]> code.delx.au - gnu-emacs/blob - src/alloc.c
New directory
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
35 memory. Can do this only if using gmalloc.c. */
36
37 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
38 #undef GC_MALLOC_CHECK
39 #endif
40
41 /* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
44
45 #undef HIDE_LISP_IMPLEMENTATION
46 #include "lisp.h"
47 #include "process.h"
48 #include "intervals.h"
49 #include "puresize.h"
50 #include "buffer.h"
51 #include "window.h"
52 #include "keyboard.h"
53 #include "frame.h"
54 #include "blockinput.h"
55 #include "charset.h"
56 #include "syssignal.h"
57 #include <setjmp.h>
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input.. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
605 {
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
609 {
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
613 }
614 }
615
616 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
617 if (val && type != MEM_TYPE_NON_LISP)
618 mem_insert (val, (char *) val + nbytes, type);
619 #endif
620
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
624 return val;
625 }
626
627 /* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
629
630 static void
631 lisp_free (block)
632 POINTER_TYPE *block;
633 {
634 BLOCK_INPUT;
635 free (block);
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 mem_delete (mem_find (block));
638 #endif
639 UNBLOCK_INPUT;
640 }
641
642 /* Allocation of aligned blocks of memory to store Lisp data. */
643 /* The entry point is lisp_align_malloc which returns blocks of at most */
644 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
645
646
647 /* BLOCK_ALIGN has to be a power of 2. */
648 #define BLOCK_ALIGN (1 << 10)
649
650 /* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659 #define BLOCK_PADDING 0
660 #define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
662
663 /* Internal data structures and constants. */
664
665 #define ABLOCKS_SIZE 16
666
667 /* An aligned block of memory. */
668 struct ablock
669 {
670 union
671 {
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
687 #if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
689 #endif
690 };
691
692 /* A bunch of consecutive aligned blocks. */
693 struct ablocks
694 {
695 struct ablock blocks[ABLOCKS_SIZE];
696 };
697
698 /* Size of the block requested from malloc or memalign. */
699 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
700
701 #define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
705
706 /* Virtual `busy' field. */
707 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
708
709 /* Pointer to the (not necessarily aligned) malloc block. */
710 #ifdef HAVE_POSIX_MEMALIGN
711 #define ABLOCKS_BASE(abase) (abase)
712 #else
713 #define ABLOCKS_BASE(abase) \
714 (1 & (int) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
715 #endif
716
717 /* The list of free ablock. */
718 static struct ablock *free_ablock;
719
720 /* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723 static POINTER_TYPE *
724 lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
727 {
728 void *base, *val;
729 struct ablocks *abase;
730
731 eassert (nbytes <= BLOCK_BYTES);
732
733 BLOCK_INPUT;
734
735 #ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737 #endif
738
739 if (!free_ablock)
740 {
741 int i, aligned;
742
743 #ifdef DOUG_LEA_MALLOC
744 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
745 because mapped region contents are not preserved in
746 a dumped Emacs. */
747 mallopt (M_MMAP_MAX, 0);
748 #endif
749
750 #ifdef HAVE_POSIX_MEMALIGN
751 {
752 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
753 abase = err ? (base = NULL) : base;
754 }
755 #else
756 base = malloc (ABLOCKS_BYTES);
757 abase = ALIGN (base, BLOCK_ALIGN);
758 #endif
759
760 aligned = (base == abase);
761 if (!aligned)
762 ((void**)abase)[-1] = base;
763
764 #ifdef DOUG_LEA_MALLOC
765 /* Back to a reasonable maximum of mmap'ed areas. */
766 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
767 #endif
768
769 /* Initialize the blocks and put them on the free list.
770 Is `base' was not properly aligned, we can't use the last block. */
771 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
772 {
773 abase->blocks[i].abase = abase;
774 abase->blocks[i].x.next_free = free_ablock;
775 free_ablock = &abase->blocks[i];
776 }
777 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
778
779 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
780 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
781 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
782 eassert (ABLOCKS_BASE (abase) == base);
783 eassert (aligned == (int)ABLOCKS_BUSY (abase));
784 }
785
786 abase = ABLOCK_ABASE (free_ablock);
787 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (int) ABLOCKS_BUSY (abase));
788 val = free_ablock;
789 free_ablock = free_ablock->x.next_free;
790
791 /* If the memory just allocated cannot be addressed thru a Lisp
792 object's pointer, and it needs to be,
793 that's equivalent to running out of memory. */
794 if (val && type != MEM_TYPE_NON_LISP)
795 {
796 Lisp_Object tem;
797 XSETCONS (tem, (char *) val + nbytes - 1);
798 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
799 {
800 lisp_malloc_loser = val;
801 free (val);
802 val = 0;
803 }
804 }
805
806 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
807 if (val && type != MEM_TYPE_NON_LISP)
808 mem_insert (val, (char *) val + nbytes, type);
809 #endif
810
811 UNBLOCK_INPUT;
812 if (!val && nbytes)
813 memory_full ();
814
815 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
816 return val;
817 }
818
819 static void
820 lisp_align_free (block)
821 POINTER_TYPE *block;
822 {
823 struct ablock *ablock = block;
824 struct ablocks *abase = ABLOCK_ABASE (ablock);
825
826 BLOCK_INPUT;
827 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
828 mem_delete (mem_find (block));
829 #endif
830 /* Put on free list. */
831 ablock->x.next_free = free_ablock;
832 free_ablock = ablock;
833 /* Update busy count. */
834 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (int) ABLOCKS_BUSY (abase));
835
836 if (2 > (int) ABLOCKS_BUSY (abase))
837 { /* All the blocks are free. */
838 int i = 0, aligned = (int) ABLOCKS_BUSY (abase);
839 struct ablock **tem = &free_ablock;
840 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
841
842 while (*tem)
843 {
844 if (*tem >= (struct ablock *) abase && *tem < atop)
845 {
846 i++;
847 *tem = (*tem)->x.next_free;
848 }
849 else
850 tem = &(*tem)->x.next_free;
851 }
852 eassert ((aligned & 1) == aligned);
853 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
854 free (ABLOCKS_BASE (abase));
855 }
856 UNBLOCK_INPUT;
857 }
858
859 /* Return a new buffer structure allocated from the heap with
860 a call to lisp_malloc. */
861
862 struct buffer *
863 allocate_buffer ()
864 {
865 struct buffer *b
866 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
867 MEM_TYPE_BUFFER);
868 return b;
869 }
870
871 \f
872 /* Arranging to disable input signals while we're in malloc.
873
874 This only works with GNU malloc. To help out systems which can't
875 use GNU malloc, all the calls to malloc, realloc, and free
876 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
877 pairs; unfortunately, we have no idea what C library functions
878 might call malloc, so we can't really protect them unless you're
879 using GNU malloc. Fortunately, most of the major operating systems
880 can use GNU malloc. */
881
882 #ifndef SYSTEM_MALLOC
883 #ifndef DOUG_LEA_MALLOC
884 extern void * (*__malloc_hook) P_ ((size_t));
885 extern void * (*__realloc_hook) P_ ((void *, size_t));
886 extern void (*__free_hook) P_ ((void *));
887 /* Else declared in malloc.h, perhaps with an extra arg. */
888 #endif /* DOUG_LEA_MALLOC */
889 static void * (*old_malloc_hook) ();
890 static void * (*old_realloc_hook) ();
891 static void (*old_free_hook) ();
892
893 /* This function is used as the hook for free to call. */
894
895 static void
896 emacs_blocked_free (ptr)
897 void *ptr;
898 {
899 BLOCK_INPUT;
900
901 #ifdef GC_MALLOC_CHECK
902 if (ptr)
903 {
904 struct mem_node *m;
905
906 m = mem_find (ptr);
907 if (m == MEM_NIL || m->start != ptr)
908 {
909 fprintf (stderr,
910 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
911 abort ();
912 }
913 else
914 {
915 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
916 mem_delete (m);
917 }
918 }
919 #endif /* GC_MALLOC_CHECK */
920
921 __free_hook = old_free_hook;
922 free (ptr);
923
924 /* If we released our reserve (due to running out of memory),
925 and we have a fair amount free once again,
926 try to set aside another reserve in case we run out once more. */
927 if (spare_memory == 0
928 /* Verify there is enough space that even with the malloc
929 hysteresis this call won't run out again.
930 The code here is correct as long as SPARE_MEMORY
931 is substantially larger than the block size malloc uses. */
932 && (bytes_used_when_full
933 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
934 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
935
936 __free_hook = emacs_blocked_free;
937 UNBLOCK_INPUT;
938 }
939
940
941 /* If we released our reserve (due to running out of memory),
942 and we have a fair amount free once again,
943 try to set aside another reserve in case we run out once more.
944
945 This is called when a relocatable block is freed in ralloc.c. */
946
947 void
948 refill_memory_reserve ()
949 {
950 if (spare_memory == 0)
951 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
952 }
953
954
955 /* This function is the malloc hook that Emacs uses. */
956
957 static void *
958 emacs_blocked_malloc (size)
959 size_t size;
960 {
961 void *value;
962
963 BLOCK_INPUT;
964 __malloc_hook = old_malloc_hook;
965 #ifdef DOUG_LEA_MALLOC
966 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
967 #else
968 __malloc_extra_blocks = malloc_hysteresis;
969 #endif
970
971 value = (void *) malloc (size);
972
973 #ifdef GC_MALLOC_CHECK
974 {
975 struct mem_node *m = mem_find (value);
976 if (m != MEM_NIL)
977 {
978 fprintf (stderr, "Malloc returned %p which is already in use\n",
979 value);
980 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
981 m->start, m->end, (char *) m->end - (char *) m->start,
982 m->type);
983 abort ();
984 }
985
986 if (!dont_register_blocks)
987 {
988 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
989 allocated_mem_type = MEM_TYPE_NON_LISP;
990 }
991 }
992 #endif /* GC_MALLOC_CHECK */
993
994 __malloc_hook = emacs_blocked_malloc;
995 UNBLOCK_INPUT;
996
997 /* fprintf (stderr, "%p malloc\n", value); */
998 return value;
999 }
1000
1001
1002 /* This function is the realloc hook that Emacs uses. */
1003
1004 static void *
1005 emacs_blocked_realloc (ptr, size)
1006 void *ptr;
1007 size_t size;
1008 {
1009 void *value;
1010
1011 BLOCK_INPUT;
1012 __realloc_hook = old_realloc_hook;
1013
1014 #ifdef GC_MALLOC_CHECK
1015 if (ptr)
1016 {
1017 struct mem_node *m = mem_find (ptr);
1018 if (m == MEM_NIL || m->start != ptr)
1019 {
1020 fprintf (stderr,
1021 "Realloc of %p which wasn't allocated with malloc\n",
1022 ptr);
1023 abort ();
1024 }
1025
1026 mem_delete (m);
1027 }
1028
1029 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1030
1031 /* Prevent malloc from registering blocks. */
1032 dont_register_blocks = 1;
1033 #endif /* GC_MALLOC_CHECK */
1034
1035 value = (void *) realloc (ptr, size);
1036
1037 #ifdef GC_MALLOC_CHECK
1038 dont_register_blocks = 0;
1039
1040 {
1041 struct mem_node *m = mem_find (value);
1042 if (m != MEM_NIL)
1043 {
1044 fprintf (stderr, "Realloc returns memory that is already in use\n");
1045 abort ();
1046 }
1047
1048 /* Can't handle zero size regions in the red-black tree. */
1049 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1050 }
1051
1052 /* fprintf (stderr, "%p <- realloc\n", value); */
1053 #endif /* GC_MALLOC_CHECK */
1054
1055 __realloc_hook = emacs_blocked_realloc;
1056 UNBLOCK_INPUT;
1057
1058 return value;
1059 }
1060
1061
1062 /* Called from main to set up malloc to use our hooks. */
1063
1064 void
1065 uninterrupt_malloc ()
1066 {
1067 if (__free_hook != emacs_blocked_free)
1068 old_free_hook = __free_hook;
1069 __free_hook = emacs_blocked_free;
1070
1071 if (__malloc_hook != emacs_blocked_malloc)
1072 old_malloc_hook = __malloc_hook;
1073 __malloc_hook = emacs_blocked_malloc;
1074
1075 if (__realloc_hook != emacs_blocked_realloc)
1076 old_realloc_hook = __realloc_hook;
1077 __realloc_hook = emacs_blocked_realloc;
1078 }
1079
1080 #endif /* not SYSTEM_MALLOC */
1081
1082
1083 \f
1084 /***********************************************************************
1085 Interval Allocation
1086 ***********************************************************************/
1087
1088 /* Number of intervals allocated in an interval_block structure.
1089 The 1020 is 1024 minus malloc overhead. */
1090
1091 #define INTERVAL_BLOCK_SIZE \
1092 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1093
1094 /* Intervals are allocated in chunks in form of an interval_block
1095 structure. */
1096
1097 struct interval_block
1098 {
1099 struct interval_block *next;
1100 struct interval intervals[INTERVAL_BLOCK_SIZE];
1101 };
1102
1103 /* Current interval block. Its `next' pointer points to older
1104 blocks. */
1105
1106 struct interval_block *interval_block;
1107
1108 /* Index in interval_block above of the next unused interval
1109 structure. */
1110
1111 static int interval_block_index;
1112
1113 /* Number of free and live intervals. */
1114
1115 static int total_free_intervals, total_intervals;
1116
1117 /* List of free intervals. */
1118
1119 INTERVAL interval_free_list;
1120
1121 /* Total number of interval blocks now in use. */
1122
1123 int n_interval_blocks;
1124
1125
1126 /* Initialize interval allocation. */
1127
1128 static void
1129 init_intervals ()
1130 {
1131 interval_block
1132 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
1133 MEM_TYPE_NON_LISP);
1134 interval_block->next = 0;
1135 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
1136 interval_block_index = 0;
1137 interval_free_list = 0;
1138 n_interval_blocks = 1;
1139 }
1140
1141
1142 /* Return a new interval. */
1143
1144 INTERVAL
1145 make_interval ()
1146 {
1147 INTERVAL val;
1148
1149 if (interval_free_list)
1150 {
1151 val = interval_free_list;
1152 interval_free_list = INTERVAL_PARENT (interval_free_list);
1153 }
1154 else
1155 {
1156 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1157 {
1158 register struct interval_block *newi;
1159
1160 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1161 MEM_TYPE_NON_LISP);
1162
1163 newi->next = interval_block;
1164 interval_block = newi;
1165 interval_block_index = 0;
1166 n_interval_blocks++;
1167 }
1168 val = &interval_block->intervals[interval_block_index++];
1169 }
1170 consing_since_gc += sizeof (struct interval);
1171 intervals_consed++;
1172 RESET_INTERVAL (val);
1173 val->gcmarkbit = 0;
1174 return val;
1175 }
1176
1177
1178 /* Mark Lisp objects in interval I. */
1179
1180 static void
1181 mark_interval (i, dummy)
1182 register INTERVAL i;
1183 Lisp_Object dummy;
1184 {
1185 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1186 i->gcmarkbit = 1;
1187 mark_object (i->plist);
1188 }
1189
1190
1191 /* Mark the interval tree rooted in TREE. Don't call this directly;
1192 use the macro MARK_INTERVAL_TREE instead. */
1193
1194 static void
1195 mark_interval_tree (tree)
1196 register INTERVAL tree;
1197 {
1198 /* No need to test if this tree has been marked already; this
1199 function is always called through the MARK_INTERVAL_TREE macro,
1200 which takes care of that. */
1201
1202 traverse_intervals_noorder (tree, mark_interval, Qnil);
1203 }
1204
1205
1206 /* Mark the interval tree rooted in I. */
1207
1208 #define MARK_INTERVAL_TREE(i) \
1209 do { \
1210 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1211 mark_interval_tree (i); \
1212 } while (0)
1213
1214
1215 #define UNMARK_BALANCE_INTERVALS(i) \
1216 do { \
1217 if (! NULL_INTERVAL_P (i)) \
1218 (i) = balance_intervals (i); \
1219 } while (0)
1220
1221 \f
1222 /* Number support. If NO_UNION_TYPE isn't in effect, we
1223 can't create number objects in macros. */
1224 #ifndef make_number
1225 Lisp_Object
1226 make_number (n)
1227 int n;
1228 {
1229 Lisp_Object obj;
1230 obj.s.val = n;
1231 obj.s.type = Lisp_Int;
1232 return obj;
1233 }
1234 #endif
1235 \f
1236 /***********************************************************************
1237 String Allocation
1238 ***********************************************************************/
1239
1240 /* Lisp_Strings are allocated in string_block structures. When a new
1241 string_block is allocated, all the Lisp_Strings it contains are
1242 added to a free-list string_free_list. When a new Lisp_String is
1243 needed, it is taken from that list. During the sweep phase of GC,
1244 string_blocks that are entirely free are freed, except two which
1245 we keep.
1246
1247 String data is allocated from sblock structures. Strings larger
1248 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1249 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1250
1251 Sblocks consist internally of sdata structures, one for each
1252 Lisp_String. The sdata structure points to the Lisp_String it
1253 belongs to. The Lisp_String points back to the `u.data' member of
1254 its sdata structure.
1255
1256 When a Lisp_String is freed during GC, it is put back on
1257 string_free_list, and its `data' member and its sdata's `string'
1258 pointer is set to null. The size of the string is recorded in the
1259 `u.nbytes' member of the sdata. So, sdata structures that are no
1260 longer used, can be easily recognized, and it's easy to compact the
1261 sblocks of small strings which we do in compact_small_strings. */
1262
1263 /* Size in bytes of an sblock structure used for small strings. This
1264 is 8192 minus malloc overhead. */
1265
1266 #define SBLOCK_SIZE 8188
1267
1268 /* Strings larger than this are considered large strings. String data
1269 for large strings is allocated from individual sblocks. */
1270
1271 #define LARGE_STRING_BYTES 1024
1272
1273 /* Structure describing string memory sub-allocated from an sblock.
