]> code.delx.au - gnu-emacs/blob - src/fns.c
New directory
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 86, 87, 93, 94, 95, 97, 98, 99, 2000, 2001, 02, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23
24 #ifdef HAVE_UNISTD_H
25 #include <unistd.h>
26 #endif
27 #include <time.h>
28
29 #ifndef MAC_OSX
30 /* On Mac OS X, defining this conflicts with precompiled headers. */
31
32 /* Note on some machines this defines `vector' as a typedef,
33 so make sure we don't use that name in this file. */
34 #undef vector
35 #define vector *****
36
37 #endif /* ! MAC_OSX */
38
39 #include "lisp.h"
40 #include "commands.h"
41 #include "charset.h"
42 #include "coding.h"
43 #include "buffer.h"
44 #include "keyboard.h"
45 #include "keymap.h"
46 #include "intervals.h"
47 #include "frame.h"
48 #include "window.h"
49 #include "blockinput.h"
50 #if defined (HAVE_MENUS) && defined (HAVE_X_WINDOWS)
51 #include "xterm.h"
52 #endif
53
54 #ifndef NULL
55 #define NULL ((POINTER_TYPE *)0)
56 #endif
57
58 /* Nonzero enables use of dialog boxes for questions
59 asked by mouse commands. */
60 int use_dialog_box;
61
62 extern int minibuffer_auto_raise;
63 extern Lisp_Object minibuf_window;
64 extern Lisp_Object Vlocale_coding_system;
65
66 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
67 Lisp_Object Qyes_or_no_p_history;
68 Lisp_Object Qcursor_in_echo_area;
69 Lisp_Object Qwidget_type;
70 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
71
72 extern Lisp_Object Qinput_method_function;
73
74 static int internal_equal ();
75
76 extern long get_random ();
77 extern void seed_random ();
78
79 #ifndef HAVE_UNISTD_H
80 extern long time ();
81 #endif
82 \f
83 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
84 doc: /* Return the argument unchanged. */)
85 (arg)
86 Lisp_Object arg;
87 {
88 return arg;
89 }
90
91 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
92 doc: /* Return a pseudo-random number.
93 All integers representable in Lisp are equally likely.
94 On most systems, this is 28 bits' worth.
95 With positive integer argument N, return random number in interval [0,N).
96 With argument t, set the random number seed from the current time and pid. */)
97 (n)
98 Lisp_Object n;
99 {
100 EMACS_INT val;
101 Lisp_Object lispy_val;
102 unsigned long denominator;
103
104 if (EQ (n, Qt))
105 seed_random (getpid () + time (NULL));
106 if (NATNUMP (n) && XFASTINT (n) != 0)
107 {
108 /* Try to take our random number from the higher bits of VAL,
109 not the lower, since (says Gentzel) the low bits of `random'
110 are less random than the higher ones. We do this by using the
111 quotient rather than the remainder. At the high end of the RNG
112 it's possible to get a quotient larger than n; discarding
113 these values eliminates the bias that would otherwise appear
114 when using a large n. */
115 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
116 do
117 val = get_random () / denominator;
118 while (val >= XFASTINT (n));
119 }
120 else
121 val = get_random ();
122 XSETINT (lispy_val, val);
123 return lispy_val;
124 }
125 \f
126 /* Random data-structure functions */
127
128 DEFUN ("length", Flength, Slength, 1, 1, 0,
129 doc: /* Return the length of vector, list or string SEQUENCE.
130 A byte-code function object is also allowed.
131 If the string contains multibyte characters, this is not necessarily
132 the number of bytes in the string; it is the number of characters.
133 To get the number of bytes, use `string-bytes'. */)
134 (sequence)
135 register Lisp_Object sequence;
136 {
137 register Lisp_Object val;
138 register int i;
139
140 retry:
141 if (STRINGP (sequence))
142 XSETFASTINT (val, SCHARS (sequence));
143 else if (VECTORP (sequence))
144 XSETFASTINT (val, XVECTOR (sequence)->size);
145 else if (SUB_CHAR_TABLE_P (sequence))
146 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
147 else if (CHAR_TABLE_P (sequence))
148 XSETFASTINT (val, MAX_CHAR);
149 else if (BOOL_VECTOR_P (sequence))
150 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
151 else if (COMPILEDP (sequence))
152 XSETFASTINT (val, XVECTOR (sequence)->size & PSEUDOVECTOR_SIZE_MASK);
153 else if (CONSP (sequence))
154 {
155 i = 0;
156 while (CONSP (sequence))
157 {
158 sequence = XCDR (sequence);
159 ++i;
160
161 if (!CONSP (sequence))
162 break;
163
164 sequence = XCDR (sequence);
165 ++i;
166 QUIT;
167 }
168
169 if (!NILP (sequence))
170 wrong_type_argument (Qlistp, sequence);
171
172 val = make_number (i);
173 }
174 else if (NILP (sequence))
175 XSETFASTINT (val, 0);
176 else
177 {
178 sequence = wrong_type_argument (Qsequencep, sequence);
179 goto retry;
180 }
181 return val;
182 }
183
184 /* This does not check for quits. That is safe
185 since it must terminate. */
186
187 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
188 doc: /* Return the length of a list, but avoid error or infinite loop.
189 This function never gets an error. If LIST is not really a list,
190 it returns 0. If LIST is circular, it returns a finite value
191 which is at least the number of distinct elements. */)
192 (list)
193 Lisp_Object list;
194 {
195 Lisp_Object tail, halftail, length;
196 int len = 0;
197
198 /* halftail is used to detect circular lists. */
199 halftail = list;
200 for (tail = list; CONSP (tail); tail = XCDR (tail))
201 {
202 if (EQ (tail, halftail) && len != 0)
203 break;
204 len++;
205 if ((len & 1) == 0)
206 halftail = XCDR (halftail);
207 }
208
209 XSETINT (length, len);
210 return length;
211 }
212
213 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
214 doc: /* Return the number of bytes in STRING.
215 If STRING is a multibyte string, this is greater than the length of STRING. */)
216 (string)
217 Lisp_Object string;
218 {
219 CHECK_STRING (string);
220 return make_number (SBYTES (string));
221 }
222
223 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
224 doc: /* Return t if two strings have identical contents.
225 Case is significant, but text properties are ignored.
226 Symbols are also allowed; their print names are used instead. */)
227 (s1, s2)
228 register Lisp_Object s1, s2;
229 {
230 if (SYMBOLP (s1))
231 s1 = SYMBOL_NAME (s1);
232 if (SYMBOLP (s2))
233 s2 = SYMBOL_NAME (s2);
234 CHECK_STRING (s1);
235 CHECK_STRING (s2);
236
237 if (SCHARS (s1) != SCHARS (s2)
238 || SBYTES (s1) != SBYTES (s2)
239 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
240 return Qnil;
241 return Qt;
242 }
243
244 DEFUN ("compare-strings", Fcompare_strings,
245 Scompare_strings, 6, 7, 0,
246 doc: /* Compare the contents of two strings, converting to multibyte if needed.
247 In string STR1, skip the first START1 characters and stop at END1.
248 In string STR2, skip the first START2 characters and stop at END2.
249 END1 and END2 default to the full lengths of the respective strings.
250
251 Case is significant in this comparison if IGNORE-CASE is nil.
252 Unibyte strings are converted to multibyte for comparison.
253
254 The value is t if the strings (or specified portions) match.
255 If string STR1 is less, the value is a negative number N;
256 - 1 - N is the number of characters that match at the beginning.
257 If string STR1 is greater, the value is a positive number N;
258 N - 1 is the number of characters that match at the beginning. */)
259 (str1, start1, end1, str2, start2, end2, ignore_case)
260 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
261 {
262 register int end1_char, end2_char;
263 register int i1, i1_byte, i2, i2_byte;
264
265 CHECK_STRING (str1);
266 CHECK_STRING (str2);
267 if (NILP (start1))
268 start1 = make_number (0);
269 if (NILP (start2))
270 start2 = make_number (0);
271 CHECK_NATNUM (start1);
272 CHECK_NATNUM (start2);
273 if (! NILP (end1))
274 CHECK_NATNUM (end1);
275 if (! NILP (end2))
276 CHECK_NATNUM (end2);
277
278 i1 = XINT (start1);
279 i2 = XINT (start2);
280
281 i1_byte = string_char_to_byte (str1, i1);
282 i2_byte = string_char_to_byte (str2, i2);
283
284 end1_char = SCHARS (str1);
285 if (! NILP (end1) && end1_char > XINT (end1))
286 end1_char = XINT (end1);
287
288 end2_char = SCHARS (str2);
289 if (! NILP (end2) && end2_char > XINT (end2))
290 end2_char = XINT (end2);
291
292 while (i1 < end1_char && i2 < end2_char)
293 {
294 /* When we find a mismatch, we must compare the
295 characters, not just the bytes. */
296 int c1, c2;
297
298 if (STRING_MULTIBYTE (str1))
299 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
300 else
301 {
302 c1 = SREF (str1, i1++);
303 c1 = unibyte_char_to_multibyte (c1);
304 }
305
306 if (STRING_MULTIBYTE (str2))
307 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
308 else
309 {
310 c2 = SREF (str2, i2++);
311 c2 = unibyte_char_to_multibyte (c2);
312 }
313
314 if (c1 == c2)
315 continue;
316
317 if (! NILP (ignore_case))
318 {
319 Lisp_Object tem;
320
321 tem = Fupcase (make_number (c1));
322 c1 = XINT (tem);
323 tem = Fupcase (make_number (c2));
324 c2 = XINT (tem);
325 }
326
327 if (c1 == c2)
328 continue;
329
330 /* Note that I1 has already been incremented
331 past the character that we are comparing;
332 hence we don't add or subtract 1 here. */
333 if (c1 < c2)
334 return make_number (- i1 + XINT (start1));
335 else
336 return make_number (i1 - XINT (start1));
337 }
338
339 if (i1 < end1_char)
340 return make_number (i1 - XINT (start1) + 1);
341 if (i2 < end2_char)
342 return make_number (- i1 + XINT (start1) - 1);
343
344 return Qt;
345 }
346
347 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
348 doc: /* Return t if first arg string is less than second in lexicographic order.
349 Case is significant.
350 Symbols are also allowed; their print names are used instead. */)
351 (s1, s2)
352 register Lisp_Object s1, s2;
353 {
354 register int end;
355 register int i1, i1_byte, i2, i2_byte;
356
357 if (SYMBOLP (s1))
358 s1 = SYMBOL_NAME (s1);
359 if (SYMBOLP (s2))
360 s2 = SYMBOL_NAME (s2);
361 CHECK_STRING (s1);
362 CHECK_STRING (s2);
363
364 i1 = i1_byte = i2 = i2_byte = 0;
365
366 end = SCHARS (s1);
367 if (end > SCHARS (s2))
368 end = SCHARS (s2);
369
370 while (i1 < end)
371 {
372 /* When we find a mismatch, we must compare the
373 characters, not just the bytes. */
374 int c1, c2;
375
376 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
377 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
378
379 if (c1 != c2)
380 return c1 < c2 ? Qt : Qnil;
381 }
382 return i1 < SCHARS (s2) ? Qt : Qnil;
383 }
384 \f
385 static Lisp_Object concat ();
386
387 /* ARGSUSED */
388 Lisp_Object
389 concat2 (s1, s2)
390 Lisp_Object s1, s2;
391 {
392 #ifdef NO_ARG_ARRAY
393 Lisp_Object args[2];
394 args[0] = s1;
395 args[1] = s2;
396 return concat (2, args, Lisp_String, 0);
397 #else
398 return concat (2, &s1, Lisp_String, 0);
399 #endif /* NO_ARG_ARRAY */
400 }
401
402 /* ARGSUSED */
403 Lisp_Object
404 concat3 (s1, s2, s3)
405 Lisp_Object s1, s2, s3;
406 {
407 #ifdef NO_ARG_ARRAY
408 Lisp_Object args[3];
409 args[0] = s1;
410 args[1] = s2;
411 args[2] = s3;
412 return concat (3, args, Lisp_String, 0);
413 #else
414 return concat (3, &s1, Lisp_String, 0);
415 #endif /* NO_ARG_ARRAY */
416 }
417
418 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
419 doc: /* Concatenate all the arguments and make the result a list.
420 The result is a list whose elements are the elements of all the arguments.
421 Each argument may be a list, vector or string.
422 The last argument is not copied, just used as the tail of the new list.
423 usage: (append &rest SEQUENCES) */)
424 (nargs, args)
425 int nargs;
426 Lisp_Object *args;
427 {
428 return concat (nargs, args, Lisp_Cons, 1);
429 }
430
431 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
432 doc: /* Concatenate all the arguments and make the result a string.
433 The result is a string whose elements are the elements of all the arguments.
434 Each argument may be a string or a list or vector of characters (integers).
435 usage: (concat &rest SEQUENCES) */)
436 (nargs, args)
437 int nargs;
438 Lisp_Object *args;
439 {
440 return concat (nargs, args, Lisp_String, 0);
441 }
442
443 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
444 doc: /* Concatenate all the arguments and make the result a vector.
445 The result is a vector whose elements are the elements of all the arguments.
446 Each argument may be a list, vector or string.
447 usage: (vconcat &rest SEQUENCES) */)
448 (nargs, args)
449 int nargs;
450 Lisp_Object *args;
451 {
452 return concat (nargs, args, Lisp_Vectorlike, 0);
453 }
454
455 /* Return a copy of a sub char table ARG. The elements except for a
456 nested sub char table are not copied. */
457 static Lisp_Object
458 copy_sub_char_table (arg)
459 Lisp_Object arg;
460 {
461 Lisp_Object copy = make_sub_char_table (XCHAR_TABLE (arg)->defalt);
462 int i;
463
464 /* Copy all the contents. */
465 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
466 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
467 /* Recursively copy any sub char-tables in the ordinary slots. */
468 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
469 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
470 XCHAR_TABLE (copy)->contents[i]
471 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
472
473 return copy;
474 }
475
476
477 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
478 doc: /* Return a copy of a list, vector, string or char-table.
479 The elements of a list or vector are not copied; they are shared
480 with the original. */)
481 (arg)
482 Lisp_Object arg;
483 {
484 if (NILP (arg)) return arg;
485
486 if (CHAR_TABLE_P (arg))
487 {
488 int i;
489 Lisp_Object copy;
490
491 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
492 /* Copy all the slots, including the extra ones. */
493 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
494 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
495 * sizeof (Lisp_Object)));
496
497 /* Recursively copy any sub char tables in the ordinary slots
498 for multibyte characters. */
499 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
500 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
501 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
502 XCHAR_TABLE (copy)->contents[i]
503 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
504
505 return copy;
506 }
507
508 if (BOOL_VECTOR_P (arg))
509 {
510 Lisp_Object val;
511 int size_in_chars
512 = (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
513
514 val = Fmake_bool_vector (Flength (arg), Qnil);
515 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
516 size_in_chars);
517 return val;
518 }
519
520 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
521 arg = wrong_type_argument (Qsequencep, arg);
522 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
523 }
524
525 /* In string STR of length LEN, see if bytes before STR[I] combine
526 with bytes after STR[I] to form a single character. If so, return
527 the number of bytes after STR[I] which combine in this way.
528 Otherwize, return 0. */
529
530 static int
531 count_combining (str, len, i)
532 unsigned char *str;
533 int len, i;
534 {
535 int j = i - 1, bytes;
536
537 if (i == 0 || i == len || CHAR_HEAD_P (str[i]))
538 return 0;
539 while (j >= 0 && !CHAR_HEAD_P (str[j])) j--;
540 if (j < 0 || ! BASE_LEADING_CODE_P (str[j]))
541 return 0;
542 PARSE_MULTIBYTE_SEQ (str + j, len - j, bytes);
543 return (bytes <= i - j ? 0 : bytes - (i - j));
544 }
545
546 /* This structure holds information of an argument of `concat' that is
547 a string and has text properties to be copied. */
548 struct textprop_rec
549 {
550 int argnum; /* refer to ARGS (arguments of `concat') */
551 int from; /* refer to ARGS[argnum] (argument string) */
552 int to; /* refer to VAL (the target string) */
553 };
554
555 static Lisp_Object
556 concat (nargs, args, target_type, last_special)
557 int nargs;
558 Lisp_Object *args;
559 enum Lisp_Type target_type;
560 int last_special;
561 {
562 Lisp_Object val;
563 register Lisp_Object tail;
564 register Lisp_Object this;
565 int toindex;
566 int toindex_byte = 0;
567 register int result_len;
568 register int result_len_byte;
569 register int argnum;
570 Lisp_Object last_tail;
571 Lisp_Object prev;
572 int some_multibyte;
573 /* When we make a multibyte string, we can't copy text properties
574 while concatinating each string because the length of resulting
575 string can't be decided until we finish the whole concatination.
576 So, we record strings that have text properties to be copied
577 here, and copy the text properties after the concatination. */
578 struct textprop_rec *textprops = NULL;
579 /* Number of elments in textprops. */
580 int num_textprops = 0;
581
582 tail = Qnil;
583
584 /* In append, the last arg isn't treated like the others */
585 if (last_special && nargs > 0)
586 {
587 nargs--;
588 last_tail = args[nargs];
589 }
590 else
591 last_tail = Qnil;
592
593 /* Canonicalize each argument. */
594 for (argnum = 0; argnum < nargs; argnum++)
595 {
596 this = args[argnum];
597 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
598 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
599 {
600 args[argnum] = wrong_type_argument (Qsequencep, this);
601 }
602 }
603
604 /* Compute total length in chars of arguments in RESULT_LEN.
