]> code.delx.au - gnu-emacs/blob - src/coding.c
Merge branch 'master' of git.sv.gnu.org:/srv/git/emacs
[gnu-emacs] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
7 Copyright (C) 2003
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
10
11 This file is part of GNU Emacs.
12
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or
16 (at your option) any later version.
17
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25
26 /*** TABLE OF CONTENTS ***
27
28 0. General comments
29 1. Preamble
30 2. Emacs' internal format (emacs-utf-8) handlers
31 3. UTF-8 handlers
32 4. UTF-16 handlers
33 5. Charset-base coding systems handlers
34 6. emacs-mule (old Emacs' internal format) handlers
35 7. ISO2022 handlers
36 8. Shift-JIS and BIG5 handlers
37 9. CCL handlers
38 10. C library functions
39 11. Emacs Lisp library functions
40 12. Postamble
41
42 */
43
44 /*** 0. General comments ***
45
46
47 CODING SYSTEM
48
49 A coding system is an object for an encoding mechanism that contains
50 information about how to convert byte sequences to character
51 sequences and vice versa. When we say "decode", it means converting
52 a byte sequence of a specific coding system into a character
53 sequence that is represented by Emacs' internal coding system
54 `emacs-utf-8', and when we say "encode", it means converting a
55 character sequence of emacs-utf-8 to a byte sequence of a specific
56 coding system.
57
58 In Emacs Lisp, a coding system is represented by a Lisp symbol. On
59 the C level, a coding system is represented by a vector of attributes
60 stored in the hash table Vcharset_hash_table. The conversion from
61 coding system symbol to attributes vector is done by looking up
62 Vcharset_hash_table by the symbol.
63
64 Coding systems are classified into the following types depending on
65 the encoding mechanism. Here's a brief description of the types.
66
67 o UTF-8
68
69 o UTF-16
70
71 o Charset-base coding system
72
73 A coding system defined by one or more (coded) character sets.
74 Decoding and encoding are done by a code converter defined for each
75 character set.
76
77 o Old Emacs internal format (emacs-mule)
78
79 The coding system adopted by old versions of Emacs (20 and 21).
80
81 o ISO2022-base coding system
82
83 The most famous coding system for multiple character sets. X's
84 Compound Text, various EUCs (Extended Unix Code), and coding systems
85 used in the Internet communication such as ISO-2022-JP are all
86 variants of ISO2022.
87
88 o SJIS (or Shift-JIS or MS-Kanji-Code)
89
90 A coding system to encode character sets: ASCII, JISX0201, and
91 JISX0208. Widely used for PC's in Japan. Details are described in
92 section 8.
93
94 o BIG5
95
96 A coding system to encode character sets: ASCII and Big5. Widely
97 used for Chinese (mainly in Taiwan and Hong Kong). Details are
98 described in section 8. In this file, when we write "big5" (all
99 lowercase), we mean the coding system, and when we write "Big5"
100 (capitalized), we mean the character set.
101
102 o CCL
103
104 If a user wants to decode/encode text encoded in a coding system
105 not listed above, he can supply a decoder and an encoder for it in
106 CCL (Code Conversion Language) programs. Emacs executes the CCL
107 program while decoding/encoding.
108
109 o Raw-text
110
111 A coding system for text containing raw eight-bit data. Emacs
112 treats each byte of source text as a character (except for
113 end-of-line conversion).
114
115 o No-conversion
116
117 Like raw text, but don't do end-of-line conversion.
118
119
120 END-OF-LINE FORMAT
121
122 How text end-of-line is encoded depends on operating system. For
123 instance, Unix's format is just one byte of LF (line-feed) code,
124 whereas DOS's format is two-byte sequence of `carriage-return' and
125 `line-feed' codes. MacOS's format is usually one byte of
126 `carriage-return'.
127
128 Since text character encoding and end-of-line encoding are
129 independent, any coding system described above can take any format
130 of end-of-line (except for no-conversion).
131
132 STRUCT CODING_SYSTEM
133
134 Before using a coding system for code conversion (i.e. decoding and
135 encoding), we setup a structure of type `struct coding_system'.
136 This structure keeps various information about a specific code
137 conversion (e.g. the location of source and destination data).
138
139 */
140
141 /* COMMON MACROS */
142
143
144 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
145
146 These functions check if a byte sequence specified as a source in
147 CODING conforms to the format of XXX, and update the members of
148 DETECT_INFO.
149
150 Return true if the byte sequence conforms to XXX.
151
152 Below is the template of these functions. */
153
154 #if 0
155 static bool
156 detect_coding_XXX (struct coding_system *coding,
157 struct coding_detection_info *detect_info)
158 {
159 const unsigned char *src = coding->source;
160 const unsigned char *src_end = coding->source + coding->src_bytes;
161 bool multibytep = coding->src_multibyte;
162 ptrdiff_t consumed_chars = 0;
163 int found = 0;
164 ...;
165
166 while (1)
167 {
168 /* Get one byte from the source. If the source is exhausted, jump
169 to no_more_source:. */
170 ONE_MORE_BYTE (c);
171
172 if (! __C_conforms_to_XXX___ (c))
173 break;
174 if (! __C_strongly_suggests_XXX__ (c))
175 found = CATEGORY_MASK_XXX;
176 }
177 /* The byte sequence is invalid for XXX. */
178 detect_info->rejected |= CATEGORY_MASK_XXX;
179 return 0;
180
181 no_more_source:
182 /* The source exhausted successfully. */
183 detect_info->found |= found;
184 return 1;
185 }
186 #endif
187
188 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
189
190 These functions decode a byte sequence specified as a source by
191 CODING. The resulting multibyte text goes to a place pointed to by
192 CODING->charbuf, the length of which should not exceed
193 CODING->charbuf_size;
194
195 These functions set the information of original and decoded texts in
196 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
197 They also set CODING->result to one of CODING_RESULT_XXX indicating
198 how the decoding is finished.
199
200 Below is the template of these functions. */
201
202 #if 0
203 static void
204 decode_coding_XXXX (struct coding_system *coding)
205 {
206 const unsigned char *src = coding->source + coding->consumed;
207 const unsigned char *src_end = coding->source + coding->src_bytes;
208 /* SRC_BASE remembers the start position in source in each loop.
209 The loop will be exited when there's not enough source code, or
210 when there's no room in CHARBUF for a decoded character. */
211 const unsigned char *src_base;
212 /* A buffer to produce decoded characters. */
213 int *charbuf = coding->charbuf + coding->charbuf_used;
214 int *charbuf_end = coding->charbuf + coding->charbuf_size;
215 bool multibytep = coding->src_multibyte;
216
217 while (1)
218 {
219 src_base = src;
220 if (charbuf < charbuf_end)
221 /* No more room to produce a decoded character. */
222 break;
223 ONE_MORE_BYTE (c);
224 /* Decode it. */
225 }
226
227 no_more_source:
228 if (src_base < src_end
229 && coding->mode & CODING_MODE_LAST_BLOCK)
230 /* If the source ends by partial bytes to construct a character,
231 treat them as eight-bit raw data. */
232 while (src_base < src_end && charbuf < charbuf_end)
233 *charbuf++ = *src_base++;
234 /* Remember how many bytes and characters we consumed. If the
235 source is multibyte, the bytes and chars are not identical. */
236 coding->consumed = coding->consumed_char = src_base - coding->source;
237 /* Remember how many characters we produced. */
238 coding->charbuf_used = charbuf - coding->charbuf;
239 }
240 #endif
241
242 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
243
244 These functions encode SRC_BYTES length text at SOURCE of Emacs'
245 internal multibyte format by CODING. The resulting byte sequence
246 goes to a place pointed to by DESTINATION, the length of which
247 should not exceed DST_BYTES.
248
249 These functions set the information of original and encoded texts in
250 the members produced, produced_char, consumed, and consumed_char of
251 the structure *CODING. They also set the member result to one of
252 CODING_RESULT_XXX indicating how the encoding finished.
253
254 DST_BYTES zero means that source area and destination area are
255 overlapped, which means that we can produce a encoded text until it
256 reaches at the head of not-yet-encoded source text.
257
258 Below is a template of these functions. */
259 #if 0
260 static void
261 encode_coding_XXX (struct coding_system *coding)
262 {
263 bool multibytep = coding->dst_multibyte;
264 int *charbuf = coding->charbuf;
265 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
266 unsigned char *dst = coding->destination + coding->produced;
267 unsigned char *dst_end = coding->destination + coding->dst_bytes;
268 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
269 ptrdiff_t produced_chars = 0;
270
271 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
272 {
273 int c = *charbuf;
274 /* Encode C into DST, and increment DST. */
275 }
276 label_no_more_destination:
277 /* How many chars and bytes we produced. */
278 coding->produced_char += produced_chars;
279 coding->produced = dst - coding->destination;
280 }
281 #endif
282
283 \f
284 /*** 1. Preamble ***/
285
286 #include <config.h>
287 #include <stdio.h>
288
289 #ifdef HAVE_WCHAR_H
290 #include <wchar.h>
291 #endif /* HAVE_WCHAR_H */
292
293 #include "lisp.h"
294 #include "character.h"
295 #include "buffer.h"
296 #include "charset.h"
297 #include "ccl.h"
298 #include "composite.h"
299 #include "coding.h"
300 #include "window.h"
301 #include "frame.h"
302 #include "termhooks.h"
303
304 Lisp_Object Vcoding_system_hash_table;
305
306 /* Format of end-of-line decided by system. This is Qunix on
307 Unix and Mac, Qdos on DOS/Windows.
308 This has an effect only for external encoding (i.e. for output to
309 file and process), not for in-buffer or Lisp string encoding. */
310 static Lisp_Object system_eol_type;
311
312 #ifdef emacs
313
314 /* Coding-systems are handed between Emacs Lisp programs and C internal
315 routines by the following three variables. */
316 /* Coding system to be used to encode text for terminal display when
317 terminal coding system is nil. */
318 struct coding_system safe_terminal_coding;
319
320 #endif /* emacs */
321
322 /* Two special coding systems. */
323 static Lisp_Object Vsjis_coding_system;
324 static Lisp_Object Vbig5_coding_system;
325
326 /* ISO2022 section */
327
328 #define CODING_ISO_INITIAL(coding, reg) \
329 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
330 coding_attr_iso_initial), \
331 reg)))
332
333
334 #define CODING_ISO_REQUEST(coding, charset_id) \
335 (((charset_id) <= (coding)->max_charset_id \
336 ? ((coding)->safe_charsets[charset_id] != 255 \
337 ? (coding)->safe_charsets[charset_id] \
338 : -1) \
339 : -1))
340
341
342 #define CODING_ISO_FLAGS(coding) \
343 ((coding)->spec.iso_2022.flags)
344 #define CODING_ISO_DESIGNATION(coding, reg) \
345 ((coding)->spec.iso_2022.current_designation[reg])
346 #define CODING_ISO_INVOCATION(coding, plane) \
347 ((coding)->spec.iso_2022.current_invocation[plane])
348 #define CODING_ISO_SINGLE_SHIFTING(coding) \
349 ((coding)->spec.iso_2022.single_shifting)
350 #define CODING_ISO_BOL(coding) \
351 ((coding)->spec.iso_2022.bol)
352 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
353 (CODING_ISO_INVOCATION (coding, plane) < 0 ? -1 \
354 : CODING_ISO_DESIGNATION (coding, CODING_ISO_INVOCATION (coding, plane)))
355 #define CODING_ISO_CMP_STATUS(coding) \
356 (&(coding)->spec.iso_2022.cmp_status)
357 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
358 ((coding)->spec.iso_2022.ctext_extended_segment_len)
359 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
360 ((coding)->spec.iso_2022.embedded_utf_8)
361
362 /* Control characters of ISO2022. */
363 /* code */ /* function */
364 #define ISO_CODE_SO 0x0E /* shift-out */
365 #define ISO_CODE_SI 0x0F /* shift-in */
366 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
367 #define ISO_CODE_ESC 0x1B /* escape */
368 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
369 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
370 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
371
372 /* All code (1-byte) of ISO2022 is classified into one of the
373 followings. */
374 enum iso_code_class_type
375 {
376 ISO_control_0, /* Control codes in the range
377 0x00..0x1F and 0x7F, except for the
378 following 5 codes. */
379 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
380 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
381 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
382 ISO_escape, /* ISO_CODE_ESC (0x1B) */
383 ISO_control_1, /* Control codes in the range
384 0x80..0x9F, except for the
385 following 3 codes. */
386 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
387 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
388 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
389 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
390 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
391 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
392 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
393 };
394
395 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
396 `iso-flags' attribute of an iso2022 coding system. */
397
398 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
399 instead of the correct short-form sequence (e.g. ESC $ A). */
400 #define CODING_ISO_FLAG_LONG_FORM 0x0001
401
402 /* If set, reset graphic planes and registers at end-of-line to the
403 initial state. */
404 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
405
406 /* If set, reset graphic planes and registers before any control
407 characters to the initial state. */
408 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
409
410 /* If set, encode by 7-bit environment. */
411 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
412
413 /* If set, use locking-shift function. */
414 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
415
416 /* If set, use single-shift function. Overwrite
417 CODING_ISO_FLAG_LOCKING_SHIFT. */
418 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
419
420 /* If set, use designation escape sequence. */
421 #define CODING_ISO_FLAG_DESIGNATION 0x0040
422
423 /* If set, produce revision number sequence. */
424 #define CODING_ISO_FLAG_REVISION 0x0080
425
426 /* If set, produce ISO6429's direction specifying sequence. */
427 #define CODING_ISO_FLAG_DIRECTION 0x0100
428
429 /* If set, assume designation states are reset at beginning of line on
430 output. */
431 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
432
433 /* If set, designation sequence should be placed at beginning of line
434 on output. */
435 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
436
437 /* If set, do not encode unsafe characters on output. */
438 #define CODING_ISO_FLAG_SAFE 0x0800
439
440 /* If set, extra latin codes (128..159) are accepted as a valid code
441 on input. */
442 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
443
444 #define CODING_ISO_FLAG_COMPOSITION 0x2000
445
446 /* #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000 */
447
448 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
449
450 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
451
452 #define CODING_ISO_FLAG_LEVEL_4 0x20000
453
454 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
455
456 /* A character to be produced on output if encoding of the original
457 character is prohibited by CODING_ISO_FLAG_SAFE. */
458 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
459
460 /* UTF-8 section */
461 #define CODING_UTF_8_BOM(coding) \
462 ((coding)->spec.utf_8_bom)
463
464 /* UTF-16 section */
465 #define CODING_UTF_16_BOM(coding) \
466 ((coding)->spec.utf_16.bom)
467
468 #define CODING_UTF_16_ENDIAN(coding) \
469 ((coding)->spec.utf_16.endian)
470
471 #define CODING_UTF_16_SURROGATE(coding) \
472 ((coding)->spec.utf_16.surrogate)
473
474
475 /* CCL section */
476 #define CODING_CCL_DECODER(coding) \
477 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
478 #define CODING_CCL_ENCODER(coding) \
479 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
480 #define CODING_CCL_VALIDS(coding) \
481 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
482
483 /* Index for each coding category in `coding_categories' */
484
485 enum coding_category
486 {
487 coding_category_iso_7,
488 coding_category_iso_7_tight,
489 coding_category_iso_8_1,
490 coding_category_iso_8_2,
491 coding_category_iso_7_else,
492 coding_category_iso_8_else,
493 coding_category_utf_8_auto,
494 coding_category_utf_8_nosig,
495 coding_category_utf_8_sig,
496 coding_category_utf_16_auto,
497 coding_category_utf_16_be,
498 coding_category_utf_16_le,
499 coding_category_utf_16_be_nosig,
500 coding_category_utf_16_le_nosig,
501 coding_category_charset,
502 coding_category_sjis,
503 coding_category_big5,
504 coding_category_ccl,
505 coding_category_emacs_mule,
506 /* All above are targets of code detection. */
507 coding_category_raw_text,
508 coding_category_undecided,
509 coding_category_max
510 };
511
512 /* Definitions of flag bits used in detect_coding_XXXX. */
513 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
514 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
515 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
516 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
517 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
518 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
519 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
520 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
521 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
522 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
523 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
524 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
525 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
526 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
527 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
528 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
529 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
530 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
531 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
532 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
533
534 /* This value is returned if detect_coding_mask () find nothing other
535 than ASCII characters. */
536 #define CATEGORY_MASK_ANY \
537 (CATEGORY_MASK_ISO_7 \
538 | CATEGORY_MASK_ISO_7_TIGHT \
539 | CATEGORY_MASK_ISO_8_1 \
540 | CATEGORY_MASK_ISO_8_2 \
541 | CATEGORY_MASK_ISO_7_ELSE \
542 | CATEGORY_MASK_ISO_8_ELSE \
543 | CATEGORY_MASK_UTF_8_AUTO \
544 | CATEGORY_MASK_UTF_8_NOSIG \
545 | CATEGORY_MASK_UTF_8_SIG \
546 | CATEGORY_MASK_UTF_16_AUTO \
547 | CATEGORY_MASK_UTF_16_BE \
548 | CATEGORY_MASK_UTF_16_LE \
549 | CATEGORY_MASK_UTF_16_BE_NOSIG \
550 | CATEGORY_MASK_UTF_16_LE_NOSIG \
551 | CATEGORY_MASK_CHARSET \
552 | CATEGORY_MASK_SJIS \
553 | CATEGORY_MASK_BIG5 \
554 | CATEGORY_MASK_CCL \
555 | CATEGORY_MASK_EMACS_MULE)
556
557
558 #define CATEGORY_MASK_ISO_7BIT \
559 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
560
561 #define CATEGORY_MASK_ISO_8BIT \
562 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
563
564 #define CATEGORY_MASK_ISO_ELSE \
565 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
566
567 #define CATEGORY_MASK_ISO_ESCAPE \
568 (CATEGORY_MASK_ISO_7 \
569 | CATEGORY_MASK_ISO_7_TIGHT \
570 | CATEGORY_MASK_ISO_7_ELSE \
571 | CATEGORY_MASK_ISO_8_ELSE)
572
573 #define CATEGORY_MASK_ISO \
574 ( CATEGORY_MASK_ISO_7BIT \
575 | CATEGORY_MASK_ISO_8BIT \
576 | CATEGORY_MASK_ISO_ELSE)
577
578 #define CATEGORY_MASK_UTF_16 \
579 (CATEGORY_MASK_UTF_16_AUTO \
580 | CATEGORY_MASK_UTF_16_BE \
581 | CATEGORY_MASK_UTF_16_LE \
582 | CATEGORY_MASK_UTF_16_BE_NOSIG \
583 | CATEGORY_MASK_UTF_16_LE_NOSIG)
584
585 #define CATEGORY_MASK_UTF_8 \
586 (CATEGORY_MASK_UTF_8_AUTO \
587 | CATEGORY_MASK_UTF_8_NOSIG \
588 | CATEGORY_MASK_UTF_8_SIG)
589
590 /* Table of coding categories (Lisp symbols). This variable is for
591 internal use only. */
592 static Lisp_Object Vcoding_category_table;
593
594 /* Table of coding-categories ordered by priority. */
595 static enum coding_category coding_priorities[coding_category_max];
596
597 /* Nth element is a coding context for the coding system bound to the
598 Nth coding category. */
599 static struct coding_system coding_categories[coding_category_max];
600
601 /* Encode a flag that can be nil, something else, or t as -1, 0, 1. */
602
603 static int
604 encode_inhibit_flag (Lisp_Object flag)
605 {
606 return NILP (flag) ? -1 : EQ (flag, Qt);
607 }
608
609 /* True if the value of ENCODED_FLAG says a flag should be treated as set.
610 1 means yes, -1 means no, 0 means ask the user variable VAR. */
611
612 static bool
613 inhibit_flag (int encoded_flag, bool var)
614 {
615 return 0 < encoded_flag + var;
616 }
617
618 #define CODING_GET_INFO(coding, attrs, charset_list) \
619 do { \
620 (attrs) = CODING_ID_ATTRS ((coding)->id); \
621 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
622 } while (0)
623
624 static void
625 CHECK_NATNUM_CAR (Lisp_Object x)
626 {
627 Lisp_Object tmp = XCAR (x);
628 CHECK_NATNUM (tmp);
629 XSETCAR (x, tmp);
630 }
631
632 static void
633 CHECK_NATNUM_CDR (Lisp_Object x)
634 {
635 Lisp_Object tmp = XCDR (x);
636 CHECK_NATNUM (tmp);
637 XSETCDR (x, tmp);
638 }
639
640 /* True if CODING's destination can be grown. */
641
642 static bool
643 growable_destination (struct coding_system *coding)
644 {
645 return STRINGP (coding->dst_object) || BUFFERP (coding->dst_object);
646 }
647
648
649 /* Safely get one byte from the source text pointed by SRC which ends
650 at SRC_END, and set C to that byte. If there are not enough bytes
651 in the source, it jumps to 'no_more_source'. If MULTIBYTEP,
652 and a multibyte character is found at SRC, set C to the
653 negative value of the character code. The caller should declare
654 and set these variables appropriately in advance:
655 src, src_end, multibytep */
656
657 #define ONE_MORE_BYTE(c) \
658 do { \
659 if (src == src_end) \
660 { \
661 if (src_base < src) \
662 record_conversion_result \
663 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
664 goto no_more_source; \
665 } \
666 c = *src++; \
667 if (multibytep && (c & 0x80)) \
668 { \
669 if ((c & 0xFE) == 0xC0) \
670 c = ((c & 1) << 6) | *src++; \
671 else \
672 { \
673 src--; \
674 c = - string_char (src, &src, NULL); \
675 record_conversion_result \
676 (coding, CODING_RESULT_INVALID_SRC); \
677 } \
678 } \
679 consumed_chars++; \
680 } while (0)
681
682 /* Safely get two bytes from the source text pointed by SRC which ends
683 at SRC_END, and set C1 and C2 to those bytes while skipping the
684 heading multibyte characters. If there are not enough bytes in the
685 source, it jumps to 'no_more_source'. If MULTIBYTEP and
686 a multibyte character is found for C2, set C2 to the negative value
687 of the character code. The caller should declare and set these
688 variables appropriately in advance:
689 src, src_end, multibytep
690 It is intended that this macro is used in detect_coding_utf_16. */
691
692 #define TWO_MORE_BYTES(c1, c2) \
693 do { \
694 do { \
695 if (src == src_end) \
696 goto no_more_source; \
697 c1 = *src++; \
698 if (multibytep && (c1 & 0x80)) \
699 { \
700 if ((c1 & 0xFE) == 0xC0) \
701 c1 = ((c1 & 1) << 6) | *src++; \
702 else \
703 { \
704 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
705 c1 = -1; \
706 } \
707 } \
708 } while (c1 < 0); \
709 if (src == src_end) \
710 goto no_more_source; \
711 c2 = *src++; \
712 if (multibytep && (c2 & 0x80)) \
713 { \
714 if ((c2 & 0xFE) == 0xC0) \
715 c2 = ((c2 & 1) << 6) | *src++; \
716 else \
717 c2 = -1; \
718 } \
719 } while (0)
720
721
722 /* Store a byte C in the place pointed by DST and increment DST to the
723 next free point, and increment PRODUCED_CHARS. The caller should
724 assure that C is 0..127, and declare and set the variable `dst'
725 appropriately in advance.
726 */
727
728
729 #define EMIT_ONE_ASCII_BYTE(c) \
730 do { \
731 produced_chars++; \
732 *dst++ = (c); \
733 } while (0)
734
735
736 /* Like EMIT_ONE_ASCII_BYTE but store two bytes; C1 and C2. */
737
738 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
739 do { \
740 produced_chars += 2; \
741 *dst++ = (c1), *dst++ = (c2); \
742 } while (0)
743
744
745 /* Store a byte C in the place pointed by DST and increment DST to the
746 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP,
747 store in an appropriate multibyte form. The caller should
748 declare and set the variables `dst' and `multibytep' appropriately
749 in advance. */
750
751 #define EMIT_ONE_BYTE(c) \
752 do { \
753 produced_chars++; \
754 if (multibytep) \
755 { \
756 unsigned ch = (c); \
757 if (ch >= 0x80) \
758 ch = BYTE8_TO_CHAR (ch); \
759 CHAR_STRING_ADVANCE (ch, dst); \
760 } \
761 else \
762 *dst++ = (c); \
763 } while (0)
764
765
766 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
767
768 #define EMIT_TWO_BYTES(c1, c2) \
769 do { \
770 produced_chars += 2; \
771 if (multibytep) \
772 { \
773 unsigned ch; \
774 \
775 ch = (c1); \
776 if (ch >= 0x80) \
777 ch = BYTE8_TO_CHAR (ch); \
778 CHAR_STRING_ADVANCE (ch, dst); \
779 ch = (c2); \
780 if (ch >= 0x80) \
781 ch = BYTE8_TO_CHAR (ch); \
782 CHAR_STRING_ADVANCE (ch, dst); \
783 } \
784 else \
785 { \
786 *dst++ = (c1); \
787 *dst++ = (c2); \
788 } \
789 } while (0)
790
791
792 #define EMIT_THREE_BYTES(c1, c2, c3) \
793 do { \
794 EMIT_ONE_BYTE (c1); \
795 EMIT_TWO_BYTES (c2, c3); \
796 } while (0)
797
798
799 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
800 do { \
801 EMIT_TWO_BYTES (c1, c2); \
802 EMIT_TWO_BYTES (c3, c4); \
803 } while (0)
804
805
806 static void
807 record_conversion_result (struct coding_system *coding,
808 enum coding_result_code result)
809 {
810 coding->result = result;
811 switch (result)
812 {
813 case CODING_RESULT_INSUFFICIENT_SRC:
814 Vlast_code_conversion_error = Qinsufficient_source;
815 break;
816 case CODING_RESULT_INVALID_SRC:
817 Vlast_code_conversion_error = Qinvalid_source;
818 break;
819 case CODING_RESULT_INTERRUPT:
820 Vlast_code_conversion_error = Qinterrupted;
821 break;
822 case CODING_RESULT_INSUFFICIENT_DST:
823 /* Don't record this error in Vlast_code_conversion_error
824 because it happens just temporarily and is resolved when the
825 whole conversion is finished. */
826 break;
827 case CODING_RESULT_SUCCESS:
828 break;
829 default:
830 Vlast_code_conversion_error = intern ("Unknown error");
831 }
832 }
833
834 /* These wrapper macros are used to preserve validity of pointers into
835 buffer text across calls to decode_char, encode_char, etc, which
836 could cause relocation of buffers if it loads a charset map,
837 because loading a charset map allocates large structures. */
838
839 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
840 do { \
841 ptrdiff_t offset; \
842 \
843 charset_map_loaded = 0; \
844 c = DECODE_CHAR (charset, code); \
845 if (charset_map_loaded \
846 && (offset = coding_change_source (coding))) \
847 { \
848 src += offset; \
849 src_base += offset; \
850 src_end += offset; \
851 } \
852 } while (0)
853
854 #define CODING_ENCODE_CHAR(coding, dst, dst_end, charset, c, code) \
855 do { \
856 ptrdiff_t offset; \
857 \
858 charset_map_loaded = 0; \
859 code = ENCODE_CHAR (charset, c); \
860 if (charset_map_loaded \
861 && (offset = coding_change_destination (coding))) \
862 { \
863 dst += offset; \
864 dst_end += offset; \
865 } \
866 } while (0)
867
868 #define CODING_CHAR_CHARSET(coding, dst, dst_end, c, charset_list, code_return, charset) \
869 do { \
870 ptrdiff_t offset; \
871 \
872 charset_map_loaded = 0; \
873 charset = char_charset (c, charset_list, code_return); \
874 if (charset_map_loaded \
875 && (offset = coding_change_destination (coding))) \
876 { \
877 dst += offset; \
878 dst_end += offset; \
879 } \
880 } while (0)
881
882 #define CODING_CHAR_CHARSET_P(coding, dst, dst_end, c, charset, result) \
883 do { \
884 ptrdiff_t offset; \
885 \
886 charset_map_loaded = 0; \
887 result = CHAR_CHARSET_P (c, charset); \
888 if (charset_map_loaded \
889 && (offset = coding_change_destination (coding))) \
890 { \
891 dst += offset; \
892 dst_end += offset; \
893 } \
894 } while (0)
895
896
897 /* If there are at least BYTES length of room at dst, allocate memory
898 for coding->destination and update dst and dst_end. We don't have
899 to take care of coding->source which will be relocated. It is
900 handled by calling coding_set_source in encode_coding. */
901
902 #define ASSURE_DESTINATION(bytes) \
903 do { \
904 if (dst + (bytes) >= dst_end) \
905 { \
906 ptrdiff_t more_bytes = charbuf_end - charbuf + (bytes); \
907 \
908 dst = alloc_destination (coding, more_bytes, dst); \
909 dst_end = coding->destination + coding->dst_bytes; \
910 } \
911 } while (0)
912
913
914 /* Store multibyte form of the character C in P, and advance P to the
915 end of the multibyte form. This used to be like CHAR_STRING_ADVANCE
916 without ever calling MAYBE_UNIFY_CHAR, but nowadays we don't call
917 MAYBE_UNIFY_CHAR in CHAR_STRING_ADVANCE. */
918
919 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) CHAR_STRING_ADVANCE(c, p)
920
921 /* Return the character code of character whose multibyte form is at
922 P, and advance P to the end of the multibyte form. This used to be
923 like STRING_CHAR_ADVANCE without ever calling MAYBE_UNIFY_CHAR, but
924 nowadays STRING_CHAR_ADVANCE doesn't call MAYBE_UNIFY_CHAR. */
925
926 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) STRING_CHAR_ADVANCE(p)
927
928 /* Set coding->source from coding->src_object. */
929
930 static void
931 coding_set_source (struct coding_system *coding)
932 {
933 if (BUFFERP (coding->src_object))
934 {
935 struct buffer *buf = XBUFFER (coding->src_object);
936
937 if (coding->src_pos < 0)
938 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
939 else
940 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
941 }
942 else if (STRINGP (coding->src_object))
943 {
944 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
945 }
946 else
947 {
948 /* Otherwise, the source is C string and is never relocated
949 automatically. Thus we don't have to update anything. */
950 }
951 }
952
953
954 /* Set coding->source from coding->src_object, and return how many
955 bytes coding->source was changed. */
956
957 static ptrdiff_t
958 coding_change_source (struct coding_system *coding)
959 {
960 const unsigned char *orig = coding->source;
961 coding_set_source (coding);
962 return coding->source - orig;
963 }
964
965
966 /* Set coding->destination from coding->dst_object. */
967
968 static void
969 coding_set_destination (struct coding_system *coding)
970 {
971 if (BUFFERP (coding->dst_object))
972 {
973 if (BUFFERP (coding->src_object) && coding->src_pos < 0)
974 {
975 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
976 coding->dst_bytes = (GAP_END_ADDR
977 - (coding->src_bytes - coding->consumed)
978 - coding->destination);
979 }
980 else
981 {
982 /* We are sure that coding->dst_pos_byte is before the gap
983 of the buffer. */
984 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
985 + coding->dst_pos_byte - BEG_BYTE);
986 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
987 - coding->destination);
988 }
989 }
990 else
991 {
992 /* Otherwise, the destination is C string and is never relocated
993 automatically. Thus we don't have to update anything. */
994 }
995 }
996
997
998 /* Set coding->destination from coding->dst_object, and return how
999 many bytes coding->destination was changed. */
1000
1001 static ptrdiff_t
1002 coding_change_destination (struct coding_system *coding)
1003 {
1004 const unsigned char *orig = coding->destination;
1005 coding_set_destination (coding);
1006 return coding->destination - orig;
1007 }
1008
1009
1010 static void
1011 coding_alloc_by_realloc (struct coding_system *coding, ptrdiff_t bytes)
1012 {
1013 if (STRING_BYTES_BOUND - coding->dst_bytes < bytes)
1014 string_overflow ();
1015 coding->destination = xrealloc (coding->destination,
1016 coding->dst_bytes + bytes);
1017 coding->dst_bytes += bytes;
1018 }
1019
1020 static void
1021 coding_alloc_by_making_gap (struct coding_system *coding,
1022 ptrdiff_t gap_head_used, ptrdiff_t bytes)
1023 {
1024 if (EQ (coding->src_object, coding->dst_object))
1025 {
1026 /* The gap may contain the produced data at the head and not-yet
1027 consumed data at the tail. To preserve those data, we at
1028 first make the gap size to zero, then increase the gap
1029 size. */
1030 ptrdiff_t add = GAP_SIZE;
1031
1032 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1033 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1034 make_gap (bytes);
1035 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1036 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1037 }
1038 else
1039 make_gap_1 (XBUFFER (coding->dst_object), bytes);
1040 }
1041
1042
1043 static unsigned char *
1044 alloc_destination (struct coding_system *coding, ptrdiff_t nbytes,
1045 unsigned char *dst)
1046 {
1047 ptrdiff_t offset = dst - coding->destination;
1048
1049 if (BUFFERP (coding->dst_object))
1050 {
1051 struct buffer *buf = XBUFFER (coding->dst_object);
1052
1053 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1054 }
1055 else
1056 coding_alloc_by_realloc (coding, nbytes);
1057 coding_set_destination (coding);
1058 dst = coding->destination + offset;
1059 return dst;
1060 }
1061
1062 /** Macros for annotations. */
1063
1064 /* An annotation data is stored in the array coding->charbuf in this
1065 format:
1066 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1067 LENGTH is the number of elements in the annotation.
1068 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1069 NCHARS is the number of characters in the text annotated.
1070
1071 The format of the following elements depend on ANNOTATION_MASK.
1072
1073 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1074 follows:
1075 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1076
1077 NBYTES is the number of bytes specified in the header part of
1078 old-style emacs-mule encoding, or 0 for the other kind of
1079 composition.
1080
1081 METHOD is one of enum composition_method.
1082
1083 Optional COMPOSITION-COMPONENTS are characters and composition
1084 rules.
1085
1086 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1087 follows.
1088
1089 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1090 recover from an invalid annotation, and should be skipped by
1091 produce_annotation. */
1092
1093 /* Maximum length of the header of annotation data. */
1094 #define MAX_ANNOTATION_LENGTH 5
1095
1096 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1097 do { \
1098 *(buf)++ = -(len); \
1099 *(buf)++ = (mask); \
1100 *(buf)++ = (nchars); \
1101 coding->annotated = 1; \
1102 } while (0);
1103
1104 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1105 do { \
1106 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1107 *buf++ = nbytes; \
1108 *buf++ = method; \
1109 } while (0)
1110
1111
1112 #define ADD_CHARSET_DATA(buf, nchars, id) \
1113 do { \
1114 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1115 *buf++ = id; \
1116 } while (0)
1117
1118
1119 /* Bitmasks for coding->eol_seen. */
1120
1121 #define EOL_SEEN_NONE 0
1122 #define EOL_SEEN_LF 1
1123 #define EOL_SEEN_CR 2
1124 #define EOL_SEEN_CRLF 4
1125
1126 \f
1127 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1128
1129
1130
1131 \f
1132 /*** 3. UTF-8 ***/
1133
1134 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1135 Return true if a text is encoded in UTF-8. */
1136
1137 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1138 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1139 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1140 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1141 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1142 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1143
1144 #define UTF_8_BOM_1 0xEF
1145 #define UTF_8_BOM_2 0xBB
1146 #define UTF_8_BOM_3 0xBF
1147
1148 /* Unlike the other detect_coding_XXX, this function counts the number
1149 of characters and checks the EOL format. */
1150
1151 static bool
1152 detect_coding_utf_8 (struct coding_system *coding,
1153 struct coding_detection_info *detect_info)
1154 {
1155 const unsigned char *src = coding->source, *src_base;
1156 const unsigned char *src_end = coding->source + coding->src_bytes;
1157 bool multibytep = coding->src_multibyte;
1158 ptrdiff_t consumed_chars = 0;
1159 bool bom_found = 0;
1160 ptrdiff_t nchars = coding->head_ascii;
1161 int eol_seen = coding->eol_seen;
1162
1163 detect_info->checked |= CATEGORY_MASK_UTF_8;
1164 /* A coding system of this category is always ASCII compatible. */
1165 src += nchars;
1166
1167 if (src == coding->source /* BOM should be at the head. */
1168 && src + 3 < src_end /* BOM is 3-byte long. */
1169 && src[0] == UTF_8_BOM_1
1170 && src[1] == UTF_8_BOM_2
1171 && src[2] == UTF_8_BOM_3)
1172 {
1173 bom_found = 1;
1174 src += 3;
1175 nchars++;
1176 }
1177
1178 while (1)
1179 {
1180 int c, c1, c2, c3, c4;
1181
1182 src_base = src;
1183 ONE_MORE_BYTE (c);
1184 if (c < 0 || UTF_8_1_OCTET_P (c))
1185 {
1186 nchars++;
1187 if (c == '\r')
1188 {
1189 if (src < src_end && *src == '\n')
1190 {
1191 eol_seen |= EOL_SEEN_CRLF;
1192 src++;
1193 nchars++;
1194 }
1195 else
1196 eol_seen |= EOL_SEEN_CR;
1197 }
1198 else if (c == '\n')
1199 eol_seen |= EOL_SEEN_LF;
1200 continue;
1201 }
1202 ONE_MORE_BYTE (c1);
1203 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1204 break;
1205 if (UTF_8_2_OCTET_LEADING_P (c))
1206 {
1207 nchars++;
1208 continue;
1209 }
1210 ONE_MORE_BYTE (c2);
1211 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1212 break;
1213 if (UTF_8_3_OCTET_LEADING_P (c))
1214 {
1215 nchars++;
1216 continue;
1217 }
1218 ONE_MORE_BYTE (c3);
1219 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1220 break;
1221 if (UTF_8_4_OCTET_LEADING_P (c))
1222 {
1223 nchars++;
1224 continue;
1225 }
1226 ONE_MORE_BYTE (c4);
1227 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1228 break;
1229 if (UTF_8_5_OCTET_LEADING_P (c))
1230 {
1231 nchars++;
1232 continue;
1233 }
1234 break;
1235 }
1236 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1237 return 0;
1238
1239 no_more_source:
1240 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1241 {
1242 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1243 return 0;
1244 }
1245 if (bom_found)
1246 {
1247 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1248 detect_info->found |= CATEGORY_MASK_UTF_8_AUTO | CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1249 }
1250 else
1251 {
1252 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1253 if (nchars < src_end - coding->source)
1254 /* The found characters are less than source bytes, which
1255 means that we found a valid non-ASCII characters. */
1256 detect_info->found |= CATEGORY_MASK_UTF_8_AUTO | CATEGORY_MASK_UTF_8_NOSIG;
1257 }
1258 coding->detected_utf8_bytes = src_base - coding->source;
1259 coding->detected_utf8_chars = nchars;
1260 return 1;
1261 }
1262
1263
1264 static void
1265 decode_coding_utf_8 (struct coding_system *coding)
1266 {
1267 const unsigned char *src = coding->source + coding->consumed;
1268 const unsigned char *src_end = coding->source + coding->src_bytes;
1269 const unsigned char *src_base;
1270 int *charbuf = coding->charbuf + coding->charbuf_used;
1271 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1272 ptrdiff_t consumed_chars = 0, consumed_chars_base = 0;
1273 bool multibytep = coding->src_multibyte;
1274 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1275 bool eol_dos
1276 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1277 int byte_after_cr = -1;
1278
1279 if (bom != utf_without_bom)
1280 {
1281 int c1, c2, c3;
1282
1283 src_base = src;
1284 ONE_MORE_BYTE (c1);
1285 if (! UTF_8_3_OCTET_LEADING_P (c1))
1286 src = src_base;
1287 else
1288 {
1289 ONE_MORE_BYTE (c2);
1290 if (! UTF_8_EXTRA_OCTET_P (c2))
1291 src = src_base;
1292 else
1293 {
1294 ONE_MORE_BYTE (c3);
1295 if (! UTF_8_EXTRA_OCTET_P (c3))
1296 src = src_base;
1297 else
1298 {
1299 if ((c1 != UTF_8_BOM_1)
1300 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1301 src = src_base;
1302 else
1303 CODING_UTF_8_BOM (coding) = utf_without_bom;
1304 }
1305 }
1306 }
1307 }
1308 CODING_UTF_8_BOM (coding) = utf_without_bom;
1309
1310 while (1)
1311 {
1312 int c, c1, c2, c3, c4, c5;
1313
1314 src_base = src;
1315 consumed_chars_base = consumed_chars;
1316
1317 if (charbuf >= charbuf_end)
1318 {
1319 if (byte_after_cr >= 0)
1320 src_base--;
1321 break;
1322 }
1323
1324 /* In the simple case, rapidly handle ordinary characters */
1325 if (multibytep && ! eol_dos
1326 && charbuf < charbuf_end - 6 && src < src_end - 6)
1327 {
1328 while (charbuf < charbuf_end - 6 && src < src_end - 6)
1329 {
1330 c1 = *src;
1331 if (c1 & 0x80)
1332 break;
1333 src++;
1334 consumed_chars++;
1335 *charbuf++ = c1;
1336
1337 c1 = *src;
1338 if (c1 & 0x80)
1339 break;
1340 src++;
1341 consumed_chars++;
1342 *charbuf++ = c1;
1343
1344 c1 = *src;
1345 if (c1 & 0x80)
1346 break;
1347 src++;
1348 consumed_chars++;
1349 *charbuf++ = c1;
1350
1351 c1 = *src;
1352 if (c1 & 0x80)
1353 break;
1354 src++;
1355 consumed_chars++;
1356 *charbuf++ = c1;
1357 }
1358 /* If we handled at least one character, restart the main loop. */
1359 if (src != src_base)
1360 continue;
1361 }
1362
1363 if (byte_after_cr >= 0)
1364 c1 = byte_after_cr, byte_after_cr = -1;
1365 else
1366 ONE_MORE_BYTE (c1);
1367 if (c1 < 0)
1368 {
1369 c = - c1;
1370 }
1371 else if (UTF_8_1_OCTET_P (c1))
1372 {
1373 if (eol_dos && c1 == '\r')
1374 ONE_MORE_BYTE (byte_after_cr);
1375 c = c1;
1376 }
1377 else
1378 {
1379 ONE_MORE_BYTE (c2);
1380 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1381 goto invalid_code;
1382 if (UTF_8_2_OCTET_LEADING_P (c1))
1383 {
1384 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1385 /* Reject overlong sequences here and below. Encoders
1386 producing them are incorrect, they can be misleading,
1387 and they mess up read/write invariance. */
1388 if (c < 128)
1389 goto invalid_code;
1390 }
1391 else
1392 {
1393 ONE_MORE_BYTE (c3);
1394 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1395 goto invalid_code;
1396 if (UTF_8_3_OCTET_LEADING_P (c1))
1397 {
1398 c = (((c1 & 0xF) << 12)
1399 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1400 if (c < 0x800
1401 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1402 goto invalid_code;
1403 }
1404 else
1405 {
1406 ONE_MORE_BYTE (c4);
1407 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1408 goto invalid_code;
1409 if (UTF_8_4_OCTET_LEADING_P (c1))
1410 {
1411 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1412 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1413 if (c < 0x10000)
1414 goto invalid_code;
1415 }
1416 else
1417 {
1418 ONE_MORE_BYTE (c5);
1419 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1420 goto invalid_code;
1421 if (UTF_8_5_OCTET_LEADING_P (c1))
1422 {
1423 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1424 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1425 | (c5 & 0x3F));
1426 if ((c > MAX_CHAR) || (c < 0x200000))
1427 goto invalid_code;
1428 }
1429 else
1430 goto invalid_code;
1431 }
1432 }
1433 }
1434 }
1435
1436 *charbuf++ = c;
1437 continue;
1438
1439 invalid_code:
1440 src = src_base;
1441 consumed_chars = consumed_chars_base;
1442 ONE_MORE_BYTE (c);
1443 *charbuf++ = ASCII_CHAR_P (c) ? c : BYTE8_TO_CHAR (c);
1444 }
1445
1446 no_more_source:
1447 coding->consumed_char += consumed_chars_base;
1448 coding->consumed = src_base - coding->source;
1449 coding->charbuf_used = charbuf - coding->charbuf;
1450 }
1451
1452
1453 static bool
1454 encode_coding_utf_8 (struct coding_system *coding)
1455 {
1456 bool multibytep = coding->dst_multibyte;
1457 int *charbuf = coding->charbuf;
1458 int *charbuf_end = charbuf + coding->charbuf_used;
1459 unsigned char *dst = coding->destination + coding->produced;
1460 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1461 ptrdiff_t produced_chars = 0;
1462 int c;
1463
1464 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1465 {
1466 ASSURE_DESTINATION (3);
1467 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1468 CODING_UTF_8_BOM (coding) = utf_without_bom;
1469 }
1470
1471 if (multibytep)
1472 {
1473 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1474
1475 while (charbuf < charbuf_end)
1476 {
1477 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1478
1479 ASSURE_DESTINATION (safe_room);
1480 c = *charbuf++;
1481 if (CHAR_BYTE8_P (c))
1482 {
1483 c = CHAR_TO_BYTE8 (c);
1484 EMIT_ONE_BYTE (c);
1485 }
1486 else
1487 {
1488 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1489 for (p = str; p < pend; p++)
1490 EMIT_ONE_BYTE (*p);
1491 }
1492 }
1493 }
1494 else
1495 {
1496 int safe_room = MAX_MULTIBYTE_LENGTH;
1497
1498 while (charbuf < charbuf_end)
1499 {
1500 ASSURE_DESTINATION (safe_room);
1501 c = *charbuf++;
1502 if (CHAR_BYTE8_P (c))
1503 *dst++ = CHAR_TO_BYTE8 (c);
1504 else
1505 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1506 }
1507 produced_chars = dst - (coding->destination + coding->produced);
1508 }
1509 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1510 coding->produced_char += produced_chars;
1511 coding->produced = dst - coding->destination;
1512 return 0;
1513 }
1514
1515
1516 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1517 Return true if a text is encoded in one of UTF-16 based coding systems. */
1518
1519 #define UTF_16_HIGH_SURROGATE_P(val) \
1520 (((val) & 0xFC00) == 0xD800)
1521
1522 #define UTF_16_LOW_SURROGATE_P(val) \
1523 (((val) & 0xFC00) == 0xDC00)
1524
1525
1526 static bool
1527 detect_coding_utf_16 (struct coding_system *coding,
1528 struct coding_detection_info *detect_info)
1529 {
1530 const unsigned char *src = coding->source;
1531 const unsigned char *src_end = coding->source + coding->src_bytes;
1532 bool multibytep = coding->src_multibyte;
1533 int c1, c2;
1534
1535 detect_info->checked |= CATEGORY_MASK_UTF_16;
1536 if (coding->mode & CODING_MODE_LAST_BLOCK
1537 && (coding->src_chars & 1))
1538 {
1539 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1540 return 0;
1541 }
1542
1543 TWO_MORE_BYTES (c1, c2);
1544 if ((c1 == 0xFF) && (c2 == 0xFE))
1545 {
1546 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1547 | CATEGORY_MASK_UTF_16_AUTO);
1548 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1549 | CATEGORY_MASK_UTF_16_BE_NOSIG
1550 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1551 }
1552 else if ((c1 == 0xFE) && (c2 == 0xFF))
1553 {
1554 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1555 | CATEGORY_MASK_UTF_16_AUTO);
1556 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1557 | CATEGORY_MASK_UTF_16_BE_NOSIG
1558 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1559 }
1560 else if (c2 < 0)
1561 {
1562 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1563 return 0;
1564 }
1565 else
1566 {
1567 /* We check the dispersion of Eth and Oth bytes where E is even and
1568 O is odd. If both are high, we assume binary data.*/
1569 unsigned char e[256], o[256];
1570 unsigned e_num = 1, o_num = 1;
1571
1572 memset (e, 0, 256);
1573 memset (o, 0, 256);
1574 e[c1] = 1;
1575 o[c2] = 1;
1576
1577 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1578 |CATEGORY_MASK_UTF_16_BE
1579 | CATEGORY_MASK_UTF_16_LE);
1580
1581 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1582 != CATEGORY_MASK_UTF_16)
1583 {
1584 TWO_MORE_BYTES (c1, c2);
1585 if (c2 < 0)
1586 break;
1587 if (! e[c1])
1588 {
1589 e[c1] = 1;
1590 e_num++;
1591 if (e_num >= 128)
1592 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1593 }
1594 if (! o[c2])
1595 {
1596 o[c2] = 1;
1597 o_num++;
1598 if (o_num >= 128)
1599 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1600 }
1601 }
1602 return 0;
1603 }
1604
1605 no_more_source:
1606 return 1;
1607 }
1608
1609 static void
1610 decode_coding_utf_16 (struct coding_system *coding)
1611 {
1612 const unsigned char *src = coding->source + coding->consumed;
1613 const unsigned char *src_end = coding->source + coding->src_bytes;
1614 const unsigned char *src_base;
1615 int *charbuf = coding->charbuf + coding->charbuf_used;
1616 /* We may produces at most 3 chars in one loop. */
1617 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1618 ptrdiff_t consumed_chars = 0, consumed_chars_base = 0;
1619 bool multibytep = coding->src_multibyte;
1620 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1621 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1622 int surrogate = CODING_UTF_16_SURROGATE (coding);
1623 bool eol_dos
1624 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1625 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1626
1627 if (bom == utf_with_bom)
1628 {
1629 int c, c1, c2;
1630
1631 src_base = src;
1632 ONE_MORE_BYTE (c1);
1633 ONE_MORE_BYTE (c2);
1634 c = (c1 << 8) | c2;
1635
1636 if (endian == utf_16_big_endian
1637 ? c != 0xFEFF : c != 0xFFFE)
1638 {
1639 /* The first two bytes are not BOM. Treat them as bytes
1640 for a normal character. */
1641 src = src_base;
1642 }
1643 CODING_UTF_16_BOM (coding) = utf_without_bom;
1644 }
1645 else if (bom == utf_detect_bom)
1646 {
1647 /* We have already tried to detect BOM and failed in
1648 detect_coding. */
1649 CODING_UTF_16_BOM (coding) = utf_without_bom;
1650 }
1651
1652 while (1)
1653 {
1654 int c, c1, c2;
1655
1656 src_base = src;
1657 consumed_chars_base = consumed_chars;
1658
1659 if (charbuf >= charbuf_end)
1660 {
1661 if (byte_after_cr1 >= 0)
1662 src_base -= 2;
1663 break;
1664 }
1665
1666 if (byte_after_cr1 >= 0)
1667 c1 = byte_after_cr1, byte_after_cr1 = -1;
1668 else
1669 ONE_MORE_BYTE (c1);
1670 if (c1 < 0)
1671 {
1672 *charbuf++ = -c1;
1673 continue;
1674 }
1675 if (byte_after_cr2 >= 0)
1676 c2 = byte_after_cr2, byte_after_cr2 = -1;
1677 else
1678 ONE_MORE_BYTE (c2);
1679 if (c2 < 0)
1680 {
1681 *charbuf++ = ASCII_CHAR_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1682 *charbuf++ = -c2;
1683 continue;
1684 }
1685 c = (endian == utf_16_big_endian
1686 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1687
1688 if (surrogate)
1689 {
1690 if (! UTF_16_LOW_SURROGATE_P (c))
1691 {
1692 if (endian == utf_16_big_endian)
1693 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1694 else
1695 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1696 *charbuf++ = c1;
1697 *charbuf++ = c2;
1698 if (UTF_16_HIGH_SURROGATE_P (c))
1699 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1700 else
1701 *charbuf++ = c;
1702 }
1703 else
1704 {
1705 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1706 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1707 *charbuf++ = 0x10000 + c;
1708 }
1709 }
1710 else
1711 {
1712 if (UTF_16_HIGH_SURROGATE_P (c))
1713 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1714 else
1715 {
1716 if (eol_dos && c == '\r')
1717 {
1718 ONE_MORE_BYTE (byte_after_cr1);
1719 ONE_MORE_BYTE (byte_after_cr2);
1720 }
1721 *charbuf++ = c;
1722 }
1723 }
1724 }
1725
1726 no_more_source:
1727 coding->consumed_char += consumed_chars_base;
1728 coding->consumed = src_base - coding->source;
1729 coding->charbuf_used = charbuf - coding->charbuf;
1730 }
1731
1732 static bool
1733 encode_coding_utf_16 (struct coding_system *coding)
1734 {
1735 bool multibytep = coding->dst_multibyte;
1736 int *charbuf = coding->charbuf;
1737 int *charbuf_end = charbuf + coding->charbuf_used;
1738 unsigned char *dst = coding->destination + coding->produced;
1739 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1740 int safe_room = 8;
1741 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1742 bool big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1743 ptrdiff_t produced_chars = 0;
1744 int c;
1745
1746 if (bom != utf_without_bom)
1747 {
1748 ASSURE_DESTINATION (safe_room);
1749 if (big_endian)
1750 EMIT_TWO_BYTES (0xFE, 0xFF);
1751 else
1752 EMIT_TWO_BYTES (0xFF, 0xFE);
1753 CODING_UTF_16_BOM (coding) = utf_without_bom;
1754 }
1755
1756 while (charbuf < charbuf_end)
1757 {
1758 ASSURE_DESTINATION (safe_room);
1759 c = *charbuf++;
1760 if (c > MAX_UNICODE_CHAR)
1761 c = coding->default_char;
1762
1763 if (c < 0x10000)
1764 {
1765 if (big_endian)
1766 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1767 else
1768 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1769 }
1770 else
1771 {
1772 int c1, c2;
1773
1774 c -= 0x10000;
1775 c1 = (c >> 10) + 0xD800;
1776 c2 = (c & 0x3FF) + 0xDC00;
1777 if (big_endian)
1778 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1779 else
1780 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1781 }
1782 }
1783 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1784 coding->produced = dst - coding->destination;
1785 coding->produced_char += produced_chars;
1786 return 0;
1787 }
1788
1789 \f
1790 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1791
1792 /* Emacs' internal format for representation of multiple character
1793 sets is a kind of multi-byte encoding, i.e. characters are
1794 represented by variable-length sequences of one-byte codes.