1274 This is where the contents of Lisp strings are stored. */
1275
1276 struct sdata
1277 {
1278 /* Back-pointer to the string this sdata belongs to. If null, this
1279 structure is free, and the NBYTES member of the union below
1280 contains the string's byte size (the same value that STRING_BYTES
1281 would return if STRING were non-null). If non-null, STRING_BYTES
1282 (STRING) is the size of the data, and DATA contains the string's
1283 contents. */
1284 struct Lisp_String *string;
1285
1286 #ifdef GC_CHECK_STRING_BYTES
1287
1288 EMACS_INT nbytes;
1289 unsigned char data[1];
1290
1291 #define SDATA_NBYTES(S) (S)->nbytes
1292 #define SDATA_DATA(S) (S)->data
1293
1294 #else /* not GC_CHECK_STRING_BYTES */
1295
1296 union
1297 {
1298 /* When STRING in non-null. */
1299 unsigned char data[1];
1300
1301 /* When STRING is null. */
1302 EMACS_INT nbytes;
1303 } u;
1304
1305
1306 #define SDATA_NBYTES(S) (S)->u.nbytes
1307 #define SDATA_DATA(S) (S)->u.data
1308
1309 #endif /* not GC_CHECK_STRING_BYTES */
1310 };
1311
1312
1313 /* Structure describing a block of memory which is sub-allocated to
1314 obtain string data memory for strings. Blocks for small strings
1315 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1316 as large as needed. */
1317
1318 struct sblock
1319 {
1320 /* Next in list. */
1321 struct sblock *next;
1322
1323 /* Pointer to the next free sdata block. This points past the end
1324 of the sblock if there isn't any space left in this block. */
1325 struct sdata *next_free;
1326
1327 /* Start of data. */
1328 struct sdata first_data;
1329 };
1330
1331 /* Number of Lisp strings in a string_block structure. The 1020 is
1332 1024 minus malloc overhead. */
1333
1334 #define STRING_BLOCK_SIZE \
1335 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1336
1337 /* Structure describing a block from which Lisp_String structures
1338 are allocated. */
1339
1340 struct string_block
1341 {
1342 struct string_block *next;
1343 struct Lisp_String strings[STRING_BLOCK_SIZE];
1344 };
1345
1346 /* Head and tail of the list of sblock structures holding Lisp string
1347 data. We always allocate from current_sblock. The NEXT pointers
1348 in the sblock structures go from oldest_sblock to current_sblock. */
1349
1350 static struct sblock *oldest_sblock, *current_sblock;
1351
1352 /* List of sblocks for large strings. */
1353
1354 static struct sblock *large_sblocks;
1355
1356 /* List of string_block structures, and how many there are. */
1357
1358 static struct string_block *string_blocks;
1359 static int n_string_blocks;
1360
1361 /* Free-list of Lisp_Strings. */
1362
1363 static struct Lisp_String *string_free_list;
1364
1365 /* Number of live and free Lisp_Strings. */
1366
1367 static int total_strings, total_free_strings;
1368
1369 /* Number of bytes used by live strings. */
1370
1371 static int total_string_size;
1372
1373 /* Given a pointer to a Lisp_String S which is on the free-list
1374 string_free_list, return a pointer to its successor in the
1375 free-list. */
1376
1377 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1378
1379 /* Return a pointer to the sdata structure belonging to Lisp string S.
1380 S must be live, i.e. S->data must not be null. S->data is actually
1381 a pointer to the `u.data' member of its sdata structure; the
1382 structure starts at a constant offset in front of that. */
1383
1384 #ifdef GC_CHECK_STRING_BYTES
1385
1386 #define SDATA_OF_STRING(S) \
1387 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1388 - sizeof (EMACS_INT)))
1389
1390 #else /* not GC_CHECK_STRING_BYTES */
1391
1392 #define SDATA_OF_STRING(S) \
1393 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1394
1395 #endif /* not GC_CHECK_STRING_BYTES */
1396
1397 /* Value is the size of an sdata structure large enough to hold NBYTES
1398 bytes of string data. The value returned includes a terminating
1399 NUL byte, the size of the sdata structure, and padding. */
1400
1401 #ifdef GC_CHECK_STRING_BYTES
1402
1403 #define SDATA_SIZE(NBYTES) \
1404 ((sizeof (struct Lisp_String *) \
1405 + (NBYTES) + 1 \
1406 + sizeof (EMACS_INT) \
1407 + sizeof (EMACS_INT) - 1) \
1408 & ~(sizeof (EMACS_INT) - 1))
1409
1410 #else /* not GC_CHECK_STRING_BYTES */
1411
1412 #define SDATA_SIZE(NBYTES) \
1413 ((sizeof (struct Lisp_String *) \
1414 + (NBYTES) + 1 \
1415 + sizeof (EMACS_INT) - 1) \
1416 & ~(sizeof (EMACS_INT) - 1))
1417
1418 #endif /* not GC_CHECK_STRING_BYTES */
1419
1420 /* Initialize string allocation. Called from init_alloc_once. */
1421
1422 void
1423 init_strings ()
1424 {
1425 total_strings = total_free_strings = total_string_size = 0;
1426 oldest_sblock = current_sblock = large_sblocks = NULL;
1427 string_blocks = NULL;
1428 n_string_blocks = 0;
1429 string_free_list = NULL;
1430 }
1431
1432
1433 #ifdef GC_CHECK_STRING_BYTES
1434
1435 static int check_string_bytes_count;
1436
1437 void check_string_bytes P_ ((int));
1438 void check_sblock P_ ((struct sblock *));
1439
1440 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1441
1442
1443 /* Like GC_STRING_BYTES, but with debugging check. */
1444
1445 int
1446 string_bytes (s)
1447 struct Lisp_String *s;
1448 {
1449 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1450 if (!PURE_POINTER_P (s)
1451 && s->data
1452 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1453 abort ();
1454 return nbytes;
1455 }
1456
1457 /* Check validity of Lisp strings' string_bytes member in B. */
1458
1459 void
1460 check_sblock (b)
1461 struct sblock *b;
1462 {
1463 struct sdata *from, *end, *from_end;
1464
1465 end = b->next_free;
1466
1467 for (from = &b->first_data; from < end; from = from_end)
1468 {
1469 /* Compute the next FROM here because copying below may
1470 overwrite data we need to compute it. */
1471 int nbytes;
1472
1473 /* Check that the string size recorded in the string is the
1474 same as the one recorded in the sdata structure. */
1475 if (from->string)
1476 CHECK_STRING_BYTES (from->string);
1477
1478 if (from->string)
1479 nbytes = GC_STRING_BYTES (from->string);
1480 else
1481 nbytes = SDATA_NBYTES (from);
1482
1483 nbytes = SDATA_SIZE (nbytes);
1484 from_end = (struct sdata *) ((char *) from + nbytes);
1485 }
1486 }
1487
1488
1489 /* Check validity of Lisp strings' string_bytes member. ALL_P
1490 non-zero means check all strings, otherwise check only most
1491 recently allocated strings. Used for hunting a bug. */
1492
1493 void
1494 check_string_bytes (all_p)
1495 int all_p;
1496 {
1497 if (all_p)
1498 {
1499 struct sblock *b;
1500
1501 for (b = large_sblocks; b; b = b->next)
1502 {
1503 struct Lisp_String *s = b->first_data.string;
1504 if (s)
1505 CHECK_STRING_BYTES (s);
1506 }
1507
1508 for (b = oldest_sblock; b; b = b->next)
1509 check_sblock (b);
1510 }
1511 else
1512 check_sblock (current_sblock);
1513 }
1514
1515 #endif /* GC_CHECK_STRING_BYTES */
1516
1517
1518 /* Return a new Lisp_String. */
1519
1520 static struct Lisp_String *
1521 allocate_string ()
1522 {
1523 struct Lisp_String *s;
1524
1525 /* If the free-list is empty, allocate a new string_block, and
1526 add all the Lisp_Strings in it to the free-list. */
1527 if (string_free_list == NULL)
1528 {
1529 struct string_block *b;
1530 int i;
1531
1532 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1533 bzero (b, sizeof *b);
1534 b->next = string_blocks;
1535 string_blocks = b;
1536 ++n_string_blocks;
1537
1538 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1539 {
1540 s = b->strings + i;
1541 NEXT_FREE_LISP_STRING (s) = string_free_list;
1542 string_free_list = s;
1543 }
1544
1545 total_free_strings += STRING_BLOCK_SIZE;
1546 }
1547
1548 /* Pop a Lisp_String off the free-list. */
1549 s = string_free_list;
1550 string_free_list = NEXT_FREE_LISP_STRING (s);
1551
1552 /* Probably not strictly necessary, but play it safe. */
1553 bzero (s, sizeof *s);
1554
1555 --total_free_strings;
1556 ++total_strings;
1557 ++strings_consed;
1558 consing_since_gc += sizeof *s;
1559
1560 #ifdef GC_CHECK_STRING_BYTES
1561 if (!noninteractive
1562 #ifdef MAC_OS8
1563 && current_sblock
1564 #endif
1565 )
1566 {
1567 if (++check_string_bytes_count == 200)
1568 {
1569 check_string_bytes_count = 0;
1570 check_string_bytes (1);
1571 }
1572 else
1573 check_string_bytes (0);
1574 }
1575 #endif /* GC_CHECK_STRING_BYTES */
1576
1577 return s;
1578 }
1579
1580
1581 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1582 plus a NUL byte at the end. Allocate an sdata structure for S, and
1583 set S->data to its `u.data' member. Store a NUL byte at the end of
1584 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1585 S->data if it was initially non-null. */
1586
1587 void
1588 allocate_string_data (s, nchars, nbytes)
1589 struct Lisp_String *s;
1590 int nchars, nbytes;
1591 {
1592 struct sdata *data, *old_data;
1593 struct sblock *b;
1594 int needed, old_nbytes;
1595
1596 /* Determine the number of bytes needed to store NBYTES bytes
1597 of string data. */
1598 needed = SDATA_SIZE (nbytes);
1599
1600 if (nbytes > LARGE_STRING_BYTES)
1601 {
1602 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1603
1604 #ifdef DOUG_LEA_MALLOC
1605 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1606 because mapped region contents are not preserved in
1607 a dumped Emacs.
1608
1609 In case you think of allowing it in a dumped Emacs at the
1610 cost of not being able to re-dump, there's another reason:
1611 mmap'ed data typically have an address towards the top of the
1612 address space, which won't fit into an EMACS_INT (at least on
1613 32-bit systems with the current tagging scheme). --fx */
1614 mallopt (M_MMAP_MAX, 0);
1615 #endif
1616
1617 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1618
1619 #ifdef DOUG_LEA_MALLOC
1620 /* Back to a reasonable maximum of mmap'ed areas. */
1621 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1622 #endif
1623
1624 b->next_free = &b->first_data;
1625 b->first_data.string = NULL;
1626 b->next = large_sblocks;
1627 large_sblocks = b;
1628 }
1629 else if (current_sblock == NULL
1630 || (((char *) current_sblock + SBLOCK_SIZE
1631 - (char *) current_sblock->next_free)
1632 < needed))
1633 {
1634 /* Not enough room in the current sblock. */
1635 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1636 b->next_free = &b->first_data;
1637 b->first_data.string = NULL;
1638 b->next = NULL;
1639
1640 if (current_sblock)
1641 current_sblock->next = b;
1642 else
1643 oldest_sblock = b;
1644 current_sblock = b;
1645 }
1646 else
1647 b = current_sblock;
1648
1649 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1650 old_nbytes = GC_STRING_BYTES (s);
1651
1652 data = b->next_free;
1653 data->string = s;
1654 s->data = SDATA_DATA (data);
1655 #ifdef GC_CHECK_STRING_BYTES
1656 SDATA_NBYTES (data) = nbytes;
1657 #endif
1658 s->size = nchars;
1659 s->size_byte = nbytes;
1660 s->data[nbytes] = '\0';
1661 b->next_free = (struct sdata *) ((char *) data + needed);
1662
1663 /* If S had already data assigned, mark that as free by setting its
1664 string back-pointer to null, and recording the size of the data
1665 in it. */
1666 if (old_data)
1667 {
1668 SDATA_NBYTES (old_data) = old_nbytes;
1669 old_data->string = NULL;
1670 }
1671
1672 consing_since_gc += needed;
1673 }
1674
1675
1676 /* Sweep and compact strings. */
1677
1678 static void
1679 sweep_strings ()
1680 {
1681 struct string_block *b, *next;
1682 struct string_block *live_blocks = NULL;
1683
1684 string_free_list = NULL;
1685 total_strings = total_free_strings = 0;
1686 total_string_size = 0;
1687
1688 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1689 for (b = string_blocks; b; b = next)
1690 {
1691 int i, nfree = 0;
1692 struct Lisp_String *free_list_before = string_free_list;
1693
1694 next = b->next;
1695
1696 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1697 {
1698 struct Lisp_String *s = b->strings + i;
1699
1700 if (s->data)
1701 {
1702 /* String was not on free-list before. */
1703 if (STRING_MARKED_P (s))
1704 {
1705 /* String is live; unmark it and its intervals. */
1706 UNMARK_STRING (s);
1707
1708 if (!NULL_INTERVAL_P (s->intervals))
1709 UNMARK_BALANCE_INTERVALS (s->intervals);
1710
1711 ++total_strings;
1712 total_string_size += STRING_BYTES (s);
1713 }
1714 else
1715 {
1716 /* String is dead. Put it on the free-list. */
1717 struct sdata *data = SDATA_OF_STRING (s);
1718
1719 /* Save the size of S in its sdata so that we know
1720 how large that is. Reset the sdata's string
1721 back-pointer so that we know it's free. */
1722 #ifdef GC_CHECK_STRING_BYTES
1723 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1724 abort ();
1725 #else
1726 data->u.nbytes = GC_STRING_BYTES (s);
1727 #endif
1728 data->string = NULL;
1729
1730 /* Reset the strings's `data' member so that we
1731 know it's free. */
1732 s->data = NULL;
1733
1734 /* Put the string on the free-list. */
1735 NEXT_FREE_LISP_STRING (s) = string_free_list;
1736 string_free_list = s;
1737 ++nfree;
1738 }
1739 }
1740 else
1741 {
1742 /* S was on the free-list before. Put it there again. */
1743 NEXT_FREE_LISP_STRING (s) = string_free_list;
1744 string_free_list = s;
1745 ++nfree;
1746 }
1747 }
1748
1749 /* Free blocks that contain free Lisp_Strings only, except
1750 the first two of them. */
1751 if (nfree == STRING_BLOCK_SIZE
1752 && total_free_strings > STRING_BLOCK_SIZE)
1753 {
1754 lisp_free (b);
1755 --n_string_blocks;
1756 string_free_list = free_list_before;
1757 }
1758 else
1759 {
1760 total_free_strings += nfree;
1761 b->next = live_blocks;
1762 live_blocks = b;
1763 }
1764 }
1765
1766 string_blocks = live_blocks;
1767 free_large_strings ();
1768 compact_small_strings ();
1769 }
1770
1771
1772 /* Free dead large strings. */
1773
1774 static void
1775 free_large_strings ()
1776 {
1777 struct sblock *b, *next;
1778 struct sblock *live_blocks = NULL;
1779
1780 for (b = large_sblocks; b; b = next)
1781 {
1782 next = b->next;
1783
1784 if (b->first_data.string == NULL)
1785 lisp_free (b);
1786 else
1787 {
1788 b->next = live_blocks;
1789 live_blocks = b;
1790 }
1791 }
1792
1793 large_sblocks = live_blocks;
1794 }
1795
1796
1797 /* Compact data of small strings. Free sblocks that don't contain
1798 data of live strings after compaction. */
1799
1800 static void
1801 compact_small_strings ()
1802 {
1803 struct sblock *b, *tb, *next;
1804 struct sdata *from, *to, *end, *tb_end;
1805 struct sdata *to_end, *from_end;
1806
1807 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1808 to, and TB_END is the end of TB. */
1809 tb = oldest_sblock;
1810 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1811 to = &tb->first_data;
1812
1813 /* Step through the blocks from the oldest to the youngest. We
1814 expect that old blocks will stabilize over time, so that less
1815 copying will happen this way. */
1816 for (b = oldest_sblock; b; b = b->next)
1817 {
1818 end = b->next_free;
1819 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1820
1821 for (from = &b->first_data; from < end; from = from_end)
1822 {
1823 /* Compute the next FROM here because copying below may
1824 overwrite data we need to compute it. */
1825 int nbytes;
1826
1827 #ifdef GC_CHECK_STRING_BYTES
1828 /* Check that the string size recorded in the string is the
1829 same as the one recorded in the sdata structure. */
1830 if (from->string
1831 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1832 abort ();
1833 #endif /* GC_CHECK_STRING_BYTES */
1834
1835 if (from->string)
1836 nbytes = GC_STRING_BYTES (from->string);
1837 else
1838 nbytes = SDATA_NBYTES (from);
1839
1840 nbytes = SDATA_SIZE (nbytes);
1841 from_end = (struct sdata *) ((char *) from + nbytes);
1842
1843 /* FROM->string non-null means it's alive. Copy its data. */
1844 if (from->string)
1845 {
1846 /* If TB is full, proceed with the next sblock. */
1847 to_end = (struct sdata *) ((char *) to + nbytes);
1848 if (to_end > tb_end)
1849 {
1850 tb->next_free = to;
1851 tb = tb->next;
1852 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1853 to = &tb->first_data;
1854 to_end = (struct sdata *) ((char *) to + nbytes);
1855 }
1856
1857 /* Copy, and update the string's `data' pointer. */
1858 if (from != to)
1859 {
1860 xassert (tb != b || to <= from);
1861 safe_bcopy ((char *) from, (char *) to, nbytes);
1862 to->string->data = SDATA_DATA (to);
1863 }
1864
1865 /* Advance past the sdata we copied to. */
1866 to = to_end;
1867 }
1868 }
1869 }
1870
1871 /* The rest of the sblocks following TB don't contain live data, so
1872 we can free them. */
1873 for (b = tb->next; b; b = next)
1874 {
1875 next = b->next;
1876 lisp_free (b);
1877 }
1878
1879 tb->next_free = to;
1880 tb->next = NULL;
1881 current_sblock = tb;
1882 }
1883
1884
1885 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1886 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1887 Both LENGTH and INIT must be numbers. */)
1888 (length, init)
1889 Lisp_Object length, init;
1890 {
1891 register Lisp_Object val;
1892 register unsigned char *p, *end;
1893 int c, nbytes;
1894
1895 CHECK_NATNUM (length);
1896 CHECK_NUMBER (init);
1897
1898 c = XINT (init);
1899 if (SINGLE_BYTE_CHAR_P (c))
1900 {
1901 nbytes = XINT (length);
1902 val = make_uninit_string (nbytes);
1903 p = SDATA (val);
1904 end = p + SCHARS (val);
1905 while (p != end)
1906 *p++ = c;
1907 }
1908 else
1909 {
1910 unsigned char str[MAX_MULTIBYTE_LENGTH];
1911 int len = CHAR_STRING (c, str);
1912
1913 nbytes = len * XINT (length);
1914 val = make_uninit_multibyte_string (XINT (length), nbytes);
1915 p = SDATA (val);
1916 end = p + nbytes;
1917 while (p != end)
1918 {
1919 bcopy (str, p, len);
1920 p += len;
1921 }
1922 }
1923
1924 *p = 0;
1925 return val;
1926 }
1927
1928
1929 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1930 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1931 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1932 (length, init)
1933 Lisp_Object length, init;
