]> code.delx.au - gnu-emacs/blob - src/fns.c
Merge from trunk.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 #ifndef NULL
46 #define NULL ((POINTER_TYPE *)0)
47 #endif
48
49 Lisp_Object Qstring_lessp;
50 static Lisp_Object Qprovide, Qrequire;
51 static Lisp_Object Qyes_or_no_p_history;
52 Lisp_Object Qcursor_in_echo_area;
53 static Lisp_Object Qwidget_type;
54 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
55
56 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
57
58 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
59
60 #ifndef HAVE_UNISTD_H
61 extern long time ();
62 #endif
63 \f
64 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
65 doc: /* Return the argument unchanged. */)
66 (Lisp_Object arg)
67 {
68 return arg;
69 }
70
71 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
72 doc: /* Return a pseudo-random number.
73 All integers representable in Lisp are equally likely.
74 On most systems, this is 29 bits' worth.
75 With positive integer LIMIT, return random number in interval [0,LIMIT).
76 With argument t, set the random number seed from the current time and pid.
77 Other values of LIMIT are ignored. */)
78 (Lisp_Object limit)
79 {
80 EMACS_INT val;
81 Lisp_Object lispy_val;
82
83 if (EQ (limit, Qt))
84 {
85 EMACS_TIME t;
86 EMACS_GET_TIME (t);
87 seed_random (getpid () ^ EMACS_SECS (t) ^ EMACS_USECS (t));
88 }
89
90 if (NATNUMP (limit) && XFASTINT (limit) != 0)
91 {
92 /* Try to take our random number from the higher bits of VAL,
93 not the lower, since (says Gentzel) the low bits of `random'
94 are less random than the higher ones. We do this by using the
95 quotient rather than the remainder. At the high end of the RNG
96 it's possible to get a quotient larger than n; discarding
97 these values eliminates the bias that would otherwise appear
98 when using a large n. */
99 EMACS_INT denominator = (INTMASK + 1) / XFASTINT (limit);
100 do
101 val = get_random () / denominator;
102 while (val >= XFASTINT (limit));
103 }
104 else
105 val = get_random ();
106 XSETINT (lispy_val, val);
107 return lispy_val;
108 }
109 \f
110 /* Heuristic on how many iterations of a tight loop can be safely done
111 before it's time to do a QUIT. This must be a power of 2. */
112 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
113
114 /* Random data-structure functions */
115
116 DEFUN ("length", Flength, Slength, 1, 1, 0,
117 doc: /* Return the length of vector, list or string SEQUENCE.
118 A byte-code function object is also allowed.
119 If the string contains multibyte characters, this is not necessarily
120 the number of bytes in the string; it is the number of characters.
121 To get the number of bytes, use `string-bytes'. */)
122 (register Lisp_Object sequence)
123 {
124 register Lisp_Object val;
125
126 if (STRINGP (sequence))
127 XSETFASTINT (val, SCHARS (sequence));
128 else if (VECTORP (sequence))
129 XSETFASTINT (val, ASIZE (sequence));
130 else if (CHAR_TABLE_P (sequence))
131 XSETFASTINT (val, MAX_CHAR);
132 else if (BOOL_VECTOR_P (sequence))
133 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
134 else if (COMPILEDP (sequence))
135 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
136 else if (CONSP (sequence))
137 {
138 EMACS_INT i = 0;
139
140 do
141 {
142 ++i;
143 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
144 {
145 if (MOST_POSITIVE_FIXNUM < i)
146 error ("List too long");
147 QUIT;
148 }
149 sequence = XCDR (sequence);
150 }
151 while (CONSP (sequence));
152
153 CHECK_LIST_END (sequence, sequence);
154
155 val = make_number (i);
156 }
157 else if (NILP (sequence))
158 XSETFASTINT (val, 0);
159 else
160 wrong_type_argument (Qsequencep, sequence);
161
162 return val;
163 }
164
165 /* This does not check for quits. That is safe since it must terminate. */
166
167 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
168 doc: /* Return the length of a list, but avoid error or infinite loop.
169 This function never gets an error. If LIST is not really a list,
170 it returns 0. If LIST is circular, it returns a finite value
171 which is at least the number of distinct elements. */)
172 (Lisp_Object list)
173 {
174 Lisp_Object tail, halftail;
175 double hilen = 0;
176 uintmax_t lolen = 1;
177
178 if (! CONSP (list))
179 return make_number (0);
180
181 /* halftail is used to detect circular lists. */
182 for (tail = halftail = list; ; )
183 {
184 tail = XCDR (tail);
185 if (! CONSP (tail))
186 break;
187 if (EQ (tail, halftail))
188 break;
189 lolen++;
190 if ((lolen & 1) == 0)
191 {
192 halftail = XCDR (halftail);
193 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
194 {
195 QUIT;
196 if (lolen == 0)
197 hilen += UINTMAX_MAX + 1.0;
198 }
199 }
200 }
201
202 /* If the length does not fit into a fixnum, return a float.
203 On all known practical machines this returns an upper bound on
204 the true length. */
205 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
206 }
207
208 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
209 doc: /* Return the number of bytes in STRING.
210 If STRING is multibyte, this may be greater than the length of STRING. */)
211 (Lisp_Object string)
212 {
213 CHECK_STRING (string);
214 return make_number (SBYTES (string));
215 }
216
217 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
218 doc: /* Return t if two strings have identical contents.
219 Case is significant, but text properties are ignored.
220 Symbols are also allowed; their print names are used instead. */)
221 (register Lisp_Object s1, Lisp_Object s2)
222 {
223 if (SYMBOLP (s1))
224 s1 = SYMBOL_NAME (s1);
225 if (SYMBOLP (s2))
226 s2 = SYMBOL_NAME (s2);
227 CHECK_STRING (s1);
228 CHECK_STRING (s2);
229
230 if (SCHARS (s1) != SCHARS (s2)
231 || SBYTES (s1) != SBYTES (s2)
232 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
233 return Qnil;
234 return Qt;
235 }
236
237 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
238 doc: /* Compare the contents of two strings, converting to multibyte if needed.
239 In string STR1, skip the first START1 characters and stop at END1.
240 In string STR2, skip the first START2 characters and stop at END2.
241 END1 and END2 default to the full lengths of the respective strings.
242
243 Case is significant in this comparison if IGNORE-CASE is nil.
244 Unibyte strings are converted to multibyte for comparison.
245
246 The value is t if the strings (or specified portions) match.
247 If string STR1 is less, the value is a negative number N;
248 - 1 - N is the number of characters that match at the beginning.
249 If string STR1 is greater, the value is a positive number N;
250 N - 1 is the number of characters that match at the beginning. */)
251 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
252 {
253 register ptrdiff_t end1_char, end2_char;
254 register ptrdiff_t i1, i1_byte, i2, i2_byte;
255
256 CHECK_STRING (str1);
257 CHECK_STRING (str2);
258 if (NILP (start1))
259 start1 = make_number (0);
260 if (NILP (start2))
261 start2 = make_number (0);
262 CHECK_NATNUM (start1);
263 CHECK_NATNUM (start2);
264 if (! NILP (end1))
265 CHECK_NATNUM (end1);
266 if (! NILP (end2))
267 CHECK_NATNUM (end2);
268
269 end1_char = SCHARS (str1);
270 if (! NILP (end1) && end1_char > XINT (end1))
271 end1_char = XINT (end1);
272 if (end1_char < XINT (start1))
273 args_out_of_range (str1, start1);
274
275 end2_char = SCHARS (str2);
276 if (! NILP (end2) && end2_char > XINT (end2))
277 end2_char = XINT (end2);
278 if (end2_char < XINT (start2))
279 args_out_of_range (str2, start2);
280
281 i1 = XINT (start1);
282 i2 = XINT (start2);
283
284 i1_byte = string_char_to_byte (str1, i1);
285 i2_byte = string_char_to_byte (str2, i2);
286
287 while (i1 < end1_char && i2 < end2_char)
288 {
289 /* When we find a mismatch, we must compare the
290 characters, not just the bytes. */
291 int c1, c2;
292
293 if (STRING_MULTIBYTE (str1))
294 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
295 else
296 {
297 c1 = SREF (str1, i1++);
298 MAKE_CHAR_MULTIBYTE (c1);
299 }
300
301 if (STRING_MULTIBYTE (str2))
302 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
303 else
304 {
305 c2 = SREF (str2, i2++);
306 MAKE_CHAR_MULTIBYTE (c2);
307 }
308
309 if (c1 == c2)
310 continue;
311
312 if (! NILP (ignore_case))
313 {
314 Lisp_Object tem;
315
316 tem = Fupcase (make_number (c1));
317 c1 = XINT (tem);
318 tem = Fupcase (make_number (c2));
319 c2 = XINT (tem);
320 }
321
322 if (c1 == c2)
323 continue;
324
325 /* Note that I1 has already been incremented
326 past the character that we are comparing;
327 hence we don't add or subtract 1 here. */
328 if (c1 < c2)
329 return make_number (- i1 + XINT (start1));
330 else
331 return make_number (i1 - XINT (start1));
332 }
333
334 if (i1 < end1_char)
335 return make_number (i1 - XINT (start1) + 1);
336 if (i2 < end2_char)
337 return make_number (- i1 + XINT (start1) - 1);
338
339 return Qt;
340 }
341
342 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
343 doc: /* Return t if first arg string is less than second in lexicographic order.
344 Case is significant.
345 Symbols are also allowed; their print names are used instead. */)
346 (register Lisp_Object s1, Lisp_Object s2)
347 {
348 register ptrdiff_t end;
349 register ptrdiff_t i1, i1_byte, i2, i2_byte;
350
351 if (SYMBOLP (s1))
352 s1 = SYMBOL_NAME (s1);
353 if (SYMBOLP (s2))
354 s2 = SYMBOL_NAME (s2);
355 CHECK_STRING (s1);
356 CHECK_STRING (s2);
357
358 i1 = i1_byte = i2 = i2_byte = 0;
359
360 end = SCHARS (s1);
361 if (end > SCHARS (s2))
362 end = SCHARS (s2);
363
364 while (i1 < end)
365 {
366 /* When we find a mismatch, we must compare the
367 characters, not just the bytes. */
368 int c1, c2;
369
370 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
371 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
372
373 if (c1 != c2)
374 return c1 < c2 ? Qt : Qnil;
375 }
376 return i1 < SCHARS (s2) ? Qt : Qnil;
377 }
378 \f
379 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
380 enum Lisp_Type target_type, int last_special);
381
382 /* ARGSUSED */
383 Lisp_Object
384 concat2 (Lisp_Object s1, Lisp_Object s2)
385 {
386 Lisp_Object args[2];
387 args[0] = s1;
388 args[1] = s2;
389 return concat (2, args, Lisp_String, 0);
390 }
391
392 /* ARGSUSED */
393 Lisp_Object
394 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
395 {
396 Lisp_Object args[3];
397 args[0] = s1;
398 args[1] = s2;
399 args[2] = s3;
400 return concat (3, args, Lisp_String, 0);
401 }
402
403 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
404 doc: /* Concatenate all the arguments and make the result a list.
405 The result is a list whose elements are the elements of all the arguments.
406 Each argument may be a list, vector or string.
407 The last argument is not copied, just used as the tail of the new list.
408 usage: (append &rest SEQUENCES) */)
409 (ptrdiff_t nargs, Lisp_Object *args)
410 {
411 return concat (nargs, args, Lisp_Cons, 1);
412 }
413
414 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
415 doc: /* Concatenate all the arguments and make the result a string.
416 The result is a string whose elements are the elements of all the arguments.
417 Each argument may be a string or a list or vector of characters (integers).
418 usage: (concat &rest SEQUENCES) */)
419 (ptrdiff_t nargs, Lisp_Object *args)
420 {
421 return concat (nargs, args, Lisp_String, 0);
422 }
423
424 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
425 doc: /* Concatenate all the arguments and make the result a vector.
426 The result is a vector whose elements are the elements of all the arguments.
427 Each argument may be a list, vector or string.
428 usage: (vconcat &rest SEQUENCES) */)
429 (ptrdiff_t nargs, Lisp_Object *args)
430 {
431 return concat (nargs, args, Lisp_Vectorlike, 0);
432 }
433
434
435 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
436 doc: /* Return a copy of a list, vector, string or char-table.
437 The elements of a list or vector are not copied; they are shared
438 with the original. */)
439 (Lisp_Object arg)
440 {
441 if (NILP (arg)) return arg;
442
443 if (CHAR_TABLE_P (arg))
444 {
445 return copy_char_table (arg);
446 }
447
448 if (BOOL_VECTOR_P (arg))
449 {
450 Lisp_Object val;
451 ptrdiff_t size_in_chars
452 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
453 / BOOL_VECTOR_BITS_PER_CHAR);
454
455 val = Fmake_bool_vector (Flength (arg), Qnil);
456 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
457 size_in_chars);
458 return val;
459 }
460
461 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
462 wrong_type_argument (Qsequencep, arg);
463
464 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
465 }
466
467 /* This structure holds information of an argument of `concat' that is
468 a string and has text properties to be copied. */
469 struct textprop_rec
470 {
471 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
472 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
473 ptrdiff_t to; /* refer to VAL (the target string) */
474 };
475
476 static Lisp_Object
477 concat (ptrdiff_t nargs, Lisp_Object *args,
478 enum Lisp_Type target_type, int last_special)
479 {
480 Lisp_Object val;
481 register Lisp_Object tail;
482 register Lisp_Object this;
483 ptrdiff_t toindex;
484 ptrdiff_t toindex_byte = 0;
485 register EMACS_INT result_len;
486 register EMACS_INT result_len_byte;
487 ptrdiff_t argnum;
488 Lisp_Object last_tail;
489 Lisp_Object prev;
490 int some_multibyte;
491 /* When we make a multibyte string, we can't copy text properties
492 while concatenating each string because the length of resulting
493 string can't be decided until we finish the whole concatenation.
494 So, we record strings that have text properties to be copied
495 here, and copy the text properties after the concatenation. */
496 struct textprop_rec *textprops = NULL;
497 /* Number of elements in textprops. */
498 ptrdiff_t num_textprops = 0;
499 USE_SAFE_ALLOCA;
500
501 tail = Qnil;
502
503 /* In append, the last arg isn't treated like the others */
504 if (last_special && nargs > 0)
505 {
506 nargs--;
507 last_tail = args[nargs];
508 }
509 else
510 last_tail = Qnil;
511
512 /* Check each argument. */
513 for (argnum = 0; argnum < nargs; argnum++)
514 {
515 this = args[argnum];
516 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
517 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
518 wrong_type_argument (Qsequencep, this);
519 }
520
521 /* Compute total length in chars of arguments in RESULT_LEN.
