]> code.delx.au - gnu-emacs/blob - src/editfns.c
Update FSF's address.
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985, 1986, 1987, 1989, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22
23 #include <config.h>
24 #include <sys/types.h>
25 #include <stdio.h>
26
27 #ifdef HAVE_PWD_H
28 #include <pwd.h>
29 #endif
30
31 #ifdef HAVE_UNISTD_H
32 #include <unistd.h>
33 #endif
34
35 #ifdef HAVE_SYS_UTSNAME_H
36 #include <sys/utsname.h>
37 #endif
38
39 /* systime.h includes <sys/time.h> which, on some systems, is required
40 for <sys/resource.h>; thus systime.h must be included before
41 <sys/resource.h> */
42 #include "systime.h"
43
44 #if defined HAVE_SYS_RESOURCE_H
45 #include <sys/resource.h>
46 #endif
47
48 #include <ctype.h>
49
50 #include "lisp.h"
51 #include "intervals.h"
52 #include "buffer.h"
53 #include "charset.h"
54 #include "coding.h"
55 #include "frame.h"
56 #include "window.h"
57
58 #ifdef STDC_HEADERS
59 #include <float.h>
60 #define MAX_10_EXP DBL_MAX_10_EXP
61 #else
62 #define MAX_10_EXP 310
63 #endif
64
65 #ifndef NULL
66 #define NULL 0
67 #endif
68
69 #ifndef USE_CRT_DLL
70 extern char **environ;
71 #endif
72
73 extern Lisp_Object make_time P_ ((time_t));
74 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
75 const struct tm *, int));
76 static int tm_diff P_ ((struct tm *, struct tm *));
77 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
78 static void update_buffer_properties P_ ((int, int));
79 static Lisp_Object region_limit P_ ((int));
80 int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
81 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
82 size_t, const struct tm *, int));
83 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
84 void (*) (Lisp_Object, int, int, int,
85 int, int),
86 int, int, Lisp_Object *));
87 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
88 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
89 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
90
91 #ifdef HAVE_INDEX
92 extern char *index P_ ((const char *, int));
93 #endif
94
95 Lisp_Object Vbuffer_access_fontify_functions;
96 Lisp_Object Qbuffer_access_fontify_functions;
97 Lisp_Object Vbuffer_access_fontified_property;
98
99 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
100
101 /* Non-nil means don't stop at field boundary in text motion commands. */
102
103 Lisp_Object Vinhibit_field_text_motion;
104
105 /* Some static data, and a function to initialize it for each run */
106
107 Lisp_Object Vsystem_name;
108 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
109 Lisp_Object Vuser_full_name; /* full name of current user */
110 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
111 Lisp_Object Voperating_system_release; /* Operating System Release */
112
113 /* Symbol for the text property used to mark fields. */
114
115 Lisp_Object Qfield;
116
117 /* A special value for Qfield properties. */
118
119 Lisp_Object Qboundary;
120
121
122 void
123 init_editfns ()
124 {
125 char *user_name;
126 register unsigned char *p;
127 struct passwd *pw; /* password entry for the current user */
128 Lisp_Object tem;
129
130 /* Set up system_name even when dumping. */
131 init_system_name ();
132
133 #ifndef CANNOT_DUMP
134 /* Don't bother with this on initial start when just dumping out */
135 if (!initialized)
136 return;
137 #endif /* not CANNOT_DUMP */
138
139 pw = (struct passwd *) getpwuid (getuid ());
140 #ifdef MSDOS
141 /* We let the real user name default to "root" because that's quite
142 accurate on MSDOG and because it lets Emacs find the init file.
143 (The DVX libraries override the Djgpp libraries here.) */
144 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
145 #else
146 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
147 #endif
148
149 /* Get the effective user name, by consulting environment variables,
150 or the effective uid if those are unset. */
151 user_name = (char *) getenv ("LOGNAME");
152 if (!user_name)
153 #ifdef WINDOWSNT
154 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
155 #else /* WINDOWSNT */
156 user_name = (char *) getenv ("USER");
157 #endif /* WINDOWSNT */
158 if (!user_name)
159 {
160 pw = (struct passwd *) getpwuid (geteuid ());
161 user_name = (char *) (pw ? pw->pw_name : "unknown");
162 }
163 Vuser_login_name = build_string (user_name);
164
165 /* If the user name claimed in the environment vars differs from
166 the real uid, use the claimed name to find the full name. */
167 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
168 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
169 : Vuser_login_name);
170
171 p = (unsigned char *) getenv ("NAME");
172 if (p)
173 Vuser_full_name = build_string (p);
174 else if (NILP (Vuser_full_name))
175 Vuser_full_name = build_string ("unknown");
176
177 #ifdef HAVE_SYS_UTSNAME_H
178 {
179 struct utsname uts;
180 uname (&uts);
181 Voperating_system_release = build_string (uts.release);
182 }
183 #else
184 Voperating_system_release = Qnil;
185 #endif
186 }
187 \f
188 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
189 doc: /* Convert arg CHAR to a string containing that character.
190 usage: (char-to-string CHAR) */)
191 (character)
192 Lisp_Object character;
193 {
194 int len;
195 unsigned char str[MAX_MULTIBYTE_LENGTH];
196
197 CHECK_NUMBER (character);
198
199 len = (SINGLE_BYTE_CHAR_P (XFASTINT (character))
200 ? (*str = (unsigned char)(XFASTINT (character)), 1)
201 : char_to_string (XFASTINT (character), str));
202 return make_string_from_bytes (str, 1, len);
203 }
204
205 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
206 doc: /* Convert arg STRING to a character, the first character of that string.
207 A multibyte character is handled correctly. */)
208 (string)
209 register Lisp_Object string;
210 {
211 register Lisp_Object val;
212 CHECK_STRING (string);
213 if (SCHARS (string))
214 {
215 if (STRING_MULTIBYTE (string))
216 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
217 else
218 XSETFASTINT (val, SREF (string, 0));
219 }
220 else
221 XSETFASTINT (val, 0);
222 return val;
223 }
224 \f
225 static Lisp_Object
226 buildmark (charpos, bytepos)
227 int charpos, bytepos;
228 {
229 register Lisp_Object mark;
230 mark = Fmake_marker ();
231 set_marker_both (mark, Qnil, charpos, bytepos);
232 return mark;
233 }
234
235 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
236 doc: /* Return value of point, as an integer.
237 Beginning of buffer is position (point-min). */)
238 ()
239 {
240 Lisp_Object temp;
241 XSETFASTINT (temp, PT);
242 return temp;
243 }
244
245 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
246 doc: /* Return value of point, as a marker object. */)
247 ()
248 {
249 return buildmark (PT, PT_BYTE);
250 }
251
252 int
253 clip_to_bounds (lower, num, upper)
254 int lower, num, upper;
255 {
256 if (num < lower)
257 return lower;
258 else if (num > upper)
259 return upper;
260 else
261 return num;
262 }
263
264 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
265 doc: /* Set point to POSITION, a number or marker.
266 Beginning of buffer is position (point-min), end is (point-max). */)
267 (position)
268 register Lisp_Object position;
269 {
270 int pos;
271
272 if (MARKERP (position)
273 && current_buffer == XMARKER (position)->buffer)
274 {
275 pos = marker_position (position);
276 if (pos < BEGV)
277 SET_PT_BOTH (BEGV, BEGV_BYTE);
278 else if (pos > ZV)
279 SET_PT_BOTH (ZV, ZV_BYTE);
280 else
281 SET_PT_BOTH (pos, marker_byte_position (position));
282
283 return position;
284 }
285
286 CHECK_NUMBER_COERCE_MARKER (position);
287
288 pos = clip_to_bounds (BEGV, XINT (position), ZV);
289 SET_PT (pos);
290 return position;
291 }
292
293
294 /* Return the start or end position of the region.
295 BEGINNINGP non-zero means return the start.
296 If there is no region active, signal an error. */
297
298 static Lisp_Object
299 region_limit (beginningp)
300 int beginningp;
301 {
302 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
303 Lisp_Object m;
304
305 if (!NILP (Vtransient_mark_mode)
306 && NILP (Vmark_even_if_inactive)
307 && NILP (current_buffer->mark_active))
308 Fsignal (Qmark_inactive, Qnil);
309
310 m = Fmarker_position (current_buffer->mark);
311 if (NILP (m))
312 error ("The mark is not set now, so there is no region");
313
314 if ((PT < XFASTINT (m)) == (beginningp != 0))
315 m = make_number (PT);
316 return m;
317 }
318
319 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
320 doc: /* Return position of beginning of region, as an integer. */)
321 ()
322 {
323 return region_limit (1);
324 }
325
326 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
327 doc: /* Return position of end of region, as an integer. */)
328 ()
329 {
330 return region_limit (0);
331 }
332
333 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
334 doc: /* Return this buffer's mark, as a marker object.
335 Watch out! Moving this marker changes the mark position.
336 If you set the marker not to point anywhere, the buffer will have no mark. */)
337 ()
338 {
339 return current_buffer->mark;
340 }
341
342 \f
343 /* Find all the overlays in the current buffer that touch position POS.
344 Return the number found, and store them in a vector in VEC
345 of length LEN. */
346
347 static int
348 overlays_around (pos, vec, len)
349 int pos;
350 Lisp_Object *vec;
351 int len;
352 {
353 Lisp_Object overlay, start, end;
354 struct Lisp_Overlay *tail;
355 int startpos, endpos;
356 int idx = 0;
357
358 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
359 {
360 XSETMISC (overlay, tail);
361
362 end = OVERLAY_END (overlay);
363 endpos = OVERLAY_POSITION (end);
364 if (endpos < pos)
365 break;
366 start = OVERLAY_START (overlay);
367 startpos = OVERLAY_POSITION (start);
368 if (startpos <= pos)
369 {
370 if (idx < len)
371 vec[idx] = overlay;
372 /* Keep counting overlays even if we can't return them all. */
373 idx++;
374 }
375 }
376
377 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
378 {
379 XSETMISC (overlay, tail);
380
381 start = OVERLAY_START (overlay);
382 startpos = OVERLAY_POSITION (start);
383 if (pos < startpos)
384 break;
385 end = OVERLAY_END (overlay);
386 endpos = OVERLAY_POSITION (end);
387 if (pos <= endpos)
388 {
389 if (idx < len)
390 vec[idx] = overlay;
391 idx++;
392 }
393 }
394
395 return idx;
396 }
397
398 /* Return the value of property PROP, in OBJECT at POSITION.
399 It's the value of PROP that a char inserted at POSITION would get.
400 OBJECT is optional and defaults to the current buffer.
401 If OBJECT is a buffer, then overlay properties are considered as well as
402 text properties.
403 If OBJECT is a window, then that window's buffer is used, but
404 window-specific overlays are considered only if they are associated
405 with OBJECT. */
406 Lisp_Object
407 get_pos_property (position, prop, object)
408 Lisp_Object position, object;
409 register Lisp_Object prop;
410 {
411 CHECK_NUMBER_COERCE_MARKER (position);
412
413 if (NILP (object))
414 XSETBUFFER (object, current_buffer);
415 else if (WINDOWP (object))
416 object = XWINDOW (object)->buffer;
417
418 if (!BUFFERP (object))
419 /* pos-property only makes sense in buffers right now, since strings
420 have no overlays and no notion of insertion for which stickiness
421 could be obeyed. */
422 return Fget_text_property (position, prop, object);
423 else
424 {
425 int posn = XINT (position);
426 int noverlays;
427 Lisp_Object *overlay_vec, tem;
428 struct buffer *obuf = current_buffer;
429
430 set_buffer_temp (XBUFFER (object));
431
432 /* First try with room for 40 overlays. */
433 noverlays = 40;
434 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
435 noverlays = overlays_around (posn, overlay_vec, noverlays);
436
437 /* If there are more than 40,
438 make enough space for all, and try again. */
439 if (noverlays > 40)
440 {
441 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
442 noverlays = overlays_around (posn, overlay_vec, noverlays);
443 }
444 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
445
446 set_buffer_temp (obuf);
447
448 /* Now check the overlays in order of decreasing priority. */
449 while (--noverlays >= 0)
450 {
451 Lisp_Object ol = overlay_vec[noverlays];
452 tem = Foverlay_get (ol, prop);
453 if (!NILP (tem))
454 {
455 /* Check the overlay is indeed active at point. */
456 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
457 if ((OVERLAY_POSITION (start) == posn
458 && XMARKER (start)->insertion_type == 1)
459 || (OVERLAY_POSITION (finish) == posn
460 && XMARKER (finish)->insertion_type == 0))
461 ; /* The overlay will not cover a char inserted at point. */
462 else
463 {
464 return tem;
465 }
466 }
467 }
468
469 { /* Now check the text-properties. */
470 int stickiness = text_property_stickiness (prop, position, object);
471 if (stickiness > 0)
472 return Fget_text_property (position, prop, object);
473 else if (stickiness < 0
474 && XINT (position) > BUF_BEGV (XBUFFER (object)))
475 return Fget_text_property (make_number (XINT (position) - 1),
476 prop, object);
477 else
478 return Qnil;
479 }
480 }
481 }
482
483 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
484 the value of point is used instead. If BEG or END null,
485 means don't store the beginning or end of the field.
486
487 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
488 results; they do not effect boundary behavior.
489
490 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
491 position of a field, then the beginning of the previous field is
492 returned instead of the beginning of POS's field (since the end of a
493 field is actually also the beginning of the next input field, this
494 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
495 true case, if two fields are separated by a field with the special
496 value `boundary', and POS lies within it, then the two separated
497 fields are considered to be adjacent, and POS between them, when
498 finding the beginning and ending of the "merged" field.
499
500 Either BEG or END may be 0, in which case the corresponding value
501 is not stored. */
502
503 static void
504 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
505 Lisp_Object pos;
506 Lisp_Object merge_at_boundary;
507 Lisp_Object beg_limit, end_limit;
508 int *beg, *end;
509 {
510 /* Fields right before and after the point. */
511 Lisp_Object before_field, after_field;
512 /* 1 if POS counts as the start of a field. */
513 int at_field_start = 0;
514 /* 1 if POS counts as the end of a field. */
515 int at_field_end = 0;
516
517 if (NILP (pos))
518 XSETFASTINT (pos, PT);
519 else
520 CHECK_NUMBER_COERCE_MARKER (pos);
521
522 after_field
523 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
524 before_field
525 = (XFASTINT (pos) > BEGV
526 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
527 Qfield, Qnil, NULL)
528 : Qnil);
529
530 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
531 and POS is at beginning of a field, which can also be interpreted
532 as the end of the previous field. Note that the case where if
533 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
534 more natural one; then we avoid treating the beginning of a field
535 specially. */
536 if (NILP (merge_at_boundary))
537 {
538 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
539 if (!EQ (field, after_field))
540 at_field_end = 1;
541 if (!EQ (field, before_field))
542 at_field_start = 1;
543 if (NILP (field) && at_field_start && at_field_end)
544 /* If an inserted char would have a nil field while the surrounding
545 text is non-nil, we're probably not looking at a
546 zero-length field, but instead at a non-nil field that's
547 not intended for editing (such as comint's prompts). */
548 at_field_end = at_field_start = 0;
549 }
550
551 /* Note about special `boundary' fields:
552
553 Consider the case where the point (`.') is between the fields `x' and `y':
554
555 xxxx.yyyy
556
557 In this situation, if merge_at_boundary is true, we consider the
558 `x' and `y' fields as forming one big merged field, and so the end
559 of the field is the end of `y'.
560
561 However, if `x' and `y' are separated by a special `boundary' field
562 (a field with a `field' char-property of 'boundary), then we ignore
563 this special field when merging adjacent fields. Here's the same
564 situation, but with a `boundary' field between the `x' and `y' fields:
565
566 xxx.BBBByyyy
567
568 Here, if point is at the end of `x', the beginning of `y', or
569 anywhere in-between (within the `boundary' field), we merge all
570 three fields and consider the beginning as being the beginning of
571 the `x' field, and the end as being the end of the `y' field. */
572
573 if (beg)
574 {
575 if (at_field_start)
576 /* POS is at the edge of a field, and we should consider it as
577 the beginning of the following field. */
578 *beg = XFASTINT (pos);
579 else
580 /* Find the previous field boundary. */
581 {
582 Lisp_Object p = pos;
583 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
584 /* Skip a `boundary' field. */
585 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
586 beg_limit);
587
588 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
589 beg_limit);
590 *beg = NILP (p) ? BEGV : XFASTINT (p);
591 }
592 }
593
594 if (end)
595 {
596 if (at_field_end)
597 /* POS is at the edge of a field, and we should consider it as
598 the end of the previous field. */
599 *end = XFASTINT (pos);
600 else
601 /* Find the next field boundary. */
602 {
603 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
604 /* Skip a `boundary' field. */
605 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
606 end_limit);
607
608 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
609 end_limit);
610 *end = NILP (pos) ? ZV : XFASTINT (pos);
611 }
612 }
613 }
614
615 \f
616 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
617 doc: /* Delete the field surrounding POS.
618 A field is a region of text with the same `field' property.
619 If POS is nil, the value of point is used for POS. */)
620 (pos)
621 Lisp_Object pos;
622 {
623 int beg, end;
624 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
625 if (beg != end)
626 del_range (beg, end);
627 return Qnil;
628 }
629
630 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
631 doc: /* Return the contents of the field surrounding POS as a string.
