]> code.delx.au - gnu-emacs/blob - src/fns.c
Merge from origin/emacs-25
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2016 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <unistd.h>
24 #include <filevercmp.h>
25 #include <intprops.h>
26 #include <vla.h>
27 #include <errno.h>
28
29 #include "lisp.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "composite.h"
33 #include "buffer.h"
34 #include "intervals.h"
35 #include "window.h"
36
37 static void sort_vector_copy (Lisp_Object, ptrdiff_t,
38 Lisp_Object [restrict], Lisp_Object [restrict]);
39 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool, Lisp_Object);
40
41 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
42 doc: /* Return the argument unchanged. */
43 attributes: const)
44 (Lisp_Object arg)
45 {
46 return arg;
47 }
48
49 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
50 doc: /* Return a pseudo-random number.
51 All integers representable in Lisp, i.e. between `most-negative-fixnum'
52 and `most-positive-fixnum', inclusive, are equally likely.
53
54 With positive integer LIMIT, return random number in interval [0,LIMIT).
55 With argument t, set the random number seed from the system's entropy
56 pool if available, otherwise from less-random volatile data such as the time.
57 With a string argument, set the seed based on the string's contents.
58 Other values of LIMIT are ignored.
59
60 See Info node `(elisp)Random Numbers' for more details. */)
61 (Lisp_Object limit)
62 {
63 EMACS_INT val;
64
65 if (EQ (limit, Qt))
66 init_random ();
67 else if (STRINGP (limit))
68 seed_random (SSDATA (limit), SBYTES (limit));
69
70 val = get_random ();
71 if (INTEGERP (limit) && 0 < XINT (limit))
72 while (true)
73 {
74 /* Return the remainder, except reject the rare case where
75 get_random returns a number so close to INTMASK that the
76 remainder isn't random. */
77 EMACS_INT remainder = val % XINT (limit);
78 if (val - remainder <= INTMASK - XINT (limit) + 1)
79 return make_number (remainder);
80 val = get_random ();
81 }
82 return make_number (val);
83 }
84 \f
85 /* Heuristic on how many iterations of a tight loop can be safely done
86 before it's time to do a QUIT. This must be a power of 2. */
87 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
88
89 /* Random data-structure functions. */
90
91 static void
92 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
93 {
94 CHECK_TYPE (NILP (x), Qlistp, y);
95 }
96
97 DEFUN ("length", Flength, Slength, 1, 1, 0,
98 doc: /* Return the length of vector, list or string SEQUENCE.
99 A byte-code function object is also allowed.
100 If the string contains multibyte characters, this is not necessarily
101 the number of bytes in the string; it is the number of characters.
102 To get the number of bytes, use `string-bytes'. */)
103 (register Lisp_Object sequence)
104 {
105 register Lisp_Object val;
106
107 if (STRINGP (sequence))
108 XSETFASTINT (val, SCHARS (sequence));
109 else if (VECTORP (sequence))
110 XSETFASTINT (val, ASIZE (sequence));
111 else if (CHAR_TABLE_P (sequence))
112 XSETFASTINT (val, MAX_CHAR);
113 else if (BOOL_VECTOR_P (sequence))
114 XSETFASTINT (val, bool_vector_size (sequence));
115 else if (COMPILEDP (sequence))
116 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
117 else if (CONSP (sequence))
118 {
119 EMACS_INT i = 0;
120
121 do
122 {
123 ++i;
124 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
125 {
126 if (MOST_POSITIVE_FIXNUM < i)
127 error ("List too long");
128 QUIT;
129 }
130 sequence = XCDR (sequence);
131 }
132 while (CONSP (sequence));
133
134 CHECK_LIST_END (sequence, sequence);
135
136 val = make_number (i);
137 }
138 else if (NILP (sequence))
139 XSETFASTINT (val, 0);
140 else
141 wrong_type_argument (Qsequencep, sequence);
142
143 return val;
144 }
145
146 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
147 doc: /* Return the length of a list, but avoid error or infinite loop.
148 This function never gets an error. If LIST is not really a list,
149 it returns 0. If LIST is circular, it returns a finite value
150 which is at least the number of distinct elements. */)
151 (Lisp_Object list)
152 {
153 Lisp_Object tail, halftail;
154 double hilen = 0;
155 uintmax_t lolen = 1;
156
157 if (! CONSP (list))
158 return make_number (0);
159
160 /* halftail is used to detect circular lists. */
161 for (tail = halftail = list; ; )
162 {
163 tail = XCDR (tail);
164 if (! CONSP (tail))
165 break;
166 if (EQ (tail, halftail))
167 break;
168 lolen++;
169 if ((lolen & 1) == 0)
170 {
171 halftail = XCDR (halftail);
172 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
173 {
174 QUIT;
175 if (lolen == 0)
176 hilen += UINTMAX_MAX + 1.0;
177 }
178 }
179 }
180
181 /* If the length does not fit into a fixnum, return a float.
182 On all known practical machines this returns an upper bound on
183 the true length. */
184 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
185 }
186
187 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
188 doc: /* Return the number of bytes in STRING.
189 If STRING is multibyte, this may be greater than the length of STRING. */)
190 (Lisp_Object string)
191 {
192 CHECK_STRING (string);
193 return make_number (SBYTES (string));
194 }
195
196 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
197 doc: /* Return t if two strings have identical contents.
198 Case is significant, but text properties are ignored.
199 Symbols are also allowed; their print names are used instead. */)
200 (register Lisp_Object s1, Lisp_Object s2)
201 {
202 if (SYMBOLP (s1))
203 s1 = SYMBOL_NAME (s1);
204 if (SYMBOLP (s2))
205 s2 = SYMBOL_NAME (s2);
206 CHECK_STRING (s1);
207 CHECK_STRING (s2);
208
209 if (SCHARS (s1) != SCHARS (s2)
210 || SBYTES (s1) != SBYTES (s2)
211 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
212 return Qnil;
213 return Qt;
214 }
215
216 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
217 doc: /* Compare the contents of two strings, converting to multibyte if needed.
218 The arguments START1, END1, START2, and END2, if non-nil, are
219 positions specifying which parts of STR1 or STR2 to compare. In
220 string STR1, compare the part between START1 (inclusive) and END1
221 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
222 the string; if END1 is nil, it defaults to the length of the string.
223 Likewise, in string STR2, compare the part between START2 and END2.
224 Like in `substring', negative values are counted from the end.
225
226 The strings are compared by the numeric values of their characters.
227 For instance, STR1 is "less than" STR2 if its first differing
228 character has a smaller numeric value. If IGNORE-CASE is non-nil,
229 characters are converted to lower-case before comparing them. Unibyte
230 strings are converted to multibyte for comparison.
231
232 The value is t if the strings (or specified portions) match.
233 If string STR1 is less, the value is a negative number N;
234 - 1 - N is the number of characters that match at the beginning.
235 If string STR1 is greater, the value is a positive number N;
236 N - 1 is the number of characters that match at the beginning. */)
237 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2,
238 Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
239 {
240 ptrdiff_t from1, to1, from2, to2, i1, i1_byte, i2, i2_byte;
241
242 CHECK_STRING (str1);
243 CHECK_STRING (str2);
244
245 /* For backward compatibility, silently bring too-large positive end
246 values into range. */
247 if (INTEGERP (end1) && SCHARS (str1) < XINT (end1))
248 end1 = make_number (SCHARS (str1));
249 if (INTEGERP (end2) && SCHARS (str2) < XINT (end2))
250 end2 = make_number (SCHARS (str2));
251
252 validate_subarray (str1, start1, end1, SCHARS (str1), &from1, &to1);
253 validate_subarray (str2, start2, end2, SCHARS (str2), &from2, &to2);
254
255 i1 = from1;
256 i2 = from2;
257
258 i1_byte = string_char_to_byte (str1, i1);
259 i2_byte = string_char_to_byte (str2, i2);
260
261 while (i1 < to1 && i2 < to2)
262 {
263 /* When we find a mismatch, we must compare the
264 characters, not just the bytes. */
265 int c1, c2;
266
267 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c1, str1, i1, i1_byte);
268 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c2, str2, i2, i2_byte);
269
270 if (c1 == c2)
271 continue;
272
273 if (! NILP (ignore_case))
274 {
275 c1 = XINT (Fupcase (make_number (c1)));
276 c2 = XINT (Fupcase (make_number (c2)));
277 }
278
279 if (c1 == c2)
280 continue;
281
282 /* Note that I1 has already been incremented
283 past the character that we are comparing;
284 hence we don't add or subtract 1 here. */
285 if (c1 < c2)
286 return make_number (- i1 + from1);
287 else
288 return make_number (i1 - from1);
289 }
290
291 if (i1 < to1)
292 return make_number (i1 - from1 + 1);
293 if (i2 < to2)
294 return make_number (- i1 + from1 - 1);
295
296 return Qt;
297 }
298
299 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
300 doc: /* Return non-nil if STRING1 is less than STRING2 in lexicographic order.
301 Case is significant.
302 Symbols are also allowed; their print names are used instead. */)
303 (register Lisp_Object string1, Lisp_Object string2)
304 {
305 register ptrdiff_t end;
306 register ptrdiff_t i1, i1_byte, i2, i2_byte;
307
308 if (SYMBOLP (string1))
309 string1 = SYMBOL_NAME (string1);
310 if (SYMBOLP (string2))
311 string2 = SYMBOL_NAME (string2);
312 CHECK_STRING (string1);
313 CHECK_STRING (string2);
314
315 i1 = i1_byte = i2 = i2_byte = 0;
316
317 end = SCHARS (string1);
318 if (end > SCHARS (string2))
319 end = SCHARS (string2);
320
321 while (i1 < end)
322 {
323 /* When we find a mismatch, we must compare the
324 characters, not just the bytes. */
325 int c1, c2;
326
327 FETCH_STRING_CHAR_ADVANCE (c1, string1, i1, i1_byte);
328 FETCH_STRING_CHAR_ADVANCE (c2, string2, i2, i2_byte);
329
330 if (c1 != c2)
331 return c1 < c2 ? Qt : Qnil;
332 }
333 return i1 < SCHARS (string2) ? Qt : Qnil;
334 }
335
336 DEFUN ("string-version-lessp", Fstring_version_lessp,
337 Sstring_version_lessp, 2, 2, 0,
338 doc: /* Return non-nil if S1 is less than S2, as version strings.
339
340 This function compares version strings S1 and S2:
341 1) By prefix lexicographically.
342 2) Then by version (similarly to version comparison of Debian's dpkg).
343 Leading zeros in version numbers are ignored.
344 3) If both prefix and version are equal, compare as ordinary strings.
345
346 For example, \"foo2.png\" compares less than \"foo12.png\".
347 Case is significant.
348 Symbols are also allowed; their print names are used instead. */)
349 (Lisp_Object string1, Lisp_Object string2)
350 {
351 if (SYMBOLP (string1))
352 string1 = SYMBOL_NAME (string1);
353 if (SYMBOLP (string2))
354 string2 = SYMBOL_NAME (string2);
355 CHECK_STRING (string1);
356 CHECK_STRING (string2);
357
358 char *p1 = SSDATA (string1);
359 char *p2 = SSDATA (string2);
360 char *lim1 = p1 + SBYTES (string1);
361 char *lim2 = p2 + SBYTES (string2);
362 int cmp;
363
364 while ((cmp = filevercmp (p1, p2)) == 0)
365 {
366 /* If the strings are identical through their first null bytes,
367 skip past identical prefixes and try again. */
368 ptrdiff_t size = strlen (p1) + 1;
369 p1 += size;
370 p2 += size;
371 if (lim1 < p1)
372 return lim2 < p2 ? Qnil : Qt;
373 if (lim2 < p2)
374 return Qnil;
375 }
376
377 return cmp < 0 ? Qt : Qnil;
378 }
379
380 DEFUN ("string-collate-lessp", Fstring_collate_lessp, Sstring_collate_lessp, 2, 4, 0,
381 doc: /* Return t if first arg string is less than second in collation order.
382 Symbols are also allowed; their print names are used instead.
383
384 This function obeys the conventions for collation order in your
385 locale settings. For example, punctuation and whitespace characters
386 might be considered less significant for sorting:
387
388 \(sort \\='("11" "12" "1 1" "1 2" "1.1" "1.2") \\='string-collate-lessp)
389 => ("11" "1 1" "1.1" "12" "1 2" "1.2")
390
391 The optional argument LOCALE, a string, overrides the setting of your
392 current locale identifier for collation. The value is system
393 dependent; a LOCALE \"en_US.UTF-8\" is applicable on POSIX systems,
394 while it would be, e.g., \"enu_USA.1252\" on MS-Windows systems.
395
396 If IGNORE-CASE is non-nil, characters are converted to lower-case
397 before comparing them.
398
399 To emulate Unicode-compliant collation on MS-Windows systems,
400 bind `w32-collate-ignore-punctuation' to a non-nil value, since
401 the codeset part of the locale cannot be \"UTF-8\" on MS-Windows.
402
403 If your system does not support a locale environment, this function
404 behaves like `string-lessp'. */)
405 (Lisp_Object s1, Lisp_Object s2, Lisp_Object locale, Lisp_Object ignore_case)
406 {
407 #if defined __STDC_ISO_10646__ || defined WINDOWSNT
408 /* Check parameters. */
409 if (SYMBOLP (s1))
410 s1 = SYMBOL_NAME (s1);
411 if (SYMBOLP (s2))
412 s2 = SYMBOL_NAME (s2);
413 CHECK_STRING (s1);
414 CHECK_STRING (s2);
415 if (!NILP (locale))
416 CHECK_STRING (locale);
417
418 return (str_collate (s1, s2, locale, ignore_case) < 0) ? Qt : Qnil;
419
420 #else /* !__STDC_ISO_10646__, !WINDOWSNT */
421 return Fstring_lessp (s1, s2);
422 #endif /* !__STDC_ISO_10646__, !WINDOWSNT */
423 }
424
425 DEFUN ("string-collate-equalp", Fstring_collate_equalp, Sstring_collate_equalp, 2, 4, 0,
426 doc: /* Return t if two strings have identical contents.
427 Symbols are also allowed; their print names are used instead.
428
429 This function obeys the conventions for collation order in your locale
430 settings. For example, characters with different coding points but
431 the same meaning might be considered as equal, like different grave
432 accent Unicode characters:
433
434 \(string-collate-equalp (string ?\\uFF40) (string ?\\u1FEF))
435 => t
436
437 The optional argument LOCALE, a string, overrides the setting of your
438 current locale identifier for collation. The value is system
439 dependent; a LOCALE \"en_US.UTF-8\" is applicable on POSIX systems,
440 while it would be \"enu_USA.1252\" on MS Windows systems.
441
442 If IGNORE-CASE is non-nil, characters are converted to lower-case
443 before comparing them.
444
445 To emulate Unicode-compliant collation on MS-Windows systems,
446 bind `w32-collate-ignore-punctuation' to a non-nil value, since
447 the codeset part of the locale cannot be \"UTF-8\" on MS-Windows.
448
449 If your system does not support a locale environment, this function
450 behaves like `string-equal'.
451
452 Do NOT use this function to compare file names for equality, only
453 for sorting them. */)
454 (Lisp_Object s1, Lisp_Object s2, Lisp_Object locale, Lisp_Object ignore_case)
455 {
456 #if defined __STDC_ISO_10646__ || defined WINDOWSNT
457 /* Check parameters. */
458 if (SYMBOLP (s1))
459 s1 = SYMBOL_NAME (s1);
460 if (SYMBOLP (s2))
461 s2 = SYMBOL_NAME (s2);
462 CHECK_STRING (s1);
463 CHECK_STRING (s2);
464 if (!NILP (locale))
465 CHECK_STRING (locale);
466
467 return (str_collate (s1, s2, locale, ignore_case) == 0) ? Qt : Qnil;
468
469 #else /* !__STDC_ISO_10646__, !WINDOWSNT */
470 return Fstring_equal (s1, s2);
471 #endif /* !__STDC_ISO_10646__, !WINDOWSNT */
472 }
473 \f
474 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
475 enum Lisp_Type target_type, bool last_special);
476
477 /* ARGSUSED */
478 Lisp_Object
479 concat2 (Lisp_Object s1, Lisp_Object s2)
480 {
481 return concat (2, ((Lisp_Object []) {s1, s2}), Lisp_String, 0);
482 }
483
484 /* ARGSUSED */
485 Lisp_Object
486 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
487 {
488 return concat (3, ((Lisp_Object []) {s1, s2, s3}), Lisp_String, 0);
489 }
490
491 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
492 doc: /* Concatenate all the arguments and make the result a list.
493 The result is a list whose elements are the elements of all the arguments.
494 Each argument may be a list, vector or string.
495 The last argument is not copied, just used as the tail of the new list.
496 usage: (append &rest SEQUENCES) */)
497 (ptrdiff_t nargs, Lisp_Object *args)
498 {
499 return concat (nargs, args, Lisp_Cons, 1);
500 }
501
502 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
503 doc: /* Concatenate all the arguments and make the result a string.
504 The result is a string whose elements are the elements of all the arguments.
505 Each argument may be a string or a list or vector of characters (integers).
506 usage: (concat &rest SEQUENCES) */)
507 (ptrdiff_t nargs, Lisp_Object *args)
508 {
509 return concat (nargs, args, Lisp_String, 0);
510 }
511
512 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
513 doc: /* Concatenate all the arguments and make the result a vector.
514 The result is a vector whose elements are the elements of all the arguments.
515 Each argument may be a list, vector or string.
516 usage: (vconcat &rest SEQUENCES) */)
517 (ptrdiff_t nargs, Lisp_Object *args)
518 {
519 return concat (nargs, args, Lisp_Vectorlike, 0);
520 }
521
522
523 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
524 doc: /* Return a copy of a list, vector, string or char-table.
525 The elements of a list or vector are not copied; they are shared
526 with the original. */)
527 (Lisp_Object arg)
528 {
529 if (NILP (arg)) return arg;
530
531 if (CHAR_TABLE_P (arg))
532 {
533 return copy_char_table (arg);
534 }
535
536 if (BOOL_VECTOR_P (arg))
537 {
538 EMACS_INT nbits = bool_vector_size (arg);
539 ptrdiff_t nbytes = bool_vector_bytes (nbits);
540 Lisp_Object val = make_uninit_bool_vector (nbits);
541 memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
542 return val;
543 }
544
545 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
546 wrong_type_argument (Qsequencep, arg);
547
548 return concat (1, &arg, XTYPE (arg), 0);
549 }
550
551 /* This structure holds information of an argument of `concat' that is
552 a string and has text properties to be copied. */
553 struct textprop_rec
554 {
555 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
556 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
557 ptrdiff_t to; /* refer to VAL (the target string) */
558 };
559
560 static Lisp_Object
561 concat (ptrdiff_t nargs, Lisp_Object *args,
562 enum Lisp_Type target_type, bool last_special)
563 {
564 Lisp_Object val;
565 Lisp_Object tail;
566 Lisp_Object this;
567 ptrdiff_t toindex;
568 ptrdiff_t toindex_byte = 0;
569 EMACS_INT result_len;
570 EMACS_INT result_len_byte;
571 ptrdiff_t argnum;
572 Lisp_Object last_tail;
573 Lisp_Object prev;
574 bool some_multibyte;
575 /* When we make a multibyte string, we can't copy text properties
576 while concatenating each string because the length of resulting
577 string can't be decided until we finish the whole concatenation.
578 So, we record strings that have text properties to be copied
579 here, and copy the text properties after the concatenation. */
580 struct textprop_rec *textprops = NULL;
581 /* Number of elements in textprops. */
582 ptrdiff_t num_textprops = 0;
583 USE_SAFE_ALLOCA;
584
585 tail = Qnil;
586
587 /* In append, the last arg isn't treated like the others */
588 if (last_special && nargs > 0)
589 {
590 nargs--;
591 last_tail = args[nargs];
592 }
593 else
594 last_tail = Qnil;
595
596 /* Check each argument. */
597 for (argnum = 0; argnum < nargs; argnum++)
598 {
599 this = args[argnum];
600 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
601 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
602 wrong_type_argument (Qsequencep, this);
603 }
604
605 /* Compute total length in chars of arguments in RESULT_LEN.
