]> code.delx.au - gnu-emacs/blob - src/alloc.c
(case table): Do nothing special for i and I.
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 /* Note that this declares bzero on OSF/1. How dumb. */
35
36 #include <signal.h>
37
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
41
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
45
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "charset.h"
57 #include "syssignal.h"
58 #include <setjmp.h>
59
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
62
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
72
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
80
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #else /* not DOUG_LEA_MALLOC */
100
101 /* The following come from gmalloc.c. */
102
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
115
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
122
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127
128 static pthread_mutex_t alloc_mutex;
129
130 #define BLOCK_INPUT_ALLOC \
131 do \
132 { \
133 if (pthread_self () == main_thread) \
134 BLOCK_INPUT; \
135 pthread_mutex_lock (&alloc_mutex); \
136 } \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
140 { \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_self () == main_thread) \
143 UNBLOCK_INPUT; \
144 } \
145 while (0)
146
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153
154 /* Value of _bytes_used, when spare_memory was freed. */
155
156 static __malloc_size_t bytes_used_when_full;
157
158 static __malloc_size_t bytes_used_when_reconsidered;
159
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
162
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
175
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178
179 /* Number of bytes of consing done since the last gc. */
180
181 int consing_since_gc;
182
183 /* Count the amount of consing of various sorts of space. */
184
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
193
194 /* Minimum number of bytes of consing since GC before next GC. */
195
196 EMACS_INT gc_cons_threshold;
197
198 /* Similar minimum, computed from Vgc_cons_percentage. */
199
200 EMACS_INT gc_relative_threshold;
201
202 static Lisp_Object Vgc_cons_percentage;
203
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
206
207 EMACS_INT memory_full_cons_threshold;
208
209 /* Nonzero during GC. */
210
211 int gc_in_progress;
212
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
216
217 int abort_on_gc;
218
219 /* Nonzero means display messages at beginning and end of GC. */
220
221 int garbage_collection_messages;
222
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
227
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
232
233 /* Number of live and free conses etc. */
234
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
238
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
242
243 char *spare_memory[7];
244
245 /* Amount of spare memory to keep in large reserve block. */
246
247 #define SPARE_MEMORY (1 << 14)
248
249 /* Number of extra blocks malloc should get when it needs more core. */
250
251 static int malloc_hysteresis;
252
253 /* Non-nil means defun should do purecopy on the function definition. */
254
255 Lisp_Object Vpurify_flag;
256
257 /* Non-nil means we are handling a memory-full error. */
258
259 Lisp_Object Vmemory_full;
260
261 #ifndef HAVE_SHM
262
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
268
269 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
271
272 #else /* HAVE_SHM */
273
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
276
277 #endif /* HAVE_SHM */
278
279 /* Pointer to the pure area, and its size. */
280
281 static char *purebeg;
282 static size_t pure_size;
283
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
286
287 static size_t pure_bytes_used_before_overflow;
288
289 /* Value is non-zero if P points into pure space. */
290
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
296
297 /* Total number of bytes allocated in pure storage. */
298
299 EMACS_INT pure_bytes_used;
300
301 /* Index in pure at which next pure Lisp object will be allocated.. */
302
303 static EMACS_INT pure_bytes_used_lisp;
304
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
306
307 static EMACS_INT pure_bytes_used_non_lisp;
308
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
311
312 char *pending_malloc_warning;
313
314 /* Pre-computed signal argument for use when memory is exhausted. */
315
316 Lisp_Object Vmemory_signal_data;
317
318 /* Maximum amount of C stack to save when a GC happens. */
319
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
323
324 /* Buffer in which we save a copy of the C stack at each GC. */
325
326 char *stack_copy;
327 int stack_copy_size;
328
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
331
332 int ignore_warnings;
333
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
335
336 /* Hook run after GC has finished. */
337
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
342
343 static void mark_buffer P_ ((Lisp_Object));
344 extern void mark_kboards P_ ((void));
345 extern void mark_backtrace P_ ((void));
346 static void gc_sweep P_ ((void));
347 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
348 static void mark_face_cache P_ ((struct face_cache *));
349
350 #ifdef HAVE_WINDOW_SYSTEM
351 extern void mark_fringe_data P_ ((void));
352 static void mark_image P_ ((struct image *));
353 static void mark_image_cache P_ ((struct frame *));
354 #endif /* HAVE_WINDOW_SYSTEM */
355
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
360
361 extern int message_enable_multibyte;
362
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
366
367 enum mem_type
368 {
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Keep the following vector-like types together, with
377 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
378 first. Or change the code of live_vector_p, for instance. */
379 MEM_TYPE_VECTOR,
380 MEM_TYPE_PROCESS,
381 MEM_TYPE_HASH_TABLE,
382 MEM_TYPE_FRAME,
383 MEM_TYPE_WINDOW
384 };
385
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
389
390
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
396
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400 Lisp_Object Vdead;
401
402 #ifdef GC_MALLOC_CHECK
403
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
406
407 #endif /* GC_MALLOC_CHECK */
408
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433 struct mem_node
434 {
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
447
448 /* Memory type. */
449 enum mem_type type;
450 };
451
452 /* Base address of stack. Set in main. */
453
454 Lisp_Object *stack_base;
455
456 /* Root of the tree describing allocated Lisp memory. */
457
458 static struct mem_node *mem_root;
459
460 /* Lowest and highest known address in the heap. */
461
462 static void *min_heap_address, *max_heap_address;
463
464 /* Sentinel node of the tree. */
465
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
468
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
495
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498 /* Recording what needs to be marked for gc. */
499
500 struct gcpro *gcprolist;
501
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
504
505 #define NSTATICS 1280
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508 /* Index of next unused slot in staticvec. */
509
510 int staticidx = 0;
511
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
521
522
523 \f
524 /************************************************************************
525 Malloc
526 ************************************************************************/
527
528 /* Function malloc calls this if it finds we are near exhausting storage. */
529
530 void
531 malloc_warning (str)
532 char *str;
533 {
534 pending_malloc_warning = str;
535 }
536
537
538 /* Display an already-pending malloc warning. */
539
540 void
541 display_malloc_warning ()
542 {
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
548 }
549
550
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
556 \f
557 /* Called if we can't allocate relocatable space for a buffer. */
558
559 void
560 buffer_memory_full ()
561 {
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
568
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
572
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
576 }
577
578
579 #ifdef XMALLOC_OVERRUN_CHECK
580
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590 */
591
592
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
606 /* Macros to insert and extract the block size in the header. */
607
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
632
633 (time passes).