1795
1796 ASCII characters and control characters (e.g. `tab', `newline') are
1797 represented by one-byte sequences which are their ASCII codes, in
1798 the range 0x00 through 0x7F.
1799
1800 8-bit characters of the range 0x80..0x9F are represented by
1801 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1802 code + 0x20).
1803
1804 8-bit characters of the range 0xA0..0xFF are represented by
1805 one-byte sequences which are their 8-bit code.
1806
1807 The other characters are represented by a sequence of `base
1808 leading-code', optional `extended leading-code', and one or two
1809 `position-code's. The length of the sequence is determined by the
1810 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1811 whereas extended leading-code and position-code take the range 0xA0
1812 through 0xFF. See `charset.h' for more details about leading-code
1813 and position-code.
1814
1815 --- CODE RANGE of Emacs' internal format ---
1816 character set range
1817 ------------- -----
1818 ascii 0x00..0x7F
1819 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1820 eight-bit-graphic 0xA0..0xBF
1821 ELSE 0x81..0x9D + [0xA0..0xFF]+
1822 ---------------------------------------------
1823
1824 As this is the internal character representation, the format is
1825 usually not used externally (i.e. in a file or in a data sent to a
1826 process). But, it is possible to have a text externally in this
1827 format (i.e. by encoding by the coding system `emacs-mule').
1828
1829 In that case, a sequence of one-byte codes has a slightly different
1830 form.
1831
1832 At first, all characters in eight-bit-control are represented by
1833 one-byte sequences which are their 8-bit code.
1834
1835 Next, character composition data are represented by the byte
1836 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1837 where,
1838 METHOD is 0xF2 plus one of composition method (enum
1839 composition_method),
1840
1841 BYTES is 0xA0 plus a byte length of this composition data,
1842
1843 CHARS is 0xA0 plus a number of characters composed by this
1844 data,
1845
1846 COMPONENTs are characters of multibyte form or composition
1847 rules encoded by two-byte of ASCII codes.
1848
1849 In addition, for backward compatibility, the following formats are
1850 also recognized as composition data on decoding.
1851
1852 0x80 MSEQ ...
1853 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1854
1855 Here,
1856 MSEQ is a multibyte form but in these special format:
1857 ASCII: 0xA0 ASCII_CODE+0x80,
1858 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1859 RULE is a one byte code of the range 0xA0..0xF0 that
1860 represents a composition rule.
1861 */
1862
1863 char emacs_mule_bytes[256];
1864
1865
1866 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1867 Return true if a text is encoded in 'emacs-mule'. */
1868
1869 static bool
1870 detect_coding_emacs_mule (struct coding_system *coding,
1871 struct coding_detection_info *detect_info)
1872 {
1873 const unsigned char *src = coding->source, *src_base;
1874 const unsigned char *src_end = coding->source + coding->src_bytes;
1875 bool multibytep = coding->src_multibyte;
1876 ptrdiff_t consumed_chars = 0;
1877 int c;
1878 int found = 0;
1879
1880 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1881 /* A coding system of this category is always ASCII compatible. */
1882 src += coding->head_ascii;
1883
1884 while (1)
1885 {
1886 src_base = src;
1887 ONE_MORE_BYTE (c);
1888 if (c < 0)
1889 continue;
1890 if (c == 0x80)
1891 {
1892 /* Perhaps the start of composite character. We simply skip
1893 it because analyzing it is too heavy for detecting. But,
1894 at least, we check that the composite character
1895 constitutes of more than 4 bytes. */
1896 const unsigned char *src_start;
1897
1898 repeat:
1899 src_start = src;
1900 do
1901 {
1902 ONE_MORE_BYTE (c);
1903 }
1904 while (c >= 0xA0);
1905
1906 if (src - src_start <= 4)
1907 break;
1908 found = CATEGORY_MASK_EMACS_MULE;
1909 if (c == 0x80)
1910 goto repeat;
1911 }
1912
1913 if (c < 0x80)
1914 {
1915 if (c < 0x20
1916 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
1917 break;
1918 }
1919 else
1920 {
1921 int more_bytes = emacs_mule_bytes[c] - 1;
1922
1923 while (more_bytes > 0)
1924 {
1925 ONE_MORE_BYTE (c);
1926 if (c < 0xA0)
1927 {
1928 src--; /* Unread the last byte. */
1929 break;
1930 }
1931 more_bytes--;
1932 }
1933 if (more_bytes != 0)
1934 break;
1935 found = CATEGORY_MASK_EMACS_MULE;
1936 }
1937 }
1938 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1939 return 0;
1940
1941 no_more_source:
1942 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1943 {
1944 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1945 return 0;
1946 }
1947 detect_info->found |= found;
1948 return 1;
1949 }
1950
1951
1952 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
1953 character. If CMP_STATUS indicates that we must expect MSEQ or
1954 RULE described above, decode it and return the negative value of
1955 the decoded character or rule. If an invalid byte is found, return
1956 -1. If SRC is too short, return -2. */
1957
1958 static int
1959 emacs_mule_char (struct coding_system *coding, const unsigned char *src,
1960 int *nbytes, int *nchars, int *id,
1961 struct composition_status *cmp_status)
1962 {
1963 const unsigned char *src_end = coding->source + coding->src_bytes;
1964 const unsigned char *src_base = src;
1965 bool multibytep = coding->src_multibyte;
1966 int charset_ID;
1967 unsigned code;
1968 int c;
1969 ptrdiff_t consumed_chars = 0;
1970 bool mseq_found = 0;
1971
1972 ONE_MORE_BYTE (c);
1973 if (c < 0)
1974 {
1975 c = -c;
1976 charset_ID = emacs_mule_charset[0];
1977 }
1978 else
1979 {
1980 if (c >= 0xA0)
1981 {
1982 if (cmp_status->state != COMPOSING_NO
1983 && cmp_status->old_form)
1984 {
1985 if (cmp_status->state == COMPOSING_CHAR)
1986 {
1987 if (c == 0xA0)
1988 {
1989 ONE_MORE_BYTE (c);
1990 c -= 0x80;
1991 if (c < 0)
1992 goto invalid_code;
1993 }
1994 else
1995 c -= 0x20;
1996 mseq_found = 1;
1997 }
1998 else
1999 {
2000 *nbytes = src - src_base;
2001 *nchars = consumed_chars;
2002 return -c;
2003 }
2004 }
2005 else
2006 goto invalid_code;
2007 }
2008
2009 switch (emacs_mule_bytes[c])
2010 {
2011 case 2:
2012 if ((charset_ID = emacs_mule_charset[c]) < 0)
2013 goto invalid_code;
2014 ONE_MORE_BYTE (c);
2015 if (c < 0xA0)
2016 goto invalid_code;
2017 code = c & 0x7F;
2018 break;
2019
2020 case 3:
2021 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2022 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2023 {
2024 ONE_MORE_BYTE (c);
2025 if (c < 0xA0 || (charset_ID = emacs_mule_charset[c]) < 0)
2026 goto invalid_code;
2027 ONE_MORE_BYTE (c);
2028 if (c < 0xA0)
2029 goto invalid_code;
2030 code = c & 0x7F;
2031 }
2032 else
2033 {
2034 if ((charset_ID = emacs_mule_charset[c]) < 0)
2035 goto invalid_code;
2036 ONE_MORE_BYTE (c);
2037 if (c < 0xA0)
2038 goto invalid_code;
2039 code = (c & 0x7F) << 8;
2040 ONE_MORE_BYTE (c);
2041 if (c < 0xA0)
2042 goto invalid_code;
2043 code |= c & 0x7F;
2044 }
2045 break;
2046
2047 case 4:
2048 ONE_MORE_BYTE (c);
2049 if (c < 0 || (charset_ID = emacs_mule_charset[c]) < 0)
2050 goto invalid_code;
2051 ONE_MORE_BYTE (c);
2052 if (c < 0xA0)
2053 goto invalid_code;
2054 code = (c & 0x7F) << 8;
2055 ONE_MORE_BYTE (c);
2056 if (c < 0xA0)
2057 goto invalid_code;
2058 code |= c & 0x7F;
2059 break;
2060
2061 case 1:
2062 code = c;
2063 charset_ID = ASCII_CHAR_P (code) ? charset_ascii : charset_eight_bit;
2064 break;
2065
2066 default:
2067 emacs_abort ();
2068 }
2069 CODING_DECODE_CHAR (coding, src, src_base, src_end,
2070 CHARSET_FROM_ID (charset_ID), code, c);
2071 if (c < 0)
2072 goto invalid_code;
2073 }
2074 *nbytes = src - src_base;
2075 *nchars = consumed_chars;
2076 if (id)
2077 *id = charset_ID;
2078 return (mseq_found ? -c : c);
2079
2080 no_more_source:
2081 return -2;
2082
2083 invalid_code:
2084 return -1;
2085 }
2086
2087
2088 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2089
2090 /* Handle these composition sequence ('|': the end of header elements,
2091 BYTES and CHARS >= 0xA0):
2092
2093 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2094 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2095 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2096
2097 and these old form:
2098
2099 (4) relative composition: 0x80 | MSEQ ... MSEQ
2100 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2101
2102 When the starter 0x80 and the following header elements are found,
2103 this annotation header is produced.
2104
2105 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2106
2107 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2108 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2109
2110 Then, upon reading the following elements, these codes are produced
2111 until the composition end is found:
2112
2113 (1) CHAR ... CHAR
2114 (2) ALT ... ALT CHAR ... CHAR
2115 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2116 (4) CHAR ... CHAR
2117 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2118
2119 When the composition end is found, LENGTH and NCHARS in the
2120 annotation header is updated as below:
2121
2122 (1) LENGTH: unchanged, NCHARS: unchanged
2123 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2124 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2125 (4) LENGTH: unchanged, NCHARS: number of CHARs
2126 (5) LENGTH: unchanged, NCHARS: number of CHARs
2127
2128 If an error is found while composing, the annotation header is
2129 changed to the original composition header (plus filler -1s) as
2130 below:
2131
2132 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2133 (5) [ 0x80 0xFF -1 -1- -1 ]
2134
2135 and the sequence [ -2 DECODED-RULE ] is changed to the original
2136 byte sequence as below:
2137 o the original byte sequence is B: [ B -1 ]
2138 o the original byte sequence is B1 B2: [ B1 B2 ]
2139
2140 Most of the routines are implemented by macros because many
2141 variables and labels in the caller decode_coding_emacs_mule must be
2142 accessible, and they are usually called just once (thus doesn't
2143 increase the size of compiled object). */
2144
2145 /* Decode a composition rule represented by C as a component of
2146 composition sequence of Emacs 20 style. Set RULE to the decoded
2147 rule. */
2148
2149 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2150 do { \
2151 int gref, nref; \
2152 \
2153 c -= 0xA0; \
2154 if (c < 0 || c >= 81) \
2155 goto invalid_code; \
2156 gref = c / 9, nref = c % 9; \
2157 if (gref == 4) gref = 10; \
2158 if (nref == 4) nref = 10; \
2159 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2160 } while (0)
2161
2162
2163 /* Decode a composition rule represented by C and the following byte
2164 at SRC as a component of composition sequence of Emacs 21 style.
2165 Set RULE to the decoded rule. */
2166
2167 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2168 do { \
2169 int gref, nref; \
2170 \
2171 gref = c - 0x20; \
2172 if (gref < 0 || gref >= 81) \
2173 goto invalid_code; \
2174 ONE_MORE_BYTE (c); \
2175 nref = c - 0x20; \
2176 if (nref < 0 || nref >= 81) \
2177 goto invalid_code; \
2178 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2179 } while (0)
2180
2181
2182 /* Start of Emacs 21 style format. The first three bytes at SRC are
2183 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2184 byte length of this composition information, CHARS is the number of
2185 characters composed by this composition. */
2186
2187 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2188 do { \
2189 enum composition_method method = c - 0xF2; \
2190 int nbytes, nchars; \
2191 \
2192 ONE_MORE_BYTE (c); \
2193 if (c < 0) \
2194 goto invalid_code; \
2195 nbytes = c - 0xA0; \
2196 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2197 goto invalid_code; \
2198 ONE_MORE_BYTE (c); \
2199 nchars = c - 0xA0; \
2200 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2201 goto invalid_code; \
2202 cmp_status->old_form = 0; \
2203 cmp_status->method = method; \
2204 if (method == COMPOSITION_RELATIVE) \
2205 cmp_status->state = COMPOSING_CHAR; \
2206 else \
2207 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2208 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2209 cmp_status->nchars = nchars; \
2210 cmp_status->ncomps = nbytes - 4; \
2211 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2212 } while (0)
2213
2214
2215 /* Start of Emacs 20 style format for relative composition. */
2216
2217 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2218 do { \
2219 cmp_status->old_form = 1; \
2220 cmp_status->method = COMPOSITION_RELATIVE; \
2221 cmp_status->state = COMPOSING_CHAR; \
2222 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2223 cmp_status->nchars = cmp_status->ncomps = 0; \
2224 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2225 } while (0)
2226
2227
2228 /* Start of Emacs 20 style format for rule-base composition. */
2229
2230 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2231 do { \
2232 cmp_status->old_form = 1; \
2233 cmp_status->method = COMPOSITION_WITH_RULE; \
2234 cmp_status->state = COMPOSING_CHAR; \
2235 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2236 cmp_status->nchars = cmp_status->ncomps = 0; \
2237 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2238 } while (0)
2239
2240
2241 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2242 do { \
2243 const unsigned char *current_src = src; \
2244 \
2245 ONE_MORE_BYTE (c); \
2246 if (c < 0) \
2247 goto invalid_code; \
2248 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2249 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2250 DECODE_EMACS_MULE_21_COMPOSITION (); \
2251 else if (c < 0xA0) \
2252 goto invalid_code; \
2253 else if (c < 0xC0) \
2254 { \
2255 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2256 /* Re-read C as a composition component. */ \
2257 src = current_src; \
2258 } \
2259 else if (c == 0xFF) \
2260 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2261 else \
2262 goto invalid_code; \
2263 } while (0)
2264
2265 #define EMACS_MULE_COMPOSITION_END() \
2266 do { \
2267 int idx = - cmp_status->length; \
2268 \
2269 if (cmp_status->old_form) \
2270 charbuf[idx + 2] = cmp_status->nchars; \
2271 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2272 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2273 cmp_status->state = COMPOSING_NO; \
2274 } while (0)
2275
2276
2277 static int
2278 emacs_mule_finish_composition (int *charbuf,
2279 struct composition_status *cmp_status)
2280 {
2281 int idx = - cmp_status->length;
2282 int new_chars;
2283
2284 if (cmp_status->old_form && cmp_status->nchars > 0)
2285 {
2286 charbuf[idx + 2] = cmp_status->nchars;
2287 new_chars = 0;
2288 if (cmp_status->method == COMPOSITION_WITH_RULE
2289 && cmp_status->state == COMPOSING_CHAR)
2290 {
2291 /* The last rule was invalid. */
2292 int rule = charbuf[-1] + 0xA0;
2293
2294 charbuf[-2] = BYTE8_TO_CHAR (rule);
2295 charbuf[-1] = -1;
2296 new_chars = 1;
2297 }
2298 }
2299 else
2300 {
2301 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2302
2303 if (cmp_status->method == COMPOSITION_WITH_RULE)
2304 {
2305 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2306 charbuf[idx++] = -3;
2307 charbuf[idx++] = 0;
2308 new_chars = 1;
2309 }
2310 else
2311 {
2312 int nchars = charbuf[idx + 1] + 0xA0;
2313 int nbytes = charbuf[idx + 2] + 0xA0;
2314
2315 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2316 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2317 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2318 charbuf[idx++] = -1;
2319 new_chars = 4;
2320 }
2321 }
2322 cmp_status->state = COMPOSING_NO;
2323 return new_chars;
2324 }
2325
2326 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2327 do { \
2328 if (cmp_status->state != COMPOSING_NO) \
2329 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2330 } while (0)
2331
2332
2333 static void
2334 decode_coding_emacs_mule (struct coding_system *coding)
2335 {
2336 const unsigned char *src = coding->source + coding->consumed;
2337 const unsigned char *src_end = coding->source + coding->src_bytes;
2338 const unsigned char *src_base;
2339 int *charbuf = coding->charbuf + coding->charbuf_used;
2340 /* We may produce two annotations (charset and composition) in one
2341 loop and one more charset annotation at the end. */
2342 int *charbuf_end
2343 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3)
2344 /* We can produce up to 2 characters in a loop. */
2345 - 1;
2346 ptrdiff_t consumed_chars = 0, consumed_chars_base;
2347 bool multibytep = coding->src_multibyte;
2348 ptrdiff_t char_offset = coding->produced_char;
2349 ptrdiff_t last_offset = char_offset;
2350 int last_id = charset_ascii;
2351 bool eol_dos
2352 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2353 int byte_after_cr = -1;
2354 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2355
2356 if (cmp_status->state != COMPOSING_NO)
2357 {
2358 int i;
2359
2360 if (charbuf_end - charbuf < cmp_status->length)
2361 emacs_abort ();
2362 for (i = 0; i < cmp_status->length; i++)
2363 *charbuf++ = cmp_status->carryover[i];
2364 coding->annotated = 1;
2365 }
2366
2367 while (1)
2368 {
2369 int c, id IF_LINT (= 0);
2370
2371 src_base = src;
2372 consumed_chars_base = consumed_chars;
2373
2374 if (charbuf >= charbuf_end)
2375 {
2376 if (byte_after_cr >= 0)
2377 src_base--;
2378 break;
2379 }
2380
2381 if (byte_after_cr >= 0)
2382 c = byte_after_cr, byte_after_cr = -1;
2383 else
2384 ONE_MORE_BYTE (c);
2385
2386 if (c < 0 || c == 0x80)
2387 {
2388 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2389 if (c < 0)
2390 {
2391 *charbuf++ = -c;
2392 char_offset++;
2393 }
2394 else
2395 DECODE_EMACS_MULE_COMPOSITION_START ();
2396 continue;
2397 }
2398
2399 if (c < 0x80)
2400 {
2401 if (eol_dos && c == '\r')
2402 ONE_MORE_BYTE (byte_after_cr);
2403 id = charset_ascii;
2404 if (cmp_status->state != COMPOSING_NO)
2405 {
2406 if (cmp_status->old_form)
2407 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2408 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2409 cmp_status->ncomps--;
2410 }
2411 }
2412 else
2413 {
2414 int nchars IF_LINT (= 0), nbytes IF_LINT (= 0);
2415 /* emacs_mule_char can load a charset map from a file, which
2416 allocates a large structure and might cause buffer text
2417 to be relocated as result. Thus, we need to remember the
2418 original pointer to buffer text, and fix up all related
2419 pointers after the call. */
2420 const unsigned char *orig = coding->source;
2421 ptrdiff_t offset;
2422
2423 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2424 cmp_status);
2425 offset = coding->source - orig;
2426 if (offset)
2427 {
2428 src += offset;
2429 src_base += offset;
2430 src_end += offset;
2431 }
2432 if (c < 0)
2433 {
2434 if (c == -1)
2435 goto invalid_code;
2436 if (c == -2)
2437 break;
2438 }
2439 src = src_base + nbytes;
2440 consumed_chars = consumed_chars_base + nchars;
2441 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2442 cmp_status->ncomps -= nchars;
2443 }
2444
2445 /* Now if C >= 0, we found a normally encoded character, if C <
2446 0, we found an old-style composition component character or
2447 rule. */
2448
2449 if (cmp_status->state == COMPOSING_NO)
2450 {
2451 if (last_id != id)
2452 {
2453 if (last_id != charset_ascii)
2454 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2455 last_id);
2456 last_id = id;
2457 last_offset = char_offset;
2458 }
2459 *charbuf++ = c;
2460 char_offset++;
2461 }
2462 else if (cmp_status->state == COMPOSING_CHAR)
2463 {
2464 if (cmp_status->old_form)
2465 {
2466 if (c >= 0)
2467 {
2468 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2469 *charbuf++ = c;
2470 char_offset++;
2471 }
2472 else
2473 {
2474 *charbuf++ = -c;
2475 cmp_status->nchars++;
2476 cmp_status->length++;
2477 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2478 EMACS_MULE_COMPOSITION_END ();
2479 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2480 cmp_status->state = COMPOSING_RULE;
2481 }
2482 }
2483 else
2484 {
2485 *charbuf++ = c;
2486 cmp_status->length++;
2487 cmp_status->nchars--;
2488 if (cmp_status->nchars == 0)
2489 EMACS_MULE_COMPOSITION_END ();
2490 }
2491 }
2492 else if (cmp_status->state == COMPOSING_RULE)
2493 {
2494 int rule;
2495
2496 if (c >= 0)
2497 {
2498 EMACS_MULE_COMPOSITION_END ();
2499 *charbuf++ = c;
2500 char_offset++;
2501 }
2502 else
2503 {
2504 c = -c;
2505 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2506 if (rule < 0)
2507 goto invalid_code;
2508 *charbuf++ = -2;
2509 *charbuf++ = rule;
2510 cmp_status->length += 2;
2511 cmp_status->state = COMPOSING_CHAR;
2512 }
2513 }
2514 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2515 {
2516 *charbuf++ = c;
2517 cmp_status->length++;
2518 if (cmp_status->ncomps == 0)
2519 cmp_status->state = COMPOSING_CHAR;
2520 else if (cmp_status->ncomps > 0)
2521 {
2522 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2523 cmp_status->state = COMPOSING_COMPONENT_RULE;
2524 }
2525 else
2526 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2527 }
2528 else /* COMPOSING_COMPONENT_RULE */
2529 {
2530 int rule;
2531
2532 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2533 if (rule < 0)
2534 goto invalid_code;
2535 *charbuf++ = -2;
2536 *charbuf++ = rule;
2537 cmp_status->length += 2;
2538 cmp_status->ncomps--;
2539 if (cmp_status->ncomps > 0)
2540 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2541 else
2542 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2543 }
2544 continue;
2545
2546 invalid_code:
2547 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2548 src = src_base;
2549 consumed_chars = consumed_chars_base;
2550 ONE_MORE_BYTE (c);
2551 *charbuf++ = ASCII_CHAR_P (c) ? c : BYTE8_TO_CHAR (c);
2552 char_offset++;
2553 }
2554
2555 no_more_source:
2556 if (cmp_status->state != COMPOSING_NO)
2557 {
2558 if (coding->mode & CODING_MODE_LAST_BLOCK)
2559 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2560 else
2561 {
2562 int i;
2563
2564 charbuf -= cmp_status->length;
2565 for (i = 0; i < cmp_status->length; i++)
2566 cmp_status->carryover[i] = charbuf[i];
2567 }
2568 }
2569 if (last_id != charset_ascii)
2570 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2571 coding->consumed_char += consumed_chars_base;
2572 coding->consumed = src_base - coding->source;
2573 coding->charbuf_used = charbuf - coding->charbuf;
2574 }
2575
2576
2577 #define EMACS_MULE_LEADING_CODES(id, codes) \
2578 do { \
2579 if (id < 0xA0) \
2580 codes[0] = id, codes[1] = 0; \
2581 else if (id < 0xE0) \
2582 codes[0] = 0x9A, codes[1] = id; \
2583 else if (id < 0xF0) \
2584 codes[0] = 0x9B, codes[1] = id; \
2585 else if (id < 0xF5) \
2586 codes[0] = 0x9C, codes[1] = id; \
2587 else \
2588 codes[0] = 0x9D, codes[1] = id; \
2589 } while (0);
2590
2591
2592 static bool
2593 encode_coding_emacs_mule (struct coding_system *coding)
2594 {
2595 bool multibytep = coding->dst_multibyte;
2596 int *charbuf = coding->charbuf;
2597 int *charbuf_end = charbuf + coding->charbuf_used;
2598 unsigned char *dst = coding->destination + coding->produced;
2599 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2600 int safe_room = 8;
2601 ptrdiff_t produced_chars = 0;
2602 Lisp_Object attrs, charset_list;
2603 int c;
2604 int preferred_charset_id = -1;
2605
2606 CODING_GET_INFO (coding, attrs, charset_list);
2607 if (! EQ (charset_list, Vemacs_mule_charset_list))
2608 {
2609 charset_list = Vemacs_mule_charset_list;
2610 ASET (attrs, coding_attr_charset_list, charset_list);
2611 }
2612
2613 while (charbuf < charbuf_end)
2614 {
2615 ASSURE_DESTINATION (safe_room);
2616 c = *charbuf++;
2617
2618 if (c < 0)
2619 {
2620 /* Handle an annotation. */
2621 switch (*charbuf)
2622 {
2623 case CODING_ANNOTATE_COMPOSITION_MASK:
2624 /* Not yet implemented. */
2625 break;
2626 case CODING_ANNOTATE_CHARSET_MASK:
2627 preferred_charset_id = charbuf[3];
2628 if (preferred_charset_id >= 0
2629 && NILP (Fmemq (make_number (preferred_charset_id),
2630 charset_list)))
2631 preferred_charset_id = -1;
2632 break;
2633 default:
2634 emacs_abort ();
2635 }
2636 charbuf += -c - 1;
2637 continue;
2638 }
2639
2640 if (ASCII_CHAR_P (c))
2641 EMIT_ONE_ASCII_BYTE (c);
2642 else if (CHAR_BYTE8_P (c))
2643 {
2644 c = CHAR_TO_BYTE8 (c);
2645 EMIT_ONE_BYTE (c);
2646 }
2647 else
2648 {
2649 struct charset *charset;
2650 unsigned code;
2651 int dimension;
2652 int emacs_mule_id;
2653 unsigned char leading_codes[2];
2654
2655 if (preferred_charset_id >= 0)
2656 {
2657 bool result;
2658
2659 charset = CHARSET_FROM_ID (preferred_charset_id);
2660 CODING_CHAR_CHARSET_P (coding, dst, dst_end, c, charset, result);
2661 if (result)
2662 code = ENCODE_CHAR (charset, c);
2663 else
2664 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2665 &code, charset);
2666 }
2667 else
2668 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2669 &code, charset);
2670 if (! charset)
2671 {
2672 c = coding->default_char;
2673 if (ASCII_CHAR_P (c))
2674 {
2675 EMIT_ONE_ASCII_BYTE (c);
2676 continue;
2677 }
2678 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2679 &code, charset);
2680 }
2681 dimension = CHARSET_DIMENSION (charset);
2682 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2683 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2684 EMIT_ONE_BYTE (leading_codes[0]);
2685 if (leading_codes[1])
2686 EMIT_ONE_BYTE (leading_codes[1]);
2687 if (dimension == 1)
2688 EMIT_ONE_BYTE (code | 0x80);
2689 else
2690 {
2691 code |= 0x8080;
2692 EMIT_ONE_BYTE (code >> 8);
2693 EMIT_ONE_BYTE (code & 0xFF);
2694 }
2695 }
2696 }
2697 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2698 coding->produced_char += produced_chars;
2699 coding->produced = dst - coding->destination;
2700 return 0;
2701 }
2702
2703 \f
2704 /*** 7. ISO2022 handlers ***/
2705
2706 /* The following note describes the coding system ISO2022 briefly.
2707 Since the intention of this note is to help understand the
2708 functions in this file, some parts are NOT ACCURATE or are OVERLY
2709 SIMPLIFIED. For thorough understanding, please refer to the
2710 original document of ISO2022. This is equivalent to the standard
2711 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2712
2713 ISO2022 provides many mechanisms to encode several character sets
2714 in 7-bit and 8-bit environments. For 7-bit environments, all text
2715 is encoded using bytes less than 128. This may make the encoded
2716 text a little bit longer, but the text passes more easily through
2717 several types of gateway, some of which strip off the MSB (Most
2718 Significant Bit).
2719
2720 There are two kinds of character sets: control character sets and
2721 graphic character sets. The former contain control characters such
2722 as `newline' and `escape' to provide control functions (control
2723 functions are also provided by escape sequences). The latter
2724 contain graphic characters such as 'A' and '-'. Emacs recognizes
2725 two control character sets and many graphic character sets.
2726
2727 Graphic character sets are classified into one of the following
2728 four classes, according to the number of bytes (DIMENSION) and
2729 number of characters in one dimension (CHARS) of the set:
2730 - DIMENSION1_CHARS94
2731 - DIMENSION1_CHARS96
2732 - DIMENSION2_CHARS94
2733 - DIMENSION2_CHARS96
2734
2735 In addition, each character set is assigned an identification tag,
2736 unique for each set, called the "final character" (denoted as <F>
2737 hereafter). The <F> of each character set is decided by ECMA(*)
2738 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2739 (0x30..0x3F are for private use only).
2740
2741 Note (*): ECMA = European Computer Manufacturers Association
2742
2743 Here are examples of graphic character sets [NAME(<F>)]:
2744 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2745 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2746 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2747 o DIMENSION2_CHARS96 -- none for the moment
2748
2749 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2750 C0 [0x00..0x1F] -- control character plane 0
2751 GL [0x20..0x7F] -- graphic character plane 0
2752 C1 [0x80..0x9F] -- control character plane 1
2753 GR [0xA0..0xFF] -- graphic character plane 1
2754
2755 A control character set is directly designated and invoked to C0 or
2756 C1 by an escape sequence. The most common case is that:
2757 - ISO646's control character set is designated/invoked to C0, and
2758 - ISO6429's control character set is designated/invoked to C1,
2759 and usually these designations/invocations are omitted in encoded
2760 text. In a 7-bit environment, only C0 can be used, and a control
2761 character for C1 is encoded by an appropriate escape sequence to
2762 fit into the environment. All control characters for C1 are
2763 defined to have corresponding escape sequences.
2764
2765 A graphic character set is at first designated to one of four
2766 graphic registers (G0 through G3), then these graphic registers are
2767 invoked to GL or GR. These designations and invocations can be
2768 done independently. The most common case is that G0 is invoked to
2769 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2770 these invocations and designations are omitted in encoded text.
2771 In a 7-bit environment, only GL can be used.
2772
2773 When a graphic character set of CHARS94 is invoked to GL, codes
2774 0x20 and 0x7F of the GL area work as control characters SPACE and
2775 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2776 be used.
2777
2778 There are two ways of invocation: locking-shift and single-shift.
2779 With locking-shift, the invocation lasts until the next different
2780 invocation, whereas with single-shift, the invocation affects the
2781 following character only and doesn't affect the locking-shift
2782 state. Invocations are done by the following control characters or
2783 escape sequences:
2784
2785 ----------------------------------------------------------------------
2786 abbrev function cntrl escape seq description
2787 ----------------------------------------------------------------------
2788 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2789 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2790 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2791 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2792 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2793 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2794 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2795 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2796 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2797 ----------------------------------------------------------------------
2798 (*) These are not used by any known coding system.
2799
2800 Control characters for these functions are defined by macros
2801 ISO_CODE_XXX in `coding.h'.
2802
2803 Designations are done by the following escape sequences:
2804 ----------------------------------------------------------------------
2805 escape sequence description
2806 ----------------------------------------------------------------------
2807 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2808 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2809 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2810 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2811 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2812 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2813 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2814 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2815 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2816 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2817 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2818 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2819 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2820 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2821 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2822 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2823 ----------------------------------------------------------------------
2824
2825 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2826 of dimension 1, chars 94, and final character <F>, etc...
2827
2828 Note (*): Although these designations are not allowed in ISO2022,
2829 Emacs accepts them on decoding, and produces them on encoding
2830 CHARS96 character sets in a coding system which is characterized as
2831 7-bit environment, non-locking-shift, and non-single-shift.
2832
2833 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2834 '(' must be omitted. We refer to this as "short-form" hereafter.
2835
2836 Now you may notice that there are a lot of ways of encoding the
2837 same multilingual text in ISO2022. Actually, there exist many
2838 coding systems such as Compound Text (used in X11's inter client
2839 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2840 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2841 localized platforms), and all of these are variants of ISO2022.
2842
2843 In addition to the above, Emacs handles two more kinds of escape
2844 sequences: ISO6429's direction specification and Emacs' private
2845 sequence for specifying character composition.
2846
2847 ISO6429's direction specification takes the following form:
2848 o CSI ']' -- end of the current direction
2849 o CSI '0' ']' -- end of the current direction
2850 o CSI '1' ']' -- start of left-to-right text
2851 o CSI '2' ']' -- start of right-to-left text
2852 The control character CSI (0x9B: control sequence introducer) is
2853 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2854
2855 Character composition specification takes the following form:
2856 o ESC '0' -- start relative composition
2857 o ESC '1' -- end composition
2858 o ESC '2' -- start rule-base composition (*)
2859 o ESC '3' -- start relative composition with alternate chars (**)
2860 o ESC '4' -- start rule-base composition with alternate chars (**)
2861 Since these are not standard escape sequences of any ISO standard,
2862 the use of them with these meanings is restricted to Emacs only.
2863
2864 (*) This form is used only in Emacs 20.7 and older versions,
2865 but newer versions can safely decode it.
2866 (**) This form is used only in Emacs 21.1 and newer versions,
2867 and older versions can't decode it.
2868
2869 Here's a list of example usages of these composition escape
2870 sequences (categorized by `enum composition_method').