632 A field is a region of text with the same `field' property.
633 If POS is nil, the value of point is used for POS. */)
634 (pos)
635 Lisp_Object pos;
636 {
637 int beg, end;
638 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
639 return make_buffer_string (beg, end, 1);
640 }
641
642 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
643 doc: /* Return the contents of the field around POS, without text-properties.
644 A field is a region of text with the same `field' property.
645 If POS is nil, the value of point is used for POS. */)
646 (pos)
647 Lisp_Object pos;
648 {
649 int beg, end;
650 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
651 return make_buffer_string (beg, end, 0);
652 }
653
654 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
655 doc: /* Return the beginning of the field surrounding POS.
656 A field is a region of text with the same `field' property.
657 If POS is nil, the value of point is used for POS.
658 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
659 field, then the beginning of the *previous* field is returned.
660 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
661 is before LIMIT, then LIMIT will be returned instead. */)
662 (pos, escape_from_edge, limit)
663 Lisp_Object pos, escape_from_edge, limit;
664 {
665 int beg;
666 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
667 return make_number (beg);
668 }
669
670 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
671 doc: /* Return the end of the field surrounding POS.
672 A field is a region of text with the same `field' property.
673 If POS is nil, the value of point is used for POS.
674 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
675 then the end of the *following* field is returned.
676 If LIMIT is non-nil, it is a buffer position; if the end of the field
677 is after LIMIT, then LIMIT will be returned instead. */)
678 (pos, escape_from_edge, limit)
679 Lisp_Object pos, escape_from_edge, limit;
680 {
681 int end;
682 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
683 return make_number (end);
684 }
685
686 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
687 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
688
689 A field is a region of text with the same `field' property.
690 If NEW-POS is nil, then the current point is used instead, and set to the
691 constrained position if that is different.
692
693 If OLD-POS is at the boundary of two fields, then the allowable
694 positions for NEW-POS depends on the value of the optional argument
695 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
696 constrained to the field that has the same `field' char-property
697 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
698 is non-nil, NEW-POS is constrained to the union of the two adjacent
699 fields. Additionally, if two fields are separated by another field with
700 the special value `boundary', then any point within this special field is
701 also considered to be `on the boundary'.
702
703 If the optional argument ONLY-IN-LINE is non-nil and constraining
704 NEW-POS would move it to a different line, NEW-POS is returned
705 unconstrained. This useful for commands that move by line, like
706 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
707 only in the case where they can still move to the right line.
708
709 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
710 a non-nil property of that name, then any field boundaries are ignored.
711
712 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
713 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
714 Lisp_Object new_pos, old_pos;
715 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
716 {
717 /* If non-zero, then the original point, before re-positioning. */
718 int orig_point = 0;
719
720 if (NILP (new_pos))
721 /* Use the current point, and afterwards, set it. */
722 {
723 orig_point = PT;
724 XSETFASTINT (new_pos, PT);
725 }
726
727 if (NILP (Vinhibit_field_text_motion)
728 && !EQ (new_pos, old_pos)
729 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
730 || !NILP (Fget_char_property (old_pos, Qfield, Qnil)))
731 && (NILP (inhibit_capture_property)
732 || NILP (Fget_char_property(old_pos, inhibit_capture_property, Qnil))))
733 /* NEW_POS is not within the same field as OLD_POS; try to
734 move NEW_POS so that it is. */
735 {
736 int fwd, shortage;
737 Lisp_Object field_bound;
738
739 CHECK_NUMBER_COERCE_MARKER (new_pos);
740 CHECK_NUMBER_COERCE_MARKER (old_pos);
741
742 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
743
744 if (fwd)
745 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
746 else
747 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
748
749 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
750 other side of NEW_POS, which would mean that NEW_POS is
751 already acceptable, and it's not necessary to constrain it
752 to FIELD_BOUND. */
753 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
754 /* NEW_POS should be constrained, but only if either
755 ONLY_IN_LINE is nil (in which case any constraint is OK),
756 or NEW_POS and FIELD_BOUND are on the same line (in which
757 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
758 && (NILP (only_in_line)
759 /* This is the ONLY_IN_LINE case, check that NEW_POS and
760 FIELD_BOUND are on the same line by seeing whether
761 there's an intervening newline or not. */
762 || (scan_buffer ('\n',
763 XFASTINT (new_pos), XFASTINT (field_bound),
764 fwd ? -1 : 1, &shortage, 1),
765 shortage != 0)))
766 /* Constrain NEW_POS to FIELD_BOUND. */
767 new_pos = field_bound;
768
769 if (orig_point && XFASTINT (new_pos) != orig_point)
770 /* The NEW_POS argument was originally nil, so automatically set PT. */
771 SET_PT (XFASTINT (new_pos));
772 }
773
774 return new_pos;
775 }
776
777 \f
778 DEFUN ("line-beginning-position",
779 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
780 doc: /* Return the character position of the first character on the current line.
781 With argument N not nil or 1, move forward N - 1 lines first.
782 If scan reaches end of buffer, return that position.
783
784 The scan does not cross a field boundary unless doing so would move
785 beyond there to a different line; if N is nil or 1, and scan starts at a
786 field boundary, the scan stops as soon as it starts. To ignore field
787 boundaries bind `inhibit-field-text-motion' to t.
788
789 This function does not move point. */)
790 (n)
791 Lisp_Object n;
792 {
793 int orig, orig_byte, end;
794
795 if (NILP (n))
796 XSETFASTINT (n, 1);
797 else
798 CHECK_NUMBER (n);
799
800 orig = PT;
801 orig_byte = PT_BYTE;
802 Fforward_line (make_number (XINT (n) - 1));
803 end = PT;
804
805 SET_PT_BOTH (orig, orig_byte);
806
807 /* Return END constrained to the current input field. */
808 return Fconstrain_to_field (make_number (end), make_number (orig),
809 XINT (n) != 1 ? Qt : Qnil,
810 Qt, Qnil);
811 }
812
813 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
814 doc: /* Return the character position of the last character on the current line.
815 With argument N not nil or 1, move forward N - 1 lines first.
816 If scan reaches end of buffer, return that position.
817
818 The scan does not cross a field boundary unless doing so would move
819 beyond there to a different line; if N is nil or 1, and scan starts at a
820 field boundary, the scan stops as soon as it starts. To ignore field
821 boundaries bind `inhibit-field-text-motion' to t.
822
823 This function does not move point. */)
824 (n)
825 Lisp_Object n;
826 {
827 int end_pos;
828 int orig = PT;
829
830 if (NILP (n))
831 XSETFASTINT (n, 1);
832 else
833 CHECK_NUMBER (n);
834
835 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
836
837 /* Return END_POS constrained to the current input field. */
838 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
839 Qnil, Qt, Qnil);
840 }
841
842 \f
843 Lisp_Object
844 save_excursion_save ()
845 {
846 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
847 == current_buffer);
848
849 return Fcons (Fpoint_marker (),
850 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
851 Fcons (visible ? Qt : Qnil,
852 Fcons (current_buffer->mark_active,
853 selected_window))));
854 }
855
856 Lisp_Object
857 save_excursion_restore (info)
858 Lisp_Object info;
859 {
860 Lisp_Object tem, tem1, omark, nmark;
861 struct gcpro gcpro1, gcpro2, gcpro3;
862 int visible_p;
863
864 tem = Fmarker_buffer (XCAR (info));
865 /* If buffer being returned to is now deleted, avoid error */
866 /* Otherwise could get error here while unwinding to top level
867 and crash */
868 /* In that case, Fmarker_buffer returns nil now. */
869 if (NILP (tem))
870 return Qnil;
871
872 omark = nmark = Qnil;
873 GCPRO3 (info, omark, nmark);
874
875 Fset_buffer (tem);
876
877 /* Point marker. */
878 tem = XCAR (info);
879 Fgoto_char (tem);
880 unchain_marker (XMARKER (tem));
881
882 /* Mark marker. */
883 info = XCDR (info);
884 tem = XCAR (info);
885 omark = Fmarker_position (current_buffer->mark);
886 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
887 nmark = Fmarker_position (tem);
888 unchain_marker (XMARKER (tem));
889
890 /* visible */
891 info = XCDR (info);
892 visible_p = !NILP (XCAR (info));
893
894 #if 0 /* We used to make the current buffer visible in the selected window
895 if that was true previously. That avoids some anomalies.
896 But it creates others, and it wasn't documented, and it is simpler
897 and cleaner never to alter the window/buffer connections. */
898 tem1 = Fcar (tem);
899 if (!NILP (tem1)
900 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
901 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
902 #endif /* 0 */
903
904 /* Mark active */
905 info = XCDR (info);
906 tem = XCAR (info);
907 tem1 = current_buffer->mark_active;
908 current_buffer->mark_active = tem;
909
910 if (!NILP (Vrun_hooks))
911 {
912 /* If mark is active now, and either was not active
913 or was at a different place, run the activate hook. */
914 if (! NILP (current_buffer->mark_active))
915 {
916 if (! EQ (omark, nmark))
917 call1 (Vrun_hooks, intern ("activate-mark-hook"));
918 }
919 /* If mark has ceased to be active, run deactivate hook. */
920 else if (! NILP (tem1))
921 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
922 }
923
924 /* If buffer was visible in a window, and a different window was
925 selected, and the old selected window is still showing this
926 buffer, restore point in that window. */
927 tem = XCDR (info);
928 if (visible_p
929 && !EQ (tem, selected_window)
930 && (tem1 = XWINDOW (tem)->buffer,
931 (/* Window is live... */
932 BUFFERP (tem1)
933 /* ...and it shows the current buffer. */
934 && XBUFFER (tem1) == current_buffer)))
935 Fset_window_point (tem, make_number (PT));
936
937 UNGCPRO;
938 return Qnil;
939 }
940
941 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
942 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
943 Executes BODY just like `progn'.
944 The values of point, mark and the current buffer are restored
945 even in case of abnormal exit (throw or error).
946 The state of activation of the mark is also restored.
947
948 This construct does not save `deactivate-mark', and therefore
949 functions that change the buffer will still cause deactivation
950 of the mark at the end of the command. To prevent that, bind
951 `deactivate-mark' with `let'.
952
953 usage: (save-excursion &rest BODY) */)
954 (args)
955 Lisp_Object args;
956 {
957 register Lisp_Object val;
958 int count = SPECPDL_INDEX ();
959
960 record_unwind_protect (save_excursion_restore, save_excursion_save ());
961
962 val = Fprogn (args);
963 return unbind_to (count, val);
964 }
965
966 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
967 doc: /* Save the current buffer; execute BODY; restore the current buffer.
968 Executes BODY just like `progn'.
969 usage: (save-current-buffer &rest BODY) */)
970 (args)
971 Lisp_Object args;
972 {
973 Lisp_Object val;
974 int count = SPECPDL_INDEX ();
975
976 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
977
978 val = Fprogn (args);
979 return unbind_to (count, val);
980 }
981 \f
982 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
983 doc: /* Return the number of characters in the current buffer.
984 If BUFFER, return the number of characters in that buffer instead. */)
985 (buffer)
986 Lisp_Object buffer;
987 {
988 if (NILP (buffer))
989 return make_number (Z - BEG);
990 else
991 {
992 CHECK_BUFFER (buffer);
993 return make_number (BUF_Z (XBUFFER (buffer))
994 - BUF_BEG (XBUFFER (buffer)));
995 }
996 }
997
998 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
999 doc: /* Return the minimum permissible value of point in the current buffer.
1000 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1001 ()
1002 {
1003 Lisp_Object temp;
1004 XSETFASTINT (temp, BEGV);
1005 return temp;
1006 }
1007
1008 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1009 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1010 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1011 ()
1012 {
1013 return buildmark (BEGV, BEGV_BYTE);
1014 }
1015
1016 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1017 doc: /* Return the maximum permissible value of point in the current buffer.
1018 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1019 is in effect, in which case it is less. */)
1020 ()
1021 {
1022 Lisp_Object temp;
1023 XSETFASTINT (temp, ZV);
1024 return temp;
1025 }
1026
1027 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1028 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1029 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1030 is in effect, in which case it is less. */)
1031 ()
1032 {
1033 return buildmark (ZV, ZV_BYTE);
1034 }
1035
1036 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1037 doc: /* Return the position of the gap, in the current buffer.
1038 See also `gap-size'. */)
1039 ()
1040 {
1041 Lisp_Object temp;
1042 XSETFASTINT (temp, GPT);
1043 return temp;
1044 }
1045
1046 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1047 doc: /* Return the size of the current buffer's gap.
1048 See also `gap-position'. */)
1049 ()
1050 {
1051 Lisp_Object temp;
1052 XSETFASTINT (temp, GAP_SIZE);
1053 return temp;
1054 }
1055
1056 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1057 doc: /* Return the byte position for character position POSITION.
1058 If POSITION is out of range, the value is nil. */)
1059 (position)
1060 Lisp_Object position;
1061 {
1062 CHECK_NUMBER_COERCE_MARKER (position);
1063 if (XINT (position) < BEG || XINT (position) > Z)
1064 return Qnil;
1065 return make_number (CHAR_TO_BYTE (XINT (position)));
1066 }
1067
1068 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1069 doc: /* Return the character position for byte position BYTEPOS.
1070 If BYTEPOS is out of range, the value is nil. */)
1071 (bytepos)
1072 Lisp_Object bytepos;
1073 {
1074 CHECK_NUMBER (bytepos);
1075 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1076 return Qnil;
1077 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1078 }
1079 \f
1080 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1081 doc: /* Return the character following point, as a number.
1082 At the end of the buffer or accessible region, return 0. */)
1083 ()
1084 {
1085 Lisp_Object temp;
1086 if (PT >= ZV)
1087 XSETFASTINT (temp, 0);
1088 else
1089 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1090 return temp;
1091 }
1092
1093 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1094 doc: /* Return the character preceding point, as a number.
1095 At the beginning of the buffer or accessible region, return 0. */)
1096 ()
1097 {
1098 Lisp_Object temp;
1099 if (PT <= BEGV)
1100 XSETFASTINT (temp, 0);
1101 else if (!NILP (current_buffer->enable_multibyte_characters))
1102 {
1103 int pos = PT_BYTE;
1104 DEC_POS (pos);
1105 XSETFASTINT (temp, FETCH_CHAR (pos));
1106 }
1107 else
1108 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1109 return temp;
1110 }
1111
1112 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1113 doc: /* Return t if point is at the beginning of the buffer.
1114 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1115 ()
1116 {
1117 if (PT == BEGV)
1118 return Qt;
1119 return Qnil;
1120 }
1121
1122 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1123 doc: /* Return t if point is at the end of the buffer.
1124 If the buffer is narrowed, this means the end of the narrowed part. */)
1125 ()
1126 {
1127 if (PT == ZV)
1128 return Qt;
1129 return Qnil;
1130 }
1131
1132 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1133 doc: /* Return t if point is at the beginning of a line. */)
1134 ()
1135 {
1136 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1137 return Qt;
1138 return Qnil;
1139 }
1140
1141 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1142 doc: /* Return t if point is at the end of a line.
1143 `End of a line' includes point being at the end of the buffer. */)
1144 ()
1145 {
1146 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1147 return Qt;
1148 return Qnil;
1149 }
1150
1151 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1152 doc: /* Return character in current buffer at position POS.
1153 POS is an integer or a marker and defaults to point.
1154 If POS is out of range, the value is nil. */)
1155 (pos)
1156 Lisp_Object pos;
1157 {
1158 register int pos_byte;
1159
1160 if (NILP (pos))
1161 {
1162 pos_byte = PT_BYTE;
1163 XSETFASTINT (pos, PT);
1164 }
1165
1166 if (MARKERP (pos))
1167 {
1168 pos_byte = marker_byte_position (pos);
1169 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1170 return Qnil;
1171 }
1172 else
1173 {
1174 CHECK_NUMBER_COERCE_MARKER (pos);
1175 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1176 return Qnil;
1177
1178 pos_byte = CHAR_TO_BYTE (XINT (pos));
1179 }
1180
1181 return make_number (FETCH_CHAR (pos_byte));
1182 }
1183
1184 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1185 doc: /* Return character in current buffer preceding position POS.
1186 POS is an integer or a marker and defaults to point.
1187 If POS is out of range, the value is nil. */)
1188 (pos)
1189 Lisp_Object pos;
1190 {
1191 register Lisp_Object val;
1192 register int pos_byte;
1193
1194 if (NILP (pos))
1195 {
1196 pos_byte = PT_BYTE;
1197 XSETFASTINT (pos, PT);
1198 }
1199
1200 if (MARKERP (pos))
1201 {
1202 pos_byte = marker_byte_position (pos);
1203
1204 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1205 return Qnil;
1206 }
1207 else
1208 {
1209 CHECK_NUMBER_COERCE_MARKER (pos);
1210
1211 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1212 return Qnil;
1213
1214 pos_byte = CHAR_TO_BYTE (XINT (pos));
1215 }
1216
1217 if (!NILP (current_buffer->enable_multibyte_characters))
1218 {
1219 DEC_POS (pos_byte);
1220 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1221 }
1222 else
1223 {
1224 pos_byte--;
1225 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1226 }
1227 return val;
1228 }
1229 \f
1230 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1231 doc: /* Return the name under which the user logged in, as a string.