522 If desired output is a string, also compute length in bytes
523 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
524 whether the result should be a multibyte string. */
525 result_len_byte = 0;
526 result_len = 0;
527 some_multibyte = 0;
528 for (argnum = 0; argnum < nargs; argnum++)
529 {
530 EMACS_INT len;
531 this = args[argnum];
532 len = XFASTINT (Flength (this));
533 if (target_type == Lisp_String)
534 {
535 /* We must count the number of bytes needed in the string
536 as well as the number of characters. */
537 ptrdiff_t i;
538 Lisp_Object ch;
539 int c;
540 ptrdiff_t this_len_byte;
541
542 if (VECTORP (this) || COMPILEDP (this))
543 for (i = 0; i < len; i++)
544 {
545 ch = AREF (this, i);
546 CHECK_CHARACTER (ch);
547 c = XFASTINT (ch);
548 this_len_byte = CHAR_BYTES (c);
549 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
550 string_overflow ();
551 result_len_byte += this_len_byte;
552 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
553 some_multibyte = 1;
554 }
555 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
556 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
557 else if (CONSP (this))
558 for (; CONSP (this); this = XCDR (this))
559 {
560 ch = XCAR (this);
561 CHECK_CHARACTER (ch);
562 c = XFASTINT (ch);
563 this_len_byte = CHAR_BYTES (c);
564 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
565 string_overflow ();
566 result_len_byte += this_len_byte;
567 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
568 some_multibyte = 1;
569 }
570 else if (STRINGP (this))
571 {
572 if (STRING_MULTIBYTE (this))
573 {
574 some_multibyte = 1;
575 this_len_byte = SBYTES (this);
576 }
577 else
578 this_len_byte = count_size_as_multibyte (SDATA (this),
579 SCHARS (this));
580 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
581 string_overflow ();
582 result_len_byte += this_len_byte;
583 }
584 }
585
586 result_len += len;
587 if (MOST_POSITIVE_FIXNUM < result_len)
588 memory_full (SIZE_MAX);
589 }
590
591 if (! some_multibyte)
592 result_len_byte = result_len;
593
594 /* Create the output object. */
595 if (target_type == Lisp_Cons)
596 val = Fmake_list (make_number (result_len), Qnil);
597 else if (target_type == Lisp_Vectorlike)
598 val = Fmake_vector (make_number (result_len), Qnil);
599 else if (some_multibyte)
600 val = make_uninit_multibyte_string (result_len, result_len_byte);
601 else
602 val = make_uninit_string (result_len);
603
604 /* In `append', if all but last arg are nil, return last arg. */
605 if (target_type == Lisp_Cons && EQ (val, Qnil))
606 return last_tail;
607
608 /* Copy the contents of the args into the result. */
609 if (CONSP (val))
610 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
611 else
612 toindex = 0, toindex_byte = 0;
613
614 prev = Qnil;
615 if (STRINGP (val))
616 SAFE_NALLOCA (textprops, 1, nargs);
617
618 for (argnum = 0; argnum < nargs; argnum++)
619 {
620 Lisp_Object thislen;
621 ptrdiff_t thisleni = 0;
622 register ptrdiff_t thisindex = 0;
623 register ptrdiff_t thisindex_byte = 0;
624
625 this = args[argnum];
626 if (!CONSP (this))
627 thislen = Flength (this), thisleni = XINT (thislen);
628
629 /* Between strings of the same kind, copy fast. */
630 if (STRINGP (this) && STRINGP (val)
631 && STRING_MULTIBYTE (this) == some_multibyte)
632 {
633 ptrdiff_t thislen_byte = SBYTES (this);
634
635 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
636 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
637 {
638 textprops[num_textprops].argnum = argnum;
639 textprops[num_textprops].from = 0;
640 textprops[num_textprops++].to = toindex;
641 }
642 toindex_byte += thislen_byte;
643 toindex += thisleni;
644 }
645 /* Copy a single-byte string to a multibyte string. */
646 else if (STRINGP (this) && STRINGP (val))
647 {
648 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
649 {
650 textprops[num_textprops].argnum = argnum;
651 textprops[num_textprops].from = 0;
652 textprops[num_textprops++].to = toindex;
653 }
654 toindex_byte += copy_text (SDATA (this),
655 SDATA (val) + toindex_byte,
656 SCHARS (this), 0, 1);
657 toindex += thisleni;
658 }
659 else
660 /* Copy element by element. */
661 while (1)
662 {
663 register Lisp_Object elt;
664
665 /* Fetch next element of `this' arg into `elt', or break if
666 `this' is exhausted. */
667 if (NILP (this)) break;
668 if (CONSP (this))
669 elt = XCAR (this), this = XCDR (this);
670 else if (thisindex >= thisleni)
671 break;
672 else if (STRINGP (this))
673 {
674 int c;
675 if (STRING_MULTIBYTE (this))
676 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
677 thisindex,
678 thisindex_byte);
679 else
680 {
681 c = SREF (this, thisindex); thisindex++;
682 if (some_multibyte && !ASCII_CHAR_P (c))
683 c = BYTE8_TO_CHAR (c);
684 }
685 XSETFASTINT (elt, c);
686 }
687 else if (BOOL_VECTOR_P (this))
688 {
689 int byte;
690 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
691 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
692 elt = Qt;
693 else
694 elt = Qnil;
695 thisindex++;
696 }
697 else
698 {
699 elt = AREF (this, thisindex);
700 thisindex++;
701 }
702
703 /* Store this element into the result. */
704 if (toindex < 0)
705 {
706 XSETCAR (tail, elt);
707 prev = tail;
708 tail = XCDR (tail);
709 }
710 else if (VECTORP (val))
711 {
712 ASET (val, toindex, elt);
713 toindex++;
714 }
715 else
716 {
717 int c;
718 CHECK_CHARACTER (elt);
719 c = XFASTINT (elt);
720 if (some_multibyte)
721 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
722 else
723 SSET (val, toindex_byte++, c);
724 toindex++;
725 }
726 }
727 }
728 if (!NILP (prev))
729 XSETCDR (prev, last_tail);
730
731 if (num_textprops > 0)
732 {
733 Lisp_Object props;
734 ptrdiff_t last_to_end = -1;
735
736 for (argnum = 0; argnum < num_textprops; argnum++)
737 {
738 this = args[textprops[argnum].argnum];
739 props = text_property_list (this,
740 make_number (0),
741 make_number (SCHARS (this)),
742 Qnil);
743 /* If successive arguments have properties, be sure that the
744 value of `composition' property be the copy. */
745 if (last_to_end == textprops[argnum].to)
746 make_composition_value_copy (props);
747 add_text_properties_from_list (val, props,
748 make_number (textprops[argnum].to));
749 last_to_end = textprops[argnum].to + SCHARS (this);
750 }
751 }
752
753 SAFE_FREE ();
754 return val;
755 }
756 \f
757 static Lisp_Object string_char_byte_cache_string;
758 static ptrdiff_t string_char_byte_cache_charpos;
759 static ptrdiff_t string_char_byte_cache_bytepos;
760
761 void
762 clear_string_char_byte_cache (void)
763 {
764 string_char_byte_cache_string = Qnil;
765 }
766
767 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
768
769 ptrdiff_t
770 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
771 {
772 ptrdiff_t i_byte;
773 ptrdiff_t best_below, best_below_byte;
774 ptrdiff_t best_above, best_above_byte;
775
776 best_below = best_below_byte = 0;
777 best_above = SCHARS (string);
778 best_above_byte = SBYTES (string);
779 if (best_above == best_above_byte)
780 return char_index;
781
782 if (EQ (string, string_char_byte_cache_string))
783 {
784 if (string_char_byte_cache_charpos < char_index)
785 {
786 best_below = string_char_byte_cache_charpos;
787 best_below_byte = string_char_byte_cache_bytepos;
788 }
789 else
790 {
791 best_above = string_char_byte_cache_charpos;
792 best_above_byte = string_char_byte_cache_bytepos;
793 }
794 }
795
796 if (char_index - best_below < best_above - char_index)
797 {
798 unsigned char *p = SDATA (string) + best_below_byte;
799
800 while (best_below < char_index)
801 {
802 p += BYTES_BY_CHAR_HEAD (*p);
803 best_below++;
804 }
805 i_byte = p - SDATA (string);
806 }
807 else
808 {
809 unsigned char *p = SDATA (string) + best_above_byte;
810
811 while (best_above > char_index)
812 {
813 p--;
814 while (!CHAR_HEAD_P (*p)) p--;
815 best_above--;
816 }
817 i_byte = p - SDATA (string);
818 }
819
820 string_char_byte_cache_bytepos = i_byte;
821 string_char_byte_cache_charpos = char_index;
822 string_char_byte_cache_string = string;
823
824 return i_byte;
825 }
826 \f
827 /* Return the character index corresponding to BYTE_INDEX in STRING. */
828
829 ptrdiff_t
830 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
831 {
832 ptrdiff_t i, i_byte;
833 ptrdiff_t best_below, best_below_byte;
834 ptrdiff_t best_above, best_above_byte;
835
836 best_below = best_below_byte = 0;
837 best_above = SCHARS (string);
838 best_above_byte = SBYTES (string);
839 if (best_above == best_above_byte)
840 return byte_index;
841
842 if (EQ (string, string_char_byte_cache_string))
843 {
844 if (string_char_byte_cache_bytepos < byte_index)
845 {
846 best_below = string_char_byte_cache_charpos;
847 best_below_byte = string_char_byte_cache_bytepos;
848 }
849 else
850 {
851 best_above = string_char_byte_cache_charpos;
852 best_above_byte = string_char_byte_cache_bytepos;
853 }
854 }
855
856 if (byte_index - best_below_byte < best_above_byte - byte_index)
857 {
858 unsigned char *p = SDATA (string) + best_below_byte;
859 unsigned char *pend = SDATA (string) + byte_index;
860
861 while (p < pend)
862 {
863 p += BYTES_BY_CHAR_HEAD (*p);
864 best_below++;
865 }
866 i = best_below;
867 i_byte = p - SDATA (string);
868 }
869 else
870 {
871 unsigned char *p = SDATA (string) + best_above_byte;
872 unsigned char *pbeg = SDATA (string) + byte_index;
873
874 while (p > pbeg)
875 {
876 p--;
877 while (!CHAR_HEAD_P (*p)) p--;
878 best_above--;
879 }
880 i = best_above;
881 i_byte = p - SDATA (string);
882 }
883
884 string_char_byte_cache_bytepos = i_byte;
885 string_char_byte_cache_charpos = i;
886 string_char_byte_cache_string = string;
887
888 return i;
889 }
890 \f
891 /* Convert STRING to a multibyte string. */
892
893 static Lisp_Object
894 string_make_multibyte (Lisp_Object string)
895 {
896 unsigned char *buf;
897 ptrdiff_t nbytes;
898 Lisp_Object ret;
899 USE_SAFE_ALLOCA;
900
901 if (STRING_MULTIBYTE (string))
902 return string;
903
904 nbytes = count_size_as_multibyte (SDATA (string),
905 SCHARS (string));
906 /* If all the chars are ASCII, they won't need any more bytes
907 once converted. In that case, we can return STRING itself. */
908 if (nbytes == SBYTES (string))
909 return string;
910
911 SAFE_ALLOCA (buf, unsigned char *, nbytes);
912 copy_text (SDATA (string), buf, SBYTES (string),
913 0, 1);
914
915 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
916 SAFE_FREE ();
917
918 return ret;
919 }
920
921
922 /* Convert STRING (if unibyte) to a multibyte string without changing
923 the number of characters. Characters 0200 trough 0237 are
924 converted to eight-bit characters. */
925
926 Lisp_Object
927 string_to_multibyte (Lisp_Object string)
928 {
929 unsigned char *buf;
930 ptrdiff_t nbytes;
931 Lisp_Object ret;
932 USE_SAFE_ALLOCA;
933
934 if (STRING_MULTIBYTE (string))
935 return string;
936
937 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
938 /* If all the chars are ASCII, they won't need any more bytes once
939 converted. */
940 if (nbytes == SBYTES (string))
941 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
942
943 SAFE_ALLOCA (buf, unsigned char *, nbytes);
944 memcpy (buf, SDATA (string), SBYTES (string));
945 str_to_multibyte (buf, nbytes, SBYTES (string));
946
947 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
948 SAFE_FREE ();
949
950 return ret;
951 }
952
953
954 /* Convert STRING to a single-byte string. */
955
956 Lisp_Object
957 string_make_unibyte (Lisp_Object string)
958 {
959 ptrdiff_t nchars;
960 unsigned char *buf;
961 Lisp_Object ret;
962 USE_SAFE_ALLOCA;
963
964 if (! STRING_MULTIBYTE (string))
965 return string;
966
967 nchars = SCHARS (string);
968
969 SAFE_ALLOCA (buf, unsigned char *, nchars);
970 copy_text (SDATA (string), buf, SBYTES (string),
971 1, 0);
972
973 ret = make_unibyte_string ((char *) buf, nchars);
974 SAFE_FREE ();
975
976 return ret;
977 }
978
979 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
980 1, 1, 0,
981 doc: /* Return the multibyte equivalent of STRING.
982 If STRING is unibyte and contains non-ASCII characters, the function
983 `unibyte-char-to-multibyte' is used to convert each unibyte character
984 to a multibyte character. In this case, the returned string is a
985 newly created string with no text properties. If STRING is multibyte
986 or entirely ASCII, it is returned unchanged. In particular, when
987 STRING is unibyte and entirely ASCII, the returned string is unibyte.
988 \(When the characters are all ASCII, Emacs primitives will treat the
989 string the same way whether it is unibyte or multibyte.) */)
990 (Lisp_Object string)
991 {
992 CHECK_STRING (string);
993
994 return string_make_multibyte (string);
995 }
996
997 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
998 1, 1, 0,
999 doc: /* Return the unibyte equivalent of STRING.
1000 Multibyte character codes are converted to unibyte according to
1001 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1002 If the lookup in the translation table fails, this function takes just
1003 the low 8 bits of each character. */)
1004 (Lisp_Object string)
1005 {
1006 CHECK_STRING (string);
1007
1008 return string_make_unibyte (string);
1009 }
1010
1011 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1012 1, 1, 0,
1013 doc: /* Return a unibyte string with the same individual bytes as STRING.
1014 If STRING is unibyte, the result is STRING itself.
1015 Otherwise it is a newly created string, with no text properties.
1016 If STRING is multibyte and contains a character of charset
1017 `eight-bit', it is converted to the corresponding single byte. */)
1018 (Lisp_Object string)
1019 {
1020 CHECK_STRING (string);
1021
1022 if (STRING_MULTIBYTE (string))
1023 {
1024 ptrdiff_t bytes = SBYTES (string);
1025 unsigned char *str = (unsigned char *) xmalloc (bytes);
1026
1027 memcpy (str, SDATA (string), bytes);
1028 bytes = str_as_unibyte (str, bytes);
1029 string = make_unibyte_string ((char *) str, bytes);
1030 xfree (str);
1031 }
1032 return string;
1033 }
1034
1035 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1036 1, 1, 0,
1037 doc: /* Return a multibyte string with the same individual bytes as STRING.
1038 If STRING is multibyte, the result is STRING itself.
1039 Otherwise it is a newly created string, with no text properties.
1040
1041 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1042 part of a correct utf-8 sequence), it is converted to the corresponding
1043 multibyte character of charset `eight-bit'.
1044 See also `string-to-multibyte'.
1045
1046 Beware, this often doesn't really do what you think it does.
1047 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1048 If you're not sure, whether to use `string-as-multibyte' or
1049 `string-to-multibyte', use `string-to-multibyte'. */)
1050 (Lisp_Object string)
1051 {
1052 CHECK_STRING (string);
1053
1054 if (! STRING_MULTIBYTE (string))
1055 {
1056 Lisp_Object new_string;
1057 ptrdiff_t nchars, nbytes;
1058
1059 parse_str_as_multibyte (SDATA (string),
1060 SBYTES (string),
1061 &nchars, &nbytes);
1062 new_string = make_uninit_multibyte_string (nchars, nbytes);
1063 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1064 if (nbytes != SBYTES (string))
1065 str_as_multibyte (SDATA (new_string), nbytes,
1066 SBYTES (string), NULL);
1067 string = new_string;
1068 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1069 }
1070 return string;
1071 }
1072
1073 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1074 1, 1, 0,
1075 doc: /* Return a multibyte string with the same individual chars as STRING.
1076 If STRING is multibyte, the result is STRING itself.
1077 Otherwise it is a newly created string, with no text properties.
1078
1079 If STRING is unibyte and contains an 8-bit byte, it is converted to
1080 the corresponding multibyte character of charset `eight-bit'.
1081
1082 This differs from `string-as-multibyte' by converting each byte of a correct
1083 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1084 correct sequence. */)
1085 (Lisp_Object string)
1086 {
1087 CHECK_STRING (string);
1088
1089 return string_to_multibyte (string);
1090 }
1091
1092 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1093 1, 1, 0,
1094 doc: /* Return a unibyte string with the same individual chars as STRING.
1095 If STRING is unibyte, the result is STRING itself.
1096 Otherwise it is a newly created string, with no text properties,
1097 where each `eight-bit' character is converted to the corresponding byte.
1098 If STRING contains a non-ASCII, non-`eight-bit' character,
1099 an error is signaled. */)
1100 (Lisp_Object string)
1101 {
1102 CHECK_STRING (string);
1103
1104 if (STRING_MULTIBYTE (string))
1105 {
1106 ptrdiff_t chars = SCHARS (string);
1107 unsigned char *str = (unsigned char *) xmalloc (chars);
1108 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars, 0);
1109
1110 if (converted < chars)
1111 error ("Can't convert the %"pD"dth character to unibyte", converted);
1112 string = make_unibyte_string ((char *) str, chars);
1113 xfree (str);
1114 }
1115 return string;
1116 }
1117
1118 \f
1119 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1120 doc: /* Return a copy of ALIST.
1121 This is an alist which represents the same mapping from objects to objects,
1122 but does not share the alist structure with ALIST.
1123 The objects mapped (cars and cdrs of elements of the alist)
1124 are shared, however.
1125 Elements of ALIST that are not conses are also shared. */)
1126 (Lisp_Object alist)
1127 {
1128 register Lisp_Object tem;
1129
1130 CHECK_LIST (alist);
1131 if (NILP (alist))
1132 return alist;
1133 alist = concat (1, &alist, Lisp_Cons, 0);
1134 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1135 {
1136 register Lisp_Object car;
1137 car = XCAR (tem);
1138
1139 if (CONSP (car))
1140 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1141 }
1142 return alist;
1143 }
1144
1145 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1146 doc: /* Return a new string whose contents are a substring of STRING.
1147 The returned string consists of the characters between index FROM
1148 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1149 zero-indexed: 0 means the first character of STRING. Negative values
1150 are counted from the end of STRING. If TO is nil, the substring runs
1151 to the end of STRING.
1152
1153 The STRING argument may also be a vector. In that case, the return
1154 value is a new vector that contains the elements between index FROM
1155 \(inclusive) and index TO (exclusive) of that vector argument. */)
1156 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1157 {
1158 Lisp_Object res;
1159 ptrdiff_t size;
1160 EMACS_INT from_char, to_char;
1161
1162 CHECK_VECTOR_OR_STRING (string);
1163 CHECK_NUMBER (from);
1164
1165 if (STRINGP (string))
1166 size = SCHARS (string);
1167 else
1168 size = ASIZE (string);
1169
1170 if (NILP (to))
1171 to_char = size;
1172 else
1173 {
1174 CHECK_NUMBER (to);
1175
1176 to_char = XINT (to);
1177 if (to_char < 0)
1178 to_char += size;
1179 }
1180
1181 from_char = XINT (from);
1182 if (from_char < 0)
1183 from_char += size;
1184 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1185 args_out_of_range_3 (string, make_number (from_char),
1186 make_number (to_char));
1187
1188 if (STRINGP (string))
1189 {
1190 ptrdiff_t to_byte =
1191 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1192 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1193 res = make_specified_string (SSDATA (string) + from_byte,
1194 to_char - from_char, to_byte - from_byte,
1195 STRING_MULTIBYTE (string));
1196 copy_text_properties (make_number (from_char), make_number (to_char),
1197 string, make_number (0), res, Qnil);
1198 }
1199 else
1200 res = Fvector (to_char - from_char, &AREF (string, from_char));
1201
1202 return res;
1203 }
1204
1205
1206 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1207 doc: /* Return a substring of STRING, without text properties.
1208 It starts at index FROM and ends before TO.
1209 TO may be nil or omitted; then the substring runs to the end of STRING.
1210 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1211 If FROM or TO is negative, it counts from the end.
1212
1213 With one argument, just copy STRING without its properties. */)
1214 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1215 {
1216 ptrdiff_t size;
1217 EMACS_INT from_char, to_char;
1218 ptrdiff_t from_byte, to_byte;
1219
1220 CHECK_STRING (string);
1221
1222 size = SCHARS (string);
1223
1224 if (NILP (from))
1225 from_char = 0;
1226 else
1227 {
1228 CHECK_NUMBER (from);
1229 from_char = XINT (from);
1230 if (from_char < 0)
1231 from_char += size;
1232 }
1233
1234 if (NILP (to))
1235 to_char = size;
1236 else
1237 {
1238 CHECK_NUMBER (to);
1239 to_char = XINT (to);
1240 if (to_char < 0)
1241 to_char += size;
1242 }
1243
1244 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1245 args_out_of_range_3 (string, make_number (from_char),
1246 make_number (to_char));
1247
1248 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1249 to_byte =
1250 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1251 return make_specified_string (SSDATA (string) + from_byte,
1252 to_char - from_char, to_byte - from_byte,
1253 STRING_MULTIBYTE (string));
1254 }
1255
1256 /* Extract a substring of STRING, giving start and end positions
1257 both in characters and in bytes. */
1258
1259 Lisp_Object
1260 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1261 ptrdiff_t to, ptrdiff_t to_byte)
1262 {
1263 Lisp_Object res;
1264 ptrdiff_t size;
1265
1266 CHECK_VECTOR_OR_STRING (string);
1267
1268 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1269
1270 if (!(0 <= from && from <= to && to <= size))
1271 args_out_of_range_3 (string, make_number (from), make_number (to));
1272
1273 if (STRINGP (string))
1274 {
1275 res = make_specified_string (SSDATA (string) + from_byte,
1276 to - from, to_byte - from_byte,
1277 STRING_MULTIBYTE (string));
1278 copy_text_properties (make_number (from), make_number (to),
1279 string, make_number (0), res, Qnil);
1280 }
1281 else
1282 res = Fvector (to - from, &AREF (string, from));
1283
1284 return res;
1285 }
1286 \f
1287 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1288 doc: /* Take cdr N times on LIST, return the result. */)
1289 (Lisp_Object n, Lisp_Object list)
1290 {
1291 EMACS_INT i, num;
1292 CHECK_NUMBER (n);
1293 num = XINT (n);
1294 for (i = 0; i < num && !NILP (list); i++)
1295 {
1296 QUIT;
1297 CHECK_LIST_CONS (list, list);
1298 list = XCDR (list);
1299 }
1300 return list;
1301 }
1302
1303 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1304 doc: /* Return the Nth element of LIST.