1934 {
1935 register Lisp_Object val;
1936 struct Lisp_Bool_Vector *p;
1937 int real_init, i;
1938 int length_in_chars, length_in_elts, bits_per_value;
1939
1940 CHECK_NATNUM (length);
1941
1942 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1943
1944 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1945 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1946
1947 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1948 slot `size' of the struct Lisp_Bool_Vector. */
1949 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1950 p = XBOOL_VECTOR (val);
1951
1952 /* Get rid of any bits that would cause confusion. */
1953 p->vector_size = 0;
1954 XSETBOOL_VECTOR (val, p);
1955 p->size = XFASTINT (length);
1956
1957 real_init = (NILP (init) ? 0 : -1);
1958 for (i = 0; i < length_in_chars ; i++)
1959 p->data[i] = real_init;
1960
1961 /* Clear the extraneous bits in the last byte. */
1962 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1963 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1964 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1965
1966 return val;
1967 }
1968
1969
1970 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1971 of characters from the contents. This string may be unibyte or
1972 multibyte, depending on the contents. */
1973
1974 Lisp_Object
1975 make_string (contents, nbytes)
1976 const char *contents;
1977 int nbytes;
1978 {
1979 register Lisp_Object val;
1980 int nchars, multibyte_nbytes;
1981
1982 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1983 if (nbytes == nchars || nbytes != multibyte_nbytes)
1984 /* CONTENTS contains no multibyte sequences or contains an invalid
1985 multibyte sequence. We must make unibyte string. */
1986 val = make_unibyte_string (contents, nbytes);
1987 else
1988 val = make_multibyte_string (contents, nchars, nbytes);
1989 return val;
1990 }
1991
1992
1993 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1994
1995 Lisp_Object
1996 make_unibyte_string (contents, length)
1997 const char *contents;
1998 int length;
1999 {
2000 register Lisp_Object val;
2001 val = make_uninit_string (length);
2002 bcopy (contents, SDATA (val), length);
2003 STRING_SET_UNIBYTE (val);
2004 return val;
2005 }
2006
2007
2008 /* Make a multibyte string from NCHARS characters occupying NBYTES
2009 bytes at CONTENTS. */
2010
2011 Lisp_Object
2012 make_multibyte_string (contents, nchars, nbytes)
2013 const char *contents;
2014 int nchars, nbytes;
2015 {
2016 register Lisp_Object val;
2017 val = make_uninit_multibyte_string (nchars, nbytes);
2018 bcopy (contents, SDATA (val), nbytes);
2019 return val;
2020 }
2021
2022
2023 /* Make a string from NCHARS characters occupying NBYTES bytes at
2024 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2025
2026 Lisp_Object
2027 make_string_from_bytes (contents, nchars, nbytes)
2028 const char *contents;
2029 int nchars, nbytes;
2030 {
2031 register Lisp_Object val;
2032 val = make_uninit_multibyte_string (nchars, nbytes);
2033 bcopy (contents, SDATA (val), nbytes);
2034 if (SBYTES (val) == SCHARS (val))
2035 STRING_SET_UNIBYTE (val);
2036 return val;
2037 }
2038
2039
2040 /* Make a string from NCHARS characters occupying NBYTES bytes at
2041 CONTENTS. The argument MULTIBYTE controls whether to label the
2042 string as multibyte. If NCHARS is negative, it counts the number of
2043 characters by itself. */
2044
2045 Lisp_Object
2046 make_specified_string (contents, nchars, nbytes, multibyte)
2047 const char *contents;
2048 int nchars, nbytes;
2049 int multibyte;
2050 {
2051 register Lisp_Object val;
2052
2053 if (nchars < 0)
2054 {
2055 if (multibyte)
2056 nchars = multibyte_chars_in_text (contents, nbytes);
2057 else
2058 nchars = nbytes;
2059 }
2060 val = make_uninit_multibyte_string (nchars, nbytes);
2061 bcopy (contents, SDATA (val), nbytes);
2062 if (!multibyte)
2063 STRING_SET_UNIBYTE (val);
2064 return val;
2065 }
2066
2067
2068 /* Make a string from the data at STR, treating it as multibyte if the
2069 data warrants. */
2070
2071 Lisp_Object
2072 build_string (str)
2073 const char *str;
2074 {
2075 return make_string (str, strlen (str));
2076 }
2077
2078
2079 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2080 occupying LENGTH bytes. */
2081
2082 Lisp_Object
2083 make_uninit_string (length)
2084 int length;
2085 {
2086 Lisp_Object val;
2087 val = make_uninit_multibyte_string (length, length);
2088 STRING_SET_UNIBYTE (val);
2089 return val;
2090 }
2091
2092
2093 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2094 which occupy NBYTES bytes. */
2095
2096 Lisp_Object
2097 make_uninit_multibyte_string (nchars, nbytes)
2098 int nchars, nbytes;
2099 {
2100 Lisp_Object string;
2101 struct Lisp_String *s;
2102
2103 if (nchars < 0)
2104 abort ();
2105
2106 s = allocate_string ();
2107 allocate_string_data (s, nchars, nbytes);
2108 XSETSTRING (string, s);
2109 string_chars_consed += nbytes;
2110 return string;
2111 }
2112
2113
2114 \f
2115 /***********************************************************************
2116 Float Allocation
2117 ***********************************************************************/
2118
2119 /* We store float cells inside of float_blocks, allocating a new
2120 float_block with malloc whenever necessary. Float cells reclaimed
2121 by GC are put on a free list to be reallocated before allocating
2122 any new float cells from the latest float_block. */
2123
2124 #define FLOAT_BLOCK_SIZE \
2125 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2126 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2127
2128 #define GETMARKBIT(block,n) \
2129 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2130 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2131 & 1)
2132
2133 #define SETMARKBIT(block,n) \
2134 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2135 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2136
2137 #define UNSETMARKBIT(block,n) \
2138 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2139 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2140
2141 #define FLOAT_BLOCK(fptr) \
2142 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2143
2144 #define FLOAT_INDEX(fptr) \
2145 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2146
2147 struct float_block
2148 {
2149 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2150 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2151 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2152 struct float_block *next;
2153 };
2154
2155 #define FLOAT_MARKED_P(fptr) \
2156 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2157
2158 #define FLOAT_MARK(fptr) \
2159 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2160
2161 #define FLOAT_UNMARK(fptr) \
2162 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2163
2164 /* Current float_block. */
2165
2166 struct float_block *float_block;
2167
2168 /* Index of first unused Lisp_Float in the current float_block. */
2169
2170 int float_block_index;
2171
2172 /* Total number of float blocks now in use. */
2173
2174 int n_float_blocks;
2175
2176 /* Free-list of Lisp_Floats. */
2177
2178 struct Lisp_Float *float_free_list;
2179
2180
2181 /* Initialize float allocation. */
2182
2183 void
2184 init_float ()
2185 {
2186 float_block = NULL;
2187 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2188 float_free_list = 0;
2189 n_float_blocks = 0;
2190 }
2191
2192
2193 /* Explicitly free a float cell by putting it on the free-list. */
2194
2195 void
2196 free_float (ptr)
2197 struct Lisp_Float *ptr;
2198 {
2199 *(struct Lisp_Float **)&ptr->data = float_free_list;
2200 float_free_list = ptr;
2201 }
2202
2203
2204 /* Return a new float object with value FLOAT_VALUE. */
2205
2206 Lisp_Object
2207 make_float (float_value)
2208 double float_value;
2209 {
2210 register Lisp_Object val;
2211
2212 if (float_free_list)
2213 {
2214 /* We use the data field for chaining the free list
2215 so that we won't use the same field that has the mark bit. */
2216 XSETFLOAT (val, float_free_list);
2217 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2218 }
2219 else
2220 {
2221 if (float_block_index == FLOAT_BLOCK_SIZE)
2222 {
2223 register struct float_block *new;
2224
2225 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2226 MEM_TYPE_FLOAT);
2227 new->next = float_block;
2228 float_block = new;
2229 float_block_index = 0;
2230 n_float_blocks++;
2231 }
2232 XSETFLOAT (val, &float_block->floats[float_block_index++]);
2233 }
2234
2235 XFLOAT_DATA (val) = float_value;
2236 FLOAT_UNMARK (XFLOAT (val));
2237 consing_since_gc += sizeof (struct Lisp_Float);
2238 floats_consed++;
2239 return val;
2240 }
2241
2242
2243 \f
2244 /***********************************************************************
2245 Cons Allocation
2246 ***********************************************************************/
2247
2248 /* We store cons cells inside of cons_blocks, allocating a new
2249 cons_block with malloc whenever necessary. Cons cells reclaimed by
2250 GC are put on a free list to be reallocated before allocating
2251 any new cons cells from the latest cons_block. */
2252
2253 #define CONS_BLOCK_SIZE \
2254 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2255 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2256
2257 #define CONS_BLOCK(fptr) \
2258 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2259
2260 #define CONS_INDEX(fptr) \
2261 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2262
2263 struct cons_block
2264 {
2265 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2266 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2267 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2268 struct cons_block *next;
2269 };
2270
2271 #define CONS_MARKED_P(fptr) \
2272 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2273
2274 #define CONS_MARK(fptr) \
2275 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2276
2277 #define CONS_UNMARK(fptr) \
2278 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2279
2280 /* Current cons_block. */
2281
2282 struct cons_block *cons_block;
2283
2284 /* Index of first unused Lisp_Cons in the current block. */
2285
2286 int cons_block_index;
2287
2288 /* Free-list of Lisp_Cons structures. */
2289
2290 struct Lisp_Cons *cons_free_list;
2291
2292 /* Total number of cons blocks now in use. */
2293
2294 int n_cons_blocks;
2295
2296
2297 /* Initialize cons allocation. */
2298
2299 void
2300 init_cons ()
2301 {
2302 cons_block = NULL;
2303 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2304 cons_free_list = 0;
2305 n_cons_blocks = 0;
2306 }
2307
2308
2309 /* Explicitly free a cons cell by putting it on the free-list. */
2310
2311 void
2312 free_cons (ptr)
2313 struct Lisp_Cons *ptr;
2314 {
2315 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2316 #if GC_MARK_STACK
2317 ptr->car = Vdead;
2318 #endif
2319 cons_free_list = ptr;
2320 }
2321
2322
2323 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2324 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2325 (car, cdr)
2326 Lisp_Object car, cdr;
2327 {
2328 register Lisp_Object val;
2329
2330 if (cons_free_list)
2331 {
2332 /* We use the cdr for chaining the free list
2333 so that we won't use the same field that has the mark bit. */
2334 XSETCONS (val, cons_free_list);
2335 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2336 }
2337 else
2338 {
2339 if (cons_block_index == CONS_BLOCK_SIZE)
2340 {
2341 register struct cons_block *new;
2342 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2343 MEM_TYPE_CONS);
2344 new->next = cons_block;
2345 cons_block = new;
2346 cons_block_index = 0;
2347 n_cons_blocks++;
2348 }
2349 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2350 }
2351
2352 XSETCAR (val, car);
2353 XSETCDR (val, cdr);
2354 CONS_UNMARK (XCONS (val));
2355 consing_since_gc += sizeof (struct Lisp_Cons);
2356 cons_cells_consed++;
2357 return val;
2358 }
2359
2360
2361 /* Make a list of 2, 3, 4 or 5 specified objects. */
2362
2363 Lisp_Object
2364 list2 (arg1, arg2)
2365 Lisp_Object arg1, arg2;
2366 {
2367 return Fcons (arg1, Fcons (arg2, Qnil));
2368 }
2369
2370
2371 Lisp_Object
2372 list3 (arg1, arg2, arg3)
2373 Lisp_Object arg1, arg2, arg3;
2374 {
2375 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2376 }
2377
2378
2379 Lisp_Object
2380 list4 (arg1, arg2, arg3, arg4)
2381 Lisp_Object arg1, arg2, arg3, arg4;
2382 {
2383 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2384 }
2385
2386
2387 Lisp_Object
2388 list5 (arg1, arg2, arg3, arg4, arg5)
2389 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2390 {
2391 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2392 Fcons (arg5, Qnil)))));
2393 }
2394
2395
2396 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2397 doc: /* Return a newly created list with specified arguments as elements.
2398 Any number of arguments, even zero arguments, are allowed.
2399 usage: (list &rest OBJECTS) */)
2400 (nargs, args)
2401 int nargs;
2402 register Lisp_Object *args;
2403 {
2404 register Lisp_Object val;
2405 val = Qnil;
2406
2407 while (nargs > 0)
2408 {
2409 nargs--;
2410 val = Fcons (args[nargs], val);
2411 }
2412 return val;
2413 }
2414
2415
2416 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2417 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2418 (length, init)
2419 register Lisp_Object length, init;
2420 {
2421 register Lisp_Object val;
2422 register int size;
2423
2424 CHECK_NATNUM (length);
2425 size = XFASTINT (length);
2426
2427 val = Qnil;
2428 while (size > 0)
2429 {
2430 val = Fcons (init, val);
2431 --size;
2432
2433 if (size > 0)
2434 {
2435 val = Fcons (init, val);
2436 --size;
2437
2438 if (size > 0)
2439 {
2440 val = Fcons (init, val);
2441 --size;
2442
2443 if (size > 0)
2444 {
2445 val = Fcons (init, val);
2446 --size;
2447
2448 if (size > 0)
2449 {
2450 val = Fcons (init, val);
2451 --size;
2452 }
2453 }
2454 }
2455 }
2456
2457 QUIT;
2458 }
2459
2460 return val;
2461 }
2462
2463
2464 \f
2465 /***********************************************************************
2466 Vector Allocation
2467 ***********************************************************************/
2468
2469 /* Singly-linked list of all vectors. */
2470
2471 struct Lisp_Vector *all_vectors;
2472
2473 /* Total number of vector-like objects now in use. */
2474
2475 int n_vectors;
2476
2477
2478 /* Value is a pointer to a newly allocated Lisp_Vector structure
2479 with room for LEN Lisp_Objects. */
2480
2481 static struct Lisp_Vector *
2482 allocate_vectorlike (len, type)
2483 EMACS_INT len;
2484 enum mem_type type;
2485 {
2486 struct Lisp_Vector *p;
2487 size_t nbytes;
2488
2489 #ifdef DOUG_LEA_MALLOC
2490 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2491 because mapped region contents are not preserved in
2492 a dumped Emacs. */
2493 mallopt (M_MMAP_MAX, 0);
2494 #endif
2495
2496 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2497 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2498
2499 #ifdef DOUG_LEA_MALLOC
2500 /* Back to a reasonable maximum of mmap'ed areas. */
2501 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2502 #endif
2503
2504 consing_since_gc += nbytes;
2505 vector_cells_consed += len;
2506
2507 p->next = all_vectors;
2508 all_vectors = p;
2509 ++n_vectors;
2510 return p;
2511 }
2512
2513
2514 /* Allocate a vector with NSLOTS slots. */
2515
2516 struct Lisp_Vector *
2517 allocate_vector (nslots)
2518 EMACS_INT nslots;
2519 {
2520 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2521 v->size = nslots;
2522 return v;
2523 }
2524
2525
2526 /* Allocate other vector-like structures. */
2527
2528 struct Lisp_Hash_Table *
2529 allocate_hash_table ()
2530 {
2531 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2532 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2533 EMACS_INT i;
2534
2535 v->size = len;
2536 for (i = 0; i < len; ++i)
2537 v->contents[i] = Qnil;
2538
2539 return (struct Lisp_Hash_Table *) v;
2540 }
2541
2542
2543 struct window *
2544 allocate_window ()
2545 {
2546 EMACS_INT len = VECSIZE (struct window);
2547 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2548 EMACS_INT i;
2549
2550 for (i = 0; i < len; ++i)
2551 v->contents[i] = Qnil;
2552 v->size = len;
2553
2554 return (struct window *) v;
2555 }
2556
2557
2558 struct frame *
2559 allocate_frame ()
2560 {
2561 EMACS_INT len = VECSIZE (struct frame);
2562 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2563 EMACS_INT i;
2564
2565 for (i = 0; i < len; ++i)
2566 v->contents[i] = make_number (0);
2567 v->size = len;
2568 return (struct frame *) v;
2569 }
2570
2571
2572 struct Lisp_Process *
2573 allocate_process ()
2574 {
2575 EMACS_INT len = VECSIZE (struct Lisp_Process);
2576 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2577 EMACS_INT i;
2578
2579 for (i = 0; i < len; ++i)
2580 v->contents[i] = Qnil;
2581 v->size = len;
2582
2583 return (struct Lisp_Process *) v;
2584 }
2585
2586
2587 struct Lisp_Vector *
2588 allocate_other_vector (len)
2589 EMACS_INT len;
2590 {
2591 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2592 EMACS_INT i;
2593
2594 for (i = 0; i < len; ++i)
2595 v->contents[i] = Qnil;
2596 v->size = len;
2597
2598 return v;
2599 }
2600
2601
2602 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2603 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2604 See also the function `vector'. */)
2605 (length, init)
2606 register Lisp_Object length, init;
2607 {
2608 Lisp_Object vector;
2609 register EMACS_INT sizei;
2610 register int index;
2611 register struct Lisp_Vector *p;
2612
2613 CHECK_NATNUM (length);
2614 sizei = XFASTINT (length);
2615
2616 p = allocate_vector (sizei);
2617 for (index = 0; index < sizei; index++)
2618 p->contents[index] = init;
2619
2620 XSETVECTOR (vector, p);
2621 return vector;
2622 }
2623
2624
2625 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2626 doc: /* Return a newly created char-table, with purpose PURPOSE.