1232 This is based on the effective uid, not the real uid.
1233 Also, if the environment variables LOGNAME or USER are set,
1234 that determines the value of this function.
1235
1236 If optional argument UID is an integer, return the login name of the user
1237 with that uid, or nil if there is no such user. */)
1238 (uid)
1239 Lisp_Object uid;
1240 {
1241 struct passwd *pw;
1242
1243 /* Set up the user name info if we didn't do it before.
1244 (That can happen if Emacs is dumpable
1245 but you decide to run `temacs -l loadup' and not dump. */
1246 if (INTEGERP (Vuser_login_name))
1247 init_editfns ();
1248
1249 if (NILP (uid))
1250 return Vuser_login_name;
1251
1252 CHECK_NUMBER (uid);
1253 pw = (struct passwd *) getpwuid (XINT (uid));
1254 return (pw ? build_string (pw->pw_name) : Qnil);
1255 }
1256
1257 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1258 0, 0, 0,
1259 doc: /* Return the name of the user's real uid, as a string.
1260 This ignores the environment variables LOGNAME and USER, so it differs from
1261 `user-login-name' when running under `su'. */)
1262 ()
1263 {
1264 /* Set up the user name info if we didn't do it before.
1265 (That can happen if Emacs is dumpable
1266 but you decide to run `temacs -l loadup' and not dump. */
1267 if (INTEGERP (Vuser_login_name))
1268 init_editfns ();
1269 return Vuser_real_login_name;
1270 }
1271
1272 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1273 doc: /* Return the effective uid of Emacs.
1274 Value is an integer or float, depending on the value. */)
1275 ()
1276 {
1277 return make_fixnum_or_float (geteuid ());
1278 }
1279
1280 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1281 doc: /* Return the real uid of Emacs.
1282 Value is an integer or float, depending on the value. */)
1283 ()
1284 {
1285 return make_fixnum_or_float (getuid ());
1286 }
1287
1288 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1289 doc: /* Return the full name of the user logged in, as a string.
1290 If the full name corresponding to Emacs's userid is not known,
1291 return "unknown".
1292
1293 If optional argument UID is an integer or float, return the full name
1294 of the user with that uid, or nil if there is no such user.
1295 If UID is a string, return the full name of the user with that login
1296 name, or nil if there is no such user. */)
1297 (uid)
1298 Lisp_Object uid;
1299 {
1300 struct passwd *pw;
1301 register unsigned char *p, *q;
1302 Lisp_Object full;
1303
1304 if (NILP (uid))
1305 return Vuser_full_name;
1306 else if (NUMBERP (uid))
1307 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1308 else if (STRINGP (uid))
1309 pw = (struct passwd *) getpwnam (SDATA (uid));
1310 else
1311 error ("Invalid UID specification");
1312
1313 if (!pw)
1314 return Qnil;
1315
1316 p = (unsigned char *) USER_FULL_NAME;
1317 /* Chop off everything after the first comma. */
1318 q = (unsigned char *) index (p, ',');
1319 full = make_string (p, q ? q - p : strlen (p));
1320
1321 #ifdef AMPERSAND_FULL_NAME
1322 p = SDATA (full);
1323 q = (unsigned char *) index (p, '&');
1324 /* Substitute the login name for the &, upcasing the first character. */
1325 if (q)
1326 {
1327 register unsigned char *r;
1328 Lisp_Object login;
1329
1330 login = Fuser_login_name (make_number (pw->pw_uid));
1331 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1332 bcopy (p, r, q - p);
1333 r[q - p] = 0;
1334 strcat (r, SDATA (login));
1335 r[q - p] = UPCASE (r[q - p]);
1336 strcat (r, q + 1);
1337 full = build_string (r);
1338 }
1339 #endif /* AMPERSAND_FULL_NAME */
1340
1341 return full;
1342 }
1343
1344 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1345 doc: /* Return the name of the machine you are running on, as a string. */)
1346 ()
1347 {
1348 return Vsystem_name;
1349 }
1350
1351 /* For the benefit of callers who don't want to include lisp.h */
1352
1353 char *
1354 get_system_name ()
1355 {
1356 if (STRINGP (Vsystem_name))
1357 return (char *) SDATA (Vsystem_name);
1358 else
1359 return "";
1360 }
1361
1362 char *
1363 get_operating_system_release()
1364 {
1365 if (STRINGP (Voperating_system_release))
1366 return (char *) SDATA (Voperating_system_release);
1367 else
1368 return "";
1369 }
1370
1371 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1372 doc: /* Return the process ID of Emacs, as an integer. */)
1373 ()
1374 {
1375 return make_number (getpid ());
1376 }
1377
1378 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1379 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1380 The time is returned as a list of three integers. The first has the
1381 most significant 16 bits of the seconds, while the second has the
1382 least significant 16 bits. The third integer gives the microsecond
1383 count.
1384
1385 The microsecond count is zero on systems that do not provide
1386 resolution finer than a second. */)
1387 ()
1388 {
1389 EMACS_TIME t;
1390 Lisp_Object result[3];
1391
1392 EMACS_GET_TIME (t);
1393 XSETINT (result[0], (EMACS_SECS (t) >> 16) & 0xffff);
1394 XSETINT (result[1], (EMACS_SECS (t) >> 0) & 0xffff);
1395 XSETINT (result[2], EMACS_USECS (t));
1396
1397 return Flist (3, result);
1398 }
1399
1400 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1401 0, 0, 0,
1402 doc: /* Return the current run time used by Emacs.
1403 The time is returned as a list of three integers. The first has the
1404 most significant 16 bits of the seconds, while the second has the
1405 least significant 16 bits. The third integer gives the microsecond
1406 count.
1407
1408 On systems that can't determine the run time, get-internal-run-time
1409 does the same thing as current-time. The microsecond count is zero on
1410 systems that do not provide resolution finer than a second. */)
1411 ()
1412 {
1413 #ifdef HAVE_GETRUSAGE
1414 struct rusage usage;
1415 Lisp_Object result[3];
1416 int secs, usecs;
1417
1418 if (getrusage (RUSAGE_SELF, &usage) < 0)
1419 /* This shouldn't happen. What action is appropriate? */
1420 Fsignal (Qerror, Qnil);
1421
1422 /* Sum up user time and system time. */
1423 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1424 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1425 if (usecs >= 1000000)
1426 {
1427 usecs -= 1000000;
1428 secs++;
1429 }
1430
1431 XSETINT (result[0], (secs >> 16) & 0xffff);
1432 XSETINT (result[1], (secs >> 0) & 0xffff);
1433 XSETINT (result[2], usecs);
1434
1435 return Flist (3, result);
1436 #else
1437 return Fcurrent_time ();
1438 #endif
1439 }
1440 \f
1441
1442 int
1443 lisp_time_argument (specified_time, result, usec)
1444 Lisp_Object specified_time;
1445 time_t *result;
1446 int *usec;
1447 {
1448 if (NILP (specified_time))
1449 {
1450 if (usec)
1451 {
1452 EMACS_TIME t;
1453
1454 EMACS_GET_TIME (t);
1455 *usec = EMACS_USECS (t);
1456 *result = EMACS_SECS (t);
1457 return 1;
1458 }
1459 else
1460 return time (result) != -1;
1461 }
1462 else
1463 {
1464 Lisp_Object high, low;
1465 high = Fcar (specified_time);
1466 CHECK_NUMBER (high);
1467 low = Fcdr (specified_time);
1468 if (CONSP (low))
1469 {
1470 if (usec)
1471 {
1472 Lisp_Object usec_l = Fcdr (low);
1473 if (CONSP (usec_l))
1474 usec_l = Fcar (usec_l);
1475 if (NILP (usec_l))
1476 *usec = 0;
1477 else
1478 {
1479 CHECK_NUMBER (usec_l);
1480 *usec = XINT (usec_l);
1481 }
1482 }
1483 low = Fcar (low);
1484 }
1485 else if (usec)
1486 *usec = 0;
1487 CHECK_NUMBER (low);
1488 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1489 return *result >> 16 == XINT (high);
1490 }
1491 }
1492
1493 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1494 doc: /* Return the current time, as a float number of seconds since the epoch.
1495 If SPECIFIED-TIME is given, it is the time to convert to float
1496 instead of the current time. The argument should have the form
1497 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1498 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1499 have the form (HIGH . LOW), but this is considered obsolete.
1500
1501 WARNING: Since the result is floating point, it may not be exact.
1502 Do not use this function if precise time stamps are required. */)
1503 (specified_time)
1504 Lisp_Object specified_time;
1505 {
1506 time_t sec;
1507 int usec;
1508
1509 if (! lisp_time_argument (specified_time, &sec, &usec))
1510 error ("Invalid time specification");
1511
1512 return make_float ((sec * 1e6 + usec) / 1e6);
1513 }
1514
1515 /* Write information into buffer S of size MAXSIZE, according to the
1516 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1517 Default to Universal Time if UT is nonzero, local time otherwise.
1518 Return the number of bytes written, not including the terminating
1519 '\0'. If S is NULL, nothing will be written anywhere; so to
1520 determine how many bytes would be written, use NULL for S and
1521 ((size_t) -1) for MAXSIZE.
1522
1523 This function behaves like emacs_strftimeu, except it allows null
1524 bytes in FORMAT. */
1525 static size_t
1526 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1527 char *s;
1528 size_t maxsize;
1529 const char *format;
1530 size_t format_len;
1531 const struct tm *tp;
1532 int ut;
1533 {
1534 size_t total = 0;
1535
1536 /* Loop through all the null-terminated strings in the format
1537 argument. Normally there's just one null-terminated string, but
1538 there can be arbitrarily many, concatenated together, if the
1539 format contains '\0' bytes. emacs_strftimeu stops at the first
1540 '\0' byte so we must invoke it separately for each such string. */
1541 for (;;)
1542 {
1543 size_t len;
1544 size_t result;
1545
1546 if (s)
1547 s[0] = '\1';
1548
1549 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1550
1551 if (s)
1552 {
1553 if (result == 0 && s[0] != '\0')
1554 return 0;
1555 s += result + 1;
1556 }
1557
1558 maxsize -= result + 1;
1559 total += result;
1560 len = strlen (format);
1561 if (len == format_len)
1562 return total;
1563 total++;
1564 format += len + 1;
1565 format_len -= len + 1;
1566 }
1567 }
1568
1569 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1570 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1571 TIME is specified as (HIGH LOW . IGNORED), as returned by
1572 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1573 is also still accepted.
1574 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1575 as Universal Time; nil means describe TIME in the local time zone.
1576 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1577 by text that describes the specified date and time in TIME:
1578
1579 %Y is the year, %y within the century, %C the century.
1580 %G is the year corresponding to the ISO week, %g within the century.
1581 %m is the numeric month.
1582 %b and %h are the locale's abbreviated month name, %B the full name.
1583 %d is the day of the month, zero-padded, %e is blank-padded.
1584 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1585 %a is the locale's abbreviated name of the day of week, %A the full name.
1586 %U is the week number starting on Sunday, %W starting on Monday,
1587 %V according to ISO 8601.
1588 %j is the day of the year.
1589
1590 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1591 only blank-padded, %l is like %I blank-padded.
1592 %p is the locale's equivalent of either AM or PM.
1593 %M is the minute.
1594 %S is the second.
1595 %Z is the time zone name, %z is the numeric form.
1596 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1597
1598 %c is the locale's date and time format.
1599 %x is the locale's "preferred" date format.
1600 %D is like "%m/%d/%y".
1601
1602 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1603 %X is the locale's "preferred" time format.
1604
1605 Finally, %n is a newline, %t is a tab, %% is a literal %.
1606
1607 Certain flags and modifiers are available with some format controls.
1608 The flags are `_', `-', `^' and `#'. For certain characters X,
1609 %_X is like %X, but padded with blanks; %-X is like %X,
1610 but without padding. %^X is like %X, but with all textual
1611 characters up-cased; %#X is like %X, but with letter-case of
1612 all textual characters reversed.
1613 %NX (where N stands for an integer) is like %X,
1614 but takes up at least N (a number) positions.
1615 The modifiers are `E' and `O'. For certain characters X,
1616 %EX is a locale's alternative version of %X;
1617 %OX is like %X, but uses the locale's number symbols.
1618
1619 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1620 (format_string, time, universal)
1621 Lisp_Object format_string, time, universal;
1622 {
1623 time_t value;
1624 int size;
1625 struct tm *tm;
1626 int ut = ! NILP (universal);
1627
1628 CHECK_STRING (format_string);
1629
1630 if (! lisp_time_argument (time, &value, NULL))
1631 error ("Invalid time specification");
1632
1633 format_string = code_convert_string_norecord (format_string,
1634 Vlocale_coding_system, 1);
1635
1636 /* This is probably enough. */
1637 size = SBYTES (format_string) * 6 + 50;
1638
1639 tm = ut ? gmtime (&value) : localtime (&value);
1640 if (! tm)
1641 error ("Specified time is not representable");
1642
1643 synchronize_system_time_locale ();
1644
1645 while (1)
1646 {
1647 char *buf = (char *) alloca (size + 1);
1648 int result;
1649
1650 buf[0] = '\1';
1651 result = emacs_memftimeu (buf, size, SDATA (format_string),
1652 SBYTES (format_string),
1653 tm, ut);
1654 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1655 return code_convert_string_norecord (make_string (buf, result),
1656 Vlocale_coding_system, 0);
1657
1658 /* If buffer was too small, make it bigger and try again. */
1659 result = emacs_memftimeu (NULL, (size_t) -1,
1660 SDATA (format_string),
1661 SBYTES (format_string),
1662 tm, ut);
1663 size = result + 1;
1664 }
1665 }
1666
1667 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1668 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1669 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1670 as from `current-time' and `file-attributes', or `nil' to use the
1671 current time. The obsolete form (HIGH . LOW) is also still accepted.
1672 The list has the following nine members: SEC is an integer between 0
1673 and 60; SEC is 60 for a leap second, which only some operating systems
1674 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1675 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1676 integer between 1 and 12. YEAR is an integer indicating the
1677 four-digit year. DOW is the day of week, an integer between 0 and 6,
1678 where 0 is Sunday. DST is t if daylight savings time is effect,
1679 otherwise nil. ZONE is an integer indicating the number of seconds
1680 east of Greenwich. (Note that Common Lisp has different meanings for
1681 DOW and ZONE.) */)
1682 (specified_time)
1683 Lisp_Object specified_time;
1684 {
1685 time_t time_spec;
1686 struct tm save_tm;
1687 struct tm *decoded_time;
1688 Lisp_Object list_args[9];
1689
1690 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1691 error ("Invalid time specification");
1692
1693 decoded_time = localtime (&time_spec);
1694 if (! decoded_time)
1695 error ("Specified time is not representable");
1696 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1697 XSETFASTINT (list_args[1], decoded_time->tm_min);
1698 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1699 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1700 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1701 XSETINT (list_args[5], decoded_time->tm_year + 1900);
1702 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1703 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1704
1705 /* Make a copy, in case gmtime modifies the struct. */
1706 save_tm = *decoded_time;
1707 decoded_time = gmtime (&time_spec);
1708 if (decoded_time == 0)
1709 list_args[8] = Qnil;
1710 else
1711 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1712 return Flist (9, list_args);
1713 }
1714
1715 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1716 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1717 This is the reverse operation of `decode-time', which see.
1718 ZONE defaults to the current time zone rule. This can
1719 be a string or t (as from `set-time-zone-rule'), or it can be a list
1720 \(as from `current-time-zone') or an integer (as from `decode-time')
1721 applied without consideration for daylight savings time.
1722
1723 You can pass more than 7 arguments; then the first six arguments
1724 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1725 The intervening arguments are ignored.
1726 This feature lets (apply 'encode-time (decode-time ...)) work.
1727
1728 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1729 for example, a DAY of 0 means the day preceding the given month.
1730 Year numbers less than 100 are treated just like other year numbers.
1731 If you want them to stand for years in this century, you must do that yourself.
1732
1733 Years before 1970 are not guaranteed to work. On some systems,
1734 year values as low as 1901 do work.