2871
2872 COMPOSITION_RELATIVE:
2873 ESC 0 CHAR [ CHAR ] ESC 1
2874 COMPOSITION_WITH_RULE:
2875 ESC 2 CHAR [ RULE CHAR ] ESC 1
2876 COMPOSITION_WITH_ALTCHARS:
2877 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2878 COMPOSITION_WITH_RULE_ALTCHARS:
2879 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2880
2881 static enum iso_code_class_type iso_code_class[256];
2882
2883 #define SAFE_CHARSET_P(coding, id) \
2884 ((id) <= (coding)->max_charset_id \
2885 && (coding)->safe_charsets[id] != 255)
2886
2887 static void
2888 setup_iso_safe_charsets (Lisp_Object attrs)
2889 {
2890 Lisp_Object charset_list, safe_charsets;
2891 Lisp_Object request;
2892 Lisp_Object reg_usage;
2893 Lisp_Object tail;
2894 EMACS_INT reg94, reg96;
2895 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2896 int max_charset_id;
2897
2898 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2899 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2900 && ! EQ (charset_list, Viso_2022_charset_list))
2901 {
2902 charset_list = Viso_2022_charset_list;
2903 ASET (attrs, coding_attr_charset_list, charset_list);
2904 ASET (attrs, coding_attr_safe_charsets, Qnil);
2905 }
2906
2907 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
2908 return;
2909
2910 max_charset_id = 0;
2911 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2912 {
2913 int id = XINT (XCAR (tail));
2914 if (max_charset_id < id)
2915 max_charset_id = id;
2916 }
2917
2918 safe_charsets = make_uninit_string (max_charset_id + 1);
2919 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
2920 request = AREF (attrs, coding_attr_iso_request);
2921 reg_usage = AREF (attrs, coding_attr_iso_usage);
2922 reg94 = XINT (XCAR (reg_usage));
2923 reg96 = XINT (XCDR (reg_usage));
2924
2925 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2926 {
2927 Lisp_Object id;
2928 Lisp_Object reg;
2929 struct charset *charset;
2930
2931 id = XCAR (tail);
2932 charset = CHARSET_FROM_ID (XINT (id));
2933 reg = Fcdr (Fassq (id, request));
2934 if (! NILP (reg))
2935 SSET (safe_charsets, XINT (id), XINT (reg));
2936 else if (charset->iso_chars_96)
2937 {
2938 if (reg96 < 4)
2939 SSET (safe_charsets, XINT (id), reg96);
2940 }
2941 else
2942 {
2943 if (reg94 < 4)
2944 SSET (safe_charsets, XINT (id), reg94);
2945 }
2946 }
2947 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
2948 }
2949
2950
2951 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2952 Return true if a text is encoded in one of ISO-2022 based coding
2953 systems. */
2954
2955 static bool
2956 detect_coding_iso_2022 (struct coding_system *coding,
2957 struct coding_detection_info *detect_info)
2958 {
2959 const unsigned char *src = coding->source, *src_base = src;
2960 const unsigned char *src_end = coding->source + coding->src_bytes;
2961 bool multibytep = coding->src_multibyte;
2962 bool single_shifting = 0;
2963 int id;
2964 int c, c1;
2965 ptrdiff_t consumed_chars = 0;
2966 int i;
2967 int rejected = 0;
2968 int found = 0;
2969 int composition_count = -1;
2970
2971 detect_info->checked |= CATEGORY_MASK_ISO;
2972
2973 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
2974 {
2975 struct coding_system *this = &(coding_categories[i]);
2976 Lisp_Object attrs, val;
2977
2978 if (this->id < 0)
2979 continue;
2980 attrs = CODING_ID_ATTRS (this->id);
2981 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
2982 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
2983 setup_iso_safe_charsets (attrs);
2984 val = CODING_ATTR_SAFE_CHARSETS (attrs);
2985 this->max_charset_id = SCHARS (val) - 1;
2986 this->safe_charsets = SDATA (val);
2987 }
2988
2989 /* A coding system of this category is always ASCII compatible. */
2990 src += coding->head_ascii;
2991
2992 while (rejected != CATEGORY_MASK_ISO)
2993 {
2994 src_base = src;
2995 ONE_MORE_BYTE (c);
2996 switch (c)
2997 {
2998 case ISO_CODE_ESC:
2999 if (inhibit_iso_escape_detection)
3000 break;
3001 single_shifting = 0;
3002 ONE_MORE_BYTE (c);
3003 if (c == 'N' || c == 'O')
3004 {
3005 /* ESC <Fe> for SS2 or SS3. */
3006 single_shifting = 1;
3007 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3008 }
3009 else if (c == '1')
3010 {
3011 /* End of composition. */
3012 if (composition_count < 0
3013 || composition_count > MAX_COMPOSITION_COMPONENTS)
3014 /* Invalid */
3015 break;
3016 composition_count = -1;
3017 found |= CATEGORY_MASK_ISO;
3018 }
3019 else if (c >= '0' && c <= '4')
3020 {
3021 /* ESC <Fp> for start/end composition. */
3022 composition_count = 0;
3023 }
3024 else
3025 {
3026 if (c >= '(' && c <= '/')
3027 {
3028 /* Designation sequence for a charset of dimension 1. */
3029 ONE_MORE_BYTE (c1);
3030 if (c1 < ' ' || c1 >= 0x80
3031 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3032 {
3033 /* Invalid designation sequence. Just ignore. */
3034 if (c1 >= 0x80)
3035 rejected |= (CATEGORY_MASK_ISO_7BIT
3036 | CATEGORY_MASK_ISO_7_ELSE);
3037 break;
3038 }
3039 }
3040 else if (c == '$')
3041 {
3042 /* Designation sequence for a charset of dimension 2. */
3043 ONE_MORE_BYTE (c);
3044 if (c >= '@' && c <= 'B')
3045 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3046 id = iso_charset_table[1][0][c];
3047 else if (c >= '(' && c <= '/')
3048 {
3049 ONE_MORE_BYTE (c1);
3050 if (c1 < ' ' || c1 >= 0x80
3051 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3052 {
3053 /* Invalid designation sequence. Just ignore. */
3054 if (c1 >= 0x80)
3055 rejected |= (CATEGORY_MASK_ISO_7BIT
3056 | CATEGORY_MASK_ISO_7_ELSE);
3057 break;
3058 }
3059 }
3060 else
3061 {
3062 /* Invalid designation sequence. Just ignore it. */
3063 if (c >= 0x80)
3064 rejected |= (CATEGORY_MASK_ISO_7BIT
3065 | CATEGORY_MASK_ISO_7_ELSE);
3066 break;
3067 }
3068 }
3069 else
3070 {
3071 /* Invalid escape sequence. Just ignore it. */
3072 if (c >= 0x80)
3073 rejected |= (CATEGORY_MASK_ISO_7BIT
3074 | CATEGORY_MASK_ISO_7_ELSE);
3075 break;
3076 }
3077
3078 /* We found a valid designation sequence for CHARSET. */
3079 rejected |= CATEGORY_MASK_ISO_8BIT;
3080 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3081 id))
3082 found |= CATEGORY_MASK_ISO_7;
3083 else
3084 rejected |= CATEGORY_MASK_ISO_7;
3085 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3086 id))
3087 found |= CATEGORY_MASK_ISO_7_TIGHT;
3088 else
3089 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3090 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3091 id))
3092 found |= CATEGORY_MASK_ISO_7_ELSE;
3093 else
3094 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3095 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3096 id))
3097 found |= CATEGORY_MASK_ISO_8_ELSE;
3098 else
3099 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3100 }
3101 break;
3102
3103 case ISO_CODE_SO:
3104 case ISO_CODE_SI:
3105 /* Locking shift out/in. */
3106 if (inhibit_iso_escape_detection)
3107 break;
3108 single_shifting = 0;
3109 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3110 break;
3111
3112 case ISO_CODE_CSI:
3113 /* Control sequence introducer. */
3114 single_shifting = 0;
3115 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3116 found |= CATEGORY_MASK_ISO_8_ELSE;
3117 goto check_extra_latin;
3118
3119 case ISO_CODE_SS2:
3120 case ISO_CODE_SS3:
3121 /* Single shift. */
3122 if (inhibit_iso_escape_detection)
3123 break;
3124 single_shifting = 0;
3125 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3126 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3127 & CODING_ISO_FLAG_SINGLE_SHIFT)
3128 {
3129 found |= CATEGORY_MASK_ISO_8_1;
3130 single_shifting = 1;
3131 }
3132 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3133 & CODING_ISO_FLAG_SINGLE_SHIFT)
3134 {
3135 found |= CATEGORY_MASK_ISO_8_2;
3136 single_shifting = 1;
3137 }
3138 if (single_shifting)
3139 break;
3140 goto check_extra_latin;
3141
3142 default:
3143 if (c < 0)
3144 continue;
3145 if (c < 0x80)
3146 {
3147 if (composition_count >= 0)
3148 composition_count++;
3149 single_shifting = 0;
3150 break;
3151 }
3152 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3153 if (c >= 0xA0)
3154 {
3155 found |= CATEGORY_MASK_ISO_8_1;
3156 /* Check the length of succeeding codes of the range
3157 0xA0..0FF. If the byte length is even, we include
3158 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3159 only when we are not single shifting. */
3160 if (! single_shifting
3161 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3162 {
3163 ptrdiff_t len = 1;
3164 while (src < src_end)
3165 {
3166 src_base = src;
3167 ONE_MORE_BYTE (c);
3168 if (c < 0xA0)
3169 {
3170 src = src_base;
3171 break;
3172 }
3173 len++;
3174 }
3175
3176 if (len & 1 && src < src_end)
3177 {
3178 rejected |= CATEGORY_MASK_ISO_8_2;
3179 if (composition_count >= 0)
3180 composition_count += len;
3181 }
3182 else
3183 {
3184 found |= CATEGORY_MASK_ISO_8_2;
3185 if (composition_count >= 0)
3186 composition_count += len / 2;
3187 }
3188 }
3189 break;
3190 }
3191 check_extra_latin:
3192 if (! VECTORP (Vlatin_extra_code_table)
3193 || NILP (AREF (Vlatin_extra_code_table, c)))
3194 {
3195 rejected = CATEGORY_MASK_ISO;
3196 break;
3197 }
3198 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3199 & CODING_ISO_FLAG_LATIN_EXTRA)
3200 found |= CATEGORY_MASK_ISO_8_1;
3201 else
3202 rejected |= CATEGORY_MASK_ISO_8_1;
3203 rejected |= CATEGORY_MASK_ISO_8_2;
3204 break;
3205 }
3206 }
3207 detect_info->rejected |= CATEGORY_MASK_ISO;
3208 return 0;
3209
3210 no_more_source:
3211 detect_info->rejected |= rejected;
3212 detect_info->found |= (found & ~rejected);
3213 return 1;
3214 }
3215
3216
3217 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3218 escape sequence should be kept. */
3219 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3220 do { \
3221 int id, prev; \
3222 \
3223 if (final < '0' || final >= 128 \
3224 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3225 || !SAFE_CHARSET_P (coding, id)) \
3226 { \
3227 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3228 chars_96 = -1; \
3229 break; \
3230 } \
3231 prev = CODING_ISO_DESIGNATION (coding, reg); \
3232 if (id == charset_jisx0201_roman) \
3233 { \
3234 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3235 id = charset_ascii; \
3236 } \
3237 else if (id == charset_jisx0208_1978) \
3238 { \
3239 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3240 id = charset_jisx0208; \
3241 } \
3242 CODING_ISO_DESIGNATION (coding, reg) = id; \
3243 /* If there was an invalid designation to REG previously, and this \
3244 designation is ASCII to REG, we should keep this designation \
3245 sequence. */ \
3246 if (prev == -2 && id == charset_ascii) \
3247 chars_96 = -1; \
3248 } while (0)
3249
3250
3251 /* Handle these composition sequence (ALT: alternate char):
3252
3253 (1) relative composition: ESC 0 CHAR ... ESC 1
3254 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3255 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3256 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3257
3258 When the start sequence (ESC 0/2/3/4) is found, this annotation
3259 header is produced.
3260
3261 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3262
3263 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3264 produced until the end sequence (ESC 1) is found:
3265
3266 (1) CHAR ... CHAR
3267 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3268 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3269 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3270
3271 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3272 annotation header is updated as below:
3273
3274 (1) LENGTH: unchanged, NCHARS: number of CHARs
3275 (2) LENGTH: unchanged, NCHARS: number of CHARs
3276 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3277 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3278
3279 If an error is found while composing, the annotation header is
3280 changed to:
3281
3282 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3283
3284 and the sequence [ -2 DECODED-RULE ] is changed to the original
3285 byte sequence as below:
3286 o the original byte sequence is B: [ B -1 ]
3287 o the original byte sequence is B1 B2: [ B1 B2 ]
3288 and the sequence [ -1 -1 ] is changed to the original byte
3289 sequence:
3290 [ ESC '0' ]
3291 */
3292
3293 /* Decode a composition rule C1 and maybe one more byte from the
3294 source, and set RULE to the encoded composition rule. If the rule
3295 is invalid, goto invalid_code. */
3296
3297 #define DECODE_COMPOSITION_RULE(rule) \
3298 do { \
3299 rule = c1 - 32; \
3300 if (rule < 0) \
3301 goto invalid_code; \
3302 if (rule < 81) /* old format (before ver.21) */ \
3303 { \
3304 int gref = (rule) / 9; \
3305 int nref = (rule) % 9; \
3306 if (gref == 4) gref = 10; \
3307 if (nref == 4) nref = 10; \
3308 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3309 } \
3310 else /* new format (after ver.21) */ \
3311 { \
3312 int b; \
3313 \
3314 ONE_MORE_BYTE (b); \
3315 if (! COMPOSITION_ENCODE_RULE_VALID (rule - 81, b - 32)) \
3316 goto invalid_code; \
3317 rule = COMPOSITION_ENCODE_RULE (rule - 81, b - 32); \
3318 rule += 0x100; /* Distinguish it from the old format. */ \
3319 } \
3320 } while (0)
3321
3322 #define ENCODE_COMPOSITION_RULE(rule) \
3323 do { \
3324 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3325 \
3326 if (rule < 0x100) /* old format */ \
3327 { \
3328 if (gref == 10) gref = 4; \
3329 if (nref == 10) nref = 4; \
3330 charbuf[idx] = 32 + gref * 9 + nref; \
3331 charbuf[idx + 1] = -1; \
3332 new_chars++; \
3333 } \
3334 else /* new format */ \
3335 { \
3336 charbuf[idx] = 32 + 81 + gref; \
3337 charbuf[idx + 1] = 32 + nref; \
3338 new_chars += 2; \
3339 } \
3340 } while (0)
3341
3342 /* Finish the current composition as invalid. */
3343
3344 static int
3345 finish_composition (int *charbuf, struct composition_status *cmp_status)
3346 {
3347 int idx = - cmp_status->length;
3348 int new_chars;
3349
3350 /* Recover the original ESC sequence */
3351 charbuf[idx++] = ISO_CODE_ESC;
3352 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3353 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3354 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3355 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3356 : '4');
3357 charbuf[idx++] = -2;
3358 charbuf[idx++] = 0;
3359 charbuf[idx++] = -1;
3360 new_chars = cmp_status->nchars;
3361 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3362 for (; idx < 0; idx++)
3363 {
3364 int elt = charbuf[idx];
3365
3366 if (elt == -2)
3367 {
3368 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3369 idx++;
3370 }
3371 else if (elt == -1)
3372 {
3373 charbuf[idx++] = ISO_CODE_ESC;
3374 charbuf[idx] = '0';
3375 new_chars += 2;
3376 }
3377 }
3378 cmp_status->state = COMPOSING_NO;
3379 return new_chars;
3380 }
3381
3382 /* If characters are under composition, finish the composition. */
3383 #define MAYBE_FINISH_COMPOSITION() \
3384 do { \
3385 if (cmp_status->state != COMPOSING_NO) \
3386 char_offset += finish_composition (charbuf, cmp_status); \
3387 } while (0)
3388
3389 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3390
3391 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3392 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3393 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3394 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3395
3396 Produce this annotation sequence now:
3397
3398 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3399 */
3400
3401 #define DECODE_COMPOSITION_START(c1) \
3402 do { \
3403 if (c1 == '0' \
3404 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3405 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3406 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3407 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3408 { \
3409 *charbuf++ = -1; \
3410 *charbuf++= -1; \
3411 cmp_status->state = COMPOSING_CHAR; \
3412 cmp_status->length += 2; \
3413 } \
3414 else \
3415 { \
3416 MAYBE_FINISH_COMPOSITION (); \
3417 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3418 : c1 == '2' ? COMPOSITION_WITH_RULE \
3419 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3420 : COMPOSITION_WITH_RULE_ALTCHARS); \
3421 cmp_status->state \
3422 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3423 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3424 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3425 cmp_status->nchars = cmp_status->ncomps = 0; \
3426 coding->annotated = 1; \
3427 } \
3428 } while (0)
3429
3430
3431 /* Handle composition end sequence ESC 1. */
3432
3433 #define DECODE_COMPOSITION_END() \
3434 do { \
3435 if (cmp_status->nchars == 0 \
3436 || ((cmp_status->state == COMPOSING_CHAR) \
3437 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3438 { \
3439 MAYBE_FINISH_COMPOSITION (); \
3440 goto invalid_code; \
3441 } \
3442 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3443 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3444 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3445 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3446 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3447 char_offset += cmp_status->nchars; \
3448 cmp_status->state = COMPOSING_NO; \
3449 } while (0)
3450
3451 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3452
3453 #define STORE_COMPOSITION_RULE(rule) \
3454 do { \
3455 *charbuf++ = -2; \
3456 *charbuf++ = rule; \
3457 cmp_status->length += 2; \
3458 cmp_status->state--; \
3459 } while (0)
3460
3461 /* Store a composed char or a component char C in charbuf, and update
3462 cmp_status. */
3463
3464 #define STORE_COMPOSITION_CHAR(c) \
3465 do { \
3466 *charbuf++ = (c); \
3467 cmp_status->length++; \
3468 if (cmp_status->state == COMPOSING_CHAR) \
3469 cmp_status->nchars++; \
3470 else \
3471 cmp_status->ncomps++; \
3472 if (cmp_status->method == COMPOSITION_WITH_RULE \
3473 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3474 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3475 cmp_status->state++; \
3476 } while (0)
3477
3478
3479 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3480
3481 static void
3482 decode_coding_iso_2022 (struct coding_system *coding)
3483 {
3484 const unsigned char *src = coding->source + coding->consumed;
3485 const unsigned char *src_end = coding->source + coding->src_bytes;
3486 const unsigned char *src_base;
3487 int *charbuf = coding->charbuf + coding->charbuf_used;
3488 /* We may produce two annotations (charset and composition) in one
3489 loop and one more charset annotation at the end. */
3490 int *charbuf_end
3491 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3492 ptrdiff_t consumed_chars = 0, consumed_chars_base;
3493 bool multibytep = coding->src_multibyte;
3494 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3495 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3496 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3497 int charset_id_2, charset_id_3;
3498 struct charset *charset;
3499 int c;
3500 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3501 Lisp_Object attrs = CODING_ID_ATTRS (coding->id);
3502 ptrdiff_t char_offset = coding->produced_char;
3503 ptrdiff_t last_offset = char_offset;
3504 int last_id = charset_ascii;
3505 bool eol_dos
3506 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3507 int byte_after_cr = -1;
3508 int i;
3509
3510 setup_iso_safe_charsets (attrs);
3511 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3512
3513 if (cmp_status->state != COMPOSING_NO)
3514 {
3515 if (charbuf_end - charbuf < cmp_status->length)
3516 emacs_abort ();
3517 for (i = 0; i < cmp_status->length; i++)
3518 *charbuf++ = cmp_status->carryover[i];
3519 coding->annotated = 1;
3520 }
3521
3522 while (1)
3523 {
3524 int c1, c2, c3;
3525
3526 src_base = src;
3527 consumed_chars_base = consumed_chars;
3528
3529 if (charbuf >= charbuf_end)
3530 {
3531 if (byte_after_cr >= 0)
3532 src_base--;
3533 break;
3534 }
3535
3536 if (byte_after_cr >= 0)
3537 c1 = byte_after_cr, byte_after_cr = -1;
3538 else
3539 ONE_MORE_BYTE (c1);
3540 if (c1 < 0)
3541 goto invalid_code;
3542
3543 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3544 {
3545 *charbuf++ = ASCII_CHAR_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3546 char_offset++;
3547 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3548 continue;
3549 }
3550
3551 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3552 {
3553 if (c1 == ISO_CODE_ESC)
3554 {
3555 if (src + 1 >= src_end)
3556 goto no_more_source;
3557 *charbuf++ = ISO_CODE_ESC;
3558 char_offset++;
3559 if (src[0] == '%' && src[1] == '@')
3560 {
3561 src += 2;
3562 consumed_chars += 2;
3563 char_offset += 2;
3564 /* We are sure charbuf can contain two more chars. */
3565 *charbuf++ = '%';
3566 *charbuf++ = '@';
3567 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3568 }
3569 }
3570 else
3571 {
3572 *charbuf++ = ASCII_CHAR_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3573 char_offset++;
3574 }
3575 continue;
3576 }
3577
3578 if ((cmp_status->state == COMPOSING_RULE
3579 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3580 && c1 != ISO_CODE_ESC)
3581 {
3582 int rule;
3583
3584 DECODE_COMPOSITION_RULE (rule);
3585 STORE_COMPOSITION_RULE (rule);
3586 continue;
3587 }
3588
3589 /* We produce at most one character. */
3590 switch (iso_code_class [c1])
3591 {
3592 case ISO_0x20_or_0x7F:
3593 if (charset_id_0 < 0
3594 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3595 /* This is SPACE or DEL. */
3596 charset = CHARSET_FROM_ID (charset_ascii);
3597 else
3598 charset = CHARSET_FROM_ID (charset_id_0);
3599 break;
3600
3601 case ISO_graphic_plane_0:
3602 if (charset_id_0 < 0)
3603 charset = CHARSET_FROM_ID (charset_ascii);
3604 else
3605 charset = CHARSET_FROM_ID (charset_id_0);
3606 break;
3607
3608 case ISO_0xA0_or_0xFF:
3609 if (charset_id_1 < 0
3610 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3611 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3612 goto invalid_code;
3613 /* This is a graphic character, we fall down ... */
3614
3615 case ISO_graphic_plane_1:
3616 if (charset_id_1 < 0)
3617 goto invalid_code;
3618 charset = CHARSET_FROM_ID (charset_id_1);
3619 break;
3620
3621 case ISO_control_0:
3622 if (eol_dos && c1 == '\r')
3623 ONE_MORE_BYTE (byte_after_cr);
3624 MAYBE_FINISH_COMPOSITION ();
3625 charset = CHARSET_FROM_ID (charset_ascii);
3626 break;
3627
3628 case ISO_control_1:
3629 goto invalid_code;
3630
3631 case ISO_shift_out:
3632 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3633 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3634 goto invalid_code;
3635 CODING_ISO_INVOCATION (coding, 0) = 1;
3636 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3637 continue;
3638
3639 case ISO_shift_in:
3640 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3641 goto invalid_code;
3642 CODING_ISO_INVOCATION (coding, 0) = 0;
3643 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3644 continue;
3645
3646 case ISO_single_shift_2_7:
3647 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS))
3648 goto invalid_code;
3649 case ISO_single_shift_2:
3650 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3651 goto invalid_code;
3652 /* SS2 is handled as an escape sequence of ESC 'N' */
3653 c1 = 'N';
3654 goto label_escape_sequence;
3655
3656 case ISO_single_shift_3:
3657 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3658 goto invalid_code;
3659 /* SS2 is handled as an escape sequence of ESC 'O' */
3660 c1 = 'O';
3661 goto label_escape_sequence;
3662
3663 case ISO_control_sequence_introducer:
3664 /* CSI is handled as an escape sequence of ESC '[' ... */
3665 c1 = '[';
3666 goto label_escape_sequence;
3667
3668 case ISO_escape:
3669 ONE_MORE_BYTE (c1);
3670 label_escape_sequence:
3671 /* Escape sequences handled here are invocation,
3672 designation, direction specification, and character
3673 composition specification. */
3674 switch (c1)
3675 {
3676 case '&': /* revision of following character set */
3677 ONE_MORE_BYTE (c1);
3678 if (!(c1 >= '@' && c1 <= '~'))
3679 goto invalid_code;
3680 ONE_MORE_BYTE (c1);
3681 if (c1 != ISO_CODE_ESC)
3682 goto invalid_code;
3683 ONE_MORE_BYTE (c1);
3684 goto label_escape_sequence;
3685
3686 case '$': /* designation of 2-byte character set */
3687 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3688 goto invalid_code;
3689 {
3690 int reg, chars96;
3691
3692 ONE_MORE_BYTE (c1);
3693 if (c1 >= '@' && c1 <= 'B')
3694 { /* designation of JISX0208.1978, GB2312.1980,
3695 or JISX0208.1980 */
3696 reg = 0, chars96 = 0;
3697 }
3698 else if (c1 >= 0x28 && c1 <= 0x2B)
3699 { /* designation of DIMENSION2_CHARS94 character set */
3700 reg = c1 - 0x28, chars96 = 0;
3701 ONE_MORE_BYTE (c1);
3702 }
3703 else if (c1 >= 0x2C && c1 <= 0x2F)
3704 { /* designation of DIMENSION2_CHARS96 character set */
3705 reg = c1 - 0x2C, chars96 = 1;
3706 ONE_MORE_BYTE (c1);
3707 }
3708 else
3709 goto invalid_code;
3710 DECODE_DESIGNATION (reg, 2, chars96, c1);
3711 /* We must update these variables now. */
3712 if (reg == 0)
3713 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3714 else if (reg == 1)
3715 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3716 if (chars96 < 0)
3717 goto invalid_code;
3718 }
3719 continue;
3720
3721 case 'n': /* invocation of locking-shift-2 */
3722 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3723 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3724 goto invalid_code;
3725 CODING_ISO_INVOCATION (coding, 0) = 2;
3726 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3727 continue;
3728
3729 case 'o': /* invocation of locking-shift-3 */
3730 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3731 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3732 goto invalid_code;
3733 CODING_ISO_INVOCATION (coding, 0) = 3;
3734 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3735 continue;
3736
3737 case 'N': /* invocation of single-shift-2 */
3738 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3739 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3740 goto invalid_code;
3741 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3742 if (charset_id_2 < 0)
3743 charset = CHARSET_FROM_ID (charset_ascii);
3744 else
3745 charset = CHARSET_FROM_ID (charset_id_2);
3746 ONE_MORE_BYTE (c1);
3747 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0)
3748 || (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3749 && ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LEVEL_4)
3750 ? c1 >= 0x80 : c1 < 0x80)))
3751 goto invalid_code;
3752 break;
3753
3754 case 'O': /* invocation of single-shift-3 */
3755 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3756 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3757 goto invalid_code;
3758 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3759 if (charset_id_3 < 0)
3760 charset = CHARSET_FROM_ID (charset_ascii);
3761 else
3762 charset = CHARSET_FROM_ID (charset_id_3);
3763 ONE_MORE_BYTE (c1);
3764 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0)
3765 || (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3766 && ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LEVEL_4)
3767 ? c1 >= 0x80 : c1 < 0x80)))
3768 goto invalid_code;
3769 break;
3770
3771 case '0': case '2': case '3': case '4': /* start composition */
3772 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3773 goto invalid_code;
3774 if (last_id != charset_ascii)
3775 {
3776 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3777 last_id = charset_ascii;
3778 last_offset = char_offset;
3779 }
3780 DECODE_COMPOSITION_START (c1);
3781 continue;
3782
3783 case '1': /* end composition */
3784 if (cmp_status->state == COMPOSING_NO)
3785 goto invalid_code;
3786 DECODE_COMPOSITION_END ();
3787 continue;
3788
3789 case '[': /* specification of direction */
3790 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION))
3791 goto invalid_code;
3792 /* For the moment, nested direction is not supported.
3793 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3794 left-to-right, and nonzero means right-to-left. */
3795 ONE_MORE_BYTE (c1);
3796 switch (c1)
3797 {
3798 case ']': /* end of the current direction */
3799 coding->mode &= ~CODING_MODE_DIRECTION;
3800
3801 case '0': /* end of the current direction */
3802 case '1': /* start of left-to-right direction */
3803 ONE_MORE_BYTE (c1);
3804 if (c1 == ']')
3805 coding->mode &= ~CODING_MODE_DIRECTION;
3806 else
3807 goto invalid_code;
3808 break;
3809
3810 case '2': /* start of right-to-left direction */
3811 ONE_MORE_BYTE (c1);
3812 if (c1 == ']')
3813 coding->mode |= CODING_MODE_DIRECTION;
3814 else
3815 goto invalid_code;
3816 break;
3817
3818 default:
3819 goto invalid_code;
3820 }
3821 continue;
3822
3823 case '%':
3824 ONE_MORE_BYTE (c1);
3825 if (c1 == '/')
3826 {
3827 /* CTEXT extended segment:
3828 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3829 We keep these bytes as is for the moment.
3830 They may be decoded by post-read-conversion. */
3831 int dim, M, L;
3832 int size;
3833
3834 ONE_MORE_BYTE (dim);
3835 if (dim < '0' || dim > '4')
3836 goto invalid_code;
3837 ONE_MORE_BYTE (M);
3838 if (M < 128)
3839 goto invalid_code;
3840 ONE_MORE_BYTE (L);
3841 if (L < 128)
3842 goto invalid_code;
3843 size = ((M - 128) * 128) + (L - 128);
3844 if (charbuf + 6 > charbuf_end)
3845 goto break_loop;
3846 *charbuf++ = ISO_CODE_ESC;
3847 *charbuf++ = '%';
3848 *charbuf++ = '/';
3849 *charbuf++ = dim;
3850 *charbuf++ = BYTE8_TO_CHAR (M);
3851 *charbuf++ = BYTE8_TO_CHAR (L);
3852 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3853 }
3854 else if (c1 == 'G')
3855 {
3856 /* XFree86 extension for embedding UTF-8 in CTEXT:
3857 ESC % G --UTF-8-BYTES-- ESC % @
3858 We keep these bytes as is for the moment.
3859 They may be decoded by post-read-conversion. */
3860 if (charbuf + 3 > charbuf_end)
3861 goto break_loop;
3862 *charbuf++ = ISO_CODE_ESC;
3863 *charbuf++ = '%';
3864 *charbuf++ = 'G';
3865 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3866 }
3867 else
3868 goto invalid_code;
3869 continue;
3870 break;
3871
3872 default:
3873 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3874 goto invalid_code;
3875 {
3876 int reg, chars96;
3877
3878 if (c1 >= 0x28 && c1 <= 0x2B)
3879 { /* designation of DIMENSION1_CHARS94 character set */
3880 reg = c1 - 0x28, chars96 = 0;
3881 ONE_MORE_BYTE (c1);
3882 }
3883 else if (c1 >= 0x2C && c1 <= 0x2F)
3884 { /* designation of DIMENSION1_CHARS96 character set */
3885 reg = c1 - 0x2C, chars96 = 1;
3886 ONE_MORE_BYTE (c1);
3887 }
3888 else
3889 goto invalid_code;
3890 DECODE_DESIGNATION (reg, 1, chars96, c1);
3891 /* We must update these variables now. */
3892 if (reg == 0)
3893 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3894 else if (reg == 1)
3895 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3896 if (chars96 < 0)
3897 goto invalid_code;
3898 }
3899 continue;
3900 }
3901 break;
3902
3903 default:
3904 emacs_abort ();
3905 }
3906
3907 if (cmp_status->state == COMPOSING_NO
3908 && charset->id != charset_ascii
3909 && last_id != charset->id)
3910 {
3911 if (last_id != charset_ascii)
3912 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3913 last_id = charset->id;
3914 last_offset = char_offset;
3915 }
3916
3917 /* Now we know CHARSET and 1st position code C1 of a character.
3918 Produce a decoded character while getting 2nd and 3rd
3919 position codes C2, C3 if necessary. */
3920 if (CHARSET_DIMENSION (charset) > 1)
3921 {
3922 ONE_MORE_BYTE (c2);
3923 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3924 || ((c1 & 0x80) != (c2 & 0x80)))
3925 /* C2 is not in a valid range. */
3926 goto invalid_code;
3927 if (CHARSET_DIMENSION (charset) == 2)
3928 c1 = (c1 << 8) | c2;
3929 else
3930 {
3931 ONE_MORE_BYTE (c3);
3932 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
3933 || ((c1 & 0x80) != (c3 & 0x80)))
3934 /* C3 is not in a valid range. */
3935 goto invalid_code;
3936 c1 = (c1 << 16) | (c2 << 8) | c2;
3937 }
3938 }
3939 c1 &= 0x7F7F7F;
3940 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
3941 if (c < 0)
3942 {
3943 MAYBE_FINISH_COMPOSITION ();
3944 for (; src_base < src; src_base++, char_offset++)
3945 {
3946 if (ASCII_CHAR_P (*src_base))
3947 *charbuf++ = *src_base;
3948 else
3949 *charbuf++ = BYTE8_TO_CHAR (*src_base);
3950 }
3951 }
3952 else if (cmp_status->state == COMPOSING_NO)
3953 {
3954 *charbuf++ = c;
3955 char_offset++;
3956 }
3957 else if ((cmp_status->state == COMPOSING_CHAR
3958 ? cmp_status->nchars
3959 : cmp_status->ncomps)
3960 >= MAX_COMPOSITION_COMPONENTS)
3961 {
3962 /* Too long composition. */
3963 MAYBE_FINISH_COMPOSITION ();
3964 *charbuf++ = c;
3965 char_offset++;
3966 }
3967 else
3968 STORE_COMPOSITION_CHAR (c);
3969 continue;
3970
3971 invalid_code:
3972 MAYBE_FINISH_COMPOSITION ();
3973 src = src_base;
3974 consumed_chars = consumed_chars_base;
3975 ONE_MORE_BYTE (c);
3976 *charbuf++ = c < 0 ? -c : ASCII_CHAR_P (c) ? c : BYTE8_TO_CHAR (c);
3977 char_offset++;
3978 /* Reset the invocation and designation status to the safest
3979 one; i.e. designate ASCII to the graphic register 0, and
3980 invoke that register to the graphic plane 0. This typically
3981 helps the case that an designation sequence for ASCII "ESC (
3982 B" is somehow broken (e.g. broken by a newline). */
3983 CODING_ISO_INVOCATION (coding, 0) = 0;
3984 CODING_ISO_DESIGNATION (coding, 0) = charset_ascii;
3985 charset_id_0 = charset_ascii;
3986 continue;
3987
3988 break_loop:
3989 break;
3990 }
3991
3992 no_more_source:
3993 if (cmp_status->state != COMPOSING_NO)
3994 {
3995 if (coding->mode & CODING_MODE_LAST_BLOCK)
3996 MAYBE_FINISH_COMPOSITION ();
3997 else
3998 {
3999 charbuf -= cmp_status->length;
4000 for (i = 0; i < cmp_status->length; i++)
4001 cmp_status->carryover[i] = charbuf[i];
4002 }
4003 }
4004 else if (last_id != charset_ascii)
4005 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4006 coding->consumed_char += consumed_chars_base;
4007 coding->consumed = src_base - coding->source;
4008 coding->charbuf_used = charbuf - coding->charbuf;
4009 }
4010
4011
4012 /* ISO2022 encoding stuff. */
4013
4014 /*
4015 It is not enough to say just "ISO2022" on encoding, we have to
4016 specify more details. In Emacs, each coding system of ISO2022
4017 variant has the following specifications:
4018 1. Initial designation to G0 thru G3.
4019 2. Allows short-form designation?
4020 3. ASCII should be designated to G0 before control characters?
4021 4. ASCII should be designated to G0 at end of line?
4022 5. 7-bit environment or 8-bit environment?
4023 6. Use locking-shift?
4024 7. Use Single-shift?
4025 And the following two are only for Japanese:
4026 8. Use ASCII in place of JIS0201-1976-Roman?
4027 9. Use JISX0208-1983 in place of JISX0208-1978?
4028 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
4029 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
4030 details.
4031 */
4032
4033 /* Produce codes (escape sequence) for designating CHARSET to graphic
4034 register REG at DST, and increment DST. If <final-char> of CHARSET is
4035 '@', 'A', or 'B' and the coding system CODING allows, produce
4036 designation sequence of short-form. */
4037
4038 #define ENCODE_DESIGNATION(charset, reg, coding) \
4039 do { \
4040 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4041 const char *intermediate_char_94 = "()*+"; \
4042 const char *intermediate_char_96 = ",-./"; \
4043 int revision = -1; \
4044 \
4045 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4046 revision = CHARSET_ISO_REVISION (charset); \
4047 \
4048 if (revision >= 0) \
4049 { \
4050 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4051 EMIT_ONE_BYTE ('@' + revision); \
4052 } \
4053 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4054 if (CHARSET_DIMENSION (charset) == 1) \
4055 { \
4056 int b; \
4057 if (! CHARSET_ISO_CHARS_96 (charset)) \
4058 b = intermediate_char_94[reg]; \
4059 else \
4060 b = intermediate_char_96[reg]; \
4061 EMIT_ONE_ASCII_BYTE (b); \
4062 } \
4063 else \
4064 { \
4065 EMIT_ONE_ASCII_BYTE ('$'); \
4066 if (! CHARSET_ISO_CHARS_96 (charset)) \
4067 { \
4068 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4069 || reg != 0 \
4070 || final_char < '@' || final_char > 'B') \
4071 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4072 } \
4073 else \
4074 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4075 } \
4076 EMIT_ONE_ASCII_BYTE (final_char); \
4077 \
4078 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4079 } while (0)
4080
4081
4082 /* The following two macros produce codes (control character or escape
4083 sequence) for ISO2022 single-shift functions (single-shift-2 and
4084 single-shift-3). */
4085
4086 #define ENCODE_SINGLE_SHIFT_2 \
4087 do { \
4088 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4089 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4090 else \
4091 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4092 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4093 } while (0)
4094
4095
4096 #define ENCODE_SINGLE_SHIFT_3 \
4097 do { \
4098 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4099 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4100 else \
4101 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4102 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4103 } while (0)
4104
4105
4106 /* The following four macros produce codes (control character or
4107 escape sequence) for ISO2022 locking-shift functions (shift-in,
4108 shift-out, locking-shift-2, and locking-shift-3). */
4109
4110 #define ENCODE_SHIFT_IN \
4111 do { \
4112 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4113 CODING_ISO_INVOCATION (coding, 0) = 0; \
4114 } while (0)
4115
4116
4117 #define ENCODE_SHIFT_OUT \
4118 do { \
4119 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4120 CODING_ISO_INVOCATION (coding, 0) = 1; \
4121 } while (0)
4122
4123
4124 #define ENCODE_LOCKING_SHIFT_2 \
4125 do { \
4126 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4127 CODING_ISO_INVOCATION (coding, 0) = 2; \
4128 } while (0)
4129
4130
4131 #define ENCODE_LOCKING_SHIFT_3 \
4132 do { \
4133 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4134 CODING_ISO_INVOCATION (coding, 0) = 3; \
4135 } while (0)
4136
4137
4138 /* Produce codes for a DIMENSION1 character whose character set is
4139 CHARSET and whose position-code is C1. Designation and invocation
4140 sequences are also produced in advance if necessary. */
4141
4142 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4143 do { \
4144 int id = CHARSET_ID (charset); \
4145 \
4146 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4147 && id == charset_ascii) \
4148 { \
4149 id = charset_jisx0201_roman; \
4150 charset = CHARSET_FROM_ID (id); \
4151 } \
4152 \
4153 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4154 { \
4155 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4156 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4157 else \
4158 EMIT_ONE_BYTE (c1 | 0x80); \
4159 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4160 break; \
4161 } \
4162 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4163 { \
4164 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4165 break; \
4166 } \
4167 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4168 { \
4169 EMIT_ONE_BYTE (c1 | 0x80); \
4170 break; \
4171 } \
4172 else \
4173 /* Since CHARSET is not yet invoked to any graphic planes, we \
4174 must invoke it, or, at first, designate it to some graphic \
4175 register. Then repeat the loop to actually produce the \
4176 character. */ \
4177 dst = encode_invocation_designation (charset, coding, dst, \
4178 &produced_chars); \
4179 } while (1)
4180
4181
4182 /* Produce codes for a DIMENSION2 character whose character set is
4183 CHARSET and whose position-codes are C1 and C2. Designation and
4184 invocation codes are also produced in advance if necessary. */
4185
4186 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4187 do { \
4188 int id = CHARSET_ID (charset); \
4189 \
4190 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4191 && id == charset_jisx0208) \
4192 { \
4193 id = charset_jisx0208_1978; \
4194 charset = CHARSET_FROM_ID (id); \
4195 } \
4196 \
4197 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4198 { \
4199 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4200 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4201 else \
4202 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4203 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4204 break; \
4205 } \
4206 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4207 { \
4208 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4209 break; \
4210 } \
4211 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4212 { \
4213 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4214 break; \
4215 } \
4216 else \
4217 /* Since CHARSET is not yet invoked to any graphic planes, we \
4218 must invoke it, or, at first, designate it to some graphic \
4219 register. Then repeat the loop to actually produce the \
4220 character. */ \
4221 dst = encode_invocation_designation (charset, coding, dst, \
4222 &produced_chars); \
4223 } while (1)
4224
4225
4226 #define ENCODE_ISO_CHARACTER(charset, c) \
4227 do { \
4228 unsigned code; \
4229 CODING_ENCODE_CHAR (coding, dst, dst_end, (charset), (c), code); \
4230 \
4231 if (CHARSET_DIMENSION (charset) == 1) \
4232 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4233 else \
4234 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4235 } while (0)
4236
4237
4238 /* Produce designation and invocation codes at a place pointed by DST
4239 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4240 Return new DST. */
4241
4242 static unsigned char *
4243 encode_invocation_designation (struct charset *charset,
4244 struct coding_system *coding,
4245 unsigned char *dst, ptrdiff_t *p_nchars)
4246 {
4247 bool multibytep = coding->dst_multibyte;
4248 ptrdiff_t produced_chars = *p_nchars;
4249 int reg; /* graphic register number */
4250 int id = CHARSET_ID (charset);
4251
4252 /* At first, check designations. */
4253 for (reg = 0; reg < 4; reg++)
4254 if (id == CODING_ISO_DESIGNATION (coding, reg))
4255 break;
4256
4257 if (reg >= 4)
4258 {
4259 /* CHARSET is not yet designated to any graphic registers. */
4260 /* At first check the requested designation. */
4261 reg = CODING_ISO_REQUEST (coding, id);
4262 if (reg < 0)
4263 /* Since CHARSET requests no special designation, designate it
4264 to graphic register 0. */
4265 reg = 0;
4266
4267 ENCODE_DESIGNATION (charset, reg, coding);
4268 }
4269
4270 if (CODING_ISO_INVOCATION (coding, 0) != reg
4271 && CODING_ISO_INVOCATION (coding, 1) != reg)
4272 {
4273 /* Since the graphic register REG is not invoked to any graphic
4274 planes, invoke it to graphic plane 0. */
4275 switch (reg)
4276 {
4277 case 0: /* graphic register 0 */
4278 ENCODE_SHIFT_IN;
4279 break;
4280
4281 case 1: /* graphic register 1 */
4282 ENCODE_SHIFT_OUT;
4283 break;
4284
4285 case 2: /* graphic register 2 */
4286 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4287 ENCODE_SINGLE_SHIFT_2;
4288 else
4289 ENCODE_LOCKING_SHIFT_2;
4290 break;
4291
4292 case 3: /* graphic register 3 */
4293 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4294 ENCODE_SINGLE_SHIFT_3;
4295 else
4296 ENCODE_LOCKING_SHIFT_3;
4297 break;
4298
4299 default:
4300 break;
4301 }
4302 }
4303
4304 *p_nchars = produced_chars;
4305 return dst;
4306 }
4307
4308
4309 /* Produce codes for designation and invocation to reset the graphic
4310 planes and registers to initial state. */
4311 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4312 do { \
4313 int reg; \
4314 struct charset *charset; \
4315 \
4316 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4317 ENCODE_SHIFT_IN; \
4318 for (reg = 0; reg < 4; reg++) \
4319 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4320 && (CODING_ISO_DESIGNATION (coding, reg) \
4321 != CODING_ISO_INITIAL (coding, reg))) \
4322 { \
4323 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4324 ENCODE_DESIGNATION (charset, reg, coding); \
4325 } \
4326 } while (0)
4327
4328
4329 /* Produce designation sequences of charsets in the line started from
4330 CHARBUF to a place pointed by DST, and return the number of
4331 produced bytes. DST should not directly point a buffer text area
4332 which may be relocated by char_charset call.
4333
4334 If the current block ends before any end-of-line, we may fail to
4335 find all the necessary designations. */
4336
4337 static ptrdiff_t
4338 encode_designation_at_bol (struct coding_system *coding,
4339 int *charbuf, int *charbuf_end,
4340 unsigned char *dst)
4341 {
4342 unsigned char *orig = dst;
4343 struct charset *charset;
4344 /* Table of charsets to be designated to each graphic register. */
4345 int r[4];
4346 int c, found = 0, reg;
4347 ptrdiff_t produced_chars = 0;
4348 bool multibytep = coding->dst_multibyte;
4349 Lisp_Object attrs;
4350 Lisp_Object charset_list;
4351
4352 attrs = CODING_ID_ATTRS (coding->id);
4353 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4354 if (EQ (charset_list, Qiso_2022))
4355 charset_list = Viso_2022_charset_list;
4356
4357 for (reg = 0; reg < 4; reg++)
4358 r[reg] = -1;
4359
4360 while (charbuf < charbuf_end && found < 4)
4361 {
4362 int id;
4363
4364 c = *charbuf++;
4365 if (c == '\n')
4366 break;
4367 charset = char_charset (c, charset_list, NULL);
4368 id = CHARSET_ID (charset);
4369 reg = CODING_ISO_REQUEST (coding, id);
4370 if (reg >= 0 && r[reg] < 0)
4371 {
4372 found++;
4373 r[reg] = id;
4374 }
4375 }
4376
4377 if (found)
4378 {
4379 for (reg = 0; reg < 4; reg++)
4380 if (r[reg] >= 0
4381 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4382 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4383 }
4384
4385 return dst - orig;
4386 }
4387
4388 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4389
4390 static bool
4391 encode_coding_iso_2022 (struct coding_system *coding)
4392 {
4393 bool multibytep = coding->dst_multibyte;
4394 int *charbuf = coding->charbuf;
4395 int *charbuf_end = charbuf + coding->charbuf_used;
4396 unsigned char *dst = coding->destination + coding->produced;
4397 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4398 int safe_room = 16;
4399 bool bol_designation
4400 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4401 && CODING_ISO_BOL (coding));
4402 ptrdiff_t produced_chars = 0;
4403 Lisp_Object attrs, eol_type, charset_list;
4404 bool ascii_compatible;
4405 int c;
4406 int preferred_charset_id = -1;
4407
4408 CODING_GET_INFO (coding, attrs, charset_list);
4409 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4410 if (VECTORP (eol_type))
4411 eol_type = Qunix;
4412
4413 setup_iso_safe_charsets (attrs);
4414 /* Charset list may have been changed. */
4415 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4416 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4417
4418 ascii_compatible
4419 = (! NILP (CODING_ATTR_ASCII_COMPAT (attrs))
4420 && ! (CODING_ISO_FLAGS (coding) & (CODING_ISO_FLAG_DESIGNATION
4421 | CODING_ISO_FLAG_LOCKING_SHIFT)));
4422
4423 while (charbuf < charbuf_end)
4424 {
4425 ASSURE_DESTINATION (safe_room);
4426
4427 if (bol_designation)
4428 {
4429 /* We have to produce designation sequences if any now. */
4430 unsigned char desig_buf[16];
4431 ptrdiff_t nbytes;
4432 ptrdiff_t offset;
4433
4434 charset_map_loaded = 0;
4435 nbytes = encode_designation_at_bol (coding, charbuf, charbuf_end,
4436 desig_buf);
4437 if (charset_map_loaded
4438 && (offset = coding_change_destination (coding)))
4439 {
4440 dst += offset;
4441 dst_end += offset;
4442 }
4443 memcpy (dst, desig_buf, nbytes);
4444 dst += nbytes;
4445 /* We are sure that designation sequences are all ASCII bytes. */
4446 produced_chars += nbytes;
4447 bol_designation = 0;
4448 ASSURE_DESTINATION (safe_room);
4449 }
4450
4451 c = *charbuf++;
4452
4453 if (c < 0)
4454 {
4455 /* Handle an annotation. */
4456 switch (*charbuf)
4457 {
4458 case CODING_ANNOTATE_COMPOSITION_MASK:
4459 /* Not yet implemented. */
4460 break;
4461 case CODING_ANNOTATE_CHARSET_MASK:
4462 preferred_charset_id = charbuf[2];
4463 if (preferred_charset_id >= 0
4464 && NILP (Fmemq (make_number (preferred_charset_id),
4465 charset_list)))
4466 preferred_charset_id = -1;
4467 break;
4468 default:
4469 emacs_abort ();
4470 }
4471 charbuf += -c - 1;
4472 continue;
4473 }
4474
4475 /* Now encode the character C. */
4476 if (c < 0x20 || c == 0x7F)
4477 {
4478 if (c == '\n'
4479 || (c == '\r' && EQ (eol_type, Qmac)))
4480 {
4481 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4482 ENCODE_RESET_PLANE_AND_REGISTER ();
4483 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4484 {
4485 int i;
4486
4487 for (i = 0; i < 4; i++)
4488 CODING_ISO_DESIGNATION (coding, i)
4489 = CODING_ISO_INITIAL (coding, i);
4490 }
4491 bol_designation = ((CODING_ISO_FLAGS (coding)
4492 & CODING_ISO_FLAG_DESIGNATE_AT_BOL)
4493 != 0);
4494 }
4495 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4496 ENCODE_RESET_PLANE_AND_REGISTER ();
4497 EMIT_ONE_ASCII_BYTE (c);
4498 }
4499 else if (ASCII_CHAR_P (c))
4500 {
4501 if (ascii_compatible)
4502 EMIT_ONE_ASCII_BYTE (c);
4503 else
4504 {
4505 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4506 ENCODE_ISO_CHARACTER (charset, c);
4507 }
4508 }
4509 else if (CHAR_BYTE8_P (c))
4510 {
4511 c = CHAR_TO_BYTE8 (c);
4512 EMIT_ONE_BYTE (c);
4513 }
4514 else
4515 {
4516 struct charset *charset;
4517
4518 if (preferred_charset_id >= 0)
4519 {
4520 bool result;
4521
4522 charset = CHARSET_FROM_ID (preferred_charset_id);
4523 CODING_CHAR_CHARSET_P (coding, dst, dst_end, c, charset, result);
4524 if (! result)
4525 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4526 NULL, charset);
4527 }
4528 else
4529 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4530 NULL, charset);
4531 if (!charset)
4532 {
4533 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4534 {
4535 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4536 charset = CHARSET_FROM_ID (charset_ascii);
4537 }
4538 else
4539 {
4540 c = coding->default_char;
4541 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
4542 charset_list, NULL, charset);
4543 }
4544 }
4545 ENCODE_ISO_CHARACTER (charset, c);
4546 }
4547 }
4548
4549 if (coding->mode & CODING_MODE_LAST_BLOCK
4550 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4551 {
4552 ASSURE_DESTINATION (safe_room);
4553 ENCODE_RESET_PLANE_AND_REGISTER ();
4554 }
4555 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4556 CODING_ISO_BOL (coding) = bol_designation;
4557 coding->produced_char += produced_chars;
4558 coding->produced = dst - coding->destination;
4559 return 0;
4560 }
4561
4562 \f
4563 /*** 8,9. SJIS and BIG5 handlers ***/
4564
4565 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4566 quite widely. So, for the moment, Emacs supports them in the bare
4567 C code. But, in the future, they may be supported only by CCL. */
4568
4569 /* SJIS is a coding system encoding three character sets: ASCII, right
4570 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4571 as is. A character of charset katakana-jisx0201 is encoded by
4572 "position-code + 0x80". A character of charset japanese-jisx0208
4573 is encoded in 2-byte but two position-codes are divided and shifted
4574 so that it fit in the range below.