606 If desired output is a string, also compute length in bytes
607 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
608 whether the result should be a multibyte string. */
609 result_len_byte = 0;
610 result_len = 0;
611 some_multibyte = 0;
612 for (argnum = 0; argnum < nargs; argnum++)
613 {
614 EMACS_INT len;
615 this = args[argnum];
616 len = XFASTINT (Flength (this));
617 if (target_type == Lisp_String)
618 {
619 /* We must count the number of bytes needed in the string
620 as well as the number of characters. */
621 ptrdiff_t i;
622 Lisp_Object ch;
623 int c;
624 ptrdiff_t this_len_byte;
625
626 if (VECTORP (this) || COMPILEDP (this))
627 for (i = 0; i < len; i++)
628 {
629 ch = AREF (this, i);
630 CHECK_CHARACTER (ch);
631 c = XFASTINT (ch);
632 this_len_byte = CHAR_BYTES (c);
633 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
634 string_overflow ();
635 result_len_byte += this_len_byte;
636 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
637 some_multibyte = 1;
638 }
639 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
640 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
641 else if (CONSP (this))
642 for (; CONSP (this); this = XCDR (this))
643 {
644 ch = XCAR (this);
645 CHECK_CHARACTER (ch);
646 c = XFASTINT (ch);
647 this_len_byte = CHAR_BYTES (c);
648 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
649 string_overflow ();
650 result_len_byte += this_len_byte;
651 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
652 some_multibyte = 1;
653 }
654 else if (STRINGP (this))
655 {
656 if (STRING_MULTIBYTE (this))
657 {
658 some_multibyte = 1;
659 this_len_byte = SBYTES (this);
660 }
661 else
662 this_len_byte = count_size_as_multibyte (SDATA (this),
663 SCHARS (this));
664 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
665 string_overflow ();
666 result_len_byte += this_len_byte;
667 }
668 }
669
670 result_len += len;
671 if (MOST_POSITIVE_FIXNUM < result_len)
672 memory_full (SIZE_MAX);
673 }
674
675 if (! some_multibyte)
676 result_len_byte = result_len;
677
678 /* Create the output object. */
679 if (target_type == Lisp_Cons)
680 val = Fmake_list (make_number (result_len), Qnil);
681 else if (target_type == Lisp_Vectorlike)
682 val = Fmake_vector (make_number (result_len), Qnil);
683 else if (some_multibyte)
684 val = make_uninit_multibyte_string (result_len, result_len_byte);
685 else
686 val = make_uninit_string (result_len);
687
688 /* In `append', if all but last arg are nil, return last arg. */
689 if (target_type == Lisp_Cons && EQ (val, Qnil))
690 return last_tail;
691
692 /* Copy the contents of the args into the result. */
693 if (CONSP (val))
694 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
695 else
696 toindex = 0, toindex_byte = 0;
697
698 prev = Qnil;
699 if (STRINGP (val))
700 SAFE_NALLOCA (textprops, 1, nargs);
701
702 for (argnum = 0; argnum < nargs; argnum++)
703 {
704 Lisp_Object thislen;
705 ptrdiff_t thisleni = 0;
706 register ptrdiff_t thisindex = 0;
707 register ptrdiff_t thisindex_byte = 0;
708
709 this = args[argnum];
710 if (!CONSP (this))
711 thislen = Flength (this), thisleni = XINT (thislen);
712
713 /* Between strings of the same kind, copy fast. */
714 if (STRINGP (this) && STRINGP (val)
715 && STRING_MULTIBYTE (this) == some_multibyte)
716 {
717 ptrdiff_t thislen_byte = SBYTES (this);
718
719 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
720 if (string_intervals (this))
721 {
722 textprops[num_textprops].argnum = argnum;
723 textprops[num_textprops].from = 0;
724 textprops[num_textprops++].to = toindex;
725 }
726 toindex_byte += thislen_byte;
727 toindex += thisleni;
728 }
729 /* Copy a single-byte string to a multibyte string. */
730 else if (STRINGP (this) && STRINGP (val))
731 {
732 if (string_intervals (this))
733 {
734 textprops[num_textprops].argnum = argnum;
735 textprops[num_textprops].from = 0;
736 textprops[num_textprops++].to = toindex;
737 }
738 toindex_byte += copy_text (SDATA (this),
739 SDATA (val) + toindex_byte,
740 SCHARS (this), 0, 1);
741 toindex += thisleni;
742 }
743 else
744 /* Copy element by element. */
745 while (1)
746 {
747 register Lisp_Object elt;
748
749 /* Fetch next element of `this' arg into `elt', or break if
750 `this' is exhausted. */
751 if (NILP (this)) break;
752 if (CONSP (this))
753 elt = XCAR (this), this = XCDR (this);
754 else if (thisindex >= thisleni)
755 break;
756 else if (STRINGP (this))
757 {
758 int c;
759 if (STRING_MULTIBYTE (this))
760 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
761 thisindex,
762 thisindex_byte);
763 else
764 {
765 c = SREF (this, thisindex); thisindex++;
766 if (some_multibyte && !ASCII_CHAR_P (c))
767 c = BYTE8_TO_CHAR (c);
768 }
769 XSETFASTINT (elt, c);
770 }
771 else if (BOOL_VECTOR_P (this))
772 {
773 elt = bool_vector_ref (this, thisindex);
774 thisindex++;
775 }
776 else
777 {
778 elt = AREF (this, thisindex);
779 thisindex++;
780 }
781
782 /* Store this element into the result. */
783 if (toindex < 0)
784 {
785 XSETCAR (tail, elt);
786 prev = tail;
787 tail = XCDR (tail);
788 }
789 else if (VECTORP (val))
790 {
791 ASET (val, toindex, elt);
792 toindex++;
793 }
794 else
795 {
796 int c;
797 CHECK_CHARACTER (elt);
798 c = XFASTINT (elt);
799 if (some_multibyte)
800 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
801 else
802 SSET (val, toindex_byte++, c);
803 toindex++;
804 }
805 }
806 }
807 if (!NILP (prev))
808 XSETCDR (prev, last_tail);
809
810 if (num_textprops > 0)
811 {
812 Lisp_Object props;
813 ptrdiff_t last_to_end = -1;
814
815 for (argnum = 0; argnum < num_textprops; argnum++)
816 {
817 this = args[textprops[argnum].argnum];
818 props = text_property_list (this,
819 make_number (0),
820 make_number (SCHARS (this)),
821 Qnil);
822 /* If successive arguments have properties, be sure that the
823 value of `composition' property be the copy. */
824 if (last_to_end == textprops[argnum].to)
825 make_composition_value_copy (props);
826 add_text_properties_from_list (val, props,
827 make_number (textprops[argnum].to));
828 last_to_end = textprops[argnum].to + SCHARS (this);
829 }
830 }
831
832 SAFE_FREE ();
833 return val;
834 }
835 \f
836 static Lisp_Object string_char_byte_cache_string;
837 static ptrdiff_t string_char_byte_cache_charpos;
838 static ptrdiff_t string_char_byte_cache_bytepos;
839
840 void
841 clear_string_char_byte_cache (void)
842 {
843 string_char_byte_cache_string = Qnil;
844 }
845
846 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
847
848 ptrdiff_t
849 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
850 {
851 ptrdiff_t i_byte;
852 ptrdiff_t best_below, best_below_byte;
853 ptrdiff_t best_above, best_above_byte;
854
855 best_below = best_below_byte = 0;
856 best_above = SCHARS (string);
857 best_above_byte = SBYTES (string);
858 if (best_above == best_above_byte)
859 return char_index;
860
861 if (EQ (string, string_char_byte_cache_string))
862 {
863 if (string_char_byte_cache_charpos < char_index)
864 {
865 best_below = string_char_byte_cache_charpos;
866 best_below_byte = string_char_byte_cache_bytepos;
867 }
868 else
869 {
870 best_above = string_char_byte_cache_charpos;
871 best_above_byte = string_char_byte_cache_bytepos;
872 }
873 }
874
875 if (char_index - best_below < best_above - char_index)
876 {
877 unsigned char *p = SDATA (string) + best_below_byte;
878
879 while (best_below < char_index)
880 {
881 p += BYTES_BY_CHAR_HEAD (*p);
882 best_below++;
883 }
884 i_byte = p - SDATA (string);
885 }
886 else
887 {
888 unsigned char *p = SDATA (string) + best_above_byte;
889
890 while (best_above > char_index)
891 {
892 p--;
893 while (!CHAR_HEAD_P (*p)) p--;
894 best_above--;
895 }
896 i_byte = p - SDATA (string);
897 }
898
899 string_char_byte_cache_bytepos = i_byte;
900 string_char_byte_cache_charpos = char_index;
901 string_char_byte_cache_string = string;
902
903 return i_byte;
904 }
905 \f
906 /* Return the character index corresponding to BYTE_INDEX in STRING. */
907
908 ptrdiff_t
909 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
910 {
911 ptrdiff_t i, i_byte;
912 ptrdiff_t best_below, best_below_byte;
913 ptrdiff_t best_above, best_above_byte;
914
915 best_below = best_below_byte = 0;
916 best_above = SCHARS (string);
917 best_above_byte = SBYTES (string);
918 if (best_above == best_above_byte)
919 return byte_index;
920
921 if (EQ (string, string_char_byte_cache_string))
922 {
923 if (string_char_byte_cache_bytepos < byte_index)
924 {
925 best_below = string_char_byte_cache_charpos;
926 best_below_byte = string_char_byte_cache_bytepos;
927 }
928 else
929 {
930 best_above = string_char_byte_cache_charpos;
931 best_above_byte = string_char_byte_cache_bytepos;
932 }
933 }
934
935 if (byte_index - best_below_byte < best_above_byte - byte_index)
936 {
937 unsigned char *p = SDATA (string) + best_below_byte;
938 unsigned char *pend = SDATA (string) + byte_index;
939
940 while (p < pend)
941 {
942 p += BYTES_BY_CHAR_HEAD (*p);
943 best_below++;
944 }
945 i = best_below;
946 i_byte = p - SDATA (string);
947 }
948 else
949 {
950 unsigned char *p = SDATA (string) + best_above_byte;
951 unsigned char *pbeg = SDATA (string) + byte_index;
952
953 while (p > pbeg)
954 {
955 p--;
956 while (!CHAR_HEAD_P (*p)) p--;
957 best_above--;
958 }
959 i = best_above;
960 i_byte = p - SDATA (string);
961 }
962
963 string_char_byte_cache_bytepos = i_byte;
964 string_char_byte_cache_charpos = i;
965 string_char_byte_cache_string = string;
966
967 return i;
968 }
969 \f
970 /* Convert STRING to a multibyte string. */
971
972 static Lisp_Object
973 string_make_multibyte (Lisp_Object string)
974 {
975 unsigned char *buf;
976 ptrdiff_t nbytes;
977 Lisp_Object ret;
978 USE_SAFE_ALLOCA;
979
980 if (STRING_MULTIBYTE (string))
981 return string;
982
983 nbytes = count_size_as_multibyte (SDATA (string),
984 SCHARS (string));
985 /* If all the chars are ASCII, they won't need any more bytes
986 once converted. In that case, we can return STRING itself. */
987 if (nbytes == SBYTES (string))
988 return string;
989
990 buf = SAFE_ALLOCA (nbytes);
991 copy_text (SDATA (string), buf, SBYTES (string),
992 0, 1);
993
994 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
995 SAFE_FREE ();
996
997 return ret;
998 }
999
1000
1001 /* Convert STRING (if unibyte) to a multibyte string without changing
1002 the number of characters. Characters 0200 trough 0237 are
1003 converted to eight-bit characters. */
1004
1005 Lisp_Object
1006 string_to_multibyte (Lisp_Object string)
1007 {
1008 unsigned char *buf;
1009 ptrdiff_t nbytes;
1010 Lisp_Object ret;
1011 USE_SAFE_ALLOCA;
1012
1013 if (STRING_MULTIBYTE (string))
1014 return string;
1015
1016 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
1017 /* If all the chars are ASCII, they won't need any more bytes once
1018 converted. */
1019 if (nbytes == SBYTES (string))
1020 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
1021
1022 buf = SAFE_ALLOCA (nbytes);
1023 memcpy (buf, SDATA (string), SBYTES (string));
1024 str_to_multibyte (buf, nbytes, SBYTES (string));
1025
1026 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
1027 SAFE_FREE ();
1028
1029 return ret;
1030 }
1031
1032
1033 /* Convert STRING to a single-byte string. */
1034
1035 Lisp_Object
1036 string_make_unibyte (Lisp_Object string)
1037 {
1038 ptrdiff_t nchars;
1039 unsigned char *buf;
1040 Lisp_Object ret;
1041 USE_SAFE_ALLOCA;
1042
1043 if (! STRING_MULTIBYTE (string))
1044 return string;
1045
1046 nchars = SCHARS (string);
1047
1048 buf = SAFE_ALLOCA (nchars);
1049 copy_text (SDATA (string), buf, SBYTES (string),
1050 1, 0);
1051
1052 ret = make_unibyte_string ((char *) buf, nchars);
1053 SAFE_FREE ();
1054
1055 return ret;
1056 }
1057
1058 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1059 1, 1, 0,
1060 doc: /* Return the multibyte equivalent of STRING.
1061 If STRING is unibyte and contains non-ASCII characters, the function
1062 `unibyte-char-to-multibyte' is used to convert each unibyte character
1063 to a multibyte character. In this case, the returned string is a
1064 newly created string with no text properties. If STRING is multibyte
1065 or entirely ASCII, it is returned unchanged. In particular, when
1066 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1067 \(When the characters are all ASCII, Emacs primitives will treat the
1068 string the same way whether it is unibyte or multibyte.) */)
1069 (Lisp_Object string)
1070 {
1071 CHECK_STRING (string);
1072
1073 return string_make_multibyte (string);
1074 }
1075
1076 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1077 1, 1, 0,
1078 doc: /* Return the unibyte equivalent of STRING.
1079 Multibyte character codes are converted to unibyte according to
1080 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1081 If the lookup in the translation table fails, this function takes just
1082 the low 8 bits of each character. */)
1083 (Lisp_Object string)
1084 {
1085 CHECK_STRING (string);
1086
1087 return string_make_unibyte (string);
1088 }
1089
1090 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1091 1, 1, 0,
1092 doc: /* Return a unibyte string with the same individual bytes as STRING.
1093 If STRING is unibyte, the result is STRING itself.
1094 Otherwise it is a newly created string, with no text properties.
1095 If STRING is multibyte and contains a character of charset
1096 `eight-bit', it is converted to the corresponding single byte. */)
1097 (Lisp_Object string)
1098 {
1099 CHECK_STRING (string);
1100
1101 if (STRING_MULTIBYTE (string))
1102 {
1103 unsigned char *str = (unsigned char *) xlispstrdup (string);
1104 ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
1105
1106 string = make_unibyte_string ((char *) str, bytes);
1107 xfree (str);
1108 }
1109 return string;
1110 }
1111
1112 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1113 1, 1, 0,
1114 doc: /* Return a multibyte string with the same individual bytes as STRING.
1115 If STRING is multibyte, the result is STRING itself.
1116 Otherwise it is a newly created string, with no text properties.
1117
1118 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1119 part of a correct utf-8 sequence), it is converted to the corresponding
1120 multibyte character of charset `eight-bit'.
1121 See also `string-to-multibyte'.
1122
1123 Beware, this often doesn't really do what you think it does.
1124 It is similar to (decode-coding-string STRING \\='utf-8-emacs).
1125 If you're not sure, whether to use `string-as-multibyte' or
1126 `string-to-multibyte', use `string-to-multibyte'. */)
1127 (Lisp_Object string)
1128 {
1129 CHECK_STRING (string);
1130
1131 if (! STRING_MULTIBYTE (string))
1132 {
1133 Lisp_Object new_string;
1134 ptrdiff_t nchars, nbytes;
1135
1136 parse_str_as_multibyte (SDATA (string),
1137 SBYTES (string),
1138 &nchars, &nbytes);
1139 new_string = make_uninit_multibyte_string (nchars, nbytes);
1140 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1141 if (nbytes != SBYTES (string))
1142 str_as_multibyte (SDATA (new_string), nbytes,
1143 SBYTES (string), NULL);
1144 string = new_string;
1145 set_string_intervals (string, NULL);
1146 }
1147 return string;
1148 }
1149
1150 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1151 1, 1, 0,
1152 doc: /* Return a multibyte string with the same individual chars as STRING.
1153 If STRING is multibyte, the result is STRING itself.
1154 Otherwise it is a newly created string, with no text properties.
1155
1156 If STRING is unibyte and contains an 8-bit byte, it is converted to
1157 the corresponding multibyte character of charset `eight-bit'.
1158
1159 This differs from `string-as-multibyte' by converting each byte of a correct
1160 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1161 correct sequence. */)
1162 (Lisp_Object string)
1163 {
1164 CHECK_STRING (string);
1165
1166 return string_to_multibyte (string);
1167 }
1168
1169 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1170 1, 1, 0,
1171 doc: /* Return a unibyte string with the same individual chars as STRING.
1172 If STRING is unibyte, the result is STRING itself.
1173 Otherwise it is a newly created string, with no text properties,
1174 where each `eight-bit' character is converted to the corresponding byte.
1175 If STRING contains a non-ASCII, non-`eight-bit' character,
1176 an error is signaled. */)
1177 (Lisp_Object string)
1178 {
1179 CHECK_STRING (string);
1180
1181 if (STRING_MULTIBYTE (string))
1182 {
1183 ptrdiff_t chars = SCHARS (string);
1184 unsigned char *str = xmalloc (chars);
1185 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1186
1187 if (converted < chars)
1188 error ("Can't convert the %"pD"dth character to unibyte", converted);
1189 string = make_unibyte_string ((char *) str, chars);
1190 xfree (str);
1191 }
1192 return string;
1193 }
1194
1195 \f
1196 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1197 doc: /* Return a copy of ALIST.
1198 This is an alist which represents the same mapping from objects to objects,
1199 but does not share the alist structure with ALIST.
1200 The objects mapped (cars and cdrs of elements of the alist)
1201 are shared, however.
1202 Elements of ALIST that are not conses are also shared. */)
1203 (Lisp_Object alist)
1204 {
1205 register Lisp_Object tem;
1206
1207 CHECK_LIST (alist);
1208 if (NILP (alist))
1209 return alist;
1210 alist = concat (1, &alist, Lisp_Cons, 0);
1211 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1212 {
1213 register Lisp_Object car;
1214 car = XCAR (tem);
1215
1216 if (CONSP (car))
1217 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1218 }
1219 return alist;
1220 }
1221
1222 /* Check that ARRAY can have a valid subarray [FROM..TO),
1223 given that its size is SIZE.
1224 If FROM is nil, use 0; if TO is nil, use SIZE.
1225 Count negative values backwards from the end.
1226 Set *IFROM and *ITO to the two indexes used. */
1227
1228 void
1229 validate_subarray (Lisp_Object array, Lisp_Object from, Lisp_Object to,
1230 ptrdiff_t size, ptrdiff_t *ifrom, ptrdiff_t *ito)
1231 {
1232 EMACS_INT f, t;
1233
1234 if (INTEGERP (from))
1235 {
1236 f = XINT (from);
1237 if (f < 0)
1238 f += size;
1239 }
1240 else if (NILP (from))
1241 f = 0;
1242 else
1243 wrong_type_argument (Qintegerp, from);
1244
1245 if (INTEGERP (to))
1246 {
1247 t = XINT (to);
1248 if (t < 0)
1249 t += size;
1250 }
1251 else if (NILP (to))
1252 t = size;
1253 else
1254 wrong_type_argument (Qintegerp, to);
1255
1256 if (! (0 <= f && f <= t && t <= size))
1257 args_out_of_range_3 (array, from, to);
1258
1259 *ifrom = f;
1260 *ito = t;
1261 }
1262
1263 DEFUN ("substring", Fsubstring, Ssubstring, 1, 3, 0,
1264 doc: /* Return a new string whose contents are a substring of STRING.
1265 The returned string consists of the characters between index FROM
1266 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1267 zero-indexed: 0 means the first character of STRING. Negative values
1268 are counted from the end of STRING. If TO is nil, the substring runs
1269 to the end of STRING.
1270
1271 The STRING argument may also be a vector. In that case, the return
1272 value is a new vector that contains the elements between index FROM
1273 \(inclusive) and index TO (exclusive) of that vector argument.