605 If desired output is a string, also compute length in bytes
606 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
607 whether the result should be a multibyte string. */
608 result_len_byte = 0;
609 result_len = 0;
610 some_multibyte = 0;
611 for (argnum = 0; argnum < nargs; argnum++)
612 {
613 int len;
614 this = args[argnum];
615 len = XFASTINT (Flength (this));
616 if (target_type == Lisp_String)
617 {
618 /* We must count the number of bytes needed in the string
619 as well as the number of characters. */
620 int i;
621 Lisp_Object ch;
622 int this_len_byte;
623
624 if (VECTORP (this))
625 for (i = 0; i < len; i++)
626 {
627 ch = XVECTOR (this)->contents[i];
628 if (! INTEGERP (ch))
629 wrong_type_argument (Qintegerp, ch);
630 this_len_byte = CHAR_BYTES (XINT (ch));
631 result_len_byte += this_len_byte;
632 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
633 some_multibyte = 1;
634 }
635 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
636 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
637 else if (CONSP (this))
638 for (; CONSP (this); this = XCDR (this))
639 {
640 ch = XCAR (this);
641 if (! INTEGERP (ch))
642 wrong_type_argument (Qintegerp, ch);
643 this_len_byte = CHAR_BYTES (XINT (ch));
644 result_len_byte += this_len_byte;
645 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
646 some_multibyte = 1;
647 }
648 else if (STRINGP (this))
649 {
650 if (STRING_MULTIBYTE (this))
651 {
652 some_multibyte = 1;
653 result_len_byte += SBYTES (this);
654 }
655 else
656 result_len_byte += count_size_as_multibyte (SDATA (this),
657 SCHARS (this));
658 }
659 }
660
661 result_len += len;
662 }
663
664 if (! some_multibyte)
665 result_len_byte = result_len;
666
667 /* Create the output object. */
668 if (target_type == Lisp_Cons)
669 val = Fmake_list (make_number (result_len), Qnil);
670 else if (target_type == Lisp_Vectorlike)
671 val = Fmake_vector (make_number (result_len), Qnil);
672 else if (some_multibyte)
673 val = make_uninit_multibyte_string (result_len, result_len_byte);
674 else
675 val = make_uninit_string (result_len);
676
677 /* In `append', if all but last arg are nil, return last arg. */
678 if (target_type == Lisp_Cons && EQ (val, Qnil))
679 return last_tail;
680
681 /* Copy the contents of the args into the result. */
682 if (CONSP (val))
683 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
684 else
685 toindex = 0, toindex_byte = 0;
686
687 prev = Qnil;
688 if (STRINGP (val))
689 textprops
690 = (struct textprop_rec *) alloca (sizeof (struct textprop_rec) * nargs);
691
692 for (argnum = 0; argnum < nargs; argnum++)
693 {
694 Lisp_Object thislen;
695 int thisleni = 0;
696 register unsigned int thisindex = 0;
697 register unsigned int thisindex_byte = 0;
698
699 this = args[argnum];
700 if (!CONSP (this))
701 thislen = Flength (this), thisleni = XINT (thislen);
702
703 /* Between strings of the same kind, copy fast. */
704 if (STRINGP (this) && STRINGP (val)
705 && STRING_MULTIBYTE (this) == some_multibyte)
706 {
707 int thislen_byte = SBYTES (this);
708 int combined;
709
710 bcopy (SDATA (this), SDATA (val) + toindex_byte,
711 SBYTES (this));
712 combined = (some_multibyte && toindex_byte > 0
713 ? count_combining (SDATA (val),
714 toindex_byte + thislen_byte,
715 toindex_byte)
716 : 0);
717 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
718 {
719 textprops[num_textprops].argnum = argnum;
720 /* We ignore text properties on characters being combined. */
721 textprops[num_textprops].from = combined;
722 textprops[num_textprops++].to = toindex;
723 }
724 toindex_byte += thislen_byte;
725 toindex += thisleni - combined;
726 STRING_SET_CHARS (val, SCHARS (val) - combined);
727 }
728 /* Copy a single-byte string to a multibyte string. */
729 else if (STRINGP (this) && STRINGP (val))
730 {
731 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
732 {
733 textprops[num_textprops].argnum = argnum;
734 textprops[num_textprops].from = 0;
735 textprops[num_textprops++].to = toindex;
736 }
737 toindex_byte += copy_text (SDATA (this),
738 SDATA (val) + toindex_byte,
739 SCHARS (this), 0, 1);
740 toindex += thisleni;
741 }
742 else
743 /* Copy element by element. */
744 while (1)
745 {
746 register Lisp_Object elt;
747
748 /* Fetch next element of `this' arg into `elt', or break if
749 `this' is exhausted. */
750 if (NILP (this)) break;
751 if (CONSP (this))
752 elt = XCAR (this), this = XCDR (this);
753 else if (thisindex >= thisleni)
754 break;
755 else if (STRINGP (this))
756 {
757 int c;
758 if (STRING_MULTIBYTE (this))
759 {
760 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
761 thisindex,
762 thisindex_byte);
763 XSETFASTINT (elt, c);
764 }
765 else
766 {
767 XSETFASTINT (elt, SREF (this, thisindex++));
768 if (some_multibyte
769 && (XINT (elt) >= 0240
770 || (XINT (elt) >= 0200
771 && ! NILP (Vnonascii_translation_table)))
772 && XINT (elt) < 0400)
773 {
774 c = unibyte_char_to_multibyte (XINT (elt));
775 XSETINT (elt, c);
776 }
777 }
778 }
779 else if (BOOL_VECTOR_P (this))
780 {
781 int byte;
782 byte = XBOOL_VECTOR (this)->data[thisindex / BITS_PER_CHAR];
783 if (byte & (1 << (thisindex % BITS_PER_CHAR)))
784 elt = Qt;
785 else
786 elt = Qnil;
787 thisindex++;
788 }
789 else
790 elt = XVECTOR (this)->contents[thisindex++];
791
792 /* Store this element into the result. */
793 if (toindex < 0)
794 {
795 XSETCAR (tail, elt);
796 prev = tail;
797 tail = XCDR (tail);
798 }
799 else if (VECTORP (val))
800 XVECTOR (val)->contents[toindex++] = elt;
801 else
802 {
803 CHECK_NUMBER (elt);
804 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
805 {
806 if (some_multibyte)
807 toindex_byte
808 += CHAR_STRING (XINT (elt),
809 SDATA (val) + toindex_byte);
810 else
811 SSET (val, toindex_byte++, XINT (elt));
812 if (some_multibyte
813 && toindex_byte > 0
814 && count_combining (SDATA (val),
815 toindex_byte, toindex_byte - 1))
816 STRING_SET_CHARS (val, SCHARS (val) - 1);
817 else
818 toindex++;
819 }
820 else
821 /* If we have any multibyte characters,
822 we already decided to make a multibyte string. */
823 {
824 int c = XINT (elt);
825 /* P exists as a variable
826 to avoid a bug on the Masscomp C compiler. */
827 unsigned char *p = SDATA (val) + toindex_byte;
828
829 toindex_byte += CHAR_STRING (c, p);
830 toindex++;
831 }
832 }
833 }
834 }
835 if (!NILP (prev))
836 XSETCDR (prev, last_tail);
837
838 if (num_textprops > 0)
839 {
840 Lisp_Object props;
841 int last_to_end = -1;
842
843 for (argnum = 0; argnum < num_textprops; argnum++)
844 {
845 this = args[textprops[argnum].argnum];
846 props = text_property_list (this,
847 make_number (0),
848 make_number (SCHARS (this)),
849 Qnil);
850 /* If successive arguments have properites, be sure that the
851 value of `composition' property be the copy. */
852 if (last_to_end == textprops[argnum].to)
853 make_composition_value_copy (props);
854 add_text_properties_from_list (val, props,
855 make_number (textprops[argnum].to));
856 last_to_end = textprops[argnum].to + SCHARS (this);
857 }
858 }
859 return val;
860 }
861 \f
862 static Lisp_Object string_char_byte_cache_string;
863 static int string_char_byte_cache_charpos;
864 static int string_char_byte_cache_bytepos;
865
866 void
867 clear_string_char_byte_cache ()
868 {
869 string_char_byte_cache_string = Qnil;
870 }
871
872 /* Return the character index corresponding to CHAR_INDEX in STRING. */
873
874 int
875 string_char_to_byte (string, char_index)
876 Lisp_Object string;
877 int char_index;
878 {
879 int i, i_byte;
880 int best_below, best_below_byte;
881 int best_above, best_above_byte;
882
883 if (! STRING_MULTIBYTE (string))
884 return char_index;
885
886 best_below = best_below_byte = 0;
887 best_above = SCHARS (string);
888 best_above_byte = SBYTES (string);
889
890 if (EQ (string, string_char_byte_cache_string))
891 {
892 if (string_char_byte_cache_charpos < char_index)
893 {
894 best_below = string_char_byte_cache_charpos;
895 best_below_byte = string_char_byte_cache_bytepos;
896 }
897 else
898 {
899 best_above = string_char_byte_cache_charpos;
900 best_above_byte = string_char_byte_cache_bytepos;
901 }
902 }
903
904 if (char_index - best_below < best_above - char_index)
905 {
906 while (best_below < char_index)
907 {
908 int c;
909 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
910 best_below, best_below_byte);
911 }
912 i = best_below;
913 i_byte = best_below_byte;
914 }
915 else
916 {
917 while (best_above > char_index)
918 {
919 unsigned char *pend = SDATA (string) + best_above_byte;
920 unsigned char *pbeg = pend - best_above_byte;
921 unsigned char *p = pend - 1;
922 int bytes;
923
924 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
925 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
926 if (bytes == pend - p)
927 best_above_byte -= bytes;
928 else if (bytes > pend - p)
929 best_above_byte -= (pend - p);
930 else
931 best_above_byte--;
932 best_above--;
933 }
934 i = best_above;
935 i_byte = best_above_byte;
936 }
937
938 string_char_byte_cache_bytepos = i_byte;
939 string_char_byte_cache_charpos = i;
940 string_char_byte_cache_string = string;
941
942 return i_byte;
943 }
944 \f
945 /* Return the character index corresponding to BYTE_INDEX in STRING. */
946
947 int
948 string_byte_to_char (string, byte_index)
949 Lisp_Object string;
950 int byte_index;
951 {
952 int i, i_byte;
953 int best_below, best_below_byte;
954 int best_above, best_above_byte;
955
956 if (! STRING_MULTIBYTE (string))
957 return byte_index;
958
959 best_below = best_below_byte = 0;
960 best_above = SCHARS (string);
961 best_above_byte = SBYTES (string);
962
963 if (EQ (string, string_char_byte_cache_string))
964 {
965 if (string_char_byte_cache_bytepos < byte_index)
966 {
967 best_below = string_char_byte_cache_charpos;
968 best_below_byte = string_char_byte_cache_bytepos;
969 }
970 else
971 {
972 best_above = string_char_byte_cache_charpos;
973 best_above_byte = string_char_byte_cache_bytepos;
974 }
975 }
976
977 if (byte_index - best_below_byte < best_above_byte - byte_index)
978 {
979 while (best_below_byte < byte_index)
980 {
981 int c;
982 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
983 best_below, best_below_byte);
984 }
985 i = best_below;
986 i_byte = best_below_byte;
987 }
988 else
989 {
990 while (best_above_byte > byte_index)
991 {
992 unsigned char *pend = SDATA (string) + best_above_byte;
993 unsigned char *pbeg = pend - best_above_byte;
994 unsigned char *p = pend - 1;
995 int bytes;
996
997 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
998 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
999 if (bytes == pend - p)
1000 best_above_byte -= bytes;
1001 else if (bytes > pend - p)
1002 best_above_byte -= (pend - p);
1003 else
1004 best_above_byte--;
1005 best_above--;
1006 }
1007 i = best_above;
1008 i_byte = best_above_byte;
1009 }
1010
1011 string_char_byte_cache_bytepos = i_byte;
1012 string_char_byte_cache_charpos = i;
1013 string_char_byte_cache_string = string;
1014
1015 return i;
1016 }
1017 \f
1018 /* Convert STRING to a multibyte string.
1019 Single-byte characters 0240 through 0377 are converted
1020 by adding nonascii_insert_offset to each. */
1021
1022 Lisp_Object
1023 string_make_multibyte (string)
1024 Lisp_Object string;
1025 {
1026 unsigned char *buf;
1027 int nbytes;
1028
1029 if (STRING_MULTIBYTE (string))
1030 return string;
1031
1032 nbytes = count_size_as_multibyte (SDATA (string),
1033 SCHARS (string));
1034 /* If all the chars are ASCII, they won't need any more bytes
1035 once converted. In that case, we can return STRING itself. */
1036 if (nbytes == SBYTES (string))
1037 return string;
1038
1039 buf = (unsigned char *) alloca (nbytes);
1040 copy_text (SDATA (string), buf, SBYTES (string),
1041 0, 1);
1042
1043 return make_multibyte_string (buf, SCHARS (string), nbytes);
1044 }
1045
1046
1047 /* Convert STRING to a multibyte string without changing each
1048 character codes. Thus, characters 0200 trough 0237 are converted
1049 to eight-bit-control characters, and characters 0240 through 0377
1050 are converted eight-bit-graphic characters. */
1051
1052 Lisp_Object
1053 string_to_multibyte (string)
1054 Lisp_Object string;
1055 {
1056 unsigned char *buf;
1057 int nbytes;
1058
1059 if (STRING_MULTIBYTE (string))
1060 return string;
1061
1062 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1063 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1064 any more bytes once converted. */
1065 if (nbytes == SBYTES (string))
1066 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1067
1068 buf = (unsigned char *) alloca (nbytes);
1069 bcopy (SDATA (string), buf, SBYTES (string));
1070 str_to_multibyte (buf, nbytes, SBYTES (string));
1071
1072 return make_multibyte_string (buf, SCHARS (string), nbytes);
1073 }
1074
1075
1076 /* Convert STRING to a single-byte string. */
1077
1078 Lisp_Object
1079 string_make_unibyte (string)
1080 Lisp_Object string;
1081 {
1082 unsigned char *buf;
1083
1084 if (! STRING_MULTIBYTE (string))
1085 return string;
1086
1087 buf = (unsigned char *) alloca (SCHARS (string));
1088
1089 copy_text (SDATA (string), buf, SBYTES (string),
1090 1, 0);
1091
1092 return make_unibyte_string (buf, SCHARS (string));
1093 }
1094
1095 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1096 1, 1, 0,
1097 doc: /* Return the multibyte equivalent of STRING.
1098 The function `unibyte-char-to-multibyte' is used to convert
1099 each unibyte character to a multibyte character. */)
1100 (string)
1101 Lisp_Object string;
1102 {
1103 CHECK_STRING (string);
1104
1105 return string_make_multibyte (string);
1106 }
1107
1108 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1109 1, 1, 0,
1110 doc: /* Return the unibyte equivalent of STRING.
1111 Multibyte character codes are converted to unibyte according to
1112 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1113 If the lookup in the translation table fails, this function takes just
1114 the low 8 bits of each character. */)
1115 (string)
1116 Lisp_Object string;
1117 {
1118 CHECK_STRING (string);
1119
1120 return string_make_unibyte (string);
1121 }
1122
1123 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1124 1, 1, 0,
1125 doc: /* Return a unibyte string with the same individual bytes as STRING.
1126 If STRING is unibyte, the result is STRING itself.
1127 Otherwise it is a newly created string, with no text properties.
1128 If STRING is multibyte and contains a character of charset
1129 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1130 corresponding single byte. */)
1131 (string)
1132 Lisp_Object string;
1133 {
1134 CHECK_STRING (string);
1135
1136 if (STRING_MULTIBYTE (string))
1137 {
1138 int bytes = SBYTES (string);
1139 unsigned char *str = (unsigned char *) xmalloc (bytes);
1140
1141 bcopy (SDATA (string), str, bytes);
1142 bytes = str_as_unibyte (str, bytes);
1143 string = make_unibyte_string (str, bytes);
1144 xfree (str);
1145 }
1146 return string;
1147 }
1148
1149 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1150 1, 1, 0,
1151 doc: /* Return a multibyte string with the same individual bytes as STRING.
1152 If STRING is multibyte, the result is STRING itself.
1153 Otherwise it is a newly created string, with no text properties.
1154 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1155 part of a multibyte form), it is converted to the corresponding
1156 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'. */)
1157 (string)
1158 Lisp_Object string;
1159 {
1160 CHECK_STRING (string);
1161
1162 if (! STRING_MULTIBYTE (string))
1163 {
1164 Lisp_Object new_string;
1165 int nchars, nbytes;
1166
1167 parse_str_as_multibyte (SDATA (string),
1168 SBYTES (string),
1169 &nchars, &nbytes);
1170 new_string = make_uninit_multibyte_string (nchars, nbytes);
1171 bcopy (SDATA (string), SDATA (new_string),
1172 SBYTES (string));
1173 if (nbytes != SBYTES (string))
1174 str_as_multibyte (SDATA (new_string), nbytes,
1175 SBYTES (string), NULL);
1176 string = new_string;
1177 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1178 }
1179 return string;
1180 }
1181
1182 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1183 1, 1, 0,
1184 doc: /* Return a multibyte string with the same individual chars as STRING.
1185 If STRING is multibyte, the result is STRING itself.
1186 Otherwise it is a newly created string, with no text properties.
1187 Characters 0200 through 0237 are converted to eight-bit-control
1188 characters of the same character code. Characters 0240 through 0377
1189 are converted to eight-bit-control characters of the same character
1190 codes. */)
1191 (string)
1192 Lisp_Object string;
1193 {
1194 CHECK_STRING (string);
1195
1196 return string_to_multibyte (string);
1197 }
1198
1199 \f
1200 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1201 doc: /* Return a copy of ALIST.
1202 This is an alist which represents the same mapping from objects to objects,
1203 but does not share the alist structure with ALIST.
1204 The objects mapped (cars and cdrs of elements of the alist)
1205 are shared, however.
1206 Elements of ALIST that are not conses are also shared. */)
1207 (alist)
1208 Lisp_Object alist;
1209 {
1210 register Lisp_Object tem;
1211
1212 CHECK_LIST (alist);
1213 if (NILP (alist))
1214 return alist;
1215 alist = concat (1, &alist, Lisp_Cons, 0);
1216 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1217 {
1218 register Lisp_Object car;
1219 car = XCAR (tem);
1220
1221 if (CONSP (car))
1222 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1223 }
1224 return alist;
1225 }
1226
1227 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1228 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1229 TO may be nil or omitted; then the substring runs to the end of STRING.
1230 FROM and TO start at 0. If either is negative, it counts from the end.
1231
1232 This function allows vectors as well as strings. */)
1233 (string, from, to)
1234 Lisp_Object string;
1235 register Lisp_Object from, to;
1236 {
1237 Lisp_Object res;
1238 int size;
1239 int size_byte = 0;
1240 int from_char, to_char;
1241 int from_byte = 0, to_byte = 0;
1242
1243 if (! (STRINGP (string) || VECTORP (string)))
1244 wrong_type_argument (Qarrayp, string);
1245
1246 CHECK_NUMBER (from);
1247
1248 if (STRINGP (string))
1249 {
1250 size = SCHARS (string);
1251 size_byte = SBYTES (string);
1252 }
1253 else
1254 size = XVECTOR (string)->size;
1255
1256 if (NILP (to))
1257 {
1258 to_char = size;
1259 to_byte = size_byte;
1260 }
1261 else
1262 {
1263 CHECK_NUMBER (to);
1264
1265 to_char = XINT (to);
1266 if (to_char < 0)
1267 to_char += size;
1268
1269 if (STRINGP (string))
1270 to_byte = string_char_to_byte (string, to_char);
1271 }
1272
1273 from_char = XINT (from);
1274 if (from_char < 0)
1275 from_char += size;
1276 if (STRINGP (string))
1277 from_byte = string_char_to_byte (string, from_char);
1278
1279 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1280 args_out_of_range_3 (string, make_number (from_char),
1281 make_number (to_char));
1282
1283 if (STRINGP (string))
1284 {
1285 res = make_specified_string (SDATA (string) + from_byte,
1286 to_char - from_char, to_byte - from_byte,
1287 STRING_MULTIBYTE (string));
1288 copy_text_properties (make_number (from_char), make_number (to_char),
1289 string, make_number (0), res, Qnil);
1290 }
1291 else
1292 res = Fvector (to_char - from_char,
1293 XVECTOR (string)->contents + from_char);
1294
1295 return res;
1296 }
1297
1298
1299 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1300 doc: /* Return a substring of STRING, without text properties.
1301 It starts at index FROM and ending before TO.
1302 TO may be nil or omitted; then the substring runs to the end of STRING.
1303 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1304 If FROM or TO is negative, it counts from the end.
1305
1306 With one argument, just copy STRING without its properties. */)
1307 (string, from, to)
1308 Lisp_Object string;
1309 register Lisp_Object from, to;
1310 {
1311 int size, size_byte;
1312 int from_char, to_char;
1313 int from_byte, to_byte;
1314
1315 CHECK_STRING (string);
1316
1317 size = SCHARS (string);
1318 size_byte = SBYTES (string);
1319
1320 if (NILP (from))
1321 from_char = from_byte = 0;
1322 else
1323 {
1324 CHECK_NUMBER (from);
1325 from_char = XINT (from);
1326 if (from_char < 0)
1327 from_char += size;
1328
1329 from_byte = string_char_to_byte (string, from_char);
1330 }
1331
1332 if (NILP (to))
1333 {
1334 to_char = size;
1335 to_byte = size_byte;
1336 }
1337 else
1338 {
1339 CHECK_NUMBER (to);
1340
1341 to_char = XINT (to);
1342 if (to_char < 0)
1343 to_char += size;
1344
1345 to_byte = string_char_to_byte (string, to_char);
1346 }
1347
1348 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1349 args_out_of_range_3 (string, make_number (from_char),
1350 make_number (to_char));
1351
1352 return make_specified_string (SDATA (string) + from_byte,
1353 to_char - from_char, to_byte - from_byte,
1354 STRING_MULTIBYTE (string));
1355 }
1356
1357 /* Extract a substring of STRING, giving start and end positions
1358 both in characters and in bytes. */
1359
1360 Lisp_Object
1361 substring_both (string, from, from_byte, to, to_byte)
1362 Lisp_Object string;
1363 int from, from_byte, to, to_byte;
1364 {
1365 Lisp_Object res;
1366 int size;
1367 int size_byte;
1368
1369 if (! (STRINGP (string) || VECTORP (string)))
1370 wrong_type_argument (Qarrayp, string);
1371
1372 if (STRINGP (string))
1373 {
1374 size = SCHARS (string);
1375 size_byte = SBYTES (string);
1376 }
1377 else
1378 size = XVECTOR (string)->size;
1379
1380 if (!(0 <= from && from <= to && to <= size))
1381 args_out_of_range_3 (string, make_number (from), make_number (to));
1382
1383 if (STRINGP (string))
1384 {
1385 res = make_specified_string (SDATA (string) + from_byte,
1386 to - from, to_byte - from_byte,
1387 STRING_MULTIBYTE (string));
1388 copy_text_properties (make_number (from), make_number (to),
1389 string, make_number (0), res, Qnil);
1390 }
1391 else
1392 res = Fvector (to - from,
1393 XVECTOR (string)->contents + from);
1394
1395 return res;
1396 }
1397 \f
1398 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1399 doc: /* Take cdr N times on LIST, returns the result. */)
1400 (n, list)
1401 Lisp_Object n;
1402 register Lisp_Object list;
1403 {
1404 register int i, num;
1405 CHECK_NUMBER (n);
1406 num = XINT (n);
1407 for (i = 0; i < num && !NILP (list); i++)
1408 {
1409 QUIT;
1410 if (! CONSP (list))
1411 wrong_type_argument (Qlistp, list);
1412 list = XCDR (list);
1413 }
1414 return list;
1415 }
1416
1417 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1418 doc: /* Return the Nth element of LIST.
1419 N counts from zero. If LIST is not that long, nil is returned. */)
1420 (n, list)
1421 Lisp_Object n, list;
1422 {
1423 return Fcar (Fnthcdr (n, list));
1424 }
1425
1426 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1427 doc: /* Return element of SEQUENCE at index N. */)
1428 (sequence, n)
1429 register Lisp_Object sequence, n;
1430 {
1431 CHECK_NUMBER (n);
1432 while (1)
1433 {
1434 if (CONSP (sequence) || NILP (sequence))
1435 return Fcar (Fnthcdr (n, sequence));
1436 else if (STRINGP (sequence) || VECTORP (sequence)
1437 || BOOL_VECTOR_P (sequence) || CHAR_TABLE_P (sequence))
1438 return Faref (sequence, n);
1439 else
1440 sequence = wrong_type_argument (Qsequencep, sequence);
1441 }
1442 }
1443
1444 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1445 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1446 The value is actually the tail of LIST whose car is ELT. */)
1447 (elt, list)
1448 register Lisp_Object elt;
1449 Lisp_Object list;
1450 {
1451 register Lisp_Object tail;
1452 for (tail = list; !NILP (tail); tail = XCDR (tail))
1453 {
1454 register Lisp_Object tem;
1455 if (! CONSP (tail))
1456 wrong_type_argument (Qlistp, list);
1457 tem = XCAR (tail);
1458 if (! NILP (Fequal (elt, tem)))
1459 return tail;
1460 QUIT;
1461 }
1462 return Qnil;
1463 }
1464
1465 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1466 doc: /* Return non-nil if ELT is an element of LIST.