634
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
639
640 static int check_depth;
641
642 /* Like malloc, but wraps allocated block with header and trailer. */
643
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
647 {
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 --check_depth;
660 return (POINTER_TYPE *)val;
661 }
662
663
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671 {
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689 }
690
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693 if (val && check_depth == 1)
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
700 --check_depth;
701 return (POINTER_TYPE *)val;
702 }
703
704 /* Like free, but checks block for overrun. */
705
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
709 {
710 unsigned char *val = (unsigned char *)block;
711
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
732 }
733
734 free (val);
735 --check_depth;
736 }
737
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
745
746
747 /* Like malloc but check for no memory and block interrupt input.. */
748
749 POINTER_TYPE *
750 xmalloc (size)
751 size_t size;
752 {
753 register POINTER_TYPE *val;
754
755 BLOCK_INPUT;
756 val = (POINTER_TYPE *) malloc (size);
757 UNBLOCK_INPUT;
758
759 if (!val && size)
760 memory_full ();
761 return val;
762 }
763
764
765 /* Like realloc but check for no memory and block interrupt input.. */
766
767 POINTER_TYPE *
768 xrealloc (block, size)
769 POINTER_TYPE *block;
770 size_t size;
771 {
772 register POINTER_TYPE *val;
773
774 BLOCK_INPUT;
775 /* We must call malloc explicitly when BLOCK is 0, since some
776 reallocs don't do this. */
777 if (! block)
778 val = (POINTER_TYPE *) malloc (size);
779 else
780 val = (POINTER_TYPE *) realloc (block, size);
781 UNBLOCK_INPUT;
782
783 if (!val && size) memory_full ();
784 return val;
785 }
786
787
788 /* Like free but block interrupt input. */
789
790 void
791 xfree (block)
792 POINTER_TYPE *block;
793 {
794 BLOCK_INPUT;
795 free (block);
796 UNBLOCK_INPUT;
797 /* We don't call refill_memory_reserve here
798 because that duplicates doing so in emacs_blocked_free
799 and the criterion should go there. */
800 }
801
802
803 /* Like strdup, but uses xmalloc. */
804
805 char *
806 xstrdup (s)
807 const char *s;
808 {
809 size_t len = strlen (s) + 1;
810 char *p = (char *) xmalloc (len);
811 bcopy (s, p, len);
812 return p;
813 }
814
815
816 /* Unwind for SAFE_ALLOCA */
817
818 Lisp_Object
819 safe_alloca_unwind (arg)
820 Lisp_Object arg;
821 {
822 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
823
824 p->dogc = 0;
825 xfree (p->pointer);
826 p->pointer = 0;
827 free_misc (arg);
828 return Qnil;
829 }
830
831
832 /* Like malloc but used for allocating Lisp data. NBYTES is the
833 number of bytes to allocate, TYPE describes the intended use of the
834 allcated memory block (for strings, for conses, ...). */
835
836 #ifndef USE_LSB_TAG
837 static void *lisp_malloc_loser;
838 #endif
839
840 static POINTER_TYPE *
841 lisp_malloc (nbytes, type)
842 size_t nbytes;
843 enum mem_type type;
844 {
845 register void *val;
846
847 BLOCK_INPUT;
848
849 #ifdef GC_MALLOC_CHECK
850 allocated_mem_type = type;
851 #endif
852
853 val = (void *) malloc (nbytes);
854
855 #ifndef USE_LSB_TAG
856 /* If the memory just allocated cannot be addressed thru a Lisp
857 object's pointer, and it needs to be,
858 that's equivalent to running out of memory. */
859 if (val && type != MEM_TYPE_NON_LISP)
860 {
861 Lisp_Object tem;
862 XSETCONS (tem, (char *) val + nbytes - 1);
863 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
864 {
865 lisp_malloc_loser = val;
866 free (val);
867 val = 0;
868 }
869 }
870 #endif
871
872 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
873 if (val && type != MEM_TYPE_NON_LISP)
874 mem_insert (val, (char *) val + nbytes, type);
875 #endif
876
877 UNBLOCK_INPUT;
878 if (!val && nbytes)
879 memory_full ();
880 return val;
881 }
882
883 /* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
885
886 static void
887 lisp_free (block)
888 POINTER_TYPE *block;
889 {
890 BLOCK_INPUT;
891 free (block);
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 mem_delete (mem_find (block));
894 #endif
895 UNBLOCK_INPUT;
896 }
897
898 /* Allocation of aligned blocks of memory to store Lisp data. */
899 /* The entry point is lisp_align_malloc which returns blocks of at most */
900 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
901
902 /* Use posix_memalloc if the system has it and we're using the system's
903 malloc (because our gmalloc.c routines don't have posix_memalign although
904 its memalloc could be used). */
905 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906 #define USE_POSIX_MEMALIGN 1
907 #endif
908
909 /* BLOCK_ALIGN has to be a power of 2. */
910 #define BLOCK_ALIGN (1 << 10)
911
912 /* Padding to leave at the end of a malloc'd block. This is to give
913 malloc a chance to minimize the amount of memory wasted to alignment.
914 It should be tuned to the particular malloc library used.
915 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916 posix_memalign on the other hand would ideally prefer a value of 4
917 because otherwise, there's 1020 bytes wasted between each ablocks.
918 In Emacs, testing shows that those 1020 can most of the time be
919 efficiently used by malloc to place other objects, so a value of 0 can
920 still preferable unless you have a lot of aligned blocks and virtually
921 nothing else. */
922 #define BLOCK_PADDING 0
923 #define BLOCK_BYTES \
924 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
925
926 /* Internal data structures and constants. */
927
928 #define ABLOCKS_SIZE 16
929
930 /* An aligned block of memory. */
931 struct ablock
932 {
933 union
934 {
935 char payload[BLOCK_BYTES];
936 struct ablock *next_free;
937 } x;
938 /* `abase' is the aligned base of the ablocks. */
939 /* It is overloaded to hold the virtual `busy' field that counts
940 the number of used ablock in the parent ablocks.
941 The first ablock has the `busy' field, the others have the `abase'
942 field. To tell the difference, we assume that pointers will have
943 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
944 is used to tell whether the real base of the parent ablocks is `abase'
945 (if not, the word before the first ablock holds a pointer to the
946 real base). */
947 struct ablocks *abase;
948 /* The padding of all but the last ablock is unused. The padding of
949 the last ablock in an ablocks is not allocated. */
950 #if BLOCK_PADDING
951 char padding[BLOCK_PADDING];
952 #endif
953 };
954
955 /* A bunch of consecutive aligned blocks. */
956 struct ablocks
957 {
958 struct ablock blocks[ABLOCKS_SIZE];
959 };
960
961 /* Size of the block requested from malloc or memalign. */
962 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
963
964 #define ABLOCK_ABASE(block) \
965 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
966 ? (struct ablocks *)(block) \
967 : (block)->abase)
968
969 /* Virtual `busy' field. */
970 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
971
972 /* Pointer to the (not necessarily aligned) malloc block. */
973 #ifdef USE_POSIX_MEMALIGN
974 #define ABLOCKS_BASE(abase) (abase)
975 #else
976 #define ABLOCKS_BASE(abase) \
977 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
978 #endif
979
980 /* The list of free ablock. */
981 static struct ablock *free_ablock;
982
983 /* Allocate an aligned block of nbytes.
984 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985 smaller or equal to BLOCK_BYTES. */
986 static POINTER_TYPE *
987 lisp_align_malloc (nbytes, type)
988 size_t nbytes;
989 enum mem_type type;
990 {
991 void *base, *val;
992 struct ablocks *abase;
993
994 eassert (nbytes <= BLOCK_BYTES);
995
996 BLOCK_INPUT;
997
998 #ifdef GC_MALLOC_CHECK
999 allocated_mem_type = type;
1000 #endif
1001
1002 if (!free_ablock)
1003 {
1004 int i;
1005 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1006
1007 #ifdef DOUG_LEA_MALLOC
1008 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1009 because mapped region contents are not preserved in
1010 a dumped Emacs. */
1011 mallopt (M_MMAP_MAX, 0);
1012 #endif
1013
1014 #ifdef USE_POSIX_MEMALIGN
1015 {
1016 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1017 if (err)
1018 base = NULL;
1019 abase = base;
1020 }
1021 #else
1022 base = malloc (ABLOCKS_BYTES);
1023 abase = ALIGN (base, BLOCK_ALIGN);
1024 #endif
1025
1026 if (base == 0)
1027 {
1028 UNBLOCK_INPUT;
1029 memory_full ();
1030 }
1031
1032 aligned = (base == abase);
1033 if (!aligned)
1034 ((void**)abase)[-1] = base;
1035
1036 #ifdef DOUG_LEA_MALLOC
1037 /* Back to a reasonable maximum of mmap'ed areas. */
1038 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1039 #endif
1040
1041 #ifndef USE_LSB_TAG
1042 /* If the memory just allocated cannot be addressed thru a Lisp
1043 object's pointer, and it needs to be, that's equivalent to
1044 running out of memory. */
1045 if (type != MEM_TYPE_NON_LISP)
1046 {
1047 Lisp_Object tem;
1048 char *end = (char *) base + ABLOCKS_BYTES - 1;
1049 XSETCONS (tem, end);
1050 if ((char *) XCONS (tem) != end)
1051 {
1052 lisp_malloc_loser = base;
1053 free (base);
1054 UNBLOCK_INPUT;
1055 memory_full ();
1056 }
1057 }
1058 #endif
1059
1060 /* Initialize the blocks and put them on the free list.
