MARKER (start1);
2971 begp1 = XINT (start1);
2972 }
2973 if (NILP (end1))
2974 endp1 = BUF_ZV (bp1);
2975 else
2976 {
2977 CHECK_NUMBER_COERCE_MARKER (end1);
2978 endp1 = XINT (end1);
2979 }
2980
2981 if (begp1 > endp1)
2982 temp = begp1, begp1 = endp1, endp1 = temp;
2983
2984 if (!(BUF_BEGV (bp1) <= begp1
2985 && begp1 <= endp1
2986 && endp1 <= BUF_ZV (bp1)))
2987 args_out_of_range (start1, end1);
2988
2989 /* Likewise for second substring. */
2990
2991 if (NILP (buffer2))
2992 bp2 = current_buffer;
2993 else
2994 {
2995 Lisp_Object buf2;
2996 buf2 = Fget_buffer (buffer2);
2997 if (NILP (buf2))
2998 nsberror (buffer2);
2999 bp2 = XBUFFER (buf2);
3000 if (!BUFFER_LIVE_P (bp2))
3001 error ("Selecting deleted buffer");
3002 }
3003
3004 if (NILP (start2))
3005 begp2 = BUF_BEGV (bp2);
3006 else
3007 {
3008 CHECK_NUMBER_COERCE_MARKER (start2);
3009 begp2 = XINT (start2);
3010 }
3011 if (NILP (end2))
3012 endp2 = BUF_ZV (bp2);
3013 else
3014 {
3015 CHECK_NUMBER_COERCE_MARKER (end2);
3016 endp2 = XINT (end2);
3017 }
3018
3019 if (begp2 > endp2)
3020 temp = begp2, begp2 = endp2, endp2 = temp;
3021
3022 if (!(BUF_BEGV (bp2) <= begp2
3023 && begp2 <= endp2
3024 && endp2 <= BUF_ZV (bp2)))
3025 args_out_of_range (start2, end2);
3026
3027 i1 = begp1;
3028 i2 = begp2;
3029 i1_byte = buf_charpos_to_bytepos (bp1, i1);
3030 i2_byte = buf_charpos_to_bytepos (bp2, i2);
3031
3032 while (i1 < endp1 && i2 < endp2)
3033 {
3034 /* When we find a mismatch, we must compare the
3035 characters, not just the bytes. */
3036 int c1, c2;
3037
3038 QUIT;
3039
3040 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
3041 {
3042 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
3043 BUF_INC_POS (bp1, i1_byte);
3044 i1++;
3045 }
3046 else
3047 {
3048 c1 = BUF_FETCH_BYTE (bp1, i1);
3049 MAKE_CHAR_MULTIBYTE (c1);
3050 i1++;
3051 }
3052
3053 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
3054 {
3055 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
3056 BUF_INC_POS (bp2, i2_byte);
3057 i2++;
3058 }
3059 else
3060 {
3061 c2 = BUF_FETCH_BYTE (bp2, i2);
3062 MAKE_CHAR_MULTIBYTE (c2);
3063 i2++;
3064 }
3065
3066 if (!NILP (trt))
3067 {
3068 c1 = char_table_translate (trt, c1);
3069 c2 = char_table_translate (trt, c2);
3070 }
3071 if (c1 < c2)
3072 return make_number (- 1 - chars);
3073 if (c1 > c2)
3074 return make_number (chars + 1);
3075
3076 chars++;
3077 }
3078
3079 /* The strings match as far as they go.
3080 If one is shorter, that one is less. */
3081 if (chars < endp1 - begp1)
3082 return make_number (chars + 1);
3083 else if (chars < endp2 - begp2)
3084 return make_number (- chars - 1);
3085
3086 /* Same length too => they are equal. */
3087 return make_number (0);
3088 }
3089 \f
3090 static void
3091 subst_char_in_region_unwind (Lisp_Object arg)
3092 {
3093 bset_undo_list (current_buffer, arg);
3094 }
3095
3096 static void
3097 subst_char_in_region_unwind_1 (Lisp_Object arg)
3098 {
3099 bset_filename (current_buffer, arg);
3100 }
3101
3102 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
3103 Ssubst_char_in_region, 4, 5, 0,
3104 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
3105 If optional arg NOUNDO is non-nil, don't record this change for undo
3106 and don't mark the buffer as really changed.
3107 Both characters must have the same length of multi-byte form. */)
3108 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
3109 {
3110 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
3111 /* Keep track of the first change in the buffer:
3112 if 0 we haven't found it yet.
3113 if < 0 we've found it and we've run the before-change-function.
3114 if > 0 we've actually performed it and the value is its position. */
3115 ptrdiff_t changed = 0;
3116 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
3117 unsigned char *p;
3118 ptrdiff_t count = SPECPDL_INDEX ();
3119 #define COMBINING_NO 0
3120 #define COMBINING_BEFORE 1
3121 #define COMBINING_AFTER 2
3122 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
3123 int maybe_byte_combining = COMBINING_NO;
3124 ptrdiff_t last_changed = 0;
3125 bool multibyte_p
3126 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3127 int fromc, toc;
3128
3129 restart:
3130
3131 validate_region (&start, &end);
3132 CHECK_CHARACTER (fromchar);
3133 CHECK_CHARACTER (tochar);
3134 fromc = XFASTINT (fromchar);
3135 toc = XFASTINT (tochar);
3136
3137 if (multibyte_p)
3138 {
3139 len = CHAR_STRING (fromc, fromstr);
3140 if (CHAR_STRING (toc, tostr) != len)
3141 error ("Characters in `subst-char-in-region' have different byte-lengths");
3142 if (!ASCII_CHAR_P (*tostr))
3143 {
3144 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
3145 complete multibyte character, it may be combined with the
3146 after bytes. If it is in the range 0xA0..0xFF, it may be
3147 combined with the before and after bytes. */
3148 if (!CHAR_HEAD_P (*tostr))
3149 maybe_byte_combining = COMBINING_BOTH;
3150 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
3151 maybe_byte_combining = COMBINING_AFTER;
3152 }
3153 }
3154 else
3155 {
3156 len = 1;
3157 fromstr[0] = fromc;
3158 tostr[0] = toc;
3159 }
3160
3161 pos = XINT (start);
3162 pos_byte = CHAR_TO_BYTE (pos);
3163 stop = CHAR_TO_BYTE (XINT (end));
3164 end_byte = stop;
3165
3166 /* If we don't want undo, turn off putting stuff on the list.
3167 That's faster than getting rid of things,
3168 and it prevents even the entry for a first change.
3169 Also inhibit locking the file. */
3170 if (!changed && !NILP (noundo))
3171 {
3172 record_unwind_protect (subst_char_in_region_unwind,
3173 BVAR (current_buffer, undo_list));
3174 bset_undo_list (current_buffer, Qt);
3175 /* Don't do file-locking. */
3176 record_unwind_protect (subst_char_in_region_unwind_1,
3177 BVAR (current_buffer, filename));
3178 bset_filename (current_buffer, Qnil);
3179 }
3180
3181 if (pos_byte < GPT_BYTE)
3182 stop = min (stop, GPT_BYTE);
3183 while (1)
3184 {
3185 ptrdiff_t pos_byte_next = pos_byte;
3186
3187 if (pos_byte >= stop)
3188 {
3189 if (pos_byte >= end_byte) break;
3190 stop = end_byte;
3191 }
3192 p = BYTE_POS_ADDR (pos_byte);
3193 if (multibyte_p)
3194 INC_POS (pos_byte_next);
3195 else
3196 ++pos_byte_next;
3197 if (pos_byte_next - pos_byte == len
3198 && p[0] == fromstr[0]
3199 && (len == 1
3200 || (p[1] == fromstr[1]
3201 && (len == 2 || (p[2] == fromstr[2]
3202 && (len == 3 || p[3] == fromstr[3]))))))
3203 {
3204 if (changed < 0)
3205 /* We've already seen this and run the before-change-function;
3206 this time we only need to record the actual position. */
3207 changed = pos;
3208 else if (!changed)
3209 {
3210 changed = -1;
3211 modify_text (pos, XINT (end));
3212
3213 if (! NILP (noundo))
3214 {
3215 if (MODIFF - 1 == SAVE_MODIFF)
3216 SAVE_MODIFF++;
3217 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
3218 BUF_AUTOSAVE_MODIFF (current_buffer)++;
3219 }
3220
3221 /* The before-change-function may have moved the gap
3222 or even modified the buffer so we should start over. */
3223 goto restart;
3224 }
3225
3226 /* Take care of the case where the new character
3227 combines with neighboring bytes. */
3228 if (maybe_byte_combining
3229 && (maybe_byte_combining == COMBINING_AFTER
3230 ? (pos_byte_next < Z_BYTE
3231 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3232 : ((pos_byte_next < Z_BYTE
3233 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3234 || (pos_byte > BEG_BYTE
3235 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
3236 {
3237 Lisp_Object tem, string;
3238
3239 tem = BVAR (current_buffer, undo_list);
3240
3241 /* Make a multibyte string containing this single character. */
3242 string = make_multibyte_string ((char *) tostr, 1, len);
3243 /* replace_range is less efficient, because it moves the gap,
3244 but it handles combining correctly. */
3245 replace_range (pos, pos + 1, string,
3246 0, 0, 1);
3247 pos_byte_next = CHAR_TO_BYTE (pos);
3248 if (pos_byte_next > pos_byte)
3249 /* Before combining happened. We should not increment
3250 POS. So, to cancel the later increment of POS,
3251 decrease it now. */
3252 pos--;
3253 else
3254 INC_POS (pos_byte_next);
3255
3256 if (! NILP (noundo))
3257 bset_undo_list (current_buffer, tem);
3258 }
3259 else
3260 {
3261 if (NILP (noundo))
3262 record_change (pos, 1);
3263 for (i = 0; i < len; i++) *p++ = tostr[i];
3264 }
3265 last_changed = pos + 1;
3266 }
3267 pos_byte = pos_byte_next;
3268 pos++;
3269 }
3270
3271 if (changed > 0)
3272 {
3273 signal_after_change (changed,
3274 last_changed - changed, last_changed - changed);
3275 update_compositions (changed, last_changed, CHECK_ALL);
3276 }
3277
3278 unbind_to (count, Qnil);
3279 return Qnil;
3280 }
3281
3282
3283 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3284 Lisp_Object);
3285
3286 /* Helper function for Ftranslate_region_internal.