1735
1736 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1737 (nargs, args)
1738 int nargs;
1739 register Lisp_Object *args;
1740 {
1741 time_t time;
1742 struct tm tm;
1743 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1744
1745 CHECK_NUMBER (args[0]); /* second */
1746 CHECK_NUMBER (args[1]); /* minute */
1747 CHECK_NUMBER (args[2]); /* hour */
1748 CHECK_NUMBER (args[3]); /* day */
1749 CHECK_NUMBER (args[4]); /* month */
1750 CHECK_NUMBER (args[5]); /* year */
1751
1752 tm.tm_sec = XINT (args[0]);
1753 tm.tm_min = XINT (args[1]);
1754 tm.tm_hour = XINT (args[2]);
1755 tm.tm_mday = XINT (args[3]);
1756 tm.tm_mon = XINT (args[4]) - 1;
1757 tm.tm_year = XINT (args[5]) - 1900;
1758 tm.tm_isdst = -1;
1759
1760 if (CONSP (zone))
1761 zone = Fcar (zone);
1762 if (NILP (zone))
1763 time = mktime (&tm);
1764 else
1765 {
1766 char tzbuf[100];
1767 char *tzstring;
1768 char **oldenv = environ, **newenv;
1769
1770 if (EQ (zone, Qt))
1771 tzstring = "UTC0";
1772 else if (STRINGP (zone))
1773 tzstring = (char *) SDATA (zone);
1774 else if (INTEGERP (zone))
1775 {
1776 int abszone = abs (XINT (zone));
1777 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1778 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1779 tzstring = tzbuf;
1780 }
1781 else
1782 error ("Invalid time zone specification");
1783
1784 /* Set TZ before calling mktime; merely adjusting mktime's returned
1785 value doesn't suffice, since that would mishandle leap seconds. */
1786 set_time_zone_rule (tzstring);
1787
1788 time = mktime (&tm);
1789
1790 /* Restore TZ to previous value. */
1791 newenv = environ;
1792 environ = oldenv;
1793 xfree (newenv);
1794 #ifdef LOCALTIME_CACHE
1795 tzset ();
1796 #endif
1797 }
1798
1799 if (time == (time_t) -1)
1800 error ("Specified time is not representable");
1801
1802 return make_time (time);
1803 }
1804
1805 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1806 doc: /* Return the current time, as a human-readable string.
1807 Programs can use this function to decode a time,
1808 since the number of columns in each field is fixed.
1809 The format is `Sun Sep 16 01:03:52 1973'.
1810 However, see also the functions `decode-time' and `format-time-string'
1811 which provide a much more powerful and general facility.
1812
1813 If SPECIFIED-TIME is given, it is a time to format instead of the
1814 current time. The argument should have the form (HIGH LOW . IGNORED).
1815 Thus, you can use times obtained from `current-time' and from
1816 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1817 but this is considered obsolete. */)
1818 (specified_time)
1819 Lisp_Object specified_time;
1820 {
1821 time_t value;
1822 char buf[30];
1823 register char *tem;
1824
1825 if (! lisp_time_argument (specified_time, &value, NULL))
1826 value = -1;
1827 tem = (char *) ctime (&value);
1828
1829 strncpy (buf, tem, 24);
1830 buf[24] = 0;
1831
1832 return build_string (buf);
1833 }
1834
1835 #define TM_YEAR_BASE 1900
1836
1837 /* Yield A - B, measured in seconds.
1838 This function is copied from the GNU C Library. */
1839 static int
1840 tm_diff (a, b)
1841 struct tm *a, *b;
1842 {
1843 /* Compute intervening leap days correctly even if year is negative.
1844 Take care to avoid int overflow in leap day calculations,
1845 but it's OK to assume that A and B are close to each other. */
1846 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1847 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1848 int a100 = a4 / 25 - (a4 % 25 < 0);
1849 int b100 = b4 / 25 - (b4 % 25 < 0);
1850 int a400 = a100 >> 2;
1851 int b400 = b100 >> 2;
1852 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1853 int years = a->tm_year - b->tm_year;
1854 int days = (365 * years + intervening_leap_days
1855 + (a->tm_yday - b->tm_yday));
1856 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1857 + (a->tm_min - b->tm_min))
1858 + (a->tm_sec - b->tm_sec));
1859 }
1860
1861 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1862 doc: /* Return the offset and name for the local time zone.
1863 This returns a list of the form (OFFSET NAME).
1864 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1865 A negative value means west of Greenwich.
1866 NAME is a string giving the name of the time zone.
1867 If SPECIFIED-TIME is given, the time zone offset is determined from it
1868 instead of using the current time. The argument should have the form
1869 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1870 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1871 have the form (HIGH . LOW), but this is considered obsolete.
1872
1873 Some operating systems cannot provide all this information to Emacs;
1874 in this case, `current-time-zone' returns a list containing nil for
1875 the data it can't find. */)
1876 (specified_time)
1877 Lisp_Object specified_time;
1878 {
1879 time_t value;
1880 struct tm *t;
1881 struct tm gmt;
1882
1883 if (lisp_time_argument (specified_time, &value, NULL)
1884 && (t = gmtime (&value)) != 0
1885 && (gmt = *t, t = localtime (&value)) != 0)
1886 {
1887 int offset = tm_diff (t, &gmt);
1888 char *s = 0;
1889 char buf[6];
1890 #ifdef HAVE_TM_ZONE
1891 if (t->tm_zone)
1892 s = (char *)t->tm_zone;
1893 #else /* not HAVE_TM_ZONE */
1894 #ifdef HAVE_TZNAME
1895 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1896 s = tzname[t->tm_isdst];
1897 #endif
1898 #endif /* not HAVE_TM_ZONE */
1899
1900 #if defined HAVE_TM_ZONE || defined HAVE_TZNAME
1901 if (s)
1902 {
1903 /* On Japanese w32, we can get a Japanese string as time
1904 zone name. Don't accept that. */
1905 char *p;
1906 for (p = s; *p && (isalnum ((unsigned char)*p) || *p == ' '); ++p)
1907 ;
1908 if (p == s || *p)
1909 s = NULL;
1910 }
1911 #endif
1912
1913 if (!s)
1914 {
1915 /* No local time zone name is available; use "+-NNNN" instead. */
1916 int am = (offset < 0 ? -offset : offset) / 60;
1917 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
1918 s = buf;
1919 }
1920 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
1921 }
1922 else
1923 return Fmake_list (make_number (2), Qnil);
1924 }
1925
1926 /* This holds the value of `environ' produced by the previous
1927 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
1928 has never been called. */
1929 static char **environbuf;
1930
1931 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
1932 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
1933 If TZ is nil, use implementation-defined default time zone information.
1934 If TZ is t, use Universal Time. */)
1935 (tz)
1936 Lisp_Object tz;
1937 {
1938 char *tzstring;
1939
1940 if (NILP (tz))
1941 tzstring = 0;
1942 else if (EQ (tz, Qt))
1943 tzstring = "UTC0";
1944 else
1945 {
1946 CHECK_STRING (tz);
1947 tzstring = (char *) SDATA (tz);
1948 }
1949
1950 set_time_zone_rule (tzstring);
1951 if (environbuf)
1952 free (environbuf);
1953 environbuf = environ;
1954
1955 return Qnil;
1956 }
1957
1958 #ifdef LOCALTIME_CACHE
1959
1960 /* These two values are known to load tz files in buggy implementations,
1961 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
1962 Their values shouldn't matter in non-buggy implementations.
1963 We don't use string literals for these strings,
1964 since if a string in the environment is in readonly
1965 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
1966 See Sun bugs 1113095 and 1114114, ``Timezone routines
1967 improperly modify environment''. */
1968
1969 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
1970 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
1971
1972 #endif
1973
1974 /* Set the local time zone rule to TZSTRING.
1975 This allocates memory into `environ', which it is the caller's
1976 responsibility to free. */
1977
1978 void
1979 set_time_zone_rule (tzstring)
1980 char *tzstring;
1981 {
1982 int envptrs;
1983 char **from, **to, **newenv;
1984
1985 /* Make the ENVIRON vector longer with room for TZSTRING. */
1986 for (from = environ; *from; from++)
1987 continue;
1988 envptrs = from - environ + 2;
1989 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
1990 + (tzstring ? strlen (tzstring) + 4 : 0));
1991
1992 /* Add TZSTRING to the end of environ, as a value for TZ. */
1993 if (tzstring)
1994 {
1995 char *t = (char *) (to + envptrs);
1996 strcpy (t, "TZ=");
1997 strcat (t, tzstring);
1998 *to++ = t;
1999 }
2000
2001 /* Copy the old environ vector elements into NEWENV,
2002 but don't copy the TZ variable.
2003 So we have only one definition of TZ, which came from TZSTRING. */
2004 for (from = environ; *from; from++)
2005 if (strncmp (*from, "TZ=", 3) != 0)
2006 *to++ = *from;
2007 *to = 0;
2008
2009 environ = newenv;
2010
2011 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2012 the TZ variable is stored. If we do not have a TZSTRING,
2013 TO points to the vector slot which has the terminating null. */
2014
2015 #ifdef LOCALTIME_CACHE
2016 {
2017 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2018 "US/Pacific" that loads a tz file, then changes to a value like
2019 "XXX0" that does not load a tz file, and then changes back to
2020 its original value, the last change is (incorrectly) ignored.
2021 Also, if TZ changes twice in succession to values that do
2022 not load a tz file, tzset can dump core (see Sun bug#1225179).
2023 The following code works around these bugs. */
2024
2025 if (tzstring)
2026 {
2027 /* Temporarily set TZ to a value that loads a tz file
2028 and that differs from tzstring. */
2029 char *tz = *newenv;
2030 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2031 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2032 tzset ();
2033 *newenv = tz;
2034 }
2035 else
2036 {
2037 /* The implied tzstring is unknown, so temporarily set TZ to
2038 two different values that each load a tz file. */
2039 *to = set_time_zone_rule_tz1;
2040 to[1] = 0;
2041 tzset ();
2042 *to = set_time_zone_rule_tz2;
2043 tzset ();
2044 *to = 0;
2045 }
2046
2047 /* Now TZ has the desired value, and tzset can be invoked safely. */
2048 }
2049
2050 tzset ();
2051 #endif
2052 }
2053 \f
2054 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2055 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2056 type of object is Lisp_String). INHERIT is passed to
2057 INSERT_FROM_STRING_FUNC as the last argument. */
2058
2059 static void
2060 general_insert_function (insert_func, insert_from_string_func,
2061 inherit, nargs, args)
2062 void (*insert_func) P_ ((const unsigned char *, int));
2063 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
2064 int inherit, nargs;
2065 register Lisp_Object *args;
2066 {
2067 register int argnum;
2068 register Lisp_Object val;
2069
2070 for (argnum = 0; argnum < nargs; argnum++)
2071 {
2072 val = args[argnum];
2073 retry:
2074 if (INTEGERP (val))
2075 {
2076 unsigned char str[MAX_MULTIBYTE_LENGTH];
2077 int len;
2078
2079 if (!NILP (current_buffer->enable_multibyte_characters))
2080 len = CHAR_STRING (XFASTINT (val), str);
2081 else
2082 {
2083 str[0] = (SINGLE_BYTE_CHAR_P (XINT (val))
2084 ? XINT (val)
2085 : multibyte_char_to_unibyte (XINT (val), Qnil));
2086 len = 1;
2087 }
2088 (*insert_func) (str, len);
2089 }
2090 else if (STRINGP (val))
2091 {
2092 (*insert_from_string_func) (val, 0, 0,
2093 SCHARS (val),
2094 SBYTES (val),
2095 inherit);
2096 }
2097 else
2098 {
2099 val = wrong_type_argument (Qchar_or_string_p, val);
2100 goto retry;
2101 }
2102 }
2103 }
2104
2105 void
2106 insert1 (arg)
2107 Lisp_Object arg;
2108 {
2109 Finsert (1, &arg);
2110 }
2111
2112
2113 /* Callers passing one argument to Finsert need not gcpro the
2114 argument "array", since the only element of the array will
2115 not be used after calling insert or insert_from_string, so
2116 we don't care if it gets trashed. */
2117
2118 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2119 doc: /* Insert the arguments, either strings or characters, at point.
2120 Point and before-insertion markers move forward to end up
2121 after the inserted text.
2122 Any other markers at the point of insertion remain before the text.
2123
2124 If the current buffer is multibyte, unibyte strings are converted
2125 to multibyte for insertion (see `string-make-multibyte').
2126 If the current buffer is unibyte, multibyte strings are converted
2127 to unibyte for insertion (see `string-make-unibyte').
2128
2129 When operating on binary data, it may be necessary to preserve the
2130 original bytes of a unibyte string when inserting it into a multibyte
2131 buffer; to accomplish this, apply `string-as-multibyte' to the string
2132 and insert the result.
2133
2134 usage: (insert &rest ARGS) */)
2135 (nargs, args)
2136 int nargs;
2137 register Lisp_Object *args;
2138 {
2139 general_insert_function (insert, insert_from_string, 0, nargs, args);
2140 return Qnil;
2141 }
2142
2143 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2144 0, MANY, 0,
2145 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2146 Point and before-insertion markers move forward to end up
2147 after the inserted text.
2148 Any other markers at the point of insertion remain before the text.
2149
2150 If the current buffer is multibyte, unibyte strings are converted
2151 to multibyte for insertion (see `unibyte-char-to-multibyte').
2152 If the current buffer is unibyte, multibyte strings are converted
2153 to unibyte for insertion.
2154
2155 usage: (insert-and-inherit &rest ARGS) */)
2156 (nargs, args)
2157 int nargs;
2158 register Lisp_Object *args;
2159 {
2160 general_insert_function (insert_and_inherit, insert_from_string, 1,
2161 nargs, args);
2162 return Qnil;
2163 }
2164
2165 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2166 doc: /* Insert strings or characters at point, relocating markers after the text.
2167 Point and markers move forward to end up after the inserted text.
2168
2169 If the current buffer is multibyte, unibyte strings are converted
2170 to multibyte for insertion (see `unibyte-char-to-multibyte').
2171 If the current buffer is unibyte, multibyte strings are converted
2172 to unibyte for insertion.
2173
2174 usage: (insert-before-markers &rest ARGS) */)
2175 (nargs, args)
2176 int nargs;
2177 register Lisp_Object *args;
2178 {
2179 general_insert_function (insert_before_markers,
2180 insert_from_string_before_markers, 0,
2181 nargs, args);
2182 return Qnil;
2183 }
2184
2185 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2186 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2187 doc: /* Insert text at point, relocating markers and inheriting properties.
2188 Point and markers move forward to end up after the inserted text.
2189
2190 If the current buffer is multibyte, unibyte strings are converted
2191 to multibyte for insertion (see `unibyte-char-to-multibyte').
2192 If the current buffer is unibyte, multibyte strings are converted
2193 to unibyte for insertion.
2194
2195 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2196 (nargs, args)
2197 int nargs;
2198 register Lisp_Object *args;
2199 {
2200 general_insert_function (insert_before_markers_and_inherit,
2201 insert_from_string_before_markers, 1,
2202 nargs, args);
2203 return Qnil;
2204 }
2205 \f
2206 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2207 doc: /* Insert COUNT (second arg) copies of CHARACTER (first arg).
2208 Both arguments are required.
2209 Point, and before-insertion markers, are relocated as in the function `insert'.
2210 The optional third arg INHERIT, if non-nil, says to inherit text properties
2211 from adjoining text, if those properties are sticky. */)
2212 (character, count, inherit)
2213 Lisp_Object character, count, inherit;
2214 {
2215 register unsigned char *string;
2216 register int strlen;
2217 register int i, n;
2218 int len;
2219 unsigned char str[MAX_MULTIBYTE_LENGTH];
2220
2221 CHECK_NUMBER (character);
2222 CHECK_NUMBER (count);
2223
2224 if (!NILP (current_buffer->enable_multibyte_characters))
2225 len = CHAR_STRING (XFASTINT (character), str);
2226 else
2227 str[0] = XFASTINT (character), len = 1;
2228 n = XINT (count) * len;
2229 if (n <= 0)
2230 return Qnil;
2231 strlen = min (n, 256 * len);
2232 string = (unsigned char *) alloca (strlen);
2233 for (i = 0; i < strlen; i++)
2234 string[i] = str[i % len];
2235 while (n >= strlen)
2236 {
2237 QUIT;
2238 if (!NILP (inherit))
2239 insert_and_inherit (string, strlen);
2240 else
2241 insert (string, strlen);
2242 n -= strlen;
2243 }
2244 if (n > 0)
2245 {
2246 if (!NILP (inherit))
2247 insert_and_inherit (string, n);
2248 else
2249 insert (string, n);
2250 }
2251 return Qnil;
2252 }
2253
2254 \f
2255 /* Making strings from buffer contents. */
2256
2257 /* Return a Lisp_String containing the text of the current buffer from
2258 START to END. If text properties are in use and the current buffer
2259 has properties in the range specified, the resulting string will also
2260 have them, if PROPS is nonzero.
2261
2262 We don't want to use plain old make_string here, because it calls
2263 make_uninit_string, which can cause the buffer arena to be
2264 compacted. make_string has no way of knowing that the data has
2265 been moved, and thus copies the wrong data into the string. This
2266 doesn't effect most of the other users of make_string, so it should
2267 be left as is. But we should use this function when conjuring
2268 buffer substrings. */
2269
2270 Lisp_Object
2271 make_buffer_string (start, end, props)
2272 int start, end;
2273 int props;
2274 {
2275 int start_byte = CHAR_TO_BYTE (start);
2276 int end_byte = CHAR_TO_BYTE (end);
2277
2278 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2279 }
2280
2281 /* Return a Lisp_String containing the text of the current buffer from
2282 START / START_BYTE to END / END_BYTE.
2283
2284 If text properties are in use and the current buffer
2285 has properties in the range specified, the resulting string will also
2286 have them, if PROPS is nonzero.