1061 Is `base' was not properly aligned, we can't use the last block. */
1062 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1063 {
1064 abase->blocks[i].abase = abase;
1065 abase->blocks[i].x.next_free = free_ablock;
1066 free_ablock = &abase->blocks[i];
1067 }
1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1069
1070 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1071 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1072 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1073 eassert (ABLOCKS_BASE (abase) == base);
1074 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1075 }
1076
1077 abase = ABLOCK_ABASE (free_ablock);
1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1079 val = free_ablock;
1080 free_ablock = free_ablock->x.next_free;
1081
1082 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1083 if (val && type != MEM_TYPE_NON_LISP)
1084 mem_insert (val, (char *) val + nbytes, type);
1085 #endif
1086
1087 UNBLOCK_INPUT;
1088 if (!val && nbytes)
1089 memory_full ();
1090
1091 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1092 return val;
1093 }
1094
1095 static void
1096 lisp_align_free (block)
1097 POINTER_TYPE *block;
1098 {
1099 struct ablock *ablock = block;
1100 struct ablocks *abase = ABLOCK_ABASE (ablock);
1101
1102 BLOCK_INPUT;
1103 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1104 mem_delete (mem_find (block));
1105 #endif
1106 /* Put on free list. */
1107 ablock->x.next_free = free_ablock;
1108 free_ablock = ablock;
1109 /* Update busy count. */
1110 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1111
1112 if (2 > (long) ABLOCKS_BUSY (abase))
1113 { /* All the blocks are free. */
1114 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1115 struct ablock **tem = &free_ablock;
1116 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1117
1118 while (*tem)
1119 {
1120 if (*tem >= (struct ablock *) abase && *tem < atop)
1121 {
1122 i++;
1123 *tem = (*tem)->x.next_free;
1124 }
1125 else
1126 tem = &(*tem)->x.next_free;
1127 }
1128 eassert ((aligned & 1) == aligned);
1129 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1130 #ifdef USE_POSIX_MEMALIGN
1131 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1132 #endif
1133 free (ABLOCKS_BASE (abase));
1134 }
1135 UNBLOCK_INPUT;
1136 }
1137
1138 /* Return a new buffer structure allocated from the heap with
1139 a call to lisp_malloc. */
1140
1141 struct buffer *
1142 allocate_buffer ()
1143 {
1144 struct buffer *b
1145 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1146 MEM_TYPE_BUFFER);
1147 return b;
1148 }
1149
1150 \f
1151 #ifndef SYSTEM_MALLOC
1152
1153 /* Arranging to disable input signals while we're in malloc.
1154
1155 This only works with GNU malloc. To help out systems which can't
1156 use GNU malloc, all the calls to malloc, realloc, and free
1157 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1158 pair; unfortunately, we have no idea what C library functions
1159 might call malloc, so we can't really protect them unless you're
1160 using GNU malloc. Fortunately, most of the major operating systems
1161 can use GNU malloc. */
1162
1163 #ifndef SYNC_INPUT
1164
1165 #ifndef DOUG_LEA_MALLOC
1166 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1167 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1168 extern void (*__free_hook) P_ ((void *, const void *));
1169 /* Else declared in malloc.h, perhaps with an extra arg. */
1170 #endif /* DOUG_LEA_MALLOC */
1171 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1172 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1173 static void (*old_free_hook) P_ ((void*, const void*));
1174
1175 /* This function is used as the hook for free to call. */
1176
1177 static void
1178 emacs_blocked_free (ptr, ptr2)
1179 void *ptr;
1180 const void *ptr2;
1181 {
1182 EMACS_INT bytes_used_now;
1183
1184 BLOCK_INPUT_ALLOC;
1185
1186 #ifdef GC_MALLOC_CHECK
1187 if (ptr)
1188 {
1189 struct mem_node *m;
1190
1191 m = mem_find (ptr);
1192 if (m == MEM_NIL || m->start != ptr)
1193 {
1194 fprintf (stderr,
1195 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1196 abort ();
1197 }
1198 else
1199 {
1200 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1201 mem_delete (m);
1202 }
1203 }
1204 #endif /* GC_MALLOC_CHECK */
1205
1206 __free_hook = old_free_hook;
1207 free (ptr);
1208
1209 /* If we released our reserve (due to running out of memory),
1210 and we have a fair amount free once again,
1211 try to set aside another reserve in case we run out once more. */
1212 if (! NILP (Vmemory_full)
1213 /* Verify there is enough space that even with the malloc
1214 hysteresis this call won't run out again.
1215 The code here is correct as long as SPARE_MEMORY
1216 is substantially larger than the block size malloc uses. */
1217 && (bytes_used_when_full
1218 > ((bytes_used_when_reconsidered = BYTES_USED)
1219 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1220 refill_memory_reserve ();
1221
1222 __free_hook = emacs_blocked_free;
1223 UNBLOCK_INPUT_ALLOC;
1224 }
1225
1226
1227 /* This function is the malloc hook that Emacs uses. */
1228
1229 static void *
1230 emacs_blocked_malloc (size, ptr)
1231 size_t size;
1232 const void *ptr;
1233 {
1234 void *value;
1235
1236 BLOCK_INPUT_ALLOC;
1237 __malloc_hook = old_malloc_hook;
1238 #ifdef DOUG_LEA_MALLOC
1239 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1240 #else
1241 __malloc_extra_blocks = malloc_hysteresis;
1242 #endif
1243
1244 value = (void *) malloc (size);
1245
1246 #ifdef GC_MALLOC_CHECK
1247 {
1248 struct mem_node *m = mem_find (value);
1249 if (m != MEM_NIL)
1250 {
1251 fprintf (stderr, "Malloc returned %p which is already in use\n",
1252 value);
1253 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1254 m->start, m->end, (char *) m->end - (char *) m->start,
1255 m->type);
1256 abort ();
1257 }
1258
1259 if (!dont_register_blocks)
1260 {
1261 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1262 allocated_mem_type = MEM_TYPE_NON_LISP;
1263 }
1264 }
1265 #endif /* GC_MALLOC_CHECK */
1266
1267 __malloc_hook = emacs_blocked_malloc;
1268 UNBLOCK_INPUT_ALLOC;
1269
1270 /* fprintf (stderr, "%p malloc\n", value); */
1271 return value;
1272 }
1273
1274
1275 /* This function is the realloc hook that Emacs uses. */
1276
1277 static void *
1278 emacs_blocked_realloc (ptr, size, ptr2)
1279 void *ptr;
1280 size_t size;
1281 const void *ptr2;
1282 {
1283 void *value;
1284
1285 BLOCK_INPUT_ALLOC;
1286 __realloc_hook = old_realloc_hook;
1287
1288 #ifdef GC_MALLOC_CHECK
1289 if (ptr)
1290 {
1291 struct mem_node *m = mem_find (ptr);
1292 if (m == MEM_NIL || m->start != ptr)
1293 {
1294 fprintf (stderr,
1295 "Realloc of %p which wasn't allocated with malloc\n",
1296 ptr);
1297 abort ();
1298 }
1299
1300 mem_delete (m);
1301 }
1302
1303 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1304
1305 /* Prevent malloc from registering blocks. */
1306 dont_register_blocks = 1;
1307 #endif /* GC_MALLOC_CHECK */
1308
1309 value = (void *) realloc (ptr, size);
1310
1311 #ifdef GC_MALLOC_CHECK
1312 dont_register_blocks = 0;
1313
1314 {
1315 struct mem_node *m = mem_find (value);
1316 if (m != MEM_NIL)
1317 {
1318 fprintf (stderr, "Realloc returns memory that is already in use\n");
1319 abort ();
1320 }
1321
1322 /* Can't handle zero size regions in the red-black tree. */
1323 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1324 }
1325
1326 /* fprintf (stderr, "%p <- realloc\n", value); */
1327 #endif /* GC_MALLOC_CHECK */
1328
1329 __realloc_hook = emacs_blocked_realloc;
1330 UNBLOCK_INPUT_ALLOC;
1331
1332 return value;
1333 }
1334
1335
1336 #ifdef HAVE_GTK_AND_PTHREAD
1337 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1338 normal malloc. Some thread implementations need this as they call
1339 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1340 calls malloc because it is the first call, and we have an endless loop. */
1341
1342 void
1343 reset_malloc_hooks ()
1344 {
1345 __free_hook = 0;
1346 __malloc_hook = 0;
1347 __realloc_hook = 0;
1348 }
1349 #endif /* HAVE_GTK_AND_PTHREAD */
1350
1351
1352 /* Called from main to set up malloc to use our hooks. */
1353
1354 void
1355 uninterrupt_malloc ()
1356 {
1357 #ifdef HAVE_GTK_AND_PTHREAD
1358 pthread_mutexattr_t attr;
1359
1360 /* GLIBC has a faster way to do this, but lets keep it portable.
1361 This is according to the Single UNIX Specification. */
1362 pthread_mutexattr_init (&attr);
1363 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1364 pthread_mutex_init (&alloc_mutex, &attr);
1365 #endif /* HAVE_GTK_AND_PTHREAD */
1366
1367 if (__free_hook != emacs_blocked_free)
1368 old_free_hook = __free_hook;
1369 __free_hook = emacs_blocked_free;
1370
1371 if (__malloc_hook != emacs_blocked_malloc)
1372 old_malloc_hook = __malloc_hook;
1373 __malloc_hook = emacs_blocked_malloc;
1374
1375 if (__realloc_hook != emacs_blocked_realloc)
1376 old_realloc_hook = __realloc_hook;
1377 __realloc_hook = emacs_blocked_realloc;
1378 }
1379
1380 #endif /* not SYNC_INPUT */
1381 #endif /* not SYSTEM_MALLOC */
1382
1383
1384 \f
1385 /***********************************************************************
1386 Interval Allocation
1387 ***********************************************************************/
1388
1389 /* Number of intervals allocated in an interval_block structure.