1305 N counts from zero. If LIST is not that long, nil is returned. */)
1306 (Lisp_Object n, Lisp_Object list)
1307 {
1308 return Fcar (Fnthcdr (n, list));
1309 }
1310
1311 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1312 doc: /* Return element of SEQUENCE at index N. */)
1313 (register Lisp_Object sequence, Lisp_Object n)
1314 {
1315 CHECK_NUMBER (n);
1316 if (CONSP (sequence) || NILP (sequence))
1317 return Fcar (Fnthcdr (n, sequence));
1318
1319 /* Faref signals a "not array" error, so check here. */
1320 CHECK_ARRAY (sequence, Qsequencep);
1321 return Faref (sequence, n);
1322 }
1323
1324 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1325 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1326 The value is actually the tail of LIST whose car is ELT. */)
1327 (register Lisp_Object elt, Lisp_Object list)
1328 {
1329 register Lisp_Object tail;
1330 for (tail = list; CONSP (tail); tail = XCDR (tail))
1331 {
1332 register Lisp_Object tem;
1333 CHECK_LIST_CONS (tail, list);
1334 tem = XCAR (tail);
1335 if (! NILP (Fequal (elt, tem)))
1336 return tail;
1337 QUIT;
1338 }
1339 return Qnil;
1340 }
1341
1342 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1343 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1344 The value is actually the tail of LIST whose car is ELT. */)
1345 (register Lisp_Object elt, Lisp_Object list)
1346 {
1347 while (1)
1348 {
1349 if (!CONSP (list) || EQ (XCAR (list), elt))
1350 break;
1351
1352 list = XCDR (list);
1353 if (!CONSP (list) || EQ (XCAR (list), elt))
1354 break;
1355
1356 list = XCDR (list);
1357 if (!CONSP (list) || EQ (XCAR (list), elt))
1358 break;
1359
1360 list = XCDR (list);
1361 QUIT;
1362 }
1363
1364 CHECK_LIST (list);
1365 return list;
1366 }
1367
1368 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1369 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1370 The value is actually the tail of LIST whose car is ELT. */)
1371 (register Lisp_Object elt, Lisp_Object list)
1372 {
1373 register Lisp_Object tail;
1374
1375 if (!FLOATP (elt))
1376 return Fmemq (elt, list);
1377
1378 for (tail = list; CONSP (tail); tail = XCDR (tail))
1379 {
1380 register Lisp_Object tem;
1381 CHECK_LIST_CONS (tail, list);
1382 tem = XCAR (tail);
1383 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1384 return tail;
1385 QUIT;
1386 }
1387 return Qnil;
1388 }
1389
1390 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1391 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1392 The value is actually the first element of LIST whose car is KEY.
1393 Elements of LIST that are not conses are ignored. */)
1394 (Lisp_Object key, Lisp_Object list)
1395 {
1396 while (1)
1397 {
1398 if (!CONSP (list)
1399 || (CONSP (XCAR (list))
1400 && EQ (XCAR (XCAR (list)), key)))
1401 break;
1402
1403 list = XCDR (list);
1404 if (!CONSP (list)
1405 || (CONSP (XCAR (list))
1406 && EQ (XCAR (XCAR (list)), key)))
1407 break;
1408
1409 list = XCDR (list);
1410 if (!CONSP (list)
1411 || (CONSP (XCAR (list))
1412 && EQ (XCAR (XCAR (list)), key)))
1413 break;
1414
1415 list = XCDR (list);
1416 QUIT;
1417 }
1418
1419 return CAR (list);
1420 }
1421
1422 /* Like Fassq but never report an error and do not allow quits.
1423 Use only on lists known never to be circular. */
1424
1425 Lisp_Object
1426 assq_no_quit (Lisp_Object key, Lisp_Object list)
1427 {
1428 while (CONSP (list)
1429 && (!CONSP (XCAR (list))
1430 || !EQ (XCAR (XCAR (list)), key)))
1431 list = XCDR (list);
1432
1433 return CAR_SAFE (list);
1434 }
1435
1436 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1437 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1438 The value is actually the first element of LIST whose car equals KEY. */)
1439 (Lisp_Object key, Lisp_Object list)
1440 {
1441 Lisp_Object car;
1442
1443 while (1)
1444 {
1445 if (!CONSP (list)
1446 || (CONSP (XCAR (list))
1447 && (car = XCAR (XCAR (list)),
1448 EQ (car, key) || !NILP (Fequal (car, key)))))
1449 break;
1450
1451 list = XCDR (list);
1452 if (!CONSP (list)
1453 || (CONSP (XCAR (list))
1454 && (car = XCAR (XCAR (list)),
1455 EQ (car, key) || !NILP (Fequal (car, key)))))
1456 break;
1457
1458 list = XCDR (list);
1459 if (!CONSP (list)
1460 || (CONSP (XCAR (list))
1461 && (car = XCAR (XCAR (list)),
1462 EQ (car, key) || !NILP (Fequal (car, key)))))
1463 break;
1464
1465 list = XCDR (list);
1466 QUIT;
1467 }
1468
1469 return CAR (list);
1470 }
1471
1472 /* Like Fassoc but never report an error and do not allow quits.
1473 Use only on lists known never to be circular. */
1474
1475 Lisp_Object
1476 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1477 {
1478 while (CONSP (list)
1479 && (!CONSP (XCAR (list))
1480 || (!EQ (XCAR (XCAR (list)), key)
1481 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1482 list = XCDR (list);
1483
1484 return CONSP (list) ? XCAR (list) : Qnil;
1485 }
1486
1487 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1488 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1489 The value is actually the first element of LIST whose cdr is KEY. */)
1490 (register Lisp_Object key, Lisp_Object list)
1491 {
1492 while (1)
1493 {
1494 if (!CONSP (list)
1495 || (CONSP (XCAR (list))
1496 && EQ (XCDR (XCAR (list)), key)))
1497 break;
1498
1499 list = XCDR (list);
1500 if (!CONSP (list)
1501 || (CONSP (XCAR (list))
1502 && EQ (XCDR (XCAR (list)), key)))
1503 break;
1504
1505 list = XCDR (list);
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCDR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 QUIT;
1513 }
1514
1515 return CAR (list);
1516 }
1517
1518 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1519 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1520 The value is actually the first element of LIST whose cdr equals KEY. */)
1521 (Lisp_Object key, Lisp_Object list)
1522 {
1523 Lisp_Object cdr;
1524
1525 while (1)
1526 {
1527 if (!CONSP (list)
1528 || (CONSP (XCAR (list))
1529 && (cdr = XCDR (XCAR (list)),
1530 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1531 break;
1532
1533 list = XCDR (list);
1534 if (!CONSP (list)
1535 || (CONSP (XCAR (list))
1536 && (cdr = XCDR (XCAR (list)),
1537 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1538 break;
1539
1540 list = XCDR (list);
1541 if (!CONSP (list)
1542 || (CONSP (XCAR (list))
1543 && (cdr = XCDR (XCAR (list)),
1544 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1545 break;
1546
1547 list = XCDR (list);
1548 QUIT;
1549 }
1550
1551 return CAR (list);
1552 }
1553 \f
1554 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1555 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1556 The modified LIST is returned. Comparison is done with `eq'.
1557 If the first member of LIST is ELT, there is no way to remove it by side effect;
1558 therefore, write `(setq foo (delq element foo))'
1559 to be sure of changing the value of `foo'. */)
1560 (register Lisp_Object elt, Lisp_Object list)
1561 {
1562 register Lisp_Object tail, prev;
1563 register Lisp_Object tem;
1564
1565 tail = list;
1566 prev = Qnil;
1567 while (!NILP (tail))
1568 {
1569 CHECK_LIST_CONS (tail, list);
1570 tem = XCAR (tail);
1571 if (EQ (elt, tem))
1572 {
1573 if (NILP (prev))
1574 list = XCDR (tail);
1575 else
1576 Fsetcdr (prev, XCDR (tail));
1577 }
1578 else
1579 prev = tail;
1580 tail = XCDR (tail);
1581 QUIT;
1582 }
1583 return list;
1584 }
1585
1586 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1587 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1588 SEQ must be a list, a vector, or a string.
1589 The modified SEQ is returned. Comparison is done with `equal'.
1590 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1591 is not a side effect; it is simply using a different sequence.
1592 Therefore, write `(setq foo (delete element foo))'
1593 to be sure of changing the value of `foo'. */)
1594 (Lisp_Object elt, Lisp_Object seq)
1595 {
1596 if (VECTORP (seq))
1597 {
1598 ptrdiff_t i, n;
1599
1600 for (i = n = 0; i < ASIZE (seq); ++i)
1601 if (NILP (Fequal (AREF (seq, i), elt)))
1602 ++n;
1603
1604 if (n != ASIZE (seq))
1605 {
1606 struct Lisp_Vector *p = allocate_vector (n);
1607
1608 for (i = n = 0; i < ASIZE (seq); ++i)
1609 if (NILP (Fequal (AREF (seq, i), elt)))
1610 p->contents[n++] = AREF (seq, i);
1611
1612 XSETVECTOR (seq, p);
1613 }
1614 }
1615 else if (STRINGP (seq))
1616 {
1617 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1618 int c;
1619
1620 for (i = nchars = nbytes = ibyte = 0;
1621 i < SCHARS (seq);
1622 ++i, ibyte += cbytes)
1623 {
1624 if (STRING_MULTIBYTE (seq))
1625 {
1626 c = STRING_CHAR (SDATA (seq) + ibyte);
1627 cbytes = CHAR_BYTES (c);
1628 }
1629 else
1630 {
1631 c = SREF (seq, i);
1632 cbytes = 1;
1633 }
1634
1635 if (!INTEGERP (elt) || c != XINT (elt))
1636 {
1637 ++nchars;
1638 nbytes += cbytes;
1639 }
1640 }
1641
1642 if (nchars != SCHARS (seq))
1643 {
1644 Lisp_Object tem;
1645
1646 tem = make_uninit_multibyte_string (nchars, nbytes);
1647 if (!STRING_MULTIBYTE (seq))
1648 STRING_SET_UNIBYTE (tem);
1649
1650 for (i = nchars = nbytes = ibyte = 0;
1651 i < SCHARS (seq);
1652 ++i, ibyte += cbytes)
1653 {
1654 if (STRING_MULTIBYTE (seq))
1655 {
1656 c = STRING_CHAR (SDATA (seq) + ibyte);
1657 cbytes = CHAR_BYTES (c);
1658 }
1659 else
1660 {
1661 c = SREF (seq, i);
1662 cbytes = 1;
1663 }
1664
1665 if (!INTEGERP (elt) || c != XINT (elt))
1666 {
1667 unsigned char *from = SDATA (seq) + ibyte;
1668 unsigned char *to = SDATA (tem) + nbytes;
1669 ptrdiff_t n;
1670
1671 ++nchars;
1672 nbytes += cbytes;
1673
1674 for (n = cbytes; n--; )
1675 *to++ = *from++;
1676 }
1677 }
1678
1679 seq = tem;
1680 }
1681 }
1682 else
1683 {
1684 Lisp_Object tail, prev;
1685
1686 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1687 {
1688 CHECK_LIST_CONS (tail, seq);
1689
1690 if (!NILP (Fequal (elt, XCAR (tail))))
1691 {
1692 if (NILP (prev))
1693 seq = XCDR (tail);
1694 else
1695 Fsetcdr (prev, XCDR (tail));
1696 }
1697 else
1698 prev = tail;
1699 QUIT;
1700 }
1701 }
1702
1703 return seq;
1704 }
1705
1706 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1707 doc: /* Reverse LIST by modifying cdr pointers.
1708 Return the reversed list. */)
1709 (Lisp_Object list)
1710 {
1711 register Lisp_Object prev, tail, next;
1712
1713 if (NILP (list)) return list;
1714 prev = Qnil;
1715 tail = list;
1716 while (!NILP (tail))
1717 {
1718 QUIT;
1719 CHECK_LIST_CONS (tail, list);
1720 next = XCDR (tail);
1721 Fsetcdr (tail, prev);
1722 prev = tail;
1723 tail = next;
1724 }
1725 return prev;
1726 }
1727
1728 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1729 doc: /* Reverse LIST, copying. Return the reversed list.
1730 See also the function `nreverse', which is used more often. */)
1731 (Lisp_Object list)
1732 {
1733 Lisp_Object new;
1734
1735 for (new = Qnil; CONSP (list); list = XCDR (list))
1736 {
1737 QUIT;
1738 new = Fcons (XCAR (list), new);
1739 }
1740 CHECK_LIST_END (list, list);
1741 return new;
1742 }
1743 \f
1744 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1745
1746 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1747 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1748 Returns the sorted list. LIST is modified by side effects.
1749 PREDICATE is called with two elements of LIST, and should return non-nil
1750 if the first element should sort before the second. */)
1751 (Lisp_Object list, Lisp_Object predicate)
1752 {
1753 Lisp_Object front, back;
1754 register Lisp_Object len, tem;
1755 struct gcpro gcpro1, gcpro2;
1756 EMACS_INT length;
1757
1758 front = list;
1759 len = Flength (list);
1760 length = XINT (len);
1761 if (length < 2)
1762 return list;
1763
1764 XSETINT (len, (length / 2) - 1);
1765 tem = Fnthcdr (len, list);
1766 back = Fcdr (tem);
1767 Fsetcdr (tem, Qnil);
1768
1769 GCPRO2 (front, back);
1770 front = Fsort (front, predicate);
1771 back = Fsort (back, predicate);
1772 UNGCPRO;
1773 return merge (front, back, predicate);
1774 }
1775
1776 Lisp_Object
1777 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1778 {
1779 Lisp_Object value;
1780 register Lisp_Object tail;
1781 Lisp_Object tem;
1782 register Lisp_Object l1, l2;
1783 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1784
1785 l1 = org_l1;
1786 l2 = org_l2;
1787 tail = Qnil;
1788 value = Qnil;
1789
1790 /* It is sufficient to protect org_l1 and org_l2.
1791 When l1 and l2 are updated, we copy the new values
1792 back into the org_ vars. */
1793 GCPRO4 (org_l1, org_l2, pred, value);
1794
1795 while (1)
1796 {
1797 if (NILP (l1))
1798 {
1799 UNGCPRO;
1800 if (NILP (tail))
1801 return l2;
1802 Fsetcdr (tail, l2);
1803 return value;
1804 }
1805 if (NILP (l2))
1806 {
1807 UNGCPRO;
1808 if (NILP (tail))
1809 return l1;
1810 Fsetcdr (tail, l1);
1811 return value;
1812 }
1813 tem = call2 (pred, Fcar (l2), Fcar (l1));
1814 if (NILP (tem))
1815 {
1816 tem = l1;
1817 l1 = Fcdr (l1);
1818 org_l1 = l1;
1819 }
1820 else
1821 {
1822 tem = l2;
1823 l2 = Fcdr (l2);
1824 org_l2 = l2;
1825 }
1826 if (NILP (tail))
1827 value = tem;
1828 else
1829 Fsetcdr (tail, tem);
1830 tail = tem;
1831 }
1832 }
1833
1834 \f
1835 /* This does not check for quits. That is safe since it must terminate. */
1836
1837 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1838 doc: /* Extract a value from a property list.
1839 PLIST is a property list, which is a list of the form
1840 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1841 corresponding to the given PROP, or nil if PROP is not one of the
1842 properties on the list. This function never signals an error. */)
1843 (Lisp_Object plist, Lisp_Object prop)
1844 {
1845 Lisp_Object tail, halftail;
1846
1847 /* halftail is used to detect circular lists. */
1848 tail = halftail = plist;
1849 while (CONSP (tail) && CONSP (XCDR (tail)))
1850 {
1851 if (EQ (prop, XCAR (tail)))
1852 return XCAR (XCDR (tail));
1853
1854 tail = XCDR (XCDR (tail));
1855 halftail = XCDR (halftail);
1856 if (EQ (tail, halftail))
1857 break;
1858
1859 #if 0 /* Unsafe version. */
1860 /* This function can be called asynchronously
1861 (setup_coding_system). Don't QUIT in that case. */
1862 if (!interrupt_input_blocked)
1863 QUIT;
1864 #endif
1865 }
1866
1867 return Qnil;
1868 }
1869
1870 DEFUN ("get", Fget, Sget, 2, 2, 0,
1871 doc: /* Return the value of SYMBOL's PROPNAME property.
1872 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1873 (Lisp_Object symbol, Lisp_Object propname)
1874 {
1875 CHECK_SYMBOL (symbol);
1876 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1877 }
1878
1879 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1880 doc: /* Change value in PLIST of PROP to VAL.
1881 PLIST is a property list, which is a list of the form
1882 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1883 If PROP is already a property on the list, its value is set to VAL,
1884 otherwise the new PROP VAL pair is added. The new plist is returned;
1885 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1886 The PLIST is modified by side effects. */)
1887 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1888 {
1889 register Lisp_Object tail, prev;
1890 Lisp_Object newcell;
1891 prev = Qnil;
1892 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1893 tail = XCDR (XCDR (tail)))
1894 {
1895 if (EQ (prop, XCAR (tail)))
1896 {
1897 Fsetcar (XCDR (tail), val);
1898 return plist;
1899 }
1900
1901 prev = tail;
1902 QUIT;
1903 }
1904 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1905 if (NILP (prev))
1906 return newcell;
1907 else
1908 Fsetcdr (XCDR (prev), newcell);
1909 return plist;
1910 }
1911
1912 DEFUN ("put", Fput, Sput, 3, 3, 0,
1913 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1914 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1915 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1916 {
1917 CHECK_SYMBOL (symbol);
1918 XSYMBOL (symbol)->plist
1919 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1920 return value;
1921 }
1922 \f
1923 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1924 doc: /* Extract a value from a property list, comparing with `equal'.