3287
3288 Check if a character sequence at POS (POS_BYTE) matches an element
3289 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3290 element is found, return it. Otherwise return Qnil. */
3291
3292 static Lisp_Object
3293 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3294 Lisp_Object val)
3295 {
3296 int initial_buf[16];
3297 int *buf = initial_buf;
3298 ptrdiff_t buf_size = ARRAYELTS (initial_buf);
3299 int *bufalloc = 0;
3300 ptrdiff_t buf_used = 0;
3301 Lisp_Object result = Qnil;
3302
3303 for (; CONSP (val); val = XCDR (val))
3304 {
3305 Lisp_Object elt;
3306 ptrdiff_t len, i;
3307
3308 elt = XCAR (val);
3309 if (! CONSP (elt))
3310 continue;
3311 elt = XCAR (elt);
3312 if (! VECTORP (elt))
3313 continue;
3314 len = ASIZE (elt);
3315 if (len <= end - pos)
3316 {
3317 for (i = 0; i < len; i++)
3318 {
3319 if (buf_used <= i)
3320 {
3321 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3322 int len1;
3323
3324 if (buf_used == buf_size)
3325 {
3326 bufalloc = xpalloc (bufalloc, &buf_size, 1, -1,
3327 sizeof *bufalloc);
3328 if (buf == initial_buf)
3329 memcpy (bufalloc, buf, sizeof initial_buf);
3330 buf = bufalloc;
3331 }
3332 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3333 pos_byte += len1;
3334 }
3335 if (XINT (AREF (elt, i)) != buf[i])
3336 break;
3337 }
3338 if (i == len)
3339 {
3340 result = XCAR (val);
3341 break;
3342 }
3343 }
3344 }
3345
3346 xfree (bufalloc);
3347 return result;
3348 }
3349
3350
3351 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3352 Stranslate_region_internal, 3, 3, 0,
3353 doc: /* Internal use only.
3354 From START to END, translate characters according to TABLE.
3355 TABLE is a string or a char-table; the Nth character in it is the
3356 mapping for the character with code N.
3357 It returns the number of characters changed. */)
3358 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3359 {
3360 register unsigned char *tt; /* Trans table. */
3361 register int nc; /* New character. */
3362 int cnt; /* Number of changes made. */
3363 ptrdiff_t size; /* Size of translate table. */
3364 ptrdiff_t pos, pos_byte, end_pos;
3365 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3366 bool string_multibyte IF_LINT (= 0);
3367
3368 validate_region (&start, &end);
3369 if (CHAR_TABLE_P (table))
3370 {
3371 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3372 error ("Not a translation table");
3373 size = MAX_CHAR;
3374 tt = NULL;
3375 }
3376 else
3377 {
3378 CHECK_STRING (table);
3379
3380 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3381 table = string_make_unibyte (table);
3382 string_multibyte = SCHARS (table) < SBYTES (table);
3383 size = SBYTES (table);
3384 tt = SDATA (table);
3385 }
3386
3387 pos = XINT (start);
3388 pos_byte = CHAR_TO_BYTE (pos);
3389 end_pos = XINT (end);
3390 modify_text (pos, end_pos);
3391
3392 cnt = 0;
3393 for (; pos < end_pos; )
3394 {
3395 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3396 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3397 int len, str_len;
3398 int oc;
3399 Lisp_Object val;
3400
3401 if (multibyte)
3402 oc = STRING_CHAR_AND_LENGTH (p, len);
3403 else
3404 oc = *p, len = 1;
3405 if (oc < size)
3406 {
3407 if (tt)
3408 {
3409 /* Reload as signal_after_change in last iteration may GC. */
3410 tt = SDATA (table);
3411 if (string_multibyte)
3412 {
3413 str = tt + string_char_to_byte (table, oc);
3414 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3415 }
3416 else
3417 {
3418 nc = tt[oc];
3419 if (! ASCII_CHAR_P (nc) && multibyte)
3420 {
3421 str_len = BYTE8_STRING (nc, buf);
3422 str = buf;
3423 }
3424 else
3425 {
3426 str_len = 1;
3427 str = tt + oc;
3428 }
3429 }
3430 }
3431 else
3432 {
3433 nc = oc;
3434 val = CHAR_TABLE_REF (table, oc);
3435 if (CHARACTERP (val))
3436 {
3437 nc = XFASTINT (val);
3438 str_len = CHAR_STRING (nc, buf);
3439 str = buf;
3440 }
3441 else if (VECTORP (val) || (CONSP (val)))
3442 {
3443 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3444 where TO is TO-CHAR or [TO-CHAR ...]. */
3445 nc = -1;
3446 }
3447 }
3448
3449 if (nc != oc && nc >= 0)
3450 {
3451 /* Simple one char to one char translation. */
3452 if (len != str_len)
3453 {
3454 Lisp_Object string;
3455
3456 /* This is less efficient, because it moves the gap,
3457 but it should handle multibyte characters correctly. */
3458 string = make_multibyte_string ((char *) str, 1, str_len);
3459 replace_range (pos, pos + 1, string, 1, 0, 1);
3460 len = str_len;
3461 }
3462 else
3463 {
3464 record_change (pos, 1);
3465 while (str_len-- > 0)
3466 *p++ = *str++;
3467 signal_after_change (pos, 1, 1);
3468 update_compositions (pos, pos + 1, CHECK_BORDER);
3469 }
3470 ++cnt;
3471 }
3472 else if (nc < 0)
3473 {
3474 Lisp_Object string;
3475
3476 if (CONSP (val))
3477 {
3478 val = check_translation (pos, pos_byte, end_pos, val);
3479 if (NILP (val))
3480 {
3481 pos_byte += len;
3482 pos++;
3483 continue;
3484 }
3485 /* VAL is ([FROM-CHAR ...] . TO). */
3486 len = ASIZE (XCAR (val));
3487 val = XCDR (val);
3488 }
3489 else
3490 len = 1;
3491
3492 if (VECTORP (val))
3493 {
3494 string = Fconcat (1, &val);
3495 }
3496 else
3497 {
3498 string = Fmake_string (make_number (1), val);
3499 }
3500 replace_range (pos, pos + len, string, 1, 0, 1);
3501 pos_byte += SBYTES (string);
3502 pos += SCHARS (string);
3503 cnt += SCHARS (string);
3504 end_pos += SCHARS (string) - len;
3505 continue;
3506 }
3507 }
3508 pos_byte += len;
3509 pos++;
3510 }
3511
3512 return make_number (cnt);
3513 }
3514
3515 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3516 doc: /* Delete the text between START and END.
3517 If called interactively, delete the region between point and mark.
3518 This command deletes buffer text without modifying the kill ring. */)
3519 (Lisp_Object start, Lisp_Object end)
3520 {
3521 validate_region (&start, &end);
3522 del_range (XINT (start), XINT (end));
3523 return Qnil;
3524 }
3525
3526 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3527 Sdelete_and_extract_region, 2, 2, 0,
3528 doc: /* Delete the text between START and END and return it. */)
3529 (Lisp_Object start, Lisp_Object end)
3530 {
3531 validate_region (&start, &end);
3532 if (XINT (start) == XINT (end))
3533 return empty_unibyte_string;
3534 return del_range_1 (XINT (start), XINT (end), 1, 1);
3535 }
3536 \f
3537 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3538 doc: /* Remove restrictions (narrowing) from current buffer.
3539 This allows the buffer's full text to be seen and edited. */)
3540 (void)
3541 {
3542 if (BEG != BEGV || Z != ZV)
3543 current_buffer->clip_changed = 1;
3544 BEGV = BEG;
3545 BEGV_BYTE = BEG_BYTE;
3546 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3547 /* Changing the buffer bounds invalidates any recorded current column. */
3548 invalidate_current_column ();
3549 return Qnil;
3550 }
3551
3552 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3553 doc: /* Restrict editing in this buffer to the current region.
3554 The rest of the text becomes temporarily invisible and untouchable
3555 but is not deleted; if you save the buffer in a file, the invisible
3556 text is included in the file. \\[widen] makes all visible again.