2287
2288 We don't want to use plain old make_string here, because it calls
2289 make_uninit_string, which can cause the buffer arena to be
2290 compacted. make_string has no way of knowing that the data has
2291 been moved, and thus copies the wrong data into the string. This
2292 doesn't effect most of the other users of make_string, so it should
2293 be left as is. But we should use this function when conjuring
2294 buffer substrings. */
2295
2296 Lisp_Object
2297 make_buffer_string_both (start, start_byte, end, end_byte, props)
2298 int start, start_byte, end, end_byte;
2299 int props;
2300 {
2301 Lisp_Object result, tem, tem1;
2302
2303 if (start < GPT && GPT < end)
2304 move_gap (start);
2305
2306 if (! NILP (current_buffer->enable_multibyte_characters))
2307 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2308 else
2309 result = make_uninit_string (end - start);
2310 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2311 end_byte - start_byte);
2312
2313 /* If desired, update and copy the text properties. */
2314 if (props)
2315 {
2316 update_buffer_properties (start, end);
2317
2318 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2319 tem1 = Ftext_properties_at (make_number (start), Qnil);
2320
2321 if (XINT (tem) != end || !NILP (tem1))
2322 copy_intervals_to_string (result, current_buffer, start,
2323 end - start);
2324 }
2325
2326 return result;
2327 }
2328
2329 /* Call Vbuffer_access_fontify_functions for the range START ... END
2330 in the current buffer, if necessary. */
2331
2332 static void
2333 update_buffer_properties (start, end)
2334 int start, end;
2335 {
2336 /* If this buffer has some access functions,
2337 call them, specifying the range of the buffer being accessed. */
2338 if (!NILP (Vbuffer_access_fontify_functions))
2339 {
2340 Lisp_Object args[3];
2341 Lisp_Object tem;
2342
2343 args[0] = Qbuffer_access_fontify_functions;
2344 XSETINT (args[1], start);
2345 XSETINT (args[2], end);
2346
2347 /* But don't call them if we can tell that the work
2348 has already been done. */
2349 if (!NILP (Vbuffer_access_fontified_property))
2350 {
2351 tem = Ftext_property_any (args[1], args[2],
2352 Vbuffer_access_fontified_property,
2353 Qnil, Qnil);
2354 if (! NILP (tem))
2355 Frun_hook_with_args (3, args);
2356 }
2357 else
2358 Frun_hook_with_args (3, args);
2359 }
2360 }
2361
2362 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2363 doc: /* Return the contents of part of the current buffer as a string.
2364 The two arguments START and END are character positions;
2365 they can be in either order.
2366 The string returned is multibyte if the buffer is multibyte.
2367
2368 This function copies the text properties of that part of the buffer
2369 into the result string; if you don't want the text properties,
2370 use `buffer-substring-no-properties' instead. */)
2371 (start, end)
2372 Lisp_Object start, end;
2373 {
2374 register int b, e;
2375
2376 validate_region (&start, &end);
2377 b = XINT (start);
2378 e = XINT (end);
2379
2380 return make_buffer_string (b, e, 1);
2381 }
2382
2383 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2384 Sbuffer_substring_no_properties, 2, 2, 0,
2385 doc: /* Return the characters of part of the buffer, without the text properties.
2386 The two arguments START and END are character positions;
2387 they can be in either order. */)
2388 (start, end)
2389 Lisp_Object start, end;
2390 {
2391 register int b, e;
2392
2393 validate_region (&start, &end);
2394 b = XINT (start);
2395 e = XINT (end);
2396
2397 return make_buffer_string (b, e, 0);
2398 }
2399
2400 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2401 doc: /* Return the contents of the current buffer as a string.
2402 If narrowing is in effect, this function returns only the visible part
2403 of the buffer. */)
2404 ()
2405 {
2406 return make_buffer_string (BEGV, ZV, 1);
2407 }
2408
2409 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2410 1, 3, 0,
2411 doc: /* Insert before point a substring of the contents of BUFFER.
2412 BUFFER may be a buffer or a buffer name.
2413 Arguments START and END are character positions specifying the substring.
2414 They default to the values of (point-min) and (point-max) in BUFFER. */)
2415 (buffer, start, end)
2416 Lisp_Object buffer, start, end;
2417 {
2418 register int b, e, temp;
2419 register struct buffer *bp, *obuf;
2420 Lisp_Object buf;
2421
2422 buf = Fget_buffer (buffer);
2423 if (NILP (buf))
2424 nsberror (buffer);
2425 bp = XBUFFER (buf);
2426 if (NILP (bp->name))
2427 error ("Selecting deleted buffer");
2428
2429 if (NILP (start))
2430 b = BUF_BEGV (bp);
2431 else
2432 {
2433 CHECK_NUMBER_COERCE_MARKER (start);
2434 b = XINT (start);
2435 }
2436 if (NILP (end))
2437 e = BUF_ZV (bp);
2438 else
2439 {
2440 CHECK_NUMBER_COERCE_MARKER (end);
2441 e = XINT (end);
2442 }
2443
2444 if (b > e)
2445 temp = b, b = e, e = temp;
2446
2447 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2448 args_out_of_range (start, end);
2449
2450 obuf = current_buffer;
2451 set_buffer_internal_1 (bp);
2452 update_buffer_properties (b, e);
2453 set_buffer_internal_1 (obuf);
2454
2455 insert_from_buffer (bp, b, e - b, 0);
2456 return Qnil;
2457 }
2458
2459 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2460 6, 6, 0,
2461 doc: /* Compare two substrings of two buffers; return result as number.
2462 the value is -N if first string is less after N-1 chars,
2463 +N if first string is greater after N-1 chars, or 0 if strings match.
2464 Each substring is represented as three arguments: BUFFER, START and END.
2465 That makes six args in all, three for each substring.
2466
2467 The value of `case-fold-search' in the current buffer
2468 determines whether case is significant or ignored. */)
2469 (buffer1, start1, end1, buffer2, start2, end2)
2470 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2471 {
2472 register int begp1, endp1, begp2, endp2, temp;
2473 register struct buffer *bp1, *bp2;
2474 register Lisp_Object *trt
2475 = (!NILP (current_buffer->case_fold_search)
2476 ? XCHAR_TABLE (current_buffer->case_canon_table)->contents : 0);
2477 int chars = 0;
2478 int i1, i2, i1_byte, i2_byte;
2479
2480 /* Find the first buffer and its substring. */
2481
2482 if (NILP (buffer1))
2483 bp1 = current_buffer;
2484 else
2485 {
2486 Lisp_Object buf1;
2487 buf1 = Fget_buffer (buffer1);
2488 if (NILP (buf1))
2489 nsberror (buffer1);
2490 bp1 = XBUFFER (buf1);
2491 if (NILP (bp1->name))
2492 error ("Selecting deleted buffer");
2493 }
2494
2495 if (NILP (start1))
2496 begp1 = BUF_BEGV (bp1);
2497 else
2498 {
2499 CHECK_NUMBER_COERCE_MARKER (start1);
2500 begp1 = XINT (start1);
2501 }
2502 if (NILP (end1))
2503 endp1 = BUF_ZV (bp1);
2504 else
2505 {
2506 CHECK_NUMBER_COERCE_MARKER (end1);
2507 endp1 = XINT (end1);
2508 }
2509
2510 if (begp1 > endp1)
2511 temp = begp1, begp1 = endp1, endp1 = temp;
2512
2513 if (!(BUF_BEGV (bp1) <= begp1
2514 && begp1 <= endp1
2515 && endp1 <= BUF_ZV (bp1)))
2516 args_out_of_range (start1, end1);
2517
2518 /* Likewise for second substring. */
2519
2520 if (NILP (buffer2))
2521 bp2 = current_buffer;
2522 else
2523 {
2524 Lisp_Object buf2;
2525 buf2 = Fget_buffer (buffer2);
2526 if (NILP (buf2))
2527 nsberror (buffer2);
2528 bp2 = XBUFFER (buf2);
2529 if (NILP (bp2->name))
2530 error ("Selecting deleted buffer");
2531 }
2532
2533 if (NILP (start2))
2534 begp2 = BUF_BEGV (bp2);
2535 else
2536 {
2537 CHECK_NUMBER_COERCE_MARKER (start2);
2538 begp2 = XINT (start2);
2539 }
2540 if (NILP (end2))
2541 endp2 = BUF_ZV (bp2);
2542 else
2543 {
2544 CHECK_NUMBER_COERCE_MARKER (end2);
2545 endp2 = XINT (end2);
2546 }
2547
2548 if (begp2 > endp2)
2549 temp = begp2, begp2 = endp2, endp2 = temp;
2550
2551 if (!(BUF_BEGV (bp2) <= begp2
2552 && begp2 <= endp2
2553 && endp2 <= BUF_ZV (bp2)))
2554 args_out_of_range (start2, end2);
2555
2556 i1 = begp1;
2557 i2 = begp2;
2558 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2559 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2560
2561 while (i1 < endp1 && i2 < endp2)
2562 {
2563 /* When we find a mismatch, we must compare the
2564 characters, not just the bytes. */
2565 int c1, c2;
2566
2567 QUIT;
2568
2569 if (! NILP (bp1->enable_multibyte_characters))
2570 {
2571 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2572 BUF_INC_POS (bp1, i1_byte);
2573 i1++;
2574 }
2575 else
2576 {
2577 c1 = BUF_FETCH_BYTE (bp1, i1);
2578 c1 = unibyte_char_to_multibyte (c1);
2579 i1++;
2580 }
2581
2582 if (! NILP (bp2->enable_multibyte_characters))
2583 {
2584 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2585 BUF_INC_POS (bp2, i2_byte);
2586 i2++;
2587 }
2588 else
2589 {
2590 c2 = BUF_FETCH_BYTE (bp2, i2);
2591 c2 = unibyte_char_to_multibyte (c2);
2592 i2++;
2593 }
2594
2595 if (trt)
2596 {
2597 c1 = XINT (trt[c1]);
2598 c2 = XINT (trt[c2]);
2599 }
2600 if (c1 < c2)
2601 return make_number (- 1 - chars);
2602 if (c1 > c2)
2603 return make_number (chars + 1);
2604
2605 chars++;
2606 }
2607
2608 /* The strings match as far as they go.
2609 If one is shorter, that one is less. */
2610 if (chars < endp1 - begp1)
2611 return make_number (chars + 1);
2612 else if (chars < endp2 - begp2)
2613 return make_number (- chars - 1);
2614
2615 /* Same length too => they are equal. */
2616 return make_number (0);
2617 }
2618 \f
2619 static Lisp_Object
2620 subst_char_in_region_unwind (arg)
2621 Lisp_Object arg;
2622 {
2623 return current_buffer->undo_list = arg;
2624 }
2625
2626 static Lisp_Object
2627 subst_char_in_region_unwind_1 (arg)
2628 Lisp_Object arg;
2629 {
2630 return current_buffer->filename = arg;
2631 }
2632
2633 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2634 Ssubst_char_in_region, 4, 5, 0,
2635 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2636 If optional arg NOUNDO is non-nil, don't record this change for undo
2637 and don't mark the buffer as really changed.
2638 Both characters must have the same length of multi-byte form. */)
2639 (start, end, fromchar, tochar, noundo)
2640 Lisp_Object start, end, fromchar, tochar, noundo;
2641 {
2642 register int pos, pos_byte, stop, i, len, end_byte;
2643 int changed = 0;
2644 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2645 unsigned char *p;
2646 int count = SPECPDL_INDEX ();
2647 #define COMBINING_NO 0
2648 #define COMBINING_BEFORE 1
2649 #define COMBINING_AFTER 2
2650 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2651 int maybe_byte_combining = COMBINING_NO;
2652 int last_changed = 0;
2653 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2654
2655 validate_region (&start, &end);
2656 CHECK_NUMBER (fromchar);
2657 CHECK_NUMBER (tochar);
2658
2659 if (multibyte_p)
2660 {
2661 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2662 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2663 error ("Characters in `subst-char-in-region' have different byte-lengths");
2664 if (!ASCII_BYTE_P (*tostr))
2665 {
2666 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2667 complete multibyte character, it may be combined with the
2668 after bytes. If it is in the range 0xA0..0xFF, it may be
2669 combined with the before and after bytes. */
2670 if (!CHAR_HEAD_P (*tostr))
2671 maybe_byte_combining = COMBINING_BOTH;
2672 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2673 maybe_byte_combining = COMBINING_AFTER;
2674 }
2675 }
2676 else
2677 {
2678 len = 1;
2679 fromstr[0] = XFASTINT (fromchar);
2680 tostr[0] = XFASTINT (tochar);
2681 }
2682
2683 pos = XINT (start);
2684 pos_byte = CHAR_TO_BYTE (pos);
2685 stop = CHAR_TO_BYTE (XINT (end));
2686 end_byte = stop;
2687
2688 /* If we don't want undo, turn off putting stuff on the list.
2689 That's faster than getting rid of things,
2690 and it prevents even the entry for a first change.
2691 Also inhibit locking the file. */
2692 if (!NILP (noundo))
2693 {
2694 record_unwind_protect (subst_char_in_region_unwind,
2695 current_buffer->undo_list);
2696 current_buffer->undo_list = Qt;
2697 /* Don't do file-locking. */
2698 record_unwind_protect (subst_char_in_region_unwind_1,
2699 current_buffer->filename);
2700 current_buffer->filename = Qnil;
2701 }
2702
2703 if (pos_byte < GPT_BYTE)
2704 stop = min (stop, GPT_BYTE);
2705 while (1)
2706 {
2707 int pos_byte_next = pos_byte;
2708
2709 if (pos_byte >= stop)
2710 {
2711 if (pos_byte >= end_byte) break;
2712 stop = end_byte;
2713 }
2714 p = BYTE_POS_ADDR (pos_byte);
2715 if (multibyte_p)
2716 INC_POS (pos_byte_next);
2717 else
2718 ++pos_byte_next;
2719 if (pos_byte_next - pos_byte == len
2720 && p[0] == fromstr[0]
2721 && (len == 1
2722 || (p[1] == fromstr[1]
2723 && (len == 2 || (p[2] == fromstr[2]
2724 && (len == 3 || p[3] == fromstr[3]))))))
2725 {
2726 if (! changed)
2727 {
2728 changed = pos;
2729 modify_region (current_buffer, changed, XINT (end));
2730
2731 if (! NILP (noundo))
2732 {
2733 if (MODIFF - 1 == SAVE_MODIFF)
2734 SAVE_MODIFF++;
2735 if (MODIFF - 1 == current_buffer->auto_save_modified)
2736 current_buffer->auto_save_modified++;
2737 }
2738 }
2739
2740 /* Take care of the case where the new character
2741 combines with neighboring bytes. */
2742 if (maybe_byte_combining
2743 && (maybe_byte_combining == COMBINING_AFTER
2744 ? (pos_byte_next < Z_BYTE
2745 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2746 : ((pos_byte_next < Z_BYTE
2747 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2748 || (pos_byte > BEG_BYTE
2749 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2750 {
2751 Lisp_Object tem, string;
2752
2753 struct gcpro gcpro1;
2754
2755 tem = current_buffer->undo_list;
2756 GCPRO1 (tem);
2757
2758 /* Make a multibyte string containing this single character. */
2759 string = make_multibyte_string (tostr, 1, len);
2760 /* replace_range is less efficient, because it moves the gap,
2761 but it handles combining correctly. */
2762 replace_range (pos, pos + 1, string,
2763 0, 0, 1);
2764 pos_byte_next = CHAR_TO_BYTE (pos);
2765 if (pos_byte_next > pos_byte)
2766 /* Before combining happened. We should not increment
2767 POS. So, to cancel the later increment of POS,
2768 decrease it now. */
2769 pos--;
2770 else
2771 INC_POS (pos_byte_next);
2772
2773 if (! NILP (noundo))
2774 current_buffer->undo_list = tem;
2775
2776 UNGCPRO;
2777 }
2778 else
2779 {
2780 if (NILP (noundo))
2781 record_change (pos, 1);
2782 for (i = 0; i < len; i++) *p++ = tostr[i];
2783 }
2784 last_changed = pos + 1;
2785 }
2786 pos_byte = pos_byte_next;
2787 pos++;
2788 }
2789
2790 if (changed)
2791 {
2792 signal_after_change (changed,
2793 last_changed - changed, last_changed - changed);
2794 update_compositions (changed, last_changed, CHECK_ALL);
2795 }
2796
2797 unbind_to (count, Qnil);
2798 return Qnil;
2799 }
2800
2801 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2802 Stranslate_region_internal, 3, 3, 0,
2803 doc: /* Internal use only.
2804 From START to END, translate characters according to TABLE.
2805 TABLE is a string; the Nth character in it is the mapping
2806 for the character with code N.