1390 The 1020 is 1024 minus malloc overhead. */
1391
1392 #define INTERVAL_BLOCK_SIZE \
1393 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1394
1395 /* Intervals are allocated in chunks in form of an interval_block
1396 structure. */
1397
1398 struct interval_block
1399 {
1400 /* Place `intervals' first, to preserve alignment. */
1401 struct interval intervals[INTERVAL_BLOCK_SIZE];
1402 struct interval_block *next;
1403 };
1404
1405 /* Current interval block. Its `next' pointer points to older
1406 blocks. */
1407
1408 struct interval_block *interval_block;
1409
1410 /* Index in interval_block above of the next unused interval
1411 structure. */
1412
1413 static int interval_block_index;
1414
1415 /* Number of free and live intervals. */
1416
1417 static int total_free_intervals, total_intervals;
1418
1419 /* List of free intervals. */
1420
1421 INTERVAL interval_free_list;
1422
1423 /* Total number of interval blocks now in use. */
1424
1425 int n_interval_blocks;
1426
1427
1428 /* Initialize interval allocation. */
1429
1430 static void
1431 init_intervals ()
1432 {
1433 interval_block = NULL;
1434 interval_block_index = INTERVAL_BLOCK_SIZE;
1435 interval_free_list = 0;
1436 n_interval_blocks = 0;
1437 }
1438
1439
1440 /* Return a new interval. */
1441
1442 INTERVAL
1443 make_interval ()
1444 {
1445 INTERVAL val;
1446
1447 /* eassert (!handling_signal); */
1448
1449 #ifndef SYNC_INPUT
1450 BLOCK_INPUT;
1451 #endif
1452
1453 if (interval_free_list)
1454 {
1455 val = interval_free_list;
1456 interval_free_list = INTERVAL_PARENT (interval_free_list);
1457 }
1458 else
1459 {
1460 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1461 {
1462 register struct interval_block *newi;
1463
1464 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1465 MEM_TYPE_NON_LISP);
1466
1467 newi->next = interval_block;
1468 interval_block = newi;
1469 interval_block_index = 0;
1470 n_interval_blocks++;
1471 }
1472 val = &interval_block->intervals[interval_block_index++];
1473 }
1474
1475 #ifndef SYNC_INPUT
1476 UNBLOCK_INPUT;
1477 #endif
1478
1479 consing_since_gc += sizeof (struct interval);
1480 intervals_consed++;
1481 RESET_INTERVAL (val);
1482 val->gcmarkbit = 0;
1483 return val;
1484 }
1485
1486
1487 /* Mark Lisp objects in interval I. */
1488
1489 static void
1490 mark_interval (i, dummy)
1491 register INTERVAL i;
1492 Lisp_Object dummy;
1493 {
1494 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1495 i->gcmarkbit = 1;
1496 mark_object (i->plist);
1497 }
1498
1499
1500 /* Mark the interval tree rooted in TREE. Don't call this directly;
1501 use the macro MARK_INTERVAL_TREE instead. */
1502
1503 static void
1504 mark_interval_tree (tree)
1505 register INTERVAL tree;
1506 {
1507 /* No need to test if this tree has been marked already; this
1508 function is always called through the MARK_INTERVAL_TREE macro,
1509 which takes care of that. */
1510
1511 traverse_intervals_noorder (tree, mark_interval, Qnil);
1512 }
1513
1514
1515 /* Mark the interval tree rooted in I. */
1516
1517 #define MARK_INTERVAL_TREE(i) \
1518 do { \
1519 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1520 mark_interval_tree (i); \
1521 } while (0)
1522
1523
1524 #define UNMARK_BALANCE_INTERVALS(i) \
1525 do { \
1526 if (! NULL_INTERVAL_P (i)) \
1527 (i) = balance_intervals (i); \
1528 } while (0)
1529
1530 \f
1531 /* Number support. If NO_UNION_TYPE isn't in effect, we
1532 can't create number objects in macros. */
1533 #ifndef make_number
1534 Lisp_Object
1535 make_number (n)
1536 EMACS_INT n;
1537 {
1538 Lisp_Object obj;
1539 obj.s.val = n;
1540 obj.s.type = Lisp_Int;
1541 return obj;
1542 }
1543 #endif
1544 \f
1545 /***********************************************************************
1546 String Allocation
1547 ***********************************************************************/
1548
1549 /* Lisp_Strings are allocated in string_block structures. When a new
1550 string_block is allocated, all the Lisp_Strings it contains are
1551 added to a free-list string_free_list. When a new Lisp_String is
1552 needed, it is taken from that list. During the sweep phase of GC,
1553 string_blocks that are entirely free are freed, except two which
1554 we keep.
1555
1556 String data is allocated from sblock structures. Strings larger
1557 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1558 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1559
1560 Sblocks consist internally of sdata structures, one for each
1561 Lisp_String. The sdata structure points to the Lisp_String it
1562 belongs to. The Lisp_String points back to the `u.data' member of
1563 its sdata structure.
1564
1565 When a Lisp_String is freed during GC, it is put back on
1566 string_free_list, and its `data' member and its sdata's `string'
1567 pointer is set to null. The size of the string is recorded in the
1568 `u.nbytes' member of the sdata. So, sdata structures that are no
1569 longer used, can be easily recognized, and it's easy to compact the
1570 sblocks of small strings which we do in compact_small_strings. */
1571
1572 /* Size in bytes of an sblock structure used for small strings. This
1573 is 8192 minus malloc overhead. */
1574
1575 #define SBLOCK_SIZE 8188
1576
1577 /* Strings larger than this are considered large strings. String data
1578 for large strings is allocated from individual sblocks. */
1579
1580 #define LARGE_STRING_BYTES 1024
1581
1582 /* Structure describing string memory sub-allocated from an sblock.
1583 This is where the contents of Lisp strings are stored. */
1584
1585 struct sdata
1586 {
1587 /* Back-pointer to the string this sdata belongs to. If null, this
1588 structure is free, and the NBYTES member of the union below
1589 contains the string's byte size (the same value that STRING_BYTES
1590 would return if STRING were non-null). If non-null, STRING_BYTES
1591 (STRING) is the size of the data, and DATA contains the string's
1592 contents. */
1593 struct Lisp_String *string;
1594
1595 #ifdef GC_CHECK_STRING_BYTES
1596
1597 EMACS_INT nbytes;
1598 unsigned char data[1];
1599
1600 #define SDATA_NBYTES(S) (S)->nbytes
1601 #define SDATA_DATA(S) (S)->data
1602
1603 #else /* not GC_CHECK_STRING_BYTES */
1604
1605 union
1606 {
1607 /* When STRING in non-null. */
1608 unsigned char data[1];
1609
1610 /* When STRING is null. */
1611 EMACS_INT nbytes;
1612 } u;
1613
1614
1615 #define SDATA_NBYTES(S) (S)->u.nbytes
1616 #define SDATA_DATA(S) (S)->u.data
1617
1618 #endif /* not GC_CHECK_STRING_BYTES */
1619 };
1620
1621
1622 /* Structure describing a block of memory which is sub-allocated to
1623 obtain string data memory for strings. Blocks for small strings
1624 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1625 as large as needed. */
1626
1627 struct sblock
1628 {
1629 /* Next in list. */
1630 struct sblock *next;
1631
1632 /* Pointer to the next free sdata block. This points past the end
1633 of the sblock if there isn't any space left in this block. */
1634 struct sdata *next_free;
1635
1636 /* Start of data. */
1637 struct sdata first_data;
1638 };
1639
1640 /* Number of Lisp strings in a string_block structure. The 1020 is
1641 1024 minus malloc overhead. */
1642
1643 #define STRING_BLOCK_SIZE \
1644 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1645
1646 /* Structure describing a block from which Lisp_String structures
1647 are allocated. */
1648
1649 struct string_block
1650 {
1651 /* Place `strings' first, to preserve alignment. */
1652 struct Lisp_String strings[STRING_BLOCK_SIZE];
1653 struct string_block *next;
1654 };
1655
1656 /* Head and tail of the list of sblock structures holding Lisp string
1657 data. We always allocate from current_sblock. The NEXT pointers
1658 in the sblock structures go from oldest_sblock to current_sblock. */
1659
1660 static struct sblock *oldest_sblock, *current_sblock;
1661
1662 /* List of sblocks for large strings. */
1663
1664 static struct sblock *large_sblocks;
1665
1666 /* List of string_block structures, and how many there are. */
1667
1668 static struct string_block *string_blocks;
1669 static int n_string_blocks;
1670
1671 /* Free-list of Lisp_Strings. */
1672
1673 static struct Lisp_String *string_free_list;
1674
1675 /* Number of live and free Lisp_Strings. */
1676
1677 static int total_strings, total_free_strings;
1678
1679 /* Number of bytes used by live strings. */
1680
1681 static int total_string_size;
1682
1683 /* Given a pointer to a Lisp_String S which is on the free-list
1684 string_free_list, return a pointer to its successor in the
1685 free-list. */
1686
1687 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1688
1689 /* Return a pointer to the sdata structure belonging to Lisp string S.