2627 Each element is initialized to INIT, which defaults to nil.
2628 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2629 The property's value should be an integer between 0 and 10. */)
2630 (purpose, init)
2631 register Lisp_Object purpose, init;
2632 {
2633 Lisp_Object vector;
2634 Lisp_Object n;
2635 CHECK_SYMBOL (purpose);
2636 n = Fget (purpose, Qchar_table_extra_slots);
2637 CHECK_NUMBER (n);
2638 if (XINT (n) < 0 || XINT (n) > 10)
2639 args_out_of_range (n, Qnil);
2640 /* Add 2 to the size for the defalt and parent slots. */
2641 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2642 init);
2643 XCHAR_TABLE (vector)->top = Qt;
2644 XCHAR_TABLE (vector)->parent = Qnil;
2645 XCHAR_TABLE (vector)->purpose = purpose;
2646 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2647 return vector;
2648 }
2649
2650
2651 /* Return a newly created sub char table with default value DEFALT.
2652 Since a sub char table does not appear as a top level Emacs Lisp
2653 object, we don't need a Lisp interface to make it. */
2654
2655 Lisp_Object
2656 make_sub_char_table (defalt)
2657 Lisp_Object defalt;
2658 {
2659 Lisp_Object vector
2660 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2661 XCHAR_TABLE (vector)->top = Qnil;
2662 XCHAR_TABLE (vector)->defalt = defalt;
2663 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2664 return vector;
2665 }
2666
2667
2668 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2669 doc: /* Return a newly created vector with specified arguments as elements.
2670 Any number of arguments, even zero arguments, are allowed.
2671 usage: (vector &rest OBJECTS) */)
2672 (nargs, args)
2673 register int nargs;
2674 Lisp_Object *args;
2675 {
2676 register Lisp_Object len, val;
2677 register int index;
2678 register struct Lisp_Vector *p;
2679
2680 XSETFASTINT (len, nargs);
2681 val = Fmake_vector (len, Qnil);
2682 p = XVECTOR (val);
2683 for (index = 0; index < nargs; index++)
2684 p->contents[index] = args[index];
2685 return val;
2686 }
2687
2688
2689 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2690 doc: /* Create a byte-code object with specified arguments as elements.
2691 The arguments should be the arglist, bytecode-string, constant vector,
2692 stack size, (optional) doc string, and (optional) interactive spec.
2693 The first four arguments are required; at most six have any
2694 significance.
2695 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2696 (nargs, args)
2697 register int nargs;
2698 Lisp_Object *args;
2699 {
2700 register Lisp_Object len, val;
2701 register int index;
2702 register struct Lisp_Vector *p;
2703
2704 XSETFASTINT (len, nargs);
2705 if (!NILP (Vpurify_flag))
2706 val = make_pure_vector ((EMACS_INT) nargs);
2707 else
2708 val = Fmake_vector (len, Qnil);
2709
2710 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2711 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2712 earlier because they produced a raw 8-bit string for byte-code
2713 and now such a byte-code string is loaded as multibyte while
2714 raw 8-bit characters converted to multibyte form. Thus, now we
2715 must convert them back to the original unibyte form. */
2716 args[1] = Fstring_as_unibyte (args[1]);
2717
2718 p = XVECTOR (val);
2719 for (index = 0; index < nargs; index++)
2720 {
2721 if (!NILP (Vpurify_flag))
2722 args[index] = Fpurecopy (args[index]);
2723 p->contents[index] = args[index];
2724 }
2725 XSETCOMPILED (val, p);
2726 return val;
2727 }
2728
2729
2730 \f
2731 /***********************************************************************
2732 Symbol Allocation
2733 ***********************************************************************/
2734
2735 /* Each symbol_block is just under 1020 bytes long, since malloc
2736 really allocates in units of powers of two and uses 4 bytes for its
2737 own overhead. */
2738
2739 #define SYMBOL_BLOCK_SIZE \
2740 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2741
2742 struct symbol_block
2743 {
2744 struct symbol_block *next;
2745 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2746 };
2747
2748 /* Current symbol block and index of first unused Lisp_Symbol
2749 structure in it. */
2750
2751 struct symbol_block *symbol_block;
2752 int symbol_block_index;
2753
2754 /* List of free symbols. */
2755
2756 struct Lisp_Symbol *symbol_free_list;
2757
2758 /* Total number of symbol blocks now in use. */
2759
2760 int n_symbol_blocks;
2761
2762
2763 /* Initialize symbol allocation. */
2764
2765 void
2766 init_symbol ()
2767 {
2768 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2769 MEM_TYPE_SYMBOL);
2770 symbol_block->next = 0;
2771 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2772 symbol_block_index = 0;
2773 symbol_free_list = 0;
2774 n_symbol_blocks = 1;
2775 }
2776
2777
2778 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2779 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2780 Its value and function definition are void, and its property list is nil. */)
2781 (name)
2782 Lisp_Object name;
2783 {
2784 register Lisp_Object val;
2785 register struct Lisp_Symbol *p;
2786
2787 CHECK_STRING (name);
2788
2789 if (symbol_free_list)
2790 {
2791 XSETSYMBOL (val, symbol_free_list);
2792 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2793 }
2794 else
2795 {
2796 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2797 {
2798 struct symbol_block *new;
2799 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2800 MEM_TYPE_SYMBOL);
2801 new->next = symbol_block;
2802 symbol_block = new;
2803 symbol_block_index = 0;
2804 n_symbol_blocks++;
2805 }
2806 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2807 }
2808
2809 p = XSYMBOL (val);
2810 p->xname = name;
2811 p->plist = Qnil;
2812 p->value = Qunbound;
2813 p->function = Qunbound;
2814 p->next = NULL;
2815 p->gcmarkbit = 0;
2816 p->interned = SYMBOL_UNINTERNED;
2817 p->constant = 0;
2818 p->indirect_variable = 0;
2819 consing_since_gc += sizeof (struct Lisp_Symbol);
2820 symbols_consed++;
2821 return val;
2822 }
2823
2824
2825 \f
2826 /***********************************************************************
2827 Marker (Misc) Allocation
2828 ***********************************************************************/
2829
2830 /* Allocation of markers and other objects that share that structure.
2831 Works like allocation of conses. */
2832
2833 #define MARKER_BLOCK_SIZE \
2834 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2835
2836 struct marker_block
2837 {
2838 struct marker_block *next;
2839 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2840 };
2841
2842 struct marker_block *marker_block;
2843 int marker_block_index;
2844
2845 union Lisp_Misc *marker_free_list;
2846
2847 /* Total number of marker blocks now in use. */
2848
2849 int n_marker_blocks;
2850
2851 void
2852 init_marker ()
2853 {
2854 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2855 MEM_TYPE_MISC);
2856 marker_block->next = 0;
2857 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2858 marker_block_index = 0;
2859 marker_free_list = 0;
2860 n_marker_blocks = 1;
2861 }
2862
2863 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2864
2865 Lisp_Object
2866 allocate_misc ()
2867 {
2868 Lisp_Object val;
2869
2870 if (marker_free_list)
2871 {
2872 XSETMISC (val, marker_free_list);
2873 marker_free_list = marker_free_list->u_free.chain;
2874 }
2875 else
2876 {
2877 if (marker_block_index == MARKER_BLOCK_SIZE)
2878 {
2879 struct marker_block *new;
2880 new = (struct marker_block *) lisp_malloc (sizeof *new,
2881 MEM_TYPE_MISC);
2882 new->next = marker_block;
2883 marker_block = new;
2884 marker_block_index = 0;
2885 n_marker_blocks++;
2886 }
2887 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2888 }
2889
2890 consing_since_gc += sizeof (union Lisp_Misc);
2891 misc_objects_consed++;
2892 XMARKER (val)->gcmarkbit = 0;
2893 return val;
2894 }
2895
2896 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2897 INTEGER. This is used to package C values to call record_unwind_protect.
2898 The unwind function can get the C values back using XSAVE_VALUE. */
2899
2900 Lisp_Object
2901 make_save_value (pointer, integer)
2902 void *pointer;
2903 int integer;
2904 {
2905 register Lisp_Object val;
2906 register struct Lisp_Save_Value *p;
2907
2908 val = allocate_misc ();
2909 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2910 p = XSAVE_VALUE (val);
2911 p->pointer = pointer;
2912 p->integer = integer;
2913 return val;
2914 }
2915
2916 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2917 doc: /* Return a newly allocated marker which does not point at any place. */)
2918 ()
2919 {
2920 register Lisp_Object val;
2921 register struct Lisp_Marker *p;
2922
2923 val = allocate_misc ();
2924 XMISCTYPE (val) = Lisp_Misc_Marker;
2925 p = XMARKER (val);
2926 p->buffer = 0;
2927 p->bytepos = 0;
2928 p->charpos = 0;
2929 p->next = NULL;
2930 p->insertion_type = 0;
2931 return val;
2932 }
2933
2934 /* Put MARKER back on the free list after using it temporarily. */
2935
2936 void
2937 free_marker (marker)
2938 Lisp_Object marker;
2939 {
2940 unchain_marker (XMARKER (marker));
2941
2942 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2943 XMISC (marker)->u_free.chain = marker_free_list;
2944 marker_free_list = XMISC (marker);
2945
2946 total_free_markers++;
2947 }
2948
2949 \f
2950 /* Return a newly created vector or string with specified arguments as
2951 elements. If all the arguments are characters that can fit
2952 in a string of events, make a string; otherwise, make a vector.
2953
2954 Any number of arguments, even zero arguments, are allowed. */
2955
2956 Lisp_Object
2957 make_event_array (nargs, args)
2958 register int nargs;
2959 Lisp_Object *args;
2960 {
2961 int i;
2962
2963 for (i = 0; i < nargs; i++)
2964 /* The things that fit in a string
2965 are characters that are in 0...127,
2966 after discarding the meta bit and all the bits above it. */
2967 if (!INTEGERP (args[i])
2968 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2969 return Fvector (nargs, args);
2970
2971 /* Since the loop exited, we know that all the things in it are
2972 characters, so we can make a string. */
2973 {
2974 Lisp_Object result;
2975
2976 result = Fmake_string (make_number (nargs), make_number (0));
2977 for (i = 0; i < nargs; i++)
2978 {
2979 SSET (result, i, XINT (args[i]));
2980 /* Move the meta bit to the right place for a string char. */
2981 if (XINT (args[i]) & CHAR_META)
2982 SSET (result, i, SREF (result, i) | 0x80);
2983 }
2984
2985 return result;
2986 }
2987 }
2988
2989
2990 \f
2991 /************************************************************************
2992 C Stack Marking
2993 ************************************************************************/
2994
2995 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2996
2997 /* Conservative C stack marking requires a method to identify possibly
2998 live Lisp objects given a pointer value. We do this by keeping
2999 track of blocks of Lisp data that are allocated in a red-black tree
3000 (see also the comment of mem_node which is the type of nodes in
3001 that tree). Function lisp_malloc adds information for an allocated
3002 block to the red-black tree with calls to mem_insert, and function
3003 lisp_free removes it with mem_delete. Functions live_string_p etc
3004 call mem_find to lookup information about a given pointer in the
3005 tree, and use that to determine if the pointer points to a Lisp
3006 object or not. */
3007
3008 /* Initialize this part of alloc.c. */
3009
3010 static void
3011 mem_init ()
3012 {
3013 mem_z.left = mem_z.right = MEM_NIL;
3014 mem_z.parent = NULL;
3015 mem_z.color = MEM_BLACK;
3016 mem_z.start = mem_z.end = NULL;
3017 mem_root = MEM_NIL;
3018 }
3019
3020
3021 /* Value is a pointer to the mem_node containing START. Value is
3022 MEM_NIL if there is no node in the tree containing START. */
3023
3024 static INLINE struct mem_node *
3025 mem_find (start)
3026 void *start;
3027 {
3028 struct mem_node *p;
3029
3030 if (start < min_heap_address || start > max_heap_address)
3031 return MEM_NIL;
3032
3033 /* Make the search always successful to speed up the loop below. */
3034 mem_z.start = start;
3035 mem_z.end = (char *) start + 1;
3036
3037 p = mem_root;
3038 while (start < p->start || start >= p->end)
3039 p = start < p->start ? p->left : p->right;
3040 return p;
3041 }
3042
3043
3044 /* Insert a new node into the tree for a block of memory with start
3045 address START, end address END, and type TYPE. Value is a
3046 pointer to the node that was inserted. */
3047
3048 static struct mem_node *
3049 mem_insert (start, end, type)
3050 void *start, *end;
3051 enum mem_type type;
3052 {
3053 struct mem_node *c, *parent, *x;
3054
3055 if (start < min_heap_address)
3056 min_heap_address = start;
3057 if (end > max_heap_address)
3058 max_heap_address = end;
3059
3060 /* See where in the tree a node for START belongs. In this
3061 particular application, it shouldn't happen that a node is already
3062 present. For debugging purposes, let's check that. */
3063 c = mem_root;
3064 parent = NULL;
3065
3066 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3067
3068 while (c != MEM_NIL)
3069 {
3070 if (start >= c->start && start < c->end)
3071 abort ();
3072 parent = c;
3073 c = start < c->start ? c->left : c->right;
3074 }
3075
3076 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3077
3078 while (c != MEM_NIL)
3079 {
3080 parent = c;
3081 c = start < c->start ? c->left : c->right;
3082 }
3083
3084 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3085
3086 /* Create a new node. */
3087 #ifdef GC_MALLOC_CHECK
3088 x = (struct mem_node *) _malloc_internal (sizeof *x);
3089 if (x == NULL)
3090 abort ();
3091 #else
3092 x = (struct mem_node *) xmalloc (sizeof *x);
3093 #endif
3094 x->start = start;
3095 x->end = end;
3096 x->type = type;
3097 x->parent = parent;
3098 x->left = x->right = MEM_NIL;
3099 x->color = MEM_RED;
3100
3101 /* Insert it as child of PARENT or install it as root. */
3102 if (parent)
3103 {
3104 if (start < parent->start)
3105 parent->left = x;
3106 else
3107 parent->right = x;
3108 }
3109 else
3110 mem_root = x;
3111
3112 /* Re-establish red-black tree properties. */
3113 mem_insert_fixup (x);
3114
3115 return x;
3116 }
3117
3118
3119 /* Re-establish the red-black properties of the tree, and thereby
3120 balance the tree, after node X has been inserted; X is always red. */
3121
3122 static void
3123 mem_insert_fixup (x)
3124 struct mem_node *x;
3125 {
3126 while (x != mem_root && x->parent->color == MEM_RED)
3127 {
3128 /* X is red and its parent is red. This is a violation of
3129 red-black tree property #3. */
3130
3131 if (x->parent == x->parent->parent->left)
3132 {
3133 /* We're on the left side of our grandparent, and Y is our
3134 "uncle". */
3135 struct mem_node *y = x->parent->parent->right;
3136
3137 if (y->color == MEM_RED)
3138 {
3139 /* Uncle and parent are red but should be black because
3140 X is red. Change the colors accordingly and proceed
3141 with the grandparent. */
3142 x->parent->color = MEM_BLACK;
3143 y->color = MEM_BLACK;
3144 x->parent->parent->color = MEM_RED;
3145 x = x->parent->parent;
3146 }
3147 else
3148 {
3149 /* Parent and uncle have different colors; parent is
3150 red, uncle is black. */
3151 if (x == x->parent->right)
3152 {
3153 x = x->parent;
3154 mem_rotate_left (x);
3155 }
3156
3157 x->parent->color = MEM_BLACK;
3158 x->parent->parent->color = MEM_RED;
3159 mem_rotate_right (x->parent->parent);
3160 }
3161 }
3162 else
3163 {
3164 /* This is the symmetrical case of above. */
3165 struct mem_node *y = x->parent->parent->left;
3166
3167 if (y->color == MEM_RED)
3168 {
3169 x->parent->color = MEM_BLACK;
3170 y->color = MEM_BLACK;
3171 x->parent->parent->color = MEM_RED;
3172 x = x->parent->parent;
3173 }
3174 else
3175 {
3176 if (x == x->parent->left)
3177 {
3178 x = x->parent;
3179 mem_rotate_right (x);
3180 }
3181
3182 x->parent->color = MEM_BLACK;
3183 x->parent->parent->color = MEM_RED;
3184 mem_rotate_left (x->parent->parent);
3185 }
3186 }
3187 }
3188
3189 /* The root may have been changed to red due to the algorithm. Set
3190 it to black so that property #5 is satisfied. */
3191 mem_root->color = MEM_BLACK;
3192 }
3193
3194
3195 /* (x) (y)
3196 / \ / \
3197 a (y) ===> (x) c
3198 / \ / \
3199 b c a b */
3200
3201 static void
3202 mem_rotate_left (x)
3203 struct mem_node *x;
3204 {
3205 struct mem_node *y;
3206
3207 /* Turn y's left sub-tree into x's right sub-tree. */
3208 y = x->right;
3209 x->right = y->left;
3210 if (y->left != MEM_NIL)
3211 y->left->parent = x;
3212
3213 /* Y's parent was x's parent. */
3214 if (y != MEM_NIL)
3215 y->parent = x->parent;
3216
3217 /* Get the parent to point to y instead of x. */
3218 if (x->parent)
3219 {
3220 if (x == x->parent->left)
3221 x->parent->left = y;
3222 else
3223 x->parent->right = y;
3224 }
3225 else
3226 mem_root = y;
3227
3228 /* Put x on y's left. */
3229 y->left = x;
3230 if (x != MEM_NIL)
3231 x->parent = y;
3232 }
3233
3234
3235 /* (x) (Y)
3236 / \ / \
3237 (y) c ===> a (x)
3238 / \ / \
3239 a b b c */
3240
3241 static void
3242 mem_rotate_right (x)
3243 struct mem_node *x;
3244 {
3245 struct mem_node *y = x->left;
3246
3247 x->left = y->right;
3248 if (y->right != MEM_NIL)
3249 y->right->parent = x;
3250
3251 if (y != MEM_NIL)
3252 y->parent = x->parent;
3253 if (x->parent)
3254 {
3255 if (x == x->parent->right)
3256 x->parent->right = y;
3257 else
3258 x->parent->left = y;
3259 }
3260 else
3261 mem_root = y;
3262
3263 y->right = x;
3264 if (x != MEM_NIL)
3265 x->parent = y;
3266 }
3267
3268
3269 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3270