3557 See also `save-restriction'.
3558
3559 When calling from a program, pass two arguments; positions (integers
3560 or markers) bounding the text that should remain visible. */)
3561 (register Lisp_Object start, Lisp_Object end)
3562 {
3563 CHECK_NUMBER_COERCE_MARKER (start);
3564 CHECK_NUMBER_COERCE_MARKER (end);
3565
3566 if (XINT (start) > XINT (end))
3567 {
3568 Lisp_Object tem;
3569 tem = start; start = end; end = tem;
3570 }
3571
3572 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3573 args_out_of_range (start, end);
3574
3575 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3576 current_buffer->clip_changed = 1;
3577
3578 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3579 SET_BUF_ZV (current_buffer, XFASTINT (end));
3580 if (PT < XFASTINT (start))
3581 SET_PT (XFASTINT (start));
3582 if (PT > XFASTINT (end))
3583 SET_PT (XFASTINT (end));
3584 /* Changing the buffer bounds invalidates any recorded current column. */
3585 invalidate_current_column ();
3586 return Qnil;
3587 }
3588
3589 Lisp_Object
3590 save_restriction_save (void)
3591 {
3592 if (BEGV == BEG && ZV == Z)
3593 /* The common case that the buffer isn't narrowed.
3594 We return just the buffer object, which save_restriction_restore
3595 recognizes as meaning `no restriction'. */
3596 return Fcurrent_buffer ();
3597 else
3598 /* We have to save a restriction, so return a pair of markers, one
3599 for the beginning and one for the end. */
3600 {
3601 Lisp_Object beg, end;
3602
3603 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3604 end = build_marker (current_buffer, ZV, ZV_BYTE);
3605
3606 /* END must move forward if text is inserted at its exact location. */
3607 XMARKER (end)->insertion_type = 1;
3608
3609 return Fcons (beg, end);
3610 }
3611 }
3612
3613 void
3614 save_restriction_restore (Lisp_Object data)
3615 {
3616 struct buffer *cur = NULL;
3617 struct buffer *buf = (CONSP (data)
3618 ? XMARKER (XCAR (data))->buffer
3619 : XBUFFER (data));
3620
3621 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3622 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3623 is the case if it is or has an indirect buffer), then make
3624 sure it is current before we update BEGV, so
3625 set_buffer_internal takes care of managing those markers. */
3626 cur = current_buffer;
3627 set_buffer_internal (buf);
3628 }
3629
3630 if (CONSP (data))
3631 /* A pair of marks bounding a saved restriction. */
3632 {
3633 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3634 struct Lisp_Marker *end = XMARKER (XCDR (data));
3635 eassert (buf == end->buffer);
3636
3637 if (buf /* Verify marker still points to a buffer. */
3638 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3639 /* The restriction has changed from the saved one, so restore
3640 the saved restriction. */
3641 {
3642 ptrdiff_t pt = BUF_PT (buf);
3643
3644 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3645 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3646
3647 if (pt < beg->charpos || pt > end->charpos)
3648 /* The point is outside the new visible range, move it inside. */
3649 SET_BUF_PT_BOTH (buf,
3650 clip_to_bounds (beg->charpos, pt, end->charpos),
3651 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3652 end->bytepos));
3653
3654 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3655 }
3656 /* These aren't needed anymore, so don't wait for GC. */
3657 free_marker (XCAR (data));
3658 free_marker (XCDR (data));
3659 free_cons (XCONS (data));
3660 }
3661 else
3662 /* A buffer, which means that there was no old restriction. */
3663 {
3664 if (buf /* Verify marker still points to a buffer. */
3665 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3666 /* The buffer has been narrowed, get rid of the narrowing. */
3667 {
3668 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3669 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3670
3671 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3672 }
3673 }
3674
3675 /* Changing the buffer bounds invalidates any recorded current column. */
3676 invalidate_current_column ();
3677
3678 if (cur)
3679 set_buffer_internal (cur);
3680 }
3681
3682 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3683 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3684 The buffer's restrictions make parts of the beginning and end invisible.
3685 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3686 This special form, `save-restriction', saves the current buffer's restrictions
3687 when it is entered, and restores them when it is exited.
3688 So any `narrow-to-region' within BODY lasts only until the end of the form.
3689 The old restrictions settings are restored
3690 even in case of abnormal exit (throw or error).
3691
3692 The value returned is the value of the last form in BODY.
3693
3694 Note: if you are using both `save-excursion' and `save-restriction',
3695 use `save-excursion' outermost:
3696 (save-excursion (save-restriction ...))
3697
3698 usage: (save-restriction &rest BODY) */)
3699 (Lisp_Object body)
3700 {
3701 register Lisp_Object val;
3702 ptrdiff_t count = SPECPDL_INDEX ();
3703
3704 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3705 val = Fprogn (body);
3706 return unbind_to (count, val);
3707 }
3708 \f
3709 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3710 doc: /* Display a message at the bottom of the screen.
3711 The message also goes into the `*Messages*' buffer, if `message-log-max'
3712 is non-nil. (In keyboard macros, that's all it does.)
3713 Return the message.
3714
3715 In batch mode, the message is printed to the standard error stream,
3716 followed by a newline.
3717
3718 The first argument is a format control string, and the rest are data
3719 to be formatted under control of the string. See `format' for details.
3720
3721 Note: Use (message "%s" VALUE) to print the value of expressions and
3722 variables to avoid accidentally interpreting `%' as format specifiers.
3723
3724 If the first argument is nil or the empty string, the function clears
3725 any existing message; this lets the minibuffer contents show. See
3726 also `current-message'.
3727
3728 usage: (message FORMAT-STRING &rest ARGS) */)
3729 (ptrdiff_t nargs, Lisp_Object *args)
3730 {
3731 if (NILP (args[0])
3732 || (STRINGP (args[0])
3733 && SBYTES (args[0]) == 0))
3734 {
3735 message1 (0);
3736 return args[0];
3737 }
3738 else
3739 {
3740 Lisp_Object val = Fformat_message (nargs, args);
3741 message3 (val);
3742 return val;
3743 }
3744 }
3745
3746 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3747 doc: /* Display a message, in a dialog box if possible.
3748 If a dialog box is not available, use the echo area.
3749 The first argument is a format control string, and the rest are data
3750 to be formatted under control of the string. See `format' for details.
3751
3752 If the first argument is nil or the empty string, clear any existing
3753 message; let the minibuffer contents show.
3754
3755 usage: (message-box FORMAT-STRING &rest ARGS) */)
3756 (ptrdiff_t nargs, Lisp_Object *args)
3757 {
3758 if (NILP (args[0]))
3759 {
3760 message1 (0);
3761 return Qnil;
3762 }
3763 else
3764 {
3765 Lisp_Object val = Fformat_message (nargs, args);
3766 Lisp_Object pane, menu;
3767
3768 pane = list1 (Fcons (build_string ("OK"), Qt));
3769 menu = Fcons (val, pane);
3770 Fx_popup_dialog (Qt, menu, Qt);
3771 return val;
3772 }
3773 }
3774
3775 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3776 doc: /* Display a message in a dialog box or in the echo area.
3777 If this command was invoked with the mouse, use a dialog box if
3778 `use-dialog-box' is non-nil.
3779 Otherwise, use the echo area.
3780 The first argument is a format control string, and the rest are data
3781 to be formatted under control of the string. See `format' for details.
3782
3783 If the first argument is nil or the empty string, clear any existing
3784 message; let the minibuffer contents show.
3785
3786 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3787 (ptrdiff_t nargs, Lisp_Object *args)
3788 {
3789 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3790 && use_dialog_box)
3791 return Fmessage_box (nargs, args);
3792 return Fmessage (nargs, args);
3793 }
3794
3795 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3796 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3797 (void)
3798 {
3799 return current_message ();
3800 }
3801
3802
3803 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3804 doc: /* Return a copy of STRING with text properties added.
3805 First argument is the string to copy.
3806 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3807 properties to add to the result.
3808 usage: (propertize STRING &rest PROPERTIES) */)
3809 (ptrdiff_t nargs, Lisp_Object *args)
3810 {
3811 Lisp_Object properties, string;
3812 ptrdiff_t i;
3813
3814 /* Number of args must be odd. */
3815 if ((nargs & 1) == 0)
3816 error ("Wrong number of arguments");
3817
3818 properties = string = Qnil;
3819
3820 /* First argument must be a string. */
3821 CHECK_STRING (args[0]);
3822 string = Fcopy_sequence (args[0]);
3823
3824 for (i = 1; i < nargs; i += 2)
3825 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3826
3827 Fadd_text_properties (make_number (0),
3828 make_number (SCHARS (string)),
3829 properties, string);
3830 return string;
3831 }
3832
3833 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3834 doc: /* Format a string out of a format-string and arguments.
3835 The first argument is a format control string.
3836 The other arguments are substituted into it to make the result, a string.
3837
3838 The format control string may contain %-sequences meaning to substitute
3839 the next available argument:
3840
3841 %s means print a string argument. Actually, prints any object, with `princ'.
3842 %d means print as number in decimal (%o octal, %x hex).
3843 %X is like %x, but uses upper case.
3844 %e means print a number in exponential notation.
3845 %f means print a number in decimal-point notation.
3846 %g means print a number in exponential notation
3847 or decimal-point notation, whichever uses fewer characters.
3848 %c means print a number as a single character.
3849 %S means print any object as an s-expression (using `prin1').
3850
3851 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3852 Use %% to put a single % into the output.
3853
3854 A %-sequence may contain optional flag, width, and precision
3855 specifiers, as follows:
3856
3857 %<flags><width><precision>character
3858
3859 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3860
3861 The + flag character inserts a + before any positive number, while a
3862 space inserts a space before any positive number; these flags only
3863 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3864 The - and 0 flags affect the width specifier, as described below.