1467 Comparison done with EQ. The value is actually the tail of LIST
1468 whose car is ELT. */)
1469 (elt, list)
1470 Lisp_Object elt, list;
1471 {
1472 while (1)
1473 {
1474 if (!CONSP (list) || EQ (XCAR (list), elt))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list) || EQ (XCAR (list), elt))
1479 break;
1480
1481 list = XCDR (list);
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 QUIT;
1487 }
1488
1489 if (!CONSP (list) && !NILP (list))
1490 list = wrong_type_argument (Qlistp, list);
1491
1492 return list;
1493 }
1494
1495 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1496 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1497 The value is actually the element of LIST whose car is KEY.
1498 Elements of LIST that are not conses are ignored. */)
1499 (key, list)
1500 Lisp_Object key, list;
1501 {
1502 Lisp_Object result;
1503
1504 while (1)
1505 {
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCAR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 if (!CONSP (list)
1513 || (CONSP (XCAR (list))
1514 && EQ (XCAR (XCAR (list)), key)))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && EQ (XCAR (XCAR (list)), key)))
1521 break;
1522
1523 list = XCDR (list);
1524 QUIT;
1525 }
1526
1527 if (CONSP (list))
1528 result = XCAR (list);
1529 else if (NILP (list))
1530 result = Qnil;
1531 else
1532 result = wrong_type_argument (Qlistp, list);
1533
1534 return result;
1535 }
1536
1537 /* Like Fassq but never report an error and do not allow quits.
1538 Use only on lists known never to be circular. */
1539
1540 Lisp_Object
1541 assq_no_quit (key, list)
1542 Lisp_Object key, list;
1543 {
1544 while (CONSP (list)
1545 && (!CONSP (XCAR (list))
1546 || !EQ (XCAR (XCAR (list)), key)))
1547 list = XCDR (list);
1548
1549 return CONSP (list) ? XCAR (list) : Qnil;
1550 }
1551
1552 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1553 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1554 The value is actually the element of LIST whose car equals KEY. */)
1555 (key, list)
1556 Lisp_Object key, list;
1557 {
1558 Lisp_Object result, car;
1559
1560 while (1)
1561 {
1562 if (!CONSP (list)
1563 || (CONSP (XCAR (list))
1564 && (car = XCAR (XCAR (list)),
1565 EQ (car, key) || !NILP (Fequal (car, key)))))
1566 break;
1567
1568 list = XCDR (list);
1569 if (!CONSP (list)
1570 || (CONSP (XCAR (list))
1571 && (car = XCAR (XCAR (list)),
1572 EQ (car, key) || !NILP (Fequal (car, key)))))
1573 break;
1574
1575 list = XCDR (list);
1576 if (!CONSP (list)
1577 || (CONSP (XCAR (list))
1578 && (car = XCAR (XCAR (list)),
1579 EQ (car, key) || !NILP (Fequal (car, key)))))
1580 break;
1581
1582 list = XCDR (list);
1583 QUIT;
1584 }
1585
1586 if (CONSP (list))
1587 result = XCAR (list);
1588 else if (NILP (list))
1589 result = Qnil;
1590 else
1591 result = wrong_type_argument (Qlistp, list);
1592
1593 return result;
1594 }
1595
1596 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1597 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1598 The value is actually the element of LIST whose cdr is KEY. */)
1599 (key, list)
1600 register Lisp_Object key;
1601 Lisp_Object list;
1602 {
1603 Lisp_Object result;
1604
1605 while (1)
1606 {
1607 if (!CONSP (list)
1608 || (CONSP (XCAR (list))
1609 && EQ (XCDR (XCAR (list)), key)))
1610 break;
1611
1612 list = XCDR (list);
1613 if (!CONSP (list)
1614 || (CONSP (XCAR (list))
1615 && EQ (XCDR (XCAR (list)), key)))
1616 break;
1617
1618 list = XCDR (list);
1619 if (!CONSP (list)
1620 || (CONSP (XCAR (list))
1621 && EQ (XCDR (XCAR (list)), key)))
1622 break;
1623
1624 list = XCDR (list);
1625 QUIT;
1626 }
1627
1628 if (NILP (list))
1629 result = Qnil;
1630 else if (CONSP (list))
1631 result = XCAR (list);
1632 else
1633 result = wrong_type_argument (Qlistp, list);
1634
1635 return result;
1636 }
1637
1638 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1639 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1640 The value is actually the element of LIST whose cdr equals KEY. */)
1641 (key, list)
1642 Lisp_Object key, list;
1643 {
1644 Lisp_Object result, cdr;
1645
1646 while (1)
1647 {
1648 if (!CONSP (list)
1649 || (CONSP (XCAR (list))
1650 && (cdr = XCDR (XCAR (list)),
1651 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1652 break;
1653
1654 list = XCDR (list);
1655 if (!CONSP (list)
1656 || (CONSP (XCAR (list))
1657 && (cdr = XCDR (XCAR (list)),
1658 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1659 break;
1660
1661 list = XCDR (list);
1662 if (!CONSP (list)
1663 || (CONSP (XCAR (list))
1664 && (cdr = XCDR (XCAR (list)),
1665 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1666 break;
1667
1668 list = XCDR (list);
1669 QUIT;
1670 }
1671
1672 if (CONSP (list))
1673 result = XCAR (list);
1674 else if (NILP (list))
1675 result = Qnil;
1676 else
1677 result = wrong_type_argument (Qlistp, list);
1678
1679 return result;
1680 }
1681 \f
1682 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1683 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1684 The modified LIST is returned. Comparison is done with `eq'.
1685 If the first member of LIST is ELT, there is no way to remove it by side effect;
1686 therefore, write `(setq foo (delq element foo))'
1687 to be sure of changing the value of `foo'. */)
1688 (elt, list)
1689 register Lisp_Object elt;
1690 Lisp_Object list;
1691 {
1692 register Lisp_Object tail, prev;
1693 register Lisp_Object tem;
1694
1695 tail = list;
1696 prev = Qnil;
1697 while (!NILP (tail))
1698 {
1699 if (! CONSP (tail))
1700 wrong_type_argument (Qlistp, list);
1701 tem = XCAR (tail);
1702 if (EQ (elt, tem))
1703 {
1704 if (NILP (prev))
1705 list = XCDR (tail);
1706 else
1707 Fsetcdr (prev, XCDR (tail));
1708 }
1709 else
1710 prev = tail;
1711 tail = XCDR (tail);
1712 QUIT;
1713 }
1714 return list;
1715 }
1716
1717 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1718 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1719 SEQ must be a list, a vector, or a string.
1720 The modified SEQ is returned. Comparison is done with `equal'.
1721 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1722 is not a side effect; it is simply using a different sequence.
1723 Therefore, write `(setq foo (delete element foo))'
1724 to be sure of changing the value of `foo'. */)
1725 (elt, seq)
1726 Lisp_Object elt, seq;
1727 {
1728 if (VECTORP (seq))
1729 {
1730 EMACS_INT i, n;
1731
1732 for (i = n = 0; i < ASIZE (seq); ++i)
1733 if (NILP (Fequal (AREF (seq, i), elt)))
1734 ++n;
1735
1736 if (n != ASIZE (seq))
1737 {
1738 struct Lisp_Vector *p = allocate_vector (n);
1739
1740 for (i = n = 0; i < ASIZE (seq); ++i)
1741 if (NILP (Fequal (AREF (seq, i), elt)))
1742 p->contents[n++] = AREF (seq, i);
1743
1744 XSETVECTOR (seq, p);
1745 }
1746 }
1747 else if (STRINGP (seq))
1748 {
1749 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1750 int c;
1751
1752 for (i = nchars = nbytes = ibyte = 0;
1753 i < SCHARS (seq);
1754 ++i, ibyte += cbytes)
1755 {
1756 if (STRING_MULTIBYTE (seq))
1757 {
1758 c = STRING_CHAR (SDATA (seq) + ibyte,
1759 SBYTES (seq) - ibyte);
1760 cbytes = CHAR_BYTES (c);
1761 }
1762 else
1763 {
1764 c = SREF (seq, i);
1765 cbytes = 1;
1766 }
1767
1768 if (!INTEGERP (elt) || c != XINT (elt))
1769 {
1770 ++nchars;
1771 nbytes += cbytes;
1772 }
1773 }
1774
1775 if (nchars != SCHARS (seq))
1776 {
1777 Lisp_Object tem;
1778
1779 tem = make_uninit_multibyte_string (nchars, nbytes);
1780 if (!STRING_MULTIBYTE (seq))
1781 STRING_SET_UNIBYTE (tem);
1782
1783 for (i = nchars = nbytes = ibyte = 0;
1784 i < SCHARS (seq);
1785 ++i, ibyte += cbytes)
1786 {
1787 if (STRING_MULTIBYTE (seq))
1788 {
1789 c = STRING_CHAR (SDATA (seq) + ibyte,
1790 SBYTES (seq) - ibyte);
1791 cbytes = CHAR_BYTES (c);
1792 }
1793 else
1794 {
1795 c = SREF (seq, i);
1796 cbytes = 1;
1797 }
1798
1799 if (!INTEGERP (elt) || c != XINT (elt))
1800 {
1801 unsigned char *from = SDATA (seq) + ibyte;
1802 unsigned char *to = SDATA (tem) + nbytes;
1803 EMACS_INT n;
1804
1805 ++nchars;
1806 nbytes += cbytes;
1807
1808 for (n = cbytes; n--; )
1809 *to++ = *from++;
1810 }
1811 }
1812
1813 seq = tem;
1814 }
1815 }
1816 else
1817 {
1818 Lisp_Object tail, prev;
1819
1820 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1821 {
1822 if (!CONSP (tail))
1823 wrong_type_argument (Qlistp, seq);
1824
1825 if (!NILP (Fequal (elt, XCAR (tail))))
1826 {
1827 if (NILP (prev))
1828 seq = XCDR (tail);
1829 else
1830 Fsetcdr (prev, XCDR (tail));
1831 }
1832 else
1833 prev = tail;
1834 QUIT;
1835 }
1836 }
1837
1838 return seq;
1839 }
1840
1841 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1842 doc: /* Reverse LIST by modifying cdr pointers.
1843 Returns the beginning of the reversed list. */)
1844 (list)
1845 Lisp_Object list;
1846 {
1847 register Lisp_Object prev, tail, next;
1848
1849 if (NILP (list)) return list;
1850 prev = Qnil;
1851 tail = list;
1852 while (!NILP (tail))
1853 {
1854 QUIT;
1855 if (! CONSP (tail))
1856 wrong_type_argument (Qlistp, list);
1857 next = XCDR (tail);
1858 Fsetcdr (tail, prev);
1859 prev = tail;
1860 tail = next;
1861 }
1862 return prev;
1863 }
1864
1865 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1866 doc: /* Reverse LIST, copying. Returns the beginning of the reversed list.
1867 See also the function `nreverse', which is used more often. */)
1868 (list)
1869 Lisp_Object list;
1870 {
1871 Lisp_Object new;
1872
1873 for (new = Qnil; CONSP (list); list = XCDR (list))
1874 {
1875 QUIT;
1876 new = Fcons (XCAR (list), new);
1877 }
1878 if (!NILP (list))
1879 wrong_type_argument (Qconsp, list);
1880 return new;
1881 }
1882 \f
1883 Lisp_Object merge ();
1884
1885 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1886 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1887 Returns the sorted list. LIST is modified by side effects.
1888 PREDICATE is called with two elements of LIST, and should return t
1889 if the first element is "less" than the second. */)
1890 (list, predicate)
1891 Lisp_Object list, predicate;
1892 {
1893 Lisp_Object front, back;
1894 register Lisp_Object len, tem;
1895 struct gcpro gcpro1, gcpro2;
1896 register int length;
1897
1898 front = list;
1899 len = Flength (list);
1900 length = XINT (len);
1901 if (length < 2)
1902 return list;
1903
1904 XSETINT (len, (length / 2) - 1);
1905 tem = Fnthcdr (len, list);
1906 back = Fcdr (tem);
1907 Fsetcdr (tem, Qnil);
1908
1909 GCPRO2 (front, back);
1910 front = Fsort (front, predicate);
1911 back = Fsort (back, predicate);
1912 UNGCPRO;
1913 return merge (front, back, predicate);
1914 }
1915
1916 Lisp_Object
1917 merge (org_l1, org_l2, pred)
1918 Lisp_Object org_l1, org_l2;
1919 Lisp_Object pred;
1920 {
1921 Lisp_Object value;
1922 register Lisp_Object tail;
1923 Lisp_Object tem;
1924 register Lisp_Object l1, l2;
1925 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1926
1927 l1 = org_l1;
1928 l2 = org_l2;
1929 tail = Qnil;
1930 value = Qnil;
1931
1932 /* It is sufficient to protect org_l1 and org_l2.
1933 When l1 and l2 are updated, we copy the new values
1934 back into the org_ vars. */
1935 GCPRO4 (org_l1, org_l2, pred, value);
1936
1937 while (1)
1938 {
1939 if (NILP (l1))
1940 {
1941 UNGCPRO;
1942 if (NILP (tail))
1943 return l2;
1944 Fsetcdr (tail, l2);
1945 return value;
1946 }
1947 if (NILP (l2))
1948 {
1949 UNGCPRO;
1950 if (NILP (tail))
1951 return l1;
1952 Fsetcdr (tail, l1);
1953 return value;
1954 }
1955 tem = call2 (pred, Fcar (l2), Fcar (l1));
1956 if (NILP (tem))
1957 {
1958 tem = l1;
1959 l1 = Fcdr (l1);
1960 org_l1 = l1;
1961 }
1962 else
1963 {
1964 tem = l2;
1965 l2 = Fcdr (l2);
1966 org_l2 = l2;
1967 }
1968 if (NILP (tail))
1969 value = tem;
1970 else
1971 Fsetcdr (tail, tem);
1972 tail = tem;
1973 }
1974 }
1975
1976 \f
1977 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1978 doc: /* Extract a value from a property list.
1979 PLIST is a property list, which is a list of the form
1980 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1981 corresponding to the given PROP, or nil if PROP is not
1982 one of the properties on the list. */)
1983 (plist, prop)
1984 Lisp_Object plist;
1985 Lisp_Object prop;
1986 {
1987 Lisp_Object tail;
1988
1989 for (tail = plist;
1990 CONSP (tail) && CONSP (XCDR (tail));
1991 tail = XCDR (XCDR (tail)))
1992 {
1993 if (EQ (prop, XCAR (tail)))
1994 return XCAR (XCDR (tail));
1995
1996 /* This function can be called asynchronously
1997 (setup_coding_system). Don't QUIT in that case. */
1998 if (!interrupt_input_blocked)
1999 QUIT;
2000 }
2001
2002 if (!NILP (tail))
2003 wrong_type_argument (Qlistp, prop);
2004
2005 return Qnil;
2006 }
2007
2008 DEFUN ("get", Fget, Sget, 2, 2, 0,
2009 doc: /* Return the value of SYMBOL's PROPNAME property.
2010 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2011 (symbol, propname)
2012 Lisp_Object symbol, propname;
2013 {
2014 CHECK_SYMBOL (symbol);
2015 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2016 }
2017
2018 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2019 doc: /* Change value in PLIST of PROP to VAL.
2020 PLIST is a property list, which is a list of the form
2021 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2022 If PROP is already a property on the list, its value is set to VAL,
2023 otherwise the new PROP VAL pair is added. The new plist is returned;
2024 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2025 The PLIST is modified by side effects. */)
2026 (plist, prop, val)
2027 Lisp_Object plist;
2028 register Lisp_Object prop;
2029 Lisp_Object val;
2030 {
2031 register Lisp_Object tail, prev;
2032 Lisp_Object newcell;
2033 prev = Qnil;
2034 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2035 tail = XCDR (XCDR (tail)))
2036 {
2037 if (EQ (prop, XCAR (tail)))
2038 {
2039 Fsetcar (XCDR (tail), val);
2040 return plist;
2041 }
2042
2043 prev = tail;
2044 QUIT;
2045 }
2046 newcell = Fcons (prop, Fcons (val, Qnil));
2047 if (NILP (prev))
2048 return newcell;
2049 else
2050 Fsetcdr (XCDR (prev), newcell);
2051 return plist;
2052 }
2053
2054 DEFUN ("put", Fput, Sput, 3, 3, 0,
2055 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2056 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2057 (symbol, propname, value)
2058 Lisp_Object symbol, propname, value;
2059 {
2060 CHECK_SYMBOL (symbol);
2061 XSYMBOL (symbol)->plist
2062 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2063 return value;
2064 }
2065 \f
2066 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2067 doc: /* Extract a value from a property list, comparing with `equal'.
2068 PLIST is a property list, which is a list of the form
2069 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2070 corresponding to the given PROP, or nil if PROP is not
2071 one of the properties on the list. */)
2072 (plist, prop)
2073 Lisp_Object plist;
2074 Lisp_Object prop;
2075 {
2076 Lisp_Object tail;
2077
2078 for (tail = plist;
2079 CONSP (tail) && CONSP (XCDR (tail));
2080 tail = XCDR (XCDR (tail)))
2081 {
2082 if (! NILP (Fequal (prop, XCAR (tail))))
2083 return XCAR (XCDR (tail));
2084
2085 QUIT;
2086 }
2087
2088 if (!NILP (tail))
2089 wrong_type_argument (Qlistp, prop);
2090
2091 return Qnil;
2092 }
2093
2094 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2095 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2096 PLIST is a property list, which is a list of the form
2097 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2098 If PROP is already a property on the list, its value is set to VAL,
2099 otherwise the new PROP VAL pair is added. The new plist is returned;
2100 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2101 The PLIST is modified by side effects. */)
2102 (plist, prop, val)
2103 Lisp_Object plist;
2104 register Lisp_Object prop;
2105 Lisp_Object val;
2106 {
2107 register Lisp_Object tail, prev;
2108 Lisp_Object newcell;
2109 prev = Qnil;
2110 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2111 tail = XCDR (XCDR (tail)))
2112 {
2113 if (! NILP (Fequal (prop, XCAR (tail))))
2114 {
2115 Fsetcar (XCDR (tail), val);
2116 return plist;
2117 }
2118
2119 prev = tail;
2120 QUIT;
2121 }
2122 newcell = Fcons (prop, Fcons (val, Qnil));
2123 if (NILP (prev))
2124 return newcell;
2125 else
2126 Fsetcdr (XCDR (prev), newcell);
2127 return plist;
2128 }
2129 \f
2130 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2131 doc: /* Return t if two Lisp objects have similar structure and contents.
2132 They must have the same data type.
2133 Conses are compared by comparing the cars and the cdrs.
2134 Vectors and strings are compared element by element.
2135 Numbers are compared by value, but integers cannot equal floats.
2136 (Use `=' if you want integers and floats to be able to be equal.)
2137 Symbols must match exactly. */)
2138 (o1, o2)
2139 register Lisp_Object o1, o2;
2140 {
2141 return internal_equal (o1, o2, 0) ? Qt : Qnil;
2142 }
2143
2144 static int
2145 internal_equal (o1, o2, depth)
2146 register Lisp_Object o1, o2;
2147 int depth;
2148 {
2149 if (depth > 200)
2150 error ("Stack overflow in equal");
2151
2152 tail_recurse:
2153 QUIT;
2154 if (EQ (o1, o2))
2155 return 1;
2156 if (XTYPE (o1) != XTYPE (o2))
2157 return 0;
2158
2159 switch (XTYPE (o1))
2160 {
2161 case Lisp_Float:
2162 return (extract_float (o1) == extract_float (o2));
2163
2164 case Lisp_Cons:
2165 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1))
2166 return 0;
2167 o1 = XCDR (o1);
2168 o2 = XCDR (o2);
2169 goto tail_recurse;
2170
2171 case Lisp_Misc:
2172 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2173 return 0;
2174 if (OVERLAYP (o1))
2175 {
2176 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2177 depth + 1)
2178 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2179 depth + 1))
2180 return 0;
2181 o1 = XOVERLAY (o1)->plist;
2182 o2 = XOVERLAY (o2)->plist;
2183 goto tail_recurse;
2184 }
2185 if (MARKERP (o1))
2186 {
2187 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2188 && (XMARKER (o1)->buffer == 0
2189 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2190 }
2191 break;
2192
2193 case Lisp_Vectorlike:
2194 {
2195 register int i, size;
2196 size = XVECTOR (o1)->size;
2197 /* Pseudovectors have the type encoded in the size field, so this test
2198 actually checks that the objects have the same type as well as the
2199 same size. */
2200 if (XVECTOR (o2)->size != size)
2201 return 0;
2202 /* Boolvectors are compared much like strings. */
2203 if (BOOL_VECTOR_P (o1))
2204 {
2205 int size_in_chars
2206 = (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2207
2208 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2209 return 0;
2210 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2211 size_in_chars))
2212 return 0;
2213 return 1;
2214 }
2215 if (WINDOW_CONFIGURATIONP (o1))
2216 return compare_window_configurations (o1, o2, 0);
2217
2218 /* Aside from them, only true vectors, char-tables, and compiled
2219 functions are sensible to compare, so eliminate the others now. */
2220 if (size & PSEUDOVECTOR_FLAG)
2221 {
2222 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2223 return 0;
2224 size &= PSEUDOVECTOR_SIZE_MASK;
2225 }
2226 for (i = 0; i < size; i++)
2227 {
2228 Lisp_Object v1, v2;
2229 v1 = XVECTOR (o1)->contents [i];
2230 v2 = XVECTOR (o2)->contents [i];
2231 if (!internal_equal (v1, v2, depth + 1))
2232 return 0;
2233 }
2234 return 1;
2235 }
2236 break;
2237
2238 case Lisp_String:
2239 if (SCHARS (o1) != SCHARS (o2))
2240 return 0;
2241 if (SBYTES (o1) != SBYTES (o2))
2242 return 0;
2243 if (bcmp (SDATA (o1), SDATA (o2),
2244 SBYTES (o1)))
2245 return 0;
2246 return 1;
2247
2248 case Lisp_Int:
2249 case Lisp_Symbol:
2250 case Lisp_Type_Limit:
2251 break;
2252 }
2253
2254 return 0;
2255 }
2256 \f
2257 extern Lisp_Object Fmake_char_internal ();
2258
2259 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2260 doc: /* Store each element of ARRAY with ITEM.