4575
4576 --- CODE RANGE of SJIS ---
4577 (character set) (range)
4578 ASCII 0x00 .. 0x7F
4579 KATAKANA-JISX0201 0xA0 .. 0xDF
4580 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4581 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4582 -------------------------------
4583
4584 */
4585
4586 /* BIG5 is a coding system encoding two character sets: ASCII and
4587 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4588 character set and is encoded in two-byte.
4589
4590 --- CODE RANGE of BIG5 ---
4591 (character set) (range)
4592 ASCII 0x00 .. 0x7F
4593 Big5 (1st byte) 0xA1 .. 0xFE
4594 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4595 --------------------------
4596
4597 */
4598
4599 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4600 Return true if a text is encoded in SJIS. */
4601
4602 static bool
4603 detect_coding_sjis (struct coding_system *coding,
4604 struct coding_detection_info *detect_info)
4605 {
4606 const unsigned char *src = coding->source, *src_base;
4607 const unsigned char *src_end = coding->source + coding->src_bytes;
4608 bool multibytep = coding->src_multibyte;
4609 ptrdiff_t consumed_chars = 0;
4610 int found = 0;
4611 int c;
4612 Lisp_Object attrs, charset_list;
4613 int max_first_byte_of_2_byte_code;
4614
4615 CODING_GET_INFO (coding, attrs, charset_list);
4616 max_first_byte_of_2_byte_code
4617 = (XINT (Flength (charset_list)) > 3 ? 0xFC : 0xEF);
4618
4619 detect_info->checked |= CATEGORY_MASK_SJIS;
4620 /* A coding system of this category is always ASCII compatible. */
4621 src += coding->head_ascii;
4622
4623 while (1)
4624 {
4625 src_base = src;
4626 ONE_MORE_BYTE (c);
4627 if (c < 0x80)
4628 continue;
4629 if ((c >= 0x81 && c <= 0x9F)
4630 || (c >= 0xE0 && c <= max_first_byte_of_2_byte_code))
4631 {
4632 ONE_MORE_BYTE (c);
4633 if (c < 0x40 || c == 0x7F || c > 0xFC)
4634 break;
4635 found = CATEGORY_MASK_SJIS;
4636 }
4637 else if (c >= 0xA0 && c < 0xE0)
4638 found = CATEGORY_MASK_SJIS;
4639 else
4640 break;
4641 }
4642 detect_info->rejected |= CATEGORY_MASK_SJIS;
4643 return 0;
4644
4645 no_more_source:
4646 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4647 {
4648 detect_info->rejected |= CATEGORY_MASK_SJIS;
4649 return 0;
4650 }
4651 detect_info->found |= found;
4652 return 1;
4653 }
4654
4655 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4656 Return true if a text is encoded in BIG5. */
4657
4658 static bool
4659 detect_coding_big5 (struct coding_system *coding,
4660 struct coding_detection_info *detect_info)
4661 {
4662 const unsigned char *src = coding->source, *src_base;
4663 const unsigned char *src_end = coding->source + coding->src_bytes;
4664 bool multibytep = coding->src_multibyte;
4665 ptrdiff_t consumed_chars = 0;
4666 int found = 0;
4667 int c;
4668
4669 detect_info->checked |= CATEGORY_MASK_BIG5;
4670 /* A coding system of this category is always ASCII compatible. */
4671 src += coding->head_ascii;
4672
4673 while (1)
4674 {
4675 src_base = src;
4676 ONE_MORE_BYTE (c);
4677 if (c < 0x80)
4678 continue;
4679 if (c >= 0xA1)
4680 {
4681 ONE_MORE_BYTE (c);
4682 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4683 return 0;
4684 found = CATEGORY_MASK_BIG5;
4685 }
4686 else
4687 break;
4688 }
4689 detect_info->rejected |= CATEGORY_MASK_BIG5;
4690 return 0;
4691
4692 no_more_source:
4693 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4694 {
4695 detect_info->rejected |= CATEGORY_MASK_BIG5;
4696 return 0;
4697 }
4698 detect_info->found |= found;
4699 return 1;
4700 }
4701
4702 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
4703
4704 static void
4705 decode_coding_sjis (struct coding_system *coding)
4706 {
4707 const unsigned char *src = coding->source + coding->consumed;
4708 const unsigned char *src_end = coding->source + coding->src_bytes;
4709 const unsigned char *src_base;
4710 int *charbuf = coding->charbuf + coding->charbuf_used;
4711 /* We may produce one charset annotation in one loop and one more at
4712 the end. */
4713 int *charbuf_end
4714 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4715 ptrdiff_t consumed_chars = 0, consumed_chars_base;
4716 bool multibytep = coding->src_multibyte;
4717 struct charset *charset_roman, *charset_kanji, *charset_kana;
4718 struct charset *charset_kanji2;
4719 Lisp_Object attrs, charset_list, val;
4720 ptrdiff_t char_offset = coding->produced_char;
4721 ptrdiff_t last_offset = char_offset;
4722 int last_id = charset_ascii;
4723 bool eol_dos
4724 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4725 int byte_after_cr = -1;
4726
4727 CODING_GET_INFO (coding, attrs, charset_list);
4728
4729 val = charset_list;
4730 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4731 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4732 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4733 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4734
4735 while (1)
4736 {
4737 int c, c1;
4738 struct charset *charset;
4739
4740 src_base = src;
4741 consumed_chars_base = consumed_chars;
4742
4743 if (charbuf >= charbuf_end)
4744 {
4745 if (byte_after_cr >= 0)
4746 src_base--;
4747 break;
4748 }
4749
4750 if (byte_after_cr >= 0)
4751 c = byte_after_cr, byte_after_cr = -1;
4752 else
4753 ONE_MORE_BYTE (c);
4754 if (c < 0)
4755 goto invalid_code;
4756 if (c < 0x80)
4757 {
4758 if (eol_dos && c == '\r')
4759 ONE_MORE_BYTE (byte_after_cr);
4760 charset = charset_roman;
4761 }
4762 else if (c == 0x80 || c == 0xA0)
4763 goto invalid_code;
4764 else if (c >= 0xA1 && c <= 0xDF)
4765 {
4766 /* SJIS -> JISX0201-Kana */
4767 c &= 0x7F;
4768 charset = charset_kana;
4769 }
4770 else if (c <= 0xEF)
4771 {
4772 /* SJIS -> JISX0208 */
4773 ONE_MORE_BYTE (c1);
4774 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4775 goto invalid_code;
4776 c = (c << 8) | c1;
4777 SJIS_TO_JIS (c);
4778 charset = charset_kanji;
4779 }
4780 else if (c <= 0xFC && charset_kanji2)
4781 {
4782 /* SJIS -> JISX0213-2 */
4783 ONE_MORE_BYTE (c1);
4784 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4785 goto invalid_code;
4786 c = (c << 8) | c1;
4787 SJIS_TO_JIS2 (c);
4788 charset = charset_kanji2;
4789 }
4790 else
4791 goto invalid_code;
4792 if (charset->id != charset_ascii
4793 && last_id != charset->id)
4794 {
4795 if (last_id != charset_ascii)
4796 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4797 last_id = charset->id;
4798 last_offset = char_offset;
4799 }
4800 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4801 *charbuf++ = c;
4802 char_offset++;
4803 continue;
4804
4805 invalid_code:
4806 src = src_base;
4807 consumed_chars = consumed_chars_base;
4808 ONE_MORE_BYTE (c);
4809 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4810 char_offset++;
4811 }
4812
4813 no_more_source:
4814 if (last_id != charset_ascii)
4815 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4816 coding->consumed_char += consumed_chars_base;
4817 coding->consumed = src_base - coding->source;
4818 coding->charbuf_used = charbuf - coding->charbuf;
4819 }
4820
4821 static void
4822 decode_coding_big5 (struct coding_system *coding)
4823 {
4824 const unsigned char *src = coding->source + coding->consumed;
4825 const unsigned char *src_end = coding->source + coding->src_bytes;
4826 const unsigned char *src_base;
4827 int *charbuf = coding->charbuf + coding->charbuf_used;
4828 /* We may produce one charset annotation in one loop and one more at
4829 the end. */
4830 int *charbuf_end
4831 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4832 ptrdiff_t consumed_chars = 0, consumed_chars_base;
4833 bool multibytep = coding->src_multibyte;
4834 struct charset *charset_roman, *charset_big5;
4835 Lisp_Object attrs, charset_list, val;
4836 ptrdiff_t char_offset = coding->produced_char;
4837 ptrdiff_t last_offset = char_offset;
4838 int last_id = charset_ascii;
4839 bool eol_dos
4840 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4841 int byte_after_cr = -1;
4842
4843 CODING_GET_INFO (coding, attrs, charset_list);
4844 val = charset_list;
4845 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4846 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4847
4848 while (1)
4849 {
4850 int c, c1;
4851 struct charset *charset;
4852
4853 src_base = src;
4854 consumed_chars_base = consumed_chars;
4855
4856 if (charbuf >= charbuf_end)
4857 {
4858 if (byte_after_cr >= 0)
4859 src_base--;
4860 break;
4861 }
4862
4863 if (byte_after_cr >= 0)
4864 c = byte_after_cr, byte_after_cr = -1;
4865 else
4866 ONE_MORE_BYTE (c);
4867
4868 if (c < 0)
4869 goto invalid_code;
4870 if (c < 0x80)
4871 {
4872 if (eol_dos && c == '\r')
4873 ONE_MORE_BYTE (byte_after_cr);
4874 charset = charset_roman;
4875 }
4876 else
4877 {
4878 /* BIG5 -> Big5 */
4879 if (c < 0xA1 || c > 0xFE)
4880 goto invalid_code;
4881 ONE_MORE_BYTE (c1);
4882 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4883 goto invalid_code;
4884 c = c << 8 | c1;
4885 charset = charset_big5;
4886 }
4887 if (charset->id != charset_ascii
4888 && last_id != charset->id)
4889 {
4890 if (last_id != charset_ascii)
4891 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4892 last_id = charset->id;
4893 last_offset = char_offset;
4894 }
4895 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4896 *charbuf++ = c;
4897 char_offset++;
4898 continue;
4899
4900 invalid_code:
4901 src = src_base;
4902 consumed_chars = consumed_chars_base;
4903 ONE_MORE_BYTE (c);
4904 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4905 char_offset++;
4906 }
4907
4908 no_more_source:
4909 if (last_id != charset_ascii)
4910 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4911 coding->consumed_char += consumed_chars_base;
4912 coding->consumed = src_base - coding->source;
4913 coding->charbuf_used = charbuf - coding->charbuf;
4914 }
4915
4916 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4917 This function can encode charsets `ascii', `katakana-jisx0201',
4918 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4919 are sure that all these charsets are registered as official charset
4920 (i.e. do not have extended leading-codes). Characters of other
4921 charsets are produced without any encoding. */
4922
4923 static bool
4924 encode_coding_sjis (struct coding_system *coding)
4925 {
4926 bool multibytep = coding->dst_multibyte;
4927 int *charbuf = coding->charbuf;
4928 int *charbuf_end = charbuf + coding->charbuf_used;
4929 unsigned char *dst = coding->destination + coding->produced;
4930 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4931 int safe_room = 4;
4932 ptrdiff_t produced_chars = 0;
4933 Lisp_Object attrs, charset_list, val;
4934 bool ascii_compatible;
4935 struct charset *charset_kanji, *charset_kana;
4936 struct charset *charset_kanji2;
4937 int c;
4938
4939 CODING_GET_INFO (coding, attrs, charset_list);
4940 val = XCDR (charset_list);
4941 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4942 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4943 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4944
4945 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4946
4947 while (charbuf < charbuf_end)
4948 {
4949 ASSURE_DESTINATION (safe_room);
4950 c = *charbuf++;
4951 /* Now encode the character C. */
4952 if (ASCII_CHAR_P (c) && ascii_compatible)
4953 EMIT_ONE_ASCII_BYTE (c);
4954 else if (CHAR_BYTE8_P (c))
4955 {
4956 c = CHAR_TO_BYTE8 (c);
4957 EMIT_ONE_BYTE (c);
4958 }
4959 else
4960 {
4961 unsigned code;
4962 struct charset *charset;
4963 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4964 &code, charset);
4965
4966 if (!charset)
4967 {
4968 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4969 {
4970 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4971 charset = CHARSET_FROM_ID (charset_ascii);
4972 }
4973 else
4974 {
4975 c = coding->default_char;
4976 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
4977 charset_list, &code, charset);
4978 }
4979 }
4980 if (code == CHARSET_INVALID_CODE (charset))
4981 emacs_abort ();
4982 if (charset == charset_kanji)
4983 {
4984 int c1, c2;
4985 JIS_TO_SJIS (code);
4986 c1 = code >> 8, c2 = code & 0xFF;
4987 EMIT_TWO_BYTES (c1, c2);
4988 }
4989 else if (charset == charset_kana)
4990 EMIT_ONE_BYTE (code | 0x80);
4991 else if (charset_kanji2 && charset == charset_kanji2)
4992 {
4993 int c1, c2;
4994
4995 c1 = code >> 8;
4996 if (c1 == 0x21 || (c1 >= 0x23 && c1 <= 0x25)
4997 || c1 == 0x28
4998 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
4999 {
5000 JIS_TO_SJIS2 (code);
5001 c1 = code >> 8, c2 = code & 0xFF;
5002 EMIT_TWO_BYTES (c1, c2);
5003 }
5004 else
5005 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5006 }
5007 else
5008 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5009 }
5010 }
5011 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5012 coding->produced_char += produced_chars;
5013 coding->produced = dst - coding->destination;
5014 return 0;
5015 }
5016
5017 static bool
5018 encode_coding_big5 (struct coding_system *coding)
5019 {
5020 bool multibytep = coding->dst_multibyte;
5021 int *charbuf = coding->charbuf;
5022 int *charbuf_end = charbuf + coding->charbuf_used;
5023 unsigned char *dst = coding->destination + coding->produced;
5024 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5025 int safe_room = 4;
5026 ptrdiff_t produced_chars = 0;
5027 Lisp_Object attrs, charset_list, val;
5028 bool ascii_compatible;
5029 struct charset *charset_big5;
5030 int c;
5031
5032 CODING_GET_INFO (coding, attrs, charset_list);
5033 val = XCDR (charset_list);
5034 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
5035 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5036
5037 while (charbuf < charbuf_end)
5038 {
5039 ASSURE_DESTINATION (safe_room);
5040 c = *charbuf++;
5041 /* Now encode the character C. */
5042 if (ASCII_CHAR_P (c) && ascii_compatible)
5043 EMIT_ONE_ASCII_BYTE (c);
5044 else if (CHAR_BYTE8_P (c))
5045 {
5046 c = CHAR_TO_BYTE8 (c);
5047 EMIT_ONE_BYTE (c);
5048 }
5049 else
5050 {
5051 unsigned code;
5052 struct charset *charset;
5053 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
5054 &code, charset);
5055
5056 if (! charset)
5057 {
5058 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5059 {
5060 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5061 charset = CHARSET_FROM_ID (charset_ascii);
5062 }
5063 else
5064 {
5065 c = coding->default_char;
5066 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
5067 charset_list, &code, charset);
5068 }
5069 }
5070 if (code == CHARSET_INVALID_CODE (charset))
5071 emacs_abort ();
5072 if (charset == charset_big5)
5073 {
5074 int c1, c2;
5075
5076 c1 = code >> 8, c2 = code & 0xFF;
5077 EMIT_TWO_BYTES (c1, c2);
5078 }
5079 else
5080 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5081 }
5082 }
5083 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5084 coding->produced_char += produced_chars;
5085 coding->produced = dst - coding->destination;
5086 return 0;
5087 }
5088
5089 \f
5090 /*** 10. CCL handlers ***/
5091
5092 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5093 Return true if a text is encoded in a coding system of which
5094 encoder/decoder are written in CCL program. */
5095
5096 static bool
5097 detect_coding_ccl (struct coding_system *coding,
5098 struct coding_detection_info *detect_info)
5099 {
5100 const unsigned char *src = coding->source, *src_base;
5101 const unsigned char *src_end = coding->source + coding->src_bytes;
5102 bool multibytep = coding->src_multibyte;
5103 ptrdiff_t consumed_chars = 0;
5104 int found = 0;
5105 unsigned char *valids;
5106 ptrdiff_t head_ascii = coding->head_ascii;
5107 Lisp_Object attrs;
5108
5109 detect_info->checked |= CATEGORY_MASK_CCL;
5110
5111 coding = &coding_categories[coding_category_ccl];
5112 valids = CODING_CCL_VALIDS (coding);
5113 attrs = CODING_ID_ATTRS (coding->id);
5114 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5115 src += head_ascii;
5116
5117 while (1)
5118 {
5119 int c;
5120
5121 src_base = src;
5122 ONE_MORE_BYTE (c);
5123 if (c < 0 || ! valids[c])
5124 break;
5125 if ((valids[c] > 1))
5126 found = CATEGORY_MASK_CCL;
5127 }
5128 detect_info->rejected |= CATEGORY_MASK_CCL;
5129 return 0;
5130
5131 no_more_source:
5132 detect_info->found |= found;
5133 return 1;
5134 }
5135
5136 static void
5137 decode_coding_ccl (struct coding_system *coding)
5138 {
5139 const unsigned char *src = coding->source + coding->consumed;
5140 const unsigned char *src_end = coding->source + coding->src_bytes;
5141 int *charbuf = coding->charbuf + coding->charbuf_used;
5142 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5143 ptrdiff_t consumed_chars = 0;
5144 bool multibytep = coding->src_multibyte;
5145 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5146 int source_charbuf[1024];
5147 int source_byteidx[1025];
5148 Lisp_Object attrs, charset_list;
5149
5150 CODING_GET_INFO (coding, attrs, charset_list);
5151
5152 while (1)
5153 {
5154 const unsigned char *p = src;
5155 ptrdiff_t offset;
5156 int i = 0;
5157
5158 if (multibytep)
5159 {
5160 while (i < 1024 && p < src_end)
5161 {
5162 source_byteidx[i] = p - src;
5163 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5164 }
5165 source_byteidx[i] = p - src;
5166 }
5167 else
5168 while (i < 1024 && p < src_end)
5169 source_charbuf[i++] = *p++;
5170
5171 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5172 ccl->last_block = true;
5173 /* As ccl_driver calls DECODE_CHAR, buffer may be relocated. */
5174 charset_map_loaded = 0;
5175 ccl_driver (ccl, source_charbuf, charbuf, i, charbuf_end - charbuf,
5176 charset_list);
5177 if (charset_map_loaded
5178 && (offset = coding_change_source (coding)))
5179 {
5180 p += offset;
5181 src += offset;
5182 src_end += offset;
5183 }
5184 charbuf += ccl->produced;
5185 if (multibytep)
5186 src += source_byteidx[ccl->consumed];
5187 else
5188 src += ccl->consumed;
5189 consumed_chars += ccl->consumed;
5190 if (p == src_end || ccl->status != CCL_STAT_SUSPEND_BY_SRC)
5191 break;
5192 }
5193
5194 switch (ccl->status)
5195 {
5196 case CCL_STAT_SUSPEND_BY_SRC:
5197 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5198 break;
5199 case CCL_STAT_SUSPEND_BY_DST:
5200 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5201 break;
5202 case CCL_STAT_QUIT:
5203 case CCL_STAT_INVALID_CMD:
5204 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5205 break;
5206 default:
5207 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5208 break;
5209 }
5210 coding->consumed_char += consumed_chars;
5211 coding->consumed = src - coding->source;
5212 coding->charbuf_used = charbuf - coding->charbuf;
5213 }
5214
5215 static bool
5216 encode_coding_ccl (struct coding_system *coding)
5217 {
5218 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5219 bool multibytep = coding->dst_multibyte;
5220 int *charbuf = coding->charbuf;
5221 int *charbuf_end = charbuf + coding->charbuf_used;
5222 unsigned char *dst = coding->destination + coding->produced;
5223 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5224 int destination_charbuf[1024];
5225 ptrdiff_t produced_chars = 0;
5226 int i;
5227 Lisp_Object attrs, charset_list;
5228
5229 CODING_GET_INFO (coding, attrs, charset_list);
5230 if (coding->consumed_char == coding->src_chars
5231 && coding->mode & CODING_MODE_LAST_BLOCK)
5232 ccl->last_block = true;
5233
5234 do
5235 {
5236 ptrdiff_t offset;
5237
5238 /* As ccl_driver calls DECODE_CHAR, buffer may be relocated. */
5239 charset_map_loaded = 0;
5240 ccl_driver (ccl, charbuf, destination_charbuf,
5241 charbuf_end - charbuf, 1024, charset_list);
5242 if (charset_map_loaded
5243 && (offset = coding_change_destination (coding)))
5244 dst += offset;
5245 if (multibytep)
5246 {
5247 ASSURE_DESTINATION (ccl->produced * 2);
5248 for (i = 0; i < ccl->produced; i++)
5249 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5250 }
5251 else
5252 {
5253 ASSURE_DESTINATION (ccl->produced);
5254 for (i = 0; i < ccl->produced; i++)
5255 *dst++ = destination_charbuf[i] & 0xFF;
5256 produced_chars += ccl->produced;
5257 }
5258 charbuf += ccl->consumed;
5259 if (ccl->status == CCL_STAT_QUIT
5260 || ccl->status == CCL_STAT_INVALID_CMD)
5261 break;
5262 }
5263 while (charbuf < charbuf_end);
5264
5265 switch (ccl->status)
5266 {
5267 case CCL_STAT_SUSPEND_BY_SRC:
5268 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5269 break;
5270 case CCL_STAT_SUSPEND_BY_DST:
5271 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5272 break;
5273 case CCL_STAT_QUIT:
5274 case CCL_STAT_INVALID_CMD:
5275 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5276 break;
5277 default:
5278 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5279 break;
5280 }
5281
5282 coding->produced_char += produced_chars;
5283 coding->produced = dst - coding->destination;
5284 return 0;
5285 }
5286
5287 \f
5288 /*** 10, 11. no-conversion handlers ***/
5289
5290 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5291
5292 static void
5293 decode_coding_raw_text (struct coding_system *coding)
5294 {
5295 bool eol_dos
5296 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5297
5298 coding->chars_at_source = 1;
5299 coding->consumed_char = coding->src_chars;
5300 coding->consumed = coding->src_bytes;
5301 if (eol_dos && coding->source[coding->src_bytes - 1] == '\r')
5302 {
5303 coding->consumed_char--;
5304 coding->consumed--;
5305 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5306 }
5307 else
5308 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5309 }
5310
5311 static bool
5312 encode_coding_raw_text (struct coding_system *coding)
5313 {
5314 bool multibytep = coding->dst_multibyte;
5315 int *charbuf = coding->charbuf;
5316 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5317 unsigned char *dst = coding->destination + coding->produced;
5318 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5319 ptrdiff_t produced_chars = 0;
5320 int c;
5321
5322 if (multibytep)
5323 {
5324 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5325
5326 if (coding->src_multibyte)
5327 while (charbuf < charbuf_end)
5328 {
5329 ASSURE_DESTINATION (safe_room);
5330 c = *charbuf++;
5331 if (ASCII_CHAR_P (c))
5332 EMIT_ONE_ASCII_BYTE (c);
5333 else if (CHAR_BYTE8_P (c))
5334 {
5335 c = CHAR_TO_BYTE8 (c);
5336 EMIT_ONE_BYTE (c);
5337 }
5338 else
5339 {
5340 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5341
5342 CHAR_STRING_ADVANCE (c, p1);
5343 do
5344 {
5345 EMIT_ONE_BYTE (*p0);
5346 p0++;
5347 }
5348 while (p0 < p1);
5349 }
5350 }
5351 else
5352 while (charbuf < charbuf_end)
5353 {
5354 ASSURE_DESTINATION (safe_room);
5355 c = *charbuf++;
5356 EMIT_ONE_BYTE (c);
5357 }
5358 }
5359 else
5360 {
5361 if (coding->src_multibyte)
5362 {
5363 int safe_room = MAX_MULTIBYTE_LENGTH;
5364
5365 while (charbuf < charbuf_end)
5366 {
5367 ASSURE_DESTINATION (safe_room);
5368 c = *charbuf++;
5369 if (ASCII_CHAR_P (c))
5370 *dst++ = c;
5371 else if (CHAR_BYTE8_P (c))
5372 *dst++ = CHAR_TO_BYTE8 (c);
5373 else
5374 CHAR_STRING_ADVANCE (c, dst);
5375 }
5376 }
5377 else
5378 {
5379 ASSURE_DESTINATION (charbuf_end - charbuf);
5380 while (charbuf < charbuf_end && dst < dst_end)
5381 *dst++ = *charbuf++;
5382 }
5383 produced_chars = dst - (coding->destination + coding->produced);
5384 }
5385 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5386 coding->produced_char += produced_chars;
5387 coding->produced = dst - coding->destination;
5388 return 0;
5389 }
5390
5391 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5392 Return true if a text is encoded in a charset-based coding system. */
5393
5394 static bool
5395 detect_coding_charset (struct coding_system *coding,
5396 struct coding_detection_info *detect_info)
5397 {
5398 const unsigned char *src = coding->source, *src_base;
5399 const unsigned char *src_end = coding->source + coding->src_bytes;
5400 bool multibytep = coding->src_multibyte;
5401 ptrdiff_t consumed_chars = 0;
5402 Lisp_Object attrs, valids, name;
5403 int found = 0;
5404 ptrdiff_t head_ascii = coding->head_ascii;
5405 bool check_latin_extra = 0;
5406
5407 detect_info->checked |= CATEGORY_MASK_CHARSET;
5408
5409 coding = &coding_categories[coding_category_charset];
5410 attrs = CODING_ID_ATTRS (coding->id);
5411 valids = AREF (attrs, coding_attr_charset_valids);
5412 name = CODING_ID_NAME (coding->id);
5413 if (strncmp (SSDATA (SYMBOL_NAME (name)),
5414 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5415 || strncmp (SSDATA (SYMBOL_NAME (name)),
5416 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5417 check_latin_extra = 1;
5418
5419 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5420 src += head_ascii;
5421
5422 while (1)
5423 {
5424 int c;
5425 Lisp_Object val;
5426 struct charset *charset;
5427 int dim, idx;
5428
5429 src_base = src;
5430 ONE_MORE_BYTE (c);
5431 if (c < 0)
5432 continue;
5433 val = AREF (valids, c);
5434 if (NILP (val))
5435 break;
5436 if (c >= 0x80)
5437 {
5438 if (c < 0xA0
5439 && check_latin_extra
5440 && (!VECTORP (Vlatin_extra_code_table)
5441 || NILP (AREF (Vlatin_extra_code_table, c))))
5442 break;
5443 found = CATEGORY_MASK_CHARSET;
5444 }
5445 if (INTEGERP (val))
5446 {
5447 charset = CHARSET_FROM_ID (XFASTINT (val));
5448 dim = CHARSET_DIMENSION (charset);
5449 for (idx = 1; idx < dim; idx++)
5450 {
5451 if (src == src_end)
5452 goto too_short;
5453 ONE_MORE_BYTE (c);
5454 if (c < charset->code_space[(dim - 1 - idx) * 4]
5455 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5456 break;
5457 }
5458 if (idx < dim)
5459 break;
5460 }
5461 else
5462 {
5463 idx = 1;
5464 for (; CONSP (val); val = XCDR (val))
5465 {
5466 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5467 dim = CHARSET_DIMENSION (charset);
5468 while (idx < dim)
5469 {
5470 if (src == src_end)
5471 goto too_short;
5472 ONE_MORE_BYTE (c);
5473 if (c < charset->code_space[(dim - 1 - idx) * 4]
5474 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5475 break;
5476 idx++;
5477 }
5478 if (idx == dim)
5479 {
5480 val = Qnil;
5481 break;
5482 }
5483 }
5484 if (CONSP (val))
5485 break;
5486 }
5487 }
5488 too_short:
5489 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5490 return 0;
5491
5492 no_more_source:
5493 detect_info->found |= found;
5494 return 1;
5495 }
5496
5497 static void
5498 decode_coding_charset (struct coding_system *coding)
5499 {
5500 const unsigned char *src = coding->source + coding->consumed;
5501 const unsigned char *src_end = coding->source + coding->src_bytes;
5502 const unsigned char *src_base;
5503 int *charbuf = coding->charbuf + coding->charbuf_used;
5504 /* We may produce one charset annotation in one loop and one more at
5505 the end. */
5506 int *charbuf_end
5507 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5508 ptrdiff_t consumed_chars = 0, consumed_chars_base;
5509 bool multibytep = coding->src_multibyte;
5510 Lisp_Object attrs = CODING_ID_ATTRS (coding->id);
5511 Lisp_Object valids;
5512 ptrdiff_t char_offset = coding->produced_char;
5513 ptrdiff_t last_offset = char_offset;
5514 int last_id = charset_ascii;
5515 bool eol_dos
5516 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5517 int byte_after_cr = -1;
5518
5519 valids = AREF (attrs, coding_attr_charset_valids);
5520
5521 while (1)
5522 {
5523 int c;
5524 Lisp_Object val;
5525 struct charset *charset;
5526 int dim;
5527 int len = 1;
5528 unsigned code;
5529
5530 src_base = src;
5531 consumed_chars_base = consumed_chars;
5532
5533 if (charbuf >= charbuf_end)
5534 {
5535 if (byte_after_cr >= 0)
5536 src_base--;
5537 break;
5538 }
5539
5540 if (byte_after_cr >= 0)
5541 {
5542 c = byte_after_cr;
5543 byte_after_cr = -1;
5544 }
5545 else
5546 {
5547 ONE_MORE_BYTE (c);
5548 if (eol_dos && c == '\r')
5549 ONE_MORE_BYTE (byte_after_cr);
5550 }
5551 if (c < 0)
5552 goto invalid_code;
5553 code = c;
5554
5555 val = AREF (valids, c);
5556 if (! INTEGERP (val) && ! CONSP (val))
5557 goto invalid_code;
5558 if (INTEGERP (val))
5559 {
5560 charset = CHARSET_FROM_ID (XFASTINT (val));
5561 dim = CHARSET_DIMENSION (charset);
5562 while (len < dim)
5563 {
5564 ONE_MORE_BYTE (c);
5565 code = (code << 8) | c;
5566 len++;
5567 }
5568 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5569 charset, code, c);
5570 }
5571 else
5572 {
5573 /* VAL is a list of charset IDs. It is assured that the
5574 list is sorted by charset dimensions (smaller one
5575 comes first). */
5576 while (CONSP (val))
5577 {
5578 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5579 dim = CHARSET_DIMENSION (charset);
5580 while (len < dim)
5581 {
5582 ONE_MORE_BYTE (c);
5583 code = (code << 8) | c;
5584 len++;
5585 }
5586 CODING_DECODE_CHAR (coding, src, src_base,
5587 src_end, charset, code, c);
5588 if (c >= 0)
5589 break;
5590 val = XCDR (val);
5591 }
5592 }
5593 if (c < 0)
5594 goto invalid_code;
5595 if (charset->id != charset_ascii
5596 && last_id != charset->id)
5597 {
5598 if (last_id != charset_ascii)
5599 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5600 last_id = charset->id;
5601 last_offset = char_offset;
5602 }
5603
5604 *charbuf++ = c;
5605 char_offset++;
5606 continue;
5607
5608 invalid_code:
5609 src = src_base;
5610 consumed_chars = consumed_chars_base;
5611 ONE_MORE_BYTE (c);
5612 *charbuf++ = c < 0 ? -c : ASCII_CHAR_P (c) ? c : BYTE8_TO_CHAR (c);
5613 char_offset++;
5614 }
5615
5616 no_more_source:
5617 if (last_id != charset_ascii)
5618 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5619 coding->consumed_char += consumed_chars_base;
5620 coding->consumed = src_base - coding->source;
5621 coding->charbuf_used = charbuf - coding->charbuf;
5622 }
5623
5624 static bool
5625 encode_coding_charset (struct coding_system *coding)
5626 {
5627 bool multibytep = coding->dst_multibyte;
5628 int *charbuf = coding->charbuf;
5629 int *charbuf_end = charbuf + coding->charbuf_used;
5630 unsigned char *dst = coding->destination + coding->produced;
5631 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5632 int safe_room = MAX_MULTIBYTE_LENGTH;
5633 ptrdiff_t produced_chars = 0;
5634 Lisp_Object attrs, charset_list;
5635 bool ascii_compatible;
5636 int c;
5637
5638 CODING_GET_INFO (coding, attrs, charset_list);
5639 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5640
5641 while (charbuf < charbuf_end)
5642 {
5643 struct charset *charset;
5644 unsigned code;
5645
5646 ASSURE_DESTINATION (safe_room);
5647 c = *charbuf++;
5648 if (ascii_compatible && ASCII_CHAR_P (c))
5649 EMIT_ONE_ASCII_BYTE (c);
5650 else if (CHAR_BYTE8_P (c))
5651 {
5652 c = CHAR_TO_BYTE8 (c);
5653 EMIT_ONE_BYTE (c);
5654 }
5655 else
5656 {
5657 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
5658 &code, charset);
5659
5660 if (charset)
5661 {
5662 if (CHARSET_DIMENSION (charset) == 1)
5663 EMIT_ONE_BYTE (code);
5664 else if (CHARSET_DIMENSION (charset) == 2)
5665 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5666 else if (CHARSET_DIMENSION (charset) == 3)
5667 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5668 else
5669 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5670 (code >> 8) & 0xFF, code & 0xFF);
5671 }
5672 else
5673 {
5674 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5675 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5676 else
5677 c = coding->default_char;
5678 EMIT_ONE_BYTE (c);
5679 }
5680 }
5681 }
5682
5683 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5684 coding->produced_char += produced_chars;
5685 coding->produced = dst - coding->destination;
5686 return 0;
5687 }
5688
5689 \f
5690 /*** 7. C library functions ***/
5691
5692 /* Setup coding context CODING from information about CODING_SYSTEM.
5693 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5694 CODING_SYSTEM is invalid, signal an error. */
5695
5696 void
5697 setup_coding_system (Lisp_Object coding_system, struct coding_system *coding)
5698 {
5699 Lisp_Object attrs;
5700 Lisp_Object eol_type;
5701 Lisp_Object coding_type;
5702 Lisp_Object val;
5703
5704 if (NILP (coding_system))
5705 coding_system = Qundecided;
5706
5707 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5708
5709 attrs = CODING_ID_ATTRS (coding->id);
5710 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5711
5712 coding->mode = 0;
5713 if (VECTORP (eol_type))
5714 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5715 | CODING_REQUIRE_DETECTION_MASK);
5716 else if (! EQ (eol_type, Qunix))
5717 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5718 | CODING_REQUIRE_ENCODING_MASK);
5719 else
5720 coding->common_flags = 0;
5721 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5722 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5723 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5724 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5725 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5726 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5727
5728 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5729 coding->max_charset_id = SCHARS (val) - 1;
5730 coding->safe_charsets = SDATA (val);
5731 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5732 coding->carryover_bytes = 0;
5733 coding->raw_destination = 0;
5734
5735 coding_type = CODING_ATTR_TYPE (attrs);
5736 if (EQ (coding_type, Qundecided))
5737 {
5738 coding->detector = NULL;
5739 coding->decoder = decode_coding_raw_text;
5740 coding->encoder = encode_coding_raw_text;
5741 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5742 coding->spec.undecided.inhibit_nbd
5743 = (encode_inhibit_flag
5744 (AREF (attrs, coding_attr_undecided_inhibit_null_byte_detection)));
5745 coding->spec.undecided.inhibit_ied
5746 = (encode_inhibit_flag
5747 (AREF (attrs, coding_attr_undecided_inhibit_iso_escape_detection)));
5748 coding->spec.undecided.prefer_utf_8
5749 = ! NILP (AREF (attrs, coding_attr_undecided_prefer_utf_8));
5750 }
5751 else if (EQ (coding_type, Qiso_2022))
5752 {
5753 int i;
5754 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5755
5756 /* Invoke graphic register 0 to plane 0. */
5757 CODING_ISO_INVOCATION (coding, 0) = 0;
5758 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5759 CODING_ISO_INVOCATION (coding, 1)
5760 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5761 /* Setup the initial status of designation. */
5762 for (i = 0; i < 4; i++)
5763 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5764 /* Not single shifting initially. */
5765 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5766 /* Beginning of buffer should also be regarded as bol. */
5767 CODING_ISO_BOL (coding) = 1;
5768 coding->detector = detect_coding_iso_2022;
5769 coding->decoder = decode_coding_iso_2022;
5770 coding->encoder = encode_coding_iso_2022;
5771 if (flags & CODING_ISO_FLAG_SAFE)
5772 coding->mode |= CODING_MODE_SAFE_ENCODING;
5773 coding->common_flags
5774 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5775 | CODING_REQUIRE_FLUSHING_MASK);
5776 if (flags & CODING_ISO_FLAG_COMPOSITION)
5777 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5778 if (flags & CODING_ISO_FLAG_DESIGNATION)
5779 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5780 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5781 {
5782 setup_iso_safe_charsets (attrs);
5783 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5784 coding->max_charset_id = SCHARS (val) - 1;
5785 coding->safe_charsets = SDATA (val);
5786 }
5787 CODING_ISO_FLAGS (coding) = flags;
5788 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5789 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5790 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5791 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5792 }
5793 else if (EQ (coding_type, Qcharset))
5794 {
5795 coding->detector = detect_coding_charset;
5796 coding->decoder = decode_coding_charset;
5797 coding->encoder = encode_coding_charset;
5798 coding->common_flags
5799 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5800 }
5801 else if (EQ (coding_type, Qutf_8))
5802 {
5803 val = AREF (attrs, coding_attr_utf_bom);
5804 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5805 : EQ (val, Qt) ? utf_with_bom
5806 : utf_without_bom);
5807 coding->detector = detect_coding_utf_8;
5808 coding->decoder = decode_coding_utf_8;
5809 coding->encoder = encode_coding_utf_8;
5810 coding->common_flags
5811 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5812 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5813 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5814 }
5815 else if (EQ (coding_type, Qutf_16))
5816 {
5817 val = AREF (attrs, coding_attr_utf_bom);
5818 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5819 : EQ (val, Qt) ? utf_with_bom
5820 : utf_without_bom);
5821 val = AREF (attrs, coding_attr_utf_16_endian);
5822 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5823 : utf_16_little_endian);
5824 CODING_UTF_16_SURROGATE (coding) = 0;
5825 coding->detector = detect_coding_utf_16;
5826 coding->decoder = decode_coding_utf_16;
5827 coding->encoder = encode_coding_utf_16;
5828 coding->common_flags
5829 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5830 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5831 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5832 }
5833 else if (EQ (coding_type, Qccl))
5834 {
5835 coding->detector = detect_coding_ccl;
5836 coding->decoder = decode_coding_ccl;
5837 coding->encoder = encode_coding_ccl;
5838 coding->common_flags
5839 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5840 | CODING_REQUIRE_FLUSHING_MASK);
5841 }
5842 else if (EQ (coding_type, Qemacs_mule))
5843 {
5844 coding->detector = detect_coding_emacs_mule;
5845 coding->decoder = decode_coding_emacs_mule;
5846 coding->encoder = encode_coding_emacs_mule;
5847 coding->common_flags
5848 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5849 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5850 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5851 {
5852 Lisp_Object tail, safe_charsets;
5853 int max_charset_id = 0;
5854
5855 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5856 tail = XCDR (tail))
5857 if (max_charset_id < XFASTINT (XCAR (tail)))
5858 max_charset_id = XFASTINT (XCAR (tail));
5859 safe_charsets = make_uninit_string (max_charset_id + 1);
5860 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5861 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5862 tail = XCDR (tail))
5863 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5864 coding->max_charset_id = max_charset_id;
5865 coding->safe_charsets = SDATA (safe_charsets);
5866 }
5867 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5868 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5869 }
5870 else if (EQ (coding_type, Qshift_jis))
5871 {
5872 coding->detector = detect_coding_sjis;
5873 coding->decoder = decode_coding_sjis;
5874 coding->encoder = encode_coding_sjis;
5875 coding->common_flags
5876 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5877 }
5878 else if (EQ (coding_type, Qbig5))
5879 {
5880 coding->detector = detect_coding_big5;
5881 coding->decoder = decode_coding_big5;
5882 coding->encoder = encode_coding_big5;
5883 coding->common_flags
5884 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5885 }
5886 else /* EQ (coding_type, Qraw_text) */
5887 {
5888 coding->detector = NULL;
5889 coding->decoder = decode_coding_raw_text;
5890 coding->encoder = encode_coding_raw_text;
5891 if (! EQ (eol_type, Qunix))
5892 {
5893 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5894 if (! VECTORP (eol_type))
5895 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5896 }
5897
5898 }
5899
5900 return;
5901 }
5902
5903 /* Return a list of charsets supported by CODING. */
5904
5905 Lisp_Object
5906 coding_charset_list (struct coding_system *coding)
5907 {
5908 Lisp_Object attrs, charset_list;
5909
5910 CODING_GET_INFO (coding, attrs, charset_list);
5911 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5912 {
5913 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5914
5915 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5916 charset_list = Viso_2022_charset_list;
5917 }
5918 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5919 {
5920 charset_list = Vemacs_mule_charset_list;
5921 }
5922 return charset_list;
5923 }
5924
5925
5926 /* Return a list of charsets supported by CODING-SYSTEM. */
5927
5928 Lisp_Object
5929 coding_system_charset_list (Lisp_Object coding_system)
5930 {
5931 ptrdiff_t id;
5932 Lisp_Object attrs, charset_list;
5933
5934 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5935 attrs = CODING_ID_ATTRS (id);
5936
5937 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5938 {
5939 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5940
5941 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5942 charset_list = Viso_2022_charset_list;
5943 else
5944 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5945 }
5946 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5947 {
5948 charset_list = Vemacs_mule_charset_list;
5949 }
5950 else
5951 {
5952 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5953 }
5954 return charset_list;
5955 }
5956
5957
5958 /* Return raw-text or one of its subsidiaries that has the same
5959 eol_type as CODING-SYSTEM. */
5960
5961 Lisp_Object
5962 raw_text_coding_system (Lisp_Object coding_system)
5963 {
5964 Lisp_Object spec, attrs;
5965 Lisp_Object eol_type, raw_text_eol_type;
5966
5967 if (NILP (coding_system))
5968 return Qraw_text;
5969 spec = CODING_SYSTEM_SPEC (coding_system);
5970 attrs = AREF (spec, 0);
5971
5972 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
5973 return coding_system;
5974
5975 eol_type = AREF (spec, 2);
5976 if (VECTORP (eol_type))
5977 return Qraw_text;
5978 spec = CODING_SYSTEM_SPEC (Qraw_text);
5979 raw_text_eol_type = AREF (spec, 2);
5980 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
5981 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
5982 : AREF (raw_text_eol_type, 2));
5983 }
5984
5985 /* Return true if CODING corresponds to raw-text coding-system. */
5986
5987 bool
5988 raw_text_coding_system_p (struct coding_system *coding)
5989 {
5990 return (coding->decoder == decode_coding_raw_text
5991 && coding->encoder == encode_coding_raw_text) ? true : false;
5992 }
5993
5994
5995 /* If CODING_SYSTEM doesn't specify end-of-line format, return one of
5996 the subsidiary that has the same eol-spec as PARENT (if it is not
5997 nil and specifies end-of-line format) or the system's setting
5998 (system_eol_type). */
5999
6000 Lisp_Object
6001 coding_inherit_eol_type (Lisp_Object coding_system, Lisp_Object parent)
6002 {
6003 Lisp_Object spec, eol_type;
6004
6005 if (NILP (coding_system))
6006 coding_system = Qraw_text;
6007 spec = CODING_SYSTEM_SPEC (coding_system);
6008 eol_type = AREF (spec, 2);
6009 if (VECTORP (eol_type))
6010 {
6011 Lisp_Object parent_eol_type;
6012
6013 if (! NILP (parent))
6014 {
6015 Lisp_Object parent_spec;
6016
6017 parent_spec = CODING_SYSTEM_SPEC (parent);
6018 parent_eol_type = AREF (parent_spec, 2);
6019 if (VECTORP (parent_eol_type))
6020 parent_eol_type = system_eol_type;
6021 }
6022 else
6023 parent_eol_type = system_eol_type;
6024 if (EQ (parent_eol_type, Qunix))
6025 coding_system = AREF (eol_type, 0);
6026 else if (EQ (parent_eol_type, Qdos))
6027 coding_system = AREF (eol_type, 1);
6028 else if (EQ (parent_eol_type, Qmac))
6029 coding_system = AREF (eol_type, 2);
6030 }
6031 return coding_system;
6032 }
6033
6034
6035 /* Check if text-conversion and eol-conversion of CODING_SYSTEM are
6036 decided for writing to a process. If not, complement them, and
6037 return a new coding system. */
6038
6039 Lisp_Object
6040 complement_process_encoding_system (Lisp_Object coding_system)
6041 {
6042 Lisp_Object coding_base = Qnil, eol_base = Qnil;
6043 Lisp_Object spec, attrs;
6044 int i;
6045
6046 for (i = 0; i < 3; i++)
6047 {
6048 if (i == 1)
6049 coding_system = CDR_SAFE (Vdefault_process_coding_system);
6050 else if (i == 2)
6051 coding_system = preferred_coding_system ();
6052 spec = CODING_SYSTEM_SPEC (coding_system);
6053 if (NILP (spec))
6054 continue;
6055 attrs = AREF (spec, 0);
6056 if (NILP (coding_base) && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
6057 coding_base = CODING_ATTR_BASE_NAME (attrs);
6058 if (NILP (eol_base) && ! VECTORP (AREF (spec, 2)))
6059 eol_base = coding_system;
6060 if (! NILP (coding_base) && ! NILP (eol_base))
6061 break;
6062 }
6063
6064 if (i > 0)
6065 /* The original CODING_SYSTEM didn't specify text-conversion or
6066 eol-conversion. Be sure that we return a fully complemented
6067 coding system. */
6068 coding_system = coding_inherit_eol_type (coding_base, eol_base);
6069 return coding_system;
6070 }
6071
6072
6073 /* Emacs has a mechanism to automatically detect a coding system if it
6074 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
6075 it's impossible to distinguish some coding systems accurately
6076 because they use the same range of codes. So, at first, coding
6077 systems are categorized into 7, those are:
6078
6079 o coding-category-emacs-mule
6080
6081 The category for a coding system which has the same code range
6082 as Emacs' internal format. Assigned the coding-system (Lisp
6083 symbol) `emacs-mule' by default.