3865
3866 The # flag means to use an alternate display form for %o, %x, %X, %e,
3867 %f, and %g sequences: for %o, it ensures that the result begins with
3868 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3869 for %e, %f, and %g, it causes a decimal point to be included even if
3870 the precision is zero.
3871
3872 The width specifier supplies a lower limit for the length of the
3873 printed representation. The padding, if any, normally goes on the
3874 left, but it goes on the right if the - flag is present. The padding
3875 character is normally a space, but it is 0 if the 0 flag is present.
3876 The 0 flag is ignored if the - flag is present, or the format sequence
3877 is something other than %d, %e, %f, and %g.
3878
3879 For %e, %f, and %g sequences, the number after the "." in the
3880 precision specifier says how many decimal places to show; if zero, the
3881 decimal point itself is omitted. For %s and %S, the precision
3882 specifier truncates the string to the given width.
3883
3884 usage: (format STRING &rest OBJECTS) */)
3885 (ptrdiff_t nargs, Lisp_Object *args)
3886 {
3887 return styled_format (nargs, args, false);
3888 }
3889
3890 DEFUN ("format-message", Fformat_message, Sformat_message, 1, MANY, 0,
3891 doc: /* Format a string out of a format-string and arguments.
3892 The first argument is a format control string.
3893 The other arguments are substituted into it to make the result, a string.
3894
3895 This acts like `format', except it also replaces each left single
3896 quotation mark (\\=‘) and grave accent (\\=`) by a left quote, and each
3897 right single quotation mark (\\=’) and apostrophe (\\=') by a right quote.
3898 The left and right quote replacement characters are specified by
3899 `text-quoting-style'.
3900
3901 usage: (format-message STRING &rest OBJECTS) */)
3902 (ptrdiff_t nargs, Lisp_Object *args)
3903 {
3904 return styled_format (nargs, args, true);
3905 }
3906
3907 /* Implement ‘format-message’ if MESSAGE is true, ‘format’ otherwise. */
3908
3909 static Lisp_Object
3910 styled_format (ptrdiff_t nargs, Lisp_Object *args, bool message)
3911 {
3912 ptrdiff_t n; /* The number of the next arg to substitute. */
3913 char initial_buffer[4000];
3914 char *buf = initial_buffer;
3915 ptrdiff_t bufsize = sizeof initial_buffer;
3916 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3917 char *p;
3918 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3919 char *format, *end;
3920 ptrdiff_t nchars;
3921 /* When we make a multibyte string, we must pay attention to the
3922 byte combining problem, i.e., a byte may be combined with a
3923 multibyte character of the previous string. This flag tells if we
3924 must consider such a situation or not. */
3925 bool maybe_combine_byte;
3926 bool arg_intervals = false;
3927 USE_SAFE_ALLOCA;
3928
3929 /* Each element records, for one argument,
3930 the start and end bytepos in the output string,
3931 whether the argument has been converted to string (e.g., due to "%S"),
3932 and whether the argument is a string with intervals. */
3933 struct info
3934 {
3935 ptrdiff_t start, end;
3936 bool_bf converted_to_string : 1;
3937 bool_bf intervals : 1;
3938 } *info;
3939
3940 CHECK_STRING (args[0]);
3941 char *format_start = SSDATA (args[0]);
3942 ptrdiff_t formatlen = SBYTES (args[0]);
3943
3944 /* Allocate the info and discarded tables. */
3945 ptrdiff_t alloca_size;
3946 if (INT_MULTIPLY_WRAPV (nargs, sizeof *info, &alloca_size)
3947 || INT_ADD_WRAPV (sizeof *info, alloca_size, &alloca_size)
3948 || INT_ADD_WRAPV (formatlen, alloca_size, &alloca_size)
3949 || SIZE_MAX < alloca_size)
3950 memory_full (SIZE_MAX);
3951 /* info[0] is unused. Unused elements have -1 for start. */
3952 info = SAFE_ALLOCA (alloca_size);
3953 memset (info, 0, alloca_size);
3954 for (ptrdiff_t i = 0; i < nargs + 1; i++)
3955 info[i].start = -1;
3956 /* discarded[I] is 1 if byte I of the format
3957 string was not copied into the output.
3958 It is 2 if byte I was not the first byte of its character. */
3959 char *discarded = (char *) &info[nargs + 1];
3960
3961 /* Try to determine whether the result should be multibyte.
3962 This is not always right; sometimes the result needs to be multibyte
3963 because of an object that we will pass through prin1.
3964 or because a grave accent or apostrophe is requoted,
3965 and in that case, we won't know it here. */
3966
3967 /* True if the format is multibyte. */
3968 bool multibyte_format = STRING_MULTIBYTE (args[0]);
3969 /* True if the output should be a multibyte string,
3970 which is true if any of the inputs is one. */
3971 bool multibyte = multibyte_format;
3972 for (ptrdiff_t i = 1; !multibyte && i < nargs; i++)
3973 if (STRINGP (args[i]) && STRING_MULTIBYTE (args[i]))
3974 multibyte = true;
3975
3976 int quoting_style = message ? text_quoting_style () : -1;
3977 if (quoting_style == LEAVE_QUOTING_STYLE)
3978 quoting_style = -1;
3979
3980 /* If we start out planning a unibyte result,
3981 then discover it has to be multibyte, we jump back to retry. */
3982 retry:
3983
3984 p = buf;
3985 nchars = 0;
3986 n = 0;
3987
3988 /* Scan the format and store result in BUF. */
3989 format = format_start;
3990 end = format + formatlen;
3991 maybe_combine_byte = false;
3992
3993 while (format != end)
3994 {
3995 /* The values of N and FORMAT when the loop body is entered. */
3996 ptrdiff_t n0 = n;
3997 char *format0 = format;
3998 char const *convsrc = format;
3999 unsigned char format_char = *format++;
4000
4001 /* Bytes needed to represent the output of this conversion. */
4002 ptrdiff_t convbytes = 1;
4003
4004 if (format_char == '%')
4005 {
4006 /* General format specifications look like
4007
4008 '%' [flags] [field-width] [precision] format
4009
4010 where
4011
4012 flags ::= [-+0# ]+
4013 field-width ::= [0-9]+
4014 precision ::= '.' [0-9]*
4015
4016 If a field-width is specified, it specifies to which width
4017 the output should be padded with blanks, if the output
4018 string is shorter than field-width.
4019
4020 If precision is specified, it specifies the number of
4021 digits to print after the '.' for floats, or the max.
4022 number of chars to print from a string. */
4023
4024 bool minus_flag = false;
4025 bool plus_flag = false;
4026 bool space_flag = false;
4027 bool sharp_flag = false;
4028 bool zero_flag = false;
4029
4030 for (; ; format++)
4031 {
4032 switch (*format)
4033 {
4034 case '-': minus_flag = true; continue;
4035 case '+': plus_flag = true; continue;
4036 case ' ': space_flag = true; continue;
4037 case '#': sharp_flag = true; continue;
4038 case '0': zero_flag = true; continue;
4039 }
4040 break;
4041 }
4042
4043 /* Ignore flags when sprintf ignores them. */
4044 space_flag &= ~ plus_flag;
4045 zero_flag &= ~ minus_flag;
4046
4047 char *num_end;
4048 uintmax_t raw_field_width = strtoumax (format, &num_end, 10);
4049 if (max_bufsize <= raw_field_width)
4050 string_overflow ();
4051 ptrdiff_t field_width = raw_field_width;
4052
4053 bool precision_given = *num_end == '.';
4054 uintmax_t precision = (precision_given
4055 ? strtoumax (num_end + 1, &num_end, 10)
4056 : UINTMAX_MAX);
4057 format = num_end;
4058
4059 if (format == end)
4060 error ("Format string ends in middle of format specifier");
4061
4062 char conversion = *format++;
4063 memset (&discarded[format0 - format_start], 1,
4064 format - format0 - (conversion == '%'));
4065 if (conversion == '%')
4066 goto copy_char;
4067
4068 ++n;
4069 if (! (n < nargs))
4070 error ("Not enough arguments for format string");
4071
4072 /* For 'S', prin1 the argument, and then treat like 's'.