3271 static void
3272 mem_delete (z)
3273 struct mem_node *z;
3274 {
3275 struct mem_node *x, *y;
3276
3277 if (!z || z == MEM_NIL)
3278 return;
3279
3280 if (z->left == MEM_NIL || z->right == MEM_NIL)
3281 y = z;
3282 else
3283 {
3284 y = z->right;
3285 while (y->left != MEM_NIL)
3286 y = y->left;
3287 }
3288
3289 if (y->left != MEM_NIL)
3290 x = y->left;
3291 else
3292 x = y->right;
3293
3294 x->parent = y->parent;
3295 if (y->parent)
3296 {
3297 if (y == y->parent->left)
3298 y->parent->left = x;
3299 else
3300 y->parent->right = x;
3301 }
3302 else
3303 mem_root = x;
3304
3305 if (y != z)
3306 {
3307 z->start = y->start;
3308 z->end = y->end;
3309 z->type = y->type;
3310 }
3311
3312 if (y->color == MEM_BLACK)
3313 mem_delete_fixup (x);
3314
3315 #ifdef GC_MALLOC_CHECK
3316 _free_internal (y);
3317 #else
3318 xfree (y);
3319 #endif
3320 }
3321
3322
3323 /* Re-establish the red-black properties of the tree, after a
3324 deletion. */
3325
3326 static void
3327 mem_delete_fixup (x)
3328 struct mem_node *x;
3329 {
3330 while (x != mem_root && x->color == MEM_BLACK)
3331 {
3332 if (x == x->parent->left)
3333 {
3334 struct mem_node *w = x->parent->right;
3335
3336 if (w->color == MEM_RED)
3337 {
3338 w->color = MEM_BLACK;
3339 x->parent->color = MEM_RED;
3340 mem_rotate_left (x->parent);
3341 w = x->parent->right;
3342 }
3343
3344 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3345 {
3346 w->color = MEM_RED;
3347 x = x->parent;
3348 }
3349 else
3350 {
3351 if (w->right->color == MEM_BLACK)
3352 {
3353 w->left->color = MEM_BLACK;
3354 w->color = MEM_RED;
3355 mem_rotate_right (w);
3356 w = x->parent->right;
3357 }
3358 w->color = x->parent->color;
3359 x->parent->color = MEM_BLACK;
3360 w->right->color = MEM_BLACK;
3361 mem_rotate_left (x->parent);
3362 x = mem_root;
3363 }
3364 }
3365 else
3366 {
3367 struct mem_node *w = x->parent->left;
3368
3369 if (w->color == MEM_RED)
3370 {
3371 w->color = MEM_BLACK;
3372 x->parent->color = MEM_RED;
3373 mem_rotate_right (x->parent);
3374 w = x->parent->left;
3375 }
3376
3377 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3378 {
3379 w->color = MEM_RED;
3380 x = x->parent;
3381 }
3382 else
3383 {
3384 if (w->left->color == MEM_BLACK)
3385 {
3386 w->right->color = MEM_BLACK;
3387 w->color = MEM_RED;
3388 mem_rotate_left (w);
3389 w = x->parent->left;
3390 }
3391
3392 w->color = x->parent->color;
3393 x->parent->color = MEM_BLACK;
3394 w->left->color = MEM_BLACK;
3395 mem_rotate_right (x->parent);
3396 x = mem_root;
3397 }
3398 }
3399 }
3400
3401 x->color = MEM_BLACK;
3402 }
3403
3404
3405 /* Value is non-zero if P is a pointer to a live Lisp string on
3406 the heap. M is a pointer to the mem_block for P. */
3407
3408 static INLINE int
3409 live_string_p (m, p)
3410 struct mem_node *m;
3411 void *p;
3412 {
3413 if (m->type == MEM_TYPE_STRING)
3414 {
3415 struct string_block *b = (struct string_block *) m->start;
3416 int offset = (char *) p - (char *) &b->strings[0];
3417
3418 /* P must point to the start of a Lisp_String structure, and it
3419 must not be on the free-list. */
3420 return (offset >= 0
3421 && offset % sizeof b->strings[0] == 0
3422 && ((struct Lisp_String *) p)->data != NULL);
3423 }
3424 else
3425 return 0;
3426 }
3427
3428
3429 /* Value is non-zero if P is a pointer to a live Lisp cons on
3430 the heap. M is a pointer to the mem_block for P. */
3431
3432 static INLINE int
3433 live_cons_p (m, p)
3434 struct mem_node *m;
3435 void *p;
3436 {
3437 if (m->type == MEM_TYPE_CONS)
3438 {
3439 struct cons_block *b = (struct cons_block *) m->start;
3440 int offset = (char *) p - (char *) &b->conses[0];
3441
3442 /* P must point to the start of a Lisp_Cons, not be
3443 one of the unused cells in the current cons block,
3444 and not be on the free-list. */
3445 return (offset >= 0
3446 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3447 && offset % sizeof b->conses[0] == 0
3448 && (b != cons_block
3449 || offset / sizeof b->conses[0] < cons_block_index)
3450 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3451 }
3452 else
3453 return 0;
3454 }
3455
3456
3457 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3458 the heap. M is a pointer to the mem_block for P. */
3459
3460 static INLINE int
3461 live_symbol_p (m, p)
3462 struct mem_node *m;
3463 void *p;
3464 {
3465 if (m->type == MEM_TYPE_SYMBOL)
3466 {
3467 struct symbol_block *b = (struct symbol_block *) m->start;
3468 int offset = (char *) p - (char *) &b->symbols[0];
3469
3470 /* P must point to the start of a Lisp_Symbol, not be
3471 one of the unused cells in the current symbol block,
3472 and not be on the free-list. */
3473 return (offset >= 0
3474 && offset % sizeof b->symbols[0] == 0
3475 && (b != symbol_block
3476 || offset / sizeof b->symbols[0] < symbol_block_index)
3477 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3478 }
3479 else
3480 return 0;
3481 }
3482
3483
3484 /* Value is non-zero if P is a pointer to a live Lisp float on
3485 the heap. M is a pointer to the mem_block for P. */
3486
3487 static INLINE int
3488 live_float_p (m, p)
3489 struct mem_node *m;
3490 void *p;
3491 {
3492 if (m->type == MEM_TYPE_FLOAT)
3493 {
3494 struct float_block *b = (struct float_block *) m->start;
3495 int offset = (char *) p - (char *) &b->floats[0];
3496
3497 /* P must point to the start of a Lisp_Float and not be
3498 one of the unused cells in the current float block. */
3499 return (offset >= 0
3500 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3501 && offset % sizeof b->floats[0] == 0
3502 && (b != float_block
3503 || offset / sizeof b->floats[0] < float_block_index));
3504 }
3505 else
3506 return 0;
3507 }
3508
3509
3510 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3511 the heap. M is a pointer to the mem_block for P. */
3512
3513 static INLINE int
3514 live_misc_p (m, p)
3515 struct mem_node *m;
3516 void *p;
3517 {
3518 if (m->type == MEM_TYPE_MISC)
3519 {
3520 struct marker_block *b = (struct marker_block *) m->start;
3521 int offset = (char *) p - (char *) &b->markers[0];
3522
3523 /* P must point to the start of a Lisp_Misc, not be
3524 one of the unused cells in the current misc block,
3525 and not be on the free-list. */
3526 return (offset >= 0
3527 && offset % sizeof b->markers[0] == 0
3528 && (b != marker_block
3529 || offset / sizeof b->markers[0] < marker_block_index)
3530 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3531 }
3532 else
3533 return 0;
3534 }
3535
3536
3537 /* Value is non-zero if P is a pointer to a live vector-like object.
3538 M is a pointer to the mem_block for P. */
3539
3540 static INLINE int
3541 live_vector_p (m, p)
3542 struct mem_node *m;
3543 void *p;
3544 {
3545 return (p == m->start
3546 && m->type >= MEM_TYPE_VECTOR
3547 && m->type <= MEM_TYPE_WINDOW);
3548 }
3549
3550
3551 /* Value is non-zero if P is a pointer to a live buffer. M is a
3552 pointer to the mem_block for P. */
3553
3554 static INLINE int
3555 live_buffer_p (m, p)
3556 struct mem_node *m;
3557 void *p;
3558 {
3559 /* P must point to the start of the block, and the buffer
3560 must not have been killed. */
3561 return (m->type == MEM_TYPE_BUFFER
3562 && p == m->start
3563 && !NILP (((struct buffer *) p)->name));
3564 }
3565
3566 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3567
3568 #if GC_MARK_STACK
3569
3570 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3571
3572 /* Array of objects that are kept alive because the C stack contains
3573 a pattern that looks like a reference to them . */
3574
3575 #define MAX_ZOMBIES 10
3576 static Lisp_Object zombies[MAX_ZOMBIES];
3577
3578 /* Number of zombie objects. */
3579
3580 static int nzombies;
3581
3582 /* Number of garbage collections. */
3583
3584 static int ngcs;
3585
3586 /* Average percentage of zombies per collection. */
3587
3588 static double avg_zombies;
3589
3590 /* Max. number of live and zombie objects. */
3591
3592 static int max_live, max_zombies;
3593
3594 /* Average number of live objects per GC. */
3595
3596 static double avg_live;
3597
3598 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3599 doc: /* Show information about live and zombie objects. */)
3600 ()
3601 {
3602 Lisp_Object args[8], zombie_list = Qnil;
3603 int i;
3604 for (i = 0; i < nzombies; i++)
3605 zombie_list = Fcons (zombies[i], zombie_list);
3606 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3607 args[1] = make_number (ngcs);
3608 args[2] = make_float (avg_live);
3609 args[3] = make_float (avg_zombies);
3610 args[4] = make_float (avg_zombies / avg_live / 100);
3611 args[5] = make_number (max_live);
3612 args[6] = make_number (max_zombies);
3613 args[7] = zombie_list;
3614 return Fmessage (8, args);
3615 }
3616
3617 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3618
3619
3620 /* Mark OBJ if we can prove it's a Lisp_Object. */
3621
3622 static INLINE void
3623 mark_maybe_object (obj)
3624 Lisp_Object obj;
3625 {
3626 void *po = (void *) XPNTR (obj);
3627 struct mem_node *m = mem_find (po);
3628
3629 if (m != MEM_NIL)
3630 {
3631 int mark_p = 0;
3632
3633 switch (XGCTYPE (obj))
3634 {
3635 case Lisp_String:
3636 mark_p = (live_string_p (m, po)
3637 && !STRING_MARKED_P ((struct Lisp_String *) po));
3638 break;
3639
3640 case Lisp_Cons:
3641 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3642 break;
3643
3644 case Lisp_Symbol:
3645 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3646 break;
3647
3648 case Lisp_Float:
3649 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3650 break;
3651
3652 case Lisp_Vectorlike:
3653 /* Note: can't check GC_BUFFERP before we know it's a
3654 buffer because checking that dereferences the pointer
3655 PO which might point anywhere. */
3656 if (live_vector_p (m, po))
3657 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3658 else if (live_buffer_p (m, po))
3659 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3660 break;
3661
3662 case Lisp_Misc:
3663 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3664 break;
3665
3666 case Lisp_Int:
3667 case Lisp_Type_Limit:
3668 break;
3669 }
3670
3671 if (mark_p)
3672 {
3673 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3674 if (nzombies < MAX_ZOMBIES)
3675 zombies[nzombies] = obj;
3676 ++nzombies;
3677 #endif
3678 mark_object (obj);
3679 }
3680 }
3681 }
3682
3683
3684 /* If P points to Lisp data, mark that as live if it isn't already
3685 marked. */
3686
3687 static INLINE void
3688 mark_maybe_pointer (p)
3689 void *p;
3690 {
3691 struct mem_node *m;
3692
3693 /* Quickly rule out some values which can't point to Lisp data. We
3694 assume that Lisp data is aligned on even addresses. */
3695 if ((EMACS_INT) p & 1)
3696 return;
3697
3698 m = mem_find (p);
3699 if (m != MEM_NIL)
3700 {
3701 Lisp_Object obj = Qnil;
3702
3703 switch (m->type)
3704 {
3705 case MEM_TYPE_NON_LISP:
3706 /* Nothing to do; not a pointer to Lisp memory. */
3707 break;
3708
3709 case MEM_TYPE_BUFFER:
3710 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3711 XSETVECTOR (obj, p);
3712 break;
3713
3714 case MEM_TYPE_CONS:
3715 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3716 XSETCONS (obj, p);
3717 break;
3718
3719 case MEM_TYPE_STRING:
3720 if (live_string_p (m, p)
3721 && !STRING_MARKED_P ((struct Lisp_String *) p))
3722 XSETSTRING (obj, p);
3723 break;
3724
3725 case MEM_TYPE_MISC:
3726 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3727 XSETMISC (obj, p);
3728 break;
3729
3730 case MEM_TYPE_SYMBOL:
3731 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3732 XSETSYMBOL (obj, p);
3733 break;
3734
3735 case MEM_TYPE_FLOAT:
3736 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3737 XSETFLOAT (obj, p);
3738 break;
3739
3740 case MEM_TYPE_VECTOR:
3741 case MEM_TYPE_PROCESS:
3742 case MEM_TYPE_HASH_TABLE:
3743 case MEM_TYPE_FRAME:
3744 case MEM_TYPE_WINDOW:
3745 if (live_vector_p (m, p))
3746 {
3747 Lisp_Object tem;
3748 XSETVECTOR (tem, p);
3749 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3750 obj = tem;
3751 }
3752 break;
3753
3754 default:
3755 abort ();
3756 }
3757
3758 if (!GC_NILP (obj))
3759 mark_object (obj);
3760 }
3761 }
3762
3763
3764 /* Mark Lisp objects referenced from the address range START..END. */
3765
3766 static void
3767 mark_memory (start, end)
3768 void *start, *end;
3769 {
3770 Lisp_Object *p;
3771 void **pp;
3772
3773 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3774 nzombies = 0;
3775 #endif
3776
3777 /* Make START the pointer to the start of the memory region,
3778 if it isn't already. */
3779 if (end < start)
3780 {
3781 void *tem = start;
3782 start = end;
3783 end = tem;
3784 }
3785
3786 /* Mark Lisp_Objects. */
3787 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3788 mark_maybe_object (*p);
3789
3790 /* Mark Lisp data pointed to. This is necessary because, in some
3791 situations, the C compiler optimizes Lisp objects away, so that
3792 only a pointer to them remains. Example:
3793
3794 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3795 ()
3796 {
3797 Lisp_Object obj = build_string ("test");
3798 struct Lisp_String *s = XSTRING (obj);
3799 Fgarbage_collect ();
3800 fprintf (stderr, "test `%s'\n", s->data);
3801 return Qnil;
3802 }
3803
3804 Here, `obj' isn't really used, and the compiler optimizes it
3805 away. The only reference to the life string is through the
3806 pointer `s'. */
3807
3808 for (pp = (void **) start; (void *) pp < end; ++pp)
3809 mark_maybe_pointer (*pp);
3810 }
3811
3812 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3813 the GCC system configuration. In gcc 3.2, the only systems for
3814 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3815 by others?) and ns32k-pc532-min. */
3816
3817 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3818
3819 static int setjmp_tested_p, longjmps_done;
3820
3821 #define SETJMP_WILL_LIKELY_WORK "\
3822 \n\
3823 Emacs garbage collector has been changed to use conservative stack\n\
3824 marking. Emacs has determined that the method it uses to do the\n\
3825 marking will likely work on your system, but this isn't sure.\n\
3826 \n\
3827 If you are a system-programmer, or can get the help of a local wizard\n\
3828 who is, please take a look at the function mark_stack in alloc.c, and\n\
3829 verify that the methods used are appropriate for your system.\n\
3830 \n\
3831 Please mail the result to <emacs-devel@gnu.org>.\n\
3832 "
3833
3834 #define SETJMP_WILL_NOT_WORK "\
3835 \n\
3836 Emacs garbage collector has been changed to use conservative stack\n\
3837 marking. Emacs has determined that the default method it uses to do the\n\
3838 marking will not work on your system. We will need a system-dependent\n\
3839 solution for your system.\n\
3840 \n\
3841 Please take a look at the function mark_stack in alloc.c, and\n\
3842 try to find a way to make it work on your system.\n\
3843 \n\
3844 Note that you may get false negatives, depending on the compiler.\n\
3845 In particular, you need to use -O with GCC for this test.\n\
3846 \n\
3847 Please mail the result to <emacs-devel@gnu.org>.\n\
3848 "
3849
3850
3851 /* Perform a quick check if it looks like setjmp saves registers in a
3852 jmp_buf. Print a message to stderr saying so. When this test
3853 succeeds, this is _not_ a proof that setjmp is sufficient for
3854 conservative stack marking. Only the sources or a disassembly
3855 can prove that. */
3856
3857 static void
3858 test_setjmp ()
3859 {
3860 char buf[10];
3861 register int x;
3862 jmp_buf jbuf;
3863 int result = 0;
3864
3865 /* Arrange for X to be put in a register. */
3866 sprintf (buf, "1");
3867 x = strlen (buf);
3868 x = 2 * x - 1;
3869
3870 setjmp (jbuf);
3871 if (longjmps_done == 1)
3872 {
3873 /* Came here after the longjmp at the end of the function.
3874
3875 If x == 1, the longjmp has restored the register to its
3876 value before the setjmp, and we can hope that setjmp
3877 saves all such registers in the jmp_buf, although that
3878 isn't sure.
3879
3880 For other values of X, either something really strange is
3881 taking place, or the setjmp just didn't save the register. */
3882
3883 if (x == 1)
3884 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3885 else
3886 {
3887 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3888 exit (1);
3889 }
3890 }
3891
3892 ++longjmps_done;
3893 x = 2;
3894 if (longjmps_done == 1)
3895 longjmp (jbuf, 1);
3896 }
3897
3898 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3899
3900
3901 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3902
3903 /* Abort if anything GCPRO'd doesn't survive the GC. */
3904
3905 static void
3906 check_gcpros ()
3907 {
3908 struct gcpro *p;
3909 int i;
3910
3911 for (p = gcprolist; p; p = p->next)
3912 for (i = 0; i < p->nvars; ++i)
3913 if (!survives_gc_p (p->var[i]))
3914 /* FIXME: It's not necessarily a bug. It might just be that the
3915 GCPRO is unnecessary or should release the object sooner. */
3916 abort ();
3917 }
3918
3919 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3920
3921 static void
3922 dump_zombies ()
3923 {
3924 int i;
3925
3926 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3927 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3928 {
3929 fprintf (stderr, " %d = ", i);
3930 debug_print (zombies[i]);
3931 }
3932 }
3933
3934 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3935
3936
3937 /* Mark live Lisp objects on the C stack.
3938
3939 There are several system-dependent problems to consider when
3940 porting this to new architectures:
3941
3942 Processor Registers
3943
3944 We have to mark Lisp objects in CPU registers that can hold local
3945 variables or are used to pass parameters.