6084
6085 o coding-category-sjis
6086
6087 The category for a coding system which has the same code range
6088 as SJIS. Assigned the coding-system (Lisp
6089 symbol) `japanese-shift-jis' by default.
6090
6091 o coding-category-iso-7
6092
6093 The category for a coding system which has the same code range
6094 as ISO2022 of 7-bit environment. This doesn't use any locking
6095 shift and single shift functions. This can encode/decode all
6096 charsets. Assigned the coding-system (Lisp symbol)
6097 `iso-2022-7bit' by default.
6098
6099 o coding-category-iso-7-tight
6100
6101 Same as coding-category-iso-7 except that this can
6102 encode/decode only the specified charsets.
6103
6104 o coding-category-iso-8-1
6105
6106 The category for a coding system which has the same code range
6107 as ISO2022 of 8-bit environment and graphic plane 1 used only
6108 for DIMENSION1 charset. This doesn't use any locking shift
6109 and single shift functions. Assigned the coding-system (Lisp
6110 symbol) `iso-latin-1' by default.
6111
6112 o coding-category-iso-8-2
6113
6114 The category for a coding system which has the same code range
6115 as ISO2022 of 8-bit environment and graphic plane 1 used only
6116 for DIMENSION2 charset. This doesn't use any locking shift
6117 and single shift functions. Assigned the coding-system (Lisp
6118 symbol) `japanese-iso-8bit' by default.
6119
6120 o coding-category-iso-7-else
6121
6122 The category for a coding system which has the same code range
6123 as ISO2022 of 7-bit environment but uses locking shift or
6124 single shift functions. Assigned the coding-system (Lisp
6125 symbol) `iso-2022-7bit-lock' by default.
6126
6127 o coding-category-iso-8-else
6128
6129 The category for a coding system which has the same code range
6130 as ISO2022 of 8-bit environment but uses locking shift or
6131 single shift functions. Assigned the coding-system (Lisp
6132 symbol) `iso-2022-8bit-ss2' by default.
6133
6134 o coding-category-big5
6135
6136 The category for a coding system which has the same code range
6137 as BIG5. Assigned the coding-system (Lisp symbol)
6138 `cn-big5' by default.
6139
6140 o coding-category-utf-8
6141
6142 The category for a coding system which has the same code range
6143 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6144 symbol) `utf-8' by default.
6145
6146 o coding-category-utf-16-be
6147
6148 The category for a coding system in which a text has an
6149 Unicode signature (cf. Unicode Standard) in the order of BIG
6150 endian at the head. Assigned the coding-system (Lisp symbol)
6151 `utf-16-be' by default.
6152
6153 o coding-category-utf-16-le
6154
6155 The category for a coding system in which a text has an
6156 Unicode signature (cf. Unicode Standard) in the order of
6157 LITTLE endian at the head. Assigned the coding-system (Lisp
6158 symbol) `utf-16-le' by default.
6159
6160 o coding-category-ccl
6161
6162 The category for a coding system of which encoder/decoder is
6163 written in CCL programs. The default value is nil, i.e., no
6164 coding system is assigned.
6165
6166 o coding-category-binary
6167
6168 The category for a coding system not categorized in any of the
6169 above. Assigned the coding-system (Lisp symbol)
6170 `no-conversion' by default.
6171
6172 Each of them is a Lisp symbol and the value is an actual
6173 `coding-system's (this is also a Lisp symbol) assigned by a user.
6174 What Emacs does actually is to detect a category of coding system.
6175 Then, it uses a `coding-system' assigned to it. If Emacs can't
6176 decide only one possible category, it selects a category of the
6177 highest priority. Priorities of categories are also specified by a
6178 user in a Lisp variable `coding-category-list'.
6179
6180 */
6181
6182 static Lisp_Object adjust_coding_eol_type (struct coding_system *coding,
6183 int eol_seen);
6184
6185
6186 /* Return the number of ASCII characters at the head of the source.
6187 By side effects, set coding->head_ascii and update
6188 coding->eol_seen. The value of coding->eol_seen is "logical or" of
6189 EOL_SEEN_LF, EOL_SEEN_CR, and EOL_SEEN_CRLF, but the value is
6190 reliable only when all the source bytes are ASCII. */
6191
6192 static ptrdiff_t
6193 check_ascii (struct coding_system *coding)
6194 {
6195 const unsigned char *src, *end;
6196 Lisp_Object eol_type = CODING_ID_EOL_TYPE (coding->id);
6197 int eol_seen = coding->eol_seen;
6198
6199 coding_set_source (coding);
6200 src = coding->source;
6201 end = src + coding->src_bytes;
6202
6203 if (inhibit_eol_conversion
6204 || SYMBOLP (eol_type))
6205 {
6206 /* We don't have to check EOL format. */
6207 while (src < end && !( *src & 0x80))
6208 {
6209 if (*src++ == '\n')
6210 eol_seen |= EOL_SEEN_LF;
6211 }
6212 }
6213 else
6214 {
6215 end--; /* We look ahead one byte for "CR LF". */
6216 while (src < end)
6217 {
6218 int c = *src;
6219
6220 if (c & 0x80)
6221 break;
6222 src++;
6223 if (c == '\r')
6224 {
6225 if (*src == '\n')
6226 {
6227 eol_seen |= EOL_SEEN_CRLF;
6228 src++;
6229 }
6230 else
6231 eol_seen |= EOL_SEEN_CR;
6232 }
6233 else if (c == '\n')
6234 eol_seen |= EOL_SEEN_LF;
6235 }
6236 if (src == end)
6237 {
6238 int c = *src;
6239
6240 /* All bytes but the last one C are ASCII. */
6241 if (! (c & 0x80))
6242 {
6243 if (c == '\r')
6244 eol_seen |= EOL_SEEN_CR;
6245 else if (c == '\n')
6246 eol_seen |= EOL_SEEN_LF;
6247 src++;
6248 }
6249 }
6250 }
6251 coding->head_ascii = src - coding->source;
6252 coding->eol_seen = eol_seen;
6253 return (coding->head_ascii);
6254 }
6255
6256
6257 /* Return the number of characters at the source if all the bytes are
6258 valid UTF-8 (of Unicode range). Otherwise, return -1. By side
6259 effects, update coding->eol_seen. The value of coding->eol_seen is
6260 "logical or" of EOL_SEEN_LF, EOL_SEEN_CR, and EOL_SEEN_CRLF, but
6261 the value is reliable only when all the source bytes are valid
6262 UTF-8. */
6263
6264 static ptrdiff_t
6265 check_utf_8 (struct coding_system *coding)
6266 {
6267 const unsigned char *src, *end;
6268 int eol_seen;
6269 ptrdiff_t nchars = coding->head_ascii;
6270
6271 if (coding->head_ascii < 0)
6272 check_ascii (coding);
6273 else
6274 coding_set_source (coding);
6275 src = coding->source + coding->head_ascii;
6276 /* We look ahead one byte for CR LF. */
6277 end = coding->source + coding->src_bytes - 1;
6278 eol_seen = coding->eol_seen;
6279 while (src < end)
6280 {
6281 int c = *src;
6282
6283 if (UTF_8_1_OCTET_P (*src))
6284 {
6285 src++;
6286 if (c < 0x20)
6287 {
6288 if (c == '\r')
6289 {
6290 if (*src == '\n')
6291 {
6292 eol_seen |= EOL_SEEN_CRLF;
6293 src++;
6294 nchars++;
6295 }
6296 else
6297 eol_seen |= EOL_SEEN_CR;
6298 }
6299 else if (c == '\n')
6300 eol_seen |= EOL_SEEN_LF;
6301 }
6302 }
6303 else if (UTF_8_2_OCTET_LEADING_P (c))
6304 {
6305 if (c < 0xC2 /* overlong sequence */
6306 || src + 1 >= end
6307 || ! UTF_8_EXTRA_OCTET_P (src[1]))
6308 return -1;
6309 src += 2;
6310 }
6311 else if (UTF_8_3_OCTET_LEADING_P (c))
6312 {
6313 if (src + 2 >= end
6314 || ! (UTF_8_EXTRA_OCTET_P (src[1])
6315 && UTF_8_EXTRA_OCTET_P (src[2])))
6316 return -1;
6317 c = (((c & 0xF) << 12)
6318 | ((src[1] & 0x3F) << 6) | (src[2] & 0x3F));
6319 if (c < 0x800 /* overlong sequence */
6320 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
6321 return -1;
6322 src += 3;
6323 }
6324 else if (UTF_8_4_OCTET_LEADING_P (c))
6325 {
6326 if (src + 3 >= end
6327 || ! (UTF_8_EXTRA_OCTET_P (src[1])
6328 && UTF_8_EXTRA_OCTET_P (src[2])
6329 && UTF_8_EXTRA_OCTET_P (src[3])))
6330 return -1;
6331 c = (((c & 0x7) << 18) | ((src[1] & 0x3F) << 12)
6332 | ((src[2] & 0x3F) << 6) | (src[3] & 0x3F));
6333 if (c < 0x10000 /* overlong sequence */
6334 || c >= 0x110000) /* non-Unicode character */
6335 return -1;
6336 src += 4;
6337 }
6338 else
6339 return -1;
6340 nchars++;
6341 }
6342
6343 if (src == end)
6344 {
6345 if (! UTF_8_1_OCTET_P (*src))
6346 return -1;
6347 nchars++;
6348 if (*src == '\r')
6349 eol_seen |= EOL_SEEN_CR;
6350 else if (*src == '\n')
6351 eol_seen |= EOL_SEEN_LF;
6352 }
6353 coding->eol_seen = eol_seen;
6354 return nchars;
6355 }
6356
6357
6358 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6359 SOURCE is encoded. If CATEGORY is one of
6360 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6361 two-byte, else they are encoded by one-byte.
6362
6363 Return one of EOL_SEEN_XXX. */
6364
6365 #define MAX_EOL_CHECK_COUNT 3
6366
6367 static int
6368 detect_eol (const unsigned char *source, ptrdiff_t src_bytes,
6369 enum coding_category category)
6370 {
6371 const unsigned char *src = source, *src_end = src + src_bytes;
6372 unsigned char c;
6373 int total = 0;
6374 int eol_seen = EOL_SEEN_NONE;
6375
6376 if ((1 << category) & CATEGORY_MASK_UTF_16)
6377 {
6378 bool msb = category == (coding_category_utf_16_le
6379 | coding_category_utf_16_le_nosig);
6380 bool lsb = !msb;
6381
6382 while (src + 1 < src_end)
6383 {
6384 c = src[lsb];
6385 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6386 {
6387 int this_eol;
6388
6389 if (c == '\n')
6390 this_eol = EOL_SEEN_LF;
6391 else if (src + 3 >= src_end
6392 || src[msb + 2] != 0
6393 || src[lsb + 2] != '\n')
6394 this_eol = EOL_SEEN_CR;
6395 else
6396 {
6397 this_eol = EOL_SEEN_CRLF;
6398 src += 2;
6399 }
6400
6401 if (eol_seen == EOL_SEEN_NONE)
6402 /* This is the first end-of-line. */
6403 eol_seen = this_eol;
6404 else if (eol_seen != this_eol)
6405 {
6406 /* The found type is different from what found before.
6407 Allow for stray ^M characters in DOS EOL files. */
6408 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6409 || (eol_seen == EOL_SEEN_CRLF
6410 && this_eol == EOL_SEEN_CR))
6411 eol_seen = EOL_SEEN_CRLF;
6412 else
6413 {
6414 eol_seen = EOL_SEEN_LF;
6415 break;
6416 }
6417 }
6418 if (++total == MAX_EOL_CHECK_COUNT)
6419 break;
6420 }
6421 src += 2;
6422 }
6423 }
6424 else
6425 while (src < src_end)
6426 {
6427 c = *src++;
6428 if (c == '\n' || c == '\r')
6429 {
6430 int this_eol;
6431
6432 if (c == '\n')
6433 this_eol = EOL_SEEN_LF;
6434 else if (src >= src_end || *src != '\n')
6435 this_eol = EOL_SEEN_CR;
6436 else
6437 this_eol = EOL_SEEN_CRLF, src++;
6438
6439 if (eol_seen == EOL_SEEN_NONE)
6440 /* This is the first end-of-line. */
6441 eol_seen = this_eol;
6442 else if (eol_seen != this_eol)
6443 {
6444 /* The found type is different from what found before.
6445 Allow for stray ^M characters in DOS EOL files. */
6446 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6447 || (eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR))
6448 eol_seen = EOL_SEEN_CRLF;
6449 else
6450 {
6451 eol_seen = EOL_SEEN_LF;
6452 break;
6453 }
6454 }
6455 if (++total == MAX_EOL_CHECK_COUNT)
6456 break;
6457 }
6458 }
6459 return eol_seen;
6460 }
6461
6462
6463 static Lisp_Object
6464 adjust_coding_eol_type (struct coding_system *coding, int eol_seen)
6465 {
6466 Lisp_Object eol_type;
6467
6468 eol_type = CODING_ID_EOL_TYPE (coding->id);
6469 if (! VECTORP (eol_type))
6470 /* Already adjusted. */
6471 return eol_type;
6472 if (eol_seen & EOL_SEEN_LF)
6473 {
6474 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6475 eol_type = Qunix;
6476 }
6477 else if (eol_seen & EOL_SEEN_CRLF)
6478 {
6479 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6480 eol_type = Qdos;
6481 }
6482 else if (eol_seen & EOL_SEEN_CR)
6483 {
6484 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6485 eol_type = Qmac;
6486 }
6487 return eol_type;
6488 }
6489
6490 /* Detect how a text specified in CODING is encoded. If a coding
6491 system is detected, update fields of CODING by the detected coding
6492 system. */
6493
6494 static void
6495 detect_coding (struct coding_system *coding)
6496 {
6497 const unsigned char *src, *src_end;
6498 unsigned int saved_mode = coding->mode;
6499 Lisp_Object found = Qnil;
6500 Lisp_Object eol_type = CODING_ID_EOL_TYPE (coding->id);
6501
6502 coding->consumed = coding->consumed_char = 0;
6503 coding->produced = coding->produced_char = 0;
6504 coding_set_source (coding);
6505
6506 src_end = coding->source + coding->src_bytes;
6507
6508 coding->eol_seen = EOL_SEEN_NONE;
6509 /* If we have not yet decided the text encoding type, detect it
6510 now. */
6511 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6512 {
6513 int c, i;
6514 struct coding_detection_info detect_info;
6515 bool null_byte_found = 0, eight_bit_found = 0;
6516 bool inhibit_nbd = inhibit_flag (coding->spec.undecided.inhibit_nbd,
6517 inhibit_null_byte_detection);
6518 bool inhibit_ied = inhibit_flag (coding->spec.undecided.inhibit_ied,
6519 inhibit_iso_escape_detection);
6520 bool prefer_utf_8 = coding->spec.undecided.prefer_utf_8;
6521
6522 coding->head_ascii = 0;
6523 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6524 for (src = coding->source; src < src_end; src++)
6525 {
6526 c = *src;
6527 if (c & 0x80)
6528 {
6529 eight_bit_found = 1;
6530 if (null_byte_found)
6531 break;
6532 }
6533 else if (c < 0x20)
6534 {
6535 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6536 && ! inhibit_ied
6537 && ! detect_info.checked)
6538 {
6539 if (detect_coding_iso_2022 (coding, &detect_info))
6540 {
6541 /* We have scanned the whole data. */
6542 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6543 {
6544 /* We didn't find an 8-bit code. We may
6545 have found a null-byte, but it's very
6546 rare that a binary file conforms to
6547 ISO-2022. */
6548 src = src_end;
6549 coding->head_ascii = src - coding->source;
6550 }
6551 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6552 break;
6553 }
6554 }
6555 else if (! c && !inhibit_nbd)
6556 {
6557 null_byte_found = 1;
6558 if (eight_bit_found)
6559 break;
6560 }
6561 else if (! disable_ascii_optimization
6562 && ! inhibit_eol_conversion)
6563 {
6564 if (c == '\r')
6565 {
6566 if (src < src_end && src[1] == '\n')
6567 {
6568 coding->eol_seen |= EOL_SEEN_CRLF;
6569 src++;
6570 if (! eight_bit_found)
6571 coding->head_ascii++;
6572 }
6573 else
6574 coding->eol_seen |= EOL_SEEN_CR;
6575 }
6576 else if (c == '\n')
6577 {
6578 coding->eol_seen |= EOL_SEEN_LF;
6579 }
6580 }
6581
6582 if (! eight_bit_found)
6583 coding->head_ascii++;
6584 }
6585 else if (! eight_bit_found)
6586 coding->head_ascii++;
6587 }
6588
6589 if (null_byte_found || eight_bit_found
6590 || coding->head_ascii < coding->src_bytes
6591 || detect_info.found)
6592 {
6593 enum coding_category category;
6594 struct coding_system *this;
6595
6596 if (coding->head_ascii == coding->src_bytes)
6597 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6598 for (i = 0; i < coding_category_raw_text; i++)
6599 {
6600 category = coding_priorities[i];
6601 this = coding_categories + category;
6602 if (detect_info.found & (1 << category))
6603 break;
6604 }
6605 else
6606 {
6607 if (null_byte_found)
6608 {
6609 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6610 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6611 }
6612 else if (prefer_utf_8
6613 && detect_coding_utf_8 (coding, &detect_info))
6614 {
6615 detect_info.checked |= ~CATEGORY_MASK_UTF_8;
6616 detect_info.rejected |= ~CATEGORY_MASK_UTF_8;
6617 }
6618 for (i = 0; i < coding_category_raw_text; i++)
6619 {
6620 category = coding_priorities[i];
6621 this = coding_categories + category;
6622 /* Some of this->detector (e.g. detect_coding_sjis)
6623 require this information. */
6624 coding->id = this->id;
6625 if (this->id < 0)
6626 {
6627 /* No coding system of this category is defined. */
6628 detect_info.rejected |= (1 << category);
6629 }
6630 else if (category >= coding_category_raw_text)
6631 continue;
6632 else if (detect_info.checked & (1 << category))
6633 {
6634 if (detect_info.found & (1 << category))
6635 break;
6636 }
6637 else if ((*(this->detector)) (coding, &detect_info)
6638 && detect_info.found & (1 << category))
6639 break;
6640 }
6641 }
6642
6643 if (i < coding_category_raw_text)
6644 {
6645 if (category == coding_category_utf_8_auto)
6646 {
6647 Lisp_Object coding_systems;
6648
6649 coding_systems = AREF (CODING_ID_ATTRS (this->id),
6650 coding_attr_utf_bom);
6651 if (CONSP (coding_systems))
6652 {
6653 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6654 found = XCAR (coding_systems);
6655 else
6656 found = XCDR (coding_systems);
6657 }
6658 else
6659 found = CODING_ID_NAME (this->id);
6660 }
6661 else if (category == coding_category_utf_16_auto)
6662 {
6663 Lisp_Object coding_systems;
6664
6665 coding_systems = AREF (CODING_ID_ATTRS (this->id),
6666 coding_attr_utf_bom);
6667 if (CONSP (coding_systems))
6668 {
6669 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6670 found = XCAR (coding_systems);
6671 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6672 found = XCDR (coding_systems);
6673 }
6674 else
6675 found = CODING_ID_NAME (this->id);
6676 }
6677 else
6678 found = CODING_ID_NAME (this->id);
6679 }
6680 else if (null_byte_found)
6681 found = Qno_conversion;
6682 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6683 == CATEGORY_MASK_ANY)
6684 found = Qraw_text;
6685 else if (detect_info.rejected)
6686 for (i = 0; i < coding_category_raw_text; i++)
6687 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6688 {
6689 this = coding_categories + coding_priorities[i];
6690 found = CODING_ID_NAME (this->id);
6691 break;
6692 }
6693 }
6694 }
6695 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6696 == coding_category_utf_8_auto)
6697 {
6698 Lisp_Object coding_systems;
6699 struct coding_detection_info detect_info;
6700
6701 coding_systems
6702 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6703 detect_info.found = detect_info.rejected = 0;
6704 if (check_ascii (coding) == coding->src_bytes)
6705 {
6706 if (CONSP (coding_systems))
6707 found = XCDR (coding_systems);
6708 }
6709 else
6710 {
6711 if (CONSP (coding_systems)
6712 && detect_coding_utf_8 (coding, &detect_info))
6713 {
6714 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6715 found = XCAR (coding_systems);
6716 else
6717 found = XCDR (coding_systems);
6718 }
6719 }
6720 }
6721 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6722 == coding_category_utf_16_auto)
6723 {
6724 Lisp_Object coding_systems;
6725 struct coding_detection_info detect_info;
6726
6727 coding_systems
6728 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6729 detect_info.found = detect_info.rejected = 0;
6730 coding->head_ascii = 0;
6731 if (CONSP (coding_systems)
6732 && detect_coding_utf_16 (coding, &detect_info))
6733 {
6734 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6735 found = XCAR (coding_systems);
6736 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6737 found = XCDR (coding_systems);
6738 }
6739 }
6740
6741 if (! NILP (found))
6742 {
6743 int specified_eol = (VECTORP (eol_type) ? EOL_SEEN_NONE
6744 : EQ (eol_type, Qdos) ? EOL_SEEN_CRLF
6745 : EQ (eol_type, Qmac) ? EOL_SEEN_CR
6746 : EOL_SEEN_LF);
6747
6748 setup_coding_system (found, coding);
6749 if (specified_eol != EOL_SEEN_NONE)
6750 adjust_coding_eol_type (coding, specified_eol);
6751 }
6752
6753 coding->mode = saved_mode;
6754 }
6755
6756
6757 static void
6758 decode_eol (struct coding_system *coding)
6759 {
6760 Lisp_Object eol_type;
6761 unsigned char *p, *pbeg, *pend;
6762
6763 eol_type = CODING_ID_EOL_TYPE (coding->id);
6764 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6765 return;
6766
6767 if (NILP (coding->dst_object))
6768 pbeg = coding->destination;
6769 else
6770 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6771 pend = pbeg + coding->produced;
6772
6773 if (VECTORP (eol_type))
6774 {
6775 int eol_seen = EOL_SEEN_NONE;
6776
6777 for (p = pbeg; p < pend; p++)
6778 {
6779 if (*p == '\n')
6780 eol_seen |= EOL_SEEN_LF;
6781 else if (*p == '\r')
6782 {
6783 if (p + 1 < pend && *(p + 1) == '\n')
6784 {
6785 eol_seen |= EOL_SEEN_CRLF;
6786 p++;
6787 }
6788 else
6789 eol_seen |= EOL_SEEN_CR;
6790 }
6791 }
6792 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6793 if ((eol_seen & EOL_SEEN_CRLF) != 0
6794 && (eol_seen & EOL_SEEN_CR) != 0
6795 && (eol_seen & EOL_SEEN_LF) == 0)
6796 eol_seen = EOL_SEEN_CRLF;
6797 else if (eol_seen != EOL_SEEN_NONE
6798 && eol_seen != EOL_SEEN_LF
6799 && eol_seen != EOL_SEEN_CRLF
6800 && eol_seen != EOL_SEEN_CR)
6801 eol_seen = EOL_SEEN_LF;
6802 if (eol_seen != EOL_SEEN_NONE)
6803 eol_type = adjust_coding_eol_type (coding, eol_seen);
6804 }
6805
6806 if (EQ (eol_type, Qmac))
6807 {
6808 for (p = pbeg; p < pend; p++)
6809 if (*p == '\r')
6810 *p = '\n';
6811 }
6812 else if (EQ (eol_type, Qdos))
6813 {
6814 ptrdiff_t n = 0;
6815
6816 if (NILP (coding->dst_object))
6817 {
6818 /* Start deleting '\r' from the tail to minimize the memory
6819 movement. */
6820 for (p = pend - 2; p >= pbeg; p--)
6821 if (*p == '\r')
6822 {
6823 memmove (p, p + 1, pend-- - p - 1);
6824 n++;
6825 }
6826 }
6827 else
6828 {
6829 ptrdiff_t pos_byte = coding->dst_pos_byte;
6830 ptrdiff_t pos = coding->dst_pos;
6831 ptrdiff_t pos_end = pos + coding->produced_char - 1;
6832
6833 while (pos < pos_end)
6834 {
6835 p = BYTE_POS_ADDR (pos_byte);
6836 if (*p == '\r' && p[1] == '\n')
6837 {
6838 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6839 n++;
6840 pos_end--;
6841 }
6842 pos++;
6843 if (coding->dst_multibyte)
6844 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6845 else
6846 pos_byte++;
6847 }
6848 }
6849 coding->produced -= n;
6850 coding->produced_char -= n;
6851 }
6852 }
6853
6854
6855 /* MAX_LOOKUP's maximum value. MAX_LOOKUP is an int and so cannot
6856 exceed INT_MAX. Also, MAX_LOOKUP is multiplied by sizeof (int) for
6857 alloca, so it cannot exceed MAX_ALLOCA / sizeof (int). */
6858 enum { MAX_LOOKUP_MAX = min (INT_MAX, MAX_ALLOCA / sizeof (int)) };
6859
6860 /* Return a translation table (or list of them) from coding system
6861 attribute vector ATTRS for encoding (if ENCODEP) or decoding (if
6862 not ENCODEP). */
6863
6864 static Lisp_Object
6865 get_translation_table (Lisp_Object attrs, bool encodep, int *max_lookup)
6866 {
6867 Lisp_Object standard, translation_table;
6868 Lisp_Object val;
6869
6870 if (NILP (Venable_character_translation))
6871 {
6872 if (max_lookup)
6873 *max_lookup = 0;
6874 return Qnil;
6875 }
6876 if (encodep)
6877 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6878 standard = Vstandard_translation_table_for_encode;
6879 else
6880 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6881 standard = Vstandard_translation_table_for_decode;
6882 if (NILP (translation_table))
6883 translation_table = standard;
6884 else
6885 {
6886 if (SYMBOLP (translation_table))
6887 translation_table = Fget (translation_table, Qtranslation_table);
6888 else if (CONSP (translation_table))
6889 {
6890 translation_table = Fcopy_sequence (translation_table);
6891 for (val = translation_table; CONSP (val); val = XCDR (val))
6892 if (SYMBOLP (XCAR (val)))
6893 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6894 }
6895 if (CHAR_TABLE_P (standard))
6896 {
6897 if (CONSP (translation_table))
6898 translation_table = nconc2 (translation_table, list1 (standard));
6899 else
6900 translation_table = list2 (translation_table, standard);
6901 }
6902 }
6903
6904 if (max_lookup)
6905 {
6906 *max_lookup = 1;
6907 if (CHAR_TABLE_P (translation_table)
6908 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6909 {
6910 val = XCHAR_TABLE (translation_table)->extras[1];
6911 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6912 *max_lookup = min (XFASTINT (val), MAX_LOOKUP_MAX);
6913 }
6914 else if (CONSP (translation_table))
6915 {
6916 Lisp_Object tail;
6917
6918 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6919 if (CHAR_TABLE_P (XCAR (tail))
6920 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6921 {
6922 Lisp_Object tailval = XCHAR_TABLE (XCAR (tail))->extras[1];
6923 if (NATNUMP (tailval) && *max_lookup < XFASTINT (tailval))
6924 *max_lookup = min (XFASTINT (tailval), MAX_LOOKUP_MAX);
6925 }
6926 }
6927 }
6928 return translation_table;
6929 }
6930
6931 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6932 do { \
6933 trans = Qnil; \
6934 if (CHAR_TABLE_P (table)) \
6935 { \
6936 trans = CHAR_TABLE_REF (table, c); \
6937 if (CHARACTERP (trans)) \
6938 c = XFASTINT (trans), trans = Qnil; \
6939 } \
6940 else if (CONSP (table)) \
6941 { \
6942 Lisp_Object tail; \
6943 \
6944 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6945 if (CHAR_TABLE_P (XCAR (tail))) \
6946 { \
6947 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6948 if (CHARACTERP (trans)) \
6949 c = XFASTINT (trans), trans = Qnil; \
6950 else if (! NILP (trans)) \
6951 break; \
6952 } \
6953 } \
6954 } while (0)
6955
6956
6957 /* Return a translation of character(s) at BUF according to TRANS.
6958 TRANS is TO-CHAR or ((FROM . TO) ...) where
6959 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6960 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6961 translation is found, and Qnil if not found..
6962 If BUF is too short to lookup characters in FROM, return Qt. */
6963
6964 static Lisp_Object
6965 get_translation (Lisp_Object trans, int *buf, int *buf_end)
6966 {
6967
6968 if (INTEGERP (trans))
6969 return trans;
6970 for (; CONSP (trans); trans = XCDR (trans))
6971 {
6972 Lisp_Object val = XCAR (trans);
6973 Lisp_Object from = XCAR (val);
6974 ptrdiff_t len = ASIZE (from);
6975 ptrdiff_t i;
6976
6977 for (i = 0; i < len; i++)
6978 {
6979 if (buf + i == buf_end)
6980 return Qt;
6981 if (XINT (AREF (from, i)) != buf[i])
6982 break;
6983 }
6984 if (i == len)
6985 return val;
6986 }
6987 return Qnil;
6988 }
6989
6990
6991 static int
6992 produce_chars (struct coding_system *coding, Lisp_Object translation_table,
6993 bool last_block)
6994 {
6995 unsigned char *dst = coding->destination + coding->produced;
6996 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6997 ptrdiff_t produced;
6998 ptrdiff_t produced_chars = 0;
6999 int carryover = 0;
7000
7001 if (! coding->chars_at_source)
7002 {
7003 /* Source characters are in coding->charbuf. */
7004 int *buf = coding->charbuf;
7005 int *buf_end = buf + coding->charbuf_used;
7006
7007 if (EQ (coding->src_object, coding->dst_object)
7008 && ! NILP (coding->dst_object))
7009 {
7010 eassert (growable_destination (coding));
7011 coding_set_source (coding);
7012 dst_end = ((unsigned char *) coding->source) + coding->consumed;
7013 }
7014
7015 while (buf < buf_end)
7016 {
7017 int c = *buf;
7018 ptrdiff_t i;
7019
7020 if (c >= 0)
7021 {
7022 ptrdiff_t from_nchars = 1, to_nchars = 1;
7023 Lisp_Object trans = Qnil;
7024
7025 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7026 if (! NILP (trans))
7027 {
7028 trans = get_translation (trans, buf, buf_end);
7029 if (INTEGERP (trans))
7030 c = XINT (trans);
7031 else if (CONSP (trans))
7032 {
7033 from_nchars = ASIZE (XCAR (trans));
7034 trans = XCDR (trans);
7035 if (INTEGERP (trans))
7036 c = XINT (trans);
7037 else
7038 {
7039 to_nchars = ASIZE (trans);
7040 c = XINT (AREF (trans, 0));
7041 }
7042 }
7043 else if (EQ (trans, Qt) && ! last_block)
7044 break;
7045 }
7046
7047 if ((dst_end - dst) / MAX_MULTIBYTE_LENGTH < to_nchars)
7048 {
7049 eassert (growable_destination (coding));
7050 if (((min (PTRDIFF_MAX, SIZE_MAX) - (buf_end - buf))
7051 / MAX_MULTIBYTE_LENGTH)
7052 < to_nchars)
7053 memory_full (SIZE_MAX);
7054 dst = alloc_destination (coding,
7055 buf_end - buf
7056 + MAX_MULTIBYTE_LENGTH * to_nchars,
7057 dst);
7058 if (EQ (coding->src_object, coding->dst_object))
7059 {
7060 coding_set_source (coding);
7061 dst_end = (((unsigned char *) coding->source)
7062 + coding->consumed);
7063 }
7064 else
7065 dst_end = coding->destination + coding->dst_bytes;
7066 }
7067
7068 for (i = 0; i < to_nchars; i++)
7069 {
7070 if (i > 0)
7071 c = XINT (AREF (trans, i));
7072 if (coding->dst_multibyte
7073 || ! CHAR_BYTE8_P (c))
7074 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
7075 else
7076 *dst++ = CHAR_TO_BYTE8 (c);
7077 }
7078 produced_chars += to_nchars;
7079 buf += from_nchars;
7080 }
7081 else
7082 /* This is an annotation datum. (-C) is the length. */
7083 buf += -c;
7084 }
7085 carryover = buf_end - buf;
7086 }
7087 else
7088 {
7089 /* Source characters are at coding->source. */
7090 const unsigned char *src = coding->source;
7091 const unsigned char *src_end = src + coding->consumed;
7092
7093 if (EQ (coding->dst_object, coding->src_object))
7094 {
7095 eassert (growable_destination (coding));
7096 dst_end = (unsigned char *) src;
7097 }
7098 if (coding->src_multibyte != coding->dst_multibyte)
7099 {
7100 if (coding->src_multibyte)
7101 {
7102 bool multibytep = 1;
7103 ptrdiff_t consumed_chars = 0;
7104
7105 while (1)
7106 {
7107 const unsigned char *src_base = src;
7108 int c;
7109
7110 ONE_MORE_BYTE (c);
7111 if (dst == dst_end)
7112 {
7113 eassert (growable_destination (coding));
7114 if (EQ (coding->src_object, coding->dst_object))
7115 dst_end = (unsigned char *) src;
7116 if (dst == dst_end)
7117 {
7118 ptrdiff_t offset = src - coding->source;
7119
7120 dst = alloc_destination (coding, src_end - src + 1,
7121 dst);
7122 dst_end = coding->destination + coding->dst_bytes;
7123 coding_set_source (coding);
7124 src = coding->source + offset;
7125 src_end = coding->source + coding->consumed;
7126 if (EQ (coding->src_object, coding->dst_object))
7127 dst_end = (unsigned char *) src;
7128 }
7129 }
7130 *dst++ = c;
7131 produced_chars++;
7132 }
7133 no_more_source:
7134 ;
7135 }
7136 else
7137 while (src < src_end)
7138 {
7139 bool multibytep = 1;
7140 int c = *src++;
7141
7142 if (dst >= dst_end - 1)
7143 {
7144 eassert (growable_destination (coding));
7145 if (EQ (coding->src_object, coding->dst_object))
7146 dst_end = (unsigned char *) src;
7147 if (dst >= dst_end - 1)
7148 {
7149 ptrdiff_t offset = src - coding->source;
7150 ptrdiff_t more_bytes;
7151
7152 if (EQ (coding->src_object, coding->dst_object))
7153 more_bytes = ((src_end - src) / 2) + 2;
7154 else
7155 more_bytes = src_end - src + 2;
7156 dst = alloc_destination (coding, more_bytes, dst);
7157 dst_end = coding->destination + coding->dst_bytes;
7158 coding_set_source (coding);
7159 src = coding->source + offset;
7160 src_end = coding->source + coding->consumed;
7161 if (EQ (coding->src_object, coding->dst_object))
7162 dst_end = (unsigned char *) src;
7163 }
7164 }
7165 EMIT_ONE_BYTE (c);
7166 }
7167 }
7168 else
7169 {
7170 if (!EQ (coding->src_object, coding->dst_object))
7171 {
7172 ptrdiff_t require = coding->src_bytes - coding->dst_bytes;
7173
7174 if (require > 0)
7175 {
7176 ptrdiff_t offset = src - coding->source;
7177
7178 dst = alloc_destination (coding, require, dst);
7179 coding_set_source (coding);
7180 src = coding->source + offset;
7181 src_end = coding->source + coding->consumed;
7182 }
7183 }
7184 produced_chars = coding->consumed_char;
7185 while (src < src_end)
7186 *dst++ = *src++;
7187 }
7188 }
7189
7190 produced = dst - (coding->destination + coding->produced);
7191 if (BUFFERP (coding->dst_object) && produced_chars > 0)
7192 insert_from_gap (produced_chars, produced, 0);
7193 coding->produced += produced;
7194 coding->produced_char += produced_chars;
7195 return carryover;
7196 }
7197
7198 /* Compose text in CODING->object according to the annotation data at
7199 CHARBUF. CHARBUF is an array:
7200 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
7201 */
7202
7203 static void
7204 produce_composition (struct coding_system *coding, int *charbuf, ptrdiff_t pos)
7205 {
7206 int len;
7207 ptrdiff_t to;
7208 enum composition_method method;
7209 Lisp_Object components;
7210
7211 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
7212 to = pos + charbuf[2];
7213 method = (enum composition_method) (charbuf[4]);
7214
7215 if (method == COMPOSITION_RELATIVE)
7216 components = Qnil;
7217 else
7218 {
7219 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
7220 int i, j;
7221
7222 if (method == COMPOSITION_WITH_RULE)
7223 len = charbuf[2] * 3 - 2;
7224 charbuf += MAX_ANNOTATION_LENGTH;
7225 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
7226 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
7227 {
7228 if (charbuf[i] >= 0)
7229 args[j] = make_number (charbuf[i]);
7230 else
7231 {
7232 i++;
7233 args[j] = make_number (charbuf[i] % 0x100);
7234 }
7235 }
7236 components = (i == j ? Fstring (j, args) : Fvector (j, args));
7237 }
7238 compose_text (pos, to, components, Qnil, coding->dst_object);
7239 }
7240
7241
7242 /* Put `charset' property on text in CODING->object according to
7243 the annotation data at CHARBUF. CHARBUF is an array:
7244 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
7245 */
7246
7247 static void
7248 produce_charset (struct coding_system *coding, int *charbuf, ptrdiff_t pos)
7249 {
7250 ptrdiff_t from = pos - charbuf[2];
7251 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
7252
7253 Fput_text_property (make_number (from), make_number (pos),
7254 Qcharset, CHARSET_NAME (charset),
7255 coding->dst_object);
7256 }
7257
7258 #define MAX_CHARBUF_SIZE 0x4000
7259 /* How many units decoding functions expect in coding->charbuf at
7260 most. Currently, decode_coding_emacs_mule expects the following
7261 size, and that is the largest value. */
7262 #define MAX_CHARBUF_EXTRA_SIZE ((MAX_ANNOTATION_LENGTH * 3) + 1)
7263
7264 #define ALLOC_CONVERSION_WORK_AREA(coding, size) \
7265 do { \
7266 ptrdiff_t units = min ((size) + MAX_CHARBUF_EXTRA_SIZE, \
7267 MAX_CHARBUF_SIZE); \
7268 coding->charbuf = SAFE_ALLOCA (units * sizeof (int)); \
7269 coding->charbuf_size = units; \
7270 } while (0)
7271
7272 static void
7273 produce_annotation (struct coding_system *coding, ptrdiff_t pos)
7274 {
7275 int *charbuf = coding->charbuf;
7276 int *charbuf_end = charbuf + coding->charbuf_used;
7277
7278 if (NILP (coding->dst_object))
7279 return;
7280
7281 while (charbuf < charbuf_end)
7282 {
7283 if (*charbuf >= 0)
7284 pos++, charbuf++;
7285 else
7286 {
7287 int len = -*charbuf;
7288
7289 if (len > 2)
7290 switch (charbuf[1])
7291 {
7292 case CODING_ANNOTATE_COMPOSITION_MASK:
7293 produce_composition (coding, charbuf, pos);
7294 break;
7295 case CODING_ANNOTATE_CHARSET_MASK:
7296 produce_charset (coding, charbuf, pos);
7297 break;
7298 default:
7299 break;
7300 }
7301 charbuf += len;
7302 }
7303 }
7304 }
7305
7306 /* Decode the data at CODING->src_object into CODING->dst_object.
7307 CODING->src_object is a buffer, a string, or nil.
7308 CODING->dst_object is a buffer.
7309
7310 If CODING->src_object is a buffer, it must be the current buffer.
7311 In this case, if CODING->src_pos is positive, it is a position of
7312 the source text in the buffer, otherwise, the source text is in the
7313 gap area of the buffer, and CODING->src_pos specifies the offset of
7314 the text from GPT (which must be the same as PT). If this is the
7315 same buffer as CODING->dst_object, CODING->src_pos must be
7316 negative.
7317
7318 If CODING->src_object is a string, CODING->src_pos is an index to
7319 that string.
7320
7321 If CODING->src_object is nil, CODING->source must already point to
7322 the non-relocatable memory area. In this case, CODING->src_pos is
7323 an offset from CODING->source.
7324
7325 The decoded data is inserted at the current point of the buffer
7326 CODING->dst_object.
7327 */
7328
7329 static void
7330 decode_coding (struct coding_system *coding)
7331 {
7332 Lisp_Object attrs;
7333 Lisp_Object undo_list;
7334 Lisp_Object translation_table;
7335 struct ccl_spec cclspec;
7336 int carryover;
7337 int i;
7338
7339 USE_SAFE_ALLOCA;
7340
7341 if (BUFFERP (coding->src_object)
7342 && coding->src_pos > 0
7343 && coding->src_pos < GPT
7344 && coding->src_pos + coding->src_chars > GPT)
7345 move_gap_both (coding->src_pos, coding->src_pos_byte);
7346
7347 undo_list = Qt;
7348 if (BUFFERP (coding->dst_object))
7349 {
7350 set_buffer_internal (XBUFFER (coding->dst_object));
7351 if (GPT != PT)
7352 move_gap_both (PT, PT_BYTE);
7353
7354 /* We must disable undo_list in order to record the whole insert
7355 transaction via record_insert at the end. But doing so also
7356 disables the recording of the first change to the undo_list.