1925 PLIST is a property list, which is a list of the form
1926 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1927 corresponding to the given PROP, or nil if PROP is not
1928 one of the properties on the list. */)
1929 (Lisp_Object plist, Lisp_Object prop)
1930 {
1931 Lisp_Object tail;
1932
1933 for (tail = plist;
1934 CONSP (tail) && CONSP (XCDR (tail));
1935 tail = XCDR (XCDR (tail)))
1936 {
1937 if (! NILP (Fequal (prop, XCAR (tail))))
1938 return XCAR (XCDR (tail));
1939
1940 QUIT;
1941 }
1942
1943 CHECK_LIST_END (tail, prop);
1944
1945 return Qnil;
1946 }
1947
1948 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1949 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1950 PLIST is a property list, which is a list of the form
1951 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1952 If PROP is already a property on the list, its value is set to VAL,
1953 otherwise the new PROP VAL pair is added. The new plist is returned;
1954 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1955 The PLIST is modified by side effects. */)
1956 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1957 {
1958 register Lisp_Object tail, prev;
1959 Lisp_Object newcell;
1960 prev = Qnil;
1961 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1962 tail = XCDR (XCDR (tail)))
1963 {
1964 if (! NILP (Fequal (prop, XCAR (tail))))
1965 {
1966 Fsetcar (XCDR (tail), val);
1967 return plist;
1968 }
1969
1970 prev = tail;
1971 QUIT;
1972 }
1973 newcell = Fcons (prop, Fcons (val, Qnil));
1974 if (NILP (prev))
1975 return newcell;
1976 else
1977 Fsetcdr (XCDR (prev), newcell);
1978 return plist;
1979 }
1980 \f
1981 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1982 doc: /* Return t if the two args are the same Lisp object.
1983 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1984 (Lisp_Object obj1, Lisp_Object obj2)
1985 {
1986 if (FLOATP (obj1))
1987 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1988 else
1989 return EQ (obj1, obj2) ? Qt : Qnil;
1990 }
1991
1992 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1993 doc: /* Return t if two Lisp objects have similar structure and contents.
1994 They must have the same data type.
1995 Conses are compared by comparing the cars and the cdrs.
1996 Vectors and strings are compared element by element.
1997 Numbers are compared by value, but integers cannot equal floats.
1998 (Use `=' if you want integers and floats to be able to be equal.)
1999 Symbols must match exactly. */)
2000 (register Lisp_Object o1, Lisp_Object o2)
2001 {
2002 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2003 }
2004
2005 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2006 doc: /* Return t if two Lisp objects have similar structure and contents.
2007 This is like `equal' except that it compares the text properties
2008 of strings. (`equal' ignores text properties.) */)
2009 (register Lisp_Object o1, Lisp_Object o2)
2010 {
2011 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2012 }
2013
2014 /* DEPTH is current depth of recursion. Signal an error if it
2015 gets too deep.
2016 PROPS, if non-nil, means compare string text properties too. */
2017
2018 static int
2019 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2020 {
2021 if (depth > 200)
2022 error ("Stack overflow in equal");
2023
2024 tail_recurse:
2025 QUIT;
2026 if (EQ (o1, o2))
2027 return 1;
2028 if (XTYPE (o1) != XTYPE (o2))
2029 return 0;
2030
2031 switch (XTYPE (o1))
2032 {
2033 case Lisp_Float:
2034 {
2035 double d1, d2;
2036
2037 d1 = extract_float (o1);
2038 d2 = extract_float (o2);
2039 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2040 though they are not =. */
2041 return d1 == d2 || (d1 != d1 && d2 != d2);
2042 }
2043
2044 case Lisp_Cons:
2045 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2046 return 0;
2047 o1 = XCDR (o1);
2048 o2 = XCDR (o2);
2049 goto tail_recurse;
2050
2051 case Lisp_Misc:
2052 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2053 return 0;
2054 if (OVERLAYP (o1))
2055 {
2056 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2057 depth + 1, props)
2058 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2059 depth + 1, props))
2060 return 0;
2061 o1 = XOVERLAY (o1)->plist;
2062 o2 = XOVERLAY (o2)->plist;
2063 goto tail_recurse;
2064 }
2065 if (MARKERP (o1))
2066 {
2067 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2068 && (XMARKER (o1)->buffer == 0
2069 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2070 }
2071 break;
2072
2073 case Lisp_Vectorlike:
2074 {
2075 register int i;
2076 ptrdiff_t size = ASIZE (o1);
2077 /* Pseudovectors have the type encoded in the size field, so this test
2078 actually checks that the objects have the same type as well as the
2079 same size. */
2080 if (ASIZE (o2) != size)
2081 return 0;
2082 /* Boolvectors are compared much like strings. */
2083 if (BOOL_VECTOR_P (o1))
2084 {
2085 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2086 return 0;
2087 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2088 ((XBOOL_VECTOR (o1)->size
2089 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2090 / BOOL_VECTOR_BITS_PER_CHAR)))
2091 return 0;
2092 return 1;
2093 }
2094 if (WINDOW_CONFIGURATIONP (o1))
2095 return compare_window_configurations (o1, o2, 0);
2096
2097 /* Aside from them, only true vectors, char-tables, compiled
2098 functions, and fonts (font-spec, font-entity, font-object)
2099 are sensible to compare, so eliminate the others now. */
2100 if (size & PSEUDOVECTOR_FLAG)
2101 {
2102 if (!(size & (PVEC_COMPILED
2103 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2104 return 0;
2105 size &= PSEUDOVECTOR_SIZE_MASK;
2106 }
2107 for (i = 0; i < size; i++)
2108 {
2109 Lisp_Object v1, v2;
2110 v1 = AREF (o1, i);
2111 v2 = AREF (o2, i);
2112 if (!internal_equal (v1, v2, depth + 1, props))
2113 return 0;
2114 }
2115 return 1;
2116 }
2117 break;
2118
2119 case Lisp_String:
2120 if (SCHARS (o1) != SCHARS (o2))
2121 return 0;
2122 if (SBYTES (o1) != SBYTES (o2))
2123 return 0;
2124 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2125 return 0;
2126 if (props && !compare_string_intervals (o1, o2))
2127 return 0;
2128 return 1;
2129
2130 default:
2131 break;
2132 }
2133
2134 return 0;
2135 }
2136 \f
2137
2138 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2139 doc: /* Store each element of ARRAY with ITEM.
2140 ARRAY is a vector, string, char-table, or bool-vector. */)
2141 (Lisp_Object array, Lisp_Object item)
2142 {
2143 register ptrdiff_t size, idx;
2144
2145 if (VECTORP (array))
2146 {
2147 register Lisp_Object *p = XVECTOR (array)->contents;
2148 size = ASIZE (array);
2149 for (idx = 0; idx < size; idx++)
2150 p[idx] = item;
2151 }
2152 else if (CHAR_TABLE_P (array))
2153 {
2154 int i;
2155
2156 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2157 XCHAR_TABLE (array)->contents[i] = item;
2158 XCHAR_TABLE (array)->defalt = item;
2159 }
2160 else if (STRINGP (array))
2161 {
2162 register unsigned char *p = SDATA (array);
2163 int charval;
2164 CHECK_CHARACTER (item);
2165 charval = XFASTINT (item);
2166 size = SCHARS (array);
2167 if (STRING_MULTIBYTE (array))
2168 {
2169 unsigned char str[MAX_MULTIBYTE_LENGTH];
2170 int len = CHAR_STRING (charval, str);
2171 ptrdiff_t size_byte = SBYTES (array);
2172
2173 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2174 || SCHARS (array) * len != size_byte)
2175 error ("Attempt to change byte length of a string");
2176 for (idx = 0; idx < size_byte; idx++)
2177 *p++ = str[idx % len];
2178 }
2179 else
2180 for (idx = 0; idx < size; idx++)
2181 p[idx] = charval;
2182 }
2183 else if (BOOL_VECTOR_P (array))
2184 {
2185 register unsigned char *p = XBOOL_VECTOR (array)->data;
2186 size =
2187 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2188 / BOOL_VECTOR_BITS_PER_CHAR);
2189
2190 if (size)
2191 {
2192 memset (p, ! NILP (item) ? -1 : 0, size);
2193
2194 /* Clear any extraneous bits in the last byte. */
2195 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2196 }
2197 }
2198 else
2199 wrong_type_argument (Qarrayp, array);
2200 return array;
2201 }
2202
2203 DEFUN ("clear-string", Fclear_string, Sclear_string,
2204 1, 1, 0,
2205 doc: /* Clear the contents of STRING.
2206 This makes STRING unibyte and may change its length. */)
2207 (Lisp_Object string)
2208 {
2209 ptrdiff_t len;
2210 CHECK_STRING (string);
2211 len = SBYTES (string);
2212 memset (SDATA (string), 0, len);
2213 STRING_SET_CHARS (string, len);
2214 STRING_SET_UNIBYTE (string);
2215 return Qnil;
2216 }
2217 \f
2218 /* ARGSUSED */
2219 Lisp_Object
2220 nconc2 (Lisp_Object s1, Lisp_Object s2)
2221 {
2222 Lisp_Object args[2];
2223 args[0] = s1;
2224 args[1] = s2;
2225 return Fnconc (2, args);
2226 }
2227
2228 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2229 doc: /* Concatenate any number of lists by altering them.
2230 Only the last argument is not altered, and need not be a list.
2231 usage: (nconc &rest LISTS) */)
2232 (ptrdiff_t nargs, Lisp_Object *args)
2233 {
2234 ptrdiff_t argnum;
2235 register Lisp_Object tail, tem, val;
2236
2237 val = tail = Qnil;
2238
2239 for (argnum = 0; argnum < nargs; argnum++)
2240 {
2241 tem = args[argnum];
2242 if (NILP (tem)) continue;
2243
2244 if (NILP (val))
2245 val = tem;
2246
2247 if (argnum + 1 == nargs) break;
2248
2249 CHECK_LIST_CONS (tem, tem);
2250
2251 while (CONSP (tem))
2252 {
2253 tail = tem;
2254 tem = XCDR (tail);
2255 QUIT;
2256 }
2257
2258 tem = args[argnum + 1];
2259 Fsetcdr (tail, tem);
2260 if (NILP (tem))
2261 args[argnum + 1] = tail;
2262 }
2263
2264 return val;
2265 }
2266 \f
2267 /* This is the guts of all mapping functions.
2268 Apply FN to each element of SEQ, one by one,
2269 storing the results into elements of VALS, a C vector of Lisp_Objects.
2270 LENI is the length of VALS, which should also be the length of SEQ. */
2271
2272 static void
2273 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2274 {
2275 register Lisp_Object tail;
2276 Lisp_Object dummy;
2277 register EMACS_INT i;
2278 struct gcpro gcpro1, gcpro2, gcpro3;
2279
2280 if (vals)
2281 {
2282 /* Don't let vals contain any garbage when GC happens. */
2283 for (i = 0; i < leni; i++)
2284 vals[i] = Qnil;
2285
2286 GCPRO3 (dummy, fn, seq);
2287 gcpro1.var = vals;
2288 gcpro1.nvars = leni;
2289 }
2290 else
2291 GCPRO2 (fn, seq);
2292 /* We need not explicitly protect `tail' because it is used only on lists, and
2293 1) lists are not relocated and 2) the list is marked via `seq' so will not
2294 be freed */
2295
2296 if (VECTORP (seq) || COMPILEDP (seq))
2297 {
2298 for (i = 0; i < leni; i++)
2299 {
2300 dummy = call1 (fn, AREF (seq, i));
2301 if (vals)
2302 vals[i] = dummy;
2303 }
2304 }
2305 else if (BOOL_VECTOR_P (seq))
2306 {
2307 for (i = 0; i < leni; i++)
2308 {
2309 unsigned char byte;
2310 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2311 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2312 dummy = call1 (fn, dummy);
2313 if (vals)
2314 vals[i] = dummy;
2315 }
2316 }
2317 else if (STRINGP (seq))
2318 {
2319 ptrdiff_t i_byte;
2320
2321 for (i = 0, i_byte = 0; i < leni;)
2322 {
2323 int c;
2324 ptrdiff_t i_before = i;
2325
2326 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2327 XSETFASTINT (dummy, c);
2328 dummy = call1 (fn, dummy);
2329 if (vals)
2330 vals[i_before] = dummy;
2331 }
2332 }
2333 else /* Must be a list, since Flength did not get an error */
2334 {
2335 tail = seq;
2336 for (i = 0; i < leni && CONSP (tail); i++)
2337 {
2338 dummy = call1 (fn, XCAR (tail));
2339 if (vals)
2340 vals[i] = dummy;
2341 tail = XCDR (tail);
2342 }
2343 }
2344
2345 UNGCPRO;
2346 }
2347
2348 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2349 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2350 In between each pair of results, stick in SEPARATOR. Thus, " " as
2351 SEPARATOR results in spaces between the values returned by FUNCTION.
2352 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2353 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2354 {
2355 Lisp_Object len;
2356 register EMACS_INT leni;
2357 EMACS_INT nargs;
2358 ptrdiff_t i;
2359 register Lisp_Object *args;
2360 struct gcpro gcpro1;
2361 Lisp_Object ret;
2362 USE_SAFE_ALLOCA;
2363
2364 len = Flength (sequence);
2365 if (CHAR_TABLE_P (sequence))
2366 wrong_type_argument (Qlistp, sequence);
2367 leni = XINT (len);
2368 nargs = leni + leni - 1;
2369 if (nargs < 0) return empty_unibyte_string;
2370
2371 SAFE_ALLOCA_LISP (args, nargs);
2372
2373 GCPRO1 (separator);
2374 mapcar1 (leni, args, function, sequence);
2375 UNGCPRO;
2376
2377 for (i = leni - 1; i > 0; i--)
2378 args[i + i] = args[i];
2379
2380 for (i = 1; i < nargs; i += 2)
2381 args[i] = separator;
2382
2383 ret = Fconcat (nargs, args);
2384 SAFE_FREE ();
2385
2386 return ret;
2387 }
2388
2389 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2390 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2391 The result is a list just as long as SEQUENCE.
2392 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2393 (Lisp_Object function, Lisp_Object sequence)
2394 {
2395 register Lisp_Object len;
2396 register EMACS_INT leni;
2397 register Lisp_Object *args;
2398 Lisp_Object ret;
2399 USE_SAFE_ALLOCA;
2400
2401 len = Flength (sequence);
2402 if (CHAR_TABLE_P (sequence))
2403 wrong_type_argument (Qlistp, sequence);
2404 leni = XFASTINT (len);
2405
2406 SAFE_ALLOCA_LISP (args, leni);
2407
2408 mapcar1 (leni, args, function, sequence);
2409
2410 ret = Flist (leni, args);
2411 SAFE_FREE ();
2412
2413 return ret;
2414 }
2415
2416 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2417 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2418 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2419 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2420 (Lisp_Object function, Lisp_Object sequence)
2421 {
2422 register EMACS_INT leni;
2423
2424 leni = XFASTINT (Flength (sequence));
2425 if (CHAR_TABLE_P (sequence))
2426 wrong_type_argument (Qlistp, sequence);
2427 mapcar1 (leni, 0, function, sequence);
2428
2429 return sequence;
2430 }
2431 \f
2432 /* This is how C code calls `yes-or-no-p' and allows the user
2433 to redefined it.
2434
2435 Anything that calls this function must protect from GC! */
2436
2437 Lisp_Object
2438 do_yes_or_no_p (Lisp_Object prompt)
2439 {
2440 return call1 (intern ("yes-or-no-p"), prompt);
2441 }
2442
2443 /* Anything that calls this function must protect from GC! */
2444
2445 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2446 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2447 PROMPT is the string to display to ask the question. It should end in
2448 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2449
2450 The user must confirm the answer with RET, and can edit it until it
2451 has been confirmed.
2452
2453 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2454 is nil, and `use-dialog-box' is non-nil. */)
2455 (Lisp_Object prompt)
2456 {
2457 register Lisp_Object ans;
2458 Lisp_Object args[2];
2459 struct gcpro gcpro1;
2460
2461 CHECK_STRING (prompt);
2462
2463 #ifdef HAVE_MENUS
2464 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2465 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2466 && use_dialog_box
2467 && have_menus_p ())
2468 {
2469 Lisp_Object pane, menu, obj;
2470 redisplay_preserve_echo_area (4);
2471 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2472 Fcons (Fcons (build_string ("No"), Qnil),
2473 Qnil));
2474 GCPRO1 (pane);
2475 menu = Fcons (prompt, pane);
2476 obj = Fx_popup_dialog (Qt, menu, Qnil);
2477 UNGCPRO;
2478 return obj;
2479 }
2480 #endif /* HAVE_MENUS */
2481
2482 args[0] = prompt;
2483 args[1] = build_string ("(yes or no) ");
2484 prompt = Fconcat (2, args);
2485
2486 GCPRO1 (prompt);
2487
2488 while (1)
2489 {
2490 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2491 Qyes_or_no_p_history, Qnil,
2492 Qnil));
2493 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2494 {
2495 UNGCPRO;
2496 return Qt;
2497 }
2498 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2499 {
2500 UNGCPRO;
2501 return Qnil;
2502 }
2503
2504 Fding (Qnil);
2505 Fdiscard_input ();
2506 message ("Please answer yes or no.");
2507 Fsleep_for (make_number (2), Qnil);
2508 }
2509 }
2510 \f
2511 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2512 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2513
2514 Each of the three load averages is multiplied by 100, then converted
2515 to integer.
2516
2517 When USE-FLOATS is non-nil, floats will be used instead of integers.
2518 These floats are not multiplied by 100.
2519
2520 If the 5-minute or 15-minute load averages are not available, return a
2521 shortened list, containing only those averages which are available.
2522
2523 An error is thrown if the load average can't be obtained. In some
2524 cases making it work would require Emacs being installed setuid or
2525 setgid so that it can read kernel information, and that usually isn't
2526 advisable. */)
2527 (Lisp_Object use_floats)
2528 {
2529 double load_ave[3];
2530 int loads = getloadavg (load_ave, 3);
2531 Lisp_Object ret = Qnil;
2532
2533 if (loads < 0)
2534 error ("load-average not implemented for this operating system");
2535
2536 while (loads-- > 0)
2537 {
2538 Lisp_Object load = (NILP (use_floats)
2539 ? make_number (100.0 * load_ave[loads])
2540 : make_float (load_ave[loads]));
2541 ret = Fcons (load, ret);
2542 }
2543
2544 return ret;
2545 }
2546 \f
2547 static Lisp_Object Qsubfeatures;
2548
2549 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2550 doc: /* Return t if FEATURE is present in this Emacs.
2551
2552 Use this to conditionalize execution of lisp code based on the
2553 presence or absence of Emacs or environment extensions.
2554 Use `provide' to declare that a feature is available. This function
2555 looks at the value of the variable `features'. The optional argument
2556 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2557 (Lisp_Object feature, Lisp_Object subfeature)
2558 {
2559 register Lisp_Object tem;
2560 CHECK_SYMBOL (feature);
2561 tem = Fmemq (feature, Vfeatures);
2562 if (!NILP (tem) && !NILP (subfeature))
2563 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2564 return (NILP (tem)) ? Qnil : Qt;
2565 }
2566
2567 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2568 doc: /* Announce that FEATURE is a feature of the current Emacs.