3946
3947 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3948 something that either saves relevant registers on the stack, or
3949 calls mark_maybe_object passing it each register's contents.
3950
3951 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3952 implementation assumes that calling setjmp saves registers we need
3953 to see in a jmp_buf which itself lies on the stack. This doesn't
3954 have to be true! It must be verified for each system, possibly
3955 by taking a look at the source code of setjmp.
3956
3957 Stack Layout
3958
3959 Architectures differ in the way their processor stack is organized.
3960 For example, the stack might look like this
3961
3962 +----------------+
3963 | Lisp_Object | size = 4
3964 +----------------+
3965 | something else | size = 2
3966 +----------------+
3967 | Lisp_Object | size = 4
3968 +----------------+
3969 | ... |
3970
3971 In such a case, not every Lisp_Object will be aligned equally. To
3972 find all Lisp_Object on the stack it won't be sufficient to walk
3973 the stack in steps of 4 bytes. Instead, two passes will be
3974 necessary, one starting at the start of the stack, and a second
3975 pass starting at the start of the stack + 2. Likewise, if the
3976 minimal alignment of Lisp_Objects on the stack is 1, four passes
3977 would be necessary, each one starting with one byte more offset
3978 from the stack start.
3979
3980 The current code assumes by default that Lisp_Objects are aligned
3981 equally on the stack. */
3982
3983 static void
3984 mark_stack ()
3985 {
3986 int i;
3987 jmp_buf j;
3988 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3989 void *end;
3990
3991 /* This trick flushes the register windows so that all the state of
3992 the process is contained in the stack. */
3993 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
3994 needed on ia64 too. See mach_dep.c, where it also says inline
3995 assembler doesn't work with relevant proprietary compilers. */
3996 #ifdef sparc
3997 asm ("ta 3");
3998 #endif
3999
4000 /* Save registers that we need to see on the stack. We need to see
4001 registers used to hold register variables and registers used to
4002 pass parameters. */
4003 #ifdef GC_SAVE_REGISTERS_ON_STACK
4004 GC_SAVE_REGISTERS_ON_STACK (end);
4005 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4006
4007 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4008 setjmp will definitely work, test it
4009 and print a message with the result
4010 of the test. */
4011 if (!setjmp_tested_p)
4012 {
4013 setjmp_tested_p = 1;
4014 test_setjmp ();
4015 }
4016 #endif /* GC_SETJMP_WORKS */
4017
4018 setjmp (j);
4019 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4020 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4021
4022 /* This assumes that the stack is a contiguous region in memory. If
4023 that's not the case, something has to be done here to iterate
4024 over the stack segments. */
4025 #ifndef GC_LISP_OBJECT_ALIGNMENT
4026 #ifdef __GNUC__
4027 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4028 #else
4029 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4030 #endif
4031 #endif
4032 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4033 mark_memory ((char *) stack_base + i, end);
4034
4035 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4036 check_gcpros ();
4037 #endif
4038 }
4039
4040
4041 #endif /* GC_MARK_STACK != 0 */
4042
4043
4044 \f
4045 /***********************************************************************
4046 Pure Storage Management
4047 ***********************************************************************/
4048
4049 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4050 pointer to it. TYPE is the Lisp type for which the memory is
4051 allocated. TYPE < 0 means it's not used for a Lisp object.
4052
4053 If store_pure_type_info is set and TYPE is >= 0, the type of
4054 the allocated object is recorded in pure_types. */
4055
4056 static POINTER_TYPE *
4057 pure_alloc (size, type)
4058 size_t size;
4059 int type;
4060 {
4061 POINTER_TYPE *result;
4062 size_t alignment = sizeof (EMACS_INT);
4063
4064 /* Give Lisp_Floats an extra alignment. */
4065 if (type == Lisp_Float)
4066 {
4067 #if defined __GNUC__ && __GNUC__ >= 2
4068 alignment = __alignof (struct Lisp_Float);
4069 #else
4070 alignment = sizeof (struct Lisp_Float);
4071 #endif
4072 }
4073
4074 again:
4075 result = ALIGN (purebeg + pure_bytes_used, alignment);
4076 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4077
4078 if (pure_bytes_used <= pure_size)
4079 return result;
4080
4081 /* Don't allocate a large amount here,
4082 because it might get mmap'd and then its address
4083 might not be usable. */
4084 purebeg = (char *) xmalloc (10000);
4085 pure_size = 10000;
4086 pure_bytes_used_before_overflow += pure_bytes_used - size;
4087 pure_bytes_used = 0;
4088 goto again;
4089 }
4090
4091
4092 /* Print a warning if PURESIZE is too small. */
4093
4094 void
4095 check_pure_size ()
4096 {
4097 if (pure_bytes_used_before_overflow)
4098 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4099 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4100 }
4101
4102
4103 /* Return a string allocated in pure space. DATA is a buffer holding
4104 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4105 non-zero means make the result string multibyte.
4106
4107 Must get an error if pure storage is full, since if it cannot hold
4108 a large string it may be able to hold conses that point to that
4109 string; then the string is not protected from gc. */
4110
4111 Lisp_Object
4112 make_pure_string (data, nchars, nbytes, multibyte)
4113 char *data;
4114 int nchars, nbytes;
4115 int multibyte;
4116 {
4117 Lisp_Object string;
4118 struct Lisp_String *s;
4119
4120 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4121 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4122 s->size = nchars;
4123 s->size_byte = multibyte ? nbytes : -1;
4124 bcopy (data, s->data, nbytes);
4125 s->data[nbytes] = '\0';
4126 s->intervals = NULL_INTERVAL;
4127 XSETSTRING (string, s);
4128 return string;
4129 }
4130
4131
4132 /* Return a cons allocated from pure space. Give it pure copies
4133 of CAR as car and CDR as cdr. */
4134
4135 Lisp_Object
4136 pure_cons (car, cdr)
4137 Lisp_Object car, cdr;
4138 {
4139 register Lisp_Object new;
4140 struct Lisp_Cons *p;
4141
4142 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4143 XSETCONS (new, p);
4144 XSETCAR (new, Fpurecopy (car));
4145 XSETCDR (new, Fpurecopy (cdr));
4146 return new;
4147 }
4148
4149
4150 /* Value is a float object with value NUM allocated from pure space. */
4151
4152 Lisp_Object
4153 make_pure_float (num)
4154 double num;
4155 {
4156 register Lisp_Object new;
4157 struct Lisp_Float *p;
4158
4159 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4160 XSETFLOAT (new, p);
4161 XFLOAT_DATA (new) = num;
4162 return new;
4163 }
4164
4165
4166 /* Return a vector with room for LEN Lisp_Objects allocated from
4167 pure space. */
4168
4169 Lisp_Object
4170 make_pure_vector (len)
4171 EMACS_INT len;
4172 {
4173 Lisp_Object new;
4174 struct Lisp_Vector *p;
4175 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4176
4177 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4178 XSETVECTOR (new, p);
4179 XVECTOR (new)->size = len;
4180 return new;
4181 }
4182
4183
4184 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4185 doc: /* Make a copy of OBJECT in pure storage.
4186 Recursively copies contents of vectors and cons cells.
4187 Does not copy symbols. Copies strings without text properties. */)
4188 (obj)
4189 register Lisp_Object obj;
4190 {
4191 if (NILP (Vpurify_flag))
4192 return obj;
4193
4194 if (PURE_POINTER_P (XPNTR (obj)))
4195 return obj;
4196
4197 if (CONSP (obj))
4198 return pure_cons (XCAR (obj), XCDR (obj));
4199 else if (FLOATP (obj))
4200 return make_pure_float (XFLOAT_DATA (obj));
4201 else if (STRINGP (obj))
4202 return make_pure_string (SDATA (obj), SCHARS (obj),
4203 SBYTES (obj),
4204 STRING_MULTIBYTE (obj));
4205 else if (COMPILEDP (obj) || VECTORP (obj))
4206 {
4207 register struct Lisp_Vector *vec;
4208 register int i, size;
4209
4210 size = XVECTOR (obj)->size;
4211 if (size & PSEUDOVECTOR_FLAG)
4212 size &= PSEUDOVECTOR_SIZE_MASK;
4213 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
4214 for (i = 0; i < size; i++)
4215 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4216 if (COMPILEDP (obj))
4217 XSETCOMPILED (obj, vec);
4218 else
4219 XSETVECTOR (obj, vec);
4220 return obj;
4221 }
4222 else if (MARKERP (obj))
4223 error ("Attempt to copy a marker to pure storage");
4224
4225 return obj;
4226 }
4227
4228
4229 \f
4230 /***********************************************************************
4231 Protection from GC
4232 ***********************************************************************/
4233
4234 /* Put an entry in staticvec, pointing at the variable with address
4235 VARADDRESS. */
4236
4237 void
4238 staticpro (varaddress)
4239 Lisp_Object *varaddress;
4240 {
4241 staticvec[staticidx++] = varaddress;
4242 if (staticidx >= NSTATICS)
4243 abort ();
4244 }
4245
4246 struct catchtag
4247 {
4248 Lisp_Object tag;
4249 Lisp_Object val;
4250 struct catchtag *next;
4251 };
4252
4253 struct backtrace
4254 {
4255 struct backtrace *next;
4256 Lisp_Object *function;
4257 Lisp_Object *args; /* Points to vector of args. */
4258 int nargs; /* Length of vector. */
4259 /* If nargs is UNEVALLED, args points to slot holding list of
4260 unevalled args. */
4261 char evalargs;
4262 };
4263
4264
4265 \f
4266 /***********************************************************************
4267 Protection from GC
4268 ***********************************************************************/
4269
4270 /* Temporarily prevent garbage collection. */
4271
4272 int
4273 inhibit_garbage_collection ()
4274 {
4275 int count = SPECPDL_INDEX ();
4276 int nbits = min (VALBITS, BITS_PER_INT);
4277
4278 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4279 return count;
4280 }
4281
4282
4283 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4284 doc: /* Reclaim storage for Lisp objects no longer needed.
4285 Garbage collection happens automatically if you cons more than
4286 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4287 `garbage-collect' normally returns a list with info on amount of space in use:
4288 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4289 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4290 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4291 (USED-STRINGS . FREE-STRINGS))
4292 However, if there was overflow in pure space, `garbage-collect'
4293 returns nil, because real GC can't be done. */)
4294 ()
4295 {
4296 register struct specbinding *bind;
4297 struct catchtag *catch;
4298 struct handler *handler;
4299 register struct backtrace *backlist;
4300 char stack_top_variable;
4301 register int i;
4302 int message_p;
4303 Lisp_Object total[8];
4304 int count = SPECPDL_INDEX ();
4305 EMACS_TIME t1, t2, t3;
4306
4307 if (abort_on_gc)
4308 abort ();
4309
4310 EMACS_GET_TIME (t1);
4311
4312 /* Can't GC if pure storage overflowed because we can't determine
4313 if something is a pure object or not. */
4314 if (pure_bytes_used_before_overflow)
4315 return Qnil;
4316
4317 /* In case user calls debug_print during GC,
4318 don't let that cause a recursive GC. */
4319 consing_since_gc = 0;
4320
4321 /* Save what's currently displayed in the echo area. */
4322 message_p = push_message ();
4323 record_unwind_protect (pop_message_unwind, Qnil);
4324
4325 /* Save a copy of the contents of the stack, for debugging. */
4326 #if MAX_SAVE_STACK > 0
4327 if (NILP (Vpurify_flag))
4328 {
4329 i = &stack_top_variable - stack_bottom;
4330 if (i < 0) i = -i;
4331 if (i < MAX_SAVE_STACK)
4332 {
4333 if (stack_copy == 0)
4334 stack_copy = (char *) xmalloc (stack_copy_size = i);
4335 else if (stack_copy_size < i)
4336 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4337 if (stack_copy)
4338 {
4339 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4340 bcopy (stack_bottom, stack_copy, i);
4341 else
4342 bcopy (&stack_top_variable, stack_copy, i);
4343 }
4344 }
4345 }
4346 #endif /* MAX_SAVE_STACK > 0 */
4347
4348 if (garbage_collection_messages)
4349 message1_nolog ("Garbage collecting...");
4350
4351 BLOCK_INPUT;
4352
4353 shrink_regexp_cache ();
4354
4355 /* Don't keep undo information around forever. */
4356 {
4357 register struct buffer *nextb = all_buffers;
4358
4359 while (nextb)
4360 {
4361 /* If a buffer's undo list is Qt, that means that undo is
4362 turned off in that buffer. Calling truncate_undo_list on
4363 Qt tends to return NULL, which effectively turns undo back on.
4364 So don't call truncate_undo_list if undo_list is Qt. */
4365 if (! EQ (nextb->undo_list, Qt))
4366 nextb->undo_list
4367 = truncate_undo_list (nextb->undo_list, undo_limit,
4368 undo_strong_limit);
4369
4370 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4371 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4372 {
4373 /* If a buffer's gap size is more than 10% of the buffer
4374 size, or larger than 2000 bytes, then shrink it
4375 accordingly. Keep a minimum size of 20 bytes. */
4376 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4377
4378 if (nextb->text->gap_size > size)
4379 {
4380 struct buffer *save_current = current_buffer;
4381 current_buffer = nextb;
4382 make_gap (-(nextb->text->gap_size - size));
4383 current_buffer = save_current;
4384 }
4385 }
4386
4387 nextb = nextb->next;
4388 }
4389 }
4390
4391 gc_in_progress = 1;
4392
4393 /* clear_marks (); */
4394
4395 /* Mark all the special slots that serve as the roots of accessibility.
4396
4397 Usually the special slots to mark are contained in particular structures.
4398 Then we know no slot is marked twice because the structures don't overlap.
4399 In some cases, the structures point to the slots to be marked.
4400 For these, we use MARKBIT to avoid double marking of the slot. */
4401
4402 for (i = 0; i < staticidx; i++)
4403 mark_object (*staticvec[i]);
4404
4405 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4406 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4407 mark_stack ();
4408 #else
4409 {
4410 register struct gcpro *tail;
4411 for (tail = gcprolist; tail; tail = tail->next)
4412 for (i = 0; i < tail->nvars; i++)
4413 if (!XMARKBIT (tail->var[i]))
4414 {
4415 mark_object (tail->var[i]);
4416 XMARK (tail->var[i]);
4417 }
4418 }
4419 #endif
4420
4421 mark_byte_stack ();
4422 for (bind = specpdl; bind != specpdl_ptr; bind++)
4423 {
4424 mark_object (bind->symbol);
4425 mark_object (bind->old_value);
4426 }
4427 for (catch = catchlist; catch; catch = catch->next)
4428 {
4429 mark_object (catch->tag);
4430 mark_object (catch->val);
4431 }
4432 for (handler = handlerlist; handler; handler = handler->next)
4433 {
4434 mark_object (handler->handler);
4435 mark_object (handler->var);
4436 }
4437 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4438 {
4439 if (!XMARKBIT (*backlist->function))
4440 {
4441 mark_object (*backlist->function);
4442 XMARK (*backlist->function);
4443 }
4444 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4445 i = 0;
4446 else
4447 i = backlist->nargs - 1;
4448 for (; i >= 0; i--)
4449 if (!XMARKBIT (backlist->args[i]))
4450 {
4451 mark_object (backlist->args[i]);
4452 XMARK (backlist->args[i]);
4453 }
4454 }
4455 mark_kboards ();
4456
4457 /* Look thru every buffer's undo list
4458 for elements that update markers that were not marked,
4459 and delete them. */
4460 {
4461 register struct buffer *nextb = all_buffers;
4462
4463 while (nextb)