2261 ARRAY is a vector, string, char-table, or bool-vector. */)
2262 (array, item)
2263 Lisp_Object array, item;
2264 {
2265 register int size, index, charval;
2266 retry:
2267 if (VECTORP (array))
2268 {
2269 register Lisp_Object *p = XVECTOR (array)->contents;
2270 size = XVECTOR (array)->size;
2271 for (index = 0; index < size; index++)
2272 p[index] = item;
2273 }
2274 else if (CHAR_TABLE_P (array))
2275 {
2276 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2277 size = CHAR_TABLE_ORDINARY_SLOTS;
2278 for (index = 0; index < size; index++)
2279 p[index] = item;
2280 XCHAR_TABLE (array)->defalt = Qnil;
2281 }
2282 else if (STRINGP (array))
2283 {
2284 register unsigned char *p = SDATA (array);
2285 CHECK_NUMBER (item);
2286 charval = XINT (item);
2287 size = SCHARS (array);
2288 if (STRING_MULTIBYTE (array))
2289 {
2290 unsigned char str[MAX_MULTIBYTE_LENGTH];
2291 int len = CHAR_STRING (charval, str);
2292 int size_byte = SBYTES (array);
2293 unsigned char *p1 = p, *endp = p + size_byte;
2294 int i;
2295
2296 if (size != size_byte)
2297 while (p1 < endp)
2298 {
2299 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2300 if (len != this_len)
2301 error ("Attempt to change byte length of a string");
2302 p1 += this_len;
2303 }
2304 for (i = 0; i < size_byte; i++)
2305 *p++ = str[i % len];
2306 }
2307 else
2308 for (index = 0; index < size; index++)
2309 p[index] = charval;
2310 }
2311 else if (BOOL_VECTOR_P (array))
2312 {
2313 register unsigned char *p = XBOOL_VECTOR (array)->data;
2314 int size_in_chars
2315 = (XBOOL_VECTOR (array)->size + BITS_PER_CHAR - 1) / BITS_PER_CHAR;
2316
2317 charval = (! NILP (item) ? -1 : 0);
2318 for (index = 0; index < size_in_chars; index++)
2319 p[index] = charval;
2320 }
2321 else
2322 {
2323 array = wrong_type_argument (Qarrayp, array);
2324 goto retry;
2325 }
2326 return array;
2327 }
2328
2329 DEFUN ("clear-string", Fclear_string, Sclear_string,
2330 1, 1, 0,
2331 doc: /* Clear the contents of STRING.
2332 This makes STRING unibyte and may change its length. */)
2333 (string)
2334 Lisp_Object string;
2335 {
2336 int len = SBYTES (string);
2337 bzero (SDATA (string), len);
2338 STRING_SET_CHARS (string, len);
2339 STRING_SET_UNIBYTE (string);
2340 return Qnil;
2341 }
2342 \f
2343 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2344 1, 1, 0,
2345 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2346 (char_table)
2347 Lisp_Object char_table;
2348 {
2349 CHECK_CHAR_TABLE (char_table);
2350
2351 return XCHAR_TABLE (char_table)->purpose;
2352 }
2353
2354 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2355 1, 1, 0,
2356 doc: /* Return the parent char-table of CHAR-TABLE.
2357 The value is either nil or another char-table.
2358 If CHAR-TABLE holds nil for a given character,
2359 then the actual applicable value is inherited from the parent char-table
2360 \(or from its parents, if necessary). */)
2361 (char_table)
2362 Lisp_Object char_table;
2363 {
2364 CHECK_CHAR_TABLE (char_table);
2365
2366 return XCHAR_TABLE (char_table)->parent;
2367 }
2368
2369 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2370 2, 2, 0,
2371 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2372 PARENT must be either nil or another char-table. */)
2373 (char_table, parent)
2374 Lisp_Object char_table, parent;
2375 {
2376 Lisp_Object temp;
2377
2378 CHECK_CHAR_TABLE (char_table);
2379
2380 if (!NILP (parent))
2381 {
2382 CHECK_CHAR_TABLE (parent);
2383
2384 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2385 if (EQ (temp, char_table))
2386 error ("Attempt to make a chartable be its own parent");
2387 }
2388
2389 XCHAR_TABLE (char_table)->parent = parent;
2390
2391 return parent;
2392 }
2393
2394 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2395 2, 2, 0,
2396 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2397 (char_table, n)
2398 Lisp_Object char_table, n;
2399 {
2400 CHECK_CHAR_TABLE (char_table);
2401 CHECK_NUMBER (n);
2402 if (XINT (n) < 0
2403 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2404 args_out_of_range (char_table, n);
2405
2406 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2407 }
2408
2409 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2410 Sset_char_table_extra_slot,
2411 3, 3, 0,
2412 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2413 (char_table, n, value)
2414 Lisp_Object char_table, n, value;
2415 {
2416 CHECK_CHAR_TABLE (char_table);
2417 CHECK_NUMBER (n);
2418 if (XINT (n) < 0
2419 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2420 args_out_of_range (char_table, n);
2421
2422 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2423 }
2424 \f
2425 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2426 2, 2, 0,
2427 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2428 RANGE should be nil (for the default value)
2429 a vector which identifies a character set or a row of a character set,
2430 a character set name, or a character code. */)
2431 (char_table, range)
2432 Lisp_Object char_table, range;
2433 {
2434 CHECK_CHAR_TABLE (char_table);
2435
2436 if (EQ (range, Qnil))
2437 return XCHAR_TABLE (char_table)->defalt;
2438 else if (INTEGERP (range))
2439 return Faref (char_table, range);
2440 else if (SYMBOLP (range))
2441 {
2442 Lisp_Object charset_info;
2443
2444 charset_info = Fget (range, Qcharset);
2445 CHECK_VECTOR (charset_info);
2446
2447 return Faref (char_table,
2448 make_number (XINT (XVECTOR (charset_info)->contents[0])
2449 + 128));
2450 }
2451 else if (VECTORP (range))
2452 {
2453 if (XVECTOR (range)->size == 1)
2454 return Faref (char_table,
2455 make_number (XINT (XVECTOR (range)->contents[0]) + 128));
2456 else
2457 {
2458 int size = XVECTOR (range)->size;
2459 Lisp_Object *val = XVECTOR (range)->contents;
2460 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2461 size <= 1 ? Qnil : val[1],
2462 size <= 2 ? Qnil : val[2]);
2463 return Faref (char_table, ch);
2464 }
2465 }
2466 else
2467 error ("Invalid RANGE argument to `char-table-range'");
2468 return Qt;
2469 }
2470
2471 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2472 3, 3, 0,
2473 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2474 RANGE should be t (for all characters), nil (for the default value)
2475 a vector which identifies a character set or a row of a character set,
2476 a coding system, or a character code. */)
2477 (char_table, range, value)
2478 Lisp_Object char_table, range, value;
2479 {
2480 int i;
2481
2482 CHECK_CHAR_TABLE (char_table);
2483
2484 if (EQ (range, Qt))
2485 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2486 XCHAR_TABLE (char_table)->contents[i] = value;
2487 else if (EQ (range, Qnil))
2488 XCHAR_TABLE (char_table)->defalt = value;
2489 else if (SYMBOLP (range))
2490 {
2491 Lisp_Object charset_info;
2492
2493 charset_info = Fget (range, Qcharset);
2494 CHECK_VECTOR (charset_info);
2495
2496 return Faset (char_table,
2497 make_number (XINT (XVECTOR (charset_info)->contents[0])
2498 + 128),
2499 value);
2500 }
2501 else if (INTEGERP (range))
2502 Faset (char_table, range, value);
2503 else if (VECTORP (range))
2504 {
2505 if (XVECTOR (range)->size == 1)
2506 return Faset (char_table,
2507 make_number (XINT (XVECTOR (range)->contents[0]) + 128),
2508 value);
2509 else
2510 {
2511 int size = XVECTOR (range)->size;
2512 Lisp_Object *val = XVECTOR (range)->contents;
2513 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2514 size <= 1 ? Qnil : val[1],
2515 size <= 2 ? Qnil : val[2]);
2516 return Faset (char_table, ch, value);
2517 }
2518 }
2519 else
2520 error ("Invalid RANGE argument to `set-char-table-range'");
2521
2522 return value;
2523 }
2524
2525 DEFUN ("set-char-table-default", Fset_char_table_default,
2526 Sset_char_table_default, 3, 3, 0,
2527 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2528 The generic character specifies the group of characters.
2529 See also the documentation of `make-char'. */)
2530 (char_table, ch, value)
2531 Lisp_Object char_table, ch, value;
2532 {
2533 int c, charset, code1, code2;
2534 Lisp_Object temp;
2535
2536 CHECK_CHAR_TABLE (char_table);
2537 CHECK_NUMBER (ch);
2538
2539 c = XINT (ch);
2540 SPLIT_CHAR (c, charset, code1, code2);
2541
2542 /* Since we may want to set the default value for a character set
2543 not yet defined, we check only if the character set is in the
2544 valid range or not, instead of it is already defined or not. */
2545 if (! CHARSET_VALID_P (charset))
2546 invalid_character (c);
2547
2548 if (charset == CHARSET_ASCII)
2549 return (XCHAR_TABLE (char_table)->defalt = value);
2550
2551 /* Even if C is not a generic char, we had better behave as if a
2552 generic char is specified. */
2553 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2554 code1 = 0;
2555 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2556 if (!code1)
2557 {
2558 if (SUB_CHAR_TABLE_P (temp))
2559 XCHAR_TABLE (temp)->defalt = value;
2560 else
2561 XCHAR_TABLE (char_table)->contents[charset + 128] = value;
2562 return value;
2563 }
2564 if (SUB_CHAR_TABLE_P (temp))
2565 char_table = temp;
2566 else
2567 char_table = (XCHAR_TABLE (char_table)->contents[charset + 128]
2568 = make_sub_char_table (temp));
2569 temp = XCHAR_TABLE (char_table)->contents[code1];
2570 if (SUB_CHAR_TABLE_P (temp))
2571 XCHAR_TABLE (temp)->defalt = value;
2572 else
2573 XCHAR_TABLE (char_table)->contents[code1] = value;
2574 return value;
2575 }
2576
2577 /* Look up the element in TABLE at index CH,
2578 and return it as an integer.
2579 If the element is nil, return CH itself.
2580 (Actually we do that for any non-integer.) */
2581
2582 int
2583 char_table_translate (table, ch)
2584 Lisp_Object table;
2585 int ch;
2586 {
2587 Lisp_Object value;
2588 value = Faref (table, make_number (ch));
2589 if (! INTEGERP (value))
2590 return ch;
2591 return XINT (value);
2592 }
2593
2594 static void
2595 optimize_sub_char_table (table, chars)
2596 Lisp_Object *table;
2597 int chars;
2598 {
2599 Lisp_Object elt;
2600 int from, to;
2601
2602 if (chars == 94)
2603 from = 33, to = 127;
2604 else
2605 from = 32, to = 128;
2606
2607 if (!SUB_CHAR_TABLE_P (*table))
2608 return;
2609 elt = XCHAR_TABLE (*table)->contents[from++];
2610 for (; from < to; from++)
2611 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2612 return;
2613 *table = elt;
2614 }
2615
2616 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2617 1, 1, 0, doc: /* Optimize char table TABLE. */)
2618 (table)
2619 Lisp_Object table;
2620 {
2621 Lisp_Object elt;
2622 int dim;
2623 int i, j;
2624
2625 CHECK_CHAR_TABLE (table);
2626
2627 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2628 {
2629 elt = XCHAR_TABLE (table)->contents[i];
2630 if (!SUB_CHAR_TABLE_P (elt))
2631 continue;
2632 dim = CHARSET_DIMENSION (i - 128);
2633 if (dim == 2)
2634 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2635 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, dim);
2636 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, dim);
2637 }
2638 return Qnil;
2639 }
2640
2641 \f
2642 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2643 character or group of characters that share a value.
2644 DEPTH is the current depth in the originally specified
2645 chartable, and INDICES contains the vector indices
2646 for the levels our callers have descended.
2647
2648 ARG is passed to C_FUNCTION when that is called. */
2649
2650 void
2651 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2652 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2653 Lisp_Object function, table, subtable, arg, *indices;
2654 int depth;
2655 {
2656 int i, to;
2657
2658 if (depth == 0)
2659 {
2660 /* At first, handle ASCII and 8-bit European characters. */
2661 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2662 {
2663 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2664 if (NILP (elt))
2665 elt = XCHAR_TABLE (subtable)->defalt;
2666 if (NILP (elt))
2667 elt = Faref (subtable, make_number (i));
2668 if (c_function)
2669 (*c_function) (arg, make_number (i), elt);
2670 else
2671 call2 (function, make_number (i), elt);
2672 }
2673 #if 0 /* If the char table has entries for higher characters,
2674 we should report them. */
2675 if (NILP (current_buffer->enable_multibyte_characters))
2676 return;
2677 #endif
2678 to = CHAR_TABLE_ORDINARY_SLOTS;
2679 }
2680 else
2681 {
2682 int charset = XFASTINT (indices[0]) - 128;
2683
2684 i = 32;
2685 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2686 if (CHARSET_CHARS (charset) == 94)
2687 i++, to--;
2688 }
2689
2690 for (; i < to; i++)
2691 {
2692 Lisp_Object elt;
2693 int charset;
2694
2695 elt = XCHAR_TABLE (subtable)->contents[i];
2696 XSETFASTINT (indices[depth], i);
2697 charset = XFASTINT (indices[0]) - 128;
2698 if (depth == 0
2699 && (!CHARSET_DEFINED_P (charset)
2700 || charset == CHARSET_8_BIT_CONTROL
2701 || charset == CHARSET_8_BIT_GRAPHIC))
2702 continue;
2703
2704 if (SUB_CHAR_TABLE_P (elt))
2705 {
2706 if (depth >= 3)
2707 error ("Too deep char table");
2708 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2709 }
2710 else
2711 {
2712 int c1, c2, c;
2713
2714 c1 = depth >= 1 ? XFASTINT (indices[1]) : 0;
2715 c2 = depth >= 2 ? XFASTINT (indices[2]) : 0;
2716 c = MAKE_CHAR (charset, c1, c2);
2717
2718 if (NILP (elt))
2719 elt = XCHAR_TABLE (subtable)->defalt;
2720 if (NILP (elt))
2721 elt = Faref (table, make_number (c));
2722
2723 if (c_function)
2724 (*c_function) (arg, make_number (c), elt);
2725 else
2726 call2 (function, make_number (c), elt);
2727 }
2728 }
2729 }
2730
2731 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2732 static void
2733 void_call2 (a, b, c)
2734 Lisp_Object a, b, c;
2735 {
2736 call2 (a, b, c);
2737 }
2738
2739 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2740 2, 2, 0,
2741 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2742 FUNCTION is called with two arguments--a key and a value.
2743 The key is always a possible IDX argument to `aref'. */)
2744 (function, char_table)
2745 Lisp_Object function, char_table;
2746 {
2747 /* The depth of char table is at most 3. */
2748 Lisp_Object indices[3];
2749
2750 CHECK_CHAR_TABLE (char_table);
2751
2752 /* When Lisp_Object is represented as a union, `call2' cannot directly
2753 be passed to map_char_table because it returns a Lisp_Object rather
2754 than returning nothing.
2755 Casting leads to crashes on some architectures. -stef */
2756 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2757 return Qnil;
2758 }
2759
2760 /* Return a value for character C in char-table TABLE. Store the
2761 actual index for that value in *IDX. Ignore the default value of
2762 TABLE. */
2763
2764 Lisp_Object
2765 char_table_ref_and_index (table, c, idx)
2766 Lisp_Object table;
2767 int c, *idx;
2768 {
2769 int charset, c1, c2;
2770 Lisp_Object elt;
2771
2772 if (SINGLE_BYTE_CHAR_P (c))
2773 {
2774 *idx = c;
2775 return XCHAR_TABLE (table)->contents[c];
2776 }
2777 SPLIT_CHAR (c, charset, c1, c2);
2778 elt = XCHAR_TABLE (table)->contents[charset + 128];
2779 *idx = MAKE_CHAR (charset, 0, 0);
2780 if (!SUB_CHAR_TABLE_P (elt))
2781 return elt;
2782 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2783 return XCHAR_TABLE (elt)->defalt;
2784 elt = XCHAR_TABLE (elt)->contents[c1];
2785 *idx = MAKE_CHAR (charset, c1, 0);
2786 if (!SUB_CHAR_TABLE_P (elt))
2787 return elt;
2788 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2789 return XCHAR_TABLE (elt)->defalt;
2790 *idx = c;
2791 return XCHAR_TABLE (elt)->contents[c2];
2792 }
2793
2794 \f
2795 /* ARGSUSED */
2796 Lisp_Object
2797 nconc2 (s1, s2)
2798 Lisp_Object s1, s2;
2799 {
2800 #ifdef NO_ARG_ARRAY
2801 Lisp_Object args[2];
2802 args[0] = s1;
2803 args[1] = s2;
2804 return Fnconc (2, args);
2805 #else
2806 return Fnconc (2, &s1);
2807 #endif /* NO_ARG_ARRAY */
2808 }
2809
2810 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2811 doc: /* Concatenate any number of lists by altering them.
2812 Only the last argument is not altered, and need not be a list.
2813 usage: (nconc &rest LISTS) */)
2814 (nargs, args)
2815 int nargs;
2816 Lisp_Object *args;
2817 {
2818 register int argnum;
2819 register Lisp_Object tail, tem, val;
2820
2821 val = tail = Qnil;
2822
2823 for (argnum = 0; argnum < nargs; argnum++)
2824 {
2825 tem = args[argnum];
2826 if (NILP (tem)) continue;
2827
2828 if (NILP (val))
2829 val = tem;
2830
2831 if (argnum + 1 == nargs) break;
2832
2833 if (!CONSP (tem))
2834 tem = wrong_type_argument (Qlistp, tem);
2835
2836 while (CONSP (tem))
2837 {
2838 tail = tem;
2839 tem = XCDR (tail);
2840 QUIT;
2841 }
2842
2843 tem = args[argnum + 1];
2844 Fsetcdr (tail, tem);
2845 if (NILP (tem))
2846 args[argnum + 1] = tail;
2847 }
2848
2849 return val;
2850 }
2851 \f
2852 /* This is the guts of all mapping functions.
2853 Apply FN to each element of SEQ, one by one,
2854 storing the results into elements of VALS, a C vector of Lisp_Objects.