1274
1275 With one argument, just copy STRING (with properties, if any). */)
1276 (Lisp_Object string, Lisp_Object from, Lisp_Object to)
1277 {
1278 Lisp_Object res;
1279 ptrdiff_t size, ifrom, ito;
1280
1281 size = CHECK_VECTOR_OR_STRING (string);
1282 validate_subarray (string, from, to, size, &ifrom, &ito);
1283
1284 if (STRINGP (string))
1285 {
1286 ptrdiff_t from_byte
1287 = !ifrom ? 0 : string_char_to_byte (string, ifrom);
1288 ptrdiff_t to_byte
1289 = ito == size ? SBYTES (string) : string_char_to_byte (string, ito);
1290 res = make_specified_string (SSDATA (string) + from_byte,
1291 ito - ifrom, to_byte - from_byte,
1292 STRING_MULTIBYTE (string));
1293 copy_text_properties (make_number (ifrom), make_number (ito),
1294 string, make_number (0), res, Qnil);
1295 }
1296 else
1297 res = Fvector (ito - ifrom, aref_addr (string, ifrom));
1298
1299 return res;
1300 }
1301
1302
1303 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1304 doc: /* Return a substring of STRING, without text properties.
1305 It starts at index FROM and ends before TO.
1306 TO may be nil or omitted; then the substring runs to the end of STRING.
1307 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1308 If FROM or TO is negative, it counts from the end.
1309
1310 With one argument, just copy STRING without its properties. */)
1311 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1312 {
1313 ptrdiff_t from_char, to_char, from_byte, to_byte, size;
1314
1315 CHECK_STRING (string);
1316
1317 size = SCHARS (string);
1318 validate_subarray (string, from, to, size, &from_char, &to_char);
1319
1320 from_byte = !from_char ? 0 : string_char_to_byte (string, from_char);
1321 to_byte =
1322 to_char == size ? SBYTES (string) : string_char_to_byte (string, to_char);
1323 return make_specified_string (SSDATA (string) + from_byte,
1324 to_char - from_char, to_byte - from_byte,
1325 STRING_MULTIBYTE (string));
1326 }
1327
1328 /* Extract a substring of STRING, giving start and end positions
1329 both in characters and in bytes. */
1330
1331 Lisp_Object
1332 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1333 ptrdiff_t to, ptrdiff_t to_byte)
1334 {
1335 Lisp_Object res;
1336 ptrdiff_t size = CHECK_VECTOR_OR_STRING (string);
1337
1338 if (!(0 <= from && from <= to && to <= size))
1339 args_out_of_range_3 (string, make_number (from), make_number (to));
1340
1341 if (STRINGP (string))
1342 {
1343 res = make_specified_string (SSDATA (string) + from_byte,
1344 to - from, to_byte - from_byte,
1345 STRING_MULTIBYTE (string));
1346 copy_text_properties (make_number (from), make_number (to),
1347 string, make_number (0), res, Qnil);
1348 }
1349 else
1350 res = Fvector (to - from, aref_addr (string, from));
1351
1352 return res;
1353 }
1354 \f
1355 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1356 doc: /* Take cdr N times on LIST, return the result. */)
1357 (Lisp_Object n, Lisp_Object list)
1358 {
1359 EMACS_INT i, num;
1360 CHECK_NUMBER (n);
1361 num = XINT (n);
1362 for (i = 0; i < num && !NILP (list); i++)
1363 {
1364 QUIT;
1365 CHECK_LIST_CONS (list, list);
1366 list = XCDR (list);
1367 }
1368 return list;
1369 }
1370
1371 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1372 doc: /* Return the Nth element of LIST.
1373 N counts from zero. If LIST is not that long, nil is returned. */)
1374 (Lisp_Object n, Lisp_Object list)
1375 {
1376 return Fcar (Fnthcdr (n, list));
1377 }
1378
1379 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1380 doc: /* Return element of SEQUENCE at index N. */)
1381 (register Lisp_Object sequence, Lisp_Object n)
1382 {
1383 CHECK_NUMBER (n);
1384 if (CONSP (sequence) || NILP (sequence))
1385 return Fcar (Fnthcdr (n, sequence));
1386
1387 /* Faref signals a "not array" error, so check here. */
1388 CHECK_ARRAY (sequence, Qsequencep);
1389 return Faref (sequence, n);
1390 }
1391
1392 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1393 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1394 The value is actually the tail of LIST whose car is ELT. */)
1395 (register Lisp_Object elt, Lisp_Object list)
1396 {
1397 register Lisp_Object tail;
1398 for (tail = list; !NILP (tail); tail = XCDR (tail))
1399 {
1400 register Lisp_Object tem;
1401 CHECK_LIST_CONS (tail, list);
1402 tem = XCAR (tail);
1403 if (! NILP (Fequal (elt, tem)))
1404 return tail;
1405 QUIT;
1406 }
1407 return Qnil;
1408 }
1409
1410 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1411 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1412 The value is actually the tail of LIST whose car is ELT. */)
1413 (register Lisp_Object elt, Lisp_Object list)
1414 {
1415 while (1)
1416 {
1417 if (!CONSP (list) || EQ (XCAR (list), elt))
1418 break;
1419
1420 list = XCDR (list);
1421 if (!CONSP (list) || EQ (XCAR (list), elt))
1422 break;
1423
1424 list = XCDR (list);
1425 if (!CONSP (list) || EQ (XCAR (list), elt))
1426 break;
1427
1428 list = XCDR (list);
1429 QUIT;
1430 }
1431
1432 CHECK_LIST (list);
1433 return list;
1434 }
1435
1436 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1437 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1438 The value is actually the tail of LIST whose car is ELT. */)
1439 (register Lisp_Object elt, Lisp_Object list)
1440 {
1441 register Lisp_Object tail;
1442
1443 if (!FLOATP (elt))
1444 return Fmemq (elt, list);
1445
1446 for (tail = list; !NILP (tail); tail = XCDR (tail))
1447 {
1448 register Lisp_Object tem;
1449 CHECK_LIST_CONS (tail, list);
1450 tem = XCAR (tail);
1451 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0, Qnil))
1452 return tail;
1453 QUIT;
1454 }
1455 return Qnil;
1456 }
1457
1458 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1459 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1460 The value is actually the first element of LIST whose car is KEY.
1461 Elements of LIST that are not conses are ignored. */)
1462 (Lisp_Object key, Lisp_Object list)
1463 {
1464 while (1)
1465 {
1466 if (!CONSP (list)
1467 || (CONSP (XCAR (list))
1468 && EQ (XCAR (XCAR (list)), key)))
1469 break;
1470
1471 list = XCDR (list);
1472 if (!CONSP (list)
1473 || (CONSP (XCAR (list))
1474 && EQ (XCAR (XCAR (list)), key)))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCAR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 QUIT;
1485 }
1486
1487 return CAR (list);
1488 }
1489
1490 /* Like Fassq but never report an error and do not allow quits.
1491 Use only on lists known never to be circular. */
1492
1493 Lisp_Object
1494 assq_no_quit (Lisp_Object key, Lisp_Object list)
1495 {
1496 while (CONSP (list)
1497 && (!CONSP (XCAR (list))
1498 || !EQ (XCAR (XCAR (list)), key)))
1499 list = XCDR (list);
1500
1501 return CAR_SAFE (list);
1502 }
1503
1504 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1505 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1506 The value is actually the first element of LIST whose car equals KEY. */)
1507 (Lisp_Object key, Lisp_Object list)
1508 {
1509 Lisp_Object car;
1510
1511 while (1)
1512 {
1513 if (!CONSP (list)
1514 || (CONSP (XCAR (list))
1515 && (car = XCAR (XCAR (list)),
1516 EQ (car, key) || !NILP (Fequal (car, key)))))
1517 break;
1518
1519 list = XCDR (list);
1520 if (!CONSP (list)
1521 || (CONSP (XCAR (list))
1522 && (car = XCAR (XCAR (list)),
1523 EQ (car, key) || !NILP (Fequal (car, key)))))
1524 break;
1525
1526 list = XCDR (list);
1527 if (!CONSP (list)
1528 || (CONSP (XCAR (list))
1529 && (car = XCAR (XCAR (list)),
1530 EQ (car, key) || !NILP (Fequal (car, key)))))
1531 break;
1532
1533 list = XCDR (list);
1534 QUIT;
1535 }
1536
1537 return CAR (list);
1538 }
1539
1540 /* Like Fassoc but never report an error and do not allow quits.
1541 Use only on lists known never to be circular. */
1542
1543 Lisp_Object
1544 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1545 {
1546 while (CONSP (list)
1547 && (!CONSP (XCAR (list))
1548 || (!EQ (XCAR (XCAR (list)), key)
1549 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1550 list = XCDR (list);
1551
1552 return CONSP (list) ? XCAR (list) : Qnil;
1553 }
1554
1555 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1556 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1557 The value is actually the first element of LIST whose cdr is KEY. */)
1558 (register Lisp_Object key, Lisp_Object list)
1559 {
1560 while (1)
1561 {
1562 if (!CONSP (list)
1563 || (CONSP (XCAR (list))
1564 && EQ (XCDR (XCAR (list)), key)))
1565 break;
1566
1567 list = XCDR (list);
1568 if (!CONSP (list)
1569 || (CONSP (XCAR (list))
1570 && EQ (XCDR (XCAR (list)), key)))
1571 break;
1572
1573 list = XCDR (list);
1574 if (!CONSP (list)
1575 || (CONSP (XCAR (list))
1576 && EQ (XCDR (XCAR (list)), key)))
1577 break;
1578
1579 list = XCDR (list);
1580 QUIT;
1581 }
1582
1583 return CAR (list);
1584 }
1585
1586 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1587 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1588 The value is actually the first element of LIST whose cdr equals KEY. */)
1589 (Lisp_Object key, Lisp_Object list)
1590 {
1591 Lisp_Object cdr;
1592
1593 while (1)
1594 {
1595 if (!CONSP (list)
1596 || (CONSP (XCAR (list))
1597 && (cdr = XCDR (XCAR (list)),
1598 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1599 break;
1600
1601 list = XCDR (list);
1602 if (!CONSP (list)
1603 || (CONSP (XCAR (list))
1604 && (cdr = XCDR (XCAR (list)),
1605 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1606 break;
1607
1608 list = XCDR (list);
1609 if (!CONSP (list)
1610 || (CONSP (XCAR (list))
1611 && (cdr = XCDR (XCAR (list)),
1612 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1613 break;
1614
1615 list = XCDR (list);
1616 QUIT;
1617 }
1618
1619 return CAR (list);
1620 }
1621 \f
1622 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1623 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1624 More precisely, this function skips any members `eq' to ELT at the
1625 front of LIST, then removes members `eq' to ELT from the remaining
1626 sublist by modifying its list structure, then returns the resulting
1627 list.
1628
1629 Write `(setq foo (delq element foo))' to be sure of correctly changing
1630 the value of a list `foo'. See also `remq', which does not modify the
1631 argument. */)
1632 (register Lisp_Object elt, Lisp_Object list)
1633 {
1634 Lisp_Object tail, tortoise, prev = Qnil;
1635 bool skip;
1636
1637 FOR_EACH_TAIL (tail, list, tortoise, skip)
1638 {
1639 Lisp_Object tem = XCAR (tail);
1640 if (EQ (elt, tem))
1641 {
1642 if (NILP (prev))
1643 list = XCDR (tail);
1644 else
1645 Fsetcdr (prev, XCDR (tail));
1646 }
1647 else
1648 prev = tail;
1649 }
1650 return list;
1651 }
1652
1653 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1654 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1655 SEQ must be a sequence (i.e. a list, a vector, or a string).
1656 The return value is a sequence of the same type.
1657
1658 If SEQ is a list, this behaves like `delq', except that it compares
1659 with `equal' instead of `eq'. In particular, it may remove elements
1660 by altering the list structure.
1661
1662 If SEQ is not a list, deletion is never performed destructively;
1663 instead this function creates and returns a new vector or string.
1664
1665 Write `(setq foo (delete element foo))' to be sure of correctly
1666 changing the value of a sequence `foo'. */)
1667 (Lisp_Object elt, Lisp_Object seq)
1668 {
1669 if (VECTORP (seq))
1670 {
1671 ptrdiff_t i, n;
1672
1673 for (i = n = 0; i < ASIZE (seq); ++i)
1674 if (NILP (Fequal (AREF (seq, i), elt)))
1675 ++n;
1676
1677 if (n != ASIZE (seq))
1678 {
1679 struct Lisp_Vector *p = allocate_vector (n);
1680
1681 for (i = n = 0; i < ASIZE (seq); ++i)
1682 if (NILP (Fequal (AREF (seq, i), elt)))
1683 p->contents[n++] = AREF (seq, i);
1684
1685 XSETVECTOR (seq, p);
1686 }
1687 }
1688 else if (STRINGP (seq))
1689 {
1690 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1691 int c;
1692
1693 for (i = nchars = nbytes = ibyte = 0;
1694 i < SCHARS (seq);
1695 ++i, ibyte += cbytes)
1696 {
1697 if (STRING_MULTIBYTE (seq))
1698 {
1699 c = STRING_CHAR (SDATA (seq) + ibyte);
1700 cbytes = CHAR_BYTES (c);
1701 }
1702 else
1703 {
1704 c = SREF (seq, i);
1705 cbytes = 1;
1706 }
1707
1708 if (!INTEGERP (elt) || c != XINT (elt))
1709 {
1710 ++nchars;
1711 nbytes += cbytes;
1712 }
1713 }
1714
1715 if (nchars != SCHARS (seq))
1716 {
1717 Lisp_Object tem;
1718
1719 tem = make_uninit_multibyte_string (nchars, nbytes);
1720 if (!STRING_MULTIBYTE (seq))
1721 STRING_SET_UNIBYTE (tem);
1722
1723 for (i = nchars = nbytes = ibyte = 0;
1724 i < SCHARS (seq);
1725 ++i, ibyte += cbytes)
1726 {
1727 if (STRING_MULTIBYTE (seq))
1728 {
1729 c = STRING_CHAR (SDATA (seq) + ibyte);
1730 cbytes = CHAR_BYTES (c);
1731 }
1732 else
1733 {
1734 c = SREF (seq, i);
1735 cbytes = 1;
1736 }
1737
1738 if (!INTEGERP (elt) || c != XINT (elt))
1739 {
1740 unsigned char *from = SDATA (seq) + ibyte;
1741 unsigned char *to = SDATA (tem) + nbytes;
1742 ptrdiff_t n;
1743
1744 ++nchars;
1745 nbytes += cbytes;
1746
1747 for (n = cbytes; n--; )
1748 *to++ = *from++;
1749 }
1750 }
1751
1752 seq = tem;
1753 }
1754 }
1755 else
1756 {
1757 Lisp_Object tail, prev;
1758
1759 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1760 {
1761 CHECK_LIST_CONS (tail, seq);
1762
1763 if (!NILP (Fequal (elt, XCAR (tail))))
1764 {
1765 if (NILP (prev))
1766 seq = XCDR (tail);
1767 else
1768 Fsetcdr (prev, XCDR (tail));
1769 }
1770 else
1771 prev = tail;
1772 QUIT;
1773 }
1774 }
1775
1776 return seq;
1777 }
1778
1779 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1780 doc: /* Reverse order of items in a list, vector or string SEQ.
1781 If SEQ is a list, it should be nil-terminated.
1782 This function may destructively modify SEQ to produce the value. */)
1783 (Lisp_Object seq)
1784 {
1785 if (NILP (seq))
1786 return seq;
1787 else if (STRINGP (seq))
1788 return Freverse (seq);
1789 else if (CONSP (seq))
1790 {
1791 Lisp_Object prev, tail, next;
1792
1793 for (prev = Qnil, tail = seq; !NILP (tail); tail = next)
1794 {
1795 QUIT;
1796 CHECK_LIST_CONS (tail, tail);
1797 next = XCDR (tail);
1798 Fsetcdr (tail, prev);
1799 prev = tail;
1800 }
1801 seq = prev;
1802 }
1803 else if (VECTORP (seq))
1804 {
1805 ptrdiff_t i, size = ASIZE (seq);
1806
1807 for (i = 0; i < size / 2; i++)
1808 {
1809 Lisp_Object tem = AREF (seq, i);
1810 ASET (seq, i, AREF (seq, size - i - 1));
1811 ASET (seq, size - i - 1, tem);
1812 }
1813 }
1814 else if (BOOL_VECTOR_P (seq))
1815 {
1816 ptrdiff_t i, size = bool_vector_size (seq);
1817
1818 for (i = 0; i < size / 2; i++)
1819 {
1820 bool tem = bool_vector_bitref (seq, i);
1821 bool_vector_set (seq, i, bool_vector_bitref (seq, size - i - 1));
1822 bool_vector_set (seq, size - i - 1, tem);
1823 }
1824 }
1825 else
1826 wrong_type_argument (Qarrayp, seq);
1827 return seq;
1828 }
1829
1830 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1831 doc: /* Return the reversed copy of list, vector, or string SEQ.
1832 See also the function `nreverse', which is used more often. */)
1833 (Lisp_Object seq)
1834 {
1835 Lisp_Object new;
1836
1837 if (NILP (seq))
1838 return Qnil;
1839 else if (CONSP (seq))
1840 {
1841 for (new = Qnil; CONSP (seq); seq = XCDR (seq))
1842 {
1843 QUIT;
1844 new = Fcons (XCAR (seq), new);
1845 }
1846 CHECK_LIST_END (seq, seq);
1847 }
1848 else if (VECTORP (seq))
1849 {
1850 ptrdiff_t i, size = ASIZE (seq);
1851
1852 new = make_uninit_vector (size);
1853 for (i = 0; i < size; i++)
1854 ASET (new, i, AREF (seq, size - i - 1));
1855 }
1856 else if (BOOL_VECTOR_P (seq))
1857 {
1858 ptrdiff_t i;
1859 EMACS_INT nbits = bool_vector_size (seq);
1860
1861 new = make_uninit_bool_vector (nbits);
1862 for (i = 0; i < nbits; i++)
1863 bool_vector_set (new, i, bool_vector_bitref (seq, nbits - i - 1));
1864 }
1865 else if (STRINGP (seq))
1866 {
1867 ptrdiff_t size = SCHARS (seq), bytes = SBYTES (seq);
1868
1869 if (size == bytes)
1870 {
1871 ptrdiff_t i;
1872
1873 new = make_uninit_string (size);
1874 for (i = 0; i < size; i++)
1875 SSET (new, i, SREF (seq, size - i - 1));
1876 }
1877 else
1878 {
1879 unsigned char *p, *q;
1880
1881 new = make_uninit_multibyte_string (size, bytes);
1882 p = SDATA (seq), q = SDATA (new) + bytes;
1883 while (q > SDATA (new))
1884 {
1885 int ch, len;
1886
1887 ch = STRING_CHAR_AND_LENGTH (p, len);
1888 p += len, q -= len;
1889 CHAR_STRING (ch, q);
1890 }
1891 }
1892 }
1893 else
1894 wrong_type_argument (Qsequencep, seq);
1895 return new;
1896 }
1897
1898 /* Sort LIST using PREDICATE, preserving original order of elements
1899 considered as equal. */
1900
1901 static Lisp_Object
1902 sort_list (Lisp_Object list, Lisp_Object predicate)
1903 {
1904 Lisp_Object front, back;
1905 Lisp_Object len, tem;
1906 EMACS_INT length;
1907
1908 front = list;
1909 len = Flength (list);
1910 length = XINT (len);
1911 if (length < 2)
1912 return list;
1913
1914 XSETINT (len, (length / 2) - 1);
1915 tem = Fnthcdr (len, list);
1916 back = Fcdr (tem);
1917 Fsetcdr (tem, Qnil);
1918
1919 front = Fsort (front, predicate);
1920 back = Fsort (back, predicate);
1921 return merge (front, back, predicate);
1922 }
1923
1924 /* Using PRED to compare, return whether A and B are in order.