4073 For 's', princ any argument that is not a string or
4074 symbol. But don't do this conversion twice, which might
4075 happen after retrying. */
4076 if ((conversion == 'S'
4077 || (conversion == 's'
4078 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
4079 {
4080 if (! info[n].converted_to_string)
4081 {
4082 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
4083 args[n] = Fprin1_to_string (args[n], noescape);
4084 info[n].converted_to_string = true;
4085 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4086 {
4087 multibyte = true;
4088 goto retry;
4089 }
4090 }
4091 conversion = 's';
4092 }
4093 else if (conversion == 'c')
4094 {
4095 if (FLOATP (args[n]))
4096 {
4097 double d = XFLOAT_DATA (args[n]);
4098 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
4099 }
4100
4101 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
4102 {
4103 if (!multibyte)
4104 {
4105 multibyte = true;
4106 goto retry;
4107 }
4108 args[n] = Fchar_to_string (args[n]);
4109 info[n].converted_to_string = true;
4110 }
4111
4112 if (info[n].converted_to_string)
4113 conversion = 's';
4114 zero_flag = false;
4115 }
4116
4117 if (SYMBOLP (args[n]))
4118 {
4119 args[n] = SYMBOL_NAME (args[n]);
4120 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
4121 {
4122 multibyte = true;
4123 goto retry;
4124 }
4125 }
4126
4127 if (conversion == 's')
4128 {
4129 /* handle case (precision[n] >= 0) */
4130
4131 ptrdiff_t prec = -1;
4132 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
4133 prec = precision;
4134
4135 /* lisp_string_width ignores a precision of 0, but GNU
4136 libc functions print 0 characters when the precision
4137 is 0. Imitate libc behavior here. Changing
4138 lisp_string_width is the right thing, and will be
4139 done, but meanwhile we work with it. */
4140
4141 ptrdiff_t width, nbytes;
4142 ptrdiff_t nchars_string;
4143 if (prec == 0)
4144 width = nchars_string = nbytes = 0;
4145 else
4146 {
4147 ptrdiff_t nch, nby;
4148 width = lisp_string_width (args[n], prec, &nch, &nby);
4149 if (prec < 0)
4150 {
4151 nchars_string = SCHARS (args[n]);
4152 nbytes = SBYTES (args[n]);
4153 }
4154 else
4155 {
4156 nchars_string = nch;
4157 nbytes = nby;
4158 }
4159 }
4160
4161 convbytes = nbytes;
4162 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
4163 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
4164
4165 ptrdiff_t padding
4166 = width < field_width ? field_width - width : 0;
4167
4168 if (max_bufsize - padding <= convbytes)
4169 string_overflow ();
4170 convbytes += padding;
4171 if (convbytes <= buf + bufsize - p)
4172 {
4173 if (! minus_flag)
4174 {
4175 memset (p, ' ', padding);
4176 p += padding;
4177 nchars += padding;
4178 }
4179
4180 if (p > buf
4181 && multibyte
4182 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4183 && STRING_MULTIBYTE (args[n])
4184 && !CHAR_HEAD_P (SREF (args[n], 0)))
4185 maybe_combine_byte = true;
4186
4187 p += copy_text (SDATA (args[n]), (unsigned char *) p,
4188 nbytes,
4189 STRING_MULTIBYTE (args[n]), multibyte);
4190
4191 info[n].start = nchars;
4192 nchars += nchars_string;
4193 info[n].end = nchars;
4194
4195 if (minus_flag)
4196 {
4197 memset (p, ' ', padding);
4198 p += padding;
4199 nchars += padding;
4200 }
4201
4202 /* If this argument has text properties, record where
4203 in the result string it appears. */
4204 if (string_intervals (args[n]))
4205 info[n].intervals = arg_intervals = true;
4206
4207 continue;
4208 }
4209 }
4210 else if (! (conversion == 'c' || conversion == 'd'
4211 || conversion == 'e' || conversion == 'f'
4212 || conversion == 'g' || conversion == 'i'
4213 || conversion == 'o' || conversion == 'x'
4214 || conversion == 'X'))
4215 error ("Invalid format operation %%%c",
4216 STRING_CHAR ((unsigned char *) format - 1));
4217 else if (! NUMBERP (args[n]))
4218 error ("Format specifier doesn't match argument type");
4219 else
4220 {
4221 enum
4222 {
4223 /* Maximum precision for a %f conversion such that the
4224 trailing output digit might be nonzero. Any precision
4225 larger than this will not yield useful information. */
4226 USEFUL_PRECISION_MAX =
4227 ((1 - DBL_MIN_EXP)
4228 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
4229 : FLT_RADIX == 16 ? 4
4230 : -1)),
4231
4232 /* Maximum number of bytes generated by any format, if
4233 precision is no more than USEFUL_PRECISION_MAX.
4234 On all practical hosts, %f is the worst case. */
4235 SPRINTF_BUFSIZE =
4236 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
4237
4238 /* Length of pM (that is, of pMd without the
4239 trailing "d"). */
4240 pMlen = sizeof pMd - 2
4241 };
4242 verify (USEFUL_PRECISION_MAX > 0);
4243
4244 /* Avoid undefined behavior in underlying sprintf. */
4245 if (conversion == 'd' || conversion == 'i')
4246 sharp_flag = false;
4247
4248 /* Create the copy of the conversion specification, with
4249 any width and precision removed, with ".*" inserted,
4250 and with pM inserted for integer formats.
4251 At most three flags F can be specified at once. */
4252 char convspec[sizeof "%FFF.*d" + pMlen];
4253 {
4254 char *f = convspec;
4255 *f++ = '%';
4256 *f = '-'; f += minus_flag;
4257 *f = '+'; f += plus_flag;
4258 *f = ' '; f += space_flag;
4259 *f = '#'; f += sharp_flag;
4260 *f = '0'; f += zero_flag;
4261 *f++ = '.';
4262 *f++ = '*';
4263 if (conversion == 'd' || conversion == 'i'
4264 || conversion == 'o' || conversion == 'x'
4265 || conversion == 'X')
4266 {
4267 memcpy (f, pMd, pMlen);
4268 f += pMlen;
4269 zero_flag &= ~ precision_given;
4270 }
4271 *f++ = conversion;
4272 *f = '\0';
4273 }
4274
4275 int prec = -1;
4276 if (precision_given)
4277 prec = min (precision, USEFUL_PRECISION_MAX);
4278
4279 /* Use sprintf to format this number into sprintf_buf. Omit
4280 padding and excess precision, though, because sprintf limits
4281 output length to INT_MAX.
4282
4283 There are four types of conversion: double, unsigned
4284 char (passed as int), wide signed int, and wide
4285 unsigned int. Treat them separately because the
4286 sprintf ABI is sensitive to which type is passed. Be
4287 careful about integer overflow, NaNs, infinities, and
4288 conversions; for example, the min and max macros are
4289 not suitable here. */
4290 char sprintf_buf[SPRINTF_BUFSIZE];
4291 ptrdiff_t sprintf_bytes;
4292 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4293 {
4294 double x = (INTEGERP (args[n])
4295 ? XINT (args[n])
4296 : XFLOAT_DATA (args[n]));
4297 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4298 }
4299 else if (conversion == 'c')
4300 {
4301 /* Don't use sprintf here, as it might mishandle prec. */
4302 sprintf_buf[0] = XINT (args[n]);
4303 sprintf_bytes = prec != 0;
4304 }
4305 else if (conversion == 'd')
4306 {
4307 /* For float, maybe we should use "%1.0f"
4308 instead so it also works for values outside
4309 the integer range. */
4310 printmax_t x;
4311 if (INTEGERP (args[n]))
4312 x = XINT (args[n]);
4313 else
4314 {
4315 double d = XFLOAT_DATA (args[n]);
4316 if (d < 0)
4317 {
4318 x = TYPE_MINIMUM (printmax_t);
4319 if (x < d)
4320 x = d;
4321 }
4322 else
4323 {
4324 x = TYPE_MAXIMUM (printmax_t);
4325 if (d < x)
4326 x = d;
4327 }
4328 }
4329 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4330 }
4331 else
4332 {
4333 /* Don't sign-extend for octal or hex printing. */
4334 uprintmax_t x;
4335 if (INTEGERP (args[n]))
4336 x = XUINT (args[n]);
4337 else
4338 {
4339 double d = XFLOAT_DATA (args[n]);
4340 if (d < 0)
4341 x = 0;
4342 else
4343 {
4344 x = TYPE_MAXIMUM (uprintmax_t);
4345 if (d < x)
4346 x = d;
4347 }
4348 }
4349 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4350 }
4351
4352 /* Now the length of the formatted item is known, except it omits
4353 padding and excess precision. Deal with excess precision
4354 first. This happens only when the format specifies
4355 ridiculously large precision. */
4356 uintmax_t excess_precision = precision - prec;
4357 uintmax_t leading_zeros = 0, trailing_zeros = 0;
4358 if (excess_precision)
4359 {
4360 if (conversion == 'e' || conversion == 'f'
4361 || conversion == 'g')
4362 {
4363 if ((conversion == 'g' && ! sharp_flag)
4364 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4365 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4366 excess_precision = 0;
4367 else
4368 {
4369 if (conversion == 'g')
4370 {
4371 char *dot = strchr (sprintf_buf, '.');
4372 if (!dot)
4373 excess_precision = 0;
4374 }
4375 }
4376 trailing_zeros = excess_precision;
4377 }
4378 else
4379 leading_zeros = excess_precision;
4380 }
4381
4382 /* Compute the total bytes needed for this item, including
4383 excess precision and padding. */
4384 uintmax_t numwidth = sprintf_bytes + excess_precision;
4385 ptrdiff_t padding
4386 = numwidth < field_width ? field_width - numwidth : 0;
4387 if (max_bufsize - sprintf_bytes <= excess_precision
4388 || max_bufsize - padding <= numwidth)
4389 string_overflow ();
4390 convbytes = numwidth + padding;
4391
4392 if (convbytes <= buf + bufsize - p)
4393 {
4394 /* Copy the formatted item from sprintf_buf into buf,
4395 inserting padding and excess-precision zeros. */