1690 S must be live, i.e. S->data must not be null. S->data is actually
1691 a pointer to the `u.data' member of its sdata structure; the
1692 structure starts at a constant offset in front of that. */
1693
1694 #ifdef GC_CHECK_STRING_BYTES
1695
1696 #define SDATA_OF_STRING(S) \
1697 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1698 - sizeof (EMACS_INT)))
1699
1700 #else /* not GC_CHECK_STRING_BYTES */
1701
1702 #define SDATA_OF_STRING(S) \
1703 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1704
1705 #endif /* not GC_CHECK_STRING_BYTES */
1706
1707
1708 #ifdef GC_CHECK_STRING_OVERRUN
1709
1710 /* We check for overrun in string data blocks by appending a small
1711 "cookie" after each allocated string data block, and check for the
1712 presence of this cookie during GC. */
1713
1714 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1715 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1716 { 0xde, 0xad, 0xbe, 0xef };
1717
1718 #else
1719 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1720 #endif
1721
1722 /* Value is the size of an sdata structure large enough to hold NBYTES
1723 bytes of string data. The value returned includes a terminating
1724 NUL byte, the size of the sdata structure, and padding. */
1725
1726 #ifdef GC_CHECK_STRING_BYTES
1727
1728 #define SDATA_SIZE(NBYTES) \
1729 ((sizeof (struct Lisp_String *) \
1730 + (NBYTES) + 1 \
1731 + sizeof (EMACS_INT) \
1732 + sizeof (EMACS_INT) - 1) \
1733 & ~(sizeof (EMACS_INT) - 1))
1734
1735 #else /* not GC_CHECK_STRING_BYTES */
1736
1737 #define SDATA_SIZE(NBYTES) \
1738 ((sizeof (struct Lisp_String *) \
1739 + (NBYTES) + 1 \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1742
1743 #endif /* not GC_CHECK_STRING_BYTES */
1744
1745 /* Extra bytes to allocate for each string. */
1746
1747 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1748
1749 /* Initialize string allocation. Called from init_alloc_once. */
1750
1751 void
1752 init_strings ()
1753 {
1754 total_strings = total_free_strings = total_string_size = 0;
1755 oldest_sblock = current_sblock = large_sblocks = NULL;
1756 string_blocks = NULL;
1757 n_string_blocks = 0;
1758 string_free_list = NULL;
1759 }
1760
1761
1762 #ifdef GC_CHECK_STRING_BYTES
1763
1764 static int check_string_bytes_count;
1765
1766 void check_string_bytes P_ ((int));
1767 void check_sblock P_ ((struct sblock *));
1768
1769 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1770
1771
1772 /* Like GC_STRING_BYTES, but with debugging check. */
1773
1774 int
1775 string_bytes (s)
1776 struct Lisp_String *s;
1777 {
1778 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1779 if (!PURE_POINTER_P (s)
1780 && s->data
1781 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1782 abort ();
1783 return nbytes;
1784 }
1785
1786 /* Check validity of Lisp strings' string_bytes member in B. */
1787
1788 void
1789 check_sblock (b)
1790 struct sblock *b;
1791 {
1792 struct sdata *from, *end, *from_end;
1793
1794 end = b->next_free;
1795
1796 for (from = &b->first_data; from < end; from = from_end)
1797 {
1798 /* Compute the next FROM here because copying below may
1799 overwrite data we need to compute it. */
1800 int nbytes;
1801
1802 /* Check that the string size recorded in the string is the
1803 same as the one recorded in the sdata structure. */
1804 if (from->string)
1805 CHECK_STRING_BYTES (from->string);
1806
1807 if (from->string)
1808 nbytes = GC_STRING_BYTES (from->string);
1809 else
1810 nbytes = SDATA_NBYTES (from);
1811
1812 nbytes = SDATA_SIZE (nbytes);
1813 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1814 }
1815 }
1816
1817
1818 /* Check validity of Lisp strings' string_bytes member. ALL_P
1819 non-zero means check all strings, otherwise check only most
1820 recently allocated strings. Used for hunting a bug. */
1821
1822 void
1823 check_string_bytes (all_p)
1824 int all_p;
1825 {
1826 if (all_p)
1827 {
1828 struct sblock *b;
1829
1830 for (b = large_sblocks; b; b = b->next)
1831 {
1832 struct Lisp_String *s = b->first_data.string;
1833 if (s)
1834 CHECK_STRING_BYTES (s);
1835 }
1836
1837 for (b = oldest_sblock; b; b = b->next)
1838 check_sblock (b);
1839 }
1840 else
1841 check_sblock (current_sblock);
1842 }
1843
1844 #endif /* GC_CHECK_STRING_BYTES */
1845
1846 #ifdef GC_CHECK_STRING_FREE_LIST
1847
1848 /* Walk through the string free list looking for bogus next pointers.
1849 This may catch buffer overrun from a previous string. */
1850
1851 static void
1852 check_string_free_list ()
1853 {
1854 struct Lisp_String *s;
1855
1856 /* Pop a Lisp_String off the free-list. */
1857 s = string_free_list;
1858 while (s != NULL)
1859 {
1860 if ((unsigned)s < 1024)
1861 abort();
1862 s = NEXT_FREE_LISP_STRING (s);
1863 }
1864 }
1865 #else
1866 #define check_string_free_list()
1867 #endif
1868
1869 /* Return a new Lisp_String. */
1870
1871 static struct Lisp_String *
1872 allocate_string ()
1873 {
1874 struct Lisp_String *s;
1875
1876 /* eassert (!handling_signal); */
1877
1878 #ifndef SYNC_INPUT
1879 BLOCK_INPUT;
1880 #endif
1881
1882 /* If the free-list is empty, allocate a new string_block, and
1883 add all the Lisp_Strings in it to the free-list. */
1884 if (string_free_list == NULL)
1885 {
1886 struct string_block *b;
1887 int i;
1888
1889 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1890 bzero (b, sizeof *b);
1891 b->next = string_blocks;
1892 string_blocks = b;
1893 ++n_string_blocks;
1894
1895 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1896 {
1897 s = b->strings + i;
1898 NEXT_FREE_LISP_STRING (s) = string_free_list;
1899 string_free_list = s;
1900 }
1901
1902 total_free_strings += STRING_BLOCK_SIZE;
1903 }
1904
1905 check_string_free_list ();
1906
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 string_free_list = NEXT_FREE_LISP_STRING (s);
1910
1911 #ifndef SYNC_INPUT
1912 UNBLOCK_INPUT;
1913 #endif
1914
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
1917
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
1922
1923 #ifdef GC_CHECK_STRING_BYTES
1924 if (!noninteractive
1925 #ifdef MAC_OS8
1926 && current_sblock
1927 #endif
1928 )
1929 {
1930 if (++check_string_bytes_count == 200)
1931 {
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1934 }
1935 else
1936 check_string_bytes (0);
1937 }
1938 #endif /* GC_CHECK_STRING_BYTES */
1939
1940 return s;
1941 }
1942
1943
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1949
1950 void
1951 allocate_string_data (s, nchars, nbytes)
1952 struct Lisp_String *s;
1953 int nchars, nbytes;
1954 {
1955 struct sdata *data, *old_data;
1956 struct sblock *b;
1957 int needed, old_nbytes;
1958
1959 /* Determine the number of bytes needed to store NBYTES bytes
1960 of string data. */
1961 needed = SDATA_SIZE (nbytes);
1962 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1963 old_nbytes = GC_STRING_BYTES (s);
1964
1965 #ifndef SYNC_INPUT
1966 BLOCK_INPUT;
1967 #endif
1968
1969 if (nbytes > LARGE_STRING_BYTES)
1970 {
1971 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1972
1973 #ifdef DOUG_LEA_MALLOC
1974 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1975 because mapped region contents are not preserved in
1976 a dumped Emacs.