2569 The optional argument SUBFEATURES should be a list of symbols listing
2570 particular subfeatures supported in this version of FEATURE. */)
2571 (Lisp_Object feature, Lisp_Object subfeatures)
2572 {
2573 register Lisp_Object tem;
2574 CHECK_SYMBOL (feature);
2575 CHECK_LIST (subfeatures);
2576 if (!NILP (Vautoload_queue))
2577 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2578 Vautoload_queue);
2579 tem = Fmemq (feature, Vfeatures);
2580 if (NILP (tem))
2581 Vfeatures = Fcons (feature, Vfeatures);
2582 if (!NILP (subfeatures))
2583 Fput (feature, Qsubfeatures, subfeatures);
2584 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2585
2586 /* Run any load-hooks for this file. */
2587 tem = Fassq (feature, Vafter_load_alist);
2588 if (CONSP (tem))
2589 Fprogn (XCDR (tem));
2590
2591 return feature;
2592 }
2593 \f
2594 /* `require' and its subroutines. */
2595
2596 /* List of features currently being require'd, innermost first. */
2597
2598 static Lisp_Object require_nesting_list;
2599
2600 static Lisp_Object
2601 require_unwind (Lisp_Object old_value)
2602 {
2603 return require_nesting_list = old_value;
2604 }
2605
2606 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2607 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2608 If FEATURE is not a member of the list `features', then the feature
2609 is not loaded; so load the file FILENAME.
2610 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2611 and `load' will try to load this name appended with the suffix `.elc' or
2612 `.el', in that order. The name without appended suffix will not be used.
2613 See `get-load-suffixes' for the complete list of suffixes.
2614 If the optional third argument NOERROR is non-nil,
2615 then return nil if the file is not found instead of signaling an error.
2616 Normally the return value is FEATURE.
2617 The normal messages at start and end of loading FILENAME are suppressed. */)
2618 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2619 {
2620 register Lisp_Object tem;
2621 struct gcpro gcpro1, gcpro2;
2622 int from_file = load_in_progress;
2623
2624 CHECK_SYMBOL (feature);
2625
2626 /* Record the presence of `require' in this file
2627 even if the feature specified is already loaded.
2628 But not more than once in any file,
2629 and not when we aren't loading or reading from a file. */
2630 if (!from_file)
2631 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2632 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2633 from_file = 1;
2634
2635 if (from_file)
2636 {
2637 tem = Fcons (Qrequire, feature);
2638 if (NILP (Fmember (tem, Vcurrent_load_list)))
2639 LOADHIST_ATTACH (tem);
2640 }
2641 tem = Fmemq (feature, Vfeatures);
2642
2643 if (NILP (tem))
2644 {
2645 ptrdiff_t count = SPECPDL_INDEX ();
2646 int nesting = 0;
2647
2648 /* This is to make sure that loadup.el gives a clear picture
2649 of what files are preloaded and when. */
2650 if (! NILP (Vpurify_flag))
2651 error ("(require %s) while preparing to dump",
2652 SDATA (SYMBOL_NAME (feature)));
2653
2654 /* A certain amount of recursive `require' is legitimate,
2655 but if we require the same feature recursively 3 times,
2656 signal an error. */
2657 tem = require_nesting_list;
2658 while (! NILP (tem))
2659 {
2660 if (! NILP (Fequal (feature, XCAR (tem))))
2661 nesting++;
2662 tem = XCDR (tem);
2663 }
2664 if (nesting > 3)
2665 error ("Recursive `require' for feature `%s'",
2666 SDATA (SYMBOL_NAME (feature)));
2667
2668 /* Update the list for any nested `require's that occur. */
2669 record_unwind_protect (require_unwind, require_nesting_list);
2670 require_nesting_list = Fcons (feature, require_nesting_list);
2671
2672 /* Value saved here is to be restored into Vautoload_queue */
2673 record_unwind_protect (un_autoload, Vautoload_queue);
2674 Vautoload_queue = Qt;
2675
2676 /* Load the file. */
2677 GCPRO2 (feature, filename);
2678 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2679 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2680 UNGCPRO;
2681
2682 /* If load failed entirely, return nil. */
2683 if (NILP (tem))
2684 return unbind_to (count, Qnil);
2685
2686 tem = Fmemq (feature, Vfeatures);
2687 if (NILP (tem))
2688 error ("Required feature `%s' was not provided",
2689 SDATA (SYMBOL_NAME (feature)));
2690
2691 /* Once loading finishes, don't undo it. */
2692 Vautoload_queue = Qt;
2693 feature = unbind_to (count, feature);
2694 }
2695
2696 return feature;
2697 }
2698 \f
2699 /* Primitives for work of the "widget" library.
2700 In an ideal world, this section would not have been necessary.
2701 However, lisp function calls being as slow as they are, it turns
2702 out that some functions in the widget library (wid-edit.el) are the
2703 bottleneck of Widget operation. Here is their translation to C,
2704 for the sole reason of efficiency. */
2705
2706 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2707 doc: /* Return non-nil if PLIST has the property PROP.
2708 PLIST is a property list, which is a list of the form
2709 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2710 Unlike `plist-get', this allows you to distinguish between a missing
2711 property and a property with the value nil.
2712 The value is actually the tail of PLIST whose car is PROP. */)
2713 (Lisp_Object plist, Lisp_Object prop)
2714 {
2715 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2716 {
2717 QUIT;
2718 plist = XCDR (plist);
2719 plist = CDR (plist);
2720 }
2721 return plist;
2722 }
2723
2724 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2725 doc: /* In WIDGET, set PROPERTY to VALUE.
2726 The value can later be retrieved with `widget-get'. */)
2727 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2728 {
2729 CHECK_CONS (widget);
2730 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2731 return value;
2732 }
2733
2734 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2735 doc: /* In WIDGET, get the value of PROPERTY.
2736 The value could either be specified when the widget was created, or
2737 later with `widget-put'. */)
2738 (Lisp_Object widget, Lisp_Object property)
2739 {
2740 Lisp_Object tmp;
2741
2742 while (1)
2743 {
2744 if (NILP (widget))
2745 return Qnil;
2746 CHECK_CONS (widget);
2747 tmp = Fplist_member (XCDR (widget), property);
2748 if (CONSP (tmp))
2749 {
2750 tmp = XCDR (tmp);
2751 return CAR (tmp);
2752 }
2753 tmp = XCAR (widget);
2754 if (NILP (tmp))
2755 return Qnil;
2756 widget = Fget (tmp, Qwidget_type);
2757 }
2758 }
2759
2760 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2761 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2762 ARGS are passed as extra arguments to the function.
2763 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2764 (ptrdiff_t nargs, Lisp_Object *args)
2765 {
2766 /* This function can GC. */
2767 Lisp_Object newargs[3];
2768 struct gcpro gcpro1, gcpro2;
2769 Lisp_Object result;
2770
2771 newargs[0] = Fwidget_get (args[0], args[1]);
2772 newargs[1] = args[0];
2773 newargs[2] = Flist (nargs - 2, args + 2);
2774 GCPRO2 (newargs[0], newargs[2]);
2775 result = Fapply (3, newargs);
2776 UNGCPRO;
2777 return result;
2778 }
2779
2780 #ifdef HAVE_LANGINFO_CODESET
2781 #include <langinfo.h>
2782 #endif
2783
2784 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2785 doc: /* Access locale data ITEM for the current C locale, if available.
2786 ITEM should be one of the following:
2787
2788 `codeset', returning the character set as a string (locale item CODESET);
2789
2790 `days', returning a 7-element vector of day names (locale items DAY_n);
2791
2792 `months', returning a 12-element vector of month names (locale items MON_n);
2793
2794 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2795 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2796
2797 If the system can't provide such information through a call to
2798 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2799
2800 See also Info node `(libc)Locales'.
2801
2802 The data read from the system are decoded using `locale-coding-system'. */)
2803 (Lisp_Object item)
2804 {
2805 char *str = NULL;
2806 #ifdef HAVE_LANGINFO_CODESET
2807 Lisp_Object val;
2808 if (EQ (item, Qcodeset))
2809 {
2810 str = nl_langinfo (CODESET);
2811 return build_string (str);
2812 }
2813 #ifdef DAY_1
2814 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2815 {
2816 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2817 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2818 int i;
2819 struct gcpro gcpro1;
2820 GCPRO1 (v);
2821 synchronize_system_time_locale ();
2822 for (i = 0; i < 7; i++)
2823 {
2824 str = nl_langinfo (days[i]);
2825 val = make_unibyte_string (str, strlen (str));
2826 /* Fixme: Is this coding system necessarily right, even if
2827 it is consistent with CODESET? If not, what to do? */
2828 Faset (v, make_number (i),
2829 code_convert_string_norecord (val, Vlocale_coding_system,
2830 0));
2831 }
2832 UNGCPRO;
2833 return v;
2834 }
2835 #endif /* DAY_1 */
2836 #ifdef MON_1
2837 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2838 {
2839 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2840 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2841 MON_8, MON_9, MON_10, MON_11, MON_12};
2842 int i;
2843 struct gcpro gcpro1;
2844 GCPRO1 (v);
2845 synchronize_system_time_locale ();
2846 for (i = 0; i < 12; i++)
2847 {
2848 str = nl_langinfo (months[i]);
2849 val = make_unibyte_string (str, strlen (str));
2850 Faset (v, make_number (i),
2851 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2852 }
2853 UNGCPRO;
2854 return v;
2855 }
2856 #endif /* MON_1 */
2857 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2858 but is in the locale files. This could be used by ps-print. */
2859 #ifdef PAPER_WIDTH
2860 else if (EQ (item, Qpaper))
2861 {
2862 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2863 make_number (nl_langinfo (PAPER_HEIGHT)));
2864 }
2865 #endif /* PAPER_WIDTH */
2866 #endif /* HAVE_LANGINFO_CODESET*/
2867 return Qnil;
2868 }
2869 \f
2870 /* base64 encode/decode functions (RFC 2045).
2871 Based on code from GNU recode. */
2872
2873 #define MIME_LINE_LENGTH 76
2874
2875 #define IS_ASCII(Character) \
2876 ((Character) < 128)
2877 #define IS_BASE64(Character) \
2878 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2879 #define IS_BASE64_IGNORABLE(Character) \
2880 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2881 || (Character) == '\f' || (Character) == '\r')
2882
2883 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2884 character or return retval if there are no characters left to
2885 process. */
2886 #define READ_QUADRUPLET_BYTE(retval) \
2887 do \
2888 { \
2889 if (i == length) \
2890 { \
2891 if (nchars_return) \
2892 *nchars_return = nchars; \
2893 return (retval); \
2894 } \
2895 c = from[i++]; \
2896 } \
2897 while (IS_BASE64_IGNORABLE (c))
2898
2899 /* Table of characters coding the 64 values. */
2900 static const char base64_value_to_char[64] =
2901 {
2902 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2903 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2904 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2905 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2906 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2907 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2908 '8', '9', '+', '/' /* 60-63 */
2909 };
2910
2911 /* Table of base64 values for first 128 characters. */
2912 static const short base64_char_to_value[128] =
2913 {
2914 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2915 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2916 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2917 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2918 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2919 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2920 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2921 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2922 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2923 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2924 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2925 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2926 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2927 };
2928
2929 /* The following diagram shows the logical steps by which three octets
2930 get transformed into four base64 characters.
2931
2932 .--------. .--------. .--------.
2933 |aaaaaabb| |bbbbcccc| |ccdddddd|
2934 `--------' `--------' `--------'
2935 6 2 4 4 2 6
2936 .--------+--------+--------+--------.
2937 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2938 `--------+--------+--------+--------'
2939
2940 .--------+--------+--------+--------.
2941 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2942 `--------+--------+--------+--------'
2943
2944 The octets are divided into 6 bit chunks, which are then encoded into
2945 base64 characters. */
2946
2947
2948 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, int, int);
2949 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, int,
2950 ptrdiff_t *);
2951
2952 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2953 2, 3, "r",
2954 doc: /* Base64-encode the region between BEG and END.
2955 Return the length of the encoded text.
2956 Optional third argument NO-LINE-BREAK means do not break long lines
2957 into shorter lines. */)
2958 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2959 {
2960 char *encoded;
2961 ptrdiff_t allength, length;
2962 ptrdiff_t ibeg, iend, encoded_length;
2963 ptrdiff_t old_pos = PT;
2964 USE_SAFE_ALLOCA;
2965
2966 validate_region (&beg, &end);
2967
2968 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2969 iend = CHAR_TO_BYTE (XFASTINT (end));
2970 move_gap_both (XFASTINT (beg), ibeg);
2971
2972 /* We need to allocate enough room for encoding the text.
2973 We need 33 1/3% more space, plus a newline every 76
2974 characters, and then we round up. */
2975 length = iend - ibeg;
2976 allength = length + length/3 + 1;
2977 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2978
2979 SAFE_ALLOCA (encoded, char *, allength);
2980 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2981 encoded, length, NILP (no_line_break),
2982 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2983 if (encoded_length > allength)
2984 abort ();
2985
2986 if (encoded_length < 0)
2987 {
2988 /* The encoding wasn't possible. */
2989 SAFE_FREE ();
2990 error ("Multibyte character in data for base64 encoding");
2991 }
2992
2993 /* Now we have encoded the region, so we insert the new contents
2994 and delete the old. (Insert first in order to preserve markers.) */
2995 SET_PT_BOTH (XFASTINT (beg), ibeg);
2996 insert (encoded, encoded_length);
2997 SAFE_FREE ();
2998 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2999
3000 /* If point was outside of the region, restore it exactly; else just
3001 move to the beginning of the region. */
3002 if (old_pos >= XFASTINT (end))
3003 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3004 else if (old_pos > XFASTINT (beg))
3005 old_pos = XFASTINT (beg);
3006 SET_PT (old_pos);
3007
3008 /* We return the length of the encoded text. */
3009 return make_number (encoded_length);
3010 }
3011
3012 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3013 1, 2, 0,
3014 doc: /* Base64-encode STRING and return the result.
3015 Optional second argument NO-LINE-BREAK means do not break long lines
3016 into shorter lines. */)
3017 (Lisp_Object string, Lisp_Object no_line_break)
3018 {
3019 ptrdiff_t allength, length, encoded_length;
3020 char *encoded;
3021 Lisp_Object encoded_string;
3022 USE_SAFE_ALLOCA;
3023
3024 CHECK_STRING (string);
3025
3026 /* We need to allocate enough room for encoding the text.
3027 We need 33 1/3% more space, plus a newline every 76
3028 characters, and then we round up. */
3029 length = SBYTES (string);
3030 allength = length + length/3 + 1;
3031 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3032
3033 /* We need to allocate enough room for decoding the text. */
3034 SAFE_ALLOCA (encoded, char *, allength);
3035
3036 encoded_length = base64_encode_1 (SSDATA (string),
3037 encoded, length, NILP (no_line_break),
3038 STRING_MULTIBYTE (string));
3039 if (encoded_length > allength)
3040 abort ();
3041
3042 if (encoded_length < 0)
3043 {
3044 /* The encoding wasn't possible. */
3045 SAFE_FREE ();
3046 error ("Multibyte character in data for base64 encoding");
3047 }
3048
3049 encoded_string = make_unibyte_string (encoded, encoded_length);
3050 SAFE_FREE ();
3051
3052 return encoded_string;
3053 }
3054
3055 static ptrdiff_t
3056 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3057 int line_break, int multibyte)
3058 {
3059 int counter = 0;
3060 ptrdiff_t i = 0;
3061 char *e = to;
3062 int c;
3063 unsigned int value;
3064 int bytes;
3065
3066 while (i < length)
3067 {
3068 if (multibyte)
3069 {
3070 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3071 if (CHAR_BYTE8_P (c))
3072 c = CHAR_TO_BYTE8 (c);
3073 else if (c >= 256)
3074 return -1;
3075 i += bytes;
3076 }
3077 else
3078 c = from[i++];
3079
3080 /* Wrap line every 76 characters. */
3081
3082 if (line_break)
3083 {
3084 if (counter < MIME_LINE_LENGTH / 4)
3085 counter++;
3086 else
3087 {
3088 *e++ = '\n';
3089 counter = 1;
3090 }
3091 }
3092
3093 /* Process first byte of a triplet. */
3094
3095 *e++ = base64_value_to_char[0x3f & c >> 2];
3096 value = (0x03 & c) << 4;
3097
3098 /* Process second byte of a triplet. */
3099
3100 if (i == length)
3101 {
3102 *e++ = base64_value_to_char[value];
3103 *e++ = '=';
3104 *e++ = '=';
3105 break;
3106 }
3107
3108 if (multibyte)
3109 {
3110 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3111 if (CHAR_BYTE8_P (c))
3112 c = CHAR_TO_BYTE8 (c);
3113 else if (c >= 256)
3114 return -1;
3115 i += bytes;
3116 }
3117 else
3118 c = from[i++];
3119
3120 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3121 value = (0x0f & c) << 2;
3122
3123 /* Process third byte of a triplet. */
3124
3125 if (i == length)
3126 {
3127 *e++ = base64_value_to_char[value];
3128 *e++ = '=';
3129 break;
3130 }
3131
3132 if (multibyte)
3133 {
3134 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3135 if (CHAR_BYTE8_P (c))
3136 c = CHAR_TO_BYTE8 (c);
3137 else if (c >= 256)
3138 return -1;
3139 i += bytes;
3140 }
3141 else
3142 c = from[i++];
3143
3144 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3145 *e++ = base64_value_to_char[0x3f & c];
3146 }
3147
3148 return e - to;
3149 }
3150
3151
3152 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3153 2, 2, "r",
3154 doc: /* Base64-decode the region between BEG and END.