7357 Therefore we check for first change here and record it via
7358 record_first_change if needed. */
7359 if (MODIFF <= SAVE_MODIFF)
7360 record_first_change ();
7361
7362 undo_list = BVAR (current_buffer, undo_list);
7363 bset_undo_list (current_buffer, Qt);
7364 }
7365
7366 coding->consumed = coding->consumed_char = 0;
7367 coding->produced = coding->produced_char = 0;
7368 coding->chars_at_source = 0;
7369 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7370
7371 ALLOC_CONVERSION_WORK_AREA (coding, coding->src_bytes);
7372
7373 attrs = CODING_ID_ATTRS (coding->id);
7374 translation_table = get_translation_table (attrs, 0, NULL);
7375
7376 carryover = 0;
7377 if (coding->decoder == decode_coding_ccl)
7378 {
7379 coding->spec.ccl = &cclspec;
7380 setup_ccl_program (&cclspec.ccl, CODING_CCL_DECODER (coding));
7381 }
7382 do
7383 {
7384 ptrdiff_t pos = coding->dst_pos + coding->produced_char;
7385
7386 coding_set_source (coding);
7387 coding->annotated = 0;
7388 coding->charbuf_used = carryover;
7389 (*(coding->decoder)) (coding);
7390 coding_set_destination (coding);
7391 carryover = produce_chars (coding, translation_table, 0);
7392 if (coding->annotated)
7393 produce_annotation (coding, pos);
7394 for (i = 0; i < carryover; i++)
7395 coding->charbuf[i]
7396 = coding->charbuf[coding->charbuf_used - carryover + i];
7397 }
7398 while (coding->result == CODING_RESULT_INSUFFICIENT_DST
7399 || (coding->consumed < coding->src_bytes
7400 && (coding->result == CODING_RESULT_SUCCESS
7401 || coding->result == CODING_RESULT_INVALID_SRC)));
7402
7403 if (carryover > 0)
7404 {
7405 coding_set_destination (coding);
7406 coding->charbuf_used = carryover;
7407 produce_chars (coding, translation_table, 1);
7408 }
7409
7410 coding->carryover_bytes = 0;
7411 if (coding->consumed < coding->src_bytes)
7412 {
7413 ptrdiff_t nbytes = coding->src_bytes - coding->consumed;
7414 const unsigned char *src;
7415
7416 coding_set_source (coding);
7417 coding_set_destination (coding);
7418 src = coding->source + coding->consumed;
7419
7420 if (coding->mode & CODING_MODE_LAST_BLOCK)
7421 {
7422 /* Flush out unprocessed data as binary chars. We are sure
7423 that the number of data is less than the size of
7424 coding->charbuf. */
7425 coding->charbuf_used = 0;
7426 coding->chars_at_source = 0;
7427
7428 while (nbytes-- > 0)
7429 {
7430 int c = *src++;
7431
7432 if (c & 0x80)
7433 c = BYTE8_TO_CHAR (c);
7434 coding->charbuf[coding->charbuf_used++] = c;
7435 }
7436 produce_chars (coding, Qnil, 1);
7437 }
7438 else
7439 {
7440 /* Record unprocessed bytes in coding->carryover. We are
7441 sure that the number of data is less than the size of
7442 coding->carryover. */
7443 unsigned char *p = coding->carryover;
7444
7445 if (nbytes > sizeof coding->carryover)
7446 nbytes = sizeof coding->carryover;
7447 coding->carryover_bytes = nbytes;
7448 while (nbytes-- > 0)
7449 *p++ = *src++;
7450 }
7451 coding->consumed = coding->src_bytes;
7452 }
7453
7454 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7455 && !inhibit_eol_conversion)
7456 decode_eol (coding);
7457 if (BUFFERP (coding->dst_object))
7458 {
7459 bset_undo_list (current_buffer, undo_list);
7460 record_insert (coding->dst_pos, coding->produced_char);
7461 }
7462
7463 SAFE_FREE ();
7464 }
7465
7466
7467 /* Extract an annotation datum from a composition starting at POS and
7468 ending before LIMIT of CODING->src_object (buffer or string), store
7469 the data in BUF, set *STOP to a starting position of the next
7470 composition (if any) or to LIMIT, and return the address of the
7471 next element of BUF.
7472
7473 If such an annotation is not found, set *STOP to a starting
7474 position of a composition after POS (if any) or to LIMIT, and
7475 return BUF. */
7476
7477 static int *
7478 handle_composition_annotation (ptrdiff_t pos, ptrdiff_t limit,
7479 struct coding_system *coding, int *buf,
7480 ptrdiff_t *stop)
7481 {
7482 ptrdiff_t start, end;
7483 Lisp_Object prop;
7484
7485 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7486 || end > limit)
7487 *stop = limit;
7488 else if (start > pos)
7489 *stop = start;
7490 else
7491 {
7492 if (start == pos)
7493 {
7494 /* We found a composition. Store the corresponding
7495 annotation data in BUF. */
7496 int *head = buf;
7497 enum composition_method method = composition_method (prop);
7498 int nchars = COMPOSITION_LENGTH (prop);
7499
7500 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7501 if (method != COMPOSITION_RELATIVE)
7502 {
7503 Lisp_Object components;
7504 ptrdiff_t i, len, i_byte;
7505
7506 components = COMPOSITION_COMPONENTS (prop);
7507 if (VECTORP (components))
7508 {
7509 len = ASIZE (components);
7510 for (i = 0; i < len; i++)
7511 *buf++ = XINT (AREF (components, i));
7512 }
7513 else if (STRINGP (components))
7514 {
7515 len = SCHARS (components);
7516 i = i_byte = 0;
7517 while (i < len)
7518 {
7519 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7520 buf++;
7521 }
7522 }
7523 else if (INTEGERP (components))
7524 {
7525 len = 1;
7526 *buf++ = XINT (components);
7527 }
7528 else if (CONSP (components))
7529 {
7530 for (len = 0; CONSP (components);
7531 len++, components = XCDR (components))
7532 *buf++ = XINT (XCAR (components));
7533 }
7534 else
7535 emacs_abort ();
7536 *head -= len;
7537 }
7538 }
7539
7540 if (find_composition (end, limit, &start, &end, &prop,
7541 coding->src_object)
7542 && end <= limit)
7543 *stop = start;
7544 else
7545 *stop = limit;
7546 }
7547 return buf;
7548 }
7549
7550
7551 /* Extract an annotation datum from a text property `charset' at POS of
7552 CODING->src_object (buffer of string), store the data in BUF, set
7553 *STOP to the position where the value of `charset' property changes
7554 (limiting by LIMIT), and return the address of the next element of
7555 BUF.
7556
7557 If the property value is nil, set *STOP to the position where the
7558 property value is non-nil (limiting by LIMIT), and return BUF. */
7559
7560 static int *
7561 handle_charset_annotation (ptrdiff_t pos, ptrdiff_t limit,
7562 struct coding_system *coding, int *buf,
7563 ptrdiff_t *stop)
7564 {
7565 Lisp_Object val, next;
7566 int id;
7567
7568 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7569 if (! NILP (val) && CHARSETP (val))
7570 id = XINT (CHARSET_SYMBOL_ID (val));
7571 else
7572 id = -1;
7573 ADD_CHARSET_DATA (buf, 0, id);
7574 next = Fnext_single_property_change (make_number (pos), Qcharset,
7575 coding->src_object,
7576 make_number (limit));
7577 *stop = XINT (next);
7578 return buf;
7579 }
7580
7581
7582 static void
7583 consume_chars (struct coding_system *coding, Lisp_Object translation_table,
7584 int max_lookup)
7585 {
7586 int *buf = coding->charbuf;
7587 int *buf_end = coding->charbuf + coding->charbuf_size;
7588 const unsigned char *src = coding->source + coding->consumed;
7589 const unsigned char *src_end = coding->source + coding->src_bytes;
7590 ptrdiff_t pos = coding->src_pos + coding->consumed_char;
7591 ptrdiff_t end_pos = coding->src_pos + coding->src_chars;
7592 bool multibytep = coding->src_multibyte;
7593 Lisp_Object eol_type;
7594 int c;
7595 ptrdiff_t stop, stop_composition, stop_charset;
7596 int *lookup_buf = NULL;
7597
7598 if (! NILP (translation_table))
7599 lookup_buf = alloca (sizeof (int) * max_lookup);
7600
7601 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7602 if (VECTORP (eol_type))
7603 eol_type = Qunix;
7604
7605 /* Note: composition handling is not yet implemented. */
7606 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7607
7608 if (NILP (coding->src_object))
7609 stop = stop_composition = stop_charset = end_pos;
7610 else
7611 {
7612 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7613 stop = stop_composition = pos;
7614 else
7615 stop = stop_composition = end_pos;
7616 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7617 stop = stop_charset = pos;
7618 else
7619 stop_charset = end_pos;
7620 }
7621
7622 /* Compensate for CRLF and conversion. */
7623 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7624 while (buf < buf_end)
7625 {
7626 Lisp_Object trans;
7627
7628 if (pos == stop)
7629 {
7630 if (pos == end_pos)
7631 break;
7632 if (pos == stop_composition)
7633 buf = handle_composition_annotation (pos, end_pos, coding,
7634 buf, &stop_composition);
7635 if (pos == stop_charset)
7636 buf = handle_charset_annotation (pos, end_pos, coding,
7637 buf, &stop_charset);
7638 stop = (stop_composition < stop_charset
7639 ? stop_composition : stop_charset);
7640 }
7641
7642 if (! multibytep)
7643 {
7644 int bytes;
7645
7646 if (coding->encoder == encode_coding_raw_text
7647 || coding->encoder == encode_coding_ccl)
7648 c = *src++, pos++;
7649 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7650 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7651 else
7652 c = BYTE8_TO_CHAR (*src), src++, pos++;
7653 }
7654 else
7655 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7656 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7657 c = '\n';
7658 if (! EQ (eol_type, Qunix))
7659 {
7660 if (c == '\n')
7661 {
7662 if (EQ (eol_type, Qdos))
7663 *buf++ = '\r';
7664 else
7665 c = '\r';
7666 }
7667 }
7668
7669 trans = Qnil;
7670 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7671 if (NILP (trans))
7672 *buf++ = c;
7673 else
7674 {
7675 ptrdiff_t from_nchars = 1, to_nchars = 1;
7676 int *lookup_buf_end;
7677 const unsigned char *p = src;
7678 int i;
7679
7680 lookup_buf[0] = c;
7681 for (i = 1; i < max_lookup && p < src_end; i++)
7682 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7683 lookup_buf_end = lookup_buf + i;
7684 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7685 if (INTEGERP (trans))
7686 c = XINT (trans);
7687 else if (CONSP (trans))
7688 {
7689 from_nchars = ASIZE (XCAR (trans));
7690 trans = XCDR (trans);
7691 if (INTEGERP (trans))
7692 c = XINT (trans);
7693 else
7694 {
7695 to_nchars = ASIZE (trans);
7696 if (buf_end - buf < to_nchars)
7697 break;
7698 c = XINT (AREF (trans, 0));
7699 }
7700 }
7701 else
7702 break;
7703 *buf++ = c;
7704 for (i = 1; i < to_nchars; i++)
7705 *buf++ = XINT (AREF (trans, i));
7706 for (i = 1; i < from_nchars; i++, pos++)
7707 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7708 }
7709 }
7710
7711 coding->consumed = src - coding->source;
7712 coding->consumed_char = pos - coding->src_pos;
7713 coding->charbuf_used = buf - coding->charbuf;
7714 coding->chars_at_source = 0;
7715 }
7716
7717
7718 /* Encode the text at CODING->src_object into CODING->dst_object.
7719 CODING->src_object is a buffer or a string.
7720 CODING->dst_object is a buffer or nil.
7721
7722 If CODING->src_object is a buffer, it must be the current buffer.
7723 In this case, if CODING->src_pos is positive, it is a position of
7724 the source text in the buffer, otherwise. the source text is in the
7725 gap area of the buffer, and coding->src_pos specifies the offset of
7726 the text from GPT (which must be the same as PT). If this is the
7727 same buffer as CODING->dst_object, CODING->src_pos must be
7728 negative and CODING should not have `pre-write-conversion'.
7729
7730 If CODING->src_object is a string, CODING should not have
7731 `pre-write-conversion'.
7732
7733 If CODING->dst_object is a buffer, the encoded data is inserted at
7734 the current point of that buffer.
7735
7736 If CODING->dst_object is nil, the encoded data is placed at the
7737 memory area specified by CODING->destination. */
7738
7739 static void
7740 encode_coding (struct coding_system *coding)
7741 {
7742 Lisp_Object attrs;
7743 Lisp_Object translation_table;
7744 int max_lookup;
7745 struct ccl_spec cclspec;
7746
7747 USE_SAFE_ALLOCA;
7748
7749 attrs = CODING_ID_ATTRS (coding->id);
7750 if (coding->encoder == encode_coding_raw_text)
7751 translation_table = Qnil, max_lookup = 0;
7752 else
7753 translation_table = get_translation_table (attrs, 1, &max_lookup);
7754
7755 if (BUFFERP (coding->dst_object))
7756 {
7757 set_buffer_internal (XBUFFER (coding->dst_object));
7758 coding->dst_multibyte
7759 = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7760 }
7761
7762 coding->consumed = coding->consumed_char = 0;
7763 coding->produced = coding->produced_char = 0;
7764 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7765
7766 ALLOC_CONVERSION_WORK_AREA (coding, coding->src_chars);
7767
7768 if (coding->encoder == encode_coding_ccl)
7769 {
7770 coding->spec.ccl = &cclspec;
7771 setup_ccl_program (&cclspec.ccl, CODING_CCL_ENCODER (coding));
7772 }
7773 do {
7774 coding_set_source (coding);
7775 consume_chars (coding, translation_table, max_lookup);
7776 coding_set_destination (coding);
7777 (*(coding->encoder)) (coding);
7778 } while (coding->consumed_char < coding->src_chars);
7779
7780 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7781 insert_from_gap (coding->produced_char, coding->produced, 0);
7782
7783 SAFE_FREE ();
7784 }
7785
7786
7787 /* Name (or base name) of work buffer for code conversion. */
7788 static Lisp_Object Vcode_conversion_workbuf_name;
7789
7790 /* A working buffer used by the top level conversion. Once it is
7791 created, it is never destroyed. It has the name
7792 Vcode_conversion_workbuf_name. The other working buffers are
7793 destroyed after the use is finished, and their names are modified
7794 versions of Vcode_conversion_workbuf_name. */
7795 static Lisp_Object Vcode_conversion_reused_workbuf;
7796
7797 /* True iff Vcode_conversion_reused_workbuf is already in use. */
7798 static bool reused_workbuf_in_use;
7799
7800
7801 /* Return a working buffer of code conversion. MULTIBYTE specifies the
7802 multibyteness of returning buffer. */
7803
7804 static Lisp_Object
7805 make_conversion_work_buffer (bool multibyte)
7806 {
7807 Lisp_Object name, workbuf;
7808 struct buffer *current;
7809
7810 if (reused_workbuf_in_use)
7811 {
7812 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7813 workbuf = Fget_buffer_create (name);
7814 }
7815 else
7816 {
7817 reused_workbuf_in_use = 1;
7818 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7819 Vcode_conversion_reused_workbuf
7820 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7821 workbuf = Vcode_conversion_reused_workbuf;
7822 }
7823 current = current_buffer;
7824 set_buffer_internal (XBUFFER (workbuf));
7825 /* We can't allow modification hooks to run in the work buffer. For
7826 instance, directory_files_internal assumes that file decoding
7827 doesn't compile new regexps. */
7828 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7829 Ferase_buffer ();
7830 bset_undo_list (current_buffer, Qt);
7831 bset_enable_multibyte_characters (current_buffer, multibyte ? Qt : Qnil);
7832 set_buffer_internal (current);
7833 return workbuf;
7834 }
7835
7836
7837 static void
7838 code_conversion_restore (Lisp_Object arg)
7839 {
7840 Lisp_Object current, workbuf;
7841
7842 current = XCAR (arg);
7843 workbuf = XCDR (arg);
7844 if (! NILP (workbuf))
7845 {
7846 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7847 reused_workbuf_in_use = 0;
7848 else
7849 Fkill_buffer (workbuf);
7850 }
7851 set_buffer_internal (XBUFFER (current));
7852 }
7853
7854 Lisp_Object
7855 code_conversion_save (bool with_work_buf, bool multibyte)
7856 {
7857 Lisp_Object workbuf = Qnil;
7858
7859 if (with_work_buf)
7860 workbuf = make_conversion_work_buffer (multibyte);
7861 record_unwind_protect (code_conversion_restore,
7862 Fcons (Fcurrent_buffer (), workbuf));
7863 return workbuf;
7864 }
7865
7866 void
7867 decode_coding_gap (struct coding_system *coding,
7868 ptrdiff_t chars, ptrdiff_t bytes)
7869 {
7870 ptrdiff_t count = SPECPDL_INDEX ();
7871 Lisp_Object attrs;
7872
7873 coding->src_object = Fcurrent_buffer ();
7874 coding->src_chars = chars;
7875 coding->src_bytes = bytes;
7876 coding->src_pos = -chars;
7877 coding->src_pos_byte = -bytes;
7878 coding->src_multibyte = chars < bytes;
7879 coding->dst_object = coding->src_object;
7880 coding->dst_pos = PT;
7881 coding->dst_pos_byte = PT_BYTE;
7882 coding->dst_multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7883
7884 coding->head_ascii = -1;
7885 coding->detected_utf8_bytes = coding->detected_utf8_chars = -1;
7886 coding->eol_seen = EOL_SEEN_NONE;
7887 if (CODING_REQUIRE_DETECTION (coding))
7888 detect_coding (coding);
7889 attrs = CODING_ID_ATTRS (coding->id);
7890 if (! disable_ascii_optimization
7891 && ! coding->src_multibyte
7892 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs))
7893 && NILP (CODING_ATTR_POST_READ (attrs))
7894 && NILP (get_translation_table (attrs, 0, NULL)))
7895 {
7896 chars = coding->head_ascii;
7897 if (chars < 0)
7898 chars = check_ascii (coding);
7899 if (chars != bytes)
7900 {
7901 /* There exists a non-ASCII byte. */
7902 if (EQ (CODING_ATTR_TYPE (attrs), Qutf_8)
7903 && coding->detected_utf8_bytes == coding->src_bytes)
7904 {
7905 if (coding->detected_utf8_chars >= 0)
7906 chars = coding->detected_utf8_chars;
7907 else
7908 chars = check_utf_8 (coding);
7909 if (CODING_UTF_8_BOM (coding) != utf_without_bom
7910 && coding->head_ascii == 0
7911 && coding->source[0] == UTF_8_BOM_1
7912 && coding->source[1] == UTF_8_BOM_2
7913 && coding->source[2] == UTF_8_BOM_3)
7914 {
7915 chars--;
7916 bytes -= 3;
7917 coding->src_bytes -= 3;
7918 }
7919 }
7920 else
7921 chars = -1;
7922 }
7923 if (chars >= 0)
7924 {
7925 Lisp_Object eol_type;
7926
7927 eol_type = CODING_ID_EOL_TYPE (coding->id);
7928 if (VECTORP (eol_type))
7929 {
7930 if (coding->eol_seen != EOL_SEEN_NONE)
7931 eol_type = adjust_coding_eol_type (coding, coding->eol_seen);
7932 }
7933 if (EQ (eol_type, Qmac))
7934 {
7935 unsigned char *src_end = GAP_END_ADDR;
7936 unsigned char *src = src_end - coding->src_bytes;
7937
7938 while (src < src_end)
7939 {
7940 if (*src++ == '\r')
7941 src[-1] = '\n';
7942 }
7943 }
7944 else if (EQ (eol_type, Qdos))
7945 {
7946 unsigned char *src = GAP_END_ADDR;
7947 unsigned char *src_beg = src - coding->src_bytes;
7948 unsigned char *dst = src;
7949 ptrdiff_t diff;
7950
7951 while (src_beg < src)
7952 {
7953 *--dst = *--src;
7954 if (*src == '\n' && src > src_beg && src[-1] == '\r')
7955 src--;
7956 }
7957 diff = dst - src;
7958 bytes -= diff;
7959 chars -= diff;
7960 }
7961 coding->produced = bytes;
7962 coding->produced_char = chars;
7963 insert_from_gap (chars, bytes, 1);
7964 return;
7965 }
7966 }
7967 code_conversion_save (0, 0);
7968
7969 coding->mode |= CODING_MODE_LAST_BLOCK;
7970 current_buffer->text->inhibit_shrinking = 1;
7971 decode_coding (coding);
7972 current_buffer->text->inhibit_shrinking = 0;
7973
7974 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7975 {
7976 ptrdiff_t prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7977 Lisp_Object val;
7978
7979 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7980 val = call1 (CODING_ATTR_POST_READ (attrs),
7981 make_number (coding->produced_char));
7982 CHECK_NATNUM (val);
7983 coding->produced_char += Z - prev_Z;
7984 coding->produced += Z_BYTE - prev_Z_BYTE;
7985 }
7986
7987 unbind_to (count, Qnil);
7988 }
7989
7990
7991 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7992 SRC_OBJECT into DST_OBJECT by coding context CODING.
7993
7994 SRC_OBJECT is a buffer, a string, or Qnil.
7995
7996 If it is a buffer, the text is at point of the buffer. FROM and TO
7997 are positions in the buffer.
7998
7999 If it is a string, the text is at the beginning of the string.
8000 FROM and TO are indices to the string.
8001
8002 If it is nil, the text is at coding->source. FROM and TO are
8003 indices to coding->source.
8004
8005 DST_OBJECT is a buffer, Qt, or Qnil.
8006
8007 If it is a buffer, the decoded text is inserted at point of the
8008 buffer. If the buffer is the same as SRC_OBJECT, the source text
8009 is deleted.
8010
8011 If it is Qt, a string is made from the decoded text, and
8012 set in CODING->dst_object.
8013
8014 If it is Qnil, the decoded text is stored at CODING->destination.
8015 The caller must allocate CODING->dst_bytes bytes at
8016 CODING->destination by xmalloc. If the decoded text is longer than
8017 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
8018 */
8019
8020 void
8021 decode_coding_object (struct coding_system *coding,
8022 Lisp_Object src_object,
8023 ptrdiff_t from, ptrdiff_t from_byte,
8024 ptrdiff_t to, ptrdiff_t to_byte,
8025 Lisp_Object dst_object)
8026 {
8027 ptrdiff_t count = SPECPDL_INDEX ();
8028 unsigned char *destination IF_LINT (= NULL);
8029 ptrdiff_t dst_bytes IF_LINT (= 0);
8030 ptrdiff_t chars = to - from;
8031 ptrdiff_t bytes = to_byte - from_byte;
8032 Lisp_Object attrs;
8033 ptrdiff_t saved_pt = -1, saved_pt_byte IF_LINT (= 0);
8034 bool need_marker_adjustment = 0;
8035 Lisp_Object old_deactivate_mark;
8036
8037 old_deactivate_mark = Vdeactivate_mark;
8038
8039 if (NILP (dst_object))
8040 {
8041 destination = coding->destination;
8042 dst_bytes = coding->dst_bytes;
8043 }
8044
8045 coding->src_object = src_object;
8046 coding->src_chars = chars;
8047 coding->src_bytes = bytes;
8048 coding->src_multibyte = chars < bytes;
8049
8050 if (STRINGP (src_object))
8051 {
8052 coding->src_pos = from;
8053 coding->src_pos_byte = from_byte;
8054 }
8055 else if (BUFFERP (src_object))
8056 {
8057 set_buffer_internal (XBUFFER (src_object));
8058 if (from != GPT)
8059 move_gap_both (from, from_byte);
8060 if (EQ (src_object, dst_object))
8061 {
8062 struct Lisp_Marker *tail;
8063
8064 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8065 {
8066 tail->need_adjustment
8067 = tail->charpos == (tail->insertion_type ? from : to);
8068 need_marker_adjustment |= tail->need_adjustment;
8069 }
8070 saved_pt = PT, saved_pt_byte = PT_BYTE;
8071 TEMP_SET_PT_BOTH (from, from_byte);
8072 current_buffer->text->inhibit_shrinking = 1;
8073 del_range_both (from, from_byte, to, to_byte, 1);
8074 coding->src_pos = -chars;
8075 coding->src_pos_byte = -bytes;
8076 }
8077 else
8078 {
8079 coding->src_pos = from;
8080 coding->src_pos_byte = from_byte;
8081 }
8082 }
8083
8084 if (CODING_REQUIRE_DETECTION (coding))
8085 detect_coding (coding);
8086 attrs = CODING_ID_ATTRS (coding->id);
8087
8088 if (EQ (dst_object, Qt)
8089 || (! NILP (CODING_ATTR_POST_READ (attrs))
8090 && NILP (dst_object)))
8091 {
8092 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
8093 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
8094 coding->dst_pos = BEG;
8095 coding->dst_pos_byte = BEG_BYTE;
8096 }
8097 else if (BUFFERP (dst_object))
8098 {
8099 code_conversion_save (0, 0);
8100 coding->dst_object = dst_object;
8101 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
8102 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
8103 coding->dst_multibyte
8104 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
8105 }
8106 else
8107 {
8108 code_conversion_save (0, 0);
8109 coding->dst_object = Qnil;
8110 /* Most callers presume this will return a multibyte result, and they
8111 won't use `binary' or `raw-text' anyway, so let's not worry about
8112 CODING_FOR_UNIBYTE. */
8113 coding->dst_multibyte = 1;
8114 }
8115
8116 decode_coding (coding);
8117
8118 if (BUFFERP (coding->dst_object))
8119 set_buffer_internal (XBUFFER (coding->dst_object));
8120
8121 if (! NILP (CODING_ATTR_POST_READ (attrs)))
8122 {
8123 ptrdiff_t prev_Z = Z, prev_Z_BYTE = Z_BYTE;
8124 Lisp_Object val;
8125
8126 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
8127 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
8128 make_number (coding->produced_char));
8129 CHECK_NATNUM (val);
8130 coding->produced_char += Z - prev_Z;
8131 coding->produced += Z_BYTE - prev_Z_BYTE;
8132 }
8133
8134 if (EQ (dst_object, Qt))
8135 {
8136 coding->dst_object = Fbuffer_string ();
8137 }
8138 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
8139 {
8140 set_buffer_internal (XBUFFER (coding->dst_object));
8141 if (dst_bytes < coding->produced)
8142 {
8143 eassert (coding->produced > 0);
8144 destination = xrealloc (destination, coding->produced);
8145 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
8146 move_gap_both (BEGV, BEGV_BYTE);
8147 memcpy (destination, BEGV_ADDR, coding->produced);
8148 coding->destination = destination;
8149 }
8150 }
8151
8152 if (saved_pt >= 0)
8153 {
8154 /* This is the case of:
8155 (BUFFERP (src_object) && EQ (src_object, dst_object))
8156 As we have moved PT while replacing the original buffer
8157 contents, we must recover it now. */
8158 set_buffer_internal (XBUFFER (src_object));
8159 current_buffer->text->inhibit_shrinking = 0;
8160 if (saved_pt < from)
8161 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8162 else if (saved_pt < from + chars)
8163 TEMP_SET_PT_BOTH (from, from_byte);
8164 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
8165 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8166 saved_pt_byte + (coding->produced - bytes));
8167 else
8168 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8169 saved_pt_byte + (coding->produced - bytes));
8170
8171 if (need_marker_adjustment)
8172 {
8173 struct Lisp_Marker *tail;
8174
8175 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8176 if (tail->need_adjustment)
8177 {
8178 tail->need_adjustment = 0;
8179 if (tail->insertion_type)
8180 {
8181 tail->bytepos = from_byte;
8182 tail->charpos = from;
8183 }
8184 else
8185 {
8186 tail->bytepos = from_byte + coding->produced;
8187 tail->charpos
8188 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
8189 ? tail->bytepos : from + coding->produced_char);
8190 }
8191 }
8192 }
8193 }
8194
8195 Vdeactivate_mark = old_deactivate_mark;
8196 unbind_to (count, coding->dst_object);
8197 }
8198
8199
8200 void
8201 encode_coding_object (struct coding_system *coding,
8202 Lisp_Object src_object,
8203 ptrdiff_t from, ptrdiff_t from_byte,
8204 ptrdiff_t to, ptrdiff_t to_byte,
8205 Lisp_Object dst_object)
8206 {
8207 ptrdiff_t count = SPECPDL_INDEX ();
8208 ptrdiff_t chars = to - from;
8209 ptrdiff_t bytes = to_byte - from_byte;
8210 Lisp_Object attrs;
8211 ptrdiff_t saved_pt = -1, saved_pt_byte IF_LINT (= 0);
8212 bool need_marker_adjustment = 0;
8213 bool kill_src_buffer = 0;
8214 Lisp_Object old_deactivate_mark;
8215
8216 old_deactivate_mark = Vdeactivate_mark;
8217
8218 coding->src_object = src_object;
8219 coding->src_chars = chars;
8220 coding->src_bytes = bytes;
8221 coding->src_multibyte = chars < bytes;
8222
8223 attrs = CODING_ID_ATTRS (coding->id);
8224
8225 if (EQ (src_object, dst_object))
8226 {
8227 struct Lisp_Marker *tail;
8228
8229 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8230 {
8231 tail->need_adjustment
8232 = tail->charpos == (tail->insertion_type ? from : to);
8233 need_marker_adjustment |= tail->need_adjustment;
8234 }
8235 }
8236
8237 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
8238 {
8239 coding->src_object = code_conversion_save (1, coding->src_multibyte);
8240 set_buffer_internal (XBUFFER (coding->src_object));
8241 if (STRINGP (src_object))
8242 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
8243 else if (BUFFERP (src_object))
8244 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
8245 else
8246 insert_1_both ((char *) coding->source + from, chars, bytes, 0, 0, 0);
8247
8248 if (EQ (src_object, dst_object))
8249 {
8250 set_buffer_internal (XBUFFER (src_object));
8251 saved_pt = PT, saved_pt_byte = PT_BYTE;
8252 del_range_both (from, from_byte, to, to_byte, 1);
8253 set_buffer_internal (XBUFFER (coding->src_object));
8254 }
8255
8256 safe_call2 (CODING_ATTR_PRE_WRITE (attrs),
8257 make_number (BEG), make_number (Z));
8258 if (XBUFFER (coding->src_object) != current_buffer)
8259 kill_src_buffer = 1;
8260 coding->src_object = Fcurrent_buffer ();
8261 if (BEG != GPT)
8262 move_gap_both (BEG, BEG_BYTE);
8263 coding->src_chars = Z - BEG;
8264 coding->src_bytes = Z_BYTE - BEG_BYTE;
8265 coding->src_pos = BEG;
8266 coding->src_pos_byte = BEG_BYTE;
8267 coding->src_multibyte = Z < Z_BYTE;
8268 }
8269 else if (STRINGP (src_object))
8270 {
8271 code_conversion_save (0, 0);
8272 coding->src_pos = from;
8273 coding->src_pos_byte = from_byte;
8274 }
8275 else if (BUFFERP (src_object))
8276 {
8277 code_conversion_save (0, 0);
8278 set_buffer_internal (XBUFFER (src_object));
8279 if (EQ (src_object, dst_object))
8280 {
8281 saved_pt = PT, saved_pt_byte = PT_BYTE;
8282 coding->src_object = del_range_1 (from, to, 1, 1);
8283 coding->src_pos = 0;
8284 coding->src_pos_byte = 0;
8285 }
8286 else
8287 {
8288 if (from < GPT && to >= GPT)
8289 move_gap_both (from, from_byte);
8290 coding->src_pos = from;
8291 coding->src_pos_byte = from_byte;
8292 }
8293 }
8294 else
8295 {
8296 code_conversion_save (0, 0);
8297 coding->src_pos = from;
8298 coding->src_pos_byte = from_byte;
8299 }
8300
8301 if (BUFFERP (dst_object))
8302 {
8303 coding->dst_object = dst_object;
8304 if (EQ (src_object, dst_object))
8305 {
8306 coding->dst_pos = from;
8307 coding->dst_pos_byte = from_byte;
8308 }
8309 else
8310 {
8311 struct buffer *current = current_buffer;
8312
8313 set_buffer_temp (XBUFFER (dst_object));
8314 coding->dst_pos = PT;
8315 coding->dst_pos_byte = PT_BYTE;
8316 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
8317 set_buffer_temp (current);
8318 }
8319 coding->dst_multibyte
8320 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
8321 }
8322 else if (EQ (dst_object, Qt))
8323 {
8324 ptrdiff_t dst_bytes = max (1, coding->src_chars);
8325 coding->dst_object = Qnil;
8326 coding->destination = xmalloc (dst_bytes);
8327 coding->dst_bytes = dst_bytes;
8328 coding->dst_multibyte = 0;
8329 }
8330 else
8331 {
8332 coding->dst_object = Qnil;
8333 coding->dst_multibyte = 0;
8334 }
8335
8336 encode_coding (coding);
8337
8338 if (EQ (dst_object, Qt))
8339 {
8340 if (BUFFERP (coding->dst_object))
8341 coding->dst_object = Fbuffer_string ();
8342 else if (coding->raw_destination)
8343 /* This is used to avoid creating huge Lisp string.
8344 NOTE: caller who sets `raw_destination' is also
8345 responsible for freeing `destination' buffer. */
8346 coding->dst_object = Qnil;
8347 else
8348 {
8349 coding->dst_object
8350 = make_unibyte_string ((char *) coding->destination,
8351 coding->produced);
8352 xfree (coding->destination);
8353 }
8354 }
8355
8356 if (saved_pt >= 0)
8357 {
8358 /* This is the case of:
8359 (BUFFERP (src_object) && EQ (src_object, dst_object))
8360 As we have moved PT while replacing the original buffer
8361 contents, we must recover it now. */
8362 set_buffer_internal (XBUFFER (src_object));
8363 if (saved_pt < from)
8364 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8365 else if (saved_pt < from + chars)
8366 TEMP_SET_PT_BOTH (from, from_byte);
8367 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
8368 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8369 saved_pt_byte + (coding->produced - bytes));
8370 else
8371 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8372 saved_pt_byte + (coding->produced - bytes));
8373
8374 if (need_marker_adjustment)
8375 {
8376 struct Lisp_Marker *tail;
8377
8378 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8379 if (tail->need_adjustment)
8380 {
8381 tail->need_adjustment = 0;
8382 if (tail->insertion_type)
8383 {
8384 tail->bytepos = from_byte;
8385 tail->charpos = from;
8386 }
8387 else
8388 {
8389 tail->bytepos = from_byte + coding->produced;
8390 tail->charpos
8391 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
8392 ? tail->bytepos : from + coding->produced_char);
8393 }
8394 }
8395 }
8396 }
8397
8398 if (kill_src_buffer)
8399 Fkill_buffer (coding->src_object);
8400
8401 Vdeactivate_mark = old_deactivate_mark;
8402 unbind_to (count, Qnil);
8403 }
8404
8405
8406 Lisp_Object
8407 preferred_coding_system (void)
8408 {
8409 int id = coding_categories[coding_priorities[0]].id;
8410
8411 return CODING_ID_NAME (id);
8412 }
8413
8414 #if defined (WINDOWSNT) || defined (CYGWIN)
8415
8416 Lisp_Object
8417 from_unicode (Lisp_Object str)
8418 {
8419 CHECK_STRING (str);
8420 if (!STRING_MULTIBYTE (str) &&
8421 SBYTES (str) & 1)
8422 {
8423 str = Fsubstring (str, make_number (0), make_number (-1));
8424 }
8425
8426 return code_convert_string_norecord (str, Qutf_16le, 0);
8427 }
8428
8429 Lisp_Object
8430 from_unicode_buffer (const wchar_t *wstr)
8431 {
8432 return from_unicode (
8433 make_unibyte_string (
8434 (char *) wstr,
8435 /* we get one of the two final 0 bytes for free. */
8436 1 + sizeof (wchar_t) * wcslen (wstr)));
8437 }
8438
8439 wchar_t *
8440 to_unicode (Lisp_Object str, Lisp_Object *buf)
8441 {
8442 *buf = code_convert_string_norecord (str, Qutf_16le, 1);
8443 /* We need to make another copy (in addition to the one made by
8444 code_convert_string_norecord) to ensure that the final string is
8445 _doubly_ zero terminated --- that is, that the string is
8446 terminated by two zero bytes and one utf-16le null character.
8447 Because strings are already terminated with a single zero byte,
8448 we just add one additional zero. */
8449 str = make_uninit_string (SBYTES (*buf) + 1);
8450 memcpy (SDATA (str), SDATA (*buf), SBYTES (*buf));
8451 SDATA (str) [SBYTES (*buf)] = '\0';
8452 *buf = str;
8453 return WCSDATA (*buf);
8454 }
8455
8456 #endif /* WINDOWSNT || CYGWIN */
8457
8458 \f
8459 #ifdef emacs
8460 /*** 8. Emacs Lisp library functions ***/
8461
8462 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8463 doc: /* Return t if OBJECT is nil or a coding-system.
8464 See the documentation of `define-coding-system' for information
8465 about coding-system objects. */)
8466 (Lisp_Object object)
8467 {
8468 if (NILP (object)
8469 || CODING_SYSTEM_ID (object) >= 0)
8470 return Qt;
8471 if (! SYMBOLP (object)
8472 || NILP (Fget (object, Qcoding_system_define_form)))
8473 return Qnil;
8474 return Qt;
8475 }
8476
8477 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8478 Sread_non_nil_coding_system, 1, 1, 0,
8479 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8480 (Lisp_Object prompt)
8481 {
8482 Lisp_Object val;
8483 do
8484 {
8485 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8486 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8487 }
8488 while (SCHARS (val) == 0);
8489 return (Fintern (val, Qnil));
8490 }
8491
8492 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8493 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8494 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8495 Ignores case when completing coding systems (all Emacs coding systems
8496 are lower-case). */)
8497 (Lisp_Object prompt, Lisp_Object default_coding_system)
8498 {
8499 Lisp_Object val;
8500 ptrdiff_t count = SPECPDL_INDEX ();
8501
8502 if (SYMBOLP (default_coding_system))
8503 default_coding_system = SYMBOL_NAME (default_coding_system);
8504 specbind (Qcompletion_ignore_case, Qt);
8505 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8506 Qt, Qnil, Qcoding_system_history,
8507 default_coding_system, Qnil);
8508 unbind_to (count, Qnil);
8509 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8510 }
8511
8512 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8513 1, 1, 0,
8514 doc: /* Check validity of CODING-SYSTEM.
8515 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8516 It is valid if it is nil or a symbol defined as a coding system by the
8517 function `define-coding-system'. */)
8518 (Lisp_Object coding_system)
8519 {
8520 Lisp_Object define_form;
8521
8522 define_form = Fget (coding_system, Qcoding_system_define_form);
8523 if (! NILP (define_form))
8524 {
8525 Fput (coding_system, Qcoding_system_define_form, Qnil);
8526 safe_eval (define_form);
8527 }
8528 if (!NILP (Fcoding_system_p (coding_system)))
8529 return coding_system;
8530 xsignal1 (Qcoding_system_error, coding_system);
8531 }
8532
8533 \f
8534 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8535 HIGHEST, return the coding system of the highest
8536 priority among the detected coding systems. Otherwise return a
8537 list of detected coding systems sorted by their priorities. If
8538 MULTIBYTEP, it is assumed that the bytes are in correct
8539 multibyte form but contains only ASCII and eight-bit chars.
8540 Otherwise, the bytes are raw bytes.
8541
8542 CODING-SYSTEM controls the detection as below:
8543
8544 If it is nil, detect both text-format and eol-format. If the
8545 text-format part of CODING-SYSTEM is already specified
8546 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8547 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8548 detect only text-format. */
8549
8550 Lisp_Object
8551 detect_coding_system (const unsigned char *src,
8552 ptrdiff_t src_chars, ptrdiff_t src_bytes,
8553 bool highest, bool multibytep,
8554 Lisp_Object coding_system)
8555 {
8556 const unsigned char *src_end = src + src_bytes;
8557 Lisp_Object attrs, eol_type;
8558 Lisp_Object val = Qnil;
8559 struct coding_system coding;
8560 ptrdiff_t id;
8561 struct coding_detection_info detect_info;
8562 enum coding_category base_category;
8563 bool null_byte_found = 0, eight_bit_found = 0;
8564
8565 if (NILP (coding_system))
8566 coding_system = Qundecided;
8567 setup_coding_system (coding_system, &coding);
8568 attrs = CODING_ID_ATTRS (coding.id);
8569 eol_type = CODING_ID_EOL_TYPE (coding.id);
8570 coding_system = CODING_ATTR_BASE_NAME (attrs);
8571
8572 coding.source = src;
8573 coding.src_chars = src_chars;
8574 coding.src_bytes = src_bytes;
8575 coding.src_multibyte = multibytep;
8576 coding.consumed = 0;
8577 coding.mode |= CODING_MODE_LAST_BLOCK;
8578 coding.head_ascii = 0;
8579
8580 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8581
8582 /* At first, detect text-format if necessary. */
8583 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8584 if (base_category == coding_category_undecided)
8585 {
8586 enum coding_category category IF_LINT (= 0);
8587 struct coding_system *this IF_LINT (= NULL);
8588 int c, i;
8589 bool inhibit_nbd = inhibit_flag (coding.spec.undecided.inhibit_nbd,
8590 inhibit_null_byte_detection);
8591 bool inhibit_ied = inhibit_flag (coding.spec.undecided.inhibit_ied,
8592 inhibit_iso_escape_detection);
8593 bool prefer_utf_8 = coding.spec.undecided.prefer_utf_8;
8594
8595 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8596 for (; src < src_end; src++)
8597 {
8598 c = *src;
8599 if (c & 0x80)
8600 {
8601 eight_bit_found = 1;
8602 if (null_byte_found)
8603 break;
8604 }
8605 else if (c < 0x20)
8606 {
8607 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8608 && ! inhibit_ied
8609 && ! detect_info.checked)
8610 {
8611 if (detect_coding_iso_2022 (&coding, &detect_info))
8612 {
8613 /* We have scanned the whole data. */
8614 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8615 {
8616 /* We didn't find an 8-bit code. We may
8617 have found a null-byte, but it's very
8618 rare that a binary file confirm to
8619 ISO-2022. */
8620 src = src_end;
8621 coding.head_ascii = src - coding.source;
8622 }
8623 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8624 break;
8625 }
8626 }
8627 else if (! c && !inhibit_nbd)
8628 {
8629 null_byte_found = 1;
8630 if (eight_bit_found)
8631 break;
8632 }
8633 if (! eight_bit_found)
8634 coding.head_ascii++;
8635 }
8636 else if (! eight_bit_found)
8637 coding.head_ascii++;
8638 }
8639
8640 if (null_byte_found || eight_bit_found
8641 || coding.head_ascii < coding.src_bytes
8642 || detect_info.found)
8643 {
8644 if (coding.head_ascii == coding.src_bytes)
8645 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8646 for (i = 0; i < coding_category_raw_text; i++)
8647 {
8648 category = coding_priorities[i];
8649 this = coding_categories + category;
8650 if (detect_info.found & (1 << category))
8651 break;
8652 }
8653 else
8654 {
8655 if (null_byte_found)
8656 {
8657 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8658 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8659 }
8660 else if (prefer_utf_8
8661 && detect_coding_utf_8 (&coding, &detect_info))
8662 {
8663 detect_info.checked |= ~CATEGORY_MASK_UTF_8;
8664 detect_info.rejected |= ~CATEGORY_MASK_UTF_8;
8665 }
8666 for (i = 0; i < coding_category_raw_text; i++)
8667 {
8668 category = coding_priorities[i];
8669 this = coding_categories + category;
8670
8671 if (this->id < 0)
8672 {
8673 /* No coding system of this category is defined. */
8674 detect_info.rejected |= (1 << category);
8675 }
8676 else if (category >= coding_category_raw_text)
8677 continue;
8678 else if (detect_info.checked & (1 << category))
8679 {
8680 if (highest
8681 && (detect_info.found & (1 << category)))
8682 break;
8683 }
8684 else if ((*(this->detector)) (&coding, &detect_info)
8685 && highest
8686 && (detect_info.found & (1 << category)))
8687 {
8688 if (category == coding_category_utf_16_auto)
8689 {
8690 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8691 category = coding_category_utf_16_le;
8692 else
8693 category = coding_category_utf_16_be;
8694 }
8695 break;
8696 }
8697 }
8698 }
8699 }
8700
8701 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8702 || null_byte_found)
8703 {
8704 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8705 id = CODING_SYSTEM_ID (Qno_conversion);
8706 val = list1 (make_number (id));
8707 }
8708 else if (! detect_info.rejected && ! detect_info.found)
8709 {
8710 detect_info.found = CATEGORY_MASK_ANY;
8711 id = coding_categories[coding_category_undecided].id;
8712 val = list1 (make_number (id));
8713 }
8714 else if (highest)
8715 {
8716 if (detect_info.found)
8717 {
8718 detect_info.found = 1 << category;
8719 val = list1 (make_number (this->id));
8720 }
8721 else
8722 for (i = 0; i < coding_category_raw_text; i++)
8723 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8724 {
8725 detect_info.found = 1 << coding_priorities[i];
8726 id = coding_categories[coding_priorities[i]].id;
8727 val = list1 (make_number (id));
8728 break;
8729 }
8730 }
8731 else
8732 {
8733 int mask = detect_info.rejected | detect_info.found;
8734 int found = 0;
8735
8736 for (i = coding_category_raw_text - 1; i >= 0; i--)
8737 {
8738 category = coding_priorities[i];
8739 if (! (mask & (1 << category)))
8740 {
8741 found |= 1 << category;
8742 id = coding_categories[category].id;
8743 if (id >= 0)
8744 val = list1 (make_number (id));
8745 }
8746 }
8747 for (i = coding_category_raw_text - 1; i >= 0; i--)
8748 {
8749 category = coding_priorities[i];
8750 if (detect_info.found & (1 << category))
8751 {
8752 id = coding_categories[category].id;
8753 val = Fcons (make_number (id), val);
8754 }
8755 }
8756 detect_info.found |= found;
8757 }
8758 }
8759 else if (base_category == coding_category_utf_8_auto)
8760 {
8761 if (detect_coding_utf_8 (&coding, &detect_info))
8762 {
8763 struct coding_system *this;
8764
8765 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8766 this = coding_categories + coding_category_utf_8_sig;
8767 else
8768 this = coding_categories + coding_category_utf_8_nosig;
8769 val = list1 (make_number (this->id));
8770 }
8771 }
8772 else if (base_category == coding_category_utf_16_auto)
8773 {
8774 if (detect_coding_utf_16 (&coding, &detect_info))
8775 {
8776 struct coding_system *this;
8777
8778 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8779 this = coding_categories + coding_category_utf_16_le;
8780 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8781 this = coding_categories + coding_category_utf_16_be;
8782 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8783 this = coding_categories + coding_category_utf_16_be_nosig;
8784 else
8785 this = coding_categories + coding_category_utf_16_le_nosig;
8786 val = list1 (make_number (this->id));
8787 }
8788 }
8789 else
8790 {
8791 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8792 val = list1 (make_number (coding.id));
8793 }
8794
8795 /* Then, detect eol-format if necessary. */
8796 {
8797 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8798 Lisp_Object tail;
8799
8800 if (VECTORP (eol_type))
8801 {
8802 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8803 {
8804 if (null_byte_found)
8805 normal_eol = EOL_SEEN_LF;
8806 else
8807 normal_eol = detect_eol (coding.source, src_bytes,
8808 coding_category_raw_text);
8809 }
8810 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8811 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8812 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8813 coding_category_utf_16_be);
8814 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8815 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8816 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8817 coding_category_utf_16_le);
8818 }
8819 else
8820 {
8821 if (EQ (eol_type, Qunix))
8822 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8823 else if (EQ (eol_type, Qdos))
8824 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8825 else
8826 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8827 }
8828
8829 for (tail = val; CONSP (tail); tail = XCDR (tail))
8830 {
8831 enum coding_category category;
8832 int this_eol;
8833
8834 id = XINT (XCAR (tail));
8835 attrs = CODING_ID_ATTRS (id);
8836 category = XINT (CODING_ATTR_CATEGORY (attrs));
8837 eol_type = CODING_ID_EOL_TYPE (id);
8838 if (VECTORP (eol_type))
8839 {
8840 if (category == coding_category_utf_16_be
8841 || category == coding_category_utf_16_be_nosig)
8842 this_eol = utf_16_be_eol;
8843 else if (category == coding_category_utf_16_le
8844 || category == coding_category_utf_16_le_nosig)
8845 this_eol = utf_16_le_eol;
8846 else
8847 this_eol = normal_eol;
8848
8849 if (this_eol == EOL_SEEN_LF)
8850 XSETCAR (tail, AREF (eol_type, 0));
8851 else if (this_eol == EOL_SEEN_CRLF)
8852 XSETCAR (tail, AREF (eol_type, 1));
8853 else if (this_eol == EOL_SEEN_CR)
8854 XSETCAR (tail, AREF (eol_type, 2));
8855 else
8856 XSETCAR (tail, CODING_ID_NAME (id));
8857 }
8858 else
8859 XSETCAR (tail, CODING_ID_NAME (id));
8860 }
8861 }
8862
8863 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8864 }
8865
8866
8867 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8868 2, 3, 0,
8869 doc: /* Detect coding system of the text in the region between START and END.