1977
1978 In case you think of allowing it in a dumped Emacs at the
1979 cost of not being able to re-dump, there's another reason:
1980 mmap'ed data typically have an address towards the top of the
1981 address space, which won't fit into an EMACS_INT (at least on
1982 32-bit systems with the current tagging scheme). --fx */
1983 BLOCK_INPUT;
1984 mallopt (M_MMAP_MAX, 0);
1985 UNBLOCK_INPUT;
1986 #endif
1987
1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1989
1990 #ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1992 BLOCK_INPUT;
1993 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1994 UNBLOCK_INPUT;
1995 #endif
1996
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2006 {
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
2021
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025 #ifndef SYNC_INPUT
2026 UNBLOCK_INPUT;
2027 #endif
2028
2029 data->string = s;
2030 s->data = SDATA_DATA (data);
2031 #ifdef GC_CHECK_STRING_BYTES
2032 SDATA_NBYTES (data) = nbytes;
2033 #endif
2034 s->size = nchars;
2035 s->size_byte = nbytes;
2036 s->data[nbytes] = '\0';
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 bcopy (string_overrun_cookie, (char *) data + needed,
2039 GC_STRING_OVERRUN_COOKIE_SIZE);
2040 #endif
2041
2042 /* If S had already data assigned, mark that as free by setting its
2043 string back-pointer to null, and recording the size of the data
2044 in it. */
2045 if (old_data)
2046 {
2047 SDATA_NBYTES (old_data) = old_nbytes;
2048 old_data->string = NULL;
2049 }
2050
2051 consing_since_gc += needed;
2052 }
2053
2054
2055 /* Sweep and compact strings. */
2056
2057 static void
2058 sweep_strings ()
2059 {
2060 struct string_block *b, *next;
2061 struct string_block *live_blocks = NULL;
2062
2063 string_free_list = NULL;
2064 total_strings = total_free_strings = 0;
2065 total_string_size = 0;
2066
2067 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2068 for (b = string_blocks; b; b = next)
2069 {
2070 int i, nfree = 0;
2071 struct Lisp_String *free_list_before = string_free_list;
2072
2073 next = b->next;
2074
2075 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2076 {
2077 struct Lisp_String *s = b->strings + i;
2078
2079 if (s->data)
2080 {
2081 /* String was not on free-list before. */
2082 if (STRING_MARKED_P (s))
2083 {
2084 /* String is live; unmark it and its intervals. */
2085 UNMARK_STRING (s);
2086
2087 if (!NULL_INTERVAL_P (s->intervals))
2088 UNMARK_BALANCE_INTERVALS (s->intervals);
2089
2090 ++total_strings;
2091 total_string_size += STRING_BYTES (s);
2092 }
2093 else
2094 {
2095 /* String is dead. Put it on the free-list. */
2096 struct sdata *data = SDATA_OF_STRING (s);
2097
2098 /* Save the size of S in its sdata so that we know
2099 how large that is. Reset the sdata's string
2100 back-pointer so that we know it's free. */
2101 #ifdef GC_CHECK_STRING_BYTES
2102 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2103 abort ();
2104 #else
2105 data->u.nbytes = GC_STRING_BYTES (s);
2106 #endif
2107 data->string = NULL;
2108
2109 /* Reset the strings's `data' member so that we
2110 know it's free. */
2111 s->data = NULL;
2112
2113 /* Put the string on the free-list. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2117 }
2118 }
2119 else
2120 {
2121 /* S was on the free-list before. Put it there again. */
2122 NEXT_FREE_LISP_STRING (s) = string_free_list;
2123 string_free_list = s;
2124 ++nfree;
2125 }
2126 }
2127
2128 /* Free blocks that contain free Lisp_Strings only, except
2129 the first two of them. */
2130 if (nfree == STRING_BLOCK_SIZE
2131 && total_free_strings > STRING_BLOCK_SIZE)
2132 {
2133 lisp_free (b);
2134 --n_string_blocks;
2135 string_free_list = free_list_before;
2136 }
2137 else
2138 {
2139 total_free_strings += nfree;
2140 b->next = live_blocks;
2141 live_blocks = b;
2142 }
2143 }
2144
2145 check_string_free_list ();
2146
2147 string_blocks = live_blocks;
2148 free_large_strings ();
2149 compact_small_strings ();
2150
2151 check_string_free_list ();
2152 }
2153
2154
2155 /* Free dead large strings. */
2156
2157 static void
2158 free_large_strings ()
2159 {
2160 struct sblock *b, *next;
2161 struct sblock *live_blocks = NULL;
2162
2163 for (b = large_sblocks; b; b = next)
2164 {
2165 next = b->next;
2166
2167 if (b->first_data.string == NULL)
2168 lisp_free (b);
2169 else
2170 {
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
2176 large_sblocks = live_blocks;
2177 }
2178
2179
2180 /* Compact data of small strings. Free sblocks that don't contain
2181 data of live strings after compaction. */
2182
2183 static void
2184 compact_small_strings ()
2185 {
2186 struct sblock *b, *tb, *next;
2187 struct sdata *from, *to, *end, *tb_end;
2188 struct sdata *to_end, *from_end;
2189
2190 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2191 to, and TB_END is the end of TB. */
2192 tb = oldest_sblock;
2193 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2194 to = &tb->first_data;
2195
2196 /* Step through the blocks from the oldest to the youngest. We
2197 expect that old blocks will stabilize over time, so that less
2198 copying will happen this way. */
2199 for (b = oldest_sblock; b; b = b->next)
2200 {
2201 end = b->next_free;
2202 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2203
2204 for (from = &b->first_data; from < end; from = from_end)
2205 {
2206 /* Compute the next FROM here because copying below may
2207 overwrite data we need to compute it. */
2208 int nbytes;
2209
2210 #ifdef GC_CHECK_STRING_BYTES
2211 /* Check that the string size recorded in the string is the
2212 same as the one recorded in the sdata structure. */
2213 if (from->string
2214 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2215 abort ();
2216 #endif /* GC_CHECK_STRING_BYTES */
2217
2218 if (from->string)
2219 nbytes = GC_STRING_BYTES (from->string);
2220 else
2221 nbytes = SDATA_NBYTES (from);
2222
2223 if (nbytes > LARGE_STRING_BYTES)
2224 abort ();
2225
2226 nbytes = SDATA_SIZE (nbytes);
2227 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2228
2229 #ifdef GC_CHECK_STRING_OVERRUN
2230 if (bcmp (string_overrun_cookie,
2231 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2232 GC_STRING_OVERRUN_COOKIE_SIZE))
2233 abort ();
2234 #endif
2235
2236 /* FROM->string non-null means it's alive. Copy its data. */
2237 if (from->string)
2238 {
2239 /* If TB is full, proceed with the next sblock. */
2240 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2241 if (to_end > tb_end)
2242 {
2243 tb->next_free = to;
2244 tb = tb->next;
2245 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2246 to = &tb->first_data;
2247 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2248 }
2249
2250 /* Copy, and update the string's `data' pointer. */
2251 if (from != to)
2252 {
2253 xassert (tb != b || to <= from);
2254 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2255 to->string->data = SDATA_DATA (to);
2256 }
2257
2258 /* Advance past the sdata we copied to. */
2259 to = to_end;
2260 }
2261 }
2262 }
2263
2264 /* The rest of the sblocks following TB don't contain live data, so
2265 we can free them. */
2266 for (b = tb->next; b; b = next)
2267 {
2268 next = b->next;
2269 lisp_free (b);
2270 }
2271
2272 tb->next_free = to;
2273 tb->next = NULL;
2274 current_sblock = tb;
2275 }
2276
2277
2278 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2279 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2280 LENGTH must be an integer.