2855 LENI is the length of VALS, which should also be the length of SEQ. */
2856
2857 static void
2858 mapcar1 (leni, vals, fn, seq)
2859 int leni;
2860 Lisp_Object *vals;
2861 Lisp_Object fn, seq;
2862 {
2863 register Lisp_Object tail;
2864 Lisp_Object dummy;
2865 register int i;
2866 struct gcpro gcpro1, gcpro2, gcpro3;
2867
2868 if (vals)
2869 {
2870 /* Don't let vals contain any garbage when GC happens. */
2871 for (i = 0; i < leni; i++)
2872 vals[i] = Qnil;
2873
2874 GCPRO3 (dummy, fn, seq);
2875 gcpro1.var = vals;
2876 gcpro1.nvars = leni;
2877 }
2878 else
2879 GCPRO2 (fn, seq);
2880 /* We need not explicitly protect `tail' because it is used only on lists, and
2881 1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
2882
2883 if (VECTORP (seq))
2884 {
2885 for (i = 0; i < leni; i++)
2886 {
2887 dummy = XVECTOR (seq)->contents[i];
2888 dummy = call1 (fn, dummy);
2889 if (vals)
2890 vals[i] = dummy;
2891 }
2892 }
2893 else if (BOOL_VECTOR_P (seq))
2894 {
2895 for (i = 0; i < leni; i++)
2896 {
2897 int byte;
2898 byte = XBOOL_VECTOR (seq)->data[i / BITS_PER_CHAR];
2899 if (byte & (1 << (i % BITS_PER_CHAR)))
2900 dummy = Qt;
2901 else
2902 dummy = Qnil;
2903
2904 dummy = call1 (fn, dummy);
2905 if (vals)
2906 vals[i] = dummy;
2907 }
2908 }
2909 else if (STRINGP (seq))
2910 {
2911 int i_byte;
2912
2913 for (i = 0, i_byte = 0; i < leni;)
2914 {
2915 int c;
2916 int i_before = i;
2917
2918 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2919 XSETFASTINT (dummy, c);
2920 dummy = call1 (fn, dummy);
2921 if (vals)
2922 vals[i_before] = dummy;
2923 }
2924 }
2925 else /* Must be a list, since Flength did not get an error */
2926 {
2927 tail = seq;
2928 for (i = 0; i < leni; i++)
2929 {
2930 dummy = call1 (fn, Fcar (tail));
2931 if (vals)
2932 vals[i] = dummy;
2933 tail = XCDR (tail);
2934 }
2935 }
2936
2937 UNGCPRO;
2938 }
2939
2940 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2941 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2942 In between each pair of results, stick in SEPARATOR. Thus, " " as
2943 SEPARATOR results in spaces between the values returned by FUNCTION.
2944 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2945 (function, sequence, separator)
2946 Lisp_Object function, sequence, separator;
2947 {
2948 Lisp_Object len;
2949 register int leni;
2950 int nargs;
2951 register Lisp_Object *args;
2952 register int i;
2953 struct gcpro gcpro1;
2954
2955 len = Flength (sequence);
2956 leni = XINT (len);
2957 nargs = leni + leni - 1;
2958 if (nargs < 0) return build_string ("");
2959
2960 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
2961
2962 GCPRO1 (separator);
2963 mapcar1 (leni, args, function, sequence);
2964 UNGCPRO;
2965
2966 for (i = leni - 1; i >= 0; i--)
2967 args[i + i] = args[i];
2968
2969 for (i = 1; i < nargs; i += 2)
2970 args[i] = separator;
2971
2972 return Fconcat (nargs, args);
2973 }
2974
2975 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2976 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2977 The result is a list just as long as SEQUENCE.
2978 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2979 (function, sequence)
2980 Lisp_Object function, sequence;
2981 {
2982 register Lisp_Object len;
2983 register int leni;
2984 register Lisp_Object *args;
2985
2986 len = Flength (sequence);
2987 leni = XFASTINT (len);
2988 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
2989
2990 mapcar1 (leni, args, function, sequence);
2991
2992 return Flist (leni, args);
2993 }
2994
2995 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2996 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2997 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2998 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2999 (function, sequence)
3000 Lisp_Object function, sequence;
3001 {
3002 register int leni;
3003
3004 leni = XFASTINT (Flength (sequence));
3005 mapcar1 (leni, 0, function, sequence);
3006
3007 return sequence;
3008 }
3009 \f
3010 /* Anything that calls this function must protect from GC! */
3011
3012 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3013 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3014 Takes one argument, which is the string to display to ask the question.
3015 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3016 No confirmation of the answer is requested; a single character is enough.
3017 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3018 the bindings in `query-replace-map'; see the documentation of that variable
3019 for more information. In this case, the useful bindings are `act', `skip',
3020 `recenter', and `quit'.\)
3021
3022 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3023 is nil and `use-dialog-box' is non-nil. */)
3024 (prompt)
3025 Lisp_Object prompt;
3026 {
3027 register Lisp_Object obj, key, def, map;
3028 register int answer;
3029 Lisp_Object xprompt;
3030 Lisp_Object args[2];
3031 struct gcpro gcpro1, gcpro2;
3032 int count = SPECPDL_INDEX ();
3033
3034 specbind (Qcursor_in_echo_area, Qt);
3035
3036 map = Fsymbol_value (intern ("query-replace-map"));
3037
3038 CHECK_STRING (prompt);
3039 xprompt = prompt;
3040 GCPRO2 (prompt, xprompt);
3041
3042 #ifdef HAVE_X_WINDOWS
3043 if (display_hourglass_p)
3044 cancel_hourglass ();
3045 #endif
3046
3047 while (1)
3048 {
3049
3050 #ifdef HAVE_MENUS
3051 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3052 && use_dialog_box
3053 && have_menus_p ())
3054 {
3055 Lisp_Object pane, menu;
3056 redisplay_preserve_echo_area (3);
3057 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3058 Fcons (Fcons (build_string ("No"), Qnil),
3059 Qnil));
3060 menu = Fcons (prompt, pane);
3061 obj = Fx_popup_dialog (Qt, menu);
3062 answer = !NILP (obj);
3063 break;
3064 }
3065 #endif /* HAVE_MENUS */
3066 cursor_in_echo_area = 1;
3067 choose_minibuf_frame ();
3068
3069 {
3070 Lisp_Object pargs[3];
3071
3072 /* Colorize prompt according to `minibuffer-prompt' face. */
3073 pargs[0] = build_string ("%s(y or n) ");
3074 pargs[1] = intern ("face");
3075 pargs[2] = intern ("minibuffer-prompt");
3076 args[0] = Fpropertize (3, pargs);
3077 args[1] = xprompt;
3078 Fmessage (2, args);
3079 }
3080
3081 if (minibuffer_auto_raise)
3082 {
3083 Lisp_Object mini_frame;
3084
3085 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3086
3087 Fraise_frame (mini_frame);
3088 }
3089
3090 obj = read_filtered_event (1, 0, 0, 0);
3091 cursor_in_echo_area = 0;
3092 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3093 QUIT;
3094
3095 key = Fmake_vector (make_number (1), obj);
3096 def = Flookup_key (map, key, Qt);
3097
3098 if (EQ (def, intern ("skip")))
3099 {
3100 answer = 0;
3101 break;
3102 }
3103 else if (EQ (def, intern ("act")))
3104 {
3105 answer = 1;
3106 break;
3107 }
3108 else if (EQ (def, intern ("recenter")))
3109 {
3110 Frecenter (Qnil);
3111 xprompt = prompt;
3112 continue;
3113 }
3114 else if (EQ (def, intern ("quit")))
3115 Vquit_flag = Qt;
3116 /* We want to exit this command for exit-prefix,
3117 and this is the only way to do it. */
3118 else if (EQ (def, intern ("exit-prefix")))
3119 Vquit_flag = Qt;
3120
3121 QUIT;
3122
3123 /* If we don't clear this, then the next call to read_char will
3124 return quit_char again, and we'll enter an infinite loop. */
3125 Vquit_flag = Qnil;
3126
3127 Fding (Qnil);
3128 Fdiscard_input ();
3129 if (EQ (xprompt, prompt))
3130 {
3131 args[0] = build_string ("Please answer y or n. ");
3132 args[1] = prompt;
3133 xprompt = Fconcat (2, args);
3134 }
3135 }
3136 UNGCPRO;
3137
3138 if (! noninteractive)
3139 {
3140 cursor_in_echo_area = -1;
3141 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3142 xprompt, 0);
3143 }
3144
3145 unbind_to (count, Qnil);
3146 return answer ? Qt : Qnil;
3147 }
3148 \f
3149 /* This is how C code calls `yes-or-no-p' and allows the user
3150 to redefined it.
3151
3152 Anything that calls this function must protect from GC! */
3153
3154 Lisp_Object
3155 do_yes_or_no_p (prompt)
3156 Lisp_Object prompt;
3157 {
3158 return call1 (intern ("yes-or-no-p"), prompt);
3159 }
3160
3161 /* Anything that calls this function must protect from GC! */
3162
3163 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3164 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3165 Takes one argument, which is the string to display to ask the question.
3166 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3167 The user must confirm the answer with RET,
3168 and can edit it until it has been confirmed.
3169
3170 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3171 is nil, and `use-dialog-box' is non-nil. */)
3172 (prompt)
3173 Lisp_Object prompt;
3174 {
3175 register Lisp_Object ans;
3176 Lisp_Object args[2];
3177 struct gcpro gcpro1;
3178
3179 CHECK_STRING (prompt);
3180
3181 #ifdef HAVE_MENUS
3182 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3183 && use_dialog_box
3184 && have_menus_p ())
3185 {
3186 Lisp_Object pane, menu, obj;
3187 redisplay_preserve_echo_area (4);
3188 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3189 Fcons (Fcons (build_string ("No"), Qnil),
3190 Qnil));
3191 GCPRO1 (pane);
3192 menu = Fcons (prompt, pane);
3193 obj = Fx_popup_dialog (Qt, menu);
3194 UNGCPRO;
3195 return obj;
3196 }
3197 #endif /* HAVE_MENUS */
3198
3199 args[0] = prompt;
3200 args[1] = build_string ("(yes or no) ");
3201 prompt = Fconcat (2, args);
3202
3203 GCPRO1 (prompt);
3204
3205 while (1)
3206 {
3207 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3208 Qyes_or_no_p_history, Qnil,
3209 Qnil));
3210 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3211 {
3212 UNGCPRO;
3213 return Qt;
3214 }
3215 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3216 {
3217 UNGCPRO;
3218 return Qnil;
3219 }
3220
3221 Fding (Qnil);
3222 Fdiscard_input ();
3223 message ("Please answer yes or no.");
3224 Fsleep_for (make_number (2), Qnil);
3225 }
3226 }
3227 \f
3228 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3229 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3230
3231 Each of the three load averages is multiplied by 100, then converted
3232 to integer.
3233
3234 When USE-FLOATS is non-nil, floats will be used instead of integers.
3235 These floats are not multiplied by 100.
3236
3237 If the 5-minute or 15-minute load averages are not available, return a
3238 shortened list, containing only those averages which are available.
3239
3240 An error is thrown if the load average can't be obtained. In some
3241 cases making it work would require Emacs being installed setuid or
3242 setgid so that it can read kernel information, and that usually isn't
3243 advisable. */)
3244 (use_floats)
3245 Lisp_Object use_floats;
3246 {
3247 double load_ave[3];
3248 int loads = getloadavg (load_ave, 3);
3249 Lisp_Object ret = Qnil;
3250
3251 if (loads < 0)
3252 error ("load-average not implemented for this operating system");
3253
3254 while (loads-- > 0)
3255 {
3256 Lisp_Object load = (NILP (use_floats) ?
3257 make_number ((int) (100.0 * load_ave[loads]))
3258 : make_float (load_ave[loads]));
3259 ret = Fcons (load, ret);
3260 }
3261
3262 return ret;
3263 }
3264 \f
3265 Lisp_Object Vfeatures, Qsubfeatures;
3266 extern Lisp_Object Vafter_load_alist;
3267
3268 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3269 doc: /* Returns t if FEATURE is present in this Emacs.
3270
3271 Use this to conditionalize execution of lisp code based on the
3272 presence or absence of emacs or environment extensions.
3273 Use `provide' to declare that a feature is available. This function
3274 looks at the value of the variable `features'. The optional argument
3275 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3276 (feature, subfeature)
3277 Lisp_Object feature, subfeature;
3278 {
3279 register Lisp_Object tem;
3280 CHECK_SYMBOL (feature);
3281 tem = Fmemq (feature, Vfeatures);
3282 if (!NILP (tem) && !NILP (subfeature))
3283 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3284 return (NILP (tem)) ? Qnil : Qt;
3285 }
3286
3287 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3288 doc: /* Announce that FEATURE is a feature of the current Emacs.
3289 The optional argument SUBFEATURES should be a list of symbols listing
3290 particular subfeatures supported in this version of FEATURE. */)
3291 (feature, subfeatures)
3292 Lisp_Object feature, subfeatures;
3293 {
3294 register Lisp_Object tem;
3295 CHECK_SYMBOL (feature);
3296 CHECK_LIST (subfeatures);
3297 if (!NILP (Vautoload_queue))
3298 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
3299 tem = Fmemq (feature, Vfeatures);
3300 if (NILP (tem))
3301 Vfeatures = Fcons (feature, Vfeatures);
3302 if (!NILP (subfeatures))
3303 Fput (feature, Qsubfeatures, subfeatures);
3304 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3305
3306 /* Run any load-hooks for this file. */
3307 tem = Fassq (feature, Vafter_load_alist);
3308 if (CONSP (tem))
3309 Fprogn (XCDR (tem));
3310
3311 return feature;
3312 }
3313 \f
3314 /* `require' and its subroutines. */
3315
3316 /* List of features currently being require'd, innermost first. */
3317
3318 Lisp_Object require_nesting_list;
3319
3320 Lisp_Object
3321 require_unwind (old_value)
3322 Lisp_Object old_value;
3323 {
3324 return require_nesting_list = old_value;
3325 }
3326
3327 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3328 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3329 If FEATURE is not a member of the list `features', then the feature
3330 is not loaded; so load the file FILENAME.
3331 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3332 and `load' will try to load this name appended with the suffix `.elc',
3333 `.el' or the unmodified name, in that order.
3334 If the optional third argument NOERROR is non-nil,
3335 then return nil if the file is not found instead of signaling an error.
3336 Normally the return value is FEATURE.
3337 The normal messages at start and end of loading FILENAME are suppressed. */)
3338 (feature, filename, noerror)
3339 Lisp_Object feature, filename, noerror;
3340 {
3341 register Lisp_Object tem;
3342 struct gcpro gcpro1, gcpro2;
3343
3344 CHECK_SYMBOL (feature);
3345
3346 tem = Fmemq (feature, Vfeatures);
3347
3348 if (NILP (tem))
3349 {
3350 int count = SPECPDL_INDEX ();
3351 int nesting = 0;
3352
3353 LOADHIST_ATTACH (Fcons (Qrequire, feature));
3354
3355 /* This is to make sure that loadup.el gives a clear picture
3356 of what files are preloaded and when. */
3357 if (! NILP (Vpurify_flag))
3358 error ("(require %s) while preparing to dump",
3359 SDATA (SYMBOL_NAME (feature)));
3360
3361 /* A certain amount of recursive `require' is legitimate,
3362 but if we require the same feature recursively 3 times,
3363 signal an error. */
3364 tem = require_nesting_list;
3365 while (! NILP (tem))
3366 {
3367 if (! NILP (Fequal (feature, XCAR (tem))))
3368 nesting++;
3369 tem = XCDR (tem);
3370 }
3371 if (nesting > 3)
3372 error ("Recursive `require' for feature `%s'",
3373 SDATA (SYMBOL_NAME (feature)));
3374
3375 /* Update the list for any nested `require's that occur. */
3376 record_unwind_protect (require_unwind, require_nesting_list);
3377 require_nesting_list = Fcons (feature, require_nesting_list);
3378
3379 /* Value saved here is to be restored into Vautoload_queue */
3380 record_unwind_protect (un_autoload, Vautoload_queue);
3381 Vautoload_queue = Qt;
3382
3383 /* Load the file. */
3384 GCPRO2 (feature, filename);
3385 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3386 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3387 UNGCPRO;
3388
3389 /* If load failed entirely, return nil. */
3390 if (NILP (tem))
3391 return unbind_to (count, Qnil);
3392
3393 tem = Fmemq (feature, Vfeatures);
3394 if (NILP (tem))
3395 error ("Required feature `%s' was not provided",
3396 SDATA (SYMBOL_NAME (feature)));
3397
3398 /* Once loading finishes, don't undo it. */
3399 Vautoload_queue = Qt;
3400 feature = unbind_to (count, feature);
3401 }
3402
3403 return feature;
3404 }
3405 \f
3406 /* Primitives for work of the "widget" library.
3407 In an ideal world, this section would not have been necessary.
3408 However, lisp function calls being as slow as they are, it turns
3409 out that some functions in the widget library (wid-edit.el) are the
3410 bottleneck of Widget operation. Here is their translation to C,
3411 for the sole reason of efficiency. */
3412
3413 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3414 doc: /* Return non-nil if PLIST has the property PROP.
3415 PLIST is a property list, which is a list of the form
3416 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3417 Unlike `plist-get', this allows you to distinguish between a missing
3418 property and a property with the value nil.
3419 The value is actually the tail of PLIST whose car is PROP. */)
3420 (plist, prop)
3421 Lisp_Object plist, prop;
3422 {
3423 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3424 {
3425 QUIT;
3426 plist = XCDR (plist);
3427 plist = CDR (plist);
3428 }
3429 return plist;
3430 }
3431
3432 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3433 doc: /* In WIDGET, set PROPERTY to VALUE.
3434 The value can later be retrieved with `widget-get'. */)
3435 (widget, property, value)
3436 Lisp_Object widget, property, value;
3437 {
3438 CHECK_CONS (widget);
3439 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3440 return value;
3441 }
3442
3443 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3444 doc: /* In WIDGET, get the value of PROPERTY.
3445 The value could either be specified when the widget was created, or
3446 later with `widget-put'. */)
3447 (widget, property)
3448 Lisp_Object widget, property;
3449 {
3450 Lisp_Object tmp;
3451
3452 while (1)
3453 {
3454 if (NILP (widget))
3455 return Qnil;
3456 CHECK_CONS (widget);
3457 tmp = Fplist_member (XCDR (widget), property);
3458 if (CONSP (tmp))
3459 {
3460 tmp = XCDR (tmp);
3461 return CAR (tmp);
3462 }
3463 tmp = XCAR (widget);
3464 if (NILP (tmp))
3465 return Qnil;
3466 widget = Fget (tmp, Qwidget_type);
3467 }
3468 }
3469
3470 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3471 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3472 ARGS are passed as extra arguments to the function.
3473 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3474 (nargs, args)
3475 int nargs;
3476 Lisp_Object *args;
3477 {
3478 /* This function can GC. */
3479 Lisp_Object newargs[3];
3480 struct gcpro gcpro1, gcpro2;
3481 Lisp_Object result;
3482
3483 newargs[0] = Fwidget_get (args[0], args[1]);
3484 newargs[1] = args[0];
3485 newargs[2] = Flist (nargs - 2, args + 2);
3486 GCPRO2 (newargs[0], newargs[2]);
3487 result = Fapply (3, newargs);
3488 UNGCPRO;
3489 return result;
3490 }
3491
3492 #ifdef HAVE_LANGINFO_CODESET
3493 #include <langinfo.h>
3494 #endif
3495
3496 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3497 doc: /* Access locale data ITEM for the current C locale, if available.
3498 ITEM should be one of the following:
3499
3500 `codeset', returning the character set as a string (locale item CODESET);
3501
3502 `days', returning a 7-element vector of day names (locale items DAY_n);
3503
3504 `months', returning a 12-element vector of month names (locale items MON_n);
3505
3506 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3507 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3508
3509 If the system can't provide such information through a call to
3510 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3511
3512 See also Info node `(libc)Locales'.
3513
3514 The data read from the system are decoded using `locale-coding-system'. */)
3515 (item)
3516 Lisp_Object item;
3517 {
3518 char *str = NULL;
3519 #ifdef HAVE_LANGINFO_CODESET
3520 Lisp_Object val;
3521 if (EQ (item, Qcodeset))
3522 {
3523 str = nl_langinfo (CODESET);
3524 return build_string (str);
3525 }
3526 #ifdef DAY_1
3527 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3528 {
3529 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3530 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3531 int i;
3532 synchronize_system_time_locale ();
3533 for (i = 0; i < 7; i++)
3534 {
3535 str = nl_langinfo (days[i]);
3536 val = make_unibyte_string (str, strlen (str));
3537 /* Fixme: Is this coding system necessarily right, even if
3538 it is consistent with CODESET? If not, what to do? */
3539 Faset (v, make_number (i),
3540 code_convert_string_norecord (val, Vlocale_coding_system,
3541 0));
3542 }
3543 return v;
3544 }
3545 #endif /* DAY_1 */
3546 #ifdef MON_1
3547 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3548 {
3549 struct Lisp_Vector *p = allocate_vector (12);
3550 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3551 MON_8, MON_9, MON_10, MON_11, MON_12};
3552 int i;
3553 synchronize_system_time_locale ();
3554 for (i = 0; i < 12; i++)
3555 {
3556 str = nl_langinfo (months[i]);
3557 val = make_unibyte_string (str, strlen (str));
3558 p->contents[i] =
3559 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3560 }
3561 XSETVECTOR (val, p);
3562 return val;
3563 }
3564 #endif /* MON_1 */
3565 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3566 but is in the locale files. This could be used by ps-print. */
3567 #ifdef PAPER_WIDTH
3568 else if (EQ (item, Qpaper))
3569 {
3570 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3571 make_number (nl_langinfo (PAPER_HEIGHT)));
3572 }
3573 #endif /* PAPER_WIDTH */
3574 #endif /* HAVE_LANGINFO_CODESET*/
3575 return Qnil;
3576 }
3577 \f
3578 /* base64 encode/decode functions (RFC 2045).