8870 Return a list of possible coding systems ordered by priority.
8871 The coding systems to try and their priorities follows what
8872 the function `coding-system-priority-list' (which see) returns.
8873
8874 If only ASCII characters are found (except for such ISO-2022 control
8875 characters as ESC), it returns a list of single element `undecided'
8876 or its subsidiary coding system according to a detected end-of-line
8877 format.
8878
8879 If optional argument HIGHEST is non-nil, return the coding system of
8880 highest priority. */)
8881 (Lisp_Object start, Lisp_Object end, Lisp_Object highest)
8882 {
8883 ptrdiff_t from, to;
8884 ptrdiff_t from_byte, to_byte;
8885
8886 validate_region (&start, &end);
8887 from = XINT (start), to = XINT (end);
8888 from_byte = CHAR_TO_BYTE (from);
8889 to_byte = CHAR_TO_BYTE (to);
8890
8891 if (from < GPT && to >= GPT)
8892 move_gap_both (to, to_byte);
8893
8894 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8895 to - from, to_byte - from_byte,
8896 !NILP (highest),
8897 !NILP (BVAR (current_buffer
8898 , enable_multibyte_characters)),
8899 Qnil);
8900 }
8901
8902 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8903 1, 2, 0,
8904 doc: /* Detect coding system of the text in STRING.
8905 Return a list of possible coding systems ordered by priority.
8906 The coding systems to try and their priorities follows what
8907 the function `coding-system-priority-list' (which see) returns.
8908
8909 If only ASCII characters are found (except for such ISO-2022 control
8910 characters as ESC), it returns a list of single element `undecided'
8911 or its subsidiary coding system according to a detected end-of-line
8912 format.
8913
8914 If optional argument HIGHEST is non-nil, return the coding system of
8915 highest priority. */)
8916 (Lisp_Object string, Lisp_Object highest)
8917 {
8918 CHECK_STRING (string);
8919
8920 return detect_coding_system (SDATA (string),
8921 SCHARS (string), SBYTES (string),
8922 !NILP (highest), STRING_MULTIBYTE (string),
8923 Qnil);
8924 }
8925
8926
8927 static bool
8928 char_encodable_p (int c, Lisp_Object attrs)
8929 {
8930 Lisp_Object tail;
8931 struct charset *charset;
8932 Lisp_Object translation_table;
8933
8934 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8935 if (! NILP (translation_table))
8936 c = translate_char (translation_table, c);
8937 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8938 CONSP (tail); tail = XCDR (tail))
8939 {
8940 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8941 if (CHAR_CHARSET_P (c, charset))
8942 break;
8943 }
8944 return (! NILP (tail));
8945 }
8946
8947
8948 /* Return a list of coding systems that safely encode the text between
8949 START and END. If EXCLUDE is non-nil, it is a list of coding
8950 systems not to check. The returned list doesn't contain any such
8951 coding systems. In any case, if the text contains only ASCII or is
8952 unibyte, return t. */
8953
8954 DEFUN ("find-coding-systems-region-internal",
8955 Ffind_coding_systems_region_internal,
8956 Sfind_coding_systems_region_internal, 2, 3, 0,
8957 doc: /* Internal use only. */)
8958 (Lisp_Object start, Lisp_Object end, Lisp_Object exclude)
8959 {
8960 Lisp_Object coding_attrs_list, safe_codings;
8961 ptrdiff_t start_byte, end_byte;
8962 const unsigned char *p, *pbeg, *pend;
8963 int c;
8964 Lisp_Object tail, elt, work_table;
8965
8966 if (STRINGP (start))
8967 {
8968 if (!STRING_MULTIBYTE (start)
8969 || SCHARS (start) == SBYTES (start))
8970 return Qt;
8971 start_byte = 0;
8972 end_byte = SBYTES (start);
8973 }
8974 else
8975 {
8976 CHECK_NUMBER_COERCE_MARKER (start);
8977 CHECK_NUMBER_COERCE_MARKER (end);
8978 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8979 args_out_of_range (start, end);
8980 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
8981 return Qt;
8982 start_byte = CHAR_TO_BYTE (XINT (start));
8983 end_byte = CHAR_TO_BYTE (XINT (end));
8984 if (XINT (end) - XINT (start) == end_byte - start_byte)
8985 return Qt;
8986
8987 if (XINT (start) < GPT && XINT (end) > GPT)
8988 {
8989 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8990 move_gap_both (XINT (start), start_byte);
8991 else
8992 move_gap_both (XINT (end), end_byte);
8993 }
8994 }
8995
8996 coding_attrs_list = Qnil;
8997 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8998 if (NILP (exclude)
8999 || NILP (Fmemq (XCAR (tail), exclude)))
9000 {
9001 Lisp_Object attrs;
9002
9003 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
9004 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs)))
9005 {
9006 ASET (attrs, coding_attr_trans_tbl,
9007 get_translation_table (attrs, 1, NULL));
9008 coding_attrs_list = Fcons (attrs, coding_attrs_list);
9009 }
9010 }
9011
9012 if (STRINGP (start))
9013 p = pbeg = SDATA (start);
9014 else
9015 p = pbeg = BYTE_POS_ADDR (start_byte);
9016 pend = p + (end_byte - start_byte);
9017
9018 while (p < pend && ASCII_CHAR_P (*p)) p++;
9019 while (p < pend && ASCII_CHAR_P (*(pend - 1))) pend--;
9020
9021 work_table = Fmake_char_table (Qnil, Qnil);
9022 while (p < pend)
9023 {
9024 if (ASCII_CHAR_P (*p))
9025 p++;
9026 else
9027 {
9028 c = STRING_CHAR_ADVANCE (p);
9029 if (!NILP (char_table_ref (work_table, c)))
9030 /* This character was already checked. Ignore it. */
9031 continue;
9032
9033 charset_map_loaded = 0;
9034 for (tail = coding_attrs_list; CONSP (tail);)
9035 {
9036 elt = XCAR (tail);
9037 if (NILP (elt))
9038 tail = XCDR (tail);
9039 else if (char_encodable_p (c, elt))
9040 tail = XCDR (tail);
9041 else if (CONSP (XCDR (tail)))
9042 {
9043 XSETCAR (tail, XCAR (XCDR (tail)));
9044 XSETCDR (tail, XCDR (XCDR (tail)));
9045 }
9046 else
9047 {
9048 XSETCAR (tail, Qnil);
9049 tail = XCDR (tail);
9050 }
9051 }
9052 if (charset_map_loaded)
9053 {
9054 ptrdiff_t p_offset = p - pbeg, pend_offset = pend - pbeg;
9055
9056 if (STRINGP (start))
9057 pbeg = SDATA (start);
9058 else
9059 pbeg = BYTE_POS_ADDR (start_byte);
9060 p = pbeg + p_offset;
9061 pend = pbeg + pend_offset;
9062 }
9063 char_table_set (work_table, c, Qt);
9064 }
9065 }
9066
9067 safe_codings = list2 (Qraw_text, Qno_conversion);
9068 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
9069 if (! NILP (XCAR (tail)))
9070 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
9071
9072 return safe_codings;
9073 }
9074
9075
9076 DEFUN ("unencodable-char-position", Funencodable_char_position,
9077 Sunencodable_char_position, 3, 5, 0,
9078 doc: /* Return position of first un-encodable character in a region.
9079 START and END specify the region and CODING-SYSTEM specifies the
9080 encoding to check. Return nil if CODING-SYSTEM does encode the region.
9081
9082 If optional 4th argument COUNT is non-nil, it specifies at most how
9083 many un-encodable characters to search. In this case, the value is a
9084 list of positions.
9085
9086 If optional 5th argument STRING is non-nil, it is a string to search
9087 for un-encodable characters. In that case, START and END are indexes
9088 to the string and treated as in `substring'. */)
9089 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system,
9090 Lisp_Object count, Lisp_Object string)
9091 {
9092 EMACS_INT n;
9093 struct coding_system coding;
9094 Lisp_Object attrs, charset_list, translation_table;
9095 Lisp_Object positions;
9096 ptrdiff_t from, to;
9097 const unsigned char *p, *stop, *pend;
9098 bool ascii_compatible;
9099
9100 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
9101 attrs = CODING_ID_ATTRS (coding.id);
9102 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
9103 return Qnil;
9104 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
9105 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9106 translation_table = get_translation_table (attrs, 1, NULL);
9107
9108 if (NILP (string))
9109 {
9110 validate_region (&start, &end);
9111 from = XINT (start);
9112 to = XINT (end);
9113 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
9114 || (ascii_compatible
9115 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
9116 return Qnil;
9117 p = CHAR_POS_ADDR (from);
9118 pend = CHAR_POS_ADDR (to);
9119 if (from < GPT && to >= GPT)
9120 stop = GPT_ADDR;
9121 else
9122 stop = pend;
9123 }
9124 else
9125 {
9126 CHECK_STRING (string);
9127 validate_subarray (string, start, end, SCHARS (string), &from, &to);
9128 if (! STRING_MULTIBYTE (string))
9129 return Qnil;
9130 p = SDATA (string) + string_char_to_byte (string, from);
9131 stop = pend = SDATA (string) + string_char_to_byte (string, to);
9132 if (ascii_compatible && (to - from) == (pend - p))
9133 return Qnil;
9134 }
9135
9136 if (NILP (count))
9137 n = 1;
9138 else
9139 {
9140 CHECK_NATNUM (count);
9141 n = XINT (count);
9142 }
9143
9144 positions = Qnil;
9145 charset_map_loaded = 0;
9146 while (1)
9147 {
9148 int c;
9149
9150 if (ascii_compatible)
9151 while (p < stop && ASCII_CHAR_P (*p))
9152 p++, from++;
9153 if (p >= stop)
9154 {
9155 if (p >= pend)
9156 break;
9157 stop = pend;
9158 p = GAP_END_ADDR;
9159 }
9160
9161 c = STRING_CHAR_ADVANCE (p);
9162 if (! (ASCII_CHAR_P (c) && ascii_compatible)
9163 && ! char_charset (translate_char (translation_table, c),
9164 charset_list, NULL))
9165 {
9166 positions = Fcons (make_number (from), positions);
9167 n--;
9168 if (n == 0)
9169 break;
9170 }
9171
9172 from++;
9173 if (charset_map_loaded && NILP (string))
9174 {
9175 p = CHAR_POS_ADDR (from);
9176 pend = CHAR_POS_ADDR (to);
9177 if (from < GPT && to >= GPT)
9178 stop = GPT_ADDR;
9179 else
9180 stop = pend;
9181 charset_map_loaded = 0;
9182 }
9183 }
9184
9185 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
9186 }
9187
9188
9189 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
9190 Scheck_coding_systems_region, 3, 3, 0,
9191 doc: /* Check if the region is encodable by coding systems.
9192
9193 START and END are buffer positions specifying the region.
9194 CODING-SYSTEM-LIST is a list of coding systems to check.
9195
9196 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
9197 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
9198 whole region, POS0, POS1, ... are buffer positions where non-encodable
9199 characters are found.
9200
9201 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
9202 value is nil.
9203
9204 START may be a string. In that case, check if the string is
9205 encodable, and the value contains indices to the string instead of
9206 buffer positions. END is ignored.
9207
9208 If the current buffer (or START if it is a string) is unibyte, the value
9209 is nil. */)
9210 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system_list)
9211 {
9212 Lisp_Object list;
9213 ptrdiff_t start_byte, end_byte;
9214 ptrdiff_t pos;
9215 const unsigned char *p, *pbeg, *pend;
9216 int c;
9217 Lisp_Object tail, elt, attrs;
9218
9219 if (STRINGP (start))
9220 {
9221 if (!STRING_MULTIBYTE (start)
9222 || SCHARS (start) == SBYTES (start))
9223 return Qnil;
9224 start_byte = 0;
9225 end_byte = SBYTES (start);
9226 pos = 0;
9227 }
9228 else
9229 {
9230 CHECK_NUMBER_COERCE_MARKER (start);
9231 CHECK_NUMBER_COERCE_MARKER (end);
9232 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
9233 args_out_of_range (start, end);
9234 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
9235 return Qnil;
9236 start_byte = CHAR_TO_BYTE (XINT (start));
9237 end_byte = CHAR_TO_BYTE (XINT (end));
9238 if (XINT (end) - XINT (start) == end_byte - start_byte)
9239 return Qnil;
9240
9241 if (XINT (start) < GPT && XINT (end) > GPT)
9242 {
9243 if ((GPT - XINT (start)) < (XINT (end) - GPT))
9244 move_gap_both (XINT (start), start_byte);
9245 else
9246 move_gap_both (XINT (end), end_byte);
9247 }
9248 pos = XINT (start);
9249 }
9250
9251 list = Qnil;
9252 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
9253 {
9254 elt = XCAR (tail);
9255 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
9256 ASET (attrs, coding_attr_trans_tbl,
9257 get_translation_table (attrs, 1, NULL));
9258 list = Fcons (list2 (elt, attrs), list);
9259 }
9260
9261 if (STRINGP (start))
9262 p = pbeg = SDATA (start);
9263 else
9264 p = pbeg = BYTE_POS_ADDR (start_byte);
9265 pend = p + (end_byte - start_byte);
9266
9267 while (p < pend && ASCII_CHAR_P (*p)) p++, pos++;
9268 while (p < pend && ASCII_CHAR_P (*(pend - 1))) pend--;
9269
9270 while (p < pend)
9271 {
9272 if (ASCII_CHAR_P (*p))
9273 p++;
9274 else
9275 {
9276 c = STRING_CHAR_ADVANCE (p);
9277
9278 charset_map_loaded = 0;
9279 for (tail = list; CONSP (tail); tail = XCDR (tail))
9280 {
9281 elt = XCDR (XCAR (tail));
9282 if (! char_encodable_p (c, XCAR (elt)))
9283 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
9284 }
9285 if (charset_map_loaded)
9286 {
9287 ptrdiff_t p_offset = p - pbeg, pend_offset = pend - pbeg;
9288
9289 if (STRINGP (start))
9290 pbeg = SDATA (start);
9291 else
9292 pbeg = BYTE_POS_ADDR (start_byte);
9293 p = pbeg + p_offset;
9294 pend = pbeg + pend_offset;
9295 }
9296 }
9297 pos++;
9298 }
9299
9300 tail = list;
9301 list = Qnil;
9302 for (; CONSP (tail); tail = XCDR (tail))
9303 {
9304 elt = XCAR (tail);
9305 if (CONSP (XCDR (XCDR (elt))))
9306 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
9307 list);
9308 }
9309
9310 return list;
9311 }
9312
9313
9314 static Lisp_Object
9315 code_convert_region (Lisp_Object start, Lisp_Object end,
9316 Lisp_Object coding_system, Lisp_Object dst_object,
9317 bool encodep, bool norecord)
9318 {
9319 struct coding_system coding;
9320 ptrdiff_t from, from_byte, to, to_byte;
9321 Lisp_Object src_object;
9322
9323 if (NILP (coding_system))
9324 coding_system = Qno_conversion;
9325 else
9326 CHECK_CODING_SYSTEM (coding_system);
9327 src_object = Fcurrent_buffer ();
9328 if (NILP (dst_object))
9329 dst_object = src_object;
9330 else if (! EQ (dst_object, Qt))
9331 CHECK_BUFFER (dst_object);
9332
9333 validate_region (&start, &end);
9334 from = XFASTINT (start);
9335 from_byte = CHAR_TO_BYTE (from);
9336 to = XFASTINT (end);
9337 to_byte = CHAR_TO_BYTE (to);
9338
9339 setup_coding_system (coding_system, &coding);
9340 coding.mode |= CODING_MODE_LAST_BLOCK;
9341
9342 if (BUFFERP (dst_object) && !EQ (dst_object, src_object))
9343 {
9344 struct buffer *buf = XBUFFER (dst_object);
9345 ptrdiff_t buf_pt = BUF_PT (buf);
9346
9347 invalidate_buffer_caches (buf, buf_pt, buf_pt);
9348 }
9349
9350 if (encodep)
9351 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9352 dst_object);
9353 else
9354 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9355 dst_object);
9356 if (! norecord)
9357 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9358
9359 return (BUFFERP (dst_object)
9360 ? make_number (coding.produced_char)
9361 : coding.dst_object);
9362 }
9363
9364
9365 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
9366 3, 4, "r\nzCoding system: ",
9367 doc: /* Decode the current region from the specified coding system.
9368 When called from a program, takes four arguments:
9369 START, END, CODING-SYSTEM, and DESTINATION.
9370 START and END are buffer positions.
9371
9372 Optional 4th arguments DESTINATION specifies where the decoded text goes.
9373 If nil, the region between START and END is replaced by the decoded text.
9374 If buffer, the decoded text is inserted in that buffer after point (point
9375 does not move).
9376 In those cases, the length of the decoded text is returned.
9377 If DESTINATION is t, the decoded text is returned.
9378
9379 This function sets `last-coding-system-used' to the precise coding system
9380 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9381 not fully specified.) */)
9382 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
9383 {
9384 return code_convert_region (start, end, coding_system, destination, 0, 0);
9385 }
9386
9387 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
9388 3, 4, "r\nzCoding system: ",
9389 doc: /* Encode the current region by specified coding system.
9390 When called from a program, takes four arguments:
9391 START, END, CODING-SYSTEM and DESTINATION.
9392 START and END are buffer positions.
9393
9394 Optional 4th arguments DESTINATION specifies where the encoded text goes.
9395 If nil, the region between START and END is replace by the encoded text.
9396 If buffer, the encoded text is inserted in that buffer after point (point
9397 does not move).
9398 In those cases, the length of the encoded text is returned.
9399 If DESTINATION is t, the encoded text is returned.
9400
9401 This function sets `last-coding-system-used' to the precise coding system
9402 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9403 not fully specified.) */)
9404 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
9405 {
9406 return code_convert_region (start, end, coding_system, destination, 1, 0);
9407 }
9408
9409 Lisp_Object
9410 code_convert_string (Lisp_Object string, Lisp_Object coding_system,
9411 Lisp_Object dst_object, bool encodep, bool nocopy,
9412 bool norecord)
9413 {
9414 struct coding_system coding;
9415 ptrdiff_t chars, bytes;
9416
9417 CHECK_STRING (string);
9418 if (NILP (coding_system))
9419 {
9420 if (! norecord)
9421 Vlast_coding_system_used = Qno_conversion;
9422 if (NILP (dst_object))
9423 return (nocopy ? Fcopy_sequence (string) : string);
9424 }
9425
9426 if (NILP (coding_system))
9427 coding_system = Qno_conversion;
9428 else
9429 CHECK_CODING_SYSTEM (coding_system);
9430 if (NILP (dst_object))
9431 dst_object = Qt;
9432 else if (! EQ (dst_object, Qt))
9433 CHECK_BUFFER (dst_object);
9434
9435 setup_coding_system (coding_system, &coding);
9436 coding.mode |= CODING_MODE_LAST_BLOCK;
9437 chars = SCHARS (string);
9438 bytes = SBYTES (string);
9439
9440 if (BUFFERP (dst_object))
9441 {
9442 struct buffer *buf = XBUFFER (dst_object);
9443 ptrdiff_t buf_pt = BUF_PT (buf);
9444
9445 invalidate_buffer_caches (buf, buf_pt, buf_pt);
9446 }
9447
9448 if (encodep)
9449 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9450 else
9451 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9452 if (! norecord)
9453 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9454
9455 return (BUFFERP (dst_object)
9456 ? make_number (coding.produced_char)
9457 : coding.dst_object);
9458 }
9459
9460
9461 /* Encode or decode STRING according to CODING_SYSTEM.
9462 Do not set Vlast_coding_system_used.
9463
9464 This function is called only from macros DECODE_FILE and
9465 ENCODE_FILE, thus we ignore character composition. */
9466
9467 Lisp_Object
9468 code_convert_string_norecord (Lisp_Object string, Lisp_Object coding_system,
9469 bool encodep)
9470 {
9471 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
9472 }
9473
9474 /* Encode or decode a file name, to or from a unibyte string suitable
9475 for passing to C library functions. */
9476 Lisp_Object
9477 decode_file_name (Lisp_Object fname)
9478 {
9479 #ifdef WINDOWSNT
9480 /* The w32 build pretends to use UTF-8 for file-name encoding, and
9481 converts the file names either to UTF-16LE or to the system ANSI
9482 codepage internally, depending on the underlying OS; see w32.c. */
9483 if (! NILP (Fcoding_system_p (Qutf_8)))
9484 return code_convert_string_norecord (fname, Qutf_8, 0);
9485 return fname;
9486 #else /* !WINDOWSNT */
9487 if (! NILP (Vfile_name_coding_system))
9488 return code_convert_string_norecord (fname, Vfile_name_coding_system, 0);
9489 else if (! NILP (Vdefault_file_name_coding_system))
9490 return code_convert_string_norecord (fname,
9491 Vdefault_file_name_coding_system, 0);
9492 else
9493 return fname;
9494 #endif
9495 }
9496
9497 Lisp_Object
9498 encode_file_name (Lisp_Object fname)
9499 {
9500 /* This is especially important during bootstrap and dumping, when
9501 file-name encoding is not yet known, and therefore any non-ASCII
9502 file names are unibyte strings, and could only be thrashed if we
9503 try to encode them. */
9504 if (!STRING_MULTIBYTE (fname))
9505 return fname;
9506 #ifdef WINDOWSNT
9507 /* The w32 build pretends to use UTF-8 for file-name encoding, and
9508 converts the file names either to UTF-16LE or to the system ANSI
9509 codepage internally, depending on the underlying OS; see w32.c. */
9510 if (! NILP (Fcoding_system_p (Qutf_8)))
9511 return code_convert_string_norecord (fname, Qutf_8, 1);
9512 return fname;
9513 #else /* !WINDOWSNT */
9514 if (! NILP (Vfile_name_coding_system))
9515 return code_convert_string_norecord (fname, Vfile_name_coding_system, 1);
9516 else if (! NILP (Vdefault_file_name_coding_system))
9517 return code_convert_string_norecord (fname,
9518 Vdefault_file_name_coding_system, 1);
9519 else
9520 return fname;
9521 #endif
9522 }
9523
9524 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9525 2, 4, 0,
9526 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9527
9528 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9529 if the decoding operation is trivial.
9530
9531 Optional fourth arg BUFFER non-nil means that the decoded text is
9532 inserted in that buffer after point (point does not move). In this
9533 case, the return value is the length of the decoded text.
9534
9535 This function sets `last-coding-system-used' to the precise coding system
9536 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9537 not fully specified.) */)
9538 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9539 {
9540 return code_convert_string (string, coding_system, buffer,
9541 0, ! NILP (nocopy), 0);
9542 }
9543
9544 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9545 2, 4, 0,
9546 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9547
9548 Optional third arg NOCOPY non-nil means it is OK to return STRING
9549 itself if the encoding operation is trivial.
9550
9551 Optional fourth arg BUFFER non-nil means that the encoded text is
9552 inserted in that buffer after point (point does not move). In this
9553 case, the return value is the length of the encoded text.
9554
9555 This function sets `last-coding-system-used' to the precise coding system
9556 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9557 not fully specified.) */)
9558 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9559 {
9560 return code_convert_string (string, coding_system, buffer,
9561 1, ! NILP (nocopy), 0);
9562 }
9563
9564 \f
9565 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9566 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9567 Return the corresponding character. */)
9568 (Lisp_Object code)
9569 {
9570 Lisp_Object spec, attrs, val;
9571 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9572 EMACS_INT ch;
9573 int c;
9574
9575 CHECK_NATNUM (code);
9576 ch = XFASTINT (code);
9577 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9578 attrs = AREF (spec, 0);
9579
9580 if (ASCII_CHAR_P (ch)
9581 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9582 return code;
9583
9584 val = CODING_ATTR_CHARSET_LIST (attrs);
9585 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9586 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9587 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9588
9589 if (ch <= 0x7F)
9590 {
9591 c = ch;
9592 charset = charset_roman;
9593 }
9594 else if (ch >= 0xA0 && ch < 0xDF)
9595 {
9596 c = ch - 0x80;
9597 charset = charset_kana;
9598 }
9599 else
9600 {
9601 EMACS_INT c1 = ch >> 8;
9602 int c2 = ch & 0xFF;
9603
9604 if (c1 < 0x81 || (c1 > 0x9F && c1 < 0xE0) || c1 > 0xEF
9605 || c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
9606 error ("Invalid code: %"pI"d", ch);
9607 c = ch;
9608 SJIS_TO_JIS (c);
9609 charset = charset_kanji;
9610 }
9611 c = DECODE_CHAR (charset, c);
9612 if (c < 0)
9613 error ("Invalid code: %"pI"d", ch);
9614 return make_number (c);
9615 }
9616
9617
9618 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9619 doc: /* Encode a Japanese character CH to shift_jis encoding.
9620 Return the corresponding code in SJIS. */)
9621 (Lisp_Object ch)
9622 {
9623 Lisp_Object spec, attrs, charset_list;
9624 int c;
9625 struct charset *charset;
9626 unsigned code;
9627
9628 CHECK_CHARACTER (ch);
9629 c = XFASTINT (ch);
9630 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9631 attrs = AREF (spec, 0);
9632
9633 if (ASCII_CHAR_P (c)
9634 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9635 return ch;
9636
9637 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9638 charset = char_charset (c, charset_list, &code);
9639 if (code == CHARSET_INVALID_CODE (charset))
9640 error ("Can't encode by shift_jis encoding: %c", c);
9641 JIS_TO_SJIS (code);
9642
9643 return make_number (code);
9644 }
9645
9646 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9647 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9648 Return the corresponding character. */)
9649 (Lisp_Object code)
9650 {
9651 Lisp_Object spec, attrs, val;
9652 struct charset *charset_roman, *charset_big5, *charset;
9653 EMACS_INT ch;
9654 int c;
9655
9656 CHECK_NATNUM (code);
9657 ch = XFASTINT (code);
9658 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9659 attrs = AREF (spec, 0);
9660
9661 if (ASCII_CHAR_P (ch)
9662 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9663 return code;
9664
9665 val = CODING_ATTR_CHARSET_LIST (attrs);
9666 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9667 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9668
9669 if (ch <= 0x7F)
9670 {
9671 c = ch;
9672 charset = charset_roman;
9673 }
9674 else
9675 {
9676 EMACS_INT b1 = ch >> 8;
9677 int b2 = ch & 0x7F;
9678 if (b1 < 0xA1 || b1 > 0xFE
9679 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9680 error ("Invalid code: %"pI"d", ch);
9681 c = ch;
9682 charset = charset_big5;
9683 }
9684 c = DECODE_CHAR (charset, c);
9685 if (c < 0)
9686 error ("Invalid code: %"pI"d", ch);
9687 return make_number (c);
9688 }
9689
9690 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9691 doc: /* Encode the Big5 character CH to BIG5 coding system.
9692 Return the corresponding character code in Big5. */)
9693 (Lisp_Object ch)
9694 {
9695 Lisp_Object spec, attrs, charset_list;
9696 struct charset *charset;
9697 int c;
9698 unsigned code;
9699
9700 CHECK_CHARACTER (ch);
9701 c = XFASTINT (ch);
9702 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9703 attrs = AREF (spec, 0);
9704 if (ASCII_CHAR_P (c)
9705 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9706 return ch;
9707
9708 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9709 charset = char_charset (c, charset_list, &code);
9710 if (code == CHARSET_INVALID_CODE (charset))
9711 error ("Can't encode by Big5 encoding: %c", c);
9712
9713 return make_number (code);
9714 }
9715
9716 \f
9717 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9718 Sset_terminal_coding_system_internal, 1, 2, 0,
9719 doc: /* Internal use only. */)
9720 (Lisp_Object coding_system, Lisp_Object terminal)
9721 {
9722 struct terminal *term = decode_live_terminal (terminal);
9723 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (term);
9724 CHECK_SYMBOL (coding_system);
9725 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9726 /* We had better not send unsafe characters to terminal. */
9727 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9728 /* Character composition should be disabled. */
9729 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9730 terminal_coding->src_multibyte = 1;
9731 terminal_coding->dst_multibyte = 0;
9732 tset_charset_list
9733 (term, (terminal_coding->common_flags & CODING_REQUIRE_ENCODING_MASK
9734 ? coding_charset_list (terminal_coding)
9735 : list1 (make_number (charset_ascii))));
9736 return Qnil;
9737 }
9738
9739 DEFUN ("set-safe-terminal-coding-system-internal",
9740 Fset_safe_terminal_coding_system_internal,
9741 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9742 doc: /* Internal use only. */)
9743 (Lisp_Object coding_system)
9744 {
9745 CHECK_SYMBOL (coding_system);
9746 setup_coding_system (Fcheck_coding_system (coding_system),
9747 &safe_terminal_coding);
9748 /* Character composition should be disabled. */
9749 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9750 safe_terminal_coding.src_multibyte = 1;
9751 safe_terminal_coding.dst_multibyte = 0;
9752 return Qnil;
9753 }
9754
9755 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9756 Sterminal_coding_system, 0, 1, 0,
9757 doc: /* Return coding system specified for terminal output on the given terminal.
9758 TERMINAL may be a terminal object, a frame, or nil for the selected
9759 frame's terminal device. */)
9760 (Lisp_Object terminal)
9761 {
9762 struct coding_system *terminal_coding
9763 = TERMINAL_TERMINAL_CODING (decode_live_terminal (terminal));
9764 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9765
9766 /* For backward compatibility, return nil if it is `undecided'. */
9767 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9768 }
9769
9770 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9771 Sset_keyboard_coding_system_internal, 1, 2, 0,
9772 doc: /* Internal use only. */)
9773 (Lisp_Object coding_system, Lisp_Object terminal)
9774 {
9775 struct terminal *t = decode_live_terminal (terminal);
9776 CHECK_SYMBOL (coding_system);
9777 if (NILP (coding_system))
9778 coding_system = Qno_conversion;
9779 else
9780 Fcheck_coding_system (coding_system);
9781 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9782 /* Character composition should be disabled. */
9783 TERMINAL_KEYBOARD_CODING (t)->common_flags
9784 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9785 return Qnil;
9786 }
9787
9788 DEFUN ("keyboard-coding-system",
9789 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9790 doc: /* Return coding system specified for decoding keyboard input. */)
9791 (Lisp_Object terminal)
9792 {
9793 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9794 (decode_live_terminal (terminal))->id);
9795 }
9796
9797 \f
9798 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9799 Sfind_operation_coding_system, 1, MANY, 0,
9800 doc: /* Choose a coding system for an operation based on the target name.
9801 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9802 DECODING-SYSTEM is the coding system to use for decoding
9803 (in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9804 for encoding (in case OPERATION does encoding).
9805
9806 The first argument OPERATION specifies an I/O primitive:
9807 For file I/O, `insert-file-contents' or `write-region'.
9808 For process I/O, `call-process', `call-process-region', or `start-process'.
9809 For network I/O, `open-network-stream'.
9810
9811 The remaining arguments should be the same arguments that were passed
9812 to the primitive. Depending on which primitive, one of those arguments
9813 is selected as the TARGET. For example, if OPERATION does file I/O,
9814 whichever argument specifies the file name is TARGET.
9815
9816 TARGET has a meaning which depends on OPERATION:
9817 For file I/O, TARGET is a file name (except for the special case below).
9818 For process I/O, TARGET is a process name.
9819 For network I/O, TARGET is a service name or a port number.
9820
9821 This function looks up what is specified for TARGET in
9822 `file-coding-system-alist', `process-coding-system-alist',
9823 or `network-coding-system-alist' depending on OPERATION.
9824 They may specify a coding system, a cons of coding systems,
9825 or a function symbol to call.
9826 In the last case, we call the function with one argument,
9827 which is a list of all the arguments given to this function.
9828 If the function can't decide a coding system, it can return
9829 `undecided' so that the normal code-detection is performed.
9830
9831 If OPERATION is `insert-file-contents', the argument corresponding to
9832 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9833 file name to look up, and BUFFER is a buffer that contains the file's
9834 contents (not yet decoded). If `file-coding-system-alist' specifies a
9835 function to call for FILENAME, that function should examine the
9836 contents of BUFFER instead of reading the file.
9837
9838 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9839 (ptrdiff_t nargs, Lisp_Object *args)
9840 {
9841 Lisp_Object operation, target_idx, target, val;
9842 register Lisp_Object chain;
9843
9844 if (nargs < 2)
9845 error ("Too few arguments");
9846 operation = args[0];
9847 if (!SYMBOLP (operation)
9848 || (target_idx = Fget (operation, Qtarget_idx), !NATNUMP (target_idx)))
9849 error ("Invalid first argument");
9850 if (nargs <= 1 + XFASTINT (target_idx))
9851 error ("Too few arguments for operation `%s'",
9852 SDATA (SYMBOL_NAME (operation)));
9853 target = args[XFASTINT (target_idx) + 1];
9854 if (!(STRINGP (target)
9855 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9856 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9857 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9858 error ("Invalid argument %"pI"d of operation `%s'",
9859 XFASTINT (target_idx) + 1, SDATA (SYMBOL_NAME (operation)));
9860 if (CONSP (target))
9861 target = XCAR (target);
9862
9863 chain = ((EQ (operation, Qinsert_file_contents)
9864 || EQ (operation, Qwrite_region))
9865 ? Vfile_coding_system_alist
9866 : (EQ (operation, Qopen_network_stream)
9867 ? Vnetwork_coding_system_alist
9868 : Vprocess_coding_system_alist));
9869 if (NILP (chain))
9870 return Qnil;
9871
9872 for (; CONSP (chain); chain = XCDR (chain))
9873 {
9874 Lisp_Object elt;
9875
9876 elt = XCAR (chain);
9877 if (CONSP (elt)
9878 && ((STRINGP (target)
9879 && STRINGP (XCAR (elt))
9880 && fast_string_match (XCAR (elt), target) >= 0)
9881 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9882 {
9883 val = XCDR (elt);
9884 /* Here, if VAL is both a valid coding system and a valid
9885 function symbol, we return VAL as a coding system. */
9886 if (CONSP (val))
9887 return val;
9888 if (! SYMBOLP (val))
9889 return Qnil;
9890 if (! NILP (Fcoding_system_p (val)))
9891 return Fcons (val, val);
9892 if (! NILP (Ffboundp (val)))
9893 {
9894 /* We use call1 rather than safe_call1
9895 so as to get bug reports about functions called here
9896 which don't handle the current interface. */
9897 val = call1 (val, Flist (nargs, args));
9898 if (CONSP (val))
9899 return val;
9900 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9901 return Fcons (val, val);
9902 }
9903 return Qnil;
9904 }
9905 }
9906 return Qnil;
9907 }
9908
9909 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9910 Sset_coding_system_priority, 0, MANY, 0,
9911 doc: /* Assign higher priority to the coding systems given as arguments.
9912 If multiple coding systems belong to the same category,
9913 all but the first one are ignored.
9914
9915 usage: (set-coding-system-priority &rest coding-systems) */)
9916 (ptrdiff_t nargs, Lisp_Object *args)
9917 {
9918 ptrdiff_t i, j;
9919 bool changed[coding_category_max];
9920 enum coding_category priorities[coding_category_max];
9921
9922 memset (changed, 0, sizeof changed);
9923
9924 for (i = j = 0; i < nargs; i++)
9925 {
9926 enum coding_category category;
9927 Lisp_Object spec, attrs;
9928
9929 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9930 attrs = AREF (spec, 0);
9931 category = XINT (CODING_ATTR_CATEGORY (attrs));
9932 if (changed[category])
9933 /* Ignore this coding system because a coding system of the
9934 same category already had a higher priority. */
9935 continue;
9936 changed[category] = 1;
9937 priorities[j++] = category;
9938 if (coding_categories[category].id >= 0
9939 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9940 setup_coding_system (args[i], &coding_categories[category]);
9941 Fset (AREF (Vcoding_category_table, category), args[i]);
9942 }
9943
9944 /* Now we have decided top J priorities. Reflect the order of the
9945 original priorities to the remaining priorities. */
9946
9947 for (i = j, j = 0; i < coding_category_max; i++, j++)
9948 {
9949 while (j < coding_category_max
9950 && changed[coding_priorities[j]])
9951 j++;
9952 if (j == coding_category_max)
9953 emacs_abort ();
9954 priorities[i] = coding_priorities[j];
9955 }
9956
9957 memcpy (coding_priorities, priorities, sizeof priorities);
9958
9959 /* Update `coding-category-list'. */
9960 Vcoding_category_list = Qnil;
9961 for (i = coding_category_max; i-- > 0; )
9962 Vcoding_category_list
9963 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9964 Vcoding_category_list);
9965
9966 return Qnil;
9967 }
9968
9969 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9970 Scoding_system_priority_list, 0, 1, 0,
9971 doc: /* Return a list of coding systems ordered by their priorities.
9972 The list contains a subset of coding systems; i.e. coding systems
9973 assigned to each coding category (see `coding-category-list').
9974
9975 HIGHESTP non-nil means just return the highest priority one. */)
9976 (Lisp_Object highestp)
9977 {
9978 int i;
9979 Lisp_Object val;
9980
9981 for (i = 0, val = Qnil; i < coding_category_max; i++)
9982 {
9983 enum coding_category category = coding_priorities[i];
9984 int id = coding_categories[category].id;
9985 Lisp_Object attrs;
9986
9987 if (id < 0)
9988 continue;
9989 attrs = CODING_ID_ATTRS (id);
9990 if (! NILP (highestp))
9991 return CODING_ATTR_BASE_NAME (attrs);
9992 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9993 }
9994 return Fnreverse (val);
9995 }
9996
9997 static const char *const suffixes[] = { "-unix", "-dos", "-mac" };
9998
9999 static Lisp_Object
10000 make_subsidiaries (Lisp_Object base)
10001 {
10002 Lisp_Object subsidiaries;
10003 ptrdiff_t base_name_len = SBYTES (SYMBOL_NAME (base));
10004 USE_SAFE_ALLOCA;
10005 char *buf = SAFE_ALLOCA (base_name_len + 6);
10006 int i;
10007
10008 memcpy (buf, SDATA (SYMBOL_NAME (base)), base_name_len);
10009 subsidiaries = make_uninit_vector (3);
10010 for (i = 0; i < 3; i++)
10011 {
10012 strcpy (buf + base_name_len, suffixes[i]);
10013 ASET (subsidiaries, i, intern (buf));
10014 }
10015 SAFE_FREE ();
10016 return subsidiaries;
10017 }
10018
10019
10020 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
10021 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
10022 doc: /* For internal use only.
10023 usage: (define-coding-system-internal ...) */)
10024 (ptrdiff_t nargs, Lisp_Object *args)
10025 {
10026 Lisp_Object name;
10027 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
10028 Lisp_Object attrs; /* Vector of attributes. */
10029 Lisp_Object eol_type;
10030 Lisp_Object aliases;
10031 Lisp_Object coding_type, charset_list, safe_charsets;
10032 enum coding_category category;
10033 Lisp_Object tail, val;
10034 int max_charset_id = 0;
10035 int i;
10036
10037 if (nargs < coding_arg_max)
10038 goto short_args;
10039
10040 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
10041
10042 name = args[coding_arg_name];
10043 CHECK_SYMBOL (name);
10044 ASET (attrs, coding_attr_base_name, name);
10045
10046 val = args[coding_arg_mnemonic];
10047 if (! STRINGP (val))
10048 CHECK_CHARACTER (val);
10049 ASET (attrs, coding_attr_mnemonic, val);
10050
10051 coding_type = args[coding_arg_coding_type];
10052 CHECK_SYMBOL (coding_type);
10053 ASET (attrs, coding_attr_type, coding_type);
10054
10055 charset_list = args[coding_arg_charset_list];
10056 if (SYMBOLP (charset_list))
10057 {
10058 if (EQ (charset_list, Qiso_2022))
10059 {
10060 if (! EQ (coding_type, Qiso_2022))
10061 error ("Invalid charset-list");
10062 charset_list = Viso_2022_charset_list;
10063 }
10064 else if (EQ (charset_list, Qemacs_mule))
10065 {
10066 if (! EQ (coding_type, Qemacs_mule))
10067 error ("Invalid charset-list");
10068 charset_list = Vemacs_mule_charset_list;
10069 }
10070 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
10071 {
10072 if (! RANGED_INTEGERP (0, XCAR (tail), INT_MAX - 1))
10073 error ("Invalid charset-list");
10074 if (max_charset_id < XFASTINT (XCAR (tail)))
10075 max_charset_id = XFASTINT (XCAR (tail));
10076 }
10077 }
10078 else
10079 {
10080 charset_list = Fcopy_sequence (charset_list);
10081 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
10082 {
10083 struct charset *charset;
10084
10085 val = XCAR (tail);
10086 CHECK_CHARSET_GET_CHARSET (val, charset);
10087 if (EQ (coding_type, Qiso_2022)
10088 ? CHARSET_ISO_FINAL (charset) < 0
10089 : EQ (coding_type, Qemacs_mule)
10090 ? CHARSET_EMACS_MULE_ID (charset) < 0
10091 : 0)
10092 error ("Can't handle charset `%s'",
10093 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10094
10095 XSETCAR (tail, make_number (charset->id));
10096 if (max_charset_id < charset->id)
10097 max_charset_id = charset->id;
10098 }
10099 }
10100 ASET (attrs, coding_attr_charset_list, charset_list);
10101
10102 safe_charsets = make_uninit_string (max_charset_id + 1);
10103 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
10104 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
10105 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
10106 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
10107
10108 ASET (attrs, coding_attr_ascii_compat, args[coding_arg_ascii_compatible_p]);
10109
10110 val = args[coding_arg_decode_translation_table];
10111 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10112 CHECK_SYMBOL (val);
10113 ASET (attrs, coding_attr_decode_tbl, val);
10114
10115 val = args[coding_arg_encode_translation_table];
10116 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10117 CHECK_SYMBOL (val);
10118 ASET (attrs, coding_attr_encode_tbl, val);
10119
10120 val = args[coding_arg_post_read_conversion];
10121 CHECK_SYMBOL (val);
10122 ASET (attrs, coding_attr_post_read, val);
10123
10124 val = args[coding_arg_pre_write_conversion];
10125 CHECK_SYMBOL (val);
10126 ASET (attrs, coding_attr_pre_write, val);
10127
10128 val = args[coding_arg_default_char];
10129 if (NILP (val))
10130 ASET (attrs, coding_attr_default_char, make_number (' '));
10131 else
10132 {
10133 CHECK_CHARACTER (val);
10134 ASET (attrs, coding_attr_default_char, val);
10135 }
10136
10137 val = args[coding_arg_for_unibyte];
10138 ASET (attrs, coding_attr_for_unibyte, NILP (val) ? Qnil : Qt);
10139
10140 val = args[coding_arg_plist];
10141 CHECK_LIST (val);
10142 ASET (attrs, coding_attr_plist, val);
10143
10144 if (EQ (coding_type, Qcharset))
10145 {
10146 /* Generate a lisp vector of 256 elements. Each element is nil,
10147 integer, or a list of charset IDs.
10148
10149 If Nth element is nil, the byte code N is invalid in this
10150 coding system.
10151
10152 If Nth element is a number NUM, N is the first byte of a
10153 charset whose ID is NUM.