2281 INIT must be an integer that represents a character. */)
2282 (length, init)
2283 Lisp_Object length, init;
2284 {
2285 register Lisp_Object val;
2286 register unsigned char *p, *end;
2287 int c, nbytes;
2288
2289 CHECK_NATNUM (length);
2290 CHECK_NUMBER (init);
2291
2292 c = XINT (init);
2293 if (SINGLE_BYTE_CHAR_P (c))
2294 {
2295 nbytes = XINT (length);
2296 val = make_uninit_string (nbytes);
2297 p = SDATA (val);
2298 end = p + SCHARS (val);
2299 while (p != end)
2300 *p++ = c;
2301 }
2302 else
2303 {
2304 unsigned char str[MAX_MULTIBYTE_LENGTH];
2305 int len = CHAR_STRING (c, str);
2306
2307 nbytes = len * XINT (length);
2308 val = make_uninit_multibyte_string (XINT (length), nbytes);
2309 p = SDATA (val);
2310 end = p + nbytes;
2311 while (p != end)
2312 {
2313 bcopy (str, p, len);
2314 p += len;
2315 }
2316 }
2317
2318 *p = 0;
2319 return val;
2320 }
2321
2322
2323 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2324 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2325 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2326 (length, init)
2327 Lisp_Object length, init;
2328 {
2329 register Lisp_Object val;
2330 struct Lisp_Bool_Vector *p;
2331 int real_init, i;
2332 int length_in_chars, length_in_elts, bits_per_value;
2333
2334 CHECK_NATNUM (length);
2335
2336 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2337
2338 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2339 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2340 / BOOL_VECTOR_BITS_PER_CHAR);
2341
2342 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2343 slot `size' of the struct Lisp_Bool_Vector. */
2344 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 p = XBOOL_VECTOR (val);
2346
2347 /* Get rid of any bits that would cause confusion. */
2348 p->vector_size = 0;
2349 XSETBOOL_VECTOR (val, p);
2350 p->size = XFASTINT (length);
2351
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2355
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361 return val;
2362 }
2363
2364
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2373 {
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2385 }
2386
2387
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2394 {
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2410 {
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2415 }
2416
2417
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2445 {
2446 register Lisp_Object val;
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2460 }
2461
2462
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2469 {
2470 return make_string (str, strlen (str));
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2480 {
2481 Lisp_Object val;
2482 val = make_uninit_multibyte_string (length, length);
2483 STRING_SET_UNIBYTE (val);
2484 return val;
2485 }
2486
2487
2488 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2489 which occupy NBYTES bytes. */
2490
2491 Lisp_Object
2492 make_uninit_multibyte_string (nchars, nbytes)
2493 int nchars, nbytes;
2494 {
2495 Lisp_Object string;
2496 struct Lisp_String *s;
2497
2498 if (nchars < 0)
2499 abort ();
2500
2501 s = allocate_string ();
2502 allocate_string_data (s, nchars, nbytes);
2503 XSETSTRING (string, s);
2504 string_chars_consed += nbytes;
2505 return string;
2506 }
2507
2508
2509 \f
2510 /***********************************************************************
2511 Float Allocation
2512 ***********************************************************************/
2513
2514 /* We store float cells inside of float_blocks, allocating a new
2515 float_block with malloc whenever necessary. Float cells reclaimed
2516 by GC are put on a free list to be reallocated before allocating
2517 any new float cells from the latest float_block. */
2518
2519 #define FLOAT_BLOCK_SIZE \
2520 (((BLOCK_BYTES - sizeof (struct float_block *) \
2521 /* The compiler might add padding at the end. */ \
2522 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2523 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2524
2525 #define GETMARKBIT(block,n) \
2526 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2527 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2528 & 1)
2529
2530 #define SETMARKBIT(block,n) \
2531 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2533
2534 #define UNSETMARKBIT(block,n) \
2535 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2536 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2537
2538 #define FLOAT_BLOCK(fptr) \
2539 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2540
2541 #define FLOAT_INDEX(fptr) \
2542 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2543
2544 struct float_block
2545 {
2546 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2547 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2548 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2549 struct float_block *next;
2550 };
2551
2552 #define FLOAT_MARKED_P(fptr) \
2553 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2554
2555 #define FLOAT_MARK(fptr) \
2556 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2557
2558 #define FLOAT_UNMARK(fptr) \
2559 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
2561 /* Current float_block. */
2562
2563 struct float_block *float_block;
2564
2565 /* Index of first unused Lisp_Float in the current float_block. */
2566
2567 int float_block_index;
2568
2569 /* Total number of float blocks now in use. */
2570
2571 int n_float_blocks;
2572
2573 /* Free-list of Lisp_Floats. */
2574
2575 struct Lisp_Float *float_free_list;
2576
2577
2578 /* Initialize float allocation. */
2579
2580 void
2581 init_float ()
2582 {
2583 float_block = NULL;
2584 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2585 float_free_list = 0;
2586 n_float_blocks = 0;
2587 }
2588
2589
2590 /* Explicitly free a float cell by putting it on the free-list. */
2591
2592 void
2593 free_float (ptr)
2594 struct Lisp_Float *ptr;
2595 {
2596 ptr->u.chain = float_free_list;
2597 float_free_list = ptr;
2598 }
2599
2600
2601 /* Return a new float object with value FLOAT_VALUE. */
2602
2603 Lisp_Object
2604 make_float (float_value)
2605 double float_value;
2606 {
2607 register Lisp_Object val;
2608
2609 /* eassert (!handling_signal); */
2610
2611 #ifndef SYNC_INPUT
2612 BLOCK_INPUT;
2613 #endif
2614
2615 if (float_free_list)
2616 {
2617 /* We use the data field for chaining the free list
2618 so that we won't use the same field that has the mark bit. */
2619 XSETFLOAT (val, float_free_list);
2620 float_free_list = float_free_list->u.chain;
2621 }
2622 else
2623 {
2624 if (float_block_index == FLOAT_BLOCK_SIZE)
2625 {
2626 register struct float_block *new;
2627
2628 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_FLOAT);
2630 new->next = float_block;
2631 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2632 float_block = new;
2633 float_block_index = 0;
2634 n_float_blocks++;
2635 }
2636 XSETFLOAT (val, &float_block->floats[float_block_index]);
2637 float_block_index++;
2638 }
2639
2640 #ifndef SYNC_INPUT
2641 UNBLOCK_INPUT;
2642 #endif
2643
2644 XFLOAT_DATA (val) = float_value;
2645 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2646 consing_since_gc += sizeof (struct Lisp_Float);
2647 floats_consed++;
2648 return val;
2649 }
2650
2651
2652 \f
2653 /***********************************************************************
2654 Cons Allocation
2655 ***********************************************************************/
2656
2657 /* We store cons cells inside of cons_blocks, allocating a new
2658 cons_block with malloc whenever necessary. Cons cells reclaimed by
2659 GC are put on a free list to be reallocated before allocating
2660 any new cons cells from the latest cons_block. */
2661
2662 #define CONS_BLOCK_SIZE \
2663 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2664 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2665
2666 #define CONS_BLOCK(fptr) \
2667 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2668
2669 #define CONS_INDEX(fptr) \
2670 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2671
2672 struct cons_block
2673 {
2674 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2675 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2676 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2677 struct cons_block *next;
2678 };
2679
2680 #define CONS_MARKED_P(fptr) \
2681 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2682
2683 #define CONS_MARK(fptr) \
2684 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2685
2686 #define CONS_UNMARK(fptr) \
2687 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2688
2689 /* Current cons_block. */
2690
2691 struct cons_block *cons_block;
2692
2693 /* Index of first unused Lisp_Cons in the current block. */
2694
2695 int cons_block_index;
2696
2697 /* Free-list of Lisp_Cons structures. */
2698
2699 struct Lisp_Cons *cons_free_list;
2700
2701 /* Total number of cons blocks now in use. */
2702
2703 int n_cons_blocks;
2704
2705
2706 /* Initialize cons allocation. */
2707
2708 void
2709 init_cons ()
2710 {
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2714 n_cons_blocks = 0;
2715 }
2716
2717
2718 /* Explicitly free a cons cell by putting it on the free-list. */
2719
2720 void
2721 free_cons (ptr)
2722 struct Lisp_Cons *ptr;
2723 {
2724 ptr->u.chain = cons_free_list;
2725 #if GC_MARK_STACK
2726 ptr->car = Vdead;
2727 #endif
2728 cons_free_list = ptr;
2729 }
2730
2731 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2732 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2733 (car, cdr)
2734 Lisp_Object car, cdr;
2735 {
2736 register Lisp_Object val;
2737
2738 /* eassert (!handling_signal); */
2739
2740 #ifndef SYNC_INPUT
2741 BLOCK_INPUT;
2742 #endif
2743
2744 if (cons_free_list)
2745 {
2746 /* We use the cdr for chaining the free list
2747 so that we won't use the same field that has the mark bit. */
2748 XSETCONS (val, cons_free_list);
2749 cons_free_list = cons_free_list->u.chain;
2750 }
2751 else
2752 {
2753 if (cons_block_index == CONS_BLOCK_SIZE)
2754 {
2755 register struct cons_block *new;
2756 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757 MEM_TYPE_CONS);
2758 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2759 new->next = cons_block;
2760 cons_block = new;
2761 cons_block_index = 0;
2762 n_cons_blocks++;
2763 }
2764 XSETCONS (val, &cons_block->conses[cons_block_index]);
2765 cons_block_index++;
2766 }
2767
2768 #ifndef SYNC_INPUT
2769 UNBLOCK_INPUT;
2770 #endif
2771
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
2774 eassert (!CONS_MARKED_P (XCONS (val)));
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 cons_cells_consed++;
2777 return val;
2778 }
2779
2780 /* Get an error now if there's any junk in the cons free list. */
2781 void
2782 check_cons_list ()
2783 {
2784 #ifdef GC_CHECK_CONS_LIST
2785 struct Lisp_Cons *tail = cons_free_list;
2786
2787 while (tail)
2788 tail = tail->u.chain;
2789 #endif
2790 }
2791
2792 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2793
2794 Lisp_Object
2795 list1 (arg1)
2796 Lisp_Object arg1;
2797 {
2798 return Fcons (arg1, Qnil);
2799 }
2800
2801 Lisp_Object
2802 list2 (arg1, arg2)
2803 Lisp_Object arg1, arg2;
2804 {
2805 return Fcons (arg1, Fcons (arg2, Qnil));
2806 }
2807
2808
2809 Lisp_Object
2810 list3 (arg1, arg2, arg3)
2811 Lisp_Object arg1, arg2, arg3;
2812 {
2813 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2814 }
2815
2816
2817 Lisp_Object
2818 list4 (arg1, arg2, arg3, arg4)
2819 Lisp_Object arg1, arg2, arg3, arg4;
2820 {
2821 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2822 }
2823
2824
2825 Lisp_Object
2826 list5 (arg1, arg2, arg3, arg4, arg5)
2827 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2828 {
2829 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2830 Fcons (arg5, Qnil)))));
2831 }
2832
2833
2834 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2835 doc: /* Return a newly created list with specified arguments as elements.