3579 Based on code from GNU recode. */
3580
3581 #define MIME_LINE_LENGTH 76
3582
3583 #define IS_ASCII(Character) \
3584 ((Character) < 128)
3585 #define IS_BASE64(Character) \
3586 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3587 #define IS_BASE64_IGNORABLE(Character) \
3588 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3589 || (Character) == '\f' || (Character) == '\r')
3590
3591 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3592 character or return retval if there are no characters left to
3593 process. */
3594 #define READ_QUADRUPLET_BYTE(retval) \
3595 do \
3596 { \
3597 if (i == length) \
3598 { \
3599 if (nchars_return) \
3600 *nchars_return = nchars; \
3601 return (retval); \
3602 } \
3603 c = from[i++]; \
3604 } \
3605 while (IS_BASE64_IGNORABLE (c))
3606
3607 /* Don't use alloca for regions larger than this, lest we overflow
3608 their stack. */
3609 #define MAX_ALLOCA 16*1024
3610
3611 /* Table of characters coding the 64 values. */
3612 static char base64_value_to_char[64] =
3613 {
3614 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3615 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3616 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3617 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3618 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3619 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3620 '8', '9', '+', '/' /* 60-63 */
3621 };
3622
3623 /* Table of base64 values for first 128 characters. */
3624 static short base64_char_to_value[128] =
3625 {
3626 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3627 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3628 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3629 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3630 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3631 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3632 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3633 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3634 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3635 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3636 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3637 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3638 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3639 };
3640
3641 /* The following diagram shows the logical steps by which three octets
3642 get transformed into four base64 characters.
3643
3644 .--------. .--------. .--------.
3645 |aaaaaabb| |bbbbcccc| |ccdddddd|
3646 `--------' `--------' `--------'
3647 6 2 4 4 2 6
3648 .--------+--------+--------+--------.
3649 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3650 `--------+--------+--------+--------'
3651
3652 .--------+--------+--------+--------.
3653 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3654 `--------+--------+--------+--------'
3655
3656 The octets are divided into 6 bit chunks, which are then encoded into
3657 base64 characters. */
3658
3659
3660 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3661 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3662
3663 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3664 2, 3, "r",
3665 doc: /* Base64-encode the region between BEG and END.
3666 Return the length of the encoded text.
3667 Optional third argument NO-LINE-BREAK means do not break long lines
3668 into shorter lines. */)
3669 (beg, end, no_line_break)
3670 Lisp_Object beg, end, no_line_break;
3671 {
3672 char *encoded;
3673 int allength, length;
3674 int ibeg, iend, encoded_length;
3675 int old_pos = PT;
3676
3677 validate_region (&beg, &end);
3678
3679 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3680 iend = CHAR_TO_BYTE (XFASTINT (end));
3681 move_gap_both (XFASTINT (beg), ibeg);
3682
3683 /* We need to allocate enough room for encoding the text.
3684 We need 33 1/3% more space, plus a newline every 76
3685 characters, and then we round up. */
3686 length = iend - ibeg;
3687 allength = length + length/3 + 1;
3688 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3689
3690 if (allength <= MAX_ALLOCA)
3691 encoded = (char *) alloca (allength);
3692 else
3693 encoded = (char *) xmalloc (allength);
3694 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3695 NILP (no_line_break),
3696 !NILP (current_buffer->enable_multibyte_characters));
3697 if (encoded_length > allength)
3698 abort ();
3699
3700 if (encoded_length < 0)
3701 {
3702 /* The encoding wasn't possible. */
3703 if (length > MAX_ALLOCA)
3704 xfree (encoded);
3705 error ("Multibyte character in data for base64 encoding");
3706 }
3707
3708 /* Now we have encoded the region, so we insert the new contents
3709 and delete the old. (Insert first in order to preserve markers.) */
3710 SET_PT_BOTH (XFASTINT (beg), ibeg);
3711 insert (encoded, encoded_length);
3712 if (allength > MAX_ALLOCA)
3713 xfree (encoded);
3714 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3715
3716 /* If point was outside of the region, restore it exactly; else just
3717 move to the beginning of the region. */
3718 if (old_pos >= XFASTINT (end))
3719 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3720 else if (old_pos > XFASTINT (beg))
3721 old_pos = XFASTINT (beg);
3722 SET_PT (old_pos);
3723
3724 /* We return the length of the encoded text. */
3725 return make_number (encoded_length);
3726 }
3727
3728 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3729 1, 2, 0,
3730 doc: /* Base64-encode STRING and return the result.
3731 Optional second argument NO-LINE-BREAK means do not break long lines
3732 into shorter lines. */)
3733 (string, no_line_break)
3734 Lisp_Object string, no_line_break;
3735 {
3736 int allength, length, encoded_length;
3737 char *encoded;
3738 Lisp_Object encoded_string;
3739
3740 CHECK_STRING (string);
3741
3742 /* We need to allocate enough room for encoding the text.
3743 We need 33 1/3% more space, plus a newline every 76
3744 characters, and then we round up. */
3745 length = SBYTES (string);
3746 allength = length + length/3 + 1;
3747 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3748
3749 /* We need to allocate enough room for decoding the text. */
3750 if (allength <= MAX_ALLOCA)
3751 encoded = (char *) alloca (allength);
3752 else
3753 encoded = (char *) xmalloc (allength);
3754
3755 encoded_length = base64_encode_1 (SDATA (string),
3756 encoded, length, NILP (no_line_break),
3757 STRING_MULTIBYTE (string));
3758 if (encoded_length > allength)
3759 abort ();
3760
3761 if (encoded_length < 0)
3762 {
3763 /* The encoding wasn't possible. */
3764 if (length > MAX_ALLOCA)
3765 xfree (encoded);
3766 error ("Multibyte character in data for base64 encoding");
3767 }
3768
3769 encoded_string = make_unibyte_string (encoded, encoded_length);
3770 if (allength > MAX_ALLOCA)
3771 xfree (encoded);
3772
3773 return encoded_string;
3774 }
3775
3776 static int
3777 base64_encode_1 (from, to, length, line_break, multibyte)
3778 const char *from;
3779 char *to;
3780 int length;
3781 int line_break;
3782 int multibyte;
3783 {
3784 int counter = 0, i = 0;
3785 char *e = to;
3786 int c;
3787 unsigned int value;
3788 int bytes;
3789
3790 while (i < length)
3791 {
3792 if (multibyte)
3793 {
3794 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3795 if (c >= 256)
3796 return -1;
3797 i += bytes;
3798 }
3799 else
3800 c = from[i++];
3801
3802 /* Wrap line every 76 characters. */
3803
3804 if (line_break)
3805 {
3806 if (counter < MIME_LINE_LENGTH / 4)
3807 counter++;
3808 else
3809 {
3810 *e++ = '\n';
3811 counter = 1;
3812 }
3813 }
3814
3815 /* Process first byte of a triplet. */
3816
3817 *e++ = base64_value_to_char[0x3f & c >> 2];
3818 value = (0x03 & c) << 4;
3819
3820 /* Process second byte of a triplet. */
3821
3822 if (i == length)
3823 {
3824 *e++ = base64_value_to_char[value];
3825 *e++ = '=';
3826 *e++ = '=';
3827 break;
3828 }
3829
3830 if (multibyte)
3831 {
3832 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3833 if (c >= 256)
3834 return -1;
3835 i += bytes;
3836 }
3837 else
3838 c = from[i++];
3839
3840 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3841 value = (0x0f & c) << 2;
3842
3843 /* Process third byte of a triplet. */
3844
3845 if (i == length)
3846 {
3847 *e++ = base64_value_to_char[value];
3848 *e++ = '=';
3849 break;
3850 }
3851
3852 if (multibyte)
3853 {
3854 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3855 if (c >= 256)
3856 return -1;
3857 i += bytes;
3858 }
3859 else
3860 c = from[i++];
3861
3862 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3863 *e++ = base64_value_to_char[0x3f & c];
3864 }
3865
3866 return e - to;
3867 }
3868
3869
3870 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3871 2, 2, "r",
3872 doc: /* Base64-decode the region between BEG and END.
3873 Return the length of the decoded text.
3874 If the region can't be decoded, signal an error and don't modify the buffer. */)
3875 (beg, end)
3876 Lisp_Object beg, end;
3877 {
3878 int ibeg, iend, length, allength;
3879 char *decoded;
3880 int old_pos = PT;
3881 int decoded_length;
3882 int inserted_chars;
3883 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3884
3885 validate_region (&beg, &end);
3886
3887 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3888 iend = CHAR_TO_BYTE (XFASTINT (end));
3889
3890 length = iend - ibeg;
3891
3892 /* We need to allocate enough room for decoding the text. If we are
3893 working on a multibyte buffer, each decoded code may occupy at
3894 most two bytes. */
3895 allength = multibyte ? length * 2 : length;
3896 if (allength <= MAX_ALLOCA)
3897 decoded = (char *) alloca (allength);
3898 else
3899 decoded = (char *) xmalloc (allength);
3900
3901 move_gap_both (XFASTINT (beg), ibeg);
3902 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3903 multibyte, &inserted_chars);
3904 if (decoded_length > allength)
3905 abort ();
3906
3907 if (decoded_length < 0)
3908 {
3909 /* The decoding wasn't possible. */
3910 if (allength > MAX_ALLOCA)
3911 xfree (decoded);
3912 error ("Invalid base64 data");
3913 }
3914
3915 /* Now we have decoded the region, so we insert the new contents
3916 and delete the old. (Insert first in order to preserve markers.) */
3917 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3918 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3919 if (allength > MAX_ALLOCA)
3920 xfree (decoded);
3921 /* Delete the original text. */
3922 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3923 iend + decoded_length, 1);
3924
3925 /* If point was outside of the region, restore it exactly; else just
3926 move to the beginning of the region. */
3927 if (old_pos >= XFASTINT (end))
3928 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3929 else if (old_pos > XFASTINT (beg))
3930 old_pos = XFASTINT (beg);
3931 SET_PT (old_pos > ZV ? ZV : old_pos);
3932
3933 return make_number (inserted_chars);
3934 }
3935
3936 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3937 1, 1, 0,
3938 doc: /* Base64-decode STRING and return the result. */)
3939 (string)
3940 Lisp_Object string;
3941 {
3942 char *decoded;
3943 int length, decoded_length;
3944 Lisp_Object decoded_string;
3945
3946 CHECK_STRING (string);
3947
3948 length = SBYTES (string);
3949 /* We need to allocate enough room for decoding the text. */
3950 if (length <= MAX_ALLOCA)
3951 decoded = (char *) alloca (length);
3952 else
3953 decoded = (char *) xmalloc (length);
3954
3955 /* The decoded result should be unibyte. */
3956 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3957 0, NULL);
3958 if (decoded_length > length)
3959 abort ();
3960 else if (decoded_length >= 0)
3961 decoded_string = make_unibyte_string (decoded, decoded_length);
3962 else
3963 decoded_string = Qnil;
3964
3965 if (length > MAX_ALLOCA)
3966 xfree (decoded);
3967 if (!STRINGP (decoded_string))
3968 error ("Invalid base64 data");
3969
3970 return decoded_string;
3971 }
3972
3973 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3974 MULTIBYTE is nonzero, the decoded result should be in multibyte
3975 form. If NCHARS_RETRUN is not NULL, store the number of produced
3976 characters in *NCHARS_RETURN. */
3977
3978 static int
3979 base64_decode_1 (from, to, length, multibyte, nchars_return)
3980 const char *from;
3981 char *to;
3982 int length;
3983 int multibyte;
3984 int *nchars_return;
3985 {
3986 int i = 0;
3987 char *e = to;
3988 unsigned char c;
3989 unsigned long value;
3990 int nchars = 0;
3991
3992 while (1)
3993 {
3994 /* Process first byte of a quadruplet. */
3995
3996 READ_QUADRUPLET_BYTE (e-to);
3997
3998 if (!IS_BASE64 (c))
3999 return -1;
4000 value = base64_char_to_value[c] << 18;
4001
4002 /* Process second byte of a quadruplet. */
4003
4004 READ_QUADRUPLET_BYTE (-1);
4005
4006 if (!IS_BASE64 (c))
4007 return -1;
4008 value |= base64_char_to_value[c] << 12;
4009
4010 c = (unsigned char) (value >> 16);
4011 if (multibyte)
4012 e += CHAR_STRING (c, e);
4013 else
4014 *e++ = c;
4015 nchars++;
4016
4017 /* Process third byte of a quadruplet. */
4018
4019 READ_QUADRUPLET_BYTE (-1);
4020
4021 if (c == '=')
4022 {
4023 READ_QUADRUPLET_BYTE (-1);
4024
4025 if (c != '=')
4026 return -1;
4027 continue;
4028 }
4029
4030 if (!IS_BASE64 (c))
4031 return -1;
4032 value |= base64_char_to_value[c] << 6;
4033
4034 c = (unsigned char) (0xff & value >> 8);
4035 if (multibyte)
4036 e += CHAR_STRING (c, e);
4037 else
4038 *e++ = c;
4039 nchars++;
4040
4041 /* Process fourth byte of a quadruplet. */
4042
4043 READ_QUADRUPLET_BYTE (-1);
4044
4045 if (c == '=')
4046 continue;
4047
4048 if (!IS_BASE64 (c))
4049 return -1;
4050 value |= base64_char_to_value[c];
4051
4052 c = (unsigned char) (0xff & value);
4053 if (multibyte)
4054 e += CHAR_STRING (c, e);
4055 else
4056 *e++ = c;
4057 nchars++;
4058 }
4059 }
4060
4061
4062 \f
4063 /***********************************************************************
4064 ***** *****
4065 ***** Hash Tables *****
4066 ***** *****
4067 ***********************************************************************/
4068
4069 /* Implemented by gerd@gnu.org. This hash table implementation was
4070 inspired by CMUCL hash tables. */
4071
4072 /* Ideas:
4073
4074 1. For small tables, association lists are probably faster than
4075 hash tables because they have lower overhead.
4076
4077 For uses of hash tables where the O(1) behavior of table
4078 operations is not a requirement, it might therefore be a good idea
4079 not to hash. Instead, we could just do a linear search in the
4080 key_and_value vector of the hash table. This could be done
4081 if a `:linear-search t' argument is given to make-hash-table. */
4082
4083
4084 /* The list of all weak hash tables. Don't staticpro this one. */
4085
4086 Lisp_Object Vweak_hash_tables;
4087
4088 /* Various symbols. */
4089
4090 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4091 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4092 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4093
4094 /* Function prototypes. */
4095
4096 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4097 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4098 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4099 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4100 Lisp_Object, unsigned));
4101 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4102 Lisp_Object, unsigned));
4103 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4104 unsigned, Lisp_Object, unsigned));
4105 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4106 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4107 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4108 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4109 Lisp_Object));
4110 static unsigned sxhash_string P_ ((unsigned char *, int));
4111 static unsigned sxhash_list P_ ((Lisp_Object, int));
4112 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4113 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4114 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4115
4116
4117 \f
4118 /***********************************************************************
4119 Utilities
4120 ***********************************************************************/
4121
4122 /* If OBJ is a Lisp hash table, return a pointer to its struct
4123 Lisp_Hash_Table. Otherwise, signal an error. */
4124
4125 static struct Lisp_Hash_Table *
4126 check_hash_table (obj)
4127 Lisp_Object obj;
4128 {
4129 CHECK_HASH_TABLE (obj);
4130 return XHASH_TABLE (obj);
4131 }
4132
4133
4134 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4135 number. */
4136
4137 int
4138 next_almost_prime (n)
4139 int n;
4140 {
4141 if (n % 2 == 0)
4142 n += 1;
4143 if (n % 3 == 0)
4144 n += 2;
4145 if (n % 7 == 0)
4146 n += 4;
4147 return n;
4148 }
4149
4150
4151 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4152 which USED[I] is non-zero. If found at index I in ARGS, set
4153 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4154 -1. This function is used to extract a keyword/argument pair from
4155 a DEFUN parameter list. */
4156
4157 static int
4158 get_key_arg (key, nargs, args, used)
4159 Lisp_Object key;
4160 int nargs;
4161 Lisp_Object *args;
4162 char *used;
4163 {
4164 int i;
4165
4166 for (i = 0; i < nargs - 1; ++i)
4167 if (!used[i] && EQ (args[i], key))
4168 break;
4169
4170 if (i >= nargs - 1)
4171 i = -1;
4172 else
4173 {
4174 used[i++] = 1;
4175 used[i] = 1;
4176 }
4177
4178 return i;
4179 }
4180
4181
4182 /* Return a Lisp vector which has the same contents as VEC but has
4183 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4184 vector that are not copied from VEC are set to INIT. */
4185
4186 Lisp_Object
4187 larger_vector (vec, new_size, init)
4188 Lisp_Object vec;
4189 int new_size;
4190 Lisp_Object init;
4191 {
4192 struct Lisp_Vector *v;
4193 int i, old_size;
4194
4195 xassert (VECTORP (vec));
4196 old_size = XVECTOR (vec)->size;
4197 xassert (new_size >= old_size);
4198
4199 v = allocate_vector (new_size);
4200 bcopy (XVECTOR (vec)->contents, v->contents,
4201 old_size * sizeof *v->contents);
4202 for (i = old_size; i < new_size; ++i)
4203 v->contents[i] = init;
4204 XSETVECTOR (vec, v);
4205 return vec;
4206 }
4207
4208
4209 /***********************************************************************
4210 Low-level Functions
4211 ***********************************************************************/
4212
4213 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4214 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4215 KEY2 are the same. */
4216
4217 static int
4218 cmpfn_eql (h, key1, hash1, key2, hash2)
4219 struct Lisp_Hash_Table *h;
4220 Lisp_Object key1, key2;
4221 unsigned hash1, hash2;
4222 {
4223 return (FLOATP (key1)
4224 && FLOATP (key2)
4225 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4226 }
4227
4228
4229 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4230 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4231 KEY2 are the same. */
4232
4233 static int
4234 cmpfn_equal (h, key1, hash1, key2, hash2)
4235 struct Lisp_Hash_Table *h;
4236 Lisp_Object key1, key2;
4237 unsigned hash1, hash2;
4238 {
4239 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4240 }
4241
4242
4243 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4244 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4245 if KEY1 and KEY2 are the same. */
4246
4247 static int
4248 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4249 struct Lisp_Hash_Table *h;
4250 Lisp_Object key1, key2;
4251 unsigned hash1, hash2;
4252 {
4253 if (hash1 == hash2)
4254 {
4255 Lisp_Object args[3];
4256
4257 args[0] = h->user_cmp_function;
4258 args[1] = key1;
4259 args[2] = key2;
4260 return !NILP (Ffuncall (3, args));
4261 }
4262 else
4263 return 0;
4264 }
4265
4266
4267 /* Value is a hash code for KEY for use in hash table H which uses
4268 `eq' to compare keys. The hash code returned is guaranteed to fit
4269 in a Lisp integer. */
4270
4271 static unsigned
4272 hashfn_eq (h, key)
4273 struct Lisp_Hash_Table *h;
4274 Lisp_Object key;
4275 {
4276 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4277 xassert ((hash & ~VALMASK) == 0);
4278 return hash;
4279 }
4280
4281
4282 /* Value is a hash code for KEY for use in hash table H which uses
4283 `eql' to compare keys. The hash code returned is guaranteed to fit
4284 in a Lisp integer. */
4285
4286 static unsigned
4287 hashfn_eql (h, key)
4288 struct Lisp_Hash_Table *h;
4289 Lisp_Object key;
4290 {
4291 unsigned hash;
4292 if (FLOATP (key))
4293 hash = sxhash (key, 0);
4294 else
4295 hash = XUINT (key) ^ XGCTYPE (key);
4296 xassert ((hash & ~VALMASK) == 0);
4297 return hash;
4298 }
4299
4300
4301 /* Value is a hash code for KEY for use in hash table H which uses
4302 `equal' to compare keys. The hash code returned is guaranteed to fit
4303 in a Lisp integer. */
4304
4305 static unsigned
4306 hashfn_equal (h, key)
4307 struct Lisp_Hash_Table *h;
4308 Lisp_Object key;
4309 {
4310 unsigned hash = sxhash (key, 0);
4311 xassert ((hash & ~VALMASK) == 0);
4312 return hash;
4313 }
4314
4315
4316 /* Value is a hash code for KEY for use in hash table H which uses as
4317 user-defined function to compare keys. The hash code returned is
4318 guaranteed to fit in a Lisp integer. */
4319
4320 static unsigned
4321 hashfn_user_defined (h, key)
4322 struct Lisp_Hash_Table *h;
4323 Lisp_Object key;
4324 {
4325 Lisp_Object args[2], hash;
4326
4327 args[0] = h->user_hash_function;
4328 args[1] = key;
4329 hash = Ffuncall (2, args);
4330 if (!INTEGERP (hash))
4331 Fsignal (Qerror,
4332 list2 (build_string ("Invalid hash code returned from \
4333 user-supplied hash function"),
4334 hash));
4335 return XUINT (hash);
4336 }
4337
4338
4339 /* Create and initialize a new hash table.
4340
4341 TEST specifies the test the hash table will use to compare keys.
4342 It must be either one of the predefined tests `eq', `eql' or
4343 `equal' or a symbol denoting a user-defined test named TEST with
4344 test and hash functions USER_TEST and USER_HASH.
4345
4346 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4347
4348 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4349 new size when it becomes full is computed by adding REHASH_SIZE to
4350 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4351 table's new size is computed by multiplying its old size with
4352 REHASH_SIZE.
4353
4354 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4355 be resized when the ratio of (number of entries in the table) /
4356 (table size) is >= REHASH_THRESHOLD.