1925 Compare stably when A appeared before B in the input. */
1926 static bool
1927 inorder (Lisp_Object pred, Lisp_Object a, Lisp_Object b)
1928 {
1929 return NILP (call2 (pred, b, a));
1930 }
1931
1932 /* Using PRED to compare, merge from ALEN-length A and BLEN-length B
1933 into DEST. Argument arrays must be nonempty and must not overlap,
1934 except that B might be the last part of DEST. */
1935 static void
1936 merge_vectors (Lisp_Object pred,
1937 ptrdiff_t alen, Lisp_Object const a[restrict VLA_ELEMS (alen)],
1938 ptrdiff_t blen, Lisp_Object const b[VLA_ELEMS (blen)],
1939 Lisp_Object dest[VLA_ELEMS (alen + blen)])
1940 {
1941 eassume (0 < alen && 0 < blen);
1942 Lisp_Object const *alim = a + alen;
1943 Lisp_Object const *blim = b + blen;
1944
1945 while (true)
1946 {
1947 if (inorder (pred, a[0], b[0]))
1948 {
1949 *dest++ = *a++;
1950 if (a == alim)
1951 {
1952 if (dest != b)
1953 memcpy (dest, b, (blim - b) * sizeof *dest);
1954 return;
1955 }
1956 }
1957 else
1958 {
1959 *dest++ = *b++;
1960 if (b == blim)
1961 {
1962 memcpy (dest, a, (alim - a) * sizeof *dest);
1963 return;
1964 }
1965 }
1966 }
1967 }
1968
1969 /* Using PRED to compare, sort LEN-length VEC in place, using TMP for
1970 temporary storage. LEN must be at least 2. */
1971 static void
1972 sort_vector_inplace (Lisp_Object pred, ptrdiff_t len,
1973 Lisp_Object vec[restrict VLA_ELEMS (len)],
1974 Lisp_Object tmp[restrict VLA_ELEMS (len >> 1)])
1975 {
1976 eassume (2 <= len);
1977 ptrdiff_t halflen = len >> 1;
1978 sort_vector_copy (pred, halflen, vec, tmp);
1979 if (1 < len - halflen)
1980 sort_vector_inplace (pred, len - halflen, vec + halflen, vec);
1981 merge_vectors (pred, halflen, tmp, len - halflen, vec + halflen, vec);
1982 }
1983
1984 /* Using PRED to compare, sort from LEN-length SRC into DST.
1985 Len must be positive. */
1986 static void
1987 sort_vector_copy (Lisp_Object pred, ptrdiff_t len,
1988 Lisp_Object src[restrict VLA_ELEMS (len)],
1989 Lisp_Object dest[restrict VLA_ELEMS (len)])
1990 {
1991 eassume (0 < len);
1992 ptrdiff_t halflen = len >> 1;
1993 if (halflen < 1)
1994 dest[0] = src[0];
1995 else
1996 {
1997 if (1 < halflen)
1998 sort_vector_inplace (pred, halflen, src, dest);
1999 if (1 < len - halflen)
2000 sort_vector_inplace (pred, len - halflen, src + halflen, dest);
2001 merge_vectors (pred, halflen, src, len - halflen, src + halflen, dest);
2002 }
2003 }
2004
2005 /* Sort VECTOR in place using PREDICATE, preserving original order of
2006 elements considered as equal. */
2007
2008 static void
2009 sort_vector (Lisp_Object vector, Lisp_Object predicate)
2010 {
2011 ptrdiff_t len = ASIZE (vector);
2012 if (len < 2)
2013 return;
2014 ptrdiff_t halflen = len >> 1;
2015 Lisp_Object *tmp;
2016 USE_SAFE_ALLOCA;
2017 SAFE_ALLOCA_LISP (tmp, halflen);
2018 for (ptrdiff_t i = 0; i < halflen; i++)
2019 tmp[i] = make_number (0);
2020 sort_vector_inplace (predicate, len, XVECTOR (vector)->contents, tmp);
2021 SAFE_FREE ();
2022 }
2023
2024 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
2025 doc: /* Sort SEQ, stably, comparing elements using PREDICATE.
2026 Returns the sorted sequence. SEQ should be a list or vector. SEQ is
2027 modified by side effects. PREDICATE is called with two elements of
2028 SEQ, and should return non-nil if the first element should sort before
2029 the second. */)
2030 (Lisp_Object seq, Lisp_Object predicate)
2031 {
2032 if (CONSP (seq))
2033 seq = sort_list (seq, predicate);
2034 else if (VECTORP (seq))
2035 sort_vector (seq, predicate);
2036 else if (!NILP (seq))
2037 wrong_type_argument (Qsequencep, seq);
2038 return seq;
2039 }
2040
2041 Lisp_Object
2042 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
2043 {
2044 Lisp_Object l1 = org_l1;
2045 Lisp_Object l2 = org_l2;
2046 Lisp_Object tail = Qnil;
2047 Lisp_Object value = Qnil;
2048
2049 while (1)
2050 {
2051 if (NILP (l1))
2052 {
2053 if (NILP (tail))
2054 return l2;
2055 Fsetcdr (tail, l2);
2056 return value;
2057 }
2058 if (NILP (l2))
2059 {
2060 if (NILP (tail))
2061 return l1;
2062 Fsetcdr (tail, l1);
2063 return value;
2064 }
2065
2066 Lisp_Object tem;
2067 if (inorder (pred, Fcar (l1), Fcar (l2)))
2068 {
2069 tem = l1;
2070 l1 = Fcdr (l1);
2071 org_l1 = l1;
2072 }
2073 else
2074 {
2075 tem = l2;
2076 l2 = Fcdr (l2);
2077 org_l2 = l2;
2078 }
2079 if (NILP (tail))
2080 value = tem;
2081 else
2082 Fsetcdr (tail, tem);
2083 tail = tem;
2084 }
2085 }
2086
2087 \f
2088 /* This does not check for quits. That is safe since it must terminate. */
2089
2090 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
2091 doc: /* Extract a value from a property list.
2092 PLIST is a property list, which is a list of the form
2093 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2094 corresponding to the given PROP, or nil if PROP is not one of the
2095 properties on the list. This function never signals an error. */)
2096 (Lisp_Object plist, Lisp_Object prop)
2097 {
2098 Lisp_Object tail, halftail;
2099
2100 /* halftail is used to detect circular lists. */
2101 tail = halftail = plist;
2102 while (CONSP (tail) && CONSP (XCDR (tail)))
2103 {
2104 if (EQ (prop, XCAR (tail)))
2105 return XCAR (XCDR (tail));
2106
2107 tail = XCDR (XCDR (tail));
2108 halftail = XCDR (halftail);
2109 if (EQ (tail, halftail))
2110 break;
2111 }
2112
2113 return Qnil;
2114 }
2115
2116 DEFUN ("get", Fget, Sget, 2, 2, 0,
2117 doc: /* Return the value of SYMBOL's PROPNAME property.
2118 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2119 (Lisp_Object symbol, Lisp_Object propname)
2120 {
2121 CHECK_SYMBOL (symbol);
2122 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2123 }
2124
2125 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2126 doc: /* Change value in PLIST of PROP to VAL.
2127 PLIST is a property list, which is a list of the form
2128 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2129 If PROP is already a property on the list, its value is set to VAL,
2130 otherwise the new PROP VAL pair is added. The new plist is returned;
2131 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2132 The PLIST is modified by side effects. */)
2133 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
2134 {
2135 register Lisp_Object tail, prev;
2136 Lisp_Object newcell;
2137 prev = Qnil;
2138 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2139 tail = XCDR (XCDR (tail)))
2140 {
2141 if (EQ (prop, XCAR (tail)))
2142 {
2143 Fsetcar (XCDR (tail), val);
2144 return plist;
2145 }
2146
2147 prev = tail;
2148 QUIT;
2149 }
2150 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2151 if (NILP (prev))
2152 return newcell;
2153 else
2154 Fsetcdr (XCDR (prev), newcell);
2155 return plist;
2156 }
2157
2158 DEFUN ("put", Fput, Sput, 3, 3, 0,
2159 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2160 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2161 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
2162 {
2163 CHECK_SYMBOL (symbol);
2164 set_symbol_plist
2165 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
2166 return value;
2167 }
2168 \f
2169 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2170 doc: /* Extract a value from a property list, comparing with `equal'.
2171 PLIST is a property list, which is a list of the form
2172 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2173 corresponding to the given PROP, or nil if PROP is not
2174 one of the properties on the list. */)
2175 (Lisp_Object plist, Lisp_Object prop)
2176 {
2177 Lisp_Object tail;
2178
2179 for (tail = plist;
2180 CONSP (tail) && CONSP (XCDR (tail));
2181 tail = XCDR (XCDR (tail)))
2182 {
2183 if (! NILP (Fequal (prop, XCAR (tail))))
2184 return XCAR (XCDR (tail));
2185
2186 QUIT;
2187 }
2188
2189 CHECK_LIST_END (tail, prop);
2190
2191 return Qnil;
2192 }
2193
2194 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2195 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2196 PLIST is a property list, which is a list of the form
2197 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2198 If PROP is already a property on the list, its value is set to VAL,
2199 otherwise the new PROP VAL pair is added. The new plist is returned;
2200 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2201 The PLIST is modified by side effects. */)
2202 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
2203 {
2204 register Lisp_Object tail, prev;
2205 Lisp_Object newcell;
2206 prev = Qnil;
2207 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2208 tail = XCDR (XCDR (tail)))
2209 {
2210 if (! NILP (Fequal (prop, XCAR (tail))))
2211 {
2212 Fsetcar (XCDR (tail), val);
2213 return plist;
2214 }
2215
2216 prev = tail;
2217 QUIT;
2218 }
2219 newcell = list2 (prop, val);
2220 if (NILP (prev))
2221 return newcell;
2222 else
2223 Fsetcdr (XCDR (prev), newcell);
2224 return plist;
2225 }
2226 \f
2227 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2228 doc: /* Return t if the two args are the same Lisp object.
2229 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2230 (Lisp_Object obj1, Lisp_Object obj2)
2231 {
2232 if (FLOATP (obj1))
2233 return internal_equal (obj1, obj2, 0, 0, Qnil) ? Qt : Qnil;
2234 else
2235 return EQ (obj1, obj2) ? Qt : Qnil;
2236 }
2237
2238 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2239 doc: /* Return t if two Lisp objects have similar structure and contents.
2240 They must have the same data type.
2241 Conses are compared by comparing the cars and the cdrs.
2242 Vectors and strings are compared element by element.
2243 Numbers are compared by value, but integers cannot equal floats.
2244 (Use `=' if you want integers and floats to be able to be equal.)
2245 Symbols must match exactly. */)
2246 (register Lisp_Object o1, Lisp_Object o2)
2247 {
2248 return internal_equal (o1, o2, 0, 0, Qnil) ? Qt : Qnil;
2249 }
2250
2251 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2252 doc: /* Return t if two Lisp objects have similar structure and contents.
2253 This is like `equal' except that it compares the text properties
2254 of strings. (`equal' ignores text properties.) */)
2255 (register Lisp_Object o1, Lisp_Object o2)
2256 {
2257 return internal_equal (o1, o2, 0, 1, Qnil) ? Qt : Qnil;
2258 }
2259
2260 /* DEPTH is current depth of recursion. Signal an error if it
2261 gets too deep.
2262 PROPS means compare string text properties too. */
2263
2264 static bool
2265 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props,
2266 Lisp_Object ht)
2267 {
2268 if (depth > 10)
2269 {
2270 if (depth > 200)
2271 error ("Stack overflow in equal");
2272 if (NILP (ht))
2273 ht = CALLN (Fmake_hash_table, QCtest, Qeq);
2274 switch (XTYPE (o1))
2275 {
2276 case Lisp_Cons: case Lisp_Misc: case Lisp_Vectorlike:
2277 {
2278 struct Lisp_Hash_Table *h = XHASH_TABLE (ht);
2279 EMACS_UINT hash;
2280 ptrdiff_t i = hash_lookup (h, o1, &hash);
2281 if (i >= 0)
2282 { /* `o1' was seen already. */
2283 Lisp_Object o2s = HASH_VALUE (h, i);
2284 if (!NILP (Fmemq (o2, o2s)))
2285 return 1;
2286 else
2287 set_hash_value_slot (h, i, Fcons (o2, o2s));
2288 }
2289 else
2290 hash_put (h, o1, Fcons (o2, Qnil), hash);
2291 }
2292 default: ;
2293 }
2294 }
2295
2296 tail_recurse:
2297 QUIT;
2298 if (EQ (o1, o2))
2299 return 1;
2300 if (XTYPE (o1) != XTYPE (o2))
2301 return 0;
2302
2303 switch (XTYPE (o1))
2304 {
2305 case Lisp_Float:
2306 {
2307 double d1, d2;
2308
2309 d1 = extract_float (o1);
2310 d2 = extract_float (o2);
2311 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2312 though they are not =. */
2313 return d1 == d2 || (d1 != d1 && d2 != d2);
2314 }
2315
2316 case Lisp_Cons:
2317 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props, ht))
2318 return 0;
2319 o1 = XCDR (o1);
2320 o2 = XCDR (o2);
2321 /* FIXME: This inf-loops in a circular list! */
2322 goto tail_recurse;
2323
2324 case Lisp_Misc:
2325 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2326 return 0;
2327 if (OVERLAYP (o1))
2328 {
2329 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2330 depth + 1, props, ht)
2331 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2332 depth + 1, props, ht))
2333 return 0;
2334 o1 = XOVERLAY (o1)->plist;
2335 o2 = XOVERLAY (o2)->plist;
2336 goto tail_recurse;
2337 }
2338 if (MARKERP (o1))
2339 {
2340 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2341 && (XMARKER (o1)->buffer == 0
2342 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2343 }
2344 break;
2345
2346 case Lisp_Vectorlike:
2347 {
2348 register int i;
2349 ptrdiff_t size = ASIZE (o1);
2350 /* Pseudovectors have the type encoded in the size field, so this test
2351 actually checks that the objects have the same type as well as the
2352 same size. */
2353 if (ASIZE (o2) != size)
2354 return 0;
2355 /* Boolvectors are compared much like strings. */
2356 if (BOOL_VECTOR_P (o1))
2357 {
2358 EMACS_INT size = bool_vector_size (o1);
2359 if (size != bool_vector_size (o2))
2360 return 0;
2361 if (memcmp (bool_vector_data (o1), bool_vector_data (o2),
2362 bool_vector_bytes (size)))
2363 return 0;
2364 return 1;
2365 }
2366 if (WINDOW_CONFIGURATIONP (o1))
2367 return compare_window_configurations (o1, o2, 0);
2368
2369 /* Aside from them, only true vectors, char-tables, compiled
2370 functions, and fonts (font-spec, font-entity, font-object)
2371 are sensible to compare, so eliminate the others now. */
2372 if (size & PSEUDOVECTOR_FLAG)
2373 {
2374 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2375 < PVEC_COMPILED)
2376 return 0;
2377 size &= PSEUDOVECTOR_SIZE_MASK;
2378 }
2379 for (i = 0; i < size; i++)
2380 {
2381 Lisp_Object v1, v2;
2382 v1 = AREF (o1, i);
2383 v2 = AREF (o2, i);
2384 if (!internal_equal (v1, v2, depth + 1, props, ht))
2385 return 0;
2386 }
2387 return 1;
2388 }
2389 break;
2390
2391 case Lisp_String:
2392 if (SCHARS (o1) != SCHARS (o2))
2393 return 0;
2394 if (SBYTES (o1) != SBYTES (o2))
2395 return 0;
2396 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2397 return 0;
2398 if (props && !compare_string_intervals (o1, o2))
2399 return 0;
2400 return 1;
2401
2402 default:
2403 break;
2404 }
2405
2406 return 0;
2407 }
2408 \f
2409
2410 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2411 doc: /* Store each element of ARRAY with ITEM.
2412 ARRAY is a vector, string, char-table, or bool-vector. */)
2413 (Lisp_Object array, Lisp_Object item)
2414 {
2415 register ptrdiff_t size, idx;
2416
2417 if (VECTORP (array))
2418 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2419 ASET (array, idx, item);
2420 else if (CHAR_TABLE_P (array))
2421 {
2422 int i;
2423
2424 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2425 set_char_table_contents (array, i, item);
2426 set_char_table_defalt (array, item);
2427 }
2428 else if (STRINGP (array))
2429 {
2430 register unsigned char *p = SDATA (array);
2431 int charval;
2432 CHECK_CHARACTER (item);
2433 charval = XFASTINT (item);
2434 size = SCHARS (array);
2435 if (STRING_MULTIBYTE (array))
2436 {
2437 unsigned char str[MAX_MULTIBYTE_LENGTH];
2438 int len = CHAR_STRING (charval, str);
2439 ptrdiff_t size_byte = SBYTES (array);
2440 ptrdiff_t product;
2441
2442 if (INT_MULTIPLY_WRAPV (size, len, &product) || product != size_byte)
2443 error ("Attempt to change byte length of a string");
2444 for (idx = 0; idx < size_byte; idx++)
2445 *p++ = str[idx % len];
2446 }
2447 else
2448 for (idx = 0; idx < size; idx++)
2449 p[idx] = charval;
2450 }
2451 else if (BOOL_VECTOR_P (array))
2452 return bool_vector_fill (array, item);
2453 else
2454 wrong_type_argument (Qarrayp, array);
2455 return array;
2456 }
2457
2458 DEFUN ("clear-string", Fclear_string, Sclear_string,
2459 1, 1, 0,
2460 doc: /* Clear the contents of STRING.
2461 This makes STRING unibyte and may change its length. */)
2462 (Lisp_Object string)
2463 {
2464 ptrdiff_t len;
2465 CHECK_STRING (string);
2466 len = SBYTES (string);
2467 memset (SDATA (string), 0, len);
2468 STRING_SET_CHARS (string, len);
2469 STRING_SET_UNIBYTE (string);
2470 return Qnil;
2471 }
2472 \f
2473 /* ARGSUSED */
2474 Lisp_Object
2475 nconc2 (Lisp_Object s1, Lisp_Object s2)
2476 {
2477 return CALLN (Fnconc, s1, s2);
2478 }
2479
2480 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2481 doc: /* Concatenate any number of lists by altering them.
2482 Only the last argument is not altered, and need not be a list.
2483 usage: (nconc &rest LISTS) */)
2484 (ptrdiff_t nargs, Lisp_Object *args)
2485 {
2486 ptrdiff_t argnum;
2487 register Lisp_Object tail, tem, val;
2488
2489 val = tail = Qnil;
2490
2491 for (argnum = 0; argnum < nargs; argnum++)
2492 {
2493 tem = args[argnum];
2494 if (NILP (tem)) continue;
2495
2496 if (NILP (val))
2497 val = tem;
2498
2499 if (argnum + 1 == nargs) break;
2500
2501 CHECK_LIST_CONS (tem, tem);
2502
2503 while (CONSP (tem))
2504 {
2505 tail = tem;
2506 tem = XCDR (tail);
2507 QUIT;
2508 }
2509
2510 tem = args[argnum + 1];
2511 Fsetcdr (tail, tem);
2512 if (NILP (tem))
2513 args[argnum + 1] = tail;
2514 }
2515
2516 return val;
2517 }
2518 \f
2519 /* This is the guts of all mapping functions.
2520 Apply FN to each element of SEQ, one by one,
2521 storing the results into elements of VALS, a C vector of Lisp_Objects.
2522 LENI is the length of VALS, which should also be the length of SEQ. */
2523
2524 static void
2525 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2526 {
2527 Lisp_Object tail, dummy;
2528 EMACS_INT i;
2529
2530 if (VECTORP (seq) || COMPILEDP (seq))
2531 {
2532 for (i = 0; i < leni; i++)
2533 {
2534 dummy = call1 (fn, AREF (seq, i));
2535 if (vals)
2536 vals[i] = dummy;
2537 }
2538 }
2539 else if (BOOL_VECTOR_P (seq))
2540 {
2541 for (i = 0; i < leni; i++)
2542 {
2543 dummy = call1 (fn, bool_vector_ref (seq, i));
2544 if (vals)
2545 vals[i] = dummy;
2546 }
2547 }
2548 else if (STRINGP (seq))
2549 {
2550 ptrdiff_t i_byte;
2551
2552 for (i = 0, i_byte = 0; i < leni;)
2553 {
2554 int c;
2555 ptrdiff_t i_before = i;
2556
2557 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2558 XSETFASTINT (dummy, c);
2559 dummy = call1 (fn, dummy);
2560 if (vals)
2561 vals[i_before] = dummy;
2562 }
2563 }
2564 else /* Must be a list, since Flength did not get an error */
2565 {
2566 tail = seq;
2567 for (i = 0; i < leni && CONSP (tail); i++)
2568 {
2569 dummy = call1 (fn, XCAR (tail));
2570 if (vals)
2571 vals[i] = dummy;
2572 tail = XCDR (tail);
2573 }
2574 }
2575 }
2576
2577 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2578 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2579 In between each pair of results, stick in SEPARATOR. Thus, " " as
2580 SEPARATOR results in spaces between the values returned by FUNCTION.
2581 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2582 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2583 {
2584 Lisp_Object len;
2585 EMACS_INT leni;
2586 EMACS_INT nargs;
2587 ptrdiff_t i;
2588 Lisp_Object *args;
2589 Lisp_Object ret;
2590 USE_SAFE_ALLOCA;
2591
2592 len = Flength (sequence);
2593 if (CHAR_TABLE_P (sequence))
2594 wrong_type_argument (Qlistp, sequence);
2595 leni = XINT (len);
2596 nargs = leni + leni - 1;
2597 if (nargs < 0) return empty_unibyte_string;
2598
2599 SAFE_ALLOCA_LISP (args, nargs);
2600
2601 mapcar1 (leni, args, function, sequence);
2602
2603 for (i = leni - 1; i > 0; i--)
2604 args[i + i] = args[i];
2605
2606 for (i = 1; i < nargs; i += 2)
2607 args[i] = separator;
2608
2609 ret = Fconcat (nargs, args);
2610 SAFE_FREE ();
2611
2612 return ret;
2613 }
2614
2615 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2616 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2617 The result is a list just as long as SEQUENCE.