2836 Any number of arguments, even zero arguments, are allowed.
2837 usage: (list &rest OBJECTS) */)
2838 (nargs, args)
2839 int nargs;
2840 register Lisp_Object *args;
2841 {
2842 register Lisp_Object val;
2843 val = Qnil;
2844
2845 while (nargs > 0)
2846 {
2847 nargs--;
2848 val = Fcons (args[nargs], val);
2849 }
2850 return val;
2851 }
2852
2853
2854 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2855 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2856 (length, init)
2857 register Lisp_Object length, init;
2858 {
2859 register Lisp_Object val;
2860 register int size;
2861
2862 CHECK_NATNUM (length);
2863 size = XFASTINT (length);
2864
2865 val = Qnil;
2866 while (size > 0)
2867 {
2868 val = Fcons (init, val);
2869 --size;
2870
2871 if (size > 0)
2872 {
2873 val = Fcons (init, val);
2874 --size;
2875
2876 if (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
2880
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
2885
2886 if (size > 0)
2887 {
2888 val = Fcons (init, val);
2889 --size;
2890 }
2891 }
2892 }
2893 }
2894
2895 QUIT;
2896 }
2897
2898 return val;
2899 }
2900
2901
2902 \f
2903 /***********************************************************************
2904 Vector Allocation
2905 ***********************************************************************/
2906
2907 /* Singly-linked list of all vectors. */
2908
2909 struct Lisp_Vector *all_vectors;
2910
2911 /* Total number of vector-like objects now in use. */
2912
2913 int n_vectors;
2914
2915
2916 /* Value is a pointer to a newly allocated Lisp_Vector structure
2917 with room for LEN Lisp_Objects. */
2918
2919 static struct Lisp_Vector *
2920 allocate_vectorlike (len, type)
2921 EMACS_INT len;
2922 enum mem_type type;
2923 {
2924 struct Lisp_Vector *p;
2925 size_t nbytes;
2926
2927 #ifdef DOUG_LEA_MALLOC
2928 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2929 because mapped region contents are not preserved in
2930 a dumped Emacs. */
2931 BLOCK_INPUT;
2932 mallopt (M_MMAP_MAX, 0);
2933 UNBLOCK_INPUT;
2934 #endif
2935
2936 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2937 /* eassert (!handling_signal); */
2938
2939 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2940 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2941
2942 #ifdef DOUG_LEA_MALLOC
2943 /* Back to a reasonable maximum of mmap'ed areas. */
2944 BLOCK_INPUT;
2945 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2946 UNBLOCK_INPUT;
2947 #endif
2948
2949 consing_since_gc += nbytes;
2950 vector_cells_consed += len;
2951
2952 #ifndef SYNC_INPUT
2953 BLOCK_INPUT;
2954 #endif
2955
2956 p->next = all_vectors;
2957 all_vectors = p;
2958
2959 #ifndef SYNC_INPUT
2960 UNBLOCK_INPUT;
2961 #endif
2962
2963 ++n_vectors;
2964 return p;
2965 }
2966
2967
2968 /* Allocate a vector with NSLOTS slots. */
2969
2970 struct Lisp_Vector *
2971 allocate_vector (nslots)
2972 EMACS_INT nslots;
2973 {
2974 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2975 v->size = nslots;
2976 return v;
2977 }
2978
2979
2980 /* Allocate other vector-like structures. */
2981
2982 struct Lisp_Hash_Table *
2983 allocate_hash_table ()
2984 {
2985 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2986 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2987 EMACS_INT i;
2988
2989 v->size = len;
2990 for (i = 0; i < len; ++i)
2991 v->contents[i] = Qnil;
2992
2993 return (struct Lisp_Hash_Table *) v;
2994 }
2995
2996
2997 struct window *
2998 allocate_window ()
2999 {
3000 EMACS_INT len = VECSIZE (struct window);
3001 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
3002 EMACS_INT i;
3003
3004 for (i = 0; i < len; ++i)
3005 v->contents[i] = Qnil;
3006 v->size = len;
3007
3008 return (struct window *) v;
3009 }
3010
3011
3012 struct frame *
3013 allocate_frame ()
3014 {
3015 EMACS_INT len = VECSIZE (struct frame);
3016 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
3017 EMACS_INT i;
3018
3019 for (i = 0; i < len; ++i)
3020 v->contents[i] = make_number (0);
3021 v->size = len;
3022 return (struct frame *) v;
3023 }
3024
3025
3026 struct Lisp_Process *
3027 allocate_process ()
3028 {
3029 /* Memory-footprint of the object in nb of Lisp_Object fields. */
3030 EMACS_INT memlen = VECSIZE (struct Lisp_Process);
3031 /* Size if we only count the actual Lisp_Object fields (which need to be
3032 traced by the GC). */
3033 EMACS_INT lisplen = PSEUDOVECSIZE (struct Lisp_Process, pid);
3034 struct Lisp_Vector *v = allocate_vectorlike (memlen, MEM_TYPE_PROCESS);
3035 EMACS_INT i;
3036
3037 for (i = 0; i < lisplen; ++i)
3038 v->contents[i] = Qnil;
3039 v->size = lisplen;
3040
3041 return (struct Lisp_Process *) v;
3042 }
3043
3044
3045 struct Lisp_Vector *
3046 allocate_other_vector (len)
3047 EMACS_INT len;
3048 {
3049 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3050 EMACS_INT i;
3051
3052 for (i = 0; i < len; ++i)
3053 v->contents[i] = Qnil;
3054 v->size = len;
3055
3056 return v;
3057 }
3058
3059
3060 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3061 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3062 See also the function `vector'. */)
3063 (length, init)
3064 register Lisp_Object length, init;
3065 {
3066 Lisp_Object vector;
3067 register EMACS_INT sizei;
3068 register int index;
3069 register struct Lisp_Vector *p;
3070
3071 CHECK_NATNUM (length);
3072 sizei = XFASTINT (length);
3073
3074 p = allocate_vector (sizei);
3075 for (index = 0; index < sizei; index++)
3076 p->contents[index] = init;
3077
3078 XSETVECTOR (vector, p);
3079 return vector;
3080 }
3081
3082
3083 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3084 doc: /* Return a newly created char-table, with purpose PURPOSE.
3085 Each element is initialized to INIT, which defaults to nil.
3086 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3087 The property's value should be an integer between 0 and 10. */)
3088 (purpose, init)
3089 register Lisp_Object purpose, init;
3090 {
3091 Lisp_Object vector;
3092 Lisp_Object n;
3093 CHECK_SYMBOL (purpose);
3094 n = Fget (purpose, Qchar_table_extra_slots);
3095 CHECK_NUMBER (n);
3096 if (XINT (n) < 0 || XINT (n) > 10)
3097 args_out_of_range (n, Qnil);
3098 /* Add 2 to the size for the defalt and parent slots. */
3099 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3100 init);
3101 XCHAR_TABLE (vector)->top = Qt;
3102 XCHAR_TABLE (vector)->parent = Qnil;
3103 XCHAR_TABLE (vector)->purpose = purpose;
3104 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3105 return vector;
3106 }
3107
3108
3109 /* Return a newly created sub char table with slots initialized by INIT.
3110 Since a sub char table does not appear as a top level Emacs Lisp
3