4396
4397 char *src = sprintf_buf;
4398 char src0 = src[0];
4399 int exponent_bytes = 0;
4400 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4401 if (zero_flag
4402 && ((src[signedp] >= '0' && src[signedp] <= '9')
4403 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4404 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4405 {
4406 leading_zeros += padding;
4407 padding = 0;
4408 }
4409
4410 if (excess_precision
4411 && (conversion == 'e' || conversion == 'g'))
4412 {
4413 char *e = strchr (src, 'e');
4414 if (e)
4415 exponent_bytes = src + sprintf_bytes - e;
4416 }
4417
4418 if (! minus_flag)
4419 {
4420 memset (p, ' ', padding);
4421 p += padding;
4422 nchars += padding;
4423 }
4424
4425 *p = src0;
4426 src += signedp;
4427 p += signedp;
4428 memset (p, '0', leading_zeros);
4429 p += leading_zeros;
4430 int significand_bytes
4431 = sprintf_bytes - signedp - exponent_bytes;
4432 memcpy (p, src, significand_bytes);
4433 p += significand_bytes;
4434 src += significand_bytes;
4435 memset (p, '0', trailing_zeros);
4436 p += trailing_zeros;
4437 memcpy (p, src, exponent_bytes);
4438 p += exponent_bytes;
4439
4440 info[n].start = nchars;
4441 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4442 info[n].end = nchars;
4443
4444 if (minus_flag)
4445 {
4446 memset (p, ' ', padding);
4447 p += padding;
4448 nchars += padding;
4449 }
4450
4451 continue;
4452 }
4453 }
4454 }
4455 else
4456 {
4457 /* Named constants for the UTF-8 encodings of U+2018 LEFT SINGLE
4458 QUOTATION MARK and U+2019 RIGHT SINGLE QUOTATION MARK. */
4459 enum
4460 {
4461 uLSQM0 = 0xE2, uLSQM1 = 0x80, uLSQM2 = 0x98,
4462 /* uRSQM0 = 0xE2, uRSQM1 = 0x80, */ uRSQM2 = 0x99
4463 };
4464
4465 unsigned char str[MAX_MULTIBYTE_LENGTH];
4466
4467 if ((format_char == '`' || format_char == '\'')
4468 && quoting_style == CURVE_QUOTING_STYLE)
4469 {
4470 if (! multibyte)
4471 {
4472 multibyte = true;
4473 goto retry;
4474 }
4475 convsrc = format_char == '`' ? uLSQM : uRSQM;
4476 convbytes = 3;
4477 }
4478 else if (format_char == '`' && quoting_style == STRAIGHT_QUOTING_STYLE)
4479 convsrc = "'";
4480 else if (format_char == uLSQM0 && CURVE_QUOTING_STYLE < quoting_style
4481 && multibyte_format
4482 && (unsigned char) format[0] == uLSQM1
4483 && ((unsigned char) format[1] == uLSQM2
4484 || (unsigned char) format[1] == uRSQM2))
4485 {
4486 convsrc = (((unsigned char) format[1] == uLSQM2
4487 && quoting_style == GRAVE_QUOTING_STYLE)
4488 ? "`" : "'");
4489 format += 2;
4490 memset (&discarded[format0 + 1 - format_start], 2, 2);
4491 }
4492 else
4493 {
4494 /* Copy a single character from format to buf. */
4495 if (multibyte_format)
4496 {
4497 /* Copy a whole multibyte character. */
4498 if (p > buf
4499 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4500 && !CHAR_HEAD_P (format_char))
4501 maybe_combine_byte = true;
4502
4503 while (! CHAR_HEAD_P (*format))
4504 format++;
4505
4506 convbytes = format - format0;
4507 memset (&discarded[format0 + 1 - format_start], 2,
4508 convbytes - 1);
4509 }
4510 else if (multibyte && !ASCII_CHAR_P (format_char))
4511 {
4512 int c = BYTE8_TO_CHAR (format_char);
4513 convbytes = CHAR_STRING (c, str);
4514 convsrc = (char *) str;
4515 }
4516 }
4517
4518 copy_char:
4519 if (convbytes <= buf + bufsize - p)
4520 {
4521 memcpy (p, convsrc, convbytes);
4522 p += convbytes;
4523 nchars++;
4524 continue;
4525 }
4526 }
4527
4528 /* There wasn't enough room to store this conversion or single
4529 character. CONVBYTES says how much room is needed. Allocate
4530 enough room (and then some) and do it again. */
4531
4532 ptrdiff_t used = p - buf;
4533 if (max_bufsize - used < convbytes)
4534 string_overflow ();
4535 bufsize = used + convbytes;
4536 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4537
4538 if (buf == initial_buffer)
4539 {
4540 buf = xmalloc (bufsize);
4541 sa_must_free = true;
4542 buf_save_value_index = SPECPDL_INDEX ();
4543 record_unwind_protect_ptr (xfree, buf);
4544 memcpy (buf, initial_buffer, used);
4545 }
4546 else
4547 {
4548 buf = xrealloc (buf, bufsize);
4549 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4550 }
4551
4552 p = buf + used;
4553 format = format0;
4554 n = n0;
4555 }
4556
4557 if (bufsize < p - buf)
4558 emacs_abort ();
4559
4560 if (maybe_combine_byte)
4561 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4562 Lisp_Object val = make_specified_string (buf, nchars, p - buf, multibyte);
4563
4564 /* If the format string has text properties, or any of the string
4565 arguments has text properties, set up text properties of the
4566 result string. */
4567
4568 if (string_intervals (args[0]) || arg_intervals)
4569 {
4570 /* Add text properties from the format string. */
4571 Lisp_Object len = make_number (SCHARS (args[0]));
4572 Lisp_Object props = text_property_list (args[0], make_number (0),
4573 len, Qnil);
4574 if (CONSP (props))
4575 {
4576 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4577 ptrdiff_t argn = 1;
4578
4579 /* Adjust the bounds of each text property
4580 to the proper start and end in the output string. */
4581
4582 /* Put the positions in PROPS in increasing order, so that
4583 we can do (effectively) one scan through the position
4584 space of the format string. */
4585 props = Fnreverse (props);
4586
4587 /* BYTEPOS is the byte position in the format string,
4588 POSITION is the untranslated char position in it,
4589 TRANSLATED is the translated char position in BUF,
4590 and ARGN is the number of the next arg we will come to. */
4591 for (Lisp_Object list = props; CONSP (list); list = XCDR (list))
4592 {
4593 Lisp_Object item = XCAR (list);
4594
4595 /* First adjust the property start position. */
4596 ptrdiff_t pos = XINT (XCAR (item));
4597
4598 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4599 up to this position. */
4600 for (; position < pos; bytepos++)
4601 {
4602 if (! discarded[bytepos])
4603 position++, translated++;
4604 else if (discarded[bytepos] == 1)
4605 {
4606 position++;
4607 if (translated == info[argn].start)
4608 {
4609 translated += info[argn].end - info[argn].start;
4610 argn++;
4611 }
4612 }
4613 }
4614
4615 XSETCAR (item, make_number (translated));
4616
4617 /* Likewise adjust the property end position. */
4618 pos = XINT (XCAR (XCDR (item)));
4619
4620 for (; position < pos; bytepos++)
4621 {
4622 if (! discarded[bytepos])
4623 position++, translated++;
4624 else if (discarded[bytepos] == 1)
4625 {
4626 position++;
4627 if (translated == info[argn].start)
4628 {
4629 translated += info[argn].end - info[argn].start;
4630 argn++;
4631 }
4632 }
4633 }
4634
4635 XSETCAR (XCDR (item), make_number (translated));
4636 }
4637
4638 add_text_properties_from_list (val, props, make_number (0));
4639 }
4640
4641 /* Add text properties from arguments. */
4642 if (arg_intervals)
4643 for (ptrdiff_t i = 1; i < nargs; i++)
4644 if (info[i].intervals)
4645 {
4646 len = make_number (SCHARS (args[i]));
4647 Lisp_Object new_len = make_number (info[i].end - info[i].start);
4648 props = text_property_list (args[i], make_number (0), len, Qnil);
4649 props = extend_property_ranges (props, new_len);
4650 /* If successive arguments have properties, be sure that
4651 the value of `composition' property be the copy. */
4652 if (1 < i && info[i - 1].end)
4653 make_composition_value_copy (props);
4654 add_text_properties_from_list (val, props,
4655 make_number (info[i].start));
4656 }
4657 }
4658
4659 /* If we allocated BUF or INFO with malloc, free it too. */
4660 SAFE_FREE ();
4661
4662 return val;
4663 }
4664 \f
4665 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4666 doc: /* Return t if two characters match, optionally ignoring case.
4667 Both arguments must be characters (i.e. integers).
4668 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4669 (register Lisp_Object c1, Lisp_Object c2)
4670 {
4671 int i1, i2;
4672 /* Check they're chars, not just integers, otherwise we could get array
4673 bounds violations in downcase. */
4674 CHECK_CHARACTER (c1);
4675 CHECK_CHARACTER (c2);
4676
4677 if (XINT (c1) == XINT (c2))
4678 return Qt;
4679 if (NILP (BVAR (current_buffer, case_fold_search)))
4680 return Qnil;
4681
4682 i1 = XFASTINT (c1);
4683 i2 = XFASTINT (c2);
4684
4685 /* FIXME: It is possible to compare multibyte characters even when
4686 the current buffer is unibyte. Unfortunately this is ambiguous
4687 for characters between 128 and 255, as they could be either
4688 eight-bit raw bytes or Latin-1 characters. Assume the former for
4689 now. See Bug#17011, and also see casefiddle.c's casify_object,
4690 which has a similar problem. */
4691 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4692 {
4693 if (SINGLE_BYTE_CHAR_P (i1))
4694 i1 = UNIBYTE_TO_CHAR (i1);
4695 if (SINGLE_BYTE_CHAR_P (i2))
4696 i2 = UNIBYTE_TO_CHAR (i2);
4697 }
4698
4699 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4700 }
4701 \f
4702 /* Transpose the markers in two regions of the current buffer, and
4703 adjust the ones between them if necessary (i.e.: if the regions
4704 differ in size).