4464 {
4465 /* If a buffer's undo list is Qt, that means that undo is
4466 turned off in that buffer. Calling truncate_undo_list on
4467 Qt tends to return NULL, which effectively turns undo back on.
4468 So don't call truncate_undo_list if undo_list is Qt. */
4469 if (! EQ (nextb->undo_list, Qt))
4470 {
4471 Lisp_Object tail, prev;
4472 tail = nextb->undo_list;
4473 prev = Qnil;
4474 while (CONSP (tail))
4475 {
4476 if (GC_CONSP (XCAR (tail))
4477 && GC_MARKERP (XCAR (XCAR (tail)))
4478 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4479 {
4480 if (NILP (prev))
4481 nextb->undo_list = tail = XCDR (tail);
4482 else
4483 {
4484 tail = XCDR (tail);
4485 XSETCDR (prev, tail);
4486 }
4487 }
4488 else
4489 {
4490 prev = tail;
4491 tail = XCDR (tail);
4492 }
4493 }
4494 }
4495
4496 nextb = nextb->next;
4497 }
4498 }
4499
4500 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4501 mark_stack ();
4502 #endif
4503
4504 #ifdef USE_GTK
4505 {
4506 extern void xg_mark_data ();
4507 xg_mark_data ();
4508 }
4509 #endif
4510
4511 gc_sweep ();
4512
4513 /* Clear the mark bits that we set in certain root slots. */
4514
4515 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4516 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4517 {
4518 register struct gcpro *tail;
4519
4520 for (tail = gcprolist; tail; tail = tail->next)
4521 for (i = 0; i < tail->nvars; i++)
4522 XUNMARK (tail->var[i]);
4523 }
4524 #endif
4525
4526 unmark_byte_stack ();
4527 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4528 {
4529 XUNMARK (*backlist->function);
4530 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4531 i = 0;
4532 else
4533 i = backlist->nargs - 1;
4534 for (; i >= 0; i--)
4535 XUNMARK (backlist->args[i]);
4536 }
4537 VECTOR_UNMARK (&buffer_defaults);
4538 VECTOR_UNMARK (&buffer_local_symbols);
4539
4540 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4541 dump_zombies ();
4542 #endif
4543
4544 UNBLOCK_INPUT;
4545
4546 /* clear_marks (); */
4547 gc_in_progress = 0;
4548
4549 consing_since_gc = 0;
4550 if (gc_cons_threshold < 10000)
4551 gc_cons_threshold = 10000;
4552
4553 if (garbage_collection_messages)
4554 {
4555 if (message_p || minibuf_level > 0)
4556 restore_message ();
4557 else
4558 message1_nolog ("Garbage collecting...done");
4559 }
4560
4561 unbind_to (count, Qnil);
4562
4563 total[0] = Fcons (make_number (total_conses),
4564 make_number (total_free_conses));
4565 total[1] = Fcons (make_number (total_symbols),
4566 make_number (total_free_symbols));
4567 total[2] = Fcons (make_number (total_markers),
4568 make_number (total_free_markers));
4569 total[3] = make_number (total_string_size);
4570 total[4] = make_number (total_vector_size);
4571 total[5] = Fcons (make_number (total_floats),
4572 make_number (total_free_floats));
4573 total[6] = Fcons (make_number (total_intervals),
4574 make_number (total_free_intervals));
4575 total[7] = Fcons (make_number (total_strings),
4576 make_number (total_free_strings));
4577
4578 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4579 {
4580 /* Compute average percentage of zombies. */
4581 double nlive = 0;
4582
4583 for (i = 0; i < 7; ++i)
4584 if (CONSP (total[i]))
4585 nlive += XFASTINT (XCAR (total[i]));
4586
4587 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4588 max_live = max (nlive, max_live);
4589 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4590 max_zombies = max (nzombies, max_zombies);
4591 ++ngcs;
4592 }
4593 #endif
4594
4595 if (!NILP (Vpost_gc_hook))
4596 {
4597 int count = inhibit_garbage_collection ();
4598 safe_run_hooks (Qpost_gc_hook);
4599 unbind_to (count, Qnil);
4600 }
4601
4602 /* Accumulate statistics. */
4603 EMACS_GET_TIME (t2);
4604 EMACS_SUB_TIME (t3, t2, t1);
4605 if (FLOATP (Vgc_elapsed))
4606 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4607 EMACS_SECS (t3) +
4608 EMACS_USECS (t3) * 1.0e-6);
4609 gcs_done++;
4610
4611 return Flist (sizeof total / sizeof *total, total);
4612 }
4613
4614
4615 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4616 only interesting objects referenced from glyphs are strings. */
4617
4618 static void
4619 mark_glyph_matrix (matrix)
4620 struct glyph_matrix *matrix;
4621 {
4622 struct glyph_row *row = matrix->rows;
4623 struct glyph_row *end = row + matrix->nrows;
4624
4625 for (; row < end; ++row)
4626 if (row->enabled_p)
4627 {
4628 int area;
4629 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4630 {
4631 struct glyph *glyph = row->glyphs[area];
4632 struct glyph *end_glyph = glyph + row->used[area];
4633
4634 for (; glyph < end_glyph; ++glyph)
4635 if (GC_STRINGP (glyph->object)
4636 && !STRING_MARKED_P (XSTRING (glyph->object)))
4637 mark_object (glyph->object);
4638 }
4639 }
4640 }
4641
4642
4643 /* Mark Lisp faces in the face cache C. */
4644
4645 static void
4646 mark_face_cache (c)
4647 struct face_cache *c;
4648 {
4649 if (c)
4650 {
4651 int i, j;
4652 for (i = 0; i < c->used; ++i)
4653 {
4654 struct face *face = FACE_FROM_ID (c->f, i);
4655
4656 if (face)
4657 {
4658 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4659 mark_object (face->lface[j]);
4660 }
4661 }
4662 }
4663 }
4664
4665
4666 #ifdef HAVE_WINDOW_SYSTEM
4667
4668 /* Mark Lisp objects in image IMG. */
4669
4670 static void
4671 mark_image (img)
4672 struct image *img;
4673 {
4674 mark_object (img->spec);
4675
4676 if (!NILP (img->data.lisp_val))
4677 mark_object (img->data.lisp_val);
4678 }
4679
4680
4681 /* Mark Lisp objects in image cache of frame F. It's done this way so
4682 that we don't have to include xterm.h here. */
4683
4684 static void
4685 mark_image_cache (f)
4686 struct frame *f;
4687 {
4688 forall_images_in_image_cache (f, mark_image);
4689 }
4690
4691 #endif /* HAVE_X_WINDOWS */
4692
4693
4694 \f
4695 /* Mark reference to a Lisp_Object.
4696 If the object referred to has not been seen yet, recursively mark
4697 all the references contained in it. */
4698
4699 #define LAST_MARKED_SIZE 500
4700 Lisp_Object last_marked[LAST_MARKED_SIZE];
4701 int last_marked_index;
4702
4703 /* For debugging--call abort when we cdr down this many
4704 links of a list, in mark_object. In debugging,
4705 the call to abort will hit a breakpoint.
4706 Normally this is zero and the check never goes off. */
4707 int mark_object_loop_halt;
4708
4709 void
4710 mark_object (arg)
4711 Lisp_Object arg;
4712 {
4713 register Lisp_Object obj = arg;
4714 #ifdef GC_CHECK_MARKED_OBJECTS
4715 void *po;
4716 struct mem_node *m;
4717 #endif
4718 int cdr_count = 0;
4719
4720 loop:
4721 XUNMARK (obj);
4722
4723 if (PURE_POINTER_P (XPNTR (obj)))
4724 return;
4725
4726 last_marked[last_marked_index++] = obj;
4727 if (last_marked_index == LAST_MARKED_SIZE)
4728 last_marked_index = 0;
4729
4730 /* Perform some sanity checks on the objects marked here. Abort if
4731 we encounter an object we know is bogus. This increases GC time
4732 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4733 #ifdef GC_CHECK_MARKED_OBJECTS
4734
4735 po = (void *) XPNTR (obj);
4736
4737 /* Check that the object pointed to by PO is known to be a Lisp
4738 structure allocated from the heap. */
4739 #define CHECK_ALLOCATED() \
4740 do { \
4741 m = mem_find (po); \
4742 if (m == MEM_NIL) \
4743 abort (); \
4744 } while (0)
4745
4746 /* Check that the object pointed to by PO is live, using predicate
4747 function LIVEP. */
4748 #define CHECK_LIVE(LIVEP) \
4749 do { \
4750 if (!LIVEP (m, po)) \
4751 abort (); \
4752 } while (0)
4753
4754 /* Check both of the above conditions. */
4755 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4756 do { \
4757 CHECK_ALLOCATED (); \
4758 CHECK_LIVE (LIVEP); \
4759 } while (0) \
4760
4761 #else /* not GC_CHECK_MARKED_OBJECTS */
4762
4763 #define CHECK_ALLOCATED() (void) 0
4764 #define CHECK_LIVE(LIVEP) (void) 0
4765 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4766
4767 #endif /* not GC_CHECK_MARKED_OBJECTS */
4768
4769 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4770 {
4771 case Lisp_String:
4772 {
4773 register struct Lisp_String *ptr = XSTRING (obj);
4774 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4775 MARK_INTERVAL_TREE (ptr->intervals);
4776 MARK_STRING (ptr);
4777 #ifdef GC_CHECK_STRING_BYTES
4778 /* Check that the string size recorded in the string is the
4779 same as the one recorded in the sdata structure. */
4780 CHECK_STRING_BYTES (ptr);
4781 #endif /* GC_CHECK_STRING_BYTES */
4782 }
4783 break;
4784
4785 case Lisp_Vectorlike:
4786 #ifdef GC_CHECK_MARKED_OBJECTS
4787 m = mem_find (po);
4788 if (m == MEM_NIL && !GC_SUBRP (obj)
4789 && po != &buffer_defaults
4790 && po != &buffer_local_symbols)
4791 abort ();
4792 #endif /* GC_CHECK_MARKED_OBJECTS */
4793
4794 if (GC_BUFFERP (obj))
4795 {
4796 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4797 {
4798 #ifdef GC_CHECK_MARKED_OBJECTS
4799 if (po != &buffer_defaults && po != &buffer_local_symbols)
4800 {
4801 struct buffer *b;
4802 for (b = all_buffers; b && b != po; b = b->next)
4803 ;
4804 if (b == NULL)
4805 abort ();
4806 }
4807 #endif /* GC_CHECK_MARKED_OBJECTS */
4808 mark_buffer (obj);
4809 }
4810 }
4811 else if (GC_SUBRP (obj))
4812 break;
4813 else if (GC_COMPILEDP (obj))
4814 /* We could treat this just like a vector, but it is better to
4815 save the COMPILED_CONSTANTS element for last and avoid
4816 recursion there. */
4817 {
4818 register struct Lisp_Vector *ptr = XVECTOR (obj);
4819 register EMACS_INT size = ptr->size;
4820 register int i;
4821
4822 if (VECTOR_MARKED_P (ptr))
4823 break; /* Already marked */
4824
4825 CHECK_LIVE (live_vector_p);
4826 VECTOR_MARK (ptr); /* Else mark it */
4827 size &= PSEUDOVECTOR_SIZE_MASK;
4828 for (i = 0; i < size; i++) /* and then mark its elements */
4829 {
4830 if (i != COMPILED_CONSTANTS)
4831 mark_object (ptr->contents[i]);
4832 }
4833 obj = ptr->contents[COMPILED_CONSTANTS];
4834 goto loop;
4835 }
4836 else if (GC_FRAMEP (obj))
4837 {
4838 register struct frame *ptr = XFRAME (obj);
4839
4840 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4841 VECTOR_MARK (ptr); /* Else mark it */
4842
4843 CHECK_LIVE (live_vector_p);
4844 mark_object (ptr->name);
4845 mark_object (ptr->icon_name);
4846 mark_object (ptr->title);
4847 mark_object (ptr->focus_frame);
4848 mark_object (ptr->selected_window);
4849 mark_object (ptr->minibuffer_window);
4850 mark_object (ptr->param_alist);
4851 mark_object (ptr->scroll_bars);
4852 mark_object (ptr->condemned_scroll_bars);
4853 mark_object (ptr->menu_bar_items);
4854 mark_object (ptr->face_alist);
4855 mark_object (ptr->menu_bar_vector);
4856 mark_object (ptr->buffer_predicate);
4857 mark_object (ptr->buffer_list);
4858 mark_object (ptr->menu_bar_window);
4859 mark_object (ptr->tool_bar_window);
4860 mark_face_cache (ptr->face_cache);
4861 #ifdef HAVE_WINDOW_SYSTEM
4862 mark_image_cache (ptr);
4863 mark_object (ptr->tool_bar_items);
4864 mark_object (ptr->desired_tool_bar_string);
4865 mark_object (ptr->current_tool_bar_string);
4866 #endif /* HAVE_WINDOW_SYSTEM */
4867 }
4868 else if (GC_BOOL_VECTOR_P (obj))
4869 {
4870 register struct Lisp_Vector *ptr = XVECTOR (obj);
4871
4872 if (VECTOR_MARKED_P (ptr))
4873 break; /* Already marked */
4874 CHECK_LIVE (live_vector_p);
4875 VECTOR_MARK (ptr); /* Else mark it */
4876 }
4877 else if (GC_WINDOWP (obj))
4878 {
4879 register struct Lisp_Vector *ptr = XVECTOR (obj);
4880 struct window *w = XWINDOW (obj);
4881 register int i;
4882
4883 /* Stop if already marked. */
4884 if (VECTOR_MARKED_P (ptr))
4885 break;
4886
4887 /* Mark it. */
4888 CHECK_LIVE (live_vector_p);
4889 VECTOR_MARK (ptr);
4890
4891 /* There is no Lisp data above The member CURRENT_MATRIX in
4892 struct WINDOW. Stop marking when that slot is reached. */
4893 for (i = 0;
4894 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4895 i++)
4896 mark_object (ptr->contents[i]);
4897
4898 /* Mark glyphs for leaf windows. Marking window matrices is
4899 sufficient because frame matrices use the same glyph
4900 memory. */
4901 if (NILP (w->hchild)
4902 && NILP (w->vchild)
4903 && w->current_matrix)
4904 {
4905 mark_glyph_matrix (w->current_matrix);
4906 mark_glyph_matrix (w->desired_matrix);
4907 }
4908 }
4909 else if (GC_HASH_TABLE_P (obj))
4910 {
4911 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4912
4913 /* Stop if already marked. */
4914 if (VECTOR_MARKED_P (h))
4915 break;
4916
4917 /* Mark it. */
4918 CHECK_LIVE (live_vector_p);
4919 VECTOR_MARK (h);
4920
4921 /* Mark contents. */
4922 /* Do not mark next_free or next_weak.
4923 Being in the next_weak chain
4924 should not keep the hash table alive.
4925 No need to mark `count' since it is an integer. */
4926 mark_object (h->test);
4927 mark_object (h->weak);
4928 mark_object (h->rehash_size);
4929 mark_object (h->rehash_threshold);
4930 mark_object (h->hash);
4931 mark_object (h->next);
4932 mark_object (h->index);
4933 mark_object (h->user_hash_function);
4934 mark_object (h->user_cmp_function);
4935
4936 /* If hash table is not weak, mark all keys and values.
4937 For weak tables, mark only the vector. */
4938 if (GC_NILP (h->weak))
4939 mark_object (h->key_and_value);
4940 else
4941 VECTOR_MARK (XVECTOR (h->key_and_value));
4942 }
4943 else
4944 {
4945 register struct Lisp_Vector *ptr = XVECTOR (obj);
4946 register EMACS_INT size = ptr->size;
4947 register int i;
4948
4949 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4950 CHECK_LIVE (live_vector_p);
4951 VECTOR_MARK (ptr); /* Else mark it */
4952 if (size & PSEUDOVECTOR_FLAG)
4953 size &= PSEUDOVECTOR_SIZE_MASK;
4954
4955 for (i = 0; i < size; i++) /* and then mark its elements */
4956 mark_object (ptr->contents[i]);
4957 }
4958 break;
4959
4960 case Lisp_Symbol:
4961 {
4962 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4963 struct Lisp_Symbol *ptrx;
4964
4965 if (ptr->gcmarkbit) break;
4966 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4967 ptr->gcmarkbit = 1;
4968 mark_object (ptr->value);
4969 mark_object (ptr->function);
4970 mark_object (ptr->plist);
4971
4972 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4973 MARK_STRING (XSTRING (ptr->xname));
4974 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4975
4976 /* Note that we do not mark the obarray of the symbol.
4977 It is safe not to do so because nothing accesses that
4978 slot except to check whether it is nil. */
4979 ptr = ptr->next;
4980 if (ptr)
4981 {
4982 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4983 XSETSYMBOL (obj, ptrx);
4984 goto loop;
4985 }
4986 }
4987 break;
4988
4989 case Lisp_Misc:
4990 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4991 if (XMARKER (obj)->gcmarkbit)
4992 break;
4993 XMARKER (obj)->gcmarkbit = 1;
4994 switch (XMISCTYPE (obj))
4995 {
4996 case Lisp_Misc_Buffer_Local_Value:
4997 case Lisp_Misc_Some_Buffer_Local_Value:
4998 {
4999 register struct Lisp_Buffer_Local_Value *ptr
5000 = XBUFFER_LOCAL_VALUE (obj);
5001 /* If the cdr is nil, avoid recursion for the car. */
5002 if (EQ (ptr->cdr, Qnil))
5003 {
5004 obj = ptr->realvalue;
5005 goto loop;
5006 }
5007 mark_object (ptr->realvalue);
5008 mark_object (ptr->buffer);
5009 mark_object (ptr->frame);
5010 obj = ptr->cdr;
5011 goto loop;
5012 }
5013
5014 case Lisp_Misc_Marker:
5015 /* DO NOT mark thru the marker's chain.
5016 The buffer's markers chain does not preserve markers from gc;
5017 instead, markers are removed from the chain when freed by gc. */
5018 case Lisp_Misc_Intfwd:
5019 case Lisp_Misc_Boolfwd:
5020 case Lisp_Misc_Objfwd:
5021 case Lisp_Misc_Buffer_Objfwd:
5022 case Lisp_Misc_Kboard_Objfwd:
5023 /* Don't bother with Lisp_Buffer_Objfwd,
5024 since all markable slots in current buffer marked anyway. */
5025 /* Don't need to do Lisp_Objfwd, since the places they point
5026 are protected with staticpro. */
5027 break;
5028
5029 case Lisp_Misc_Overlay:
5030 {
5031 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5032 mark_object (ptr->start);
5033 mark_object (ptr->end);
5034 mark_object (ptr->plist);
5035 if (ptr->next)
5036 {
5037 XSETMISC (obj, ptr->next);
5038 goto loop;
5039 }
5040 }
5041 break;
5042
5043 default:
5044 abort ();
5045 }
5046 break;
5047
5048 case Lisp_Cons:
5049 {
5050 register struct Lisp_Cons *ptr = XCONS (obj);
5051 if (CONS_MARKED_P (ptr)) break;
5052 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5053 CONS_MARK (ptr);
5054 /* If the cdr is nil, avoid recursion for the car. */
5055 if (EQ (ptr->cdr, Qnil))
5056 {
5057 obj = ptr->car;
5058 cdr_count = 0;
5059 goto loop;
5060 }
5061 mark_object (ptr->car);
5062 obj = ptr->cdr;
5063 cdr_count++;
5064 if (cdr_count == mark_object_loop_halt)
5065 abort ();
5066 goto loop;
5067 }
5068
5069 case Lisp_Float:
5070 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5071 FLOAT_MARK (XFLOAT (obj));
5072 break;
5073
5074 case Lisp_Int:
5075 break;
5076
5077 default:
5078 abort ();
5079 }
5080
5081 #undef CHECK_LIVE
5082 #undef CHECK_ALLOCATED
5083 #undef CHECK_ALLOCATED_AND_LIVE
5084 }
5085
5086 /* Mark the pointers in a buffer structure. */
5087
5088 static void
5089 mark_buffer (buf)
5090 Lisp_Object buf;
5091 {
5092 register struct buffer *buffer = XBUFFER (buf);
5093 register Lisp_Object *ptr, tmp;
5094 Lisp_Object base_buffer;
5095
5096 VECTOR_MARK (buffer);
5097
5098 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5099
5100 if (CONSP (buffer->undo_list))
5101 {
5102 Lisp_Object tail;
5103 tail = buffer->undo_list;
5104
5105 /* We mark the undo list specially because
5106 its pointers to markers should be weak. */
5107
5108 while (CONSP (tail))
5109 {
5110 register struct Lisp_Cons *ptr = XCONS (tail);
5111
5112 if (CONS_MARKED_P (ptr))
5113 break;
5114 CONS_MARK (ptr);
5115 if (GC_CONSP (ptr->car)
5116 && !CONS_MARKED_P (XCONS (ptr->car))
5117 && GC_MARKERP (XCAR (ptr->car)))
5118 {
5119 CONS_MARK (XCONS (ptr->car));
5120 mark_object (XCDR (ptr->car));
5121 }
5122 else
5123 mark_object (ptr->car);
5124
5125 if (CONSP (ptr->cdr))
5126 tail = ptr->cdr;
5127 else
5128 break;
5129 }
5130
5131 mark_object (XCDR (tail));
5132 }
5133 else
5134 mark_object (buffer->undo_list);
5135
5136 if (buffer->overlays_before)
5137 {
5138 XSETMISC (tmp, buffer->overlays_before);
5139 mark_object (tmp);
5140 }
5141 if (buffer->overlays_after)
5142 {
5143 XSETMISC (tmp, buffer->overlays_after);
5144 mark_object (tmp);
5145 }
5146
5147 for (ptr = &buffer->name;
5148 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5149 ptr++)
5150 mark_object (*ptr);
5151
5152 /* If this is an indirect buffer, mark its base buffer. */
5153 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5154 {
5155 XSETBUFFER (base_buffer, buffer->base_buffer);
5156 mark_buffer (base_buffer);
5157 }
5158 }
5159
5160
5161 /* Value is non-zero if OBJ will survive the current GC because it's
5162 either marked or does not need to be marked to survive. */
5163
5164 int
5165 survives_gc_p (obj)
5166 Lisp_Object obj;
5167 {
5168 int survives_p;
5169
5170 switch (XGCTYPE (obj))
5171 {
5172 case Lisp_Int:
5173 survives_p = 1;
5174 break;
5175
5176 case Lisp_Symbol:
5177 survives_p = XSYMBOL (obj)->gcmarkbit;
5178 break;
5179
5180 case Lisp_Misc:
5181 survives_p = XMARKER (obj)->gcmarkbit;
5182 break;
5183
5184 case Lisp_String:
5185 survives_p = STRING_MARKED_P (XSTRING (obj));
5186 break;
5187
5188 case Lisp_Vectorlike:
5189 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5190 break;
5191
5192 case Lisp_Cons:
5193 survives_p = CONS_MARKED_P (XCONS (obj));
5194 break;
5195
5196 case Lisp_Float:
5197 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5198 break;
5199
5200 default:
5201 abort ();
5202 }
5203
5204 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5205 }
5206
5207
5208 \f
5209 /* Sweep: find all structures not marked, and free them. */
5210
5211 static void
5212 gc_sweep ()
5213 {
5214 /* Remove or mark entries in weak hash tables.