2618 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2619 (Lisp_Object function, Lisp_Object sequence)
2620 {
2621 register Lisp_Object len;
2622 register EMACS_INT leni;
2623 register Lisp_Object *args;
2624 Lisp_Object ret;
2625 USE_SAFE_ALLOCA;
2626
2627 len = Flength (sequence);
2628 if (CHAR_TABLE_P (sequence))
2629 wrong_type_argument (Qlistp, sequence);
2630 leni = XFASTINT (len);
2631
2632 SAFE_ALLOCA_LISP (args, leni);
2633
2634 mapcar1 (leni, args, function, sequence);
2635
2636 ret = Flist (leni, args);
2637 SAFE_FREE ();
2638
2639 return ret;
2640 }
2641
2642 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2643 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2644 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2645 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2646 (Lisp_Object function, Lisp_Object sequence)
2647 {
2648 register EMACS_INT leni;
2649
2650 leni = XFASTINT (Flength (sequence));
2651 if (CHAR_TABLE_P (sequence))
2652 wrong_type_argument (Qlistp, sequence);
2653 mapcar1 (leni, 0, function, sequence);
2654
2655 return sequence;
2656 }
2657 \f
2658 /* This is how C code calls `yes-or-no-p' and allows the user
2659 to redefine it. */
2660
2661 Lisp_Object
2662 do_yes_or_no_p (Lisp_Object prompt)
2663 {
2664 return call1 (intern ("yes-or-no-p"), prompt);
2665 }
2666
2667 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2668 doc: /* Ask user a yes-or-no question.
2669 Return t if answer is yes, and nil if the answer is no.
2670 PROMPT is the string to display to ask the question. It should end in
2671 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2672
2673 The user must confirm the answer with RET, and can edit it until it
2674 has been confirmed.
2675
2676 If dialog boxes are supported, a dialog box will be used
2677 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2678 (Lisp_Object prompt)
2679 {
2680 Lisp_Object ans;
2681
2682 CHECK_STRING (prompt);
2683
2684 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2685 && use_dialog_box && ! NILP (last_input_event))
2686 {
2687 Lisp_Object pane, menu, obj;
2688 redisplay_preserve_echo_area (4);
2689 pane = list2 (Fcons (build_string ("Yes"), Qt),
2690 Fcons (build_string ("No"), Qnil));
2691 menu = Fcons (prompt, pane);
2692 obj = Fx_popup_dialog (Qt, menu, Qnil);
2693 return obj;
2694 }
2695
2696 AUTO_STRING (yes_or_no, "(yes or no) ");
2697 prompt = CALLN (Fconcat, prompt, yes_or_no);
2698
2699 while (1)
2700 {
2701 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2702 Qyes_or_no_p_history, Qnil,
2703 Qnil));
2704 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2705 return Qt;
2706 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2707 return Qnil;
2708
2709 Fding (Qnil);
2710 Fdiscard_input ();
2711 message1 ("Please answer yes or no.");
2712 Fsleep_for (make_number (2), Qnil);
2713 }
2714 }
2715 \f
2716 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2717 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2718
2719 Each of the three load averages is multiplied by 100, then converted
2720 to integer.
2721
2722 When USE-FLOATS is non-nil, floats will be used instead of integers.
2723 These floats are not multiplied by 100.
2724
2725 If the 5-minute or 15-minute load averages are not available, return a
2726 shortened list, containing only those averages which are available.
2727
2728 An error is thrown if the load average can't be obtained. In some
2729 cases making it work would require Emacs being installed setuid or
2730 setgid so that it can read kernel information, and that usually isn't
2731 advisable. */)
2732 (Lisp_Object use_floats)
2733 {
2734 double load_ave[3];
2735 int loads = getloadavg (load_ave, 3);
2736 Lisp_Object ret = Qnil;
2737
2738 if (loads < 0)
2739 error ("load-average not implemented for this operating system");
2740
2741 while (loads-- > 0)
2742 {
2743 Lisp_Object load = (NILP (use_floats)
2744 ? make_number (100.0 * load_ave[loads])
2745 : make_float (load_ave[loads]));
2746 ret = Fcons (load, ret);
2747 }
2748
2749 return ret;
2750 }
2751 \f
2752 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2753 doc: /* Return t if FEATURE is present in this Emacs.
2754
2755 Use this to conditionalize execution of lisp code based on the
2756 presence or absence of Emacs or environment extensions.
2757 Use `provide' to declare that a feature is available. This function
2758 looks at the value of the variable `features'. The optional argument
2759 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2760 (Lisp_Object feature, Lisp_Object subfeature)
2761 {
2762 register Lisp_Object tem;
2763 CHECK_SYMBOL (feature);
2764 tem = Fmemq (feature, Vfeatures);
2765 if (!NILP (tem) && !NILP (subfeature))
2766 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2767 return (NILP (tem)) ? Qnil : Qt;
2768 }
2769
2770 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2771 doc: /* Announce that FEATURE is a feature of the current Emacs.
2772 The optional argument SUBFEATURES should be a list of symbols listing
2773 particular subfeatures supported in this version of FEATURE. */)
2774 (Lisp_Object feature, Lisp_Object subfeatures)
2775 {
2776 register Lisp_Object tem;
2777 CHECK_SYMBOL (feature);
2778 CHECK_LIST (subfeatures);
2779 if (!NILP (Vautoload_queue))
2780 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2781 Vautoload_queue);
2782 tem = Fmemq (feature, Vfeatures);
2783 if (NILP (tem))
2784 Vfeatures = Fcons (feature, Vfeatures);
2785 if (!NILP (subfeatures))
2786 Fput (feature, Qsubfeatures, subfeatures);
2787 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2788
2789 /* Run any load-hooks for this file. */
2790 tem = Fassq (feature, Vafter_load_alist);
2791 if (CONSP (tem))
2792 Fmapc (Qfuncall, XCDR (tem));
2793
2794 return feature;
2795 }
2796 \f
2797 /* `require' and its subroutines. */
2798
2799 /* List of features currently being require'd, innermost first. */
2800
2801 static Lisp_Object require_nesting_list;
2802
2803 static void
2804 require_unwind (Lisp_Object old_value)
2805 {
2806 require_nesting_list = old_value;
2807 }
2808
2809 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2810 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2811 If FEATURE is not a member of the list `features', then the feature
2812 is not loaded; so load the file FILENAME.
2813 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2814 and `load' will try to load this name appended with the suffix `.elc',
2815 `.el', or the system-dependent suffix for dynamic module files, in that
2816 order. The name without appended suffix will not be used.
2817 See `get-load-suffixes' for the complete list of suffixes.
2818 If the optional third argument NOERROR is non-nil,
2819 then return nil if the file is not found instead of signaling an error.
2820 Normally the return value is FEATURE.
2821 The normal messages at start and end of loading FILENAME are suppressed. */)
2822 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2823 {
2824 Lisp_Object tem;
2825 bool from_file = load_in_progress;
2826
2827 CHECK_SYMBOL (feature);
2828
2829 /* Record the presence of `require' in this file
2830 even if the feature specified is already loaded.
2831 But not more than once in any file,
2832 and not when we aren't loading or reading from a file. */
2833 if (!from_file)
2834 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2835 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2836 from_file = 1;
2837
2838 if (from_file)
2839 {
2840 tem = Fcons (Qrequire, feature);
2841 if (NILP (Fmember (tem, Vcurrent_load_list)))
2842 LOADHIST_ATTACH (tem);
2843 }
2844 tem = Fmemq (feature, Vfeatures);
2845
2846 if (NILP (tem))
2847 {
2848 ptrdiff_t count = SPECPDL_INDEX ();
2849 int nesting = 0;
2850
2851 /* This is to make sure that loadup.el gives a clear picture
2852 of what files are preloaded and when. */
2853 if (! NILP (Vpurify_flag))
2854 error ("(require %s) while preparing to dump",
2855 SDATA (SYMBOL_NAME (feature)));
2856
2857 /* A certain amount of recursive `require' is legitimate,
2858 but if we require the same feature recursively 3 times,
2859 signal an error. */
2860 tem = require_nesting_list;
2861 while (! NILP (tem))
2862 {
2863 if (! NILP (Fequal (feature, XCAR (tem))))
2864 nesting++;
2865 tem = XCDR (tem);
2866 }
2867 if (nesting > 3)
2868 error ("Recursive `require' for feature `%s'",
2869 SDATA (SYMBOL_NAME (feature)));
2870
2871 /* Update the list for any nested `require's that occur. */
2872 record_unwind_protect (require_unwind, require_nesting_list);
2873 require_nesting_list = Fcons (feature, require_nesting_list);
2874
2875 /* Value saved here is to be restored into Vautoload_queue */
2876 record_unwind_protect (un_autoload, Vautoload_queue);
2877 Vautoload_queue = Qt;
2878
2879 /* Load the file. */
2880 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2881 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2882
2883 /* If load failed entirely, return nil. */
2884 if (NILP (tem))
2885 return unbind_to (count, Qnil);
2886
2887 tem = Fmemq (feature, Vfeatures);
2888 if (NILP (tem))
2889 error ("Required feature `%s' was not provided",
2890 SDATA (SYMBOL_NAME (feature)));
2891
2892 /* Once loading finishes, don't undo it. */
2893 Vautoload_queue = Qt;
2894 feature = unbind_to (count, feature);
2895 }
2896
2897 return feature;
2898 }
2899 \f
2900 /* Primitives for work of the "widget" library.
2901 In an ideal world, this section would not have been necessary.
2902 However, lisp function calls being as slow as they are, it turns
2903 out that some functions in the widget library (wid-edit.el) are the
2904 bottleneck of Widget operation. Here is their translation to C,
2905 for the sole reason of efficiency. */
2906
2907 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2908 doc: /* Return non-nil if PLIST has the property PROP.
2909 PLIST is a property list, which is a list of the form
2910 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol.
2911 Unlike `plist-get', this allows you to distinguish between a missing
2912 property and a property with the value nil.
2913 The value is actually the tail of PLIST whose car is PROP. */)
2914 (Lisp_Object plist, Lisp_Object prop)
2915 {
2916 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2917 {
2918 plist = XCDR (plist);
2919 plist = CDR (plist);
2920 QUIT;
2921 }
2922 return plist;
2923 }
2924
2925 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2926 doc: /* In WIDGET, set PROPERTY to VALUE.
2927 The value can later be retrieved with `widget-get'. */)
2928 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2929 {
2930 CHECK_CONS (widget);
2931 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2932 return value;
2933 }
2934
2935 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2936 doc: /* In WIDGET, get the value of PROPERTY.
2937 The value could either be specified when the widget was created, or
2938 later with `widget-put'. */)
2939 (Lisp_Object widget, Lisp_Object property)
2940 {
2941 Lisp_Object tmp;
2942
2943 while (1)
2944 {
2945 if (NILP (widget))
2946 return Qnil;
2947 CHECK_CONS (widget);
2948 tmp = Fplist_member (XCDR (widget), property);
2949 if (CONSP (tmp))
2950 {
2951 tmp = XCDR (tmp);
2952 return CAR (tmp);
2953 }
2954 tmp = XCAR (widget);
2955 if (NILP (tmp))
2956 return Qnil;
2957 widget = Fget (tmp, Qwidget_type);
2958 }
2959 }
2960
2961 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2962 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2963 ARGS are passed as extra arguments to the function.
2964 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2965 (ptrdiff_t nargs, Lisp_Object *args)
2966 {
2967 Lisp_Object widget = args[0];
2968 Lisp_Object property = args[1];
2969 Lisp_Object propval = Fwidget_get (widget, property);
2970 Lisp_Object trailing_args = Flist (nargs - 2, args + 2);
2971 Lisp_Object result = CALLN (Fapply, propval, widget, trailing_args);
2972 return result;
2973 }
2974
2975 #ifdef HAVE_LANGINFO_CODESET
2976 #include <langinfo.h>
2977 #endif
2978
2979 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2980 doc: /* Access locale data ITEM for the current C locale, if available.
2981 ITEM should be one of the following:
2982
2983 `codeset', returning the character set as a string (locale item CODESET);
2984
2985 `days', returning a 7-element vector of day names (locale items DAY_n);
2986
2987 `months', returning a 12-element vector of month names (locale items MON_n);
2988
2989 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2990 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2991
2992 If the system can't provide such information through a call to
2993 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2994
2995 See also Info node `(libc)Locales'.
2996
2997 The data read from the system are decoded using `locale-coding-system'. */)
2998 (Lisp_Object item)
2999 {
3000 char *str = NULL;
3001 #ifdef HAVE_LANGINFO_CODESET
3002 Lisp_Object val;
3003 if (EQ (item, Qcodeset))
3004 {
3005 str = nl_langinfo (CODESET);
3006 return build_string (str);
3007 }
3008 #ifdef DAY_1
3009 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3010 {
3011 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3012 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3013 int i;
3014 synchronize_system_time_locale ();
3015 for (i = 0; i < 7; i++)
3016 {
3017 str = nl_langinfo (days[i]);
3018 val = build_unibyte_string (str);
3019 /* Fixme: Is this coding system necessarily right, even if
3020 it is consistent with CODESET? If not, what to do? */
3021 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
3022 0));
3023 }
3024 return v;
3025 }
3026 #endif /* DAY_1 */
3027 #ifdef MON_1
3028 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3029 {
3030 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
3031 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3032 MON_8, MON_9, MON_10, MON_11, MON_12};
3033 int i;
3034 synchronize_system_time_locale ();
3035 for (i = 0; i < 12; i++)
3036 {
3037 str = nl_langinfo (months[i]);
3038 val = build_unibyte_string (str);
3039 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
3040 0));
3041 }
3042 return v;
3043 }
3044 #endif /* MON_1 */
3045 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3046 but is in the locale files. This could be used by ps-print. */
3047 #ifdef PAPER_WIDTH
3048 else if (EQ (item, Qpaper))
3049 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
3050 #endif /* PAPER_WIDTH */
3051 #endif /* HAVE_LANGINFO_CODESET*/
3052 return Qnil;
3053 }
3054 \f
3055 /* base64 encode/decode functions (RFC 2045).
3056 Based on code from GNU recode. */
3057
3058 #define MIME_LINE_LENGTH 76
3059
3060 #define IS_ASCII(Character) \
3061 ((Character) < 128)
3062 #define IS_BASE64(Character) \
3063 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3064 #define IS_BASE64_IGNORABLE(Character) \
3065 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3066 || (Character) == '\f' || (Character) == '\r')
3067
3068 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3069 character or return retval if there are no characters left to
3070 process. */
3071 #define READ_QUADRUPLET_BYTE(retval) \
3072 do \
3073 { \
3074 if (i == length) \
3075 { \
3076 if (nchars_return) \
3077 *nchars_return = nchars; \
3078 return (retval); \
3079 } \
3080 c = from[i++]; \
3081 } \
3082 while (IS_BASE64_IGNORABLE (c))
3083
3084 /* Table of characters coding the 64 values. */
3085 static const char base64_value_to_char[64] =
3086 {
3087 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3088 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3089 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3090 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3091 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3092 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3093 '8', '9', '+', '/' /* 60-63 */
3094 };
3095
3096 /* Table of base64 values for first 128 characters. */
3097 static const short base64_char_to_value[128] =
3098 {
3099 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3100 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3101 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3102 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3103 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3104 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3105 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3106 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3107 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3108 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3109 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3110 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3111 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3112 };
3113
3114 /* The following diagram shows the logical steps by which three octets
3115 get transformed into four base64 characters.
3116
3117 .--------. .--------. .--------.
3118 |aaaaaabb| |bbbbcccc| |ccdddddd|
3119 `--------' `--------' `--------'
3120 6 2 4 4 2 6
3121 .--------+--------+--------+--------.
3122 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3123 `--------+--------+--------+--------'
3124
3125 .--------+--------+--------+--------.
3126 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3127 `--------+--------+--------+--------'
3128
3129 The octets are divided into 6 bit chunks, which are then encoded into
3130 base64 characters. */
3131
3132
3133 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
3134 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
3135 ptrdiff_t *);
3136
3137 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3138 2, 3, "r",
3139 doc: /* Base64-encode the region between BEG and END.
3140 Return the length of the encoded text.
3141 Optional third argument NO-LINE-BREAK means do not break long lines
3142 into shorter lines. */)
3143 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
3144 {
3145 char *encoded;
3146 ptrdiff_t allength, length;
3147 ptrdiff_t ibeg, iend, encoded_length;
3148 ptrdiff_t old_pos = PT;
3149 USE_SAFE_ALLOCA;
3150
3151 validate_region (&beg, &end);
3152
3153 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3154 iend = CHAR_TO_BYTE (XFASTINT (end));
3155 move_gap_both (XFASTINT (beg), ibeg);
3156
3157 /* We need to allocate enough room for encoding the text.
3158 We need 33 1/3% more space, plus a newline every 76
3159 characters, and then we round up. */
3160 length = iend - ibeg;
3161 allength = length + length/3 + 1;
3162 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3163
3164 encoded = SAFE_ALLOCA (allength);
3165 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
3166 encoded, length, NILP (no_line_break),
3167 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
3168 if (encoded_length > allength)
3169 emacs_abort ();
3170
3171 if (encoded_length < 0)
3172 {
3173 /* The encoding wasn't possible. */
3174 SAFE_FREE ();
3175 error ("Multibyte character in data for base64 encoding");
3176 }
3177
3178 /* Now we have encoded the region, so we insert the new contents
3179 and delete the old. (Insert first in order to preserve markers.) */
3180 SET_PT_BOTH (XFASTINT (beg), ibeg);
3181 insert (encoded, encoded_length);
3182 SAFE_FREE ();
3183 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3184
3185 /* If point was outside of the region, restore it exactly; else just
3186 move to the beginning of the region. */
3187 if (old_pos >= XFASTINT (end))
3188 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3189 else if (old_pos > XFASTINT (beg))
3190 old_pos = XFASTINT (beg);
3191 SET_PT (old_pos);
3192
3193 /* We return the length of the encoded text. */
3194 return make_number (encoded_length);
3195 }
3196
3197 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3198 1, 2, 0,
3199 doc: /* Base64-encode STRING and return the result.
3200 Optional second argument NO-LINE-BREAK means do not break long lines
3201 into shorter lines. */)
3202 (Lisp_Object string, Lisp_Object no_line_break)
3203 {
3204 ptrdiff_t allength, length, encoded_length;
3205 char *encoded;
3206 Lisp_Object encoded_string;
3207 USE_SAFE_ALLOCA;
3208
3209 CHECK_STRING (string);
3210
3211 /* We need to allocate enough room for encoding the text.