4705
4706 START1, END1 are the character positions of the first region.
4707 START1_BYTE, END1_BYTE are the byte positions.
4708 START2, END2 are the character positions of the second region.
4709 START2_BYTE, END2_BYTE are the byte positions.
4710
4711 Traverses the entire marker list of the buffer to do so, adding an
4712 appropriate amount to some, subtracting from some, and leaving the
4713 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4714
4715 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4716
4717 static void
4718 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4719 ptrdiff_t start2, ptrdiff_t end2,
4720 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4721 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4722 {
4723 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4724 register struct Lisp_Marker *marker;
4725
4726 /* Update point as if it were a marker. */
4727 if (PT < start1)
4728 ;
4729 else if (PT < end1)
4730 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4731 PT_BYTE + (end2_byte - end1_byte));
4732 else if (PT < start2)
4733 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4734 (PT_BYTE + (end2_byte - start2_byte)
4735 - (end1_byte - start1_byte)));
4736 else if (PT < end2)
4737 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4738 PT_BYTE - (start2_byte - start1_byte));
4739
4740 /* We used to adjust the endpoints here to account for the gap, but that
4741 isn't good enough. Even if we assume the caller has tried to move the
4742 gap out of our way, it might still be at start1 exactly, for example;
4743 and that places it `inside' the interval, for our purposes. The amount
4744 of adjustment is nontrivial if there's a `denormalized' marker whose
4745 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4746 the dirty work to Fmarker_position, below. */
4747
4748 /* The difference between the region's lengths */
4749 diff = (end2 - start2) - (end1 - start1);
4750 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4751
4752 /* For shifting each marker in a region by the length of the other
4753 region plus the distance between the regions. */
4754 amt1 = (end2 - start2) + (start2 - end1);
4755 amt2 = (end1 - start1) + (start2 - end1);
4756 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4757 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4758
4759 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4760 {
4761 mpos = marker->bytepos;
4762 if (mpos >= start1_byte && mpos < end2_byte)
4763 {
4764 if (mpos < end1_byte)
4765 mpos += amt1_byte;
4766 else if (mpos < start2_byte)
4767 mpos += diff_byte;
4768 else
4769 mpos -= amt2_byte;
4770 marker->bytepos = mpos;
4771 }
4772 mpos = marker->charpos;
4773 if (mpos >= start1 && mpos < end2)
4774 {
4775 if (mpos < end1)
4776 mpos += amt1;
4777 else if (mpos < start2)
4778 mpos += diff;
4779 else
4780 mpos -= amt2;
4781 }
4782 marker->charpos = mpos;
4783 }
4784 }
4785
4786 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4787 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4788 The regions should not be overlapping, because the size of the buffer is
4789 never changed in a transposition.
4790
4791 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4792 any markers that happen to be located in the regions.
4793
4794 Transposing beyond buffer boundaries is an error. */)
4795 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4796 {
4797 register ptrdiff_t start1, end1, start2, end2;
4798 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4799 ptrdiff_t gap, len1, len_mid, len2;
4800 unsigned char *start1_addr, *start2_addr, *temp;
4801
4802 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4803 Lisp_Object buf;
4804
4805 XSETBUFFER (buf, current_buffer);
4806 cur_intv = buffer_intervals (current_buffer);
4807
4808 validate_region (&startr1, &endr1);
4809 validate_region (&startr2, &endr2);
4810
4811 start1 = XFASTINT (startr1);
4812 end1 = XFASTINT (endr1);
4813 start2 = XFASTINT (startr2);
4814 end2 = XFASTINT (endr2);
4815 gap = GPT;
4816
4817 /* Swap the regions if they're reversed. */
4818 if (start2 < end1)
4819 {
4820 register ptrdiff_t glumph = start1;
4821 start1 = start2;
4822 start2 = glumph;
4823 glumph = end1;
4824 end1 = end2;
4825 end2 = glumph;
4826 }
4827
4828 len1 = end1 - start1;
4829 len2 = end2 - start2;
4830
4831 if (start2 < end1)
4832 error ("Transposed regions overlap");
4833 /* Nothing to change for adjacent regions with one being empty */
4834 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4835 return Qnil;
4836
4837 /* The possibilities are:
4838 1. Adjacent (contiguous) regions, or separate but equal regions
4839 (no, really equal, in this case!), or
4840 2. Separate regions of unequal size.
4841
4842 The worst case is usually No. 2. It means that (aside from
4843 potential need for getting the gap out of the way), there also
4844 needs to be a shifting of the text between the two regions. So
4845 if they are spread far apart, we are that much slower... sigh. */
4846
4847 /* It must be pointed out that the really studly thing to do would
4848 be not to move the gap at all, but to leave it in place and work
4849 around it if necessary. This would be extremely efficient,
4850 especially considering that people are likely to do
4851 transpositions near where they are working interactively, which
4852 is exactly where the gap would be found. However, such code
4853 would be much harder to write and to read. So, if you are
4854 reading this comment and are feeling squirrely, by all means have
4855 a go! I just didn't feel like doing it, so I will simply move
4856 the gap the minimum distance to get it out of the way, and then
4857 deal with an unbroken array. */
4858
4859 start1_byte = CHAR_TO_BYTE (start1);
4860 end2_byte = CHAR_TO_BYTE (end2);
4861
4862 /* Make sure the gap won't interfere, by moving it out of the text
4863 we will operate on. */
4864 if (start1 < gap && gap < end2)
4865 {
4866 if (gap - start1 < end2 - gap)
4867 move_gap_both (start1, start1_byte);
4868 else
4869 move_gap_both (end2, end2_byte);
4870 }
4871
4872 start2_byte = CHAR_TO_BYTE (start2);
4873 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4874 len2_byte = end2_byte - start2_byte;
4875
4876 #ifdef BYTE_COMBINING_DEBUG
4877 if (end1 == start2)
4878 {
4879 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4880 len2_byte, start1, start1_byte)
4881 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4882 len1_byte, end2, start2_byte + len2_byte)
4883 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4884 len1_byte, end2, start2_byte + len2_byte))
4885 emacs_abort ();
4886 }
4887 else
4888 {
4889 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4890 len2_byte, start1, start1_byte)
4891 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4892 len1_byte, start2, start2_byte)
4893 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4894 len2_byte, end1, start1_byte + len1_byte)
4895 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4896 len1_byte, end2, start2_byte + len2_byte))
4897 emacs_abort ();
4898 }
4899 #endif
4900
4901 /* Hmmm... how about checking to see if the gap is large
4902 enough to use as the temporary storage? That would avoid an
4903 allocation... interesting. Later, don't fool with it now. */
4904
4905 /* Working without memmove, for portability (sigh), so must be
4906 careful of overlapping subsections of the array... */
4907
4908 if (end1 == start2) /* adjacent regions */
4909 {
4910 modify_text (start1, end2);
4911 record_change (start1, len1 + len2);
4912
4913 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4914 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4915 /* Don't use Fset_text_properties: that can cause GC, which can
4916 clobber objects stored in the tmp_intervals. */
4917 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4918 if (tmp_interval3)
4919 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4920
4921 USE_SAFE_ALLOCA;
4922
4923 /* First region smaller than second. */
4924 if (len1_byte < len2_byte)
4925 {
4926 temp = SAFE_ALLOCA (len2_byte);
4927
4928 /* Don't precompute these addresses. We have to compute them
4929 at the last minute, because the relocating allocator might
4930 have moved the buffer around during the xmalloc. */
4931 start1_addr = BYTE_POS_ADDR (start1_byte);
4932 start2_addr = BYTE_POS_ADDR (start2_byte);
4933
4934 memcpy (temp, start2_addr, len2_byte);
4935 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4936 memcpy (start1_addr, temp, len2_byte);
4937 }
4938 else
4939 /* First region not smaller than second. */
4940 {
4941 temp = SAFE_ALLOCA (len1_byte);
4942 start1_addr = BYTE_POS_ADDR (start1_byte);
4943 start2_addr = BYTE_POS_ADDR (start2_byte);
4944 memcpy (temp, start1_addr, len1_byte);
4945 memcpy (start1_addr, start2_addr, len2_byte);
4946 memcpy (start1_addr + len2_byte, temp, len1_byte);
4947 }
4948
4949 SAFE_FREE ();
4950 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4951 len1, current_buffer, 0);
4952 graft_intervals_into_buffer (tmp_interval2, start1,
4953 len2, current_buffer, 0);
4954 update_compositions (start1, start1 + len2, CHECK_BORDER);
4955 update_compositions (start1 + len2, end2, CHECK_TAIL);
4956 }
4957 /* Non-adjacent regions, because end1 != start2, bleagh... */
4958 else
4959 {
4960 len_mid = start2_byte - (start1_byte + len1_byte);