3155 Return the length of the decoded text.
3156 If the region can't be decoded, signal an error and don't modify the buffer. */)
3157 (Lisp_Object beg, Lisp_Object end)
3158 {
3159 ptrdiff_t ibeg, iend, length, allength;
3160 char *decoded;
3161 ptrdiff_t old_pos = PT;
3162 ptrdiff_t decoded_length;
3163 ptrdiff_t inserted_chars;
3164 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3165 USE_SAFE_ALLOCA;
3166
3167 validate_region (&beg, &end);
3168
3169 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3170 iend = CHAR_TO_BYTE (XFASTINT (end));
3171
3172 length = iend - ibeg;
3173
3174 /* We need to allocate enough room for decoding the text. If we are
3175 working on a multibyte buffer, each decoded code may occupy at
3176 most two bytes. */
3177 allength = multibyte ? length * 2 : length;
3178 SAFE_ALLOCA (decoded, char *, allength);
3179
3180 move_gap_both (XFASTINT (beg), ibeg);
3181 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3182 decoded, length,
3183 multibyte, &inserted_chars);
3184 if (decoded_length > allength)
3185 abort ();
3186
3187 if (decoded_length < 0)
3188 {
3189 /* The decoding wasn't possible. */
3190 SAFE_FREE ();
3191 error ("Invalid base64 data");
3192 }
3193
3194 /* Now we have decoded the region, so we insert the new contents
3195 and delete the old. (Insert first in order to preserve markers.) */
3196 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3197 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3198 SAFE_FREE ();
3199
3200 /* Delete the original text. */
3201 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3202 iend + decoded_length, 1);
3203
3204 /* If point was outside of the region, restore it exactly; else just
3205 move to the beginning of the region. */
3206 if (old_pos >= XFASTINT (end))
3207 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3208 else if (old_pos > XFASTINT (beg))
3209 old_pos = XFASTINT (beg);
3210 SET_PT (old_pos > ZV ? ZV : old_pos);
3211
3212 return make_number (inserted_chars);
3213 }
3214
3215 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3216 1, 1, 0,
3217 doc: /* Base64-decode STRING and return the result. */)
3218 (Lisp_Object string)
3219 {
3220 char *decoded;
3221 ptrdiff_t length, decoded_length;
3222 Lisp_Object decoded_string;
3223 USE_SAFE_ALLOCA;
3224
3225 CHECK_STRING (string);
3226
3227 length = SBYTES (string);
3228 /* We need to allocate enough room for decoding the text. */
3229 SAFE_ALLOCA (decoded, char *, length);
3230
3231 /* The decoded result should be unibyte. */
3232 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3233 0, NULL);
3234 if (decoded_length > length)
3235 abort ();
3236 else if (decoded_length >= 0)
3237 decoded_string = make_unibyte_string (decoded, decoded_length);
3238 else
3239 decoded_string = Qnil;
3240
3241 SAFE_FREE ();
3242 if (!STRINGP (decoded_string))
3243 error ("Invalid base64 data");
3244
3245 return decoded_string;
3246 }
3247
3248 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3249 MULTIBYTE is nonzero, the decoded result should be in multibyte
3250 form. If NCHARS_RETURN is not NULL, store the number of produced
3251 characters in *NCHARS_RETURN. */
3252
3253 static ptrdiff_t
3254 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3255 int multibyte, ptrdiff_t *nchars_return)
3256 {
3257 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3258 char *e = to;
3259 unsigned char c;
3260 unsigned long value;
3261 ptrdiff_t nchars = 0;
3262
3263 while (1)
3264 {
3265 /* Process first byte of a quadruplet. */
3266
3267 READ_QUADRUPLET_BYTE (e-to);
3268
3269 if (!IS_BASE64 (c))
3270 return -1;
3271 value = base64_char_to_value[c] << 18;
3272
3273 /* Process second byte of a quadruplet. */
3274
3275 READ_QUADRUPLET_BYTE (-1);
3276
3277 if (!IS_BASE64 (c))
3278 return -1;
3279 value |= base64_char_to_value[c] << 12;
3280
3281 c = (unsigned char) (value >> 16);
3282 if (multibyte && c >= 128)
3283 e += BYTE8_STRING (c, e);
3284 else
3285 *e++ = c;
3286 nchars++;
3287
3288 /* Process third byte of a quadruplet. */
3289
3290 READ_QUADRUPLET_BYTE (-1);
3291
3292 if (c == '=')
3293 {
3294 READ_QUADRUPLET_BYTE (-1);
3295
3296 if (c != '=')
3297 return -1;
3298 continue;
3299 }
3300
3301 if (!IS_BASE64 (c))
3302 return -1;
3303 value |= base64_char_to_value[c] << 6;
3304
3305 c = (unsigned char) (0xff & value >> 8);
3306 if (multibyte && c >= 128)
3307 e += BYTE8_STRING (c, e);
3308 else
3309 *e++ = c;
3310 nchars++;
3311
3312 /* Process fourth byte of a quadruplet. */
3313
3314 READ_QUADRUPLET_BYTE (-1);
3315
3316 if (c == '=')
3317 continue;
3318
3319 if (!IS_BASE64 (c))
3320 return -1;
3321 value |= base64_char_to_value[c];
3322
3323 c = (unsigned char) (0xff & value);
3324 if (multibyte && c >= 128)
3325 e += BYTE8_STRING (c, e);
3326 else
3327 *e++ = c;
3328 nchars++;
3329 }
3330 }
3331
3332
3333 \f
3334 /***********************************************************************
3335 ***** *****
3336 ***** Hash Tables *****
3337 ***** *****
3338 ***********************************************************************/
3339
3340 /* Implemented by gerd@gnu.org. This hash table implementation was
3341 inspired by CMUCL hash tables. */
3342
3343 /* Ideas:
3344
3345 1. For small tables, association lists are probably faster than
3346 hash tables because they have lower overhead.
3347
3348 For uses of hash tables where the O(1) behavior of table
3349 operations is not a requirement, it might therefore be a good idea
3350 not to hash. Instead, we could just do a linear search in the
3351 key_and_value vector of the hash table. This could be done
3352 if a `:linear-search t' argument is given to make-hash-table. */
3353
3354
3355 /* The list of all weak hash tables. Don't staticpro this one. */
3356
3357 static struct Lisp_Hash_Table *weak_hash_tables;
3358
3359 /* Various symbols. */
3360
3361 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3362 Lisp_Object Qeq, Qeql, Qequal;
3363 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3364 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3365
3366 /* Function prototypes. */
3367
3368 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3369 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3370 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3371 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3372
3373
3374 \f
3375 /***********************************************************************
3376 Utilities
3377 ***********************************************************************/
3378
3379 /* If OBJ is a Lisp hash table, return a pointer to its struct
3380 Lisp_Hash_Table. Otherwise, signal an error. */
3381
3382 static struct Lisp_Hash_Table *
3383 check_hash_table (Lisp_Object obj)
3384 {
3385 CHECK_HASH_TABLE (obj);
3386 return XHASH_TABLE (obj);
3387 }
3388
3389
3390 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3391 number. A number is "almost" a prime number if it is not divisible
3392 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3393
3394 EMACS_INT
3395 next_almost_prime (EMACS_INT n)
3396 {
3397 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3398 for (n |= 1; ; n += 2)
3399 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3400 return n;
3401 }
3402
3403
3404 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3405 which USED[I] is non-zero. If found at index I in ARGS, set
3406 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3407 0. This function is used to extract a keyword/argument pair from
3408 a DEFUN parameter list. */
3409
3410 static ptrdiff_t
3411 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3412 {
3413 ptrdiff_t i;
3414
3415 for (i = 1; i < nargs; i++)
3416 if (!used[i - 1] && EQ (args[i - 1], key))
3417 {
3418 used[i - 1] = 1;
3419 used[i] = 1;
3420 return i;
3421 }
3422
3423 return 0;
3424 }
3425
3426
3427 /* Return a Lisp vector which has the same contents as VEC but has
3428 at least INCR_MIN more entries, where INCR_MIN is positive.
3429 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3430 than NITEMS_MAX. Entries in the resulting
3431 vector that are not copied from VEC are set to nil. */
3432
3433 Lisp_Object
3434 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3435 {
3436 struct Lisp_Vector *v;
3437 ptrdiff_t i, incr, incr_max, old_size, new_size;
3438 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3439 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3440 ? nitems_max : C_language_max);
3441 xassert (VECTORP (vec));
3442 xassert (0 < incr_min && -1 <= nitems_max);
3443 old_size = ASIZE (vec);
3444 incr_max = n_max - old_size;
3445 incr = max (incr_min, min (old_size >> 1, incr_max));
3446 if (incr_max < incr)
3447 memory_full (SIZE_MAX);
3448 new_size = old_size + incr;
3449 v = allocate_vector (new_size);
3450 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3451 for (i = old_size; i < new_size; ++i)
3452 v->contents[i] = Qnil;
3453 XSETVECTOR (vec, v);
3454 return vec;
3455 }
3456
3457
3458 /***********************************************************************
3459 Low-level Functions
3460 ***********************************************************************/
3461
3462 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3463 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3464 KEY2 are the same. */
3465
3466 static int
3467 cmpfn_eql (struct Lisp_Hash_Table *h,
3468 Lisp_Object key1, EMACS_UINT hash1,
3469 Lisp_Object key2, EMACS_UINT hash2)
3470 {
3471 return (FLOATP (key1)
3472 && FLOATP (key2)
3473 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3474 }
3475
3476
3477 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3478 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3479 KEY2 are the same. */
3480
3481 static int
3482 cmpfn_equal (struct Lisp_Hash_Table *h,
3483 Lisp_Object key1, EMACS_UINT hash1,
3484 Lisp_Object key2, EMACS_UINT hash2)
3485 {
3486 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3487 }
3488
3489
3490 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3491 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3492 if KEY1 and KEY2 are the same. */
3493
3494 static int
3495 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3496 Lisp_Object key1, EMACS_UINT hash1,
3497 Lisp_Object key2, EMACS_UINT hash2)
3498 {
3499 if (hash1 == hash2)
3500 {
3501 Lisp_Object args[3];
3502
3503 args[0] = h->user_cmp_function;
3504 args[1] = key1;
3505 args[2] = key2;
3506 return !NILP (Ffuncall (3, args));
3507 }
3508 else
3509 return 0;
3510 }
3511
3512
3513 /* Value is a hash code for KEY for use in hash table H which uses
3514 `eq' to compare keys. The hash code returned is guaranteed to fit
3515 in a Lisp integer. */
3516
3517 static EMACS_UINT
3518 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3519 {
3520 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3521 xassert ((hash & ~INTMASK) == 0);
3522 return hash;
3523 }
3524
3525
3526 /* Value is a hash code for KEY for use in hash table H which uses
3527 `eql' to compare keys. The hash code returned is guaranteed to fit
3528 in a Lisp integer. */
3529
3530 static EMACS_UINT
3531 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3532 {
3533 EMACS_UINT hash;
3534 if (FLOATP (key))
3535 hash = sxhash (key, 0);
3536 else
3537 hash = XUINT (key) ^ XTYPE (key);
3538 xassert ((hash & ~INTMASK) == 0);
3539 return hash;
3540 }
3541
3542
3543 /* Value is a hash code for KEY for use in hash table H which uses
3544 `equal' to compare keys. The hash code returned is guaranteed to fit
3545 in a Lisp integer. */
3546
3547 static EMACS_UINT
3548 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3549 {
3550 EMACS_UINT hash = sxhash (key, 0);
3551 xassert ((hash & ~INTMASK) == 0);
3552 return hash;
3553 }
3554
3555
3556 /* Value is a hash code for KEY for use in hash table H which uses as
3557 user-defined function to compare keys. The hash code returned is
3558 guaranteed to fit in a Lisp integer. */
3559
3560 static EMACS_UINT
3561 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3562 {
3563 Lisp_Object args[2], hash;
3564
3565 args[0] = h->user_hash_function;
3566 args[1] = key;
3567 hash = Ffuncall (2, args);
3568 if (!INTEGERP (hash))
3569 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3570 return XUINT (hash);
3571 }
3572
3573 /* An upper bound on the size of a hash table index. It must fit in
3574 ptrdiff_t and be a valid Emacs fixnum. */
3575 #define INDEX_SIZE_BOUND \
3576 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / sizeof (Lisp_Object)))
3577
3578 /* Create and initialize a new hash table.
3579
3580 TEST specifies the test the hash table will use to compare keys.
3581 It must be either one of the predefined tests `eq', `eql' or
3582 `equal' or a symbol denoting a user-defined test named TEST with
3583 test and hash functions USER_TEST and USER_HASH.
3584
3585 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3586
3587 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3588 new size when it becomes full is computed by adding REHASH_SIZE to
3589 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3590 table's new size is computed by multiplying its old size with
3591 REHASH_SIZE.
3592
3593 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3594 be resized when the ratio of (number of entries in the table) /
3595 (table size) is >= REHASH_THRESHOLD.
3596
3597 WEAK specifies the weakness of the table. If non-nil, it must be
3598 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3599
3600 Lisp_Object
3601 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3602 Lisp_Object rehash_threshold, Lisp_Object weak,
3603 Lisp_Object user_test, Lisp_Object user_hash)
3604 {
3605 struct Lisp_Hash_Table *h;
3606 Lisp_Object table;
3607 EMACS_INT index_size, sz;
3608 ptrdiff_t i;
3609 double index_float;
3610
3611 /* Preconditions. */
3612 xassert (SYMBOLP (test));
3613 xassert (INTEGERP (size) && XINT (size) >= 0);
3614 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3615 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3616 xassert (FLOATP (rehash_threshold)
3617 && 0 < XFLOAT_DATA (rehash_threshold)
3618 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3619
3620 if (XFASTINT (size) == 0)
3621 size = make_number (1);
3622
3623 sz = XFASTINT (size);
3624 index_float = sz / XFLOAT_DATA (rehash_threshold);
3625 index_size = (index_float < INDEX_SIZE_BOUND + 1
3626 ? next_almost_prime (index_float)
3627 : INDEX_SIZE_BOUND + 1);
3628 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3629 error ("Hash table too large");
3630
3631 /* Allocate a table and initialize it. */
3632 h = allocate_hash_table ();
3633
3634 /* Initialize hash table slots. */
3635 h->test = test;
3636 if (EQ (test, Qeql))
3637 {
3638 h->cmpfn = cmpfn_eql;
3639 h->hashfn = hashfn_eql;
3640 }
3641 else if (EQ (test, Qeq))
3642 {
3643 h->cmpfn = NULL;
3644 h->hashfn = hashfn_eq;
3645 }
3646 else if (EQ (test, Qequal))
3647 {
3648 h->cmpfn = cmpfn_equal;
3649 h->hashfn = hashfn_equal;
3650 }
3651 else
3652 {
3653 h->user_cmp_function = user_test;
3654 h->user_hash_function = user_hash;
3655 h->cmpfn = cmpfn_user_defined;
3656 h->hashfn = hashfn_user_defined;
3657 }
3658
3659 h->weak = weak;
3660 h->rehash_threshold = rehash_threshold;
3661 h->rehash_size = rehash_size;
3662 h->count = 0;
3663 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3664 h->hash = Fmake_vector (size, Qnil);
3665 h->next = Fmake_vector (size, Qnil);
3666 h->index = Fmake_vector (make_number (index_size), Qnil);
3667
3668 /* Set up the free list. */
3669 for (i = 0; i < sz - 1; ++i)
3670 HASH_NEXT (h, i) = make_number (i + 1);
3671 h->next_free = make_number (0);
3672
3673 XSET_HASH_TABLE (table, h);
3674 xassert (HASH_TABLE_P (table));
3675 xassert (XHASH_TABLE (table) == h);
3676
3677 /* Maybe add this hash table to the list of all weak hash tables. */
3678 if (NILP (h->weak))
3679 h->next_weak = NULL;
3680 else
3681 {
3682 h->next_weak = weak_hash_tables;
3683 weak_hash_tables = h;
3684 }
3685
3686 return table;
3687 }
3688
3689
3690 /* Return a copy of hash table H1. Keys and values are not copied,
3691 only the table itself is. */
3692
3693 static Lisp_Object
3694 copy_hash_table (struct Lisp_Hash_Table *h1)
3695 {
3696 Lisp_Object table;
3697 struct Lisp_Hash_Table *h2;
3698 struct Lisp_Vector *next;
3699
3700 h2 = allocate_hash_table ();
3701 next = h2->header.next.vector;
3702 memcpy (h2, h1, sizeof *h2);
3703 h2->header.next.vector = next;
3704 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3705 h2->hash = Fcopy_sequence (h1->hash);
3706 h2->next = Fcopy_sequence (h1->next);
3707 h2->index = Fcopy_sequence (h1->index);
3708 XSET_HASH_TABLE (table, h2);
3709
3710 /* Maybe add this hash table to the list of all weak hash tables. */
3711 if (!NILP (h2->weak))
3712 {
3713 h2->next_weak = weak_hash_tables;
3714 weak_hash_tables = h2;
3715 }
3716
3717 return table;
3718 }
3719
3720
3721 /* Resize hash table H if it's too full. If H cannot be resized
3722 because it's already too large, throw an error. */
3723
3724 static inline void
3725 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3726 {
3727 if (NILP (h->next_free))
3728 {
3729 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3730 EMACS_INT new_size, index_size, nsize;
3731 ptrdiff_t i;
3732 double index_float;
3733
3734 if (INTEGERP (h->rehash_size))
3735 new_size = old_size + XFASTINT (h->rehash_size);
3736 else
3737 {
3738 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3739 if (float_new_size < INDEX_SIZE_BOUND + 1)
3740 {
3741 new_size = float_new_size;
3742 if (new_size <= old_size)
3743 new_size = old_size + 1;
3744 }
3745 else
3746 new_size = INDEX_SIZE_BOUND + 1;
3747 }
3748 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3749 index_size = (index_float < INDEX_SIZE_BOUND + 1
3750 ? next_almost_prime (index_float)
3751 : INDEX_SIZE_BOUND + 1);
3752 nsize = max (index_size, 2 * new_size);
3753 if (INDEX_SIZE_BOUND < nsize)
3754 error ("Hash table too large to resize");
3755
3756 h->key_and_value = larger_vector (h->key_and_value,
3757 2 * (new_size - old_size), -1);
3758 h->next = larger_vector (h->next, new_size - old_size, -1);
3759 h->hash = larger_vector (h->hash, new_size - old_size, -1);
3760 h->index = Fmake_vector (make_number (index_size), Qnil);
3761
3762 /* Update the free list. Do it so that new entries are added at
3763 the end of the free list. This makes some operations like
3764 maphash faster. */
3765 for (i = old_size; i < new_size - 1; ++i)
3766 HASH_NEXT (h, i) = make_number (i + 1);
3767
3768 if (!NILP (h->next_free))
3769 {
3770 Lisp_Object last, next;
3771
3772 last = h->next_free;
3773 while (next = HASH_NEXT (h, XFASTINT (last)),
3774 !NILP (next))
3775 last = next;
3776
3777 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3778 }
3779 else
3780 XSETFASTINT (h->next_free, old_size);
3781
3782 /* Rehash. */
3783 for (i = 0; i < old_size; ++i)
3784 if (!NILP (HASH_HASH (h, i)))
3785 {
3786 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3787 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3788 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3789 HASH_INDEX (h, start_of_bucket) = make_number (i);
3790 }
3791 }
3792 }
3793
3794
3795 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3796 the hash code of KEY. Value is the index of the entry in H
3797 matching KEY, or -1 if not found. */
3798
3799 ptrdiff_t
3800 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3801 {
3802 EMACS_UINT hash_code;
3803 ptrdiff_t start_of_bucket;
3804 Lisp_Object idx;
3805
3806 hash_code = h->hashfn (h, key);
3807 if (hash)
3808 *hash = hash_code;
3809
3810 start_of_bucket = hash_code % ASIZE (h->index);
3811 idx = HASH_INDEX (h, start_of_bucket);
3812
3813 /* We need not gcpro idx since it's either an integer or nil. */
3814 while (!NILP (idx))
3815 {
3816 ptrdiff_t i = XFASTINT (idx);
3817 if (EQ (key, HASH_KEY (h, i))
3818 || (h->cmpfn
3819 && h->cmpfn (h, key, hash_code,
3820 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3821 break;
3822 idx = HASH_NEXT (h, i);
3823 }
3824
3825 return NILP (idx) ? -1 : XFASTINT (idx);
3826 }
3827
3828
3829 /* Put an entry into hash table H that associates KEY with VALUE.