3212 We need 33 1/3% more space, plus a newline every 76
3213 characters, and then we round up. */
3214 length = SBYTES (string);
3215 allength = length + length/3 + 1;
3216 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3217
3218 /* We need to allocate enough room for decoding the text. */
3219 encoded = SAFE_ALLOCA (allength);
3220
3221 encoded_length = base64_encode_1 (SSDATA (string),
3222 encoded, length, NILP (no_line_break),
3223 STRING_MULTIBYTE (string));
3224 if (encoded_length > allength)
3225 emacs_abort ();
3226
3227 if (encoded_length < 0)
3228 {
3229 /* The encoding wasn't possible. */
3230 error ("Multibyte character in data for base64 encoding");
3231 }
3232
3233 encoded_string = make_unibyte_string (encoded, encoded_length);
3234 SAFE_FREE ();
3235
3236 return encoded_string;
3237 }
3238
3239 static ptrdiff_t
3240 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3241 bool line_break, bool multibyte)
3242 {
3243 int counter = 0;
3244 ptrdiff_t i = 0;
3245 char *e = to;
3246 int c;
3247 unsigned int value;
3248 int bytes;
3249
3250 while (i < length)
3251 {
3252 if (multibyte)
3253 {
3254 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3255 if (CHAR_BYTE8_P (c))
3256 c = CHAR_TO_BYTE8 (c);
3257 else if (c >= 256)
3258 return -1;
3259 i += bytes;
3260 }
3261 else
3262 c = from[i++];
3263
3264 /* Wrap line every 76 characters. */
3265
3266 if (line_break)
3267 {
3268 if (counter < MIME_LINE_LENGTH / 4)
3269 counter++;
3270 else
3271 {
3272 *e++ = '\n';
3273 counter = 1;
3274 }
3275 }
3276
3277 /* Process first byte of a triplet. */
3278
3279 *e++ = base64_value_to_char[0x3f & c >> 2];
3280 value = (0x03 & c) << 4;
3281
3282 /* Process second byte of a triplet. */
3283
3284 if (i == length)
3285 {
3286 *e++ = base64_value_to_char[value];
3287 *e++ = '=';
3288 *e++ = '=';
3289 break;
3290 }
3291
3292 if (multibyte)
3293 {
3294 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3295 if (CHAR_BYTE8_P (c))
3296 c = CHAR_TO_BYTE8 (c);
3297 else if (c >= 256)
3298 return -1;
3299 i += bytes;
3300 }
3301 else
3302 c = from[i++];
3303
3304 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3305 value = (0x0f & c) << 2;
3306
3307 /* Process third byte of a triplet. */
3308
3309 if (i == length)
3310 {
3311 *e++ = base64_value_to_char[value];
3312 *e++ = '=';
3313 break;
3314 }
3315
3316 if (multibyte)
3317 {
3318 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3319 if (CHAR_BYTE8_P (c))
3320 c = CHAR_TO_BYTE8 (c);
3321 else if (c >= 256)
3322 return -1;
3323 i += bytes;
3324 }
3325 else
3326 c = from[i++];
3327
3328 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3329 *e++ = base64_value_to_char[0x3f & c];
3330 }
3331
3332 return e - to;
3333 }
3334
3335
3336 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3337 2, 2, "r",
3338 doc: /* Base64-decode the region between BEG and END.
3339 Return the length of the decoded text.
3340 If the region can't be decoded, signal an error and don't modify the buffer. */)
3341 (Lisp_Object beg, Lisp_Object end)
3342 {
3343 ptrdiff_t ibeg, iend, length, allength;
3344 char *decoded;
3345 ptrdiff_t old_pos = PT;
3346 ptrdiff_t decoded_length;
3347 ptrdiff_t inserted_chars;
3348 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3349 USE_SAFE_ALLOCA;
3350
3351 validate_region (&beg, &end);
3352
3353 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3354 iend = CHAR_TO_BYTE (XFASTINT (end));
3355
3356 length = iend - ibeg;
3357
3358 /* We need to allocate enough room for decoding the text. If we are
3359 working on a multibyte buffer, each decoded code may occupy at
3360 most two bytes. */
3361 allength = multibyte ? length * 2 : length;
3362 decoded = SAFE_ALLOCA (allength);
3363
3364 move_gap_both (XFASTINT (beg), ibeg);
3365 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3366 decoded, length,
3367 multibyte, &inserted_chars);
3368 if (decoded_length > allength)
3369 emacs_abort ();
3370
3371 if (decoded_length < 0)
3372 {
3373 /* The decoding wasn't possible. */
3374 error ("Invalid base64 data");
3375 }
3376
3377 /* Now we have decoded the region, so we insert the new contents
3378 and delete the old. (Insert first in order to preserve markers.) */
3379 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3380 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3381 SAFE_FREE ();
3382
3383 /* Delete the original text. */
3384 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3385 iend + decoded_length, 1);
3386
3387 /* If point was outside of the region, restore it exactly; else just
3388 move to the beginning of the region. */
3389 if (old_pos >= XFASTINT (end))
3390 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3391 else if (old_pos > XFASTINT (beg))
3392 old_pos = XFASTINT (beg);
3393 SET_PT (old_pos > ZV ? ZV : old_pos);
3394
3395 return make_number (inserted_chars);
3396 }
3397
3398 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3399 1, 1, 0,
3400 doc: /* Base64-decode STRING and return the result. */)
3401 (Lisp_Object string)
3402 {
3403 char *decoded;
3404 ptrdiff_t length, decoded_length;
3405 Lisp_Object decoded_string;
3406 USE_SAFE_ALLOCA;
3407
3408 CHECK_STRING (string);
3409
3410 length = SBYTES (string);
3411 /* We need to allocate enough room for decoding the text. */
3412 decoded = SAFE_ALLOCA (length);
3413
3414 /* The decoded result should be unibyte. */
3415 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3416 0, NULL);
3417 if (decoded_length > length)
3418 emacs_abort ();
3419 else if (decoded_length >= 0)
3420 decoded_string = make_unibyte_string (decoded, decoded_length);
3421 else
3422 decoded_string = Qnil;
3423
3424 SAFE_FREE ();
3425 if (!STRINGP (decoded_string))
3426 error ("Invalid base64 data");
3427
3428 return decoded_string;
3429 }
3430
3431 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3432 MULTIBYTE, the decoded result should be in multibyte
3433 form. If NCHARS_RETURN is not NULL, store the number of produced
3434 characters in *NCHARS_RETURN. */
3435
3436 static ptrdiff_t
3437 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3438 bool multibyte, ptrdiff_t *nchars_return)
3439 {
3440 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3441 char *e = to;
3442 unsigned char c;
3443 unsigned long value;
3444 ptrdiff_t nchars = 0;
3445
3446 while (1)
3447 {
3448 /* Process first byte of a quadruplet. */
3449
3450 READ_QUADRUPLET_BYTE (e-to);
3451
3452 if (!IS_BASE64 (c))
3453 return -1;
3454 value = base64_char_to_value[c] << 18;
3455
3456 /* Process second byte of a quadruplet. */
3457
3458 READ_QUADRUPLET_BYTE (-1);
3459
3460 if (!IS_BASE64 (c))
3461 return -1;
3462 value |= base64_char_to_value[c] << 12;
3463
3464 c = (unsigned char) (value >> 16);
3465 if (multibyte && c >= 128)
3466 e += BYTE8_STRING (c, e);
3467 else
3468 *e++ = c;
3469 nchars++;
3470
3471 /* Process third byte of a quadruplet. */
3472
3473 READ_QUADRUPLET_BYTE (-1);
3474
3475 if (c == '=')
3476 {
3477 READ_QUADRUPLET_BYTE (-1);
3478
3479 if (c != '=')
3480 return -1;
3481 continue;
3482 }
3483
3484 if (!IS_BASE64 (c))
3485 return -1;
3486 value |= base64_char_to_value[c] << 6;
3487
3488 c = (unsigned char) (0xff & value >> 8);
3489 if (multibyte && c >= 128)
3490 e += BYTE8_STRING (c, e);
3491 else
3492 *e++ = c;
3493 nchars++;
3494
3495 /* Process fourth byte of a quadruplet. */
3496
3497 READ_QUADRUPLET_BYTE (-1);
3498
3499 if (c == '=')
3500 continue;
3501
3502 if (!IS_BASE64 (c))
3503 return -1;
3504 value |= base64_char_to_value[c];
3505
3506 c = (unsigned char) (0xff & value);
3507 if (multibyte && c >= 128)
3508 e += BYTE8_STRING (c, e);
3509 else
3510 *e++ = c;
3511 nchars++;
3512 }
3513 }
3514
3515
3516 \f
3517 /***********************************************************************
3518 ***** *****
3519 ***** Hash Tables *****
3520 ***** *****
3521 ***********************************************************************/
3522
3523 /* Implemented by gerd@gnu.org. This hash table implementation was
3524 inspired by CMUCL hash tables. */
3525
3526 /* Ideas:
3527
3528 1. For small tables, association lists are probably faster than
3529 hash tables because they have lower overhead.
3530
3531 For uses of hash tables where the O(1) behavior of table
3532 operations is not a requirement, it might therefore be a good idea
3533 not to hash. Instead, we could just do a linear search in the
3534 key_and_value vector of the hash table. This could be done
3535 if a `:linear-search t' argument is given to make-hash-table. */
3536
3537
3538 /* The list of all weak hash tables. Don't staticpro this one. */
3539
3540 static struct Lisp_Hash_Table *weak_hash_tables;
3541
3542 \f
3543 /***********************************************************************
3544 Utilities
3545 ***********************************************************************/
3546
3547 static void
3548 CHECK_HASH_TABLE (Lisp_Object x)
3549 {
3550 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3551 }
3552
3553 static void
3554 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3555 {
3556 h->key_and_value = key_and_value;
3557 }
3558 static void
3559 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3560 {
3561 h->next = next;
3562 }
3563 static void
3564 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3565 {
3566 gc_aset (h->next, idx, val);
3567 }
3568 static void
3569 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3570 {
3571 h->hash = hash;
3572 }
3573 static void
3574 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3575 {
3576 gc_aset (h->hash, idx, val);
3577 }
3578 static void
3579 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3580 {
3581 h->index = index;
3582 }
3583 static void
3584 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3585 {
3586 gc_aset (h->index, idx, val);
3587 }
3588
3589 /* If OBJ is a Lisp hash table, return a pointer to its struct
3590 Lisp_Hash_Table. Otherwise, signal an error. */
3591
3592 static struct Lisp_Hash_Table *
3593 check_hash_table (Lisp_Object obj)
3594 {
3595 CHECK_HASH_TABLE (obj);
3596 return XHASH_TABLE (obj);
3597 }
3598
3599
3600 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3601 number. A number is "almost" a prime number if it is not divisible
3602 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3603
3604 EMACS_INT
3605 next_almost_prime (EMACS_INT n)
3606 {
3607 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3608 for (n |= 1; ; n += 2)
3609 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3610 return n;
3611 }
3612
3613
3614 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3615 which USED[I] is non-zero. If found at index I in ARGS, set
3616 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3617 0. This function is used to extract a keyword/argument pair from
3618 a DEFUN parameter list. */
3619
3620 static ptrdiff_t
3621 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3622 {
3623 ptrdiff_t i;
3624
3625 for (i = 1; i < nargs; i++)
3626 if (!used[i - 1] && EQ (args[i - 1], key))
3627 {
3628 used[i - 1] = 1;
3629 used[i] = 1;
3630 return i;
3631 }
3632
3633 return 0;
3634 }
3635
3636
3637 /* Return a Lisp vector which has the same contents as VEC but has
3638 at least INCR_MIN more entries, where INCR_MIN is positive.
3639 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3640 than NITEMS_MAX. Entries in the resulting
3641 vector that are not copied from VEC are set to nil. */
3642
3643 Lisp_Object
3644 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3645 {
3646 struct Lisp_Vector *v;
3647 ptrdiff_t incr, incr_max, old_size, new_size;
3648 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3649 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3650 ? nitems_max : C_language_max);
3651 eassert (VECTORP (vec));
3652 eassert (0 < incr_min && -1 <= nitems_max);
3653 old_size = ASIZE (vec);
3654 incr_max = n_max - old_size;
3655 incr = max (incr_min, min (old_size >> 1, incr_max));
3656 if (incr_max < incr)
3657 memory_full (SIZE_MAX);
3658 new_size = old_size + incr;
3659 v = allocate_vector (new_size);
3660 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3661 memclear (v->contents + old_size, incr * word_size);
3662 XSETVECTOR (vec, v);
3663 return vec;
3664 }
3665
3666
3667 /***********************************************************************
3668 Low-level Functions
3669 ***********************************************************************/
3670
3671 struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3672
3673 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3674 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3675 KEY2 are the same. */
3676
3677 static bool
3678 cmpfn_eql (struct hash_table_test *ht,
3679 Lisp_Object key1,
3680 Lisp_Object key2)
3681 {
3682 return (FLOATP (key1)
3683 && FLOATP (key2)
3684 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3685 }
3686
3687
3688 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3689 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3690 KEY2 are the same. */
3691
3692 static bool
3693 cmpfn_equal (struct hash_table_test *ht,
3694 Lisp_Object key1,
3695 Lisp_Object key2)
3696 {
3697 return !NILP (Fequal (key1, key2));
3698 }
3699
3700
3701 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3702 HASH2 in hash table H using H->user_cmp_function. Value is true
3703 if KEY1 and KEY2 are the same. */
3704
3705 static bool
3706 cmpfn_user_defined (struct hash_table_test *ht,
3707 Lisp_Object key1,
3708 Lisp_Object key2)
3709 {
3710 return !NILP (call2 (ht->user_cmp_function, key1, key2));
3711 }
3712
3713
3714 /* Value is a hash code for KEY for use in hash table H which uses
3715 `eq' to compare keys. The hash code returned is guaranteed to fit
3716 in a Lisp integer. */
3717
3718 static EMACS_UINT
3719 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3720 {
3721 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3722 return hash;
3723 }
3724
3725 /* Value is a hash code for KEY for use in hash table H which uses
3726 `eql' to compare keys. The hash code returned is guaranteed to fit
3727 in a Lisp integer. */
3728
3729 static EMACS_UINT
3730 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3731 {
3732 EMACS_UINT hash;
3733 if (FLOATP (key))
3734 hash = sxhash (key, 0);
3735 else
3736 hash = XHASH (key) ^ XTYPE (key);
3737 return hash;
3738 }
3739
3740 /* Value is a hash code for KEY for use in hash table H which uses
3741 `equal' to compare keys. The hash code returned is guaranteed to fit
3742 in a Lisp integer. */
3743
3744 static EMACS_UINT
3745 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3746 {
3747 EMACS_UINT hash = sxhash (key, 0);
3748 return hash;
3749 }
3750
3751 /* Value is a hash code for KEY for use in hash table H which uses as
3752 user-defined function to compare keys. The hash code returned is
3753 guaranteed to fit in a Lisp integer. */
3754
3755 static EMACS_UINT
3756 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3757 {
3758 Lisp_Object hash = call1 (ht->user_hash_function, key);
3759 return hashfn_eq (ht, hash);
3760 }
3761
3762 /* Allocate basically initialized hash table. */
3763
3764 static struct Lisp_Hash_Table *
3765 allocate_hash_table (void)
3766 {
3767 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table,
3768 count, PVEC_HASH_TABLE);
3769 }
3770
3771 /* An upper bound on the size of a hash table index. It must fit in
3772 ptrdiff_t and be a valid Emacs fixnum. */
3773 #define INDEX_SIZE_BOUND \
3774 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3775
3776 /* Create and initialize a new hash table.
3777
3778 TEST specifies the test the hash table will use to compare keys.
3779 It must be either one of the predefined tests `eq', `eql' or
3780 `equal' or a symbol denoting a user-defined test named TEST with
3781 test and hash functions USER_TEST and USER_HASH.
3782
3783 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3784
3785 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3786 new size when it becomes full is computed by adding REHASH_SIZE to
3787 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3788 table's new size is computed by multiplying its old size with
3789 REHASH_SIZE.
3790
3791 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3792 be resized when the ratio of (number of entries in the table) /
3793 (table size) is >= REHASH_THRESHOLD.
3794
3795 WEAK specifies the weakness of the table. If non-nil, it must be
3796 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3797
3798 Lisp_Object
3799 make_hash_table (struct hash_table_test test,
3800 Lisp_Object size, Lisp_Object rehash_size,
3801 Lisp_Object rehash_threshold, Lisp_Object weak)
3802 {
3803 struct Lisp_Hash_Table *h;
3804 Lisp_Object table;
3805 EMACS_INT index_size, sz;
3806 ptrdiff_t i;
3807 double index_float;
3808
3809 /* Preconditions. */
3810 eassert (SYMBOLP (test.name));
3811 eassert (INTEGERP (size) && XINT (size) >= 0);
3812 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3813 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3814 eassert (FLOATP (rehash_threshold)
3815 && 0 < XFLOAT_DATA (rehash_threshold)
3816 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3817
3818 if (XFASTINT (size) == 0)
3819 size = make_number (1);
3820
3821 sz = XFASTINT (size);
3822 index_float = sz / XFLOAT_DATA (rehash_threshold);
3823 index_size = (index_float < INDEX_SIZE_BOUND + 1
3824 ? next_almost_prime (index_float)
3825 : INDEX_SIZE_BOUND + 1);
3826 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3827 error ("Hash table too large");
3828
3829 /* Allocate a table and initialize it. */
3830 h = allocate_hash_table ();
3831
3832 /* Initialize hash table slots. */
3833 h->test = test;
3834 h->weak = weak;
3835 h->rehash_threshold = rehash_threshold;
3836 h->rehash_size = rehash_size;
3837 h->count = 0;
3838 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3839 h->hash = Fmake_vector (size, Qnil);
3840 h->next = Fmake_vector (size, Qnil);
3841 h->index = Fmake_vector (make_number (index_size), Qnil);
3842
3843 /* Set up the free list. */
3844 for (i = 0; i < sz - 1; ++i)
3845 set_hash_next_slot (h, i, make_number (i + 1));
3846 h->next_free = make_number (0);
3847
3848 XSET_HASH_TABLE (table, h);
3849 eassert (HASH_TABLE_P (table));
3850 eassert (XHASH_TABLE (table) == h);
3851
3852 /* Maybe add this hash table to the list of all weak hash tables. */
3853 if (NILP (h->weak))
3854 h->next_weak = NULL;
3855 else
3856 {
3857 h->next_weak = weak_hash_tables;
3858 weak_hash_tables = h;
3859 }
3860
3861 return table;
3862 }
3863
3864
3865 /* Return a copy of hash table H1. Keys and values are not copied,
3866 only the table itself is. */
3867
3868 static Lisp_Object
3869 copy_hash_table (struct Lisp_Hash_Table *h1)
3870 {
3871 Lisp_Object table;
3872 struct Lisp_Hash_Table *h2;
3873
3874 h2 = allocate_hash_table ();
3875 *h2 = *h1;
3876 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3877 h2->hash = Fcopy_sequence (h1->hash);
3878 h2->next = Fcopy_sequence (h1->next);
3879 h2->index = Fcopy_sequence (h1->index);
3880 XSET_HASH_TABLE (table, h2);
3881
3882 /* Maybe add this hash table to the list of all weak hash tables. */
3883 if (!NILP (h2->weak))
3884 {
3885 h2->next_weak = weak_hash_tables;
3886 weak_hash_tables = h2;
3887 }
3888
3889 return table;
3890 }
3891
3892
3893 /* Resize hash table H if it's too full. If H cannot be resized
3894 because it's already too large, throw an error. */
3895
3896 static void
3897 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3898 {
3899 if (NILP (h->next_free))
3900 {
3901 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3902 EMACS_INT new_size, index_size, nsize;
3903 ptrdiff_t i;
3904 double index_float;
3905
3906 if (INTEGERP (h->rehash_size))
3907 new_size = old_size + XFASTINT (h->rehash_size);
3908 else
3909 {
3910 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3911 if (float_new_size < INDEX_SIZE_BOUND + 1)
3912 {
3913 new_size = float_new_size;
3914 if (new_size <= old_size)
3915 new_size = old_size + 1;
3916 }
3917 else
3918 new_size = INDEX_SIZE_BOUND + 1;
3919 }
3920 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3921 index_size = (index_float < INDEX_SIZE_BOUND + 1
3922 ? next_almost_prime (index_float)
3923 : INDEX_SIZE_BOUND + 1);
3924 nsize = max (index_size, 2 * new_size);
3925 if (INDEX_SIZE_BOUND < nsize)
3926 error ("Hash table too large to resize");
3927
3928 #ifdef ENABLE_CHECKING
3929 if (HASH_TABLE_P (Vpurify_flag)
3930 && XHASH_TABLE (Vpurify_flag) == h)
3931 message ("Growing hash table to: %"pI"d", new_size);
3932 #endif
3933
3934 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3935 2 * (new_size - old_size), -1));
3936 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3937 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3938 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3939
3940 /* Update the free list. Do it so that new entries are added at
3941 the end of the free list. This makes some operations like
3942 maphash faster. */
3943 for (i = old_size; i < new_size - 1; ++i)
3944 set_hash_next_slot (h, i, make_number (i + 1));
3945
3946 if (!NILP (h->next_free))
3947 {
3948 Lisp_Object last, next;
3949
3950 last = h->next_free;
3951 while (next = HASH_NEXT (h, XFASTINT (last)),
3952 !NILP (next))
3953 last = next;
3954
3955 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3956 }
3957 else
3958 XSETFASTINT (h->next_free, old_size);
3959
3960 /* Rehash. */
3961 for (i = 0; i < old_size; ++i)
3962 if (!NILP (HASH_HASH (h, i)))
3963 {
3964 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3965 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3966 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3967 set_hash_index_slot (h, start_of_bucket, make_number (i));
3968 }
3969 }
3970 }
3971
3972
3973 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3974 the hash code of KEY. Value is the index of the entry in H
3975 matching KEY, or -1 if not found. */
3976
3977 ptrdiff_t
3978 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3979 {
3980 EMACS_UINT hash_code;
3981 ptrdiff_t start_of_bucket;
3982 Lisp_Object idx;
3983
3984 hash_code = h->test.hashfn (&h->test, key);
3985 eassert ((hash_code & ~INTMASK) == 0);
3986 if (hash)
3987 *hash = hash_code;
3988
3989 start_of_bucket = hash_code % ASIZE (h->index);
3990 idx = HASH_INDEX (h, start_of_bucket);
3991
3992 while (!NILP (idx))
3993 {
3994 ptrdiff_t i = XFASTINT (idx);
3995 if (EQ (key, HASH_KEY (h, i))
3996 || (h->test.cmpfn
3997 && hash_code == XUINT (HASH_HASH (h, i))
3998 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3999 break;
4000 idx = HASH_NEXT (h, i);
4001 }
4002
4003 return NILP (idx) ? -1 : XFASTINT (idx);
4004 }
4005
4006
4007 /* Put an entry into hash table H that associates KEY with VALUE.