4357
4358 WEAK specifies the weakness of the table. If non-nil, it must be
4359 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4360
4361 Lisp_Object
4362 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4363 user_test, user_hash)
4364 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4365 Lisp_Object user_test, user_hash;
4366 {
4367 struct Lisp_Hash_Table *h;
4368 Lisp_Object table;
4369 int index_size, i, sz;
4370
4371 /* Preconditions. */
4372 xassert (SYMBOLP (test));
4373 xassert (INTEGERP (size) && XINT (size) >= 0);
4374 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4375 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4376 xassert (FLOATP (rehash_threshold)
4377 && XFLOATINT (rehash_threshold) > 0
4378 && XFLOATINT (rehash_threshold) <= 1.0);
4379
4380 if (XFASTINT (size) == 0)
4381 size = make_number (1);
4382
4383 /* Allocate a table and initialize it. */
4384 h = allocate_hash_table ();
4385
4386 /* Initialize hash table slots. */
4387 sz = XFASTINT (size);
4388
4389 h->test = test;
4390 if (EQ (test, Qeql))
4391 {
4392 h->cmpfn = cmpfn_eql;
4393 h->hashfn = hashfn_eql;
4394 }
4395 else if (EQ (test, Qeq))
4396 {
4397 h->cmpfn = NULL;
4398 h->hashfn = hashfn_eq;
4399 }
4400 else if (EQ (test, Qequal))
4401 {
4402 h->cmpfn = cmpfn_equal;
4403 h->hashfn = hashfn_equal;
4404 }
4405 else
4406 {
4407 h->user_cmp_function = user_test;
4408 h->user_hash_function = user_hash;
4409 h->cmpfn = cmpfn_user_defined;
4410 h->hashfn = hashfn_user_defined;
4411 }
4412
4413 h->weak = weak;
4414 h->rehash_threshold = rehash_threshold;
4415 h->rehash_size = rehash_size;
4416 h->count = make_number (0);
4417 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4418 h->hash = Fmake_vector (size, Qnil);
4419 h->next = Fmake_vector (size, Qnil);
4420 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4421 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4422 h->index = Fmake_vector (make_number (index_size), Qnil);
4423
4424 /* Set up the free list. */
4425 for (i = 0; i < sz - 1; ++i)
4426 HASH_NEXT (h, i) = make_number (i + 1);
4427 h->next_free = make_number (0);
4428
4429 XSET_HASH_TABLE (table, h);
4430 xassert (HASH_TABLE_P (table));
4431 xassert (XHASH_TABLE (table) == h);
4432
4433 /* Maybe add this hash table to the list of all weak hash tables. */
4434 if (NILP (h->weak))
4435 h->next_weak = Qnil;
4436 else
4437 {
4438 h->next_weak = Vweak_hash_tables;
4439 Vweak_hash_tables = table;
4440 }
4441
4442 return table;
4443 }
4444
4445
4446 /* Return a copy of hash table H1. Keys and values are not copied,
4447 only the table itself is. */
4448
4449 Lisp_Object
4450 copy_hash_table (h1)
4451 struct Lisp_Hash_Table *h1;
4452 {
4453 Lisp_Object table;
4454 struct Lisp_Hash_Table *h2;
4455 struct Lisp_Vector *next;
4456
4457 h2 = allocate_hash_table ();
4458 next = h2->vec_next;
4459 bcopy (h1, h2, sizeof *h2);
4460 h2->vec_next = next;
4461 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4462 h2->hash = Fcopy_sequence (h1->hash);
4463 h2->next = Fcopy_sequence (h1->next);
4464 h2->index = Fcopy_sequence (h1->index);
4465 XSET_HASH_TABLE (table, h2);
4466
4467 /* Maybe add this hash table to the list of all weak hash tables. */
4468 if (!NILP (h2->weak))
4469 {
4470 h2->next_weak = Vweak_hash_tables;
4471 Vweak_hash_tables = table;
4472 }
4473
4474 return table;
4475 }
4476
4477
4478 /* Resize hash table H if it's too full. If H cannot be resized
4479 because it's already too large, throw an error. */
4480
4481 static INLINE void
4482 maybe_resize_hash_table (h)
4483 struct Lisp_Hash_Table *h;
4484 {
4485 if (NILP (h->next_free))
4486 {
4487 int old_size = HASH_TABLE_SIZE (h);
4488 int i, new_size, index_size;
4489
4490 if (INTEGERP (h->rehash_size))
4491 new_size = old_size + XFASTINT (h->rehash_size);
4492 else
4493 new_size = old_size * XFLOATINT (h->rehash_size);
4494 new_size = max (old_size + 1, new_size);
4495 index_size = next_almost_prime ((int)
4496 (new_size
4497 / XFLOATINT (h->rehash_threshold)));
4498 if (max (index_size, 2 * new_size) & ~VALMASK)
4499 error ("Hash table too large to resize");
4500
4501 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4502 h->next = larger_vector (h->next, new_size, Qnil);
4503 h->hash = larger_vector (h->hash, new_size, Qnil);
4504 h->index = Fmake_vector (make_number (index_size), Qnil);
4505
4506 /* Update the free list. Do it so that new entries are added at
4507 the end of the free list. This makes some operations like
4508 maphash faster. */
4509 for (i = old_size; i < new_size - 1; ++i)
4510 HASH_NEXT (h, i) = make_number (i + 1);
4511
4512 if (!NILP (h->next_free))
4513 {
4514 Lisp_Object last, next;
4515
4516 last = h->next_free;
4517 while (next = HASH_NEXT (h, XFASTINT (last)),
4518 !NILP (next))
4519 last = next;
4520
4521 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4522 }
4523 else
4524 XSETFASTINT (h->next_free, old_size);
4525
4526 /* Rehash. */
4527 for (i = 0; i < old_size; ++i)
4528 if (!NILP (HASH_HASH (h, i)))
4529 {
4530 unsigned hash_code = XUINT (HASH_HASH (h, i));
4531 int start_of_bucket = hash_code % XVECTOR (h->index)->size;
4532 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4533 HASH_INDEX (h, start_of_bucket) = make_number (i);
4534 }
4535 }
4536 }
4537
4538
4539 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4540 the hash code of KEY. Value is the index of the entry in H
4541 matching KEY, or -1 if not found. */
4542
4543 int
4544 hash_lookup (h, key, hash)
4545 struct Lisp_Hash_Table *h;
4546 Lisp_Object key;
4547 unsigned *hash;
4548 {
4549 unsigned hash_code;
4550 int start_of_bucket;
4551 Lisp_Object idx;
4552
4553 hash_code = h->hashfn (h, key);
4554 if (hash)
4555 *hash = hash_code;
4556
4557 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4558 idx = HASH_INDEX (h, start_of_bucket);
4559
4560 /* We need not gcpro idx since it's either an integer or nil. */
4561 while (!NILP (idx))
4562 {
4563 int i = XFASTINT (idx);
4564 if (EQ (key, HASH_KEY (h, i))
4565 || (h->cmpfn
4566 && h->cmpfn (h, key, hash_code,
4567 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4568 break;
4569 idx = HASH_NEXT (h, i);
4570 }
4571
4572 return NILP (idx) ? -1 : XFASTINT (idx);
4573 }
4574
4575
4576 /* Put an entry into hash table H that associates KEY with VALUE.
4577 HASH is a previously computed hash code of KEY.
4578 Value is the index of the entry in H matching KEY. */
4579
4580 int
4581 hash_put (h, key, value, hash)
4582 struct Lisp_Hash_Table *h;
4583 Lisp_Object key, value;
4584 unsigned hash;
4585 {
4586 int start_of_bucket, i;
4587
4588 xassert ((hash & ~VALMASK) == 0);
4589
4590 /* Increment count after resizing because resizing may fail. */
4591 maybe_resize_hash_table (h);
4592 h->count = make_number (XFASTINT (h->count) + 1);
4593
4594 /* Store key/value in the key_and_value vector. */
4595 i = XFASTINT (h->next_free);
4596 h->next_free = HASH_NEXT (h, i);
4597 HASH_KEY (h, i) = key;
4598 HASH_VALUE (h, i) = value;
4599
4600 /* Remember its hash code. */
4601 HASH_HASH (h, i) = make_number (hash);
4602
4603 /* Add new entry to its collision chain. */
4604 start_of_bucket = hash % XVECTOR (h->index)->size;
4605 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4606 HASH_INDEX (h, start_of_bucket) = make_number (i);
4607 return i;
4608 }
4609
4610
4611 /* Remove the entry matching KEY from hash table H, if there is one. */
4612
4613 void
4614 hash_remove (h, key)
4615 struct Lisp_Hash_Table *h;
4616 Lisp_Object key;
4617 {
4618 unsigned hash_code;
4619 int start_of_bucket;
4620 Lisp_Object idx, prev;
4621
4622 hash_code = h->hashfn (h, key);
4623 start_of_bucket = hash_code % XVECTOR (h->index)->size;
4624 idx = HASH_INDEX (h, start_of_bucket);
4625 prev = Qnil;
4626
4627 /* We need not gcpro idx, prev since they're either integers or nil. */
4628 while (!NILP (idx))
4629 {
4630 int i = XFASTINT (idx);
4631
4632 if (EQ (key, HASH_KEY (h, i))
4633 || (h->cmpfn
4634 && h->cmpfn (h, key, hash_code,
4635 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4636 {
4637 /* Take entry out of collision chain. */
4638 if (NILP (prev))
4639 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4640 else
4641 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4642
4643 /* Clear slots in key_and_value and add the slots to
4644 the free list. */
4645 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4646 HASH_NEXT (h, i) = h->next_free;
4647 h->next_free = make_number (i);
4648 h->count = make_number (XFASTINT (h->count) - 1);
4649 xassert (XINT (h->count) >= 0);
4650 break;
4651 }
4652 else
4653 {
4654 prev = idx;
4655 idx = HASH_NEXT (h, i);
4656 }
4657 }
4658 }
4659
4660
4661 /* Clear hash table H. */
4662
4663 void
4664 hash_clear (h)
4665 struct Lisp_Hash_Table *h;
4666 {
4667 if (XFASTINT (h->count) > 0)
4668 {
4669 int i, size = HASH_TABLE_SIZE (h);
4670
4671 for (i = 0; i < size; ++i)
4672 {
4673 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4674 HASH_KEY (h, i) = Qnil;
4675 HASH_VALUE (h, i) = Qnil;
4676 HASH_HASH (h, i) = Qnil;
4677 }
4678
4679 for (i = 0; i < XVECTOR (h->index)->size; ++i)
4680 XVECTOR (h->index)->contents[i] = Qnil;
4681
4682 h->next_free = make_number (0);
4683 h->count = make_number (0);
4684 }
4685 }
4686
4687
4688 \f
4689 /************************************************************************
4690 Weak Hash Tables
4691 ************************************************************************/
4692
4693 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4694 entries from the table that don't survive the current GC.
4695 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4696 non-zero if anything was marked. */
4697
4698 static int
4699 sweep_weak_table (h, remove_entries_p)
4700 struct Lisp_Hash_Table *h;
4701 int remove_entries_p;
4702 {
4703 int bucket, n, marked;
4704
4705 n = XVECTOR (h->index)->size & ~ARRAY_MARK_FLAG;
4706 marked = 0;
4707
4708 for (bucket = 0; bucket < n; ++bucket)
4709 {
4710 Lisp_Object idx, next, prev;
4711
4712 /* Follow collision chain, removing entries that
4713 don't survive this garbage collection. */
4714 prev = Qnil;
4715 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4716 {
4717 int i = XFASTINT (idx);
4718 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4719 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4720 int remove_p;
4721
4722 if (EQ (h->weak, Qkey))
4723 remove_p = !key_known_to_survive_p;
4724 else if (EQ (h->weak, Qvalue))
4725 remove_p = !value_known_to_survive_p;
4726 else if (EQ (h->weak, Qkey_or_value))
4727 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4728 else if (EQ (h->weak, Qkey_and_value))
4729 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4730 else
4731 abort ();
4732
4733 next = HASH_NEXT (h, i);
4734
4735 if (remove_entries_p)
4736 {
4737 if (remove_p)
4738 {
4739 /* Take out of collision chain. */
4740 if (GC_NILP (prev))
4741 HASH_INDEX (h, bucket) = next;
4742 else
4743 HASH_NEXT (h, XFASTINT (prev)) = next;
4744
4745 /* Add to free list. */
4746 HASH_NEXT (h, i) = h->next_free;
4747 h->next_free = idx;
4748
4749 /* Clear key, value, and hash. */
4750 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4751 HASH_HASH (h, i) = Qnil;
4752
4753 h->count = make_number (XFASTINT (h->count) - 1);
4754 }
4755 }
4756 else
4757 {
4758 if (!remove_p)
4759 {
4760 /* Make sure key and value survive. */
4761 if (!key_known_to_survive_p)
4762 {
4763 mark_object (HASH_KEY (h, i));
4764 marked = 1;
4765 }
4766
4767 if (!value_known_to_survive_p)
4768 {
4769 mark_object (HASH_VALUE (h, i));
4770 marked = 1;
4771 }
4772 }
4773 }
4774 }
4775 }
4776
4777 return marked;
4778 }
4779
4780 /* Remove elements from weak hash tables that don't survive the
4781 current garbage collection. Remove weak tables that don't survive
4782 from Vweak_hash_tables. Called from gc_sweep. */
4783
4784 void
4785 sweep_weak_hash_tables ()
4786 {
4787 Lisp_Object table, used, next;
4788 struct Lisp_Hash_Table *h;
4789 int marked;
4790
4791 /* Mark all keys and values that are in use. Keep on marking until
4792 there is no more change. This is necessary for cases like
4793 value-weak table A containing an entry X -> Y, where Y is used in a
4794 key-weak table B, Z -> Y. If B comes after A in the list of weak
4795 tables, X -> Y might be removed from A, although when looking at B
4796 one finds that it shouldn't. */
4797 do
4798 {
4799 marked = 0;
4800 for (table = Vweak_hash_tables; !GC_NILP (table); table = h->next_weak)
4801 {
4802 h = XHASH_TABLE (table);
4803 if (h->size & ARRAY_MARK_FLAG)
4804 marked |= sweep_weak_table (h, 0);
4805 }
4806 }
4807 while (marked);
4808
4809 /* Remove tables and entries that aren't used. */
4810 for (table = Vweak_hash_tables, used = Qnil; !GC_NILP (table); table = next)
4811 {
4812 h = XHASH_TABLE (table);
4813 next = h->next_weak;
4814
4815 if (h->size & ARRAY_MARK_FLAG)
4816 {
4817 /* TABLE is marked as used. Sweep its contents. */
4818 if (XFASTINT (h->count) > 0)
4819 sweep_weak_table (h, 1);
4820
4821 /* Add table to the list of used weak hash tables. */
4822 h->next_weak = used;
4823 used = table;
4824 }
4825 }
4826
4827 Vweak_hash_tables = used;
4828 }
4829
4830
4831 \f
4832 /***********************************************************************
4833 Hash Code Computation
4834 ***********************************************************************/
4835
4836 /* Maximum depth up to which to dive into Lisp structures. */
4837
4838 #define SXHASH_MAX_DEPTH 3
4839
4840 /* Maximum length up to which to take list and vector elements into
4841 account. */
4842
4843 #define SXHASH_MAX_LEN 7
4844
4845 /* Combine two integers X and Y for hashing. */
4846
4847 #define SXHASH_COMBINE(X, Y) \
4848 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4849 + (unsigned)(Y))
4850
4851
4852 /* Return a hash for string PTR which has length LEN. The hash
4853 code returned is guaranteed to fit in a Lisp integer. */
4854
4855 static unsigned
4856 sxhash_string (ptr, len)
4857 unsigned char *ptr;
4858 int len;
4859 {
4860 unsigned char *p = ptr;
4861 unsigned char *end = p + len;
4862 unsigned char c;
4863 unsigned hash = 0;
4864
4865 while (p != end)
4866 {
4867 c = *p++;
4868 if (c >= 0140)
4869 c -= 40;
4870 hash = ((hash << 3) + (hash >> 28) + c);
4871 }
4872
4873 return hash & VALMASK;
4874 }
4875
4876
4877 /* Return a hash for list LIST. DEPTH is the current depth in the
4878 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4879
4880 static unsigned
4881 sxhash_list (list, depth)
4882 Lisp_Object list;
4883 int depth;
4884 {
4885 unsigned hash = 0;
4886 int i;
4887
4888 if (depth < SXHASH_MAX_DEPTH)
4889 for (i = 0;
4890 CONSP (list) && i < SXHASH_MAX_LEN;
4891 list = XCDR (list), ++i)
4892 {
4893 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4894 hash = SXHASH_COMBINE (hash, hash2);
4895 }
4896
4897 return hash;
4898 }
4899
4900
4901 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4902 the Lisp structure. */
4903
4904 static unsigned
4905 sxhash_vector (vec, depth)
4906 Lisp_Object vec;
4907 int depth;
4908 {
4909 unsigned hash = XVECTOR (vec)->size;
4910 int i, n;
4911
4912 n = min (SXHASH_MAX_LEN, XVECTOR (vec)->size);
4913 for (i = 0; i < n; ++i)
4914 {
4915 unsigned hash2 = sxhash (XVECTOR (vec)->contents[i], depth + 1);
4916 hash = SXHASH_COMBINE (hash, hash2);
4917 }
4918
4919 return hash;
4920 }
4921
4922
4923 /* Return a hash for bool-vector VECTOR. */
4924
4925 static unsigned
4926 sxhash_bool_vector (vec)
4927 Lisp_Object vec;
4928 {
4929 unsigned hash = XBOOL_VECTOR (vec)->size;
4930 int i, n;
4931
4932 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4933 for (i = 0; i < n; ++i)
4934 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4935
4936 return hash;
4937 }
4938
4939
4940 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4941 structure. Value is an unsigned integer clipped to VALMASK. */
4942
4943 unsigned
4944 sxhash (obj, depth)
4945 Lisp_Object obj;
4946 int depth;
4947 {
4948 unsigned hash;
4949
4950 if (depth > SXHASH_MAX_DEPTH)
4951 return 0;
4952
4953 switch (XTYPE (obj))
4954 {
4955 case Lisp_Int:
4956 hash = XUINT (obj);
4957 break;
4958
4959 case Lisp_Symbol:
4960 hash = sxhash_string (SDATA (SYMBOL_NAME (obj)),
4961 SCHARS (SYMBOL_NAME (obj)));
4962 break;
4963
4964 case Lisp_Misc:
4965 hash = XUINT (obj);
4966 break;
4967
4968 case Lisp_String:
4969 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4970 break;
4971
4972 /* This can be everything from a vector to an overlay. */
4973 case Lisp_Vectorlike:
4974 if (VECTORP (obj))
4975 /* According to the CL HyperSpec, two arrays are equal only if
4976 they are `eq', except for strings and bit-vectors. In
4977 Emacs, this works differently. We have to compare element
4978 by element. */
4979 hash = sxhash_vector (obj, depth);
4980 else if (BOOL_VECTOR_P (obj))
4981 hash = sxhash_bool_vector (obj);
4982 else
4983 /* Others are `equal' if they are `eq', so let's take their
4984 address as hash. */
4985 hash = XUINT (obj);
4986 break;
4987
4988 case Lisp_Cons:
4989 hash = sxhash_list (obj, depth);
4990 break;
4991
4992 case Lisp_Float:
4993 {
4994 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
4995 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
4996 for (hash = 0; p < e; ++p)
4997 hash = SXHASH_COMBINE (hash, *p);
4998 break;
4999 }
5000
5001 default:
5002 abort ();
5003 }
5004
5005 return hash & VALMASK;
5006 }
5007
5008
5009 \f
5010 /***********************************************************************
5011 Lisp Interface
5012 ***********************************************************************/
5013
5014
5015 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5016 doc: /* Compute a hash code for OBJ and return it as integer. */)
5017 (obj)
5018 Lisp_Object obj;
5019 {
5020 unsigned hash = sxhash (obj, 0);;
5021 return make_number (hash);
5022 }
5023
5024
5025 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5026 doc: /* Create and return a new hash table.
5027
5028 Arguments are specified as keyword/argument pairs. The following
5029 arguments are defined:
5030
5031 :test TEST -- TEST must be a symbol that specifies how to compare
5032 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5033 `equal'. User-supplied test and hash functions can be specified via
5034 `define-hash-table-test'.
5035
5036 :size SIZE -- A hint as to how many elements will be put in the table.
5037 Default is 65.
5038
5039 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5040 fills up. If REHASH-SIZE is an integer, add that many space. If it
5041 is a float, it must be > 1.0, and the new size is computed by
5042 multiplying the old size with that factor. Default is 1.5.
5043
5044 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5045 Resize the hash table when ratio of the number of entries in the
5046 table. Default is 0.8.
5047
5048 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5049 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5050 returned is a weak table. Key/value pairs are removed from a weak
5051 hash table when there are no non-weak references pointing to their
5052 key, value, one of key or value, or both key and value, depending on
5053 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5054 is nil.