3830 HASH is a previously computed hash code of KEY.
3831 Value is the index of the entry in H matching KEY. */
3832
3833 ptrdiff_t
3834 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3835 EMACS_UINT hash)
3836 {
3837 ptrdiff_t start_of_bucket, i;
3838
3839 xassert ((hash & ~INTMASK) == 0);
3840
3841 /* Increment count after resizing because resizing may fail. */
3842 maybe_resize_hash_table (h);
3843 h->count++;
3844
3845 /* Store key/value in the key_and_value vector. */
3846 i = XFASTINT (h->next_free);
3847 h->next_free = HASH_NEXT (h, i);
3848 HASH_KEY (h, i) = key;
3849 HASH_VALUE (h, i) = value;
3850
3851 /* Remember its hash code. */
3852 HASH_HASH (h, i) = make_number (hash);
3853
3854 /* Add new entry to its collision chain. */
3855 start_of_bucket = hash % ASIZE (h->index);
3856 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3857 HASH_INDEX (h, start_of_bucket) = make_number (i);
3858 return i;
3859 }
3860
3861
3862 /* Remove the entry matching KEY from hash table H, if there is one. */
3863
3864 static void
3865 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3866 {
3867 EMACS_UINT hash_code;
3868 ptrdiff_t start_of_bucket;
3869 Lisp_Object idx, prev;
3870
3871 hash_code = h->hashfn (h, key);
3872 start_of_bucket = hash_code % ASIZE (h->index);
3873 idx = HASH_INDEX (h, start_of_bucket);
3874 prev = Qnil;
3875
3876 /* We need not gcpro idx, prev since they're either integers or nil. */
3877 while (!NILP (idx))
3878 {
3879 ptrdiff_t i = XFASTINT (idx);
3880
3881 if (EQ (key, HASH_KEY (h, i))
3882 || (h->cmpfn
3883 && h->cmpfn (h, key, hash_code,
3884 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3885 {
3886 /* Take entry out of collision chain. */
3887 if (NILP (prev))
3888 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3889 else
3890 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3891
3892 /* Clear slots in key_and_value and add the slots to
3893 the free list. */
3894 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3895 HASH_NEXT (h, i) = h->next_free;
3896 h->next_free = make_number (i);
3897 h->count--;
3898 xassert (h->count >= 0);
3899 break;
3900 }
3901 else
3902 {
3903 prev = idx;
3904 idx = HASH_NEXT (h, i);
3905 }
3906 }
3907 }
3908
3909
3910 /* Clear hash table H. */
3911
3912 static void
3913 hash_clear (struct Lisp_Hash_Table *h)
3914 {
3915 if (h->count > 0)
3916 {
3917 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3918
3919 for (i = 0; i < size; ++i)
3920 {
3921 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3922 HASH_KEY (h, i) = Qnil;
3923 HASH_VALUE (h, i) = Qnil;
3924 HASH_HASH (h, i) = Qnil;
3925 }
3926
3927 for (i = 0; i < ASIZE (h->index); ++i)
3928 ASET (h->index, i, Qnil);
3929
3930 h->next_free = make_number (0);
3931 h->count = 0;
3932 }
3933 }
3934
3935
3936 \f
3937 /************************************************************************
3938 Weak Hash Tables
3939 ************************************************************************/
3940
3941 void
3942 init_weak_hash_tables (void)
3943 {
3944 weak_hash_tables = NULL;
3945 }
3946
3947 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3948 entries from the table that don't survive the current GC.
3949 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3950 non-zero if anything was marked. */
3951
3952 static int
3953 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3954 {
3955 ptrdiff_t bucket, n;
3956 int marked;
3957
3958 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3959 marked = 0;
3960
3961 for (bucket = 0; bucket < n; ++bucket)
3962 {
3963 Lisp_Object idx, next, prev;
3964
3965 /* Follow collision chain, removing entries that
3966 don't survive this garbage collection. */
3967 prev = Qnil;
3968 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3969 {
3970 ptrdiff_t i = XFASTINT (idx);
3971 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3972 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3973 int remove_p;
3974
3975 if (EQ (h->weak, Qkey))
3976 remove_p = !key_known_to_survive_p;
3977 else if (EQ (h->weak, Qvalue))
3978 remove_p = !value_known_to_survive_p;
3979 else if (EQ (h->weak, Qkey_or_value))
3980 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3981 else if (EQ (h->weak, Qkey_and_value))
3982 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3983 else
3984 abort ();
3985
3986 next = HASH_NEXT (h, i);
3987
3988 if (remove_entries_p)
3989 {
3990 if (remove_p)
3991 {
3992 /* Take out of collision chain. */
3993 if (NILP (prev))
3994 HASH_INDEX (h, bucket) = next;
3995 else
3996 HASH_NEXT (h, XFASTINT (prev)) = next;
3997
3998 /* Add to free list. */
3999 HASH_NEXT (h, i) = h->next_free;
4000 h->next_free = idx;
4001
4002 /* Clear key, value, and hash. */
4003 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4004 HASH_HASH (h, i) = Qnil;
4005
4006 h->count--;
4007 }
4008 else
4009 {
4010 prev = idx;
4011 }
4012 }
4013 else
4014 {
4015 if (!remove_p)
4016 {
4017 /* Make sure key and value survive. */
4018 if (!key_known_to_survive_p)
4019 {
4020 mark_object (HASH_KEY (h, i));
4021 marked = 1;
4022 }
4023
4024 if (!value_known_to_survive_p)
4025 {
4026 mark_object (HASH_VALUE (h, i));
4027 marked = 1;
4028 }
4029 }
4030 }
4031 }
4032 }
4033
4034 return marked;
4035 }
4036
4037 /* Remove elements from weak hash tables that don't survive the
4038 current garbage collection. Remove weak tables that don't survive
4039 from Vweak_hash_tables. Called from gc_sweep. */
4040
4041 void
4042 sweep_weak_hash_tables (void)
4043 {
4044 struct Lisp_Hash_Table *h, *used, *next;
4045 int marked;
4046
4047 /* Mark all keys and values that are in use. Keep on marking until
4048 there is no more change. This is necessary for cases like
4049 value-weak table A containing an entry X -> Y, where Y is used in a
4050 key-weak table B, Z -> Y. If B comes after A in the list of weak
4051 tables, X -> Y might be removed from A, although when looking at B
4052 one finds that it shouldn't. */
4053 do
4054 {
4055 marked = 0;
4056 for (h = weak_hash_tables; h; h = h->next_weak)
4057 {
4058 if (h->header.size & ARRAY_MARK_FLAG)
4059 marked |= sweep_weak_table (h, 0);
4060 }
4061 }
4062 while (marked);
4063
4064 /* Remove tables and entries that aren't used. */
4065 for (h = weak_hash_tables, used = NULL; h; h = next)
4066 {
4067 next = h->next_weak;
4068
4069 if (h->header.size & ARRAY_MARK_FLAG)
4070 {
4071 /* TABLE is marked as used. Sweep its contents. */
4072 if (h->count > 0)
4073 sweep_weak_table (h, 1);
4074
4075 /* Add table to the list of used weak hash tables. */
4076 h->next_weak = used;
4077 used = h;
4078 }
4079 }
4080
4081 weak_hash_tables = used;
4082 }
4083
4084
4085 \f
4086 /***********************************************************************
4087 Hash Code Computation
4088 ***********************************************************************/
4089
4090 /* Maximum depth up to which to dive into Lisp structures. */
4091
4092 #define SXHASH_MAX_DEPTH 3
4093
4094 /* Maximum length up to which to take list and vector elements into
4095 account. */
4096
4097 #define SXHASH_MAX_LEN 7
4098
4099 /* Combine two integers X and Y for hashing. The result might not fit
4100 into a Lisp integer. */
4101
4102 #define SXHASH_COMBINE(X, Y) \
4103 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4104 + (EMACS_UINT) (Y))
4105
4106 /* Hash X, returning a value that fits into a Lisp integer. */
4107 #define SXHASH_REDUCE(X) \
4108 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4109
4110 /* Return a hash for string PTR which has length LEN. The hash value
4111 can be any EMACS_UINT value. */
4112
4113 EMACS_UINT
4114 hash_string (char const *ptr, ptrdiff_t len)
4115 {
4116 char const *p = ptr;
4117 char const *end = p + len;
4118 unsigned char c;
4119 EMACS_UINT hash = 0;
4120
4121 while (p != end)
4122 {
4123 c = *p++;
4124 hash = SXHASH_COMBINE (hash, c);
4125 }
4126
4127 return hash;
4128 }
4129
4130 /* Return a hash for string PTR which has length LEN. The hash
4131 code returned is guaranteed to fit in a Lisp integer. */
4132
4133 static EMACS_UINT
4134 sxhash_string (char const *ptr, ptrdiff_t len)
4135 {
4136 EMACS_UINT hash = hash_string (ptr, len);
4137 return SXHASH_REDUCE (hash);
4138 }
4139
4140 /* Return a hash for the floating point value VAL. */
4141
4142 static EMACS_INT
4143 sxhash_float (double val)
4144 {
4145 EMACS_UINT hash = 0;
4146 enum {
4147 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4148 + (sizeof val % sizeof hash != 0))
4149 };
4150 union {
4151 double val;
4152 EMACS_UINT word[WORDS_PER_DOUBLE];
4153 } u;
4154 int i;
4155 u.val = val;
4156 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4157 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4158 hash = SXHASH_COMBINE (hash, u.word[i]);
4159 return SXHASH_REDUCE (hash);
4160 }
4161
4162 /* Return a hash for list LIST. DEPTH is the current depth in the
4163 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4164
4165 static EMACS_UINT
4166 sxhash_list (Lisp_Object list, int depth)
4167 {
4168 EMACS_UINT hash = 0;
4169 int i;
4170
4171 if (depth < SXHASH_MAX_DEPTH)
4172 for (i = 0;
4173 CONSP (list) && i < SXHASH_MAX_LEN;
4174 list = XCDR (list), ++i)
4175 {
4176 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4177 hash = SXHASH_COMBINE (hash, hash2);
4178 }
4179
4180 if (!NILP (list))
4181 {
4182 EMACS_UINT hash2 = sxhash (list, depth + 1);
4183 hash = SXHASH_COMBINE (hash, hash2);
4184 }
4185
4186 return SXHASH_REDUCE (hash);
4187 }
4188
4189
4190 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4191 the Lisp structure. */
4192
4193 static EMACS_UINT
4194 sxhash_vector (Lisp_Object vec, int depth)
4195 {
4196 EMACS_UINT hash = ASIZE (vec);
4197 int i, n;
4198
4199 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4200 for (i = 0; i < n; ++i)
4201 {
4202 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4203 hash = SXHASH_COMBINE (hash, hash2);
4204 }
4205
4206 return SXHASH_REDUCE (hash);
4207 }
4208
4209 /* Return a hash for bool-vector VECTOR. */
4210
4211 static EMACS_UINT
4212 sxhash_bool_vector (Lisp_Object vec)
4213 {
4214 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4215 int i, n;
4216
4217 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4218 for (i = 0; i < n; ++i)
4219 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4220
4221 return SXHASH_REDUCE (hash);
4222 }
4223
4224
4225 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4226 structure. Value is an unsigned integer clipped to INTMASK. */
4227
4228 EMACS_UINT
4229 sxhash (Lisp_Object obj, int depth)
4230 {
4231 EMACS_UINT hash;
4232
4233 if (depth > SXHASH_MAX_DEPTH)
4234 return 0;
4235
4236 switch (XTYPE (obj))
4237 {
4238 case_Lisp_Int:
4239 hash = XUINT (obj);
4240 break;
4241
4242 case Lisp_Misc:
4243 hash = XUINT (obj);
4244 break;
4245
4246 case Lisp_Symbol:
4247 obj = SYMBOL_NAME (obj);
4248 /* Fall through. */
4249
4250 case Lisp_String:
4251 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4252 break;
4253
4254 /* This can be everything from a vector to an overlay. */
4255 case Lisp_Vectorlike:
4256 if (VECTORP (obj))
4257 /* According to the CL HyperSpec, two arrays are equal only if
4258 they are `eq', except for strings and bit-vectors. In
4259 Emacs, this works differently. We have to compare element
4260 by element. */
4261 hash = sxhash_vector (obj, depth);
4262 else if (BOOL_VECTOR_P (obj))
4263 hash = sxhash_bool_vector (obj);
4264 else
4265 /* Others are `equal' if they are `eq', so let's take their
4266 address as hash. */
4267 hash = XUINT (obj);
4268 break;
4269
4270 case Lisp_Cons:
4271 hash = sxhash_list (obj, depth);
4272 break;
4273
4274 case Lisp_Float:
4275 hash = sxhash_float (XFLOAT_DATA (obj));
4276 break;
4277
4278 default:
4279 abort ();
4280 }
4281
4282 return hash;
4283 }
4284
4285
4286 \f
4287 /***********************************************************************
4288 Lisp Interface
4289 ***********************************************************************/
4290
4291
4292 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4293 doc: /* Compute a hash code for OBJ and return it as integer. */)
4294 (Lisp_Object obj)
4295 {
4296 EMACS_UINT hash = sxhash (obj, 0);
4297 return make_number (hash);
4298 }
4299
4300
4301 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4302 doc: /* Create and return a new hash table.
4303
4304 Arguments are specified as keyword/argument pairs. The following
4305 arguments are defined:
4306
4307 :test TEST -- TEST must be a symbol that specifies how to compare
4308 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4309 `equal'. User-supplied test and hash functions can be specified via
4310 `define-hash-table-test'.
4311
4312 :size SIZE -- A hint as to how many elements will be put in the table.
4313 Default is 65.
4314
4315 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4316 fills up. If REHASH-SIZE is an integer, increase the size by that
4317 amount. If it is a float, it must be > 1.0, and the new size is the
4318 old size multiplied by that factor. Default is 1.5.
4319
4320 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4321 Resize the hash table when the ratio (number of entries / table size)
4322 is greater than or equal to THRESHOLD. Default is 0.8.
4323
4324 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4325 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4326 returned is a weak table. Key/value pairs are removed from a weak
4327 hash table when there are no non-weak references pointing to their
4328 key, value, one of key or value, or both key and value, depending on
4329 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4330 is nil.
4331
4332 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4333 (ptrdiff_t nargs, Lisp_Object *args)
4334 {
4335 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4336 Lisp_Object user_test, user_hash;
4337 char *used;
4338 ptrdiff_t i;
4339
4340 /* The vector `used' is used to keep track of arguments that
4341 have been consumed. */
4342 used = (char *) alloca (nargs * sizeof *used);
4343 memset (used, 0, nargs * sizeof *used);
4344
4345 /* See if there's a `:test TEST' among the arguments. */
4346 i = get_key_arg (QCtest, nargs, args, used);
4347 test = i ? args[i] : Qeql;
4348 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4349 {
4350 /* See if it is a user-defined test. */
4351 Lisp_Object prop;
4352
4353 prop = Fget (test, Qhash_table_test);
4354 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4355 signal_error ("Invalid hash table test", test);
4356 user_test = XCAR (prop);
4357 user_hash = XCAR (XCDR (prop));
4358 }
4359 else
4360 user_test = user_hash = Qnil;
4361
4362 /* See if there's a `:size SIZE' argument. */
4363 i = get_key_arg (QCsize, nargs, args, used);
4364 size = i ? args[i] : Qnil;
4365 if (NILP (size))
4366 size = make_number (DEFAULT_HASH_SIZE);
4367 else if (!INTEGERP (size) || XINT (size) < 0)
4368 signal_error ("Invalid hash table size", size);
4369
4370 /* Look for `:rehash-size SIZE'. */
4371 i = get_key_arg (QCrehash_size, nargs, args, used);
4372 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4373 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4374 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4375 signal_error ("Invalid hash table rehash size", rehash_size);
4376
4377 /* Look for `:rehash-threshold THRESHOLD'. */
4378 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4379 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4380 if (! (FLOATP (rehash_threshold)
4381 && 0 < XFLOAT_DATA (rehash_threshold)
4382 && XFLOAT_DATA (rehash_threshold) <= 1))
4383 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4384
4385 /* Look for `:weakness WEAK'. */
4386 i = get_key_arg (QCweakness, nargs, args, used);
4387 weak = i ? args[i] : Qnil;
4388 if (EQ (weak, Qt))
4389 weak = Qkey_and_value;
4390 if (!NILP (weak)
4391 && !EQ (weak, Qkey)
4392 && !EQ (weak, Qvalue)
4393 && !EQ (weak, Qkey_or_value)
4394 && !EQ (weak, Qkey_and_value))
4395 signal_error ("Invalid hash table weakness", weak);
4396
4397 /* Now, all args should have been used up, or there's a problem. */
4398 for (i = 0; i < nargs; ++i)
4399 if (!used[i])
4400 signal_error ("Invalid argument list", args[i]);
4401
4402 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4403 user_test, user_hash);
4404 }
4405
4406
4407 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4408 doc: /* Return a copy of hash table TABLE. */)
4409 (Lisp_Object table)
4410 {
4411 return copy_hash_table (check_hash_table (table));
4412 }
4413
4414
4415 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4416 doc: /* Return the number of elements in TABLE. */)
4417 (Lisp_Object table)
4418 {
4419 return make_number (check_hash_table (table)->count);
4420 }
4421
4422
4423 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4424 Shash_table_rehash_size, 1, 1, 0,
4425 doc: /* Return the current rehash size of TABLE. */)
4426 (Lisp_Object table)
4427 {
4428 return check_hash_table (table)->rehash_size;
4429 }
4430
4431
4432 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4433 Shash_table_rehash_threshold, 1, 1, 0,
4434 doc: /* Return the current rehash threshold of TABLE. */)
4435 (Lisp_Object table)
4436 {
4437 return check_hash_table (table)->rehash_threshold;
4438 }
4439
4440
4441 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4442 doc: /* Return the size of TABLE.