10154
10155 If Nth element is a list of charset IDs, N is the first byte
10156 of one of them. The list is sorted by dimensions of the
10157 charsets. A charset of smaller dimension comes first. */
10158 val = Fmake_vector (make_number (256), Qnil);
10159
10160 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
10161 {
10162 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
10163 int dim = CHARSET_DIMENSION (charset);
10164 int idx = (dim - 1) * 4;
10165
10166 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10167 ASET (attrs, coding_attr_ascii_compat, Qt);
10168
10169 for (i = charset->code_space[idx];
10170 i <= charset->code_space[idx + 1]; i++)
10171 {
10172 Lisp_Object tmp, tmp2;
10173 int dim2;
10174
10175 tmp = AREF (val, i);
10176 if (NILP (tmp))
10177 tmp = XCAR (tail);
10178 else if (NUMBERP (tmp))
10179 {
10180 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
10181 if (dim < dim2)
10182 tmp = list2 (XCAR (tail), tmp);
10183 else
10184 tmp = list2 (tmp, XCAR (tail));
10185 }
10186 else
10187 {
10188 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
10189 {
10190 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
10191 if (dim < dim2)
10192 break;
10193 }
10194 if (NILP (tmp2))
10195 tmp = nconc2 (tmp, list1 (XCAR (tail)));
10196 else
10197 {
10198 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
10199 XSETCAR (tmp2, XCAR (tail));
10200 }
10201 }
10202 ASET (val, i, tmp);
10203 }
10204 }
10205 ASET (attrs, coding_attr_charset_valids, val);
10206 category = coding_category_charset;
10207 }
10208 else if (EQ (coding_type, Qccl))
10209 {
10210 Lisp_Object valids;
10211
10212 if (nargs < coding_arg_ccl_max)
10213 goto short_args;
10214
10215 val = args[coding_arg_ccl_decoder];
10216 CHECK_CCL_PROGRAM (val);
10217 if (VECTORP (val))
10218 val = Fcopy_sequence (val);
10219 ASET (attrs, coding_attr_ccl_decoder, val);
10220
10221 val = args[coding_arg_ccl_encoder];
10222 CHECK_CCL_PROGRAM (val);
10223 if (VECTORP (val))
10224 val = Fcopy_sequence (val);
10225 ASET (attrs, coding_attr_ccl_encoder, val);
10226
10227 val = args[coding_arg_ccl_valids];
10228 valids = Fmake_string (make_number (256), make_number (0));
10229 for (tail = val; CONSP (tail); tail = XCDR (tail))
10230 {
10231 int from, to;
10232
10233 val = XCAR (tail);
10234 if (INTEGERP (val))
10235 {
10236 if (! (0 <= XINT (val) && XINT (val) <= 255))
10237 args_out_of_range_3 (val, make_number (0), make_number (255));
10238 from = to = XINT (val);
10239 }
10240 else
10241 {
10242 CHECK_CONS (val);
10243 CHECK_NATNUM_CAR (val);
10244 CHECK_NUMBER_CDR (val);
10245 if (XINT (XCAR (val)) > 255)
10246 args_out_of_range_3 (XCAR (val),
10247 make_number (0), make_number (255));
10248 from = XINT (XCAR (val));
10249 if (! (from <= XINT (XCDR (val)) && XINT (XCDR (val)) <= 255))
10250 args_out_of_range_3 (XCDR (val),
10251 XCAR (val), make_number (255));
10252 to = XINT (XCDR (val));
10253 }
10254 for (i = from; i <= to; i++)
10255 SSET (valids, i, 1);
10256 }
10257 ASET (attrs, coding_attr_ccl_valids, valids);
10258
10259 category = coding_category_ccl;
10260 }
10261 else if (EQ (coding_type, Qutf_16))
10262 {
10263 Lisp_Object bom, endian;
10264
10265 ASET (attrs, coding_attr_ascii_compat, Qnil);
10266
10267 if (nargs < coding_arg_utf16_max)
10268 goto short_args;
10269
10270 bom = args[coding_arg_utf16_bom];
10271 if (! NILP (bom) && ! EQ (bom, Qt))
10272 {
10273 CHECK_CONS (bom);
10274 val = XCAR (bom);
10275 CHECK_CODING_SYSTEM (val);
10276 val = XCDR (bom);
10277 CHECK_CODING_SYSTEM (val);
10278 }
10279 ASET (attrs, coding_attr_utf_bom, bom);
10280
10281 endian = args[coding_arg_utf16_endian];
10282 CHECK_SYMBOL (endian);
10283 if (NILP (endian))
10284 endian = Qbig;
10285 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
10286 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
10287 ASET (attrs, coding_attr_utf_16_endian, endian);
10288
10289 category = (CONSP (bom)
10290 ? coding_category_utf_16_auto
10291 : NILP (bom)
10292 ? (EQ (endian, Qbig)
10293 ? coding_category_utf_16_be_nosig
10294 : coding_category_utf_16_le_nosig)
10295 : (EQ (endian, Qbig)
10296 ? coding_category_utf_16_be
10297 : coding_category_utf_16_le));
10298 }
10299 else if (EQ (coding_type, Qiso_2022))
10300 {
10301 Lisp_Object initial, reg_usage, request, flags;
10302
10303 if (nargs < coding_arg_iso2022_max)
10304 goto short_args;
10305
10306 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
10307 CHECK_VECTOR (initial);
10308 for (i = 0; i < 4; i++)
10309 {
10310 val = AREF (initial, i);
10311 if (! NILP (val))
10312 {
10313 struct charset *charset;
10314
10315 CHECK_CHARSET_GET_CHARSET (val, charset);
10316 ASET (initial, i, make_number (CHARSET_ID (charset)));
10317 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
10318 ASET (attrs, coding_attr_ascii_compat, Qt);
10319 }
10320 else
10321 ASET (initial, i, make_number (-1));
10322 }
10323
10324 reg_usage = args[coding_arg_iso2022_reg_usage];
10325 CHECK_CONS (reg_usage);
10326 CHECK_NUMBER_CAR (reg_usage);
10327 CHECK_NUMBER_CDR (reg_usage);
10328
10329 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
10330 for (tail = request; CONSP (tail); tail = XCDR (tail))
10331 {
10332 int id;
10333 Lisp_Object tmp1;
10334
10335 val = XCAR (tail);
10336 CHECK_CONS (val);
10337 tmp1 = XCAR (val);
10338 CHECK_CHARSET_GET_ID (tmp1, id);
10339 CHECK_NATNUM_CDR (val);
10340 if (XINT (XCDR (val)) >= 4)
10341 error ("Invalid graphic register number: %"pI"d", XINT (XCDR (val)));
10342 XSETCAR (val, make_number (id));
10343 }
10344
10345 flags = args[coding_arg_iso2022_flags];
10346 CHECK_NATNUM (flags);
10347 i = XINT (flags) & INT_MAX;
10348 if (EQ (args[coding_arg_charset_list], Qiso_2022))
10349 i |= CODING_ISO_FLAG_FULL_SUPPORT;
10350 flags = make_number (i);
10351
10352 ASET (attrs, coding_attr_iso_initial, initial);
10353 ASET (attrs, coding_attr_iso_usage, reg_usage);
10354 ASET (attrs, coding_attr_iso_request, request);
10355 ASET (attrs, coding_attr_iso_flags, flags);
10356 setup_iso_safe_charsets (attrs);
10357
10358 if (i & CODING_ISO_FLAG_SEVEN_BITS)
10359 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
10360 | CODING_ISO_FLAG_SINGLE_SHIFT))
10361 ? coding_category_iso_7_else
10362 : EQ (args[coding_arg_charset_list], Qiso_2022)
10363 ? coding_category_iso_7
10364 : coding_category_iso_7_tight);
10365 else
10366 {
10367 int id = XINT (AREF (initial, 1));
10368
10369 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
10370 || EQ (args[coding_arg_charset_list], Qiso_2022)
10371 || id < 0)
10372 ? coding_category_iso_8_else
10373 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
10374 ? coding_category_iso_8_1
10375 : coding_category_iso_8_2);
10376 }
10377 if (category != coding_category_iso_8_1
10378 && category != coding_category_iso_8_2)
10379 ASET (attrs, coding_attr_ascii_compat, Qnil);
10380 }
10381 else if (EQ (coding_type, Qemacs_mule))
10382 {
10383 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
10384 ASET (attrs, coding_attr_emacs_mule_full, Qt);
10385 ASET (attrs, coding_attr_ascii_compat, Qt);
10386 category = coding_category_emacs_mule;
10387 }
10388 else if (EQ (coding_type, Qshift_jis))
10389 {
10390
10391 struct charset *charset;
10392
10393 if (XINT (Flength (charset_list)) != 3
10394 && XINT (Flength (charset_list)) != 4)
10395 error ("There should be three or four charsets");
10396
10397 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10398 if (CHARSET_DIMENSION (charset) != 1)
10399 error ("Dimension of charset %s is not one",
10400 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10401 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10402 ASET (attrs, coding_attr_ascii_compat, Qt);
10403
10404 charset_list = XCDR (charset_list);
10405 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10406 if (CHARSET_DIMENSION (charset) != 1)
10407 error ("Dimension of charset %s is not one",
10408 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10409
10410 charset_list = XCDR (charset_list);
10411 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10412 if (CHARSET_DIMENSION (charset) != 2)
10413 error ("Dimension of charset %s is not two",
10414 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10415
10416 charset_list = XCDR (charset_list);
10417 if (! NILP (charset_list))
10418 {
10419 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10420 if (CHARSET_DIMENSION (charset) != 2)
10421 error ("Dimension of charset %s is not two",
10422 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10423 }
10424
10425 category = coding_category_sjis;
10426 Vsjis_coding_system = name;
10427 }
10428 else if (EQ (coding_type, Qbig5))
10429 {
10430 struct charset *charset;
10431
10432 if (XINT (Flength (charset_list)) != 2)
10433 error ("There should be just two charsets");
10434
10435 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10436 if (CHARSET_DIMENSION (charset) != 1)
10437 error ("Dimension of charset %s is not one",
10438 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10439 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10440 ASET (attrs, coding_attr_ascii_compat, Qt);
10441
10442 charset_list = XCDR (charset_list);
10443 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10444 if (CHARSET_DIMENSION (charset) != 2)
10445 error ("Dimension of charset %s is not two",
10446 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10447
10448 category = coding_category_big5;
10449 Vbig5_coding_system = name;
10450 }
10451 else if (EQ (coding_type, Qraw_text))
10452 {
10453 category = coding_category_raw_text;
10454 ASET (attrs, coding_attr_ascii_compat, Qt);
10455 }
10456 else if (EQ (coding_type, Qutf_8))
10457 {
10458 Lisp_Object bom;
10459
10460 if (nargs < coding_arg_utf8_max)
10461 goto short_args;
10462
10463 bom = args[coding_arg_utf8_bom];
10464 if (! NILP (bom) && ! EQ (bom, Qt))
10465 {
10466 CHECK_CONS (bom);
10467 val = XCAR (bom);
10468 CHECK_CODING_SYSTEM (val);
10469 val = XCDR (bom);
10470 CHECK_CODING_SYSTEM (val);
10471 }
10472 ASET (attrs, coding_attr_utf_bom, bom);
10473 if (NILP (bom))
10474 ASET (attrs, coding_attr_ascii_compat, Qt);
10475
10476 category = (CONSP (bom) ? coding_category_utf_8_auto
10477 : NILP (bom) ? coding_category_utf_8_nosig
10478 : coding_category_utf_8_sig);
10479 }
10480 else if (EQ (coding_type, Qundecided))
10481 {
10482 if (nargs < coding_arg_undecided_max)
10483 goto short_args;
10484 ASET (attrs, coding_attr_undecided_inhibit_null_byte_detection,
10485 args[coding_arg_undecided_inhibit_null_byte_detection]);
10486 ASET (attrs, coding_attr_undecided_inhibit_iso_escape_detection,
10487 args[coding_arg_undecided_inhibit_iso_escape_detection]);
10488 ASET (attrs, coding_attr_undecided_prefer_utf_8,
10489 args[coding_arg_undecided_prefer_utf_8]);
10490 category = coding_category_undecided;
10491 }
10492 else
10493 error ("Invalid coding system type: %s",
10494 SDATA (SYMBOL_NAME (coding_type)));
10495
10496 ASET (attrs, coding_attr_category, make_number (category));
10497 ASET (attrs, coding_attr_plist,
10498 Fcons (QCcategory,
10499 Fcons (AREF (Vcoding_category_table, category),
10500 CODING_ATTR_PLIST (attrs))));
10501 ASET (attrs, coding_attr_plist,
10502 Fcons (QCascii_compatible_p,
10503 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
10504 CODING_ATTR_PLIST (attrs))));
10505
10506 eol_type = args[coding_arg_eol_type];
10507 if (! NILP (eol_type)
10508 && ! EQ (eol_type, Qunix)
10509 && ! EQ (eol_type, Qdos)
10510 && ! EQ (eol_type, Qmac))
10511 error ("Invalid eol-type");
10512
10513 aliases = list1 (name);
10514
10515 if (NILP (eol_type))
10516 {
10517 eol_type = make_subsidiaries (name);
10518 for (i = 0; i < 3; i++)
10519 {
10520 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
10521
10522 this_name = AREF (eol_type, i);
10523 this_aliases = list1 (this_name);
10524 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
10525 this_spec = make_uninit_vector (3);
10526 ASET (this_spec, 0, attrs);
10527 ASET (this_spec, 1, this_aliases);
10528 ASET (this_spec, 2, this_eol_type);
10529 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
10530 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
10531 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
10532 if (NILP (val))
10533 Vcoding_system_alist
10534 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
10535 Vcoding_system_alist);
10536 }
10537 }
10538
10539 spec_vec = make_uninit_vector (3);
10540 ASET (spec_vec, 0, attrs);
10541 ASET (spec_vec, 1, aliases);
10542 ASET (spec_vec, 2, eol_type);
10543
10544 Fputhash (name, spec_vec, Vcoding_system_hash_table);
10545 Vcoding_system_list = Fcons (name, Vcoding_system_list);
10546 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
10547 if (NILP (val))
10548 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
10549 Vcoding_system_alist);
10550
10551 {
10552 int id = coding_categories[category].id;
10553
10554 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
10555 setup_coding_system (name, &coding_categories[category]);
10556 }
10557
10558 return Qnil;
10559
10560 short_args:
10561 return Fsignal (Qwrong_number_of_arguments,
10562 Fcons (intern ("define-coding-system-internal"),
10563 make_number (nargs)));
10564 }
10565
10566
10567 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10568 3, 3, 0,
10569 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10570 (Lisp_Object coding_system, Lisp_Object prop, Lisp_Object val)
10571 {
10572 Lisp_Object spec, attrs;
10573
10574 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10575 attrs = AREF (spec, 0);
10576 if (EQ (prop, QCmnemonic))
10577 {
10578 if (! STRINGP (val))
10579 CHECK_CHARACTER (val);
10580 ASET (attrs, coding_attr_mnemonic, val);
10581 }
10582 else if (EQ (prop, QCdefault_char))
10583 {
10584 if (NILP (val))
10585 val = make_number (' ');
10586 else
10587 CHECK_CHARACTER (val);
10588 ASET (attrs, coding_attr_default_char, val);
10589 }
10590 else if (EQ (prop, QCdecode_translation_table))
10591 {
10592 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10593 CHECK_SYMBOL (val);
10594 ASET (attrs, coding_attr_decode_tbl, val);
10595 }
10596 else if (EQ (prop, QCencode_translation_table))
10597 {
10598 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10599 CHECK_SYMBOL (val);
10600 ASET (attrs, coding_attr_encode_tbl, val);
10601 }
10602 else if (EQ (prop, QCpost_read_conversion))
10603 {
10604 CHECK_SYMBOL (val);
10605 ASET (attrs, coding_attr_post_read, val);
10606 }
10607 else if (EQ (prop, QCpre_write_conversion))
10608 {
10609 CHECK_SYMBOL (val);
10610 ASET (attrs, coding_attr_pre_write, val);
10611 }
10612 else if (EQ (prop, QCascii_compatible_p))
10613 {
10614 ASET (attrs, coding_attr_ascii_compat, val);
10615 }
10616
10617 ASET (attrs, coding_attr_plist,
10618 Fplist_put (CODING_ATTR_PLIST (attrs), prop, val));
10619 return val;
10620 }
10621
10622
10623 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10624 Sdefine_coding_system_alias, 2, 2, 0,
10625 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10626 (Lisp_Object alias, Lisp_Object coding_system)
10627 {
10628 Lisp_Object spec, aliases, eol_type, val;
10629
10630 CHECK_SYMBOL (alias);
10631 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10632 aliases = AREF (spec, 1);
10633 /* ALIASES should be a list of length more than zero, and the first
10634 element is a base coding system. Append ALIAS at the tail of the
10635 list. */
10636 while (!NILP (XCDR (aliases)))
10637 aliases = XCDR (aliases);
10638 XSETCDR (aliases, list1 (alias));
10639
10640 eol_type = AREF (spec, 2);
10641 if (VECTORP (eol_type))
10642 {
10643 Lisp_Object subsidiaries;
10644 int i;
10645
10646 subsidiaries = make_subsidiaries (alias);
10647 for (i = 0; i < 3; i++)
10648 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10649 AREF (eol_type, i));
10650 }
10651
10652 Fputhash (alias, spec, Vcoding_system_hash_table);
10653 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10654 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10655 if (NILP (val))
10656 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10657 Vcoding_system_alist);
10658
10659 return Qnil;
10660 }
10661
10662 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10663 1, 1, 0,
10664 doc: /* Return the base of CODING-SYSTEM.
10665 Any alias or subsidiary coding system is not a base coding system. */)
10666 (Lisp_Object coding_system)
10667 {
10668 Lisp_Object spec, attrs;
10669
10670 if (NILP (coding_system))
10671 return (Qno_conversion);
10672 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10673 attrs = AREF (spec, 0);
10674 return CODING_ATTR_BASE_NAME (attrs);
10675 }
10676
10677 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10678 1, 1, 0,
10679 doc: /* Return the property list of CODING-SYSTEM. */)
10680 (Lisp_Object coding_system)
10681 {
10682 Lisp_Object spec, attrs;
10683
10684 if (NILP (coding_system))
10685 coding_system = Qno_conversion;
10686 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10687 attrs = AREF (spec, 0);
10688 return CODING_ATTR_PLIST (attrs);
10689 }
10690
10691
10692 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10693 1, 1, 0,
10694 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10695 (Lisp_Object coding_system)
10696 {
10697 Lisp_Object spec;
10698
10699 if (NILP (coding_system))
10700 coding_system = Qno_conversion;
10701 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10702 return AREF (spec, 1);
10703 }
10704
10705 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10706 Scoding_system_eol_type, 1, 1, 0,
10707 doc: /* Return eol-type of CODING-SYSTEM.
10708 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10709
10710 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10711 and CR respectively.
10712
10713 A vector value indicates that a format of end-of-line should be
10714 detected automatically. Nth element of the vector is the subsidiary
10715 coding system whose eol-type is N. */)
10716 (Lisp_Object coding_system)
10717 {
10718 Lisp_Object spec, eol_type;
10719 int n;
10720
10721 if (NILP (coding_system))
10722 coding_system = Qno_conversion;
10723 if (! CODING_SYSTEM_P (coding_system))
10724 return Qnil;
10725 spec = CODING_SYSTEM_SPEC (coding_system);
10726 eol_type = AREF (spec, 2);
10727 if (VECTORP (eol_type))
10728 return Fcopy_sequence (eol_type);
10729 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10730 return make_number (n);
10731 }
10732
10733 #endif /* emacs */
10734
10735 \f
10736 /*** 9. Post-amble ***/
10737
10738 void
10739 init_coding_once (void)
10740 {
10741 int i;
10742
10743 for (i = 0; i < coding_category_max; i++)
10744 {
10745 coding_categories[i].id = -1;
10746 coding_priorities[i] = i;
10747 }
10748
10749 /* ISO2022 specific initialize routine. */
10750 for (i = 0; i < 0x20; i++)
10751 iso_code_class[i] = ISO_control_0;
10752 for (i = 0x21; i < 0x7F; i++)
10753 iso_code_class[i] = ISO_graphic_plane_0;
10754 for (i = 0x80; i < 0xA0; i++)
10755 iso_code_class[i] = ISO_control_1;
10756 for (i = 0xA1; i < 0xFF; i++)
10757 iso_code_class[i] = ISO_graphic_plane_1;
10758 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10759 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10760 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10761 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10762 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10763 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10764 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10765 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10766 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10767
10768 for (i = 0; i < 256; i++)
10769 {
10770 emacs_mule_bytes[i] = 1;
10771 }
10772 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10773 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10774 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10775 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10776 }
10777
10778 #ifdef emacs
10779
10780 void
10781 syms_of_coding (void)
10782 {
10783 staticpro (&Vcoding_system_hash_table);
10784 Vcoding_system_hash_table = CALLN (Fmake_hash_table, QCtest, Qeq);
10785
10786 staticpro (&Vsjis_coding_system);
10787 Vsjis_coding_system = Qnil;
10788
10789 staticpro (&Vbig5_coding_system);
10790 Vbig5_coding_system = Qnil;
10791
10792 staticpro (&Vcode_conversion_reused_workbuf);
10793 Vcode_conversion_reused_workbuf = Qnil;
10794
10795 staticpro (&Vcode_conversion_workbuf_name);
10796 Vcode_conversion_workbuf_name = build_pure_c_string (" *code-conversion-work*");
10797
10798 reused_workbuf_in_use = 0;
10799
10800 DEFSYM (Qcharset, "charset");
10801 DEFSYM (Qtarget_idx, "target-idx");
10802 DEFSYM (Qcoding_system_history, "coding-system-history");
10803 Fset (Qcoding_system_history, Qnil);
10804
10805 /* Target FILENAME is the first argument. */
10806 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10807 /* Target FILENAME is the third argument. */
10808 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10809
10810 DEFSYM (Qcall_process, "call-process");
10811 /* Target PROGRAM is the first argument. */
10812 Fput (Qcall_process, Qtarget_idx, make_number (0));
10813
10814 DEFSYM (Qcall_process_region, "call-process-region");
10815 /* Target PROGRAM is the third argument. */
10816 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10817
10818 DEFSYM (Qstart_process, "start-process");
10819 /* Target PROGRAM is the third argument. */
10820 Fput (Qstart_process, Qtarget_idx, make_number (2));
10821
10822 DEFSYM (Qopen_network_stream, "open-network-stream");
10823 /* Target SERVICE is the fourth argument. */
10824 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10825
10826 DEFSYM (Qunix, "unix");
10827 DEFSYM (Qdos, "dos");
10828 DEFSYM (Qmac, "mac");
10829
10830 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10831 DEFSYM (Qundecided, "undecided");
10832 DEFSYM (Qno_conversion, "no-conversion");
10833 DEFSYM (Qraw_text, "raw-text");
10834
10835 DEFSYM (Qiso_2022, "iso-2022");
10836
10837 DEFSYM (Qutf_8, "utf-8");
10838 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10839
10840 #if defined (WINDOWSNT) || defined (CYGWIN)
10841 /* No, not utf-16-le: that one has a BOM. */
10842 DEFSYM (Qutf_16le, "utf-16le");
10843 #endif
10844
10845 DEFSYM (Qutf_16, "utf-16");
10846 DEFSYM (Qbig, "big");
10847 DEFSYM (Qlittle, "little");
10848
10849 DEFSYM (Qshift_jis, "shift-jis");
10850 DEFSYM (Qbig5, "big5");
10851
10852 DEFSYM (Qcoding_system_p, "coding-system-p");
10853
10854 /* Error signaled when there's a problem with detecting a coding system. */
10855 DEFSYM (Qcoding_system_error, "coding-system-error");
10856 Fput (Qcoding_system_error, Qerror_conditions,
10857 listn (CONSTYPE_PURE, 2, Qcoding_system_error, Qerror));
10858 Fput (Qcoding_system_error, Qerror_message,
10859 build_pure_c_string ("Invalid coding system"));
10860
10861 DEFSYM (Qtranslation_table, "translation-table");
10862 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10863 DEFSYM (Qtranslation_table_id, "translation-table-id");
10864
10865 /* Coding system emacs-mule and raw-text are for converting only
10866 end-of-line format. */
10867 DEFSYM (Qemacs_mule, "emacs-mule");
10868
10869 DEFSYM (QCcategory, ":category");
10870 DEFSYM (QCmnemonic, ":mnemonic");
10871 DEFSYM (QCdefault_char, ":default-char");
10872 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10873 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10874 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10875 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10876 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10877
10878 Vcoding_category_table
10879 = Fmake_vector (make_number (coding_category_max), Qnil);
10880 staticpro (&Vcoding_category_table);
10881 /* Followings are target of code detection. */
10882 ASET (Vcoding_category_table, coding_category_iso_7,
10883 intern_c_string ("coding-category-iso-7"));
10884 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10885 intern_c_string ("coding-category-iso-7-tight"));
10886 ASET (Vcoding_category_table, coding_category_iso_8_1,
10887 intern_c_string ("coding-category-iso-8-1"));
10888 ASET (Vcoding_category_table, coding_category_iso_8_2,
10889 intern_c_string ("coding-category-iso-8-2"));
10890 ASET (Vcoding_category_table, coding_category_iso_7_else,
10891 intern_c_string ("coding-category-iso-7-else"));
10892 ASET (Vcoding_category_table, coding_category_iso_8_else,
10893 intern_c_string ("coding-category-iso-8-else"));
10894 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10895 intern_c_string ("coding-category-utf-8-auto"));
10896 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10897 intern_c_string ("coding-category-utf-8"));
10898 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10899 intern_c_string ("coding-category-utf-8-sig"));
10900 ASET (Vcoding_category_table, coding_category_utf_16_be,
10901 intern_c_string ("coding-category-utf-16-be"));
10902 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10903 intern_c_string ("coding-category-utf-16-auto"));
10904 ASET (Vcoding_category_table, coding_category_utf_16_le,
10905 intern_c_string ("coding-category-utf-16-le"));
10906 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10907 intern_c_string ("coding-category-utf-16-be-nosig"));
10908 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10909 intern_c_string ("coding-category-utf-16-le-nosig"));
10910 ASET (Vcoding_category_table, coding_category_charset,
10911 intern_c_string ("coding-category-charset"));
10912 ASET (Vcoding_category_table, coding_category_sjis,
10913 intern_c_string ("coding-category-sjis"));
10914 ASET (Vcoding_category_table, coding_category_big5,
10915 intern_c_string ("coding-category-big5"));
10916 ASET (Vcoding_category_table, coding_category_ccl,
10917 intern_c_string ("coding-category-ccl"));
10918 ASET (Vcoding_category_table, coding_category_emacs_mule,
10919 intern_c_string ("coding-category-emacs-mule"));
10920 /* Followings are NOT target of code detection. */
10921 ASET (Vcoding_category_table, coding_category_raw_text,
10922 intern_c_string ("coding-category-raw-text"));
10923 ASET (Vcoding_category_table, coding_category_undecided,
10924 intern_c_string ("coding-category-undecided"));
10925
10926 DEFSYM (Qinsufficient_source, "insufficient-source");
10927 DEFSYM (Qinvalid_source, "invalid-source");
10928 DEFSYM (Qinterrupted, "interrupted");
10929
10930 /* If a symbol has this property, evaluate the value to define the
10931 symbol as a coding system. */
10932 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10933
10934 defsubr (&Scoding_system_p);
10935 defsubr (&Sread_coding_system);
10936 defsubr (&Sread_non_nil_coding_system);
10937 defsubr (&Scheck_coding_system);
10938 defsubr (&Sdetect_coding_region);
10939 defsubr (&Sdetect_coding_string);
10940 defsubr (&Sfind_coding_systems_region_internal);
10941 defsubr (&Sunencodable_char_position);
10942 defsubr (&Scheck_coding_systems_region);
10943 defsubr (&Sdecode_coding_region);
10944 defsubr (&Sencode_coding_region);
10945 defsubr (&Sdecode_coding_string);
10946 defsubr (&Sencode_coding_string);
10947 defsubr (&Sdecode_sjis_char);
10948 defsubr (&Sencode_sjis_char);
10949 defsubr (&Sdecode_big5_char);
10950 defsubr (&Sencode_big5_char);
10951 defsubr (&Sset_terminal_coding_system_internal);
10952 defsubr (&Sset_safe_terminal_coding_system_internal);
10953 defsubr (&Sterminal_coding_system);
10954 defsubr (&Sset_keyboard_coding_system_internal);
10955 defsubr (&Skeyboard_coding_system);
10956 defsubr (&Sfind_operation_coding_system);
10957 defsubr (&Sset_coding_system_priority);
10958 defsubr (&Sdefine_coding_system_internal);
10959 defsubr (&Sdefine_coding_system_alias);
10960 defsubr (&Scoding_system_put);
10961 defsubr (&Scoding_system_base);
10962 defsubr (&Scoding_system_plist);
10963 defsubr (&Scoding_system_aliases);
10964 defsubr (&Scoding_system_eol_type);
10965 defsubr (&Scoding_system_priority_list);
10966
10967 DEFVAR_LISP ("coding-system-list", Vcoding_system_list,
10968 doc: /* List of coding systems.
10969
10970 Do not alter the value of this variable manually. This variable should be
10971 updated by the functions `define-coding-system' and
10972 `define-coding-system-alias'. */);
10973 Vcoding_system_list = Qnil;
10974
10975 DEFVAR_LISP ("coding-system-alist", Vcoding_system_alist,
10976 doc: /* Alist of coding system names.
10977 Each element is one element list of coding system name.
10978 This variable is given to `completing-read' as COLLECTION argument.
10979
10980 Do not alter the value of this variable manually. This variable should be
10981 updated by the functions `make-coding-system' and
10982 `define-coding-system-alias'. */);
10983 Vcoding_system_alist = Qnil;
10984
10985 DEFVAR_LISP ("coding-category-list", Vcoding_category_list,
10986 doc: /* List of coding-categories (symbols) ordered by priority.
10987
10988 On detecting a coding system, Emacs tries code detection algorithms
10989 associated with each coding-category one by one in this order. When
10990 one algorithm agrees with a byte sequence of source text, the coding
10991 system bound to the corresponding coding-category is selected.
10992
10993 Don't modify this variable directly, but use `set-coding-system-priority'. */);
10994 {
10995 int i;
10996
10997 Vcoding_category_list = Qnil;
10998 for (i = coding_category_max - 1; i >= 0; i--)
10999 Vcoding_category_list
11000 = Fcons (AREF (Vcoding_category_table, i),
11001 Vcoding_category_list);
11002 }
11003
11004 DEFVAR_LISP ("coding-system-for-read", Vcoding_system_for_read,
11005 doc: /* Specify the coding system for read operations.
11006 It is useful to bind this variable with `let', but do not set it globally.
11007 If the value is a coding system, it is used for decoding on read operation.
11008 If not, an appropriate element is used from one of the coding system alists.
11009 There are three such tables: `file-coding-system-alist',
11010 `process-coding-system-alist', and `network-coding-system-alist'. */);
11011 Vcoding_system_for_read = Qnil;
11012
11013 DEFVAR_LISP ("coding-system-for-write", Vcoding_system_for_write,
11014 doc: /* Specify the coding system for write operations.
11015 Programs bind this variable with `let', but you should not set it globally.
11016 If the value is a coding system, it is used for encoding of output,
11017 when writing it to a file and when sending it to a file or subprocess.
11018
11019 If this does not specify a coding system, an appropriate element
11020 is used from one of the coding system alists.
11021 There are three such tables: `file-coding-system-alist',
11022 `process-coding-system-alist', and `network-coding-system-alist'.
11023 For output to files, if the above procedure does not specify a coding system,
11024 the value of `buffer-file-coding-system' is used. */);
11025 Vcoding_system_for_write = Qnil;
11026
11027 DEFVAR_LISP ("last-coding-system-used", Vlast_coding_system_used,
11028 doc: /*
11029 Coding system used in the latest file or process I/O. */);
11030 Vlast_coding_system_used = Qnil;
11031
11032 DEFVAR_LISP ("last-code-conversion-error", Vlast_code_conversion_error,
11033 doc: /*
11034 Error status of the last code conversion.
11035
11036 When an error was detected in the last code conversion, this variable
11037 is set to one of the following symbols.
11038 `insufficient-source'
11039 `inconsistent-eol'
11040 `invalid-source'
11041 `interrupted'
11042 `insufficient-memory'
11043 When no error was detected, the value doesn't change. So, to check
11044 the error status of a code conversion by this variable, you must
11045 explicitly set this variable to nil before performing code
11046 conversion. */);
11047 Vlast_code_conversion_error = Qnil;
11048
11049 DEFVAR_BOOL ("inhibit-eol-conversion", inhibit_eol_conversion,
11050 doc: /*
11051 Non-nil means always inhibit code conversion of end-of-line format.
11052 See info node `Coding Systems' and info node `Text and Binary' concerning
11053 such conversion. */);
11054 inhibit_eol_conversion = 0;
11055
11056 DEFVAR_BOOL ("inherit-process-coding-system", inherit_process_coding_system,
11057 doc: /*
11058 Non-nil means process buffer inherits coding system of process output.
11059 Bind it to t if the process output is to be treated as if it were a file
11060 read from some filesystem. */);
11061 inherit_process_coding_system = 0;
11062
11063 DEFVAR_LISP ("file-coding-system-alist", Vfile_coding_system_alist,
11064 doc: /*
11065 Alist to decide a coding system to use for a file I/O operation.
11066 The format is ((PATTERN . VAL) ...),
11067 where PATTERN is a regular expression matching a file name,
11068 VAL is a coding system, a cons of coding systems, or a function symbol.
11069 If VAL is a coding system, it is used for both decoding and encoding
11070 the file contents.
11071 If VAL is a cons of coding systems, the car part is used for decoding,
11072 and the cdr part is used for encoding.
11073 If VAL is a function symbol, the function must return a coding system
11074 or a cons of coding systems which are used as above. The function is
11075 called with an argument that is a list of the arguments with which
11076 `find-operation-coding-system' was called. If the function can't decide
11077 a coding system, it can return `undecided' so that the normal
11078 code-detection is performed.
11079
11080 See also the function `find-operation-coding-system'
11081 and the variable `auto-coding-alist'. */);
11082 Vfile_coding_system_alist = Qnil;
11083
11084 DEFVAR_LISP ("process-coding-system-alist", Vprocess_coding_system_alist,
11085 doc: /*
11086 Alist to decide a coding system to use for a process I/O operation.
11087 The format is ((PATTERN . VAL) ...),
11088 where PATTERN is a regular expression matching a program name,
11089 VAL is a coding system, a cons of coding systems, or a function symbol.
11090 If VAL is a coding system, it is used for both decoding what received
11091 from the program and encoding what sent to the program.
11092 If VAL is a cons of coding systems, the car part is used for decoding,
11093 and the cdr part is used for encoding.
11094 If VAL is a function symbol, the function must return a coding system
11095 or a cons of coding systems which are used as above.
11096
11097 See also the function `find-operation-coding-system'. */);
11098 Vprocess_coding_system_alist = Qnil;
11099
11100 DEFVAR_LISP ("network-coding-system-alist", Vnetwork_coding_system_alist,
11101 doc: /*
11102 Alist to decide a coding system to use for a network I/O operation.
11103 The format is ((PATTERN . VAL) ...),
11104 where PATTERN is a regular expression matching a network service name
11105 or is a port number to connect to,
11106 VAL is a coding system, a cons of coding systems, or a function symbol.
11107 If VAL is a coding system, it is used for both decoding what received
11108 from the network stream and encoding what sent to the network stream.
11109 If VAL is a cons of coding systems, the car part is used for decoding,
11110 and the cdr part is used for encoding.
11111 If VAL is a function symbol, the function must return a coding system
11112 or a cons of coding systems which are used as above.
11113
11114 See also the function `find-operation-coding-system'. */);
11115 Vnetwork_coding_system_alist = Qnil;
11116
11117 DEFVAR_LISP ("locale-coding-system", Vlocale_coding_system,
11118 doc: /* Coding system to use with system messages.
11119 Also used for decoding keyboard input on X Window system, and for
11120 encoding standard output and error streams. */);
11121 Vlocale_coding_system = Qnil;
11122
11123 /* The eol mnemonics are reset in startup.el system-dependently. */
11124 DEFVAR_LISP ("eol-mnemonic-unix", eol_mnemonic_unix,
11125 doc: /*
11126 String displayed in mode line for UNIX-like (LF) end-of-line format. */);
11127 eol_mnemonic_unix = build_pure_c_string (":");
11128
11129 DEFVAR_LISP ("eol-mnemonic-dos", eol_mnemonic_dos,
11130 doc: /*
11131 String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
11132 eol_mnemonic_dos = build_pure_c_string ("\\");
11133
11134 DEFVAR_LISP ("eol-mnemonic-mac", eol_mnemonic_mac,
11135 doc: /*
11136 String displayed in mode line for MAC-like (CR) end-of-line format. */);
11137 eol_mnemonic_mac = build_pure_c_string ("/");
11138
11139 DEFVAR_LISP ("eol-mnemonic-undecided", eol_mnemonic_undecided,
11140 doc: /*
11141 String displayed in mode line when end-of-line format is not yet determined. */);
11142 eol_mnemonic_undecided = build_pure_c_string (":");
11143
11144 DEFVAR_LISP ("enable-character-translation", Venable_character_translation,
11145 doc: /*
11146 Non-nil enables character translation while encoding and decoding. */);
11147 Venable_character_translation = Qt;
11148
11149 DEFVAR_LISP ("standard-translation-table-for-decode",
11150 Vstandard_translation_table_for_decode,
11151 doc: /* Table for translating characters while decoding. */);
11152 Vstandard_translation_table_for_decode = Qnil;
11153
11154 DEFVAR_LISP ("standard-translation-table-for-encode",
11155 Vstandard_translation_table_for_encode,
11156 doc: /* Table for translating characters while encoding. */);
11157 Vstandard_translation_table_for_encode = Qnil;
11158
11159 DEFVAR_LISP ("charset-revision-table", Vcharset_revision_table,
11160 doc: /* Alist of charsets vs revision numbers.
11161 While encoding, if a charset (car part of an element) is found,
11162 designate it with the escape sequence identifying revision (cdr part
11163 of the element). */);
11164 Vcharset_revision_table = Qnil;
11165
11166 DEFVAR_LISP ("default-process-coding-system",
11167 Vdefault_process_coding_system,
11168 doc: /* Cons of coding systems used for process I/O by default.
11169 The car part is used for decoding a process output,
11170 the cdr part is used for encoding a text to be sent to a process. */);
11171 Vdefault_process_coding_system = Qnil;
11172
11173 DEFVAR_LISP ("latin-extra-code-table", Vlatin_extra_code_table,
11174 doc: /*
11175 Table of extra Latin codes in the range 128..159 (inclusive).
11176 This is a vector of length 256.
11177 If Nth element is non-nil, the existence of code N in a file
11178 (or output of subprocess) doesn't prevent it to be detected as
11179 a coding system of ISO 2022 variant which has a flag
11180 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
11181 or reading output of a subprocess.
11182 Only 128th through 159th elements have a meaning. */);
11183 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
11184
11185 DEFVAR_LISP ("select-safe-coding-system-function",
11186 Vselect_safe_coding_system_function,
11187 doc: /*
11188 Function to call to select safe coding system for encoding a text.
11189
11190 If set, this function is called to force a user to select a proper
11191 coding system which can encode the text in the case that a default
11192 coding system used in each operation can't encode the text. The
11193 function should take care that the buffer is not modified while
11194 the coding system is being selected.
11195
11196 The default value is `select-safe-coding-system' (which see). */);
11197 Vselect_safe_coding_system_function = Qnil;
11198
11199 DEFVAR_BOOL ("coding-system-require-warning",
11200 coding_system_require_warning,
11201 doc: /* Internal use only.
11202 If non-nil, on writing a file, `select-safe-coding-system-function' is
11203 called even if `coding-system-for-write' is non-nil. The command
11204 `universal-coding-system-argument' binds this variable to t temporarily. */);
11205 coding_system_require_warning = 0;
11206
11207
11208 DEFVAR_BOOL ("inhibit-iso-escape-detection",
11209 inhibit_iso_escape_detection,
11210 doc: /*
11211 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
11212
11213 When Emacs reads text, it tries to detect how the text is encoded.
11214 This code detection is sensitive to escape sequences. If Emacs sees
11215 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
11216 of the ISO2022 encodings, and decodes text by the corresponding coding
11217 system (e.g. `iso-2022-7bit').
11218
11219 However, there may be a case that you want to read escape sequences in
11220 a file as is. In such a case, you can set this variable to non-nil.
11221 Then the code detection will ignore any escape sequences, and no text is
11222 detected as encoded in some ISO-2022 encoding. The result is that all
11223 escape sequences become visible in a buffer.
11224
11225 The default value is nil, and it is strongly recommended not to change
11226 it. That is because many Emacs Lisp source files that contain
11227 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
11228 in Emacs's distribution, and they won't be decoded correctly on
11229 reading if you suppress escape sequence detection.
11230
11231 The other way to read escape sequences in a file without decoding is
11232 to explicitly specify some coding system that doesn't use ISO-2022
11233 escape sequence (e.g., `latin-1') on reading by \\[universal-coding-system-argument]. */);
11234 inhibit_iso_escape_detection = 0;
11235
11236 DEFVAR_BOOL ("inhibit-null-byte-detection",
11237 inhibit_null_byte_detection,
11238 doc: /* If non-nil, Emacs ignores null bytes on code detection.
11239 By default, Emacs treats it as binary data, and does not attempt to
11240 decode it. The effect is as if you specified `no-conversion' for
11241 reading that text.
11242
11243 Set this to non-nil when a regular text happens to include null bytes.
11244 Examples are Index nodes of Info files and null-byte delimited output
11245 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
11246 decode text as usual. */);
11247 inhibit_null_byte_detection = 0;
11248
11249 DEFVAR_BOOL ("disable-ascii-optimization", disable_ascii_optimization,
11250 doc: /* If non-nil, Emacs does not optimize code decoder for ASCII files.
11251 Internal use only. Remove after the experimental optimizer becomes stable. */);
11252 disable_ascii_optimization = 0;
11253
11254 DEFVAR_LISP ("translation-table-for-input", Vtranslation_table_for_input,
11255 doc: /* Char table for translating self-inserting characters.
11256 This is applied to the result of input methods, not their input.
11257 See also `keyboard-translate-table'.
11258
11259 Use of this variable for character code unification was rendered
11260 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
11261 internal character representation. */);
11262 Vtranslation_table_for_input = Qnil;
11263
11264 Lisp_Object args[coding_arg_undecided_max];
11265 memclear (args, sizeof args);
11266
11267 Lisp_Object plist[] =
11268 {
11269 QCname,
11270 args[coding_arg_name] = Qno_conversion,
11271 QCmnemonic,
11272 args[coding_arg_mnemonic] = make_number ('='),
11273 intern_c_string (":coding-type"),
11274 args[coding_arg_coding_type] = Qraw_text,
11275 QCascii_compatible_p,
11276 args[coding_arg_ascii_compatible_p] = Qt,
11277 QCdefault_char,
11278 args[coding_arg_default_char] = make_number (0),
11279 intern_c_string (":for-unibyte"),
11280 args[coding_arg_for_unibyte] = Qt,
11281 intern_c_string (":docstring"),
11282 (build_pure_c_string
11283 ("Do no conversion.\n"
11284 "\n"
11285 "When you visit a file with this coding, the file is read into a\n"
11286 "unibyte buffer as is, thus each byte of a file is treated as a\n"
11287 "character.")),
11288 intern_c_string (":eol-type"),
11289 args[coding_arg_eol_type] = Qunix,
11290 };
11291 args[coding_arg_plist] = CALLMANY (Flist, plist);
11292 Fdefine_coding_system_internal (coding_arg_max, args);
11293
11294 plist[1] = args[coding_arg_name] = Qundecided;
11295 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
11296 plist[5] = args[coding_arg_coding_type] = Qundecided;
11297 /* This is already set.
11298 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
11299 plist[8] = intern_c_string (":charset-list");
11300 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
11301 plist[11] = args[coding_arg_for_unibyte] = Qnil;
11302 plist[13] = build_pure_c_string ("No conversion on encoding, "
11303 "automatic conversion on decoding.");
11304 plist[15] = args[coding_arg_eol_type] = Qnil;
11305 args[coding_arg_plist] = CALLMANY (Flist, plist);
11306 args[coding_arg_undecided_inhibit_null_byte_detection] = make_number (0);
11307 args[coding_arg_undecided_inhibit_iso_escape_detection] = make_number (0);
11308 Fdefine_coding_system_internal (coding_arg_undecided_max, args);
11309
11310 setup_coding_system (Qno_conversion, &safe_terminal_coding);
11311
11312 for (int i = 0; i < coding_category_max; i++)
11313 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
11314
11315 #if defined (DOS_NT)
11316 system_eol_type = Qdos;
11317 #else
11318 system_eol_type = Qunix;
11319 #endif
11320 staticpro (&system_eol_type);
11321 }
11322
11323 char *
11324 emacs_strerror (int error_number)
11325 {
11326 char *str;
11327
11328 synchronize_system_messages_locale ();
11329 str = strerror (error_number);
11330
11331 if (! NILP (Vlocale_coding_system))
11332 {
11333 Lisp_Object dec = code_convert_string_norecord (build_string (str),
11334 Vlocale_coding_system,
11335 0);
11336 str = SSDATA (dec);
11337 }
11338
11339 return str;
11340 }
11341
11342 #endif /* emacs */