4008 HASH is a previously computed hash code of KEY.
4009 Value is the index of the entry in H matching KEY. */
4010
4011 ptrdiff_t
4012 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
4013 EMACS_UINT hash)
4014 {
4015 ptrdiff_t start_of_bucket, i;
4016
4017 eassert ((hash & ~INTMASK) == 0);
4018
4019 /* Increment count after resizing because resizing may fail. */
4020 maybe_resize_hash_table (h);
4021 h->count++;
4022
4023 /* Store key/value in the key_and_value vector. */
4024 i = XFASTINT (h->next_free);
4025 h->next_free = HASH_NEXT (h, i);
4026 set_hash_key_slot (h, i, key);
4027 set_hash_value_slot (h, i, value);
4028
4029 /* Remember its hash code. */
4030 set_hash_hash_slot (h, i, make_number (hash));
4031
4032 /* Add new entry to its collision chain. */
4033 start_of_bucket = hash % ASIZE (h->index);
4034 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
4035 set_hash_index_slot (h, start_of_bucket, make_number (i));
4036 return i;
4037 }
4038
4039
4040 /* Remove the entry matching KEY from hash table H, if there is one. */
4041
4042 void
4043 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
4044 {
4045 EMACS_UINT hash_code;
4046 ptrdiff_t start_of_bucket;
4047 Lisp_Object idx, prev;
4048
4049 hash_code = h->test.hashfn (&h->test, key);
4050 eassert ((hash_code & ~INTMASK) == 0);
4051 start_of_bucket = hash_code % ASIZE (h->index);
4052 idx = HASH_INDEX (h, start_of_bucket);
4053 prev = Qnil;
4054
4055 while (!NILP (idx))
4056 {
4057 ptrdiff_t i = XFASTINT (idx);
4058
4059 if (EQ (key, HASH_KEY (h, i))
4060 || (h->test.cmpfn
4061 && hash_code == XUINT (HASH_HASH (h, i))
4062 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
4063 {
4064 /* Take entry out of collision chain. */
4065 if (NILP (prev))
4066 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
4067 else
4068 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
4069
4070 /* Clear slots in key_and_value and add the slots to
4071 the free list. */
4072 set_hash_key_slot (h, i, Qnil);
4073 set_hash_value_slot (h, i, Qnil);
4074 set_hash_hash_slot (h, i, Qnil);
4075 set_hash_next_slot (h, i, h->next_free);
4076 h->next_free = make_number (i);
4077 h->count--;
4078 eassert (h->count >= 0);
4079 break;
4080 }
4081 else
4082 {
4083 prev = idx;
4084 idx = HASH_NEXT (h, i);
4085 }
4086 }
4087 }
4088
4089
4090 /* Clear hash table H. */
4091
4092 static void
4093 hash_clear (struct Lisp_Hash_Table *h)
4094 {
4095 if (h->count > 0)
4096 {
4097 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
4098
4099 for (i = 0; i < size; ++i)
4100 {
4101 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
4102 set_hash_key_slot (h, i, Qnil);
4103 set_hash_value_slot (h, i, Qnil);
4104 set_hash_hash_slot (h, i, Qnil);
4105 }
4106
4107 for (i = 0; i < ASIZE (h->index); ++i)
4108 ASET (h->index, i, Qnil);
4109
4110 h->next_free = make_number (0);
4111 h->count = 0;
4112 }
4113 }
4114
4115
4116 \f
4117 /************************************************************************
4118 Weak Hash Tables
4119 ************************************************************************/
4120
4121 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
4122 entries from the table that don't survive the current GC.
4123 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
4124 true if anything was marked. */
4125
4126 static bool
4127 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
4128 {
4129 ptrdiff_t n = gc_asize (h->index);
4130 bool marked = false;
4131
4132 for (ptrdiff_t bucket = 0; bucket < n; ++bucket)
4133 {
4134 Lisp_Object idx, next, prev;
4135
4136 /* Follow collision chain, removing entries that
4137 don't survive this garbage collection. */
4138 prev = Qnil;
4139 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4140 {
4141 ptrdiff_t i = XFASTINT (idx);
4142 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4143 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4144 bool remove_p;
4145
4146 if (EQ (h->weak, Qkey))
4147 remove_p = !key_known_to_survive_p;
4148 else if (EQ (h->weak, Qvalue))
4149 remove_p = !value_known_to_survive_p;
4150 else if (EQ (h->weak, Qkey_or_value))
4151 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4152 else if (EQ (h->weak, Qkey_and_value))
4153 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4154 else
4155 emacs_abort ();
4156
4157 next = HASH_NEXT (h, i);
4158
4159 if (remove_entries_p)
4160 {
4161 if (remove_p)
4162 {
4163 /* Take out of collision chain. */
4164 if (NILP (prev))
4165 set_hash_index_slot (h, bucket, next);
4166 else
4167 set_hash_next_slot (h, XFASTINT (prev), next);
4168
4169 /* Add to free list. */
4170 set_hash_next_slot (h, i, h->next_free);
4171 h->next_free = idx;
4172
4173 /* Clear key, value, and hash. */
4174 set_hash_key_slot (h, i, Qnil);
4175 set_hash_value_slot (h, i, Qnil);
4176 set_hash_hash_slot (h, i, Qnil);
4177
4178 h->count--;
4179 }
4180 else
4181 {
4182 prev = idx;
4183 }
4184 }
4185 else
4186 {
4187 if (!remove_p)
4188 {
4189 /* Make sure key and value survive. */
4190 if (!key_known_to_survive_p)
4191 {
4192 mark_object (HASH_KEY (h, i));
4193 marked = 1;
4194 }
4195
4196 if (!value_known_to_survive_p)
4197 {
4198 mark_object (HASH_VALUE (h, i));
4199 marked = 1;
4200 }
4201 }
4202 }
4203 }
4204 }
4205
4206 return marked;
4207 }
4208
4209 /* Remove elements from weak hash tables that don't survive the
4210 current garbage collection. Remove weak tables that don't survive
4211 from Vweak_hash_tables. Called from gc_sweep. */
4212
4213 NO_INLINE /* For better stack traces */
4214 void
4215 sweep_weak_hash_tables (void)
4216 {
4217 struct Lisp_Hash_Table *h, *used, *next;
4218 bool marked;
4219
4220 /* Mark all keys and values that are in use. Keep on marking until
4221 there is no more change. This is necessary for cases like
4222 value-weak table A containing an entry X -> Y, where Y is used in a
4223 key-weak table B, Z -> Y. If B comes after A in the list of weak
4224 tables, X -> Y might be removed from A, although when looking at B
4225 one finds that it shouldn't. */
4226 do
4227 {
4228 marked = 0;
4229 for (h = weak_hash_tables; h; h = h->next_weak)
4230 {
4231 if (h->header.size & ARRAY_MARK_FLAG)
4232 marked |= sweep_weak_table (h, 0);
4233 }
4234 }
4235 while (marked);
4236
4237 /* Remove tables and entries that aren't used. */
4238 for (h = weak_hash_tables, used = NULL; h; h = next)
4239 {
4240 next = h->next_weak;
4241
4242 if (h->header.size & ARRAY_MARK_FLAG)
4243 {
4244 /* TABLE is marked as used. Sweep its contents. */
4245 if (h->count > 0)
4246 sweep_weak_table (h, 1);
4247
4248 /* Add table to the list of used weak hash tables. */
4249 h->next_weak = used;
4250 used = h;
4251 }
4252 }
4253
4254 weak_hash_tables = used;
4255 }
4256
4257
4258 \f
4259 /***********************************************************************
4260 Hash Code Computation
4261 ***********************************************************************/
4262
4263 /* Maximum depth up to which to dive into Lisp structures. */
4264
4265 #define SXHASH_MAX_DEPTH 3
4266
4267 /* Maximum length up to which to take list and vector elements into
4268 account. */
4269
4270 #define SXHASH_MAX_LEN 7
4271
4272 /* Return a hash for string PTR which has length LEN. The hash value
4273 can be any EMACS_UINT value. */
4274
4275 EMACS_UINT
4276 hash_string (char const *ptr, ptrdiff_t len)
4277 {
4278 char const *p = ptr;
4279 char const *end = p + len;
4280 unsigned char c;
4281 EMACS_UINT hash = 0;
4282
4283 while (p != end)
4284 {
4285 c = *p++;
4286 hash = sxhash_combine (hash, c);
4287 }
4288
4289 return hash;
4290 }
4291
4292 /* Return a hash for string PTR which has length LEN. The hash
4293 code returned is guaranteed to fit in a Lisp integer. */
4294
4295 static EMACS_UINT
4296 sxhash_string (char const *ptr, ptrdiff_t len)
4297 {
4298 EMACS_UINT hash = hash_string (ptr, len);
4299 return SXHASH_REDUCE (hash);
4300 }
4301
4302 /* Return a hash for the floating point value VAL. */
4303
4304 static EMACS_UINT
4305 sxhash_float (double val)
4306 {
4307 EMACS_UINT hash = 0;
4308 enum {
4309 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4310 + (sizeof val % sizeof hash != 0))
4311 };
4312 union {
4313 double val;
4314 EMACS_UINT word[WORDS_PER_DOUBLE];
4315 } u;
4316 int i;
4317 u.val = val;
4318 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4319 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4320 hash = sxhash_combine (hash, u.word[i]);
4321 return SXHASH_REDUCE (hash);
4322 }
4323
4324 /* Return a hash for list LIST. DEPTH is the current depth in the
4325 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4326
4327 static EMACS_UINT
4328 sxhash_list (Lisp_Object list, int depth)
4329 {
4330 EMACS_UINT hash = 0;
4331 int i;
4332
4333 if (depth < SXHASH_MAX_DEPTH)
4334 for (i = 0;
4335 CONSP (list) && i < SXHASH_MAX_LEN;
4336 list = XCDR (list), ++i)
4337 {
4338 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4339 hash = sxhash_combine (hash, hash2);
4340 }
4341
4342 if (!NILP (list))
4343 {
4344 EMACS_UINT hash2 = sxhash (list, depth + 1);
4345 hash = sxhash_combine (hash, hash2);
4346 }
4347
4348 return SXHASH_REDUCE (hash);
4349 }
4350
4351
4352 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4353 the Lisp structure. */
4354
4355 static EMACS_UINT
4356 sxhash_vector (Lisp_Object vec, int depth)
4357 {
4358 EMACS_UINT hash = ASIZE (vec);
4359 int i, n;
4360
4361 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4362 for (i = 0; i < n; ++i)
4363 {
4364 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4365 hash = sxhash_combine (hash, hash2);
4366 }
4367
4368 return SXHASH_REDUCE (hash);
4369 }
4370
4371 /* Return a hash for bool-vector VECTOR. */
4372
4373 static EMACS_UINT
4374 sxhash_bool_vector (Lisp_Object vec)
4375 {
4376 EMACS_INT size = bool_vector_size (vec);
4377 EMACS_UINT hash = size;
4378 int i, n;
4379
4380 n = min (SXHASH_MAX_LEN, bool_vector_words (size));
4381 for (i = 0; i < n; ++i)
4382 hash = sxhash_combine (hash, bool_vector_data (vec)[i]);
4383
4384 return SXHASH_REDUCE (hash);
4385 }
4386
4387
4388 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4389 structure. Value is an unsigned integer clipped to INTMASK. */
4390
4391 EMACS_UINT
4392 sxhash (Lisp_Object obj, int depth)
4393 {
4394 EMACS_UINT hash;
4395
4396 if (depth > SXHASH_MAX_DEPTH)
4397 return 0;
4398
4399 switch (XTYPE (obj))
4400 {
4401 case_Lisp_Int:
4402 hash = XUINT (obj);
4403 break;
4404
4405 case Lisp_Misc:
4406 case Lisp_Symbol:
4407 hash = XHASH (obj);
4408 break;
4409
4410 case Lisp_String:
4411 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4412 break;
4413
4414 /* This can be everything from a vector to an overlay. */
4415 case Lisp_Vectorlike:
4416 if (VECTORP (obj))
4417 /* According to the CL HyperSpec, two arrays are equal only if
4418 they are `eq', except for strings and bit-vectors. In
4419 Emacs, this works differently. We have to compare element
4420 by element. */
4421 hash = sxhash_vector (obj, depth);
4422 else if (BOOL_VECTOR_P (obj))
4423 hash = sxhash_bool_vector (obj);
4424 else
4425 /* Others are `equal' if they are `eq', so let's take their
4426 address as hash. */
4427 hash = XHASH (obj);
4428 break;
4429
4430 case Lisp_Cons:
4431 hash = sxhash_list (obj, depth);
4432 break;
4433
4434 case Lisp_Float:
4435 hash = sxhash_float (XFLOAT_DATA (obj));
4436 break;
4437
4438 default:
4439 emacs_abort ();
4440 }
4441
4442 return hash;
4443 }
4444
4445
4446 \f
4447 /***********************************************************************
4448 Lisp Interface
4449 ***********************************************************************/
4450
4451
4452 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4453 doc: /* Compute a hash code for OBJ and return it as integer. */)
4454 (Lisp_Object obj)
4455 {
4456 EMACS_UINT hash = sxhash (obj, 0);
4457 return make_number (hash);
4458 }
4459
4460
4461 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4462 doc: /* Create and return a new hash table.
4463
4464 Arguments are specified as keyword/argument pairs. The following
4465 arguments are defined:
4466
4467 :test TEST -- TEST must be a symbol that specifies how to compare
4468 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4469 `equal'. User-supplied test and hash functions can be specified via
4470 `define-hash-table-test'.
4471
4472 :size SIZE -- A hint as to how many elements will be put in the table.
4473 Default is 65.
4474
4475 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4476 fills up. If REHASH-SIZE is an integer, increase the size by that
4477 amount. If it is a float, it must be > 1.0, and the new size is the
4478 old size multiplied by that factor. Default is 1.5.
4479
4480 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4481 Resize the hash table when the ratio (number of entries / table size)
4482 is greater than or equal to THRESHOLD. Default is 0.8.
4483
4484 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4485 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4486 returned is a weak table. Key/value pairs are removed from a weak
4487 hash table when there are no non-weak references pointing to their
4488 key, value, one of key or value, or both key and value, depending on
4489 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4490 is nil.
4491
4492 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4493 (ptrdiff_t nargs, Lisp_Object *args)
4494 {
4495 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4496 struct hash_table_test testdesc;
4497 ptrdiff_t i;
4498 USE_SAFE_ALLOCA;
4499
4500 /* The vector `used' is used to keep track of arguments that
4501 have been consumed. */
4502 char *used = SAFE_ALLOCA (nargs * sizeof *used);
4503 memset (used, 0, nargs * sizeof *used);
4504
4505 /* See if there's a `:test TEST' among the arguments. */
4506 i = get_key_arg (QCtest, nargs, args, used);
4507 test = i ? args[i] : Qeql;
4508 if (EQ (test, Qeq))
4509 testdesc = hashtest_eq;
4510 else if (EQ (test, Qeql))
4511 testdesc = hashtest_eql;
4512 else if (EQ (test, Qequal))
4513 testdesc = hashtest_equal;
4514 else
4515 {
4516 /* See if it is a user-defined test. */
4517 Lisp_Object prop;
4518
4519 prop = Fget (test, Qhash_table_test);
4520 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4521 signal_error ("Invalid hash table test", test);
4522 testdesc.name = test;
4523 testdesc.user_cmp_function = XCAR (prop);
4524 testdesc.user_hash_function = XCAR (XCDR (prop));
4525 testdesc.hashfn = hashfn_user_defined;
4526 testdesc.cmpfn = cmpfn_user_defined;
4527 }
4528
4529 /* See if there's a `:size SIZE' argument. */
4530 i = get_key_arg (QCsize, nargs, args, used);
4531 size = i ? args[i] : Qnil;
4532 if (NILP (size))
4533 size = make_number (DEFAULT_HASH_SIZE);
4534 else if (!INTEGERP (size) || XINT (size) < 0)
4535 signal_error ("Invalid hash table size", size);
4536
4537 /* Look for `:rehash-size SIZE'. */
4538 i = get_key_arg (QCrehash_size, nargs, args, used);
4539 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4540 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4541 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4542 signal_error ("Invalid hash table rehash size", rehash_size);
4543
4544 /* Look for `:rehash-threshold THRESHOLD'. */
4545 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4546 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4547 if (! (FLOATP (rehash_threshold)
4548 && 0 < XFLOAT_DATA (rehash_threshold)
4549 && XFLOAT_DATA (rehash_threshold) <= 1))
4550 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4551
4552 /* Look for `:weakness WEAK'. */
4553 i = get_key_arg (QCweakness, nargs, args, used);
4554 weak = i ? args[i] : Qnil;
4555 if (EQ (weak, Qt))
4556 weak = Qkey_and_value;
4557 if (!NILP (weak)
4558 && !EQ (weak, Qkey)
4559 && !EQ (weak, Qvalue)
4560 && !EQ (weak, Qkey_or_value)
4561 && !EQ (weak, Qkey_and_value))
4562 signal_error ("Invalid hash table weakness", weak);
4563
4564 /* Now, all args should have been used up, or there's a problem. */
4565 for (i = 0; i < nargs; ++i)
4566 if (!used[i])
4567 signal_error ("Invalid argument list", args[i]);
4568
4569 SAFE_FREE ();
4570 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4571 }
4572
4573
4574 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4575 doc: /* Return a copy of hash table TABLE. */)
4576 (Lisp_Object table)
4577 {
4578 return copy_hash_table (check_hash_table (table));
4579 }
4580
4581
4582 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4583 doc: /* Return the number of elements in TABLE. */)
4584 (Lisp_Object table)
4585 {
4586 return make_number (check_hash_table (table)->count);
4587 }
4588
4589
4590 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4591 Shash_table_rehash_size, 1, 1, 0,
4592 doc: /* Return the current rehash size of TABLE. */)
4593 (Lisp_Object table)
4594 {
4595 return check_hash_table (table)->rehash_size;
4596 }
4597
4598
4599 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4600 Shash_table_rehash_threshold, 1, 1, 0,
4601 doc: /* Return the current rehash threshold of TABLE. */)
4602 (Lisp_Object table)
4603 {
4604 return check_hash_table (table)->rehash_threshold;
4605 }
4606
4607
4608 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4609 doc: /* Return the size of TABLE.
4610 The size can be used as an argument to `make-hash-table' to create
4611 a hash table than can hold as many elements as TABLE holds
4612 without need for resizing. */)
4613 (Lisp_Object table)
4614 {
4615 struct Lisp_Hash_Table *h = check_hash_table (table);
4616 return make_number (HASH_TABLE_SIZE (h));
4617 }
4618
4619
4620 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4621 doc: /* Return the test TABLE uses. */)
4622 (Lisp_Object table)
4623 {
4624 return check_hash_table (table)->test.name;
4625 }
4626
4627
4628 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4629 1, 1, 0,
4630 doc: /* Return the weakness of TABLE. */)
4631 (Lisp_Object table)
4632 {
4633 return check_hash_table (table)->weak;
4634 }
4635
4636
4637 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4638 doc: /* Return t if OBJ is a Lisp hash table object. */)
4639 (Lisp_Object obj)
4640 {
4641 return HASH_TABLE_P (obj) ? Qt : Qnil;
4642 }
4643
4644
4645 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4646 doc: /* Clear hash table TABLE and return it. */)
4647 (Lisp_Object table)
4648 {
4649 hash_clear (check_hash_table (table));
4650 /* Be compatible with XEmacs. */
4651 return table;
4652 }
4653
4654
4655 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4656 doc: /* Look up KEY in TABLE and return its associated value.