4443 The size can be used as an argument to `make-hash-table' to create
4444 a hash table than can hold as many elements as TABLE holds
4445 without need for resizing. */)
4446 (Lisp_Object table)
4447 {
4448 struct Lisp_Hash_Table *h = check_hash_table (table);
4449 return make_number (HASH_TABLE_SIZE (h));
4450 }
4451
4452
4453 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4454 doc: /* Return the test TABLE uses. */)
4455 (Lisp_Object table)
4456 {
4457 return check_hash_table (table)->test;
4458 }
4459
4460
4461 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4462 1, 1, 0,
4463 doc: /* Return the weakness of TABLE. */)
4464 (Lisp_Object table)
4465 {
4466 return check_hash_table (table)->weak;
4467 }
4468
4469
4470 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4471 doc: /* Return t if OBJ is a Lisp hash table object. */)
4472 (Lisp_Object obj)
4473 {
4474 return HASH_TABLE_P (obj) ? Qt : Qnil;
4475 }
4476
4477
4478 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4479 doc: /* Clear hash table TABLE and return it. */)
4480 (Lisp_Object table)
4481 {
4482 hash_clear (check_hash_table (table));
4483 /* Be compatible with XEmacs. */
4484 return table;
4485 }
4486
4487
4488 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4489 doc: /* Look up KEY in TABLE and return its associated value.
4490 If KEY is not found, return DFLT which defaults to nil. */)
4491 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4492 {
4493 struct Lisp_Hash_Table *h = check_hash_table (table);
4494 ptrdiff_t i = hash_lookup (h, key, NULL);
4495 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4496 }
4497
4498
4499 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4500 doc: /* Associate KEY with VALUE in hash table TABLE.
4501 If KEY is already present in table, replace its current value with
4502 VALUE. In any case, return VALUE. */)
4503 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4504 {
4505 struct Lisp_Hash_Table *h = check_hash_table (table);
4506 ptrdiff_t i;
4507 EMACS_UINT hash;
4508
4509 i = hash_lookup (h, key, &hash);
4510 if (i >= 0)
4511 HASH_VALUE (h, i) = value;
4512 else
4513 hash_put (h, key, value, hash);
4514
4515 return value;
4516 }
4517
4518
4519 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4520 doc: /* Remove KEY from TABLE. */)
4521 (Lisp_Object key, Lisp_Object table)
4522 {
4523 struct Lisp_Hash_Table *h = check_hash_table (table);
4524 hash_remove_from_table (h, key);
4525 return Qnil;
4526 }
4527
4528
4529 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4530 doc: /* Call FUNCTION for all entries in hash table TABLE.
4531 FUNCTION is called with two arguments, KEY and VALUE. */)
4532 (Lisp_Object function, Lisp_Object table)
4533 {
4534 struct Lisp_Hash_Table *h = check_hash_table (table);
4535 Lisp_Object args[3];
4536 ptrdiff_t i;
4537
4538 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4539 if (!NILP (HASH_HASH (h, i)))
4540 {
4541 args[0] = function;
4542 args[1] = HASH_KEY (h, i);
4543 args[2] = HASH_VALUE (h, i);
4544 Ffuncall (3, args);
4545 }
4546
4547 return Qnil;
4548 }
4549
4550
4551 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4552 Sdefine_hash_table_test, 3, 3, 0,
4553 doc: /* Define a new hash table test with name NAME, a symbol.
4554
4555 In hash tables created with NAME specified as test, use TEST to
4556 compare keys, and HASH for computing hash codes of keys.
4557
4558 TEST must be a function taking two arguments and returning non-nil if
4559 both arguments are the same. HASH must be a function taking one
4560 argument and return an integer that is the hash code of the argument.
4561 Hash code computation should use the whole value range of integers,
4562 including negative integers. */)
4563 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4564 {
4565 return Fput (name, Qhash_table_test, list2 (test, hash));
4566 }
4567
4568
4569 \f
4570 /************************************************************************
4571 MD5, SHA-1, and SHA-2
4572 ************************************************************************/
4573
4574 #include "md5.h"
4575 #include "sha1.h"
4576 #include "sha256.h"
4577 #include "sha512.h"
4578
4579 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4580
4581 static Lisp_Object
4582 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4583 {
4584 int i;
4585 ptrdiff_t size;
4586 EMACS_INT start_char = 0, end_char = 0;
4587 ptrdiff_t start_byte, end_byte;
4588 register EMACS_INT b, e;
4589 register struct buffer *bp;
4590 EMACS_INT temp;
4591 int digest_size;
4592 void *(*hash_func) (const char *, size_t, void *);
4593 Lisp_Object digest;
4594
4595 CHECK_SYMBOL (algorithm);
4596
4597 if (STRINGP (object))
4598 {
4599 if (NILP (coding_system))
4600 {
4601 /* Decide the coding-system to encode the data with. */
4602
4603 if (STRING_MULTIBYTE (object))
4604 /* use default, we can't guess correct value */
4605 coding_system = preferred_coding_system ();
4606 else
4607 coding_system = Qraw_text;
4608 }
4609
4610 if (NILP (Fcoding_system_p (coding_system)))
4611 {
4612 /* Invalid coding system. */
4613
4614 if (!NILP (noerror))
4615 coding_system = Qraw_text;
4616 else
4617 xsignal1 (Qcoding_system_error, coding_system);
4618 }
4619
4620 if (STRING_MULTIBYTE (object))
4621 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4622
4623 size = SCHARS (object);
4624
4625 if (!NILP (start))
4626 {
4627 CHECK_NUMBER (start);
4628
4629 start_char = XINT (start);
4630
4631 if (start_char < 0)
4632 start_char += size;
4633 }
4634
4635 if (NILP (end))
4636 end_char = size;
4637 else
4638 {
4639 CHECK_NUMBER (end);
4640
4641 end_char = XINT (end);
4642
4643 if (end_char < 0)
4644 end_char += size;
4645 }
4646
4647 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4648 args_out_of_range_3 (object, make_number (start_char),
4649 make_number (end_char));
4650
4651 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4652 end_byte =
4653 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4654 }
4655 else
4656 {
4657 struct buffer *prev = current_buffer;
4658
4659 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4660
4661 CHECK_BUFFER (object);
4662
4663 bp = XBUFFER (object);
4664 if (bp != current_buffer)
4665 set_buffer_internal (bp);
4666
4667 if (NILP (start))
4668 b = BEGV;
4669 else
4670 {
4671 CHECK_NUMBER_COERCE_MARKER (start);
4672 b = XINT (start);
4673 }
4674
4675 if (NILP (end))
4676 e = ZV;
4677 else
4678 {
4679 CHECK_NUMBER_COERCE_MARKER (end);
4680 e = XINT (end);
4681 }
4682
4683 if (b > e)
4684 temp = b, b = e, e = temp;
4685
4686 if (!(BEGV <= b && e <= ZV))
4687 args_out_of_range (start, end);
4688
4689 if (NILP (coding_system))
4690 {
4691 /* Decide the coding-system to encode the data with.
4692 See fileio.c:Fwrite-region */
4693
4694 if (!NILP (Vcoding_system_for_write))
4695 coding_system = Vcoding_system_for_write;
4696 else
4697 {
4698 int force_raw_text = 0;
4699
4700 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4701 if (NILP (coding_system)
4702 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4703 {
4704 coding_system = Qnil;
4705 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4706 force_raw_text = 1;
4707 }
4708
4709 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4710 {
4711 /* Check file-coding-system-alist. */
4712 Lisp_Object args[4], val;
4713
4714 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4715 args[3] = Fbuffer_file_name (object);
4716 val = Ffind_operation_coding_system (4, args);
4717 if (CONSP (val) && !NILP (XCDR (val)))
4718 coding_system = XCDR (val);
4719 }
4720
4721 if (NILP (coding_system)
4722 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4723 {
4724 /* If we still have not decided a coding system, use the
4725 default value of buffer-file-coding-system. */
4726 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4727 }
4728
4729 if (!force_raw_text
4730 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4731 /* Confirm that VAL can surely encode the current region. */
4732 coding_system = call4 (Vselect_safe_coding_system_function,
4733 make_number (b), make_number (e),
4734 coding_system, Qnil);
4735
4736 if (force_raw_text)
4737 coding_system = Qraw_text;
4738 }
4739
4740 if (NILP (Fcoding_system_p (coding_system)))
4741 {
4742 /* Invalid coding system. */
4743
4744 if (!NILP (noerror))
4745 coding_system = Qraw_text;
4746 else
4747 xsignal1 (Qcoding_system_error, coding_system);
4748 }
4749 }
4750
4751 object = make_buffer_string (b, e, 0);
4752 if (prev != current_buffer)
4753 set_buffer_internal (prev);
4754 /* Discard the unwind protect for recovering the current
4755 buffer. */
4756 specpdl_ptr--;
4757
4758 if (STRING_MULTIBYTE (object))
4759 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4760 start_byte = 0;
4761 end_byte = SBYTES (object);
4762 }
4763
4764 if (EQ (algorithm, Qmd5))
4765 {
4766 digest_size = MD5_DIGEST_SIZE;
4767 hash_func = md5_buffer;
4768 }
4769 else if (EQ (algorithm, Qsha1))
4770 {
4771 digest_size = SHA1_DIGEST_SIZE;
4772 hash_func = sha1_buffer;
4773 }
4774 else if (EQ (algorithm, Qsha224))
4775 {
4776 digest_size = SHA224_DIGEST_SIZE;
4777 hash_func = sha224_buffer;
4778 }
4779 else if (EQ (algorithm, Qsha256))
4780 {
4781 digest_size = SHA256_DIGEST_SIZE;
4782 hash_func = sha256_buffer;
4783 }
4784 else if (EQ (algorithm, Qsha384))
4785 {
4786 digest_size = SHA384_DIGEST_SIZE;
4787 hash_func = sha384_buffer;
4788 }
4789 else if (EQ (algorithm, Qsha512))
4790 {
4791 digest_size = SHA512_DIGEST_SIZE;
4792 hash_func = sha512_buffer;
4793 }
4794 else
4795 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4796
4797 /* allocate 2 x digest_size so that it can be re-used to hold the
4798 hexified value */
4799 digest = make_uninit_string (digest_size * 2);
4800
4801 hash_func (SSDATA (object) + start_byte,
4802 end_byte - start_byte,
4803 SSDATA (digest));
4804
4805 if (NILP (binary))
4806 {
4807 unsigned char *p = SDATA (digest);
4808 for (i = digest_size - 1; i >= 0; i--)
4809 {
4810 static char const hexdigit[16] = "0123456789abcdef";
4811 int p_i = p[i];
4812 p[2 * i] = hexdigit[p_i >> 4];
4813 p[2 * i + 1] = hexdigit[p_i & 0xf];
4814 }
4815 return digest;
4816 }
4817 else
4818 return make_unibyte_string (SSDATA (digest), digest_size);
4819 }
4820
4821 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4822 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4823
4824 A message digest is a cryptographic checksum of a document, and the
4825 algorithm to calculate it is defined in RFC 1321.
4826
4827 The two optional arguments START and END are character positions
4828 specifying for which part of OBJECT the message digest should be
4829 computed. If nil or omitted, the digest is computed for the whole
4830 OBJECT.
4831
4832 The MD5 message digest is computed from the result of encoding the
4833 text in a coding system, not directly from the internal Emacs form of
4834 the text. The optional fourth argument CODING-SYSTEM specifies which
4835 coding system to encode the text with. It should be the same coding
4836 system that you used or will use when actually writing the text into a
4837 file.
4838
4839 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4840 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4841 system would be chosen by default for writing this text into a file.
4842
4843 If OBJECT is a string, the most preferred coding system (see the
4844 command `prefer-coding-system') is used.
4845
4846 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4847 guesswork fails. Normally, an error is signaled in such case. */)
4848 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4849 {
4850 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4851 }
4852
4853 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4854 doc: /* Return the secure hash of OBJECT, a buffer or string.
4855 ALGORITHM is a symbol specifying the hash to use:
4856 md5, sha1, sha224, sha256, sha384 or sha512.
4857
4858 The two optional arguments START and END are positions specifying for
4859 which part of OBJECT to compute the hash. If nil or omitted, uses the
4860 whole OBJECT.
4861
4862 If BINARY is non-nil, returns a string in binary form. */)
4863 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4864 {
4865 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4866 }
4867 \f
4868 void
4869 syms_of_fns (void)
4870 {
4871 DEFSYM (Qmd5, "md5");
4872 DEFSYM (Qsha1, "sha1");
4873 DEFSYM (Qsha224, "sha224");
4874 DEFSYM (Qsha256, "sha256");
4875 DEFSYM (Qsha384, "sha384");
4876 DEFSYM (Qsha512, "sha512");
4877
4878 /* Hash table stuff. */
4879 DEFSYM (Qhash_table_p, "hash-table-p");
4880 DEFSYM (Qeq, "eq");
4881 DEFSYM (Qeql, "eql");
4882 DEFSYM (Qequal, "equal");
4883 DEFSYM (QCtest, ":test");
4884 DEFSYM (QCsize, ":size");
4885 DEFSYM (QCrehash_size, ":rehash-size");
4886 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4887 DEFSYM (QCweakness, ":weakness");
4888 DEFSYM (Qkey, "key");
4889 DEFSYM (Qvalue, "value");
4890 DEFSYM (Qhash_table_test, "hash-table-test");
4891 DEFSYM (Qkey_or_value, "key-or-value");
4892 DEFSYM (Qkey_and_value, "key-and-value");
4893
4894 defsubr (&Ssxhash);
4895 defsubr (&Smake_hash_table);
4896 defsubr (&Scopy_hash_table);
4897 defsubr (&Shash_table_count);
4898 defsubr (&Shash_table_rehash_size);
4899 defsubr (&Shash_table_rehash_threshold);
4900 defsubr (&Shash_table_size);
4901 defsubr (&Shash_table_test);
4902 defsubr (&Shash_table_weakness);
4903 defsubr (&Shash_table_p);
4904 defsubr (&Sclrhash);
4905 defsubr (&Sgethash);
4906 defsubr (&Sputhash);
4907 defsubr (&Sremhash);
4908 defsubr (&Smaphash);
4909 defsubr (&Sdefine_hash_table_test);
4910
4911 DEFSYM (Qstring_lessp, "string-lessp");
4912 DEFSYM (Qprovide, "provide");
4913 DEFSYM (Qrequire, "require");
4914 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4915 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4916 DEFSYM (Qwidget_type, "widget-type");
4917
4918 staticpro (&string_char_byte_cache_string);
4919 string_char_byte_cache_string = Qnil;
4920
4921 require_nesting_list = Qnil;
4922 staticpro (&require_nesting_list);
4923
4924 Fset (Qyes_or_no_p_history, Qnil);
4925
4926 DEFVAR_LISP ("features", Vfeatures,
4927 doc: /* A list of symbols which are the features of the executing Emacs.
4928 Used by `featurep' and `require', and altered by `provide'. */);
4929 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4930 DEFSYM (Qsubfeatures, "subfeatures");
4931
4932 #ifdef HAVE_LANGINFO_CODESET
4933 DEFSYM (Qcodeset, "codeset");
4934 DEFSYM (Qdays, "days");
4935 DEFSYM (Qmonths, "months");
4936 DEFSYM (Qpaper, "paper");
4937 #endif /* HAVE_LANGINFO_CODESET */
4938
4939 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4940 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4941 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4942 invoked by mouse clicks and mouse menu items.
4943
4944 On some platforms, file selection dialogs are also enabled if this is
4945 non-nil. */);
4946 use_dialog_box = 1;
4947
4948 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4949 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4950 This applies to commands from menus and tool bar buttons even when
4951 they are initiated from the keyboard. If `use-dialog-box' is nil,
4952 that disables the use of a file dialog, regardless of the value of
4953 this variable. */);
4954 use_file_dialog = 1;
4955
4956 defsubr (&Sidentity);
4957 defsubr (&Srandom);
4958 defsubr (&Slength);
4959 defsubr (&Ssafe_length);
4960 defsubr (&Sstring_bytes);
4961 defsubr (&Sstring_equal);
4962 defsubr (&Scompare_strings);
4963 defsubr (&Sstring_lessp);
4964 defsubr (&Sappend);
4965 defsubr (&Sconcat);
4966 defsubr (&Svconcat);
4967 defsubr (&Scopy_sequence);
4968 defsubr (&Sstring_make_multibyte);
4969 defsubr (&Sstring_make_unibyte);
4970 defsubr (&Sstring_as_multibyte);
4971 defsubr (&Sstring_as_unibyte);
4972 defsubr (&Sstring_to_multibyte);
4973 defsubr (&Sstring_to_unibyte);
4974 defsubr (&Scopy_alist);
4975 defsubr (&Ssubstring);
4976 defsubr (&Ssubstring_no_properties);
4977 defsubr (&Snthcdr);
4978 defsubr (&Snth);
4979 defsubr (&Selt);
4980 defsubr (&Smember);
4981 defsubr (&Smemq);
4982 defsubr (&Smemql);
4983 defsubr (&Sassq);
4984 defsubr (&Sassoc);
4985 defsubr (&Srassq);
4986 defsubr (&Srassoc);
4987 defsubr (&Sdelq);
4988 defsubr (&Sdelete);
4989 defsubr (&Snreverse);
4990 defsubr (&Sreverse);
4991 defsubr (&Ssort);
4992 defsubr (&Splist_get);
4993 defsubr (&Sget);
4994 defsubr (&Splist_put);
4995 defsubr (&Sput);
4996 defsubr (&Slax_plist_get);
4997 defsubr (&Slax_plist_put);
4998 defsubr (&Seql);
4999 defsubr (&Sequal);
5000 defsubr (&Sequal_including_properties);
5001 defsubr (&Sfillarray);
5002 defsubr (&Sclear_string);
5003 defsubr (&Snconc);
5004 defsubr (&Smapcar);
5005 defsubr (&Smapc);
5006 defsubr (&Smapconcat);
5007 defsubr (&Syes_or_no_p);
5008 defsubr (&Sload_average);
5009 defsubr (&Sfeaturep);
5010 defsubr (&Srequire);
5011 defsubr (&Sprovide);
5012 defsubr (&Splist_member);
5013 defsubr (&Swidget_put);
5014 defsubr (&Swidget_get);
5015 defsubr (&Swidget_apply);
5016 defsubr (&Sbase64_encode_region);
5017 defsubr (&Sbase64_decode_region);
5018 defsubr (&Sbase64_encode_string);
5019 defsubr (&Sbase64_decode_string);
5020 defsubr (&Smd5);
5021 defsubr (&Ssecure_hash);
5022 defsubr (&Slocale_info);
5023 }
5024
5025
5026 void
5027 init_fns (void)
5028 {
5029 }