2807 It returns the number of characters changed. */)
2808 (start, end, table)
2809 Lisp_Object start;
2810 Lisp_Object end;
2811 register Lisp_Object table;
2812 {
2813 register unsigned char *tt; /* Trans table. */
2814 register int nc; /* New character. */
2815 int cnt; /* Number of changes made. */
2816 int size; /* Size of translate table. */
2817 int pos, pos_byte, end_pos;
2818 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2819 int string_multibyte;
2820
2821 validate_region (&start, &end);
2822 if (CHAR_TABLE_P (table))
2823 {
2824 size = MAX_CHAR;
2825 tt = NULL;
2826 }
2827 else
2828 {
2829 CHECK_STRING (table);
2830
2831 if (! multibyte && (SCHARS (table) < SBYTES (table)))
2832 table = string_make_unibyte (table);
2833 string_multibyte = SCHARS (table) < SBYTES (table);
2834 size = SCHARS (table);
2835 tt = SDATA (table);
2836 }
2837
2838 pos = XINT (start);
2839 pos_byte = CHAR_TO_BYTE (pos);
2840 end_pos = XINT (end);
2841 modify_region (current_buffer, pos, XINT (end));
2842
2843 cnt = 0;
2844 for (; pos < end_pos; )
2845 {
2846 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
2847 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
2848 int len, str_len;
2849 int oc;
2850
2851 if (multibyte)
2852 oc = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
2853 else
2854 oc = *p, len = 1;
2855 if (oc < size)
2856 {
2857 if (tt)
2858 {
2859 if (string_multibyte)
2860 {
2861 str = tt + string_char_to_byte (table, oc);
2862 nc = STRING_CHAR_AND_LENGTH (str, MAX_MULTIBYTE_LENGTH,
2863 str_len);
2864 }
2865 else
2866 {
2867 nc = tt[oc];
2868 if (! ASCII_BYTE_P (nc) && multibyte)
2869 {
2870 str_len = CHAR_STRING (nc, buf);
2871 str = buf;
2872 }
2873 else
2874 {
2875 str_len = 1;
2876 str = tt + oc;
2877 }
2878 }
2879 }
2880 else
2881 {
2882 Lisp_Object val;
2883 int c;
2884
2885 nc = oc;
2886 val = CHAR_TABLE_REF (table, oc);
2887 if (INTEGERP (val)
2888 && (c = XINT (val), CHAR_VALID_P (c, 0)))
2889 {
2890 nc = c;
2891 str_len = CHAR_STRING (nc, buf);
2892 str = buf;
2893 }
2894 }
2895
2896 if (nc != oc)
2897 {
2898 if (len != str_len)
2899 {
2900 Lisp_Object string;
2901
2902 /* This is less efficient, because it moves the gap,
2903 but it should multibyte characters correctly. */
2904 string = make_multibyte_string (str, 1, str_len);
2905 replace_range (pos, pos + 1, string, 1, 0, 1);
2906 len = str_len;
2907 }
2908 else
2909 {
2910 record_change (pos, 1);
2911 while (str_len-- > 0)
2912 *p++ = *str++;
2913 signal_after_change (pos, 1, 1);
2914 update_compositions (pos, pos + 1, CHECK_BORDER);
2915 }
2916 ++cnt;
2917 }
2918 }
2919 pos_byte += len;
2920 pos++;
2921 }
2922
2923 return make_number (cnt);
2924 }
2925
2926 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
2927 doc: /* Delete the text between point and mark.
2928
2929 When called from a program, expects two arguments,
2930 positions (integers or markers) specifying the stretch to be deleted. */)
2931 (start, end)
2932 Lisp_Object start, end;
2933 {
2934 validate_region (&start, &end);
2935 del_range (XINT (start), XINT (end));
2936 return Qnil;
2937 }
2938
2939 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
2940 Sdelete_and_extract_region, 2, 2, 0,
2941 doc: /* Delete the text between START and END and return it. */)
2942 (start, end)
2943 Lisp_Object start, end;
2944 {
2945 validate_region (&start, &end);
2946 if (XINT (start) == XINT (end))
2947 return build_string ("");
2948 return del_range_1 (XINT (start), XINT (end), 1, 1);
2949 }
2950 \f
2951 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
2952 doc: /* Remove restrictions (narrowing) from current buffer.
2953 This allows the buffer's full text to be seen and edited. */)
2954 ()
2955 {
2956 if (BEG != BEGV || Z != ZV)
2957 current_buffer->clip_changed = 1;
2958 BEGV = BEG;
2959 BEGV_BYTE = BEG_BYTE;
2960 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
2961 /* Changing the buffer bounds invalidates any recorded current column. */
2962 invalidate_current_column ();
2963 return Qnil;
2964 }
2965
2966 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
2967 doc: /* Restrict editing in this buffer to the current region.
2968 The rest of the text becomes temporarily invisible and untouchable
2969 but is not deleted; if you save the buffer in a file, the invisible
2970 text is included in the file. \\[widen] makes all visible again.
2971 See also `save-restriction'.
2972
2973 When calling from a program, pass two arguments; positions (integers
2974 or markers) bounding the text that should remain visible. */)
2975 (start, end)
2976 register Lisp_Object start, end;
2977 {
2978 CHECK_NUMBER_COERCE_MARKER (start);
2979 CHECK_NUMBER_COERCE_MARKER (end);
2980
2981 if (XINT (start) > XINT (end))
2982 {
2983 Lisp_Object tem;
2984 tem = start; start = end; end = tem;
2985 }
2986
2987 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
2988 args_out_of_range (start, end);
2989
2990 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
2991 current_buffer->clip_changed = 1;
2992
2993 SET_BUF_BEGV (current_buffer, XFASTINT (start));
2994 SET_BUF_ZV (current_buffer, XFASTINT (end));
2995 if (PT < XFASTINT (start))
2996 SET_PT (XFASTINT (start));
2997 if (PT > XFASTINT (end))
2998 SET_PT (XFASTINT (end));
2999 /* Changing the buffer bounds invalidates any recorded current column. */
3000 invalidate_current_column ();
3001 return Qnil;
3002 }
3003
3004 Lisp_Object
3005 save_restriction_save ()
3006 {
3007 if (BEGV == BEG && ZV == Z)
3008 /* The common case that the buffer isn't narrowed.
3009 We return just the buffer object, which save_restriction_restore
3010 recognizes as meaning `no restriction'. */
3011 return Fcurrent_buffer ();
3012 else
3013 /* We have to save a restriction, so return a pair of markers, one
3014 for the beginning and one for the end. */
3015 {
3016 Lisp_Object beg, end;
3017
3018 beg = buildmark (BEGV, BEGV_BYTE);
3019 end = buildmark (ZV, ZV_BYTE);
3020
3021 /* END must move forward if text is inserted at its exact location. */
3022 XMARKER(end)->insertion_type = 1;
3023
3024 return Fcons (beg, end);
3025 }
3026 }
3027
3028 Lisp_Object
3029 save_restriction_restore (data)
3030 Lisp_Object data;
3031 {
3032 if (CONSP (data))
3033 /* A pair of marks bounding a saved restriction. */
3034 {
3035 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3036 struct Lisp_Marker *end = XMARKER (XCDR (data));
3037 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
3038
3039 if (buf /* Verify marker still points to a buffer. */
3040 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3041 /* The restriction has changed from the saved one, so restore
3042 the saved restriction. */
3043 {
3044 int pt = BUF_PT (buf);
3045
3046 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3047 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3048
3049 if (pt < beg->charpos || pt > end->charpos)
3050 /* The point is outside the new visible range, move it inside. */
3051 SET_BUF_PT_BOTH (buf,
3052 clip_to_bounds (beg->charpos, pt, end->charpos),
3053 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3054 end->bytepos));
3055
3056 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3057 }
3058 }
3059 else
3060 /* A buffer, which means that there was no old restriction. */
3061 {
3062 struct buffer *buf = XBUFFER (data);
3063
3064 if (buf /* Verify marker still points to a buffer. */
3065 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3066 /* The buffer has been narrowed, get rid of the narrowing. */
3067 {
3068 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3069 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3070
3071 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3072 }
3073 }
3074
3075 return Qnil;
3076 }
3077
3078 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3079 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3080 The buffer's restrictions make parts of the beginning and end invisible.
3081 (They are set up with `narrow-to-region' and eliminated with `widen'.)
3082 This special form, `save-restriction', saves the current buffer's restrictions
3083 when it is entered, and restores them when it is exited.
3084 So any `narrow-to-region' within BODY lasts only until the end of the form.
3085 The old restrictions settings are restored
3086 even in case of abnormal exit (throw or error).
3087
3088 The value returned is the value of the last form in BODY.
3089
3090 Note: if you are using both `save-excursion' and `save-restriction',
3091 use `save-excursion' outermost:
3092 (save-excursion (save-restriction ...))
3093
3094 usage: (save-restriction &rest BODY) */)
3095 (body)
3096 Lisp_Object body;
3097 {
3098 register Lisp_Object val;
3099 int count = SPECPDL_INDEX ();
3100
3101 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3102 val = Fprogn (body);
3103 return unbind_to (count, val);
3104 }
3105 \f
3106 /* Buffer for the most recent text displayed by Fmessage_box. */
3107 static char *message_text;
3108
3109 /* Allocated length of that buffer. */
3110 static int message_length;
3111
3112 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3113 doc: /* Print a one-line message at the bottom of the screen.
3114 The message also goes into the `*Messages*' buffer.
3115 \(In keyboard macros, that's all it does.)
3116
3117 The first argument is a format control string, and the rest are data
3118 to be formatted under control of the string. See `format' for details.
3119
3120 If the first argument is nil, the function clears any existing message;
3121 this lets the minibuffer contents show. See also `current-message'.
3122
3123 usage: (message STRING &rest ARGS) */)
3124 (nargs, args)
3125 int nargs;
3126 Lisp_Object *args;
3127 {
3128 if (NILP (args[0])
3129 || (STRINGP (args[0])
3130 && SBYTES (args[0]) == 0))
3131 {
3132 message (0);
3133 return args[0];
3134 }
3135 else
3136 {
3137 register Lisp_Object val;
3138 val = Fformat (nargs, args);
3139 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3140 return val;
3141 }
3142 }
3143
3144 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3145 doc: /* Display a message, in a dialog box if possible.
3146 If a dialog box is not available, use the echo area.
3147 The first argument is a format control string, and the rest are data
3148 to be formatted under control of the string. See `format' for details.
3149
3150 If the first argument is nil, clear any existing message; let the
3151 minibuffer contents show.
3152
3153 usage: (message-box STRING &rest ARGS) */)
3154 (nargs, args)
3155 int nargs;
3156 Lisp_Object *args;
3157 {
3158 if (NILP (args[0]))
3159 {
3160 message (0);
3161 return Qnil;
3162 }
3163 else
3164 {
3165 register Lisp_Object val;
3166 val = Fformat (nargs, args);
3167 #ifdef HAVE_MENUS
3168 /* The MS-DOS frames support popup menus even though they are
3169 not FRAME_WINDOW_P. */
3170 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3171 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3172 {
3173 Lisp_Object pane, menu, obj;
3174 struct gcpro gcpro1;
3175 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3176 GCPRO1 (pane);
3177 menu = Fcons (val, pane);
3178 obj = Fx_popup_dialog (Qt, menu, Qt);
3179 UNGCPRO;
3180 return val;
3181 }
3182 #endif /* HAVE_MENUS */
3183 /* Copy the data so that it won't move when we GC. */
3184 if (! message_text)
3185 {
3186 message_text = (char *)xmalloc (80);
3187 message_length = 80;
3188 }
3189 if (SBYTES (val) > message_length)
3190 {
3191 message_length = SBYTES (val);
3192 message_text = (char *)xrealloc (message_text, message_length);
3193 }
3194 bcopy (SDATA (val), message_text, SBYTES (val));
3195 message2 (message_text, SBYTES (val),
3196 STRING_MULTIBYTE (val));
3197 return val;
3198 }
3199 }
3200 #ifdef HAVE_MENUS
3201 extern Lisp_Object last_nonmenu_event;
3202 #endif
3203
3204 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3205 doc: /* Display a message in a dialog box or in the echo area.
3206 If this command was invoked with the mouse, use a dialog box if
3207 `use-dialog-box' is non-nil.
3208 Otherwise, use the echo area.
3209 The first argument is a format control string, and the rest are data
3210 to be formatted under control of the string. See `format' for details.
3211
3212 If the first argument is nil, clear any existing message; let the
3213 minibuffer contents show.
3214
3215 usage: (message-or-box STRING &rest ARGS) */)
3216 (nargs, args)
3217 int nargs;
3218 Lisp_Object *args;
3219 {
3220 #ifdef HAVE_MENUS
3221 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3222 && use_dialog_box)
3223 return Fmessage_box (nargs, args);
3224 #endif
3225 return Fmessage (nargs, args);
3226 }
3227
3228 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3229 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3230 ()
3231 {
3232 return current_message ();
3233 }
3234
3235
3236 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3237 doc: /* Return a copy of STRING with text properties added.
3238 First argument is the string to copy.
3239 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3240 properties to add to the result.
3241 usage: (propertize STRING &rest PROPERTIES) */)
3242 (nargs, args)
3243 int nargs;
3244 Lisp_Object *args;
3245 {
3246 Lisp_Object properties, string;
3247 struct gcpro gcpro1, gcpro2;
3248 int i;
3249
3250 /* Number of args must be odd. */
3251 if ((nargs & 1) == 0 || nargs < 1)
3252 error ("Wrong number of arguments");
3253
3254 properties = string = Qnil;
3255 GCPRO2 (properties, string);
3256
3257 /* First argument must be a string. */
3258 CHECK_STRING (args[0]);
3259 string = Fcopy_sequence (args[0]);
3260
3261 for (i = 1; i < nargs; i += 2)
3262 {
3263 CHECK_SYMBOL (args[i]);
3264 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3265 }
3266
3267 Fadd_text_properties (make_number (0),
3268 make_number (SCHARS (string)),
3269 properties, string);
3270 RETURN_UNGCPRO (string);
3271 }
3272
3273
3274 /* Number of bytes that STRING will occupy when put into the result.
3275 MULTIBYTE is nonzero if the result should be multibyte. */
3276
3277 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3278 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3279 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3280 : SBYTES (STRING))
3281
3282 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3283 doc: /* Format a string out of a control-string and arguments.
3284 The first argument is a control string.
3285 The other arguments are substituted into it to make the result, a string.
3286 It may contain %-sequences meaning to substitute the next argument.
3287 %s means print a string argument. Actually, prints any object, with `princ'.
3288 %d means print as number in decimal (%o octal, %x hex).
3289 %X is like %x, but uses upper case.
3290 %e means print a number in exponential notation.
3291 %f means print a number in decimal-point notation.
3292 %g means print a number in exponential notation
3293 or decimal-point notation, whichever uses fewer characters.
3294 %c means print a number as a single character.
3295 %S means print any object as an s-expression (using `prin1').
3296 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3297 Use %% to put a single % into the output.
3298
3299 The basic structure of a %-sequence is
3300 % <flags> <width> <precision> character
3301 where flags is [- #0]+, width is [0-9]+, and precision is .[0-9]+
3302
3303 usage: (format STRING &rest OBJECTS) */)
3304 (nargs, args)
3305 int nargs;
3306 register Lisp_Object *args;
3307 {
3308 register int n; /* The number of the next arg to substitute */
3309 register int total; /* An estimate of the final length */
3310 char *buf, *p;
3311 register unsigned char *format, *end, *format_start;
3312 int nchars;
3313 /* Nonzero if the output should be a multibyte string,
3314 which is true if any of the inputs is one. */
3315 int multibyte = 0;
3316 /* When we make a multibyte string, we must pay attention to the
3317 byte combining problem, i.e., a byte may be combined with a
3318 multibyte charcter of the previous string. This flag tells if we
3319 must consider such a situation or not. */
3320 int maybe_combine_byte;
3321 unsigned char *this_format;
3322 /* Precision for each spec, or -1, a flag value meaning no precision
3323 was given in that spec. Element 0, corresonding to the format
3324 string itself, will not be used. Element NARGS, corresponding to
3325 no argument, *will* be assigned to in the case that a `%' and `.'
3326 occur after the final format specifier. */
3327 int *precision = (int *) (alloca((nargs + 1) * sizeof (int)));
3328 int longest_format;
3329 Lisp_Object val;
3330 int arg_intervals = 0;
3331 USE_SAFE_ALLOCA;
3332
3333 /* discarded[I] is 1 if byte I of the format
3334 string was not copied into the output.
3335 It is 2 if byte I was not the first byte of its character. */
3336 char *discarded = 0;
3337
3338 /* Each element records, for one argument,
3339 the start and end bytepos in the output string,
3340 and whether the argument is a string with intervals.
3341 info[0] is unused. Unused elements have -1 for start. */
3342 struct info
3343 {
3344 int start, end, intervals;
3345 } *info = 0;
3346
3347 /* It should not be necessary to GCPRO ARGS, because
3348 the caller in the interpreter should take care of that. */
3349
3350 /* Try to determine whether the result should be multibyte.
3351 This is not always right; sometimes the result needs to be multibyte
3352 because of an object that we will pass through prin1,
3353 and in that case, we won't know it here. */
3354 for (n = 0; n < nargs; n++)
3355 {
3356 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3357 multibyte = 1;
3358 /* Piggyback on this loop to initialize precision[N]. */
3359 precision[n] = -1;
3360 }
3361 precision[nargs] = -1;
3362
3363 CHECK_STRING (args[0]);
3364 /* We may have to change "%S" to "%s". */
3365 args[0] = Fcopy_sequence (args[0]);
3366
3367 /* GC should never happen here, so abort if it does. */
3368 abort_on_gc++;
3369
3370 /* If we start out planning a unibyte result,
3371 then discover it has to be multibyte, we jump back to retry.