5055
5056 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5057 (nargs, args)
5058 int nargs;
5059 Lisp_Object *args;
5060 {
5061 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5062 Lisp_Object user_test, user_hash;
5063 char *used;
5064 int i;
5065
5066 /* The vector `used' is used to keep track of arguments that
5067 have been consumed. */
5068 used = (char *) alloca (nargs * sizeof *used);
5069 bzero (used, nargs * sizeof *used);
5070
5071 /* See if there's a `:test TEST' among the arguments. */
5072 i = get_key_arg (QCtest, nargs, args, used);
5073 test = i < 0 ? Qeql : args[i];
5074 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5075 {
5076 /* See if it is a user-defined test. */
5077 Lisp_Object prop;
5078
5079 prop = Fget (test, Qhash_table_test);
5080 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5081 Fsignal (Qerror, list2 (build_string ("Invalid hash table test"),
5082 test));
5083 user_test = XCAR (prop);
5084 user_hash = XCAR (XCDR (prop));
5085 }
5086 else
5087 user_test = user_hash = Qnil;
5088
5089 /* See if there's a `:size SIZE' argument. */
5090 i = get_key_arg (QCsize, nargs, args, used);
5091 size = i < 0 ? Qnil : args[i];
5092 if (NILP (size))
5093 size = make_number (DEFAULT_HASH_SIZE);
5094 else if (!INTEGERP (size) || XINT (size) < 0)
5095 Fsignal (Qerror,
5096 list2 (build_string ("Invalid hash table size"),
5097 size));
5098
5099 /* Look for `:rehash-size SIZE'. */
5100 i = get_key_arg (QCrehash_size, nargs, args, used);
5101 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5102 if (!NUMBERP (rehash_size)
5103 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5104 || XFLOATINT (rehash_size) <= 1.0)
5105 Fsignal (Qerror,
5106 list2 (build_string ("Invalid hash table rehash size"),
5107 rehash_size));
5108
5109 /* Look for `:rehash-threshold THRESHOLD'. */
5110 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5111 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5112 if (!FLOATP (rehash_threshold)
5113 || XFLOATINT (rehash_threshold) <= 0.0
5114 || XFLOATINT (rehash_threshold) > 1.0)
5115 Fsignal (Qerror,
5116 list2 (build_string ("Invalid hash table rehash threshold"),
5117 rehash_threshold));
5118
5119 /* Look for `:weakness WEAK'. */
5120 i = get_key_arg (QCweakness, nargs, args, used);
5121 weak = i < 0 ? Qnil : args[i];
5122 if (EQ (weak, Qt))
5123 weak = Qkey_and_value;
5124 if (!NILP (weak)
5125 && !EQ (weak, Qkey)
5126 && !EQ (weak, Qvalue)
5127 && !EQ (weak, Qkey_or_value)
5128 && !EQ (weak, Qkey_and_value))
5129 Fsignal (Qerror, list2 (build_string ("Invalid hash table weakness"),
5130 weak));
5131
5132 /* Now, all args should have been used up, or there's a problem. */
5133 for (i = 0; i < nargs; ++i)
5134 if (!used[i])
5135 Fsignal (Qerror,
5136 list2 (build_string ("Invalid argument list"), args[i]));
5137
5138 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5139 user_test, user_hash);
5140 }
5141
5142
5143 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5144 doc: /* Return a copy of hash table TABLE. */)
5145 (table)
5146 Lisp_Object table;
5147 {
5148 return copy_hash_table (check_hash_table (table));
5149 }
5150
5151
5152 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5153 doc: /* Return the number of elements in TABLE. */)
5154 (table)
5155 Lisp_Object table;
5156 {
5157 return check_hash_table (table)->count;
5158 }
5159
5160
5161 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5162 Shash_table_rehash_size, 1, 1, 0,
5163 doc: /* Return the current rehash size of TABLE. */)
5164 (table)
5165 Lisp_Object table;
5166 {
5167 return check_hash_table (table)->rehash_size;
5168 }
5169
5170
5171 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5172 Shash_table_rehash_threshold, 1, 1, 0,
5173 doc: /* Return the current rehash threshold of TABLE. */)
5174 (table)
5175 Lisp_Object table;
5176 {
5177 return check_hash_table (table)->rehash_threshold;
5178 }
5179
5180
5181 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5182 doc: /* Return the size of TABLE.
5183 The size can be used as an argument to `make-hash-table' to create
5184 a hash table than can hold as many elements of TABLE holds
5185 without need for resizing. */)
5186 (table)
5187 Lisp_Object table;
5188 {
5189 struct Lisp_Hash_Table *h = check_hash_table (table);
5190 return make_number (HASH_TABLE_SIZE (h));
5191 }
5192
5193
5194 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5195 doc: /* Return the test TABLE uses. */)
5196 (table)
5197 Lisp_Object table;
5198 {
5199 return check_hash_table (table)->test;
5200 }
5201
5202
5203 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5204 1, 1, 0,
5205 doc: /* Return the weakness of TABLE. */)
5206 (table)
5207 Lisp_Object table;
5208 {
5209 return check_hash_table (table)->weak;
5210 }
5211
5212
5213 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5214 doc: /* Return t if OBJ is a Lisp hash table object. */)
5215 (obj)
5216 Lisp_Object obj;
5217 {
5218 return HASH_TABLE_P (obj) ? Qt : Qnil;
5219 }
5220
5221
5222 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5223 doc: /* Clear hash table TABLE. */)
5224 (table)
5225 Lisp_Object table;
5226 {
5227 hash_clear (check_hash_table (table));
5228 return Qnil;
5229 }
5230
5231
5232 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5233 doc: /* Look up KEY in TABLE and return its associated value.
5234 If KEY is not found, return DFLT which defaults to nil. */)
5235 (key, table, dflt)
5236 Lisp_Object key, table, dflt;
5237 {
5238 struct Lisp_Hash_Table *h = check_hash_table (table);
5239 int i = hash_lookup (h, key, NULL);
5240 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5241 }
5242
5243
5244 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5245 doc: /* Associate KEY with VALUE in hash table TABLE.
5246 If KEY is already present in table, replace its current value with
5247 VALUE. */)
5248 (key, value, table)
5249 Lisp_Object key, value, table;
5250 {
5251 struct Lisp_Hash_Table *h = check_hash_table (table);
5252 int i;
5253 unsigned hash;
5254
5255 i = hash_lookup (h, key, &hash);
5256 if (i >= 0)
5257 HASH_VALUE (h, i) = value;
5258 else
5259 hash_put (h, key, value, hash);
5260
5261 return value;
5262 }
5263
5264
5265 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5266 doc: /* Remove KEY from TABLE. */)
5267 (key, table)
5268 Lisp_Object key, table;
5269 {
5270 struct Lisp_Hash_Table *h = check_hash_table (table);
5271 hash_remove (h, key);
5272 return Qnil;
5273 }
5274
5275
5276 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5277 doc: /* Call FUNCTION for all entries in hash table TABLE.
5278 FUNCTION is called with 2 arguments KEY and VALUE. */)
5279 (function, table)
5280 Lisp_Object function, table;
5281 {
5282 struct Lisp_Hash_Table *h = check_hash_table (table);
5283 Lisp_Object args[3];
5284 int i;
5285
5286 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5287 if (!NILP (HASH_HASH (h, i)))
5288 {
5289 args[0] = function;
5290 args[1] = HASH_KEY (h, i);
5291 args[2] = HASH_VALUE (h, i);
5292 Ffuncall (3, args);
5293 }
5294
5295 return Qnil;
5296 }
5297
5298
5299 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5300 Sdefine_hash_table_test, 3, 3, 0,
5301 doc: /* Define a new hash table test with name NAME, a symbol.
5302
5303 In hash tables created with NAME specified as test, use TEST to
5304 compare keys, and HASH for computing hash codes of keys.
5305
5306 TEST must be a function taking two arguments and returning non-nil if
5307 both arguments are the same. HASH must be a function taking one
5308 argument and return an integer that is the hash code of the argument.
5309 Hash code computation should use the whole value range of integers,
5310 including negative integers. */)
5311 (name, test, hash)
5312 Lisp_Object name, test, hash;
5313 {
5314 return Fput (name, Qhash_table_test, list2 (test, hash));
5315 }
5316
5317
5318 \f
5319 /************************************************************************
5320 MD5
5321 ************************************************************************/
5322
5323 #include "md5.h"
5324 #include "coding.h"
5325
5326 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5327 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5328
5329 A message digest is a cryptographic checksum of a document, and the
5330 algorithm to calculate it is defined in RFC 1321.
5331
5332 The two optional arguments START and END are character positions
5333 specifying for which part of OBJECT the message digest should be
5334 computed. If nil or omitted, the digest is computed for the whole
5335 OBJECT.
5336
5337 The MD5 message digest is computed from the result of encoding the
5338 text in a coding system, not directly from the internal Emacs form of
5339 the text. The optional fourth argument CODING-SYSTEM specifies which
5340 coding system to encode the text with. It should be the same coding
5341 system that you used or will use when actually writing the text into a
5342 file.
5343
5344 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5345 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5346 system would be chosen by default for writing this text into a file.
5347
5348 If OBJECT is a string, the most preferred coding system (see the
5349 command `prefer-coding-system') is used.
5350
5351 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5352 guesswork fails. Normally, an error is signaled in such case. */)
5353 (object, start, end, coding_system, noerror)
5354 Lisp_Object object, start, end, coding_system, noerror;
5355 {
5356 unsigned char digest[16];
5357 unsigned char value[33];
5358 int i;
5359 int size;
5360 int size_byte = 0;
5361 int start_char = 0, end_char = 0;
5362 int start_byte = 0, end_byte = 0;
5363 register int b, e;
5364 register struct buffer *bp;
5365 int temp;
5366
5367 if (STRINGP (object))
5368 {
5369 if (NILP (coding_system))
5370 {
5371 /* Decide the coding-system to encode the data with. */
5372
5373 if (STRING_MULTIBYTE (object))
5374 /* use default, we can't guess correct value */
5375 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5376 else
5377 coding_system = Qraw_text;
5378 }
5379
5380 if (NILP (Fcoding_system_p (coding_system)))
5381 {
5382 /* Invalid coding system. */
5383
5384 if (!NILP (noerror))
5385 coding_system = Qraw_text;
5386 else
5387 while (1)
5388 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5389 }
5390
5391 if (STRING_MULTIBYTE (object))
5392 object = code_convert_string1 (object, coding_system, Qnil, 1);
5393
5394 size = SCHARS (object);
5395 size_byte = SBYTES (object);
5396
5397 if (!NILP (start))
5398 {
5399 CHECK_NUMBER (start);
5400
5401 start_char = XINT (start);
5402
5403 if (start_char < 0)
5404 start_char += size;
5405
5406 start_byte = string_char_to_byte (object, start_char);
5407 }
5408
5409 if (NILP (end))
5410 {
5411 end_char = size;
5412 end_byte = size_byte;
5413 }
5414 else
5415 {
5416 CHECK_NUMBER (end);
5417
5418 end_char = XINT (end);
5419
5420 if (end_char < 0)
5421 end_char += size;
5422
5423 end_byte = string_char_to_byte (object, end_char);
5424 }
5425
5426 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5427 args_out_of_range_3 (object, make_number (start_char),
5428 make_number (end_char));
5429 }
5430 else
5431 {
5432 CHECK_BUFFER (object);
5433
5434 bp = XBUFFER (object);
5435
5436 if (NILP (start))
5437 b = BUF_BEGV (bp);
5438 else
5439 {
5440 CHECK_NUMBER_COERCE_MARKER (start);
5441 b = XINT (start);
5442 }
5443
5444 if (NILP (end))
5445 e = BUF_ZV (bp);
5446 else
5447 {
5448 CHECK_NUMBER_COERCE_MARKER (end);
5449 e = XINT (end);
5450 }
5451
5452 if (b > e)
5453 temp = b, b = e, e = temp;
5454
5455 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
5456 args_out_of_range (start, end);
5457
5458 if (NILP (coding_system))
5459 {
5460 /* Decide the coding-system to encode the data with.
5461 See fileio.c:Fwrite-region */
5462
5463 if (!NILP (Vcoding_system_for_write))
5464 coding_system = Vcoding_system_for_write;
5465 else
5466 {
5467 int force_raw_text = 0;
5468
5469 coding_system = XBUFFER (object)->buffer_file_coding_system;
5470 if (NILP (coding_system)
5471 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5472 {
5473 coding_system = Qnil;
5474 if (NILP (current_buffer->enable_multibyte_characters))
5475 force_raw_text = 1;
5476 }
5477
5478 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5479 {
5480 /* Check file-coding-system-alist. */
5481 Lisp_Object args[4], val;
5482
5483 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5484 args[3] = Fbuffer_file_name(object);
5485 val = Ffind_operation_coding_system (4, args);
5486 if (CONSP (val) && !NILP (XCDR (val)))
5487 coding_system = XCDR (val);
5488 }
5489
5490 if (NILP (coding_system)
5491 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5492 {
5493 /* If we still have not decided a coding system, use the
5494 default value of buffer-file-coding-system. */
5495 coding_system = XBUFFER (object)->buffer_file_coding_system;
5496 }
5497
5498 if (!force_raw_text
5499 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5500 /* Confirm that VAL can surely encode the current region. */
5501 coding_system = call4 (Vselect_safe_coding_system_function,
5502 make_number (b), make_number (e),
5503 coding_system, Qnil);
5504
5505 if (force_raw_text)
5506 coding_system = Qraw_text;
5507 }
5508
5509 if (NILP (Fcoding_system_p (coding_system)))
5510 {
5511 /* Invalid coding system. */
5512
5513 if (!NILP (noerror))
5514 coding_system = Qraw_text;
5515 else
5516 while (1)
5517 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
5518 }
5519 }
5520
5521 object = make_buffer_string (b, e, 0);
5522
5523 if (STRING_MULTIBYTE (object))
5524 object = code_convert_string1 (object, coding_system, Qnil, 1);
5525 }
5526
5527 md5_buffer (SDATA (object) + start_byte,
5528 SBYTES (object) - (size_byte - end_byte),
5529 digest);
5530
5531 for (i = 0; i < 16; i++)
5532 sprintf (&value[2 * i], "%02x", digest[i]);
5533 value[32] = '\0';
5534
5535 return make_string (value, 32);
5536 }
5537
5538 \f
5539 void
5540 syms_of_fns ()
5541 {
5542 /* Hash table stuff. */
5543 Qhash_table_p = intern ("hash-table-p");
5544 staticpro (&Qhash_table_p);
5545 Qeq = intern ("eq");
5546 staticpro (&Qeq);
5547 Qeql = intern ("eql");
5548 staticpro (&Qeql);
5549 Qequal = intern ("equal");
5550 staticpro (&Qequal);
5551 QCtest = intern (":test");
5552 staticpro (&QCtest);
5553 QCsize = intern (":size");
5554 staticpro (&QCsize);
5555 QCrehash_size = intern (":rehash-size");
5556 staticpro (&QCrehash_size);
5557 QCrehash_threshold = intern (":rehash-threshold");
5558 staticpro (&QCrehash_threshold);
5559 QCweakness = intern (":weakness");
5560 staticpro (&QCweakness);
5561 Qkey = intern ("key");
5562 staticpro (&Qkey);
5563 Qvalue = intern ("value");
5564 staticpro (&Qvalue);
5565 Qhash_table_test = intern ("hash-table-test");
5566 staticpro (&Qhash_table_test);
5567 Qkey_or_value = intern ("key-or-value");
5568 staticpro (&Qkey_or_value);
5569 Qkey_and_value = intern ("key-and-value");
5570 staticpro (&Qkey_and_value);
5571
5572 defsubr (&Ssxhash);
5573 defsubr (&Smake_hash_table);
5574 defsubr (&Scopy_hash_table);
5575 defsubr (&Shash_table_count);
5576 defsubr (&Shash_table_rehash_size);
5577 defsubr (&Shash_table_rehash_threshold);
5578 defsubr (&Shash_table_size);
5579 defsubr (&Shash_table_test);
5580 defsubr (&Shash_table_weakness);
5581 defsubr (&Shash_table_p);
5582 defsubr (&Sclrhash);
5583 defsubr (&Sgethash);
5584 defsubr (&Sputhash);
5585 defsubr (&Sremhash);
5586 defsubr (&Smaphash);
5587 defsubr (&Sdefine_hash_table_test);
5588
5589 Qstring_lessp = intern ("string-lessp");
5590 staticpro (&Qstring_lessp);
5591 Qprovide = intern ("provide");
5592 staticpro (&Qprovide);
5593 Qrequire = intern ("require");
5594 staticpro (&Qrequire);
5595 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5596 staticpro (&Qyes_or_no_p_history);
5597 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5598 staticpro (&Qcursor_in_echo_area);
5599 Qwidget_type = intern ("widget-type");
5600 staticpro (&Qwidget_type);
5601
5602 staticpro (&string_char_byte_cache_string);
5603 string_char_byte_cache_string = Qnil;
5604
5605 require_nesting_list = Qnil;
5606 staticpro (&require_nesting_list);
5607
5608 Fset (Qyes_or_no_p_history, Qnil);
5609
5610 DEFVAR_LISP ("features", &Vfeatures,
5611 doc: /* A list of symbols which are the features of the executing emacs.
5612 Used by `featurep' and `require', and altered by `provide'. */);
5613 Vfeatures = Qnil;
5614 Qsubfeatures = intern ("subfeatures");
5615 staticpro (&Qsubfeatures);
5616
5617 #ifdef HAVE_LANGINFO_CODESET
5618 Qcodeset = intern ("codeset");
5619 staticpro (&Qcodeset);
5620 Qdays = intern ("days");
5621 staticpro (&Qdays);
5622 Qmonths = intern ("months");
5623 staticpro (&Qmonths);
5624 Qpaper = intern ("paper");
5625 staticpro (&Qpaper);
5626 #endif /* HAVE_LANGINFO_CODESET */
5627
5628 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5629 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5630 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5631 invoked by mouse clicks and mouse menu items. */);
5632 use_dialog_box = 1;
5633
5634 defsubr (&Sidentity);
5635 defsubr (&Srandom);
5636 defsubr (&Slength);
5637 defsubr (&Ssafe_length);
5638 defsubr (&Sstring_bytes);
5639 defsubr (&Sstring_equal);
5640 defsubr (&Scompare_strings);
5641 defsubr (&Sstring_lessp);
5642 defsubr (&Sappend);
5643 defsubr (&Sconcat);
5644 defsubr (&Svconcat);
5645 defsubr (&Scopy_sequence);
5646 defsubr (&Sstring_make_multibyte);
5647 defsubr (&Sstring_make_unibyte);
5648 defsubr (&Sstring_as_multibyte);
5649 defsubr (&Sstring_as_unibyte);
5650 defsubr (&Sstring_to_multibyte);
5651 defsubr (&Scopy_alist);
5652 defsubr (&Ssubstring);
5653 defsubr (&Ssubstring_no_properties);
5654 defsubr (&Snthcdr);
5655 defsubr (&Snth);
5656 defsubr (&Selt);
5657 defsubr (&Smember);
5658 defsubr (&Smemq);
5659 defsubr (&Sassq);
5660 defsubr (&Sassoc);
5661 defsubr (&Srassq);
5662 defsubr (&Srassoc);
5663 defsubr (&Sdelq);
5664 defsubr (&Sdelete);
5665 defsubr (&Snreverse);
5666 defsubr (&Sreverse);
5667 defsubr (&Ssort);
5668 defsubr (&Splist_get);
5669 defsubr (&Sget);
5670 defsubr (&Splist_put);
5671 defsubr (&Sput);
5672 defsubr (&Slax_plist_get);
5673 defsubr (&Slax_plist_put);
5674 defsubr (&Sequal);
5675 defsubr (&Sfillarray);
5676 defsubr (&Sclear_string);
5677 defsubr (&Schar_table_subtype);
5678 defsubr (&Schar_table_parent);
5679 defsubr (&Sset_char_table_parent);
5680 defsubr (&Schar_table_extra_slot);
5681 defsubr (&Sset_char_table_extra_slot);
5682 defsubr (&Schar_table_range);
5683 defsubr (&Sset_char_table_range);
5684 defsubr (&Sset_char_table_default);
5685 defsubr (&Soptimize_char_table);
5686 defsubr (&Smap_char_table);
5687 defsubr (&Snconc);
5688 defsubr (&Smapcar);
5689 defsubr (&Smapc);
5690 defsubr (&Smapconcat);
5691 defsubr (&Sy_or_n_p);
5692 defsubr (&Syes_or_no_p);
5693 defsubr (&Sload_average);
5694 defsubr (&Sfeaturep);
5695 defsubr (&Srequire);
5696 defsubr (&Sprovide);
5697 defsubr (&Splist_member);
5698 defsubr (&Swidget_put);
5699 defsubr (&Swidget_get);
5700 defsubr (&Swidget_apply);
5701 defsubr (&Sbase64_encode_region);
5702 defsubr (&Sbase64_decode_region);
5703 defsubr (&Sbase64_encode_string);
5704 defsubr (&Sbase64_decode_string);
5705 defsubr (&Smd5);
5706 defsubr (&Slocale_info);
5707 }
5708
5709
5710 void
5711 init_fns ()
5712 {
5713 Vweak_hash_tables = Qnil;
5714 }