4657 If KEY is not found, return DFLT which defaults to nil. */)
4658 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4659 {
4660 struct Lisp_Hash_Table *h = check_hash_table (table);
4661 ptrdiff_t i = hash_lookup (h, key, NULL);
4662 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4663 }
4664
4665
4666 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4667 doc: /* Associate KEY with VALUE in hash table TABLE.
4668 If KEY is already present in table, replace its current value with
4669 VALUE. In any case, return VALUE. */)
4670 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4671 {
4672 struct Lisp_Hash_Table *h = check_hash_table (table);
4673 ptrdiff_t i;
4674 EMACS_UINT hash;
4675
4676 i = hash_lookup (h, key, &hash);
4677 if (i >= 0)
4678 set_hash_value_slot (h, i, value);
4679 else
4680 hash_put (h, key, value, hash);
4681
4682 return value;
4683 }
4684
4685
4686 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4687 doc: /* Remove KEY from TABLE. */)
4688 (Lisp_Object key, Lisp_Object table)
4689 {
4690 struct Lisp_Hash_Table *h = check_hash_table (table);
4691 hash_remove_from_table (h, key);
4692 return Qnil;
4693 }
4694
4695
4696 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4697 doc: /* Call FUNCTION for all entries in hash table TABLE.
4698 FUNCTION is called with two arguments, KEY and VALUE.
4699 `maphash' always returns nil. */)
4700 (Lisp_Object function, Lisp_Object table)
4701 {
4702 struct Lisp_Hash_Table *h = check_hash_table (table);
4703
4704 for (ptrdiff_t i = 0; i < HASH_TABLE_SIZE (h); ++i)
4705 if (!NILP (HASH_HASH (h, i)))
4706 call2 (function, HASH_KEY (h, i), HASH_VALUE (h, i));
4707
4708 return Qnil;
4709 }
4710
4711
4712 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4713 Sdefine_hash_table_test, 3, 3, 0,
4714 doc: /* Define a new hash table test with name NAME, a symbol.
4715
4716 In hash tables created with NAME specified as test, use TEST to
4717 compare keys, and HASH for computing hash codes of keys.
4718
4719 TEST must be a function taking two arguments and returning non-nil if
4720 both arguments are the same. HASH must be a function taking one
4721 argument and returning an object that is the hash code of the argument.
4722 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4723 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4724 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4725 {
4726 return Fput (name, Qhash_table_test, list2 (test, hash));
4727 }
4728
4729
4730 \f
4731 /************************************************************************
4732 MD5, SHA-1, and SHA-2
4733 ************************************************************************/
4734
4735 #include "md5.h"
4736 #include "sha1.h"
4737 #include "sha256.h"
4738 #include "sha512.h"
4739
4740 static Lisp_Object
4741 make_digest_string (Lisp_Object digest, int digest_size)
4742 {
4743 unsigned char *p = SDATA (digest);
4744
4745 for (int i = digest_size - 1; i >= 0; i--)
4746 {
4747 static char const hexdigit[16] = "0123456789abcdef";
4748 int p_i = p[i];
4749 p[2 * i] = hexdigit[p_i >> 4];
4750 p[2 * i + 1] = hexdigit[p_i & 0xf];
4751 }
4752 return digest;
4753 }
4754
4755 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4756
4757 static Lisp_Object
4758 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start,
4759 Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror,
4760 Lisp_Object binary)
4761 {
4762 ptrdiff_t size, start_char = 0, start_byte, end_char = 0, end_byte;
4763 register EMACS_INT b, e;
4764 register struct buffer *bp;
4765 EMACS_INT temp;
4766 int digest_size;
4767 void *(*hash_func) (const char *, size_t, void *);
4768 Lisp_Object digest;
4769
4770 CHECK_SYMBOL (algorithm);
4771
4772 if (STRINGP (object))
4773 {
4774 if (NILP (coding_system))
4775 {
4776 /* Decide the coding-system to encode the data with. */
4777
4778 if (STRING_MULTIBYTE (object))
4779 /* use default, we can't guess correct value */
4780 coding_system = preferred_coding_system ();
4781 else
4782 coding_system = Qraw_text;
4783 }
4784
4785 if (NILP (Fcoding_system_p (coding_system)))
4786 {
4787 /* Invalid coding system. */
4788
4789 if (!NILP (noerror))
4790 coding_system = Qraw_text;
4791 else
4792 xsignal1 (Qcoding_system_error, coding_system);
4793 }
4794
4795 if (STRING_MULTIBYTE (object))
4796 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4797
4798 size = SCHARS (object);
4799 validate_subarray (object, start, end, size, &start_char, &end_char);
4800
4801 start_byte = !start_char ? 0 : string_char_to_byte (object, start_char);
4802 end_byte = (end_char == size
4803 ? SBYTES (object)
4804 : string_char_to_byte (object, end_char));
4805 }
4806 else
4807 {
4808 struct buffer *prev = current_buffer;
4809
4810 record_unwind_current_buffer ();
4811
4812 CHECK_BUFFER (object);
4813
4814 bp = XBUFFER (object);
4815 set_buffer_internal (bp);
4816
4817 if (NILP (start))
4818 b = BEGV;
4819 else
4820 {
4821 CHECK_NUMBER_COERCE_MARKER (start);
4822 b = XINT (start);
4823 }
4824
4825 if (NILP (end))
4826 e = ZV;
4827 else
4828 {
4829 CHECK_NUMBER_COERCE_MARKER (end);
4830 e = XINT (end);
4831 }
4832
4833 if (b > e)
4834 temp = b, b = e, e = temp;
4835
4836 if (!(BEGV <= b && e <= ZV))
4837 args_out_of_range (start, end);
4838
4839 if (NILP (coding_system))
4840 {
4841 /* Decide the coding-system to encode the data with.
4842 See fileio.c:Fwrite-region */
4843
4844 if (!NILP (Vcoding_system_for_write))
4845 coding_system = Vcoding_system_for_write;
4846 else
4847 {
4848 bool force_raw_text = 0;
4849
4850 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4851 if (NILP (coding_system)
4852 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4853 {
4854 coding_system = Qnil;
4855 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4856 force_raw_text = 1;
4857 }
4858
4859 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4860 {
4861 /* Check file-coding-system-alist. */
4862 Lisp_Object val = CALLN (Ffind_operation_coding_system,
4863 Qwrite_region, start, end,
4864 Fbuffer_file_name (object));
4865 if (CONSP (val) && !NILP (XCDR (val)))
4866 coding_system = XCDR (val);
4867 }
4868
4869 if (NILP (coding_system)
4870 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4871 {
4872 /* If we still have not decided a coding system, use the
4873 default value of buffer-file-coding-system. */
4874 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4875 }
4876
4877 if (!force_raw_text
4878 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4879 /* Confirm that VAL can surely encode the current region. */
4880 coding_system = call4 (Vselect_safe_coding_system_function,
4881 make_number (b), make_number (e),
4882 coding_system, Qnil);
4883
4884 if (force_raw_text)
4885 coding_system = Qraw_text;
4886 }
4887
4888 if (NILP (Fcoding_system_p (coding_system)))
4889 {
4890 /* Invalid coding system. */
4891
4892 if (!NILP (noerror))
4893 coding_system = Qraw_text;
4894 else
4895 xsignal1 (Qcoding_system_error, coding_system);
4896 }
4897 }
4898
4899 object = make_buffer_string (b, e, 0);
4900 set_buffer_internal (prev);
4901 /* Discard the unwind protect for recovering the current
4902 buffer. */
4903 specpdl_ptr--;
4904
4905 if (STRING_MULTIBYTE (object))
4906 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4907 start_byte = 0;
4908 end_byte = SBYTES (object);
4909 }
4910
4911 if (EQ (algorithm, Qmd5))
4912 {
4913 digest_size = MD5_DIGEST_SIZE;
4914 hash_func = md5_buffer;
4915 }
4916 else if (EQ (algorithm, Qsha1))
4917 {
4918 digest_size = SHA1_DIGEST_SIZE;
4919 hash_func = sha1_buffer;
4920 }
4921 else if (EQ (algorithm, Qsha224))
4922 {
4923 digest_size = SHA224_DIGEST_SIZE;
4924 hash_func = sha224_buffer;
4925 }
4926 else if (EQ (algorithm, Qsha256))
4927 {
4928 digest_size = SHA256_DIGEST_SIZE;
4929 hash_func = sha256_buffer;
4930 }
4931 else if (EQ (algorithm, Qsha384))
4932 {
4933 digest_size = SHA384_DIGEST_SIZE;
4934 hash_func = sha384_buffer;
4935 }
4936 else if (EQ (algorithm, Qsha512))
4937 {
4938 digest_size = SHA512_DIGEST_SIZE;
4939 hash_func = sha512_buffer;
4940 }
4941 else
4942 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4943
4944 /* allocate 2 x digest_size so that it can be re-used to hold the
4945 hexified value */
4946 digest = make_uninit_string (digest_size * 2);
4947
4948 hash_func (SSDATA (object) + start_byte,
4949 end_byte - start_byte,
4950 SSDATA (digest));
4951
4952 if (NILP (binary))
4953 return make_digest_string (digest, digest_size);
4954 else
4955 return make_unibyte_string (SSDATA (digest), digest_size);
4956 }
4957
4958 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4959 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4960
4961 A message digest is a cryptographic checksum of a document, and the
4962 algorithm to calculate it is defined in RFC 1321.
4963
4964 The two optional arguments START and END are character positions
4965 specifying for which part of OBJECT the message digest should be
4966 computed. If nil or omitted, the digest is computed for the whole
4967 OBJECT.
4968
4969 The MD5 message digest is computed from the result of encoding the
4970 text in a coding system, not directly from the internal Emacs form of
4971 the text. The optional fourth argument CODING-SYSTEM specifies which
4972 coding system to encode the text with. It should be the same coding
4973 system that you used or will use when actually writing the text into a
4974 file.
4975
4976 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4977 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4978 system would be chosen by default for writing this text into a file.
4979
4980 If OBJECT is a string, the most preferred coding system (see the
4981 command `prefer-coding-system') is used.
4982
4983 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4984 guesswork fails. Normally, an error is signaled in such case. */)
4985 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4986 {
4987 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4988 }
4989
4990 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4991 doc: /* Return the secure hash of OBJECT, a buffer or string.
4992 ALGORITHM is a symbol specifying the hash to use:
4993 md5, sha1, sha224, sha256, sha384 or sha512.
4994
4995 The two optional arguments START and END are positions specifying for
4996 which part of OBJECT to compute the hash. If nil or omitted, uses the
4997 whole OBJECT.
4998
4999 If BINARY is non-nil, returns a string in binary form. */)
5000 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
5001 {
5002 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
5003 }
5004
5005 DEFUN ("buffer-hash", Fbuffer_hash, Sbuffer_hash, 0, 1, 0,
5006 doc: /* Return a hash of the contents of BUFFER-OR-NAME.
5007 This hash is performed on the raw internal format of the buffer,
5008 disregarding any coding systems.
5009 If nil, use the current buffer." */ )
5010 (Lisp_Object buffer_or_name)
5011 {
5012 Lisp_Object buffer;
5013 struct buffer *b;
5014 struct sha1_ctx ctx;
5015
5016 if (NILP (buffer_or_name))
5017 buffer = Fcurrent_buffer ();
5018 else
5019 buffer = Fget_buffer (buffer_or_name);
5020 if (NILP (buffer))
5021 nsberror (buffer_or_name);
5022
5023 b = XBUFFER (buffer);
5024 sha1_init_ctx (&ctx);
5025
5026 /* Process the first part of the buffer. */
5027 sha1_process_bytes (BUF_BEG_ADDR (b),
5028 BUF_GPT_BYTE (b) - BUF_BEG_BYTE (b),
5029 &ctx);
5030
5031 /* If the gap is before the end of the buffer, process the last half
5032 of the buffer. */
5033 if (BUF_GPT_BYTE (b) < BUF_Z_BYTE (b))
5034 sha1_process_bytes (BUF_GAP_END_ADDR (b),
5035 BUF_Z_ADDR (b) - BUF_GAP_END_ADDR (b),
5036 &ctx);
5037
5038 Lisp_Object digest = make_uninit_string (SHA1_DIGEST_SIZE * 2);
5039 sha1_finish_ctx (&ctx, SSDATA (digest));
5040 return make_digest_string (digest, SHA1_DIGEST_SIZE);
5041 }
5042
5043 \f
5044 void
5045 syms_of_fns (void)
5046 {
5047 DEFSYM (Qmd5, "md5");
5048 DEFSYM (Qsha1, "sha1");
5049 DEFSYM (Qsha224, "sha224");
5050 DEFSYM (Qsha256, "sha256");
5051 DEFSYM (Qsha384, "sha384");
5052 DEFSYM (Qsha512, "sha512");
5053
5054 /* Hash table stuff. */
5055 DEFSYM (Qhash_table_p, "hash-table-p");
5056 DEFSYM (Qeq, "eq");
5057 DEFSYM (Qeql, "eql");
5058 DEFSYM (Qequal, "equal");
5059 DEFSYM (QCtest, ":test");
5060 DEFSYM (QCsize, ":size");
5061 DEFSYM (QCrehash_size, ":rehash-size");
5062 DEFSYM (QCrehash_threshold, ":rehash-threshold");
5063 DEFSYM (QCweakness, ":weakness");
5064 DEFSYM (Qkey, "key");
5065 DEFSYM (Qvalue, "value");
5066 DEFSYM (Qhash_table_test, "hash-table-test");
5067 DEFSYM (Qkey_or_value, "key-or-value");
5068 DEFSYM (Qkey_and_value, "key-and-value");
5069
5070 defsubr (&Ssxhash);
5071 defsubr (&Smake_hash_table);
5072 defsubr (&Scopy_hash_table);
5073 defsubr (&Shash_table_count);
5074 defsubr (&Shash_table_rehash_size);
5075 defsubr (&Shash_table_rehash_threshold);
5076 defsubr (&Shash_table_size);
5077 defsubr (&Shash_table_test);
5078 defsubr (&Shash_table_weakness);
5079 defsubr (&Shash_table_p);
5080 defsubr (&Sclrhash);
5081 defsubr (&Sgethash);
5082 defsubr (&Sputhash);
5083 defsubr (&Sremhash);
5084 defsubr (&Smaphash);
5085 defsubr (&Sdefine_hash_table_test);
5086
5087 DEFSYM (Qstring_lessp, "string-lessp");
5088 DEFSYM (Qprovide, "provide");
5089 DEFSYM (Qrequire, "require");
5090 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
5091 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
5092 DEFSYM (Qwidget_type, "widget-type");
5093
5094 staticpro (&string_char_byte_cache_string);
5095 string_char_byte_cache_string = Qnil;
5096
5097 require_nesting_list = Qnil;
5098 staticpro (&require_nesting_list);
5099
5100 Fset (Qyes_or_no_p_history, Qnil);
5101
5102 DEFVAR_LISP ("features", Vfeatures,
5103 doc: /* A list of symbols which are the features of the executing Emacs.
5104 Used by `featurep' and `require', and altered by `provide'. */);
5105 Vfeatures = list1 (Qemacs);
5106 DEFSYM (Qsubfeatures, "subfeatures");
5107 DEFSYM (Qfuncall, "funcall");
5108
5109 #ifdef HAVE_LANGINFO_CODESET
5110 DEFSYM (Qcodeset, "codeset");
5111 DEFSYM (Qdays, "days");
5112 DEFSYM (Qmonths, "months");
5113 DEFSYM (Qpaper, "paper");
5114 #endif /* HAVE_LANGINFO_CODESET */
5115
5116 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
5117 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
5118 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5119 invoked by mouse clicks and mouse menu items.
5120
5121 On some platforms, file selection dialogs are also enabled if this is
5122 non-nil. */);
5123 use_dialog_box = 1;
5124
5125 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
5126 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
5127 This applies to commands from menus and tool bar buttons even when
5128 they are initiated from the keyboard. If `use-dialog-box' is nil,
5129 that disables the use of a file dialog, regardless of the value of
5130 this variable. */);
5131 use_file_dialog = 1;
5132
5133 defsubr (&Sidentity);
5134 defsubr (&Srandom);
5135 defsubr (&Slength);
5136 defsubr (&Ssafe_length);
5137 defsubr (&Sstring_bytes);
5138 defsubr (&Sstring_equal);
5139 defsubr (&Scompare_strings);
5140 defsubr (&Sstring_lessp);
5141 defsubr (&Sstring_version_lessp);
5142 defsubr (&Sstring_collate_lessp);
5143 defsubr (&Sstring_collate_equalp);
5144 defsubr (&Sappend);
5145 defsubr (&Sconcat);
5146 defsubr (&Svconcat);
5147 defsubr (&Scopy_sequence);
5148 defsubr (&Sstring_make_multibyte);
5149 defsubr (&Sstring_make_unibyte);
5150 defsubr (&Sstring_as_multibyte);
5151 defsubr (&Sstring_as_unibyte);
5152 defsubr (&Sstring_to_multibyte);
5153 defsubr (&Sstring_to_unibyte);
5154 defsubr (&Scopy_alist);
5155 defsubr (&Ssubstring);
5156 defsubr (&Ssubstring_no_properties);
5157 defsubr (&Snthcdr);
5158 defsubr (&Snth);
5159 defsubr (&Selt);
5160 defsubr (&Smember);
5161 defsubr (&Smemq);
5162 defsubr (&Smemql);
5163 defsubr (&Sassq);
5164 defsubr (&Sassoc);
5165 defsubr (&Srassq);
5166 defsubr (&Srassoc);
5167 defsubr (&Sdelq);
5168 defsubr (&Sdelete);
5169 defsubr (&Snreverse);
5170 defsubr (&Sreverse);
5171 defsubr (&Ssort);
5172 defsubr (&Splist_get);
5173 defsubr (&Sget);
5174 defsubr (&Splist_put);
5175 defsubr (&Sput);
5176 defsubr (&Slax_plist_get);
5177 defsubr (&Slax_plist_put);
5178 defsubr (&Seql);
5179 defsubr (&Sequal);
5180 defsubr (&Sequal_including_properties);
5181 defsubr (&Sfillarray);
5182 defsubr (&Sclear_string);
5183 defsubr (&Snconc);
5184 defsubr (&Smapcar);
5185 defsubr (&Smapc);
5186 defsubr (&Smapconcat);
5187 defsubr (&Syes_or_no_p);
5188 defsubr (&Sload_average);
5189 defsubr (&Sfeaturep);
5190 defsubr (&Srequire);
5191 defsubr (&Sprovide);
5192 defsubr (&Splist_member);
5193 defsubr (&Swidget_put);
5194 defsubr (&Swidget_get);
5195 defsubr (&Swidget_apply);
5196 defsubr (&Sbase64_encode_region);
5197 defsubr (&Sbase64_decode_region);
5198 defsubr (&Sbase64_encode_string);
5199 defsubr (&Sbase64_decode_string);
5200 defsubr (&Smd5);
5201 defsubr (&Ssecure_hash);
5202 defsubr (&Sbuffer_hash);
5203 defsubr (&Slocale_info);
5204
5205 hashtest_eq.name = Qeq;
5206 hashtest_eq.user_hash_function = Qnil;
5207 hashtest_eq.user_cmp_function = Qnil;
5208 hashtest_eq.cmpfn = 0;
5209 hashtest_eq.hashfn = hashfn_eq;
5210
5211 hashtest_eql.name = Qeql;
5212 hashtest_eql.user_hash_function = Qnil;
5213 hashtest_eql.user_cmp_function = Qnil;
5214 hashtest_eql.cmpfn = cmpfn_eql;
5215 hashtest_eql.hashfn = hashfn_eql;
5216
5217 hashtest_equal.name = Qequal;
5218 hashtest_equal.user_hash_function = Qnil;
5219 hashtest_equal.user_cmp_function = Qnil;
5220 hashtest_equal.cmpfn = cmpfn_equal;
5221 hashtest_equal.hashfn = hashfn_equal;
5222 }