4961
4962 if (len1_byte == len2_byte)
4963 /* Regions are same size, though, how nice. */
4964 {
4965 USE_SAFE_ALLOCA;
4966
4967 modify_text (start1, end1);
4968 modify_text (start2, end2);
4969 record_change (start1, len1);
4970 record_change (start2, len2);
4971 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4972 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4973
4974 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4975 if (tmp_interval3)
4976 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4977
4978 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4979 if (tmp_interval3)
4980 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4981
4982 temp = SAFE_ALLOCA (len1_byte);
4983 start1_addr = BYTE_POS_ADDR (start1_byte);
4984 start2_addr = BYTE_POS_ADDR (start2_byte);
4985 memcpy (temp, start1_addr, len1_byte);
4986 memcpy (start1_addr, start2_addr, len2_byte);
4987 memcpy (start2_addr, temp, len1_byte);
4988 SAFE_FREE ();
4989
4990 graft_intervals_into_buffer (tmp_interval1, start2,
4991 len1, current_buffer, 0);
4992 graft_intervals_into_buffer (tmp_interval2, start1,
4993 len2, current_buffer, 0);
4994 }
4995
4996 else if (len1_byte < len2_byte) /* Second region larger than first */
4997 /* Non-adjacent & unequal size, area between must also be shifted. */
4998 {
4999 USE_SAFE_ALLOCA;
5000
5001 modify_text (start1, end2);
5002 record_change (start1, (end2 - start1));
5003 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
5004 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
5005 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
5006
5007 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
5008 if (tmp_interval3)
5009 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
5010
5011 /* holds region 2 */
5012 temp = SAFE_ALLOCA (len2_byte);
5013 start1_addr = BYTE_POS_ADDR (start1_byte);
5014 start2_addr = BYTE_POS_ADDR (start2_byte);
5015 memcpy (temp, start2_addr, len2_byte);
5016 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
5017 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
5018 memcpy (start1_addr, temp, len2_byte);
5019 SAFE_FREE ();
5020
5021 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
5022 len1, current_buffer, 0);
5023 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
5024 len_mid, current_buffer, 0);
5025 graft_intervals_into_buffer (tmp_interval2, start1,
5026 len2, current_buffer, 0);
5027 }
5028 else
5029 /* Second region smaller than first. */
5030 {
5031 USE_SAFE_ALLOCA;
5032
5033 record_change (start1, (end2 - start1));
5034 modify_text (start1, end2);
5035
5036 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
5037 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
5038 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
5039
5040 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
5041 if (tmp_interval3)
5042 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
5043
5044 /* holds region 1 */
5045 temp = SAFE_ALLOCA (len1_byte);
5046 start1_addr = BYTE_POS_ADDR (start1_byte);
5047 start2_addr = BYTE_POS_ADDR (start2_byte);
5048 memcpy (temp, start1_addr, len1_byte);
5049 memcpy (start1_addr, start2_addr, len2_byte);
5050 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
5051 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
5052 SAFE_FREE ();
5053
5054 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
5055 len1, current_buffer, 0);
5056 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
5057 len_mid, current_buffer, 0);
5058 graft_intervals_into_buffer (tmp_interval2, start1,
5059 len2, current_buffer, 0);
5060 }
5061
5062 update_compositions (start1, start1 + len2, CHECK_BORDER);
5063 update_compositions (end2 - len1, end2, CHECK_BORDER);
5064 }
5065
5066 /* When doing multiple transpositions, it might be nice
5067 to optimize this. Perhaps the markers in any one buffer
5068 should be organized in some sorted data tree. */
5069 if (NILP (leave_markers))
5070 {
5071 transpose_markers (start1, end1, start2, end2,
5072 start1_byte, start1_byte + len1_byte,
5073 start2_byte, start2_byte + len2_byte);
5074 fix_start_end_in_overlays (start1, end2);
5075 }
5076
5077 signal_after_change (start1, end2 - start1, end2 - start1);
5078 return Qnil;
5079 }
5080
5081 \f
5082 void
5083 syms_of_editfns (void)
5084 {
5085 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
5086 DEFSYM (Qwall, "wall");
5087
5088 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
5089 doc: /* Non-nil means text motion commands don't notice fields. */);
5090 Vinhibit_field_text_motion = Qnil;
5091
5092 DEFVAR_LISP ("buffer-access-fontify-functions",
5093 Vbuffer_access_fontify_functions,
5094 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
5095 Each function is called with two arguments which specify the range
5096 of the buffer being accessed. */);
5097 Vbuffer_access_fontify_functions = Qnil;
5098
5099 {
5100 Lisp_Object obuf;
5101 obuf = Fcurrent_buffer ();
5102 /* Do this here, because init_buffer_once is too early--it won't work. */
5103 Fset_buffer (Vprin1_to_string_buffer);
5104 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
5105 Fset (Fmake_local_variable (Qbuffer_access_fontify_functions), Qnil);
5106 Fset_buffer (obuf);
5107 }
5108
5109 DEFVAR_LISP ("buffer-access-fontified-property",
5110 Vbuffer_access_fontified_property,
5111 doc: /* Property which (if non-nil) indicates text has been fontified.
5112 `buffer-substring' need not call the `buffer-access-fontify-functions'
5113 functions if all the text being accessed has this property. */);
5114 Vbuffer_access_fontified_property = Qnil;
5115
5116 DEFVAR_LISP ("system-name", Vsystem_name,
5117 doc: /* The host name of the machine Emacs is running on. */);
5118 Vsystem_name = cached_system_name = Qnil;
5119
5120 DEFVAR_LISP ("user-full-name", Vuser_full_name,
5121 doc: /* The full name of the user logged in. */);
5122
5123 DEFVAR_LISP ("user-login-name", Vuser_login_name,
5124 doc: /* The user's name, taken from environment variables if possible. */);
5125 Vuser_login_name = Qnil;
5126
5127 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
5128 doc: /* The user's name, based upon the real uid only. */);
5129
5130 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
5131 doc: /* The release of the operating system Emacs is running on. */);
5132
5133 defsubr (&Spropertize);
5134 defsubr (&Schar_equal);
5135 defsubr (&Sgoto_char);
5136 defsubr (&Sstring_to_char);
5137 defsubr (&Schar_to_string);
5138 defsubr (&Sbyte_to_string);
5139 defsubr (&Sbuffer_substring);
5140 defsubr (&Sbuffer_substring_no_properties);
5141 defsubr (&Sbuffer_string);
5142 defsubr (&Sget_pos_property);
5143
5144 defsubr (&Spoint_marker);
5145 defsubr (&Smark_marker);
5146 defsubr (&Spoint);
5147 defsubr (&Sregion_beginning);
5148 defsubr (&Sregion_end);
5149
5150 /* Symbol for the text property used to mark fields. */
5151 DEFSYM (Qfield, "field");
5152
5153 /* A special value for Qfield properties. */
5154 DEFSYM (Qboundary, "boundary");
5155
5156 defsubr (&Sfield_beginning);
5157 defsubr (&Sfield_end);
5158 defsubr (&Sfield_string);
5159 defsubr (&Sfield_string_no_properties);
5160 defsubr (&Sdelete_field);
5161 defsubr (&Sconstrain_to_field);
5162
5163 defsubr (&Sline_beginning_position);
5164 defsubr (&Sline_end_position);
5165
5166 defsubr (&Ssave_excursion);
5167 defsubr (&Ssave_current_buffer);
5168
5169 defsubr (&Sbuffer_size);
5170 defsubr (&Spoint_max);
5171 defsubr (&Spoint_min);
5172 defsubr (&Spoint_min_marker);
5173 defsubr (&Spoint_max_marker);
5174 defsubr (&Sgap_position);
5175 defsubr (&Sgap_size);
5176 defsubr (&Sposition_bytes);
5177 defsubr (&Sbyte_to_position);
5178
5179 defsubr (&Sbobp);
5180 defsubr (&Seobp);
5181 defsubr (&Sbolp);
5182 defsubr (&Seolp);
5183 defsubr (&Sfollowing_char);
5184 defsubr (&Sprevious_char);
5185 defsubr (&Schar_after);
5186 defsubr (&Schar_before);
5187 defsubr (&Sinsert);
5188 defsubr (&Sinsert_before_markers);
5189 defsubr (&Sinsert_and_inherit);
5190 defsubr (&Sinsert_and_inherit_before_markers);
5191 defsubr (&Sinsert_char);
5192 defsubr (&Sinsert_byte);
5193
5194 defsubr (&Suser_login_name);
5195 defsubr (&Suser_real_login_name);
5196 defsubr (&Suser_uid);
5197 defsubr (&Suser_real_uid);
5198 defsubr (&Sgroup_gid);
5199 defsubr (&Sgroup_real_gid);
5200 defsubr (&Suser_full_name);
5201 defsubr (&Semacs_pid);
5202 defsubr (&Scurrent_time);
5203 defsubr (&Stime_add);
5204 defsubr (&Stime_subtract);
5205 defsubr (&Stime_less_p);
5206 defsubr (&Sget_internal_run_time);
5207 defsubr (&Sformat_time_string);
5208 defsubr (&Sfloat_time);
5209 defsubr (&Sdecode_time);
5210 defsubr (&Sencode_time);
5211 defsubr (&Scurrent_time_string);
5212 defsubr (&Scurrent_time_zone);
5213 defsubr (&Sset_time_zone_rule);
5214 defsubr (&Ssystem_name);
5215 defsubr (&Smessage);
5216 defsubr (&Smessage_box);
5217 defsubr (&Smessage_or_box);
5218 defsubr (&Scurrent_message);
5219 defsubr (&Sformat);
5220 defsubr (&Sformat_message);
5221
5222 defsubr (&Sinsert_buffer_substring);
5223 defsubr (&Scompare_buffer_substrings);
5224 defsubr (&Ssubst_char_in_region);
5225 defsubr (&Stranslate_region_internal);
5226 defsubr (&Sdelete_region);
5227 defsubr (&Sdelete_and_extract_region);
5228 defsubr (&Swiden);
5229 defsubr (&Snarrow_to_region);
5230 defsubr (&Ssave_restriction);
5231 defsubr (&Stranspose_regions);
5232 }