5215 This must be done before any object is unmarked. */
5216 sweep_weak_hash_tables ();
5217
5218 sweep_strings ();
5219 #ifdef GC_CHECK_STRING_BYTES
5220 if (!noninteractive)
5221 check_string_bytes (1);
5222 #endif
5223
5224 /* Put all unmarked conses on free list */
5225 {
5226 register struct cons_block *cblk;
5227 struct cons_block **cprev = &cons_block;
5228 register int lim = cons_block_index;
5229 register int num_free = 0, num_used = 0;
5230
5231 cons_free_list = 0;
5232
5233 for (cblk = cons_block; cblk; cblk = *cprev)
5234 {
5235 register int i;
5236 int this_free = 0;
5237 for (i = 0; i < lim; i++)
5238 if (!CONS_MARKED_P (&cblk->conses[i]))
5239 {
5240 this_free++;
5241 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5242 cons_free_list = &cblk->conses[i];
5243 #if GC_MARK_STACK
5244 cons_free_list->car = Vdead;
5245 #endif
5246 }
5247 else
5248 {
5249 num_used++;
5250 CONS_UNMARK (&cblk->conses[i]);
5251 }
5252 lim = CONS_BLOCK_SIZE;
5253 /* If this block contains only free conses and we have already
5254 seen more than two blocks worth of free conses then deallocate
5255 this block. */
5256 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5257 {
5258 *cprev = cblk->next;
5259 /* Unhook from the free list. */
5260 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5261 lisp_align_free (cblk);
5262 n_cons_blocks--;
5263 }
5264 else
5265 {
5266 num_free += this_free;
5267 cprev = &cblk->next;
5268 }
5269 }
5270 total_conses = num_used;
5271 total_free_conses = num_free;
5272 }
5273
5274 /* Put all unmarked floats on free list */
5275 {
5276 register struct float_block *fblk;
5277 struct float_block **fprev = &float_block;
5278 register int lim = float_block_index;
5279 register int num_free = 0, num_used = 0;
5280
5281 float_free_list = 0;
5282
5283 for (fblk = float_block; fblk; fblk = *fprev)
5284 {
5285 register int i;
5286 int this_free = 0;
5287 for (i = 0; i < lim; i++)
5288 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5289 {
5290 this_free++;
5291 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5292 float_free_list = &fblk->floats[i];
5293 }
5294 else
5295 {
5296 num_used++;
5297 FLOAT_UNMARK (&fblk->floats[i]);
5298 }
5299 lim = FLOAT_BLOCK_SIZE;
5300 /* If this block contains only free floats and we have already
5301 seen more than two blocks worth of free floats then deallocate
5302 this block. */
5303 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5304 {
5305 *fprev = fblk->next;
5306 /* Unhook from the free list. */
5307 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5308 lisp_align_free (fblk);
5309 n_float_blocks--;
5310 }
5311 else
5312 {
5313 num_free += this_free;
5314 fprev = &fblk->next;
5315 }
5316 }
5317 total_floats = num_used;
5318 total_free_floats = num_free;
5319 }
5320
5321 /* Put all unmarked intervals on free list */
5322 {
5323 register struct interval_block *iblk;
5324 struct interval_block **iprev = &interval_block;
5325 register int lim = interval_block_index;
5326 register int num_free = 0, num_used = 0;
5327
5328 interval_free_list = 0;
5329
5330 for (iblk = interval_block; iblk; iblk = *iprev)
5331 {
5332 register int i;
5333 int this_free = 0;
5334
5335 for (i = 0; i < lim; i++)
5336 {
5337 if (!iblk->intervals[i].gcmarkbit)
5338 {
5339 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5340 interval_free_list = &iblk->intervals[i];
5341 this_free++;
5342 }
5343 else
5344 {
5345 num_used++;
5346 iblk->intervals[i].gcmarkbit = 0;
5347 }
5348 }
5349 lim = INTERVAL_BLOCK_SIZE;
5350 /* If this block contains only free intervals and we have already
5351 seen more than two blocks worth of free intervals then
5352 deallocate this block. */
5353 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5354 {
5355 *iprev = iblk->next;
5356 /* Unhook from the free list. */
5357 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5358 lisp_free (iblk);
5359 n_interval_blocks--;
5360 }
5361 else
5362 {
5363 num_free += this_free;
5364 iprev = &iblk->next;
5365 }
5366 }
5367 total_intervals = num_used;
5368 total_free_intervals = num_free;
5369 }
5370
5371 /* Put all unmarked symbols on free list */
5372 {
5373 register struct symbol_block *sblk;
5374 struct symbol_block **sprev = &symbol_block;
5375 register int lim = symbol_block_index;
5376 register int num_free = 0, num_used = 0;
5377
5378 symbol_free_list = NULL;
5379
5380 for (sblk = symbol_block; sblk; sblk = *sprev)
5381 {
5382 int this_free = 0;
5383 struct Lisp_Symbol *sym = sblk->symbols;
5384 struct Lisp_Symbol *end = sym + lim;
5385
5386 for (; sym < end; ++sym)
5387 {
5388 /* Check if the symbol was created during loadup. In such a case
5389 it might be pointed to by pure bytecode which we don't trace,
5390 so we conservatively assume that it is live. */
5391 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5392
5393 if (!sym->gcmarkbit && !pure_p)
5394 {
5395 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5396 symbol_free_list = sym;
5397 #if GC_MARK_STACK
5398 symbol_free_list->function = Vdead;
5399 #endif
5400 ++this_free;
5401 }
5402 else
5403 {
5404 ++num_used;
5405 if (!pure_p)
5406 UNMARK_STRING (XSTRING (sym->xname));
5407 sym->gcmarkbit = 0;
5408 }
5409 }
5410
5411 lim = SYMBOL_BLOCK_SIZE;
5412 /* If this block contains only free symbols and we have already
5413 seen more than two blocks worth of free symbols then deallocate
5414 this block. */
5415 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5416 {
5417 *sprev = sblk->next;
5418 /* Unhook from the free list. */
5419 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5420 lisp_free (sblk);
5421 n_symbol_blocks--;
5422 }
5423 else
5424 {
5425 num_free += this_free;
5426 sprev = &sblk->next;
5427 }
5428 }
5429 total_symbols = num_used;
5430 total_free_symbols = num_free;
5431 }
5432
5433 /* Put all unmarked misc's on free list.
5434 For a marker, first unchain it from the buffer it points into. */
5435 {
5436 register struct marker_block *mblk;
5437 struct marker_block **mprev = &marker_block;
5438 register int lim = marker_block_index;
5439 register int num_free = 0, num_used = 0;
5440
5441 marker_free_list = 0;
5442
5443 for (mblk = marker_block; mblk; mblk = *mprev)
5444 {
5445 register int i;
5446 int this_free = 0;
5447
5448 for (i = 0; i < lim; i++)
5449 {
5450 if (!mblk->markers[i].u_marker.gcmarkbit)
5451 {
5452 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5453 unchain_marker (&mblk->markers[i].u_marker);
5454 /* Set the type of the freed object to Lisp_Misc_Free.
5455 We could leave the type alone, since nobody checks it,
5456 but this might catch bugs faster. */
5457 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5458 mblk->markers[i].u_free.chain = marker_free_list;
5459 marker_free_list = &mblk->markers[i];
5460 this_free++;
5461 }
5462 else
5463 {
5464 num_used++;
5465 mblk->markers[i].u_marker.gcmarkbit = 0;
5466 }
5467 }
5468 lim = MARKER_BLOCK_SIZE;
5469 /* If this block contains only free markers and we have already
5470 seen more than two blocks worth of free markers then deallocate
5471 this block. */
5472 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5473 {
5474 *mprev = mblk->next;
5475 /* Unhook from the free list. */
5476 marker_free_list = mblk->markers[0].u_free.chain;
5477 lisp_free (mblk);
5478 n_marker_blocks--;
5479 }
5480 else
5481 {
5482 num_free += this_free;
5483 mprev = &mblk->next;
5484 }
5485 }
5486
5487 total_markers = num_used;
5488 total_free_markers = num_free;
5489 }
5490
5491 /* Free all unmarked buffers */
5492 {
5493 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5494
5495 while (buffer)
5496 if (!VECTOR_MARKED_P (buffer))
5497 {
5498 if (prev)
5499 prev->next = buffer->next;
5500 else
5501 all_buffers = buffer->next;
5502 next = buffer->next;
5503 lisp_free (buffer);
5504 buffer = next;
5505 }
5506 else
5507 {
5508 VECTOR_UNMARK (buffer);
5509 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5510 prev = buffer, buffer = buffer->next;
5511 }
5512 }
5513
5514 /* Free all unmarked vectors */
5515 {
5516 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5517 total_vector_size = 0;
5518
5519 while (vector)
5520 if (!VECTOR_MARKED_P (vector))
5521 {
5522 if (prev)
5523 prev->next = vector->next;
5524 else
5525 all_vectors = vector->next;
5526 next = vector->next;
5527 lisp_free (vector);
5528 n_vectors--;
5529 vector = next;
5530
5531 }
5532 else
5533 {
5534 VECTOR_UNMARK (vector);
5535 if (vector->size & PSEUDOVECTOR_FLAG)
5536 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5537 else
5538 total_vector_size += vector->size;
5539 prev = vector, vector = vector->next;
5540 }
5541 }
5542
5543 #ifdef GC_CHECK_STRING_BYTES
5544 if (!noninteractive)
5545 check_string_bytes (1);
5546 #endif
5547 }
5548
5549
5550
5551 \f
5552 /* Debugging aids. */
5553
5554 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5555 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5556 This may be helpful in debugging Emacs's memory usage.
5557 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5558 ()
5559 {
5560 Lisp_Object end;
5561
5562 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5563
5564 return end;
5565 }
5566
5567 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5568 doc: /* Return a list of counters that measure how much consing there has been.
5569 Each of these counters increments for a certain kind of object.
5570 The counters wrap around from the largest positive integer to zero.
5571 Garbage collection does not decrease them.
5572 The elements of the value are as follows:
5573 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5574 All are in units of 1 = one object consed
5575 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5576 objects consed.
5577 MISCS include overlays, markers, and some internal types.
5578 Frames, windows, buffers, and subprocesses count as vectors
5579 (but the contents of a buffer's text do not count here). */)
5580 ()
5581 {
5582 Lisp_Object consed[8];
5583
5584 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5585 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5586 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5587 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5588 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5589 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5590 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5591 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5592
5593 return Flist (8, consed);
5594 }
5595
5596 int suppress_checking;
5597 void
5598 die (msg, file, line)
5599 const char *msg;
5600 const char *file;
5601 int line;
5602 {
5603 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5604 file, line, msg);
5605 abort ();
5606 }
5607 \f
5608 /* Initialization */
5609
5610 void
5611 init_alloc_once ()
5612 {
5613 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5614 purebeg = PUREBEG;
5615 pure_size = PURESIZE;
5616 pure_bytes_used = 0;
5617 pure_bytes_used_before_overflow = 0;
5618
5619 /* Initialize the list of free aligned blocks. */
5620 free_ablock = NULL;
5621
5622 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5623 mem_init ();
5624 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5625 #endif
5626
5627 all_vectors = 0;
5628 ignore_warnings = 1;
5629 #ifdef DOUG_LEA_MALLOC
5630 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5631 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5632 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5633 #endif
5634 init_strings ();
5635 init_cons ();
5636 init_symbol ();
5637 init_marker ();
5638 init_float ();
5639 init_intervals ();
5640
5641 #ifdef REL_ALLOC
5642 malloc_hysteresis = 32;
5643 #else
5644 malloc_hysteresis = 0;
5645 #endif
5646
5647 spare_memory = (char *) malloc (SPARE_MEMORY);
5648
5649 ignore_warnings = 0;
5650 gcprolist = 0;
5651 byte_stack_list = 0;
5652 staticidx = 0;
5653 consing_since_gc = 0;
5654 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5655 #ifdef VIRT_ADDR_VARIES
5656 malloc_sbrk_unused = 1<<22; /* A large number */
5657 malloc_sbrk_used = 100000; /* as reasonable as any number */
5658 #endif /* VIRT_ADDR_VARIES */
5659 }
5660
5661 void
5662 init_alloc ()
5663 {
5664 gcprolist = 0;
5665 byte_stack_list = 0;
5666 #if GC_MARK_STACK
5667 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5668 setjmp_tested_p = longjmps_done = 0;
5669 #endif
5670 #endif
5671 Vgc_elapsed = make_float (0.0);
5672 gcs_done = 0;
5673 }
5674
5675 void
5676 syms_of_alloc ()
5677 {
5678 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5679 doc: /* *Number of bytes of consing between garbage collections.
5680 Garbage collection can happen automatically once this many bytes have been
5681 allocated since the last garbage collection. All data types count.
5682
5683 Garbage collection happens automatically only when `eval' is called.
5684
5685 By binding this temporarily to a large number, you can effectively
5686 prevent garbage collection during a part of the program. */);
5687
5688 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5689 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5690
5691 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5692 doc: /* Number of cons cells that have been consed so far. */);
5693
5694 DEFVAR_INT ("floats-consed", &floats_consed,
5695 doc: /* Number of floats that have been consed so far. */);
5696
5697 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5698 doc: /* Number of vector cells that have been consed so far. */);
5699
5700 DEFVAR_INT ("symbols-consed", &symbols_consed,
5701 doc: /* Number of symbols that have been consed so far. */);
5702
5703 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5704 doc: /* Number of string characters that have been consed so far. */);
5705
5706 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5707 doc: /* Number of miscellaneous objects that have been consed so far. */);
5708
5709 DEFVAR_INT ("intervals-consed", &intervals_consed,
5710 doc: /* Number of intervals that have been consed so far. */);
5711
5712 DEFVAR_INT ("strings-consed", &strings_consed,
5713 doc: /* Number of strings that have been consed so far. */);
5714
5715 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5716 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5717 This means that certain objects should be allocated in shared (pure) space. */);
5718
5719 DEFVAR_INT ("undo-limit", &undo_limit,
5720 doc: /* Keep no more undo information once it exceeds this size.
5721 This limit is applied when garbage collection happens.
5722 The size is counted as the number of bytes occupied,
5723 which includes both saved text and other data. */);
5724 undo_limit = 20000;
5725
5726 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5727 doc: /* Don't keep more than this much size of undo information.
5728 A command which pushes past this size is itself forgotten.
5729 This limit is applied when garbage collection happens.
5730 The size is counted as the number of bytes occupied,
5731 which includes both saved text and other data. */);
5732 undo_strong_limit = 30000;
5733
5734 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5735 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5736 garbage_collection_messages = 0;
5737
5738 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5739 doc: /* Hook run after garbage collection has finished. */);
5740 Vpost_gc_hook = Qnil;
5741 Qpost_gc_hook = intern ("post-gc-hook");
5742 staticpro (&Qpost_gc_hook);
5743
5744 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5745 doc: /* Precomputed `signal' argument for memory-full error. */);
5746 /* We build this in advance because if we wait until we need it, we might
5747 not be able to allocate the memory to hold it. */
5748 Vmemory_signal_data
5749 = list2 (Qerror,
5750 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5751
5752 DEFVAR_LISP ("memory-full", &Vmemory_full,
5753 doc: /* Non-nil means we are handling a memory-full error. */);
5754 Vmemory_full = Qnil;
5755
5756 staticpro (&Qgc_cons_threshold);
5757 Qgc_cons_threshold = intern ("gc-cons-threshold");
5758
5759 staticpro (&Qchar_table_extra_slots);
5760 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5761
5762 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5763 doc: /* Accumulated time elapsed in garbage collections.
5764 The time is in seconds as a floating point value. */);
5765 DEFVAR_INT ("gcs-done", &gcs_done,
5766 doc: /* Accumulated number of garbage collections done. */);
5767
5768 defsubr (&Scons);
5769 defsubr (&Slist);
5770 defsubr (&Svector);
5771 defsubr (&Smake_byte_code);
5772 defsubr (&Smake_list);
5773 defsubr (&Smake_vector);
5774 defsubr (&Smake_char_table);
5775 defsubr (&Smake_string);
5776 defsubr (&Smake_bool_vector);
5777 defsubr (&Smake_symbol);
5778 defsubr (&Smake_marker);
5779 defsubr (&Spurecopy);
5780 defsubr (&Sgarbage_collect);
5781 defsubr (&Smemory_limit);
5782 defsubr (&Smemory_use_counts);
5783
5784 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5785 defsubr (&Sgc_status);
5786 #endif
5787 }