3372 That can only happen from the first large while loop below. */
3373 retry:
3374
3375 format = SDATA (args[0]);
3376 format_start = format;
3377 end = format + SBYTES (args[0]);
3378 longest_format = 0;
3379
3380 /* Make room in result for all the non-%-codes in the control string. */
3381 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]) + 1;
3382
3383 /* Allocate the info and discarded tables. */
3384 {
3385 int nbytes = (nargs+1) * sizeof *info;
3386 int i;
3387 if (!info)
3388 info = (struct info *) alloca (nbytes);
3389 bzero (info, nbytes);
3390 for (i = 0; i <= nargs; i++)
3391 info[i].start = -1;
3392 if (!discarded)
3393 SAFE_ALLOCA (discarded, char *, SBYTES (args[0]));
3394 bzero (discarded, SBYTES (args[0]));
3395 }
3396
3397 /* Add to TOTAL enough space to hold the converted arguments. */
3398
3399 n = 0;
3400 while (format != end)
3401 if (*format++ == '%')
3402 {
3403 int thissize = 0;
3404 int actual_width = 0;
3405 unsigned char *this_format_start = format - 1;
3406 int field_width = 0;
3407
3408 /* General format specifications look like
3409
3410 '%' [flags] [field-width] [precision] format
3411
3412 where
3413
3414 flags ::= [- #0]+
3415 field-width ::= [0-9]+
3416 precision ::= '.' [0-9]*
3417
3418 If a field-width is specified, it specifies to which width
3419 the output should be padded with blanks, iff the output
3420 string is shorter than field-width.
3421
3422 If precision is specified, it specifies the number of
3423 digits to print after the '.' for floats, or the max.
3424 number of chars to print from a string. */
3425
3426 while (index ("-0# ", *format))
3427 ++format;
3428
3429 if (*format >= '0' && *format <= '9')
3430 {
3431 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3432 field_width = 10 * field_width + *format - '0';
3433 }
3434
3435 /* N is not incremented for another few lines below, so refer to
3436 element N+1 (which might be precision[NARGS]). */
3437 if (*format == '.')
3438 {
3439 ++format;
3440 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3441 precision[n+1] = 10 * precision[n+1] + *format - '0';
3442 }
3443
3444 if (format - this_format_start + 1 > longest_format)
3445 longest_format = format - this_format_start + 1;
3446
3447 if (format == end)
3448 error ("Format string ends in middle of format specifier");
3449 if (*format == '%')
3450 format++;
3451 else if (++n >= nargs)
3452 error ("Not enough arguments for format string");
3453 else if (*format == 'S')
3454 {
3455 /* For `S', prin1 the argument and then treat like a string. */
3456 register Lisp_Object tem;
3457 tem = Fprin1_to_string (args[n], Qnil);
3458 if (STRING_MULTIBYTE (tem) && ! multibyte)
3459 {
3460 multibyte = 1;
3461 goto retry;
3462 }
3463 args[n] = tem;
3464 /* If we restart the loop, we should not come here again
3465 because args[n] is now a string and calling
3466 Fprin1_to_string on it produces superflous double
3467 quotes. So, change "%S" to "%s" now. */
3468 *format = 's';
3469 goto string;
3470 }
3471 else if (SYMBOLP (args[n]))
3472 {
3473 args[n] = SYMBOL_NAME (args[n]);
3474 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3475 {
3476 multibyte = 1;
3477 goto retry;
3478 }
3479 goto string;
3480 }
3481 else if (STRINGP (args[n]))
3482 {
3483 string:
3484 if (*format != 's' && *format != 'S')
3485 error ("Format specifier doesn't match argument type");
3486 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3487 to be as large as is calculated here. Easy check for
3488 the case PRECISION = 0. */
3489 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3490 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3491 }
3492 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3493 else if (INTEGERP (args[n]) && *format != 's')
3494 {
3495 /* The following loop assumes the Lisp type indicates
3496 the proper way to pass the argument.
3497 So make sure we have a flonum if the argument should
3498 be a double. */
3499 if (*format == 'e' || *format == 'f' || *format == 'g')
3500 args[n] = Ffloat (args[n]);
3501 else
3502 if (*format != 'd' && *format != 'o' && *format != 'x'
3503 && *format != 'i' && *format != 'X' && *format != 'c')
3504 error ("Invalid format operation %%%c", *format);
3505
3506 thissize = 30;
3507 if (*format == 'c')
3508 {
3509 if (! SINGLE_BYTE_CHAR_P (XINT (args[n]))
3510 /* Note: No one can remember why we have to treat
3511 the character 0 as a multibyte character here.
3512 But, until it causes a real problem, let's
3513 don't change it. */
3514 || XINT (args[n]) == 0)
3515 {
3516 if (! multibyte)
3517 {
3518 multibyte = 1;
3519 goto retry;
3520 }
3521 args[n] = Fchar_to_string (args[n]);
3522 thissize = SBYTES (args[n]);
3523 }
3524 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3525 {
3526 args[n]
3527 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3528 thissize = SBYTES (args[n]);
3529 }
3530 }
3531 }
3532 else if (FLOATP (args[n]) && *format != 's')
3533 {
3534 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3535 {
3536 if (*format != 'd' && *format != 'o' && *format != 'x'
3537 && *format != 'i' && *format != 'X' && *format != 'c')
3538 error ("Invalid format operation %%%c", *format);
3539 args[n] = Ftruncate (args[n], Qnil);
3540 }
3541
3542 /* Note that we're using sprintf to print floats,
3543 so we have to take into account what that function
3544 prints. */
3545 /* Filter out flag value of -1. */
3546 thissize = (MAX_10_EXP + 100
3547 + (precision[n] > 0 ? precision[n] : 0));
3548 }
3549 else
3550 {
3551 /* Anything but a string, convert to a string using princ. */
3552 register Lisp_Object tem;
3553 tem = Fprin1_to_string (args[n], Qt);
3554 if (STRING_MULTIBYTE (tem) && ! multibyte)
3555 {
3556 multibyte = 1;
3557 goto retry;
3558 }
3559 args[n] = tem;
3560 goto string;
3561 }
3562
3563 thissize += max (0, field_width - actual_width);
3564 total += thissize + 4;
3565 }
3566
3567 abort_on_gc--;
3568
3569 /* Now we can no longer jump to retry.
3570 TOTAL and LONGEST_FORMAT are known for certain. */
3571
3572 this_format = (unsigned char *) alloca (longest_format + 1);
3573
3574 /* Allocate the space for the result.
3575 Note that TOTAL is an overestimate. */
3576 SAFE_ALLOCA (buf, char *, total);
3577
3578 p = buf;
3579 nchars = 0;
3580 n = 0;
3581
3582 /* Scan the format and store result in BUF. */
3583 format = SDATA (args[0]);
3584 format_start = format;
3585 end = format + SBYTES (args[0]);
3586 maybe_combine_byte = 0;
3587 while (format != end)
3588 {
3589 if (*format == '%')
3590 {
3591 int minlen;
3592 int negative = 0;
3593 unsigned char *this_format_start = format;
3594
3595 discarded[format - format_start] = 1;
3596 format++;
3597
3598 while (index("-0# ", *format))
3599 {
3600 if (*format == '-')
3601 {
3602 negative = 1;
3603 }
3604 discarded[format - format_start] = 1;
3605 ++format;
3606 }
3607
3608 minlen = atoi (format);
3609
3610 while ((*format >= '0' && *format <= '9') || *format == '.')
3611 {
3612 discarded[format - format_start] = 1;
3613 format++;
3614 }
3615
3616 if (*format++ == '%')
3617 {
3618 *p++ = '%';
3619 nchars++;
3620 continue;
3621 }
3622
3623 ++n;
3624
3625 discarded[format - format_start - 1] = 1;
3626 info[n].start = nchars;
3627
3628 if (STRINGP (args[n]))
3629 {
3630 /* handle case (precision[n] >= 0) */
3631
3632 int width, padding;
3633 int nbytes, start, end;
3634 int nchars_string;
3635
3636 /* lisp_string_width ignores a precision of 0, but GNU
3637 libc functions print 0 characters when the precision
3638 is 0. Imitate libc behavior here. Changing
3639 lisp_string_width is the right thing, and will be
3640 done, but meanwhile we work with it. */
3641
3642 if (precision[n] == 0)
3643 width = nchars_string = nbytes = 0;
3644 else if (precision[n] > 0)
3645 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3646 else
3647 { /* no precision spec given for this argument */
3648 width = lisp_string_width (args[n], -1, NULL, NULL);
3649 nbytes = SBYTES (args[n]);
3650 nchars_string = SCHARS (args[n]);
3651 }
3652
3653 /* If spec requires it, pad on right with spaces. */
3654 padding = minlen - width;
3655 if (! negative)
3656 while (padding-- > 0)
3657 {
3658 *p++ = ' ';
3659 ++nchars;
3660 }
3661
3662 start = nchars;
3663 nchars += nchars_string;
3664 end = nchars;
3665
3666 if (p > buf
3667 && multibyte
3668 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3669 && STRING_MULTIBYTE (args[n])
3670 && !CHAR_HEAD_P (SREF (args[n], 0)))
3671 maybe_combine_byte = 1;
3672
3673 p += copy_text (SDATA (args[n]), p,
3674 nbytes,
3675 STRING_MULTIBYTE (args[n]), multibyte);
3676
3677 if (negative)
3678 while (padding-- > 0)
3679 {
3680 *p++ = ' ';
3681 nchars++;
3682 }
3683
3684 /* If this argument has text properties, record where
3685 in the result string it appears. */
3686 if (STRING_INTERVALS (args[n]))
3687 info[n].intervals = arg_intervals = 1;
3688 }
3689 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3690 {
3691 int this_nchars;
3692
3693 bcopy (this_format_start, this_format,
3694 format - this_format_start);
3695 this_format[format - this_format_start] = 0;
3696
3697 if (INTEGERP (args[n]))
3698 sprintf (p, this_format, XINT (args[n]));
3699 else
3700 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3701
3702 if (p > buf
3703 && multibyte
3704 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3705 && !CHAR_HEAD_P (*((unsigned char *) p)))
3706 maybe_combine_byte = 1;
3707 this_nchars = strlen (p);
3708 if (multibyte)
3709 p += str_to_multibyte (p, buf + total - 1 - p, this_nchars);
3710 else
3711 p += this_nchars;
3712 nchars += this_nchars;
3713 }
3714
3715 info[n].end = nchars;
3716 }
3717 else if (STRING_MULTIBYTE (args[0]))
3718 {
3719 /* Copy a whole multibyte character. */
3720 if (p > buf
3721 && multibyte
3722 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3723 && !CHAR_HEAD_P (*format))
3724 maybe_combine_byte = 1;
3725 *p++ = *format++;
3726 while (! CHAR_HEAD_P (*format))
3727 {
3728 discarded[format - format_start] = 2;
3729 *p++ = *format++;
3730 }
3731 nchars++;
3732 }
3733 else if (multibyte)
3734 {
3735 /* Convert a single-byte character to multibyte. */
3736 int len = copy_text (format, p, 1, 0, 1);
3737
3738 p += len;
3739 format++;
3740 nchars++;
3741 }
3742 else
3743 *p++ = *format++, nchars++;
3744 }
3745
3746 if (p > buf + total)
3747 abort ();
3748
3749 if (maybe_combine_byte)
3750 nchars = multibyte_chars_in_text (buf, p - buf);
3751 val = make_specified_string (buf, nchars, p - buf, multibyte);
3752
3753 /* If we allocated BUF with malloc, free it too. */
3754 SAFE_FREE ();
3755
3756 /* If the format string has text properties, or any of the string
3757 arguments has text properties, set up text properties of the
3758 result string. */
3759
3760 if (STRING_INTERVALS (args[0]) || arg_intervals)
3761 {
3762 Lisp_Object len, new_len, props;
3763 struct gcpro gcpro1;
3764
3765 /* Add text properties from the format string. */
3766 len = make_number (SCHARS (args[0]));
3767 props = text_property_list (args[0], make_number (0), len, Qnil);
3768 GCPRO1 (props);
3769
3770 if (CONSP (props))
3771 {
3772 int bytepos = 0, position = 0, translated = 0, argn = 1;
3773 Lisp_Object list;
3774
3775 /* Adjust the bounds of each text property
3776 to the proper start and end in the output string. */
3777
3778 /* Put the positions in PROPS in increasing order, so that
3779 we can do (effectively) one scan through the position
3780 space of the format string. */
3781 props = Fnreverse (props);
3782
3783 /* BYTEPOS is the byte position in the format string,
3784 POSITION is the untranslated char position in it,
3785 TRANSLATED is the translated char position in BUF,
3786 and ARGN is the number of the next arg we will come to. */
3787 for (list = props; CONSP (list); list = XCDR (list))
3788 {
3789 Lisp_Object item;
3790 int pos;
3791
3792 item = XCAR (list);
3793
3794 /* First adjust the property start position. */
3795 pos = XINT (XCAR (item));
3796
3797 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
3798 up to this position. */
3799 for (; position < pos; bytepos++)
3800 {
3801 if (! discarded[bytepos])
3802 position++, translated++;
3803 else if (discarded[bytepos] == 1)
3804 {
3805 position++;
3806 if (translated == info[argn].start)
3807 {
3808 translated += info[argn].end - info[argn].start;
3809 argn++;
3810 }
3811 }
3812 }
3813
3814 XSETCAR (item, make_number (translated));
3815
3816 /* Likewise adjust the property end position. */
3817 pos = XINT (XCAR (XCDR (item)));
3818
3819 for (; bytepos < pos; bytepos++)
3820 {
3821 if (! discarded[bytepos])
3822 position++, translated++;
3823 else if (discarded[bytepos] == 1)
3824 {
3825 position++;
3826 if (translated == info[argn].start)
3827 {
3828 translated += info[argn].end - info[argn].start;
3829 argn++;
3830 }
3831 }
3832 }
3833
3834 XSETCAR (XCDR (item), make_number (translated));
3835 }
3836
3837 add_text_properties_from_list (val, props, make_number (0));
3838 }
3839
3840 /* Add text properties from arguments. */
3841 if (arg_intervals)
3842 for (n = 1; n < nargs; ++n)
3843 if (info[n].intervals)
3844 {
3845 len = make_number (SCHARS (args[n]));
3846 new_len = make_number (info[n].end - info[n].start);
3847 props = text_property_list (args[n], make_number (0), len, Qnil);
3848 extend_property_ranges (props, len, new_len);
3849 /* If successive arguments have properites, be sure that
3850 the value of `composition' property be the copy. */
3851 if (n > 1 && info[n - 1].end)
3852 make_composition_value_copy (props);
3853 add_text_properties_from_list (val, props,
3854 make_number (info[n].start));
3855 }
3856
3857 UNGCPRO;
3858 }
3859
3860 return val;
3861 }
3862
3863 Lisp_Object
3864 format2 (string1, arg0, arg1)
3865 char *string1;
3866 Lisp_Object arg0, arg1;
3867 {
3868 Lisp_Object args[3];
3869 args[0] = build_string (string1);
3870 args[1] = arg0;
3871 args[2] = arg1;
3872 return Fformat (3, args);
3873 }
3874 \f
3875 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
3876 doc: /* Return t if two characters match, optionally ignoring case.
3877 Both arguments must be characters (i.e. integers).
3878 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
3879 (c1, c2)
3880 register Lisp_Object c1, c2;
3881 {
3882 int i1, i2;
3883 CHECK_NUMBER (c1);
3884 CHECK_NUMBER (c2);
3885
3886 if (XINT (c1) == XINT (c2))
3887 return Qt;
3888 if (NILP (current_buffer->case_fold_search))
3889 return Qnil;
3890
3891 /* Do these in separate statements,
3892 then compare the variables.
3893 because of the way DOWNCASE uses temp variables. */
3894 i1 = DOWNCASE (XFASTINT (c1));
3895 i2 = DOWNCASE (XFASTINT (c2));
3896 return (i1 == i2 ? Qt : Qnil);
3897 }
3898 \f
3899 /* Transpose the markers in two regions of the current buffer, and
3900 adjust the ones between them if necessary (i.e.: if the regions
3901 differ in size).
3902
3903 START1, END1 are the character positions of the first region.
3904 START1_BYTE, END1_BYTE are the byte positions.
3905 START2, END2 are the character positions of the second region.
3906 START2_BYTE, END2_BYTE are the byte positions.
3907
3908 Traverses the entire marker list of the buffer to do so, adding an
3909 appropriate amount to some, subtracting from some, and leaving the
3910 rest untouched. Most of this is copied from adjust_markers in insdel.c.
3911
3912 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
3913
3914 static void
3915 transpose_markers (start1, end1, start2, end2,
3916 start1_byte, end1_byte, start2_byte, end2_byte)
3917 register int start1, end1, start2, end2;
3918 register int start1_byte, end1_byte, start2_byte, end2_byte;
3919 {
3920 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
3921 register struct Lisp_Marker *marker;
3922
3923 /* Update point as if it were a marker. */
3924 if (PT < start1)
3925 ;
3926 else if (PT < end1)
3927 TEMP_SET_PT_BOTH (PT + (end2 - end1),
3928 PT_BYTE + (end2_byte - end1_byte));
3929 else if (PT < start2)
3930 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
3931 (PT_BYTE + (end2_byte - start2_byte)
3932 - (end1_byte - start1_byte)));
3933 else if (PT < end2)
3934 TEMP_SET_PT_BOTH (PT - (start2 - start1),
3935 PT_BYTE - (start2_byte - start1_byte));
3936
3937 /* We used to adjust the endpoints here to account for the gap, but that
3938 isn't good enough. Even if we assume the caller has tried to move the
3939 gap out of our way, it might still be at start1 exactly, for example;
3940 and that places it `inside' the interval, for our purposes. The amount
3941 of adjustment is nontrivial if there's a `denormalized' marker whose
3942 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
3943 the dirty work to Fmarker_position, below. */
3944
3945 /* The difference between the region's lengths */
3946 diff = (end2 - start2) - (end1 - start1);
3947 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
3948
3949 /* For shifting each marker in a region by the length of the other
3950 region plus the distance between the regions. */
3951 amt1 = (end2 - start2) + (start2 - end1);
3952 amt2 = (end1 - start1) + (start2 - end1);
3953 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
3954 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
3955
3956 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
3957 {
3958 mpos = marker->bytepos;
3959 if (mpos >= start1_byte && mpos < end2_byte)
3960 {
3961 if (mpos < end1_byte)
3962 mpos += amt1_byte;
3963 else if (mpos < start2_byte)
3964 mpos += diff_byte;
3965 else
3966 mpos -= amt2_byte;
3967 marker->bytepos = mpos;
3968 }
3969 mpos = marker->charpos;
3970 if (mpos >= start1 && mpos < end2)
3971 {
3972 if (mpos < end1)
3973 mpos += amt1;
3974 else if (mpos < start2)
3975 mpos += diff;
3976 else
3977 mpos -= amt2;
3978 }
3979 marker->charpos = mpos;
3980 }
3981 }
3982
3983 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
3984 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
3985 The regions may not be overlapping, because the size of the buffer is
3986 never changed in a transposition.
3987
3988 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
3989 any markers that happen to be located in the regions.
3990
3991 Transposing beyond buffer boundaries is an error. */)
3992 (startr1, endr1, startr2, endr2, leave_markers)
3993 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
3994 {
3995 register int start1, end1, start2, end2;
3996 int start1_byte, start2_byte, len1_byte, len2_byte;
3997 int gap, len1, len_mid, len2;
3998 unsigned char *start1_addr, *start2_addr, *temp;
3999
4000 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2;
4001 cur_intv = BUF_INTERVALS (current_buffer);
4002
4003 validate_region (&startr1, &endr1);
4004 validate_region (&startr2, &endr2);
4005
4006 start1 = XFASTINT (startr1);
4007 end1 = XFASTINT (endr1);
4008 start2 = XFASTINT (startr2);
4009 end2 = XFASTINT (endr2);
4010 gap = GPT;
4011
4012 /* Swap the regions if they're reversed. */
4013 if (start2 < end1)
4014 {
4015 register int glumph = start1;
4016 start1 = start2;
4017 start2 = glumph;
4018 glumph = end1;
4019 end1 = end2;
4020 end2 = glumph;
4021 }
4022
4023 len1 = end1 - start1;
4024 len2 = end2 - start2;
4025
4026 if (start2 < end1)
4027 error ("Transposed regions overlap");
4028 else if (start1 == end1 || start2 == end2)
4029 error ("Transposed region has length 0");
4030
4031 /* The possibilities are:
4032 1. Adjacent (contiguous) regions, or separate but equal regions
4033 (no, really equal, in this case!), or
4034 2. Separate regions of unequal size.
4035
4036 The worst case is usually No. 2. It means that (aside from
4037 potential need for getting the gap out of the way), there also
4038 needs to be a shifting of the text between the two regions. So
4039 if they are spread far apart, we are that much slower... sigh. */
4040
4041 /* It must be pointed out that the really studly thing to do would
4042 be not to move the gap at all, but to leave it in place and work
4043 around it if necessary. This would be extremely efficient,
4044 especially considering that people are likely to do
4045 transpositions near where they are working interactively, which
4046 is exactly where the gap would be found. However, such code
4047 would be much harder to write and to read. So, if you are
4048 reading this comment and are feeling squirrely, by all means have
4049 a go! I just didn't feel like doing it, so I will simply move
4050 the gap the minimum distance to get it out of the way, and then
4051 deal with an unbroken array. */
4052
4053 /* Make sure the gap won't interfere, by moving it out of the text
4054 we will operate on. */
4055 if (start1 < gap && gap < end2)
4056 {
4057 if (gap - start1 < end2 - gap)
4058 move_gap (start1);
4059 else
4060 move_gap (end2);
4061 }
4062
4063 start1_byte = CHAR_TO_BYTE (start1);
4064 start2_byte = CHAR_TO_BYTE (start2);
4065 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4066 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4067
4068 #ifdef BYTE_COMBINING_DEBUG
4069 if (end1 == start2)
4070 {
4071 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4072 len2_byte, start1, start1_byte)
4073 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4074 len1_byte, end2, start2_byte + len2_byte)
4075 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4076 len1_byte, end2, start2_byte + len2_byte))
4077 abort ();
4078 }
4079 else
4080 {
4081 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4082 len2_byte, start1, start1_byte)
4083 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4084 len1_byte, start2, start2_byte)
4085 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4086 len2_byte, end1, start1_byte + len1_byte)
4087 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4088 len1_byte, end2, start2_byte + len2_byte))
4089 abort ();
4090 }
4091 #endif
4092
4093 /* Hmmm... how about checking to see if the gap is large
4094 enough to use as the temporary storage? That would avoid an
4095 allocation... interesting. Later, don't fool with it now. */
4096
4097 /* Working without memmove, for portability (sigh), so must be
4098 careful of overlapping subsections of the array... */
4099
4100 if (end1 == start2) /* adjacent regions */
4101 {
4102 modify_region (current_buffer, start1, end2);
4103 record_change (start1, len1 + len2);
4104
4105 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4106 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4107 Fset_text_properties (make_number (start1), make_number (end2),
4108 Qnil, Qnil);
4109
4110 /* First region smaller than second. */
4111 if (len1_byte < len2_byte)
4112 {
4113 USE_SAFE_ALLOCA;
4114
4115 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4116
4117 /* Don't precompute these addresses. We have to compute them
4118 at the last minute, because the relocating allocator might
4119 have moved the buffer around during the xmalloc. */
4120 start1_addr = BYTE_POS_ADDR (start1_byte);
4121 start2_addr = BYTE_POS_ADDR (start2_byte);
4122
4123 bcopy (start2_addr, temp, len2_byte);
4124 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4125 bcopy (temp, start1_addr, len2_byte);
4126 SAFE_FREE ();
4127 }
4128 else
4129 /* First region not smaller than second. */
4130 {
4131 USE_SAFE_ALLOCA;
4132
4133 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4134 start1_addr = BYTE_POS_ADDR (start1_byte);
4135 start2_addr = BYTE_POS_ADDR (start2_byte);
4136 bcopy (start1_addr, temp, len1_byte);
4137 bcopy (start2_addr, start1_addr, len2_byte);
4138 bcopy (temp, start1_addr + len2_byte, len1_byte);
4139 SAFE_FREE ();
4140 }
4141 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4142 len1, current_buffer, 0);
4143 graft_intervals_into_buffer (tmp_interval2, start1,
4144 len2, current_buffer, 0);
4145 update_compositions (start1, start1 + len2, CHECK_BORDER);
4146 update_compositions (start1 + len2, end2, CHECK_TAIL);
4147 }
4148 /* Non-adjacent regions, because end1 != start2, bleagh... */
4149 else
4150 {
4151 len_mid = start2_byte - (start1_byte + len1_byte);
4152
4153 if (len1_byte == len2_byte)
4154 /* Regions are same size, though, how nice. */
4155 {
4156 USE_SAFE_ALLOCA;
4157
4158 modify_region (current_buffer, start1, end1);
4159 modify_region (current_buffer, start2, end2);
4160 record_change (start1, len1);
4161 record_change (start2, len2);
4162 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4163 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4164 Fset_text_properties (make_number (start1), make_number (end1),
4165 Qnil, Qnil);
4166 Fset_text_properties (make_number (start2), make_number (end2),
4167 Qnil, Qnil);
4168
4169 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4170 start1_addr = BYTE_POS_ADDR (start1_byte);
4171 start2_addr = BYTE_POS_ADDR (start2_byte);
4172 bcopy (start1_addr, temp, len1_byte);
4173 bcopy (start2_addr, start1_addr, len2_byte);
4174 bcopy (temp, start2_addr, len1_byte);
4175 SAFE_FREE ();
4176
4177 graft_intervals_into_buffer (tmp_interval1, start2,
4178 len1, current_buffer, 0);
4179 graft_intervals_into_buffer (tmp_interval2, start1,
4180 len2, current_buffer, 0);
4181 }
4182
4183 else if (len1_byte < len2_byte) /* Second region larger than first */
4184 /* Non-adjacent & unequal size, area between must also be shifted. */
4185 {
4186 USE_SAFE_ALLOCA;
4187
4188 modify_region (current_buffer, start1, end2);
4189 record_change (start1, (end2 - start1));
4190 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4191 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4192 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4193 Fset_text_properties (make_number (start1), make_number (end2),
4194 Qnil, Qnil);
4195
4196 /* holds region 2 */
4197 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4198 start1_addr = BYTE_POS_ADDR (start1_byte);
4199 start2_addr = BYTE_POS_ADDR (start2_byte);
4200 bcopy (start2_addr, temp, len2_byte);
4201 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4202 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4203 bcopy (temp, start1_addr, len2_byte);
4204 SAFE_FREE ();
4205
4206 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4207 len1, current_buffer, 0);
4208 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4209 len_mid, current_buffer, 0);
4210 graft_intervals_into_buffer (tmp_interval2, start1,
4211 len2, current_buffer, 0);
4212 }
4213 else
4214 /* Second region smaller than first. */
4215 {
4216 USE_SAFE_ALLOCA;
4217
4218 record_change (start1, (end2 - start1));
4219 modify_region (current_buffer, start1, end2);
4220
4221 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4222 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4223 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4224 Fset_text_properties (make_number (start1), make_number (end2),
4225 Qnil, Qnil);
4226
4227 /* holds region 1 */
4228 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4229 start1_addr = BYTE_POS_ADDR (start1_byte);
4230 start2_addr = BYTE_POS_ADDR (start2_byte);
4231 bcopy (start1_addr, temp, len1_byte);
4232 bcopy (start2_addr, start1_addr, len2_byte);
4233 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4234 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4235 SAFE_FREE ();
4236
4237 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4238 len1, current_buffer, 0);
4239 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4240 len_mid, current_buffer, 0);
4241 graft_intervals_into_buffer (tmp_interval2, start1,
4242 len2, current_buffer, 0);
4243 }
4244
4245 update_compositions (start1, start1 + len2, CHECK_BORDER);
4246 update_compositions (end2 - len1, end2, CHECK_BORDER);
4247 }
4248
4249 /* When doing multiple transpositions, it might be nice
4250 to optimize this. Perhaps the markers in any one buffer
4251 should be organized in some sorted data tree. */
4252 if (NILP (leave_markers))
4253 {
4254 transpose_markers (start1, end1, start2, end2,
4255 start1_byte, start1_byte + len1_byte,
4256 start2_byte, start2_byte + len2_byte);
4257 fix_start_end_in_overlays (start1, end2);
4258 }
4259
4260 return Qnil;
4261 }
4262
4263 \f
4264 void
4265 syms_of_editfns ()
4266 {
4267 environbuf = 0;
4268
4269 Qbuffer_access_fontify_functions
4270 = intern ("buffer-access-fontify-functions");
4271 staticpro (&Qbuffer_access_fontify_functions);
4272
4273 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4274 doc: /* Non-nil means text motion commands don't notice fields. */);
4275 Vinhibit_field_text_motion = Qnil;
4276
4277 DEFVAR_LISP ("buffer-access-fontify-functions",
4278 &Vbuffer_access_fontify_functions,
4279 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4280 Each function is called with two arguments which specify the range
4281 of the buffer being accessed. */);
4282 Vbuffer_access_fontify_functions = Qnil;
4283
4284 {
4285 Lisp_Object obuf;
4286 extern Lisp_Object Vprin1_to_string_buffer;
4287 obuf = Fcurrent_buffer ();
4288 /* Do this here, because init_buffer_once is too early--it won't work. */
4289 Fset_buffer (Vprin1_to_string_buffer);
4290 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4291 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4292 Qnil);
4293 Fset_buffer (obuf);
4294 }
4295
4296 DEFVAR_LISP ("buffer-access-fontified-property",
4297 &Vbuffer_access_fontified_property,
4298 doc: /* Property which (if non-nil) indicates text has been fontified.
4299 `buffer-substring' need not call the `buffer-access-fontify-functions'
4300 functions if all the text being accessed has this property. */);
4301 Vbuffer_access_fontified_property = Qnil;
4302
4303 DEFVAR_LISP ("system-name", &Vsystem_name,
4304 doc: /* The name of the machine Emacs is running on. */);
4305
4306 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4307 doc: /* The full name of the user logged in. */);
4308
4309 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4310 doc: /* The user's name, taken from environment variables if possible. */);
4311
4312 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4313 doc: /* The user's name, based upon the real uid only. */);
4314
4315 DEFVAR_LISP ("operating-system-release", &Voperating_system_release,
4316 doc: /* The release of the operating system Emacs is running on. */);
4317
4318 defsubr (&Spropertize);
4319 defsubr (&Schar_equal);
4320 defsubr (&Sgoto_char);
4321 defsubr (&Sstring_to_char);
4322 defsubr (&Schar_to_string);
4323 defsubr (&Sbuffer_substring);
4324 defsubr (&Sbuffer_substring_no_properties);
4325 defsubr (&Sbuffer_string);
4326
4327 defsubr (&Spoint_marker);
4328 defsubr (&Smark_marker);
4329 defsubr (&Spoint);
4330 defsubr (&Sregion_beginning);
4331 defsubr (&Sregion_end);
4332
4333 staticpro (&Qfield);
4334 Qfield = intern ("field");
4335 staticpro (&Qboundary);
4336 Qboundary = intern ("boundary");
4337 defsubr (&Sfield_beginning);
4338 defsubr (&Sfield_end);
4339 defsubr (&Sfield_string);
4340 defsubr (&Sfield_string_no_properties);
4341 defsubr (&Sdelete_field);
4342 defsubr (&Sconstrain_to_field);
4343
4344 defsubr (&Sline_beginning_position);
4345 defsubr (&Sline_end_position);
4346
4347 /* defsubr (&Smark); */
4348 /* defsubr (&Sset_mark); */
4349 defsubr (&Ssave_excursion);
4350 defsubr (&Ssave_current_buffer);
4351
4352 defsubr (&Sbufsize);
4353 defsubr (&Spoint_max);
4354 defsubr (&Spoint_min);
4355 defsubr (&Spoint_min_marker);
4356 defsubr (&Spoint_max_marker);
4357 defsubr (&Sgap_position);
4358 defsubr (&Sgap_size);
4359 defsubr (&Sposition_bytes);
4360 defsubr (&Sbyte_to_position);
4361
4362 defsubr (&Sbobp);
4363 defsubr (&Seobp);
4364 defsubr (&Sbolp);
4365 defsubr (&Seolp);
4366 defsubr (&Sfollowing_char);
4367 defsubr (&Sprevious_char);
4368 defsubr (&Schar_after);
4369 defsubr (&Schar_before);
4370 defsubr (&Sinsert);
4371 defsubr (&Sinsert_before_markers);
4372 defsubr (&Sinsert_and_inherit);
4373 defsubr (&Sinsert_and_inherit_before_markers);
4374 defsubr (&Sinsert_char);
4375
4376 defsubr (&Suser_login_name);
4377 defsubr (&Suser_real_login_name);
4378 defsubr (&Suser_uid);
4379 defsubr (&Suser_real_uid);
4380 defsubr (&Suser_full_name);
4381 defsubr (&Semacs_pid);
4382 defsubr (&Scurrent_time);
4383 defsubr (&Sget_internal_run_time);
4384 defsubr (&Sformat_time_string);
4385 defsubr (&Sfloat_time);
4386 defsubr (&Sdecode_time);
4387 defsubr (&Sencode_time);
4388 defsubr (&Scurrent_time_string);
4389 defsubr (&Scurrent_time_zone);
4390 defsubr (&Sset_time_zone_rule);
4391 defsubr (&Ssystem_name);
4392 defsubr (&Smessage);
4393 defsubr (&Smessage_box);
4394 defsubr (&Smessage_or_box);
4395 defsubr (&Scurrent_message);
4396 defsubr (&Sformat);
4397
4398 defsubr (&Sinsert_buffer_substring);
4399 defsubr (&Scompare_buffer_substrings);
4400 defsubr (&Ssubst_char_in_region);
4401 defsubr (&Stranslate_region_internal);
4402 defsubr (&Sdelete_region);
4403 defsubr (&Sdelete_and_extract_region);
4404 defsubr (&Swiden);
4405 defsubr (&Snarrow_to_region);
4406 defsubr (&Ssave_restriction);
4407 defsubr (&Stranspose_regions);
4408 }
4409
4410 /* arch-tag: fc3827d8-6f60-4067-b11e-c3218031b018
4411 (do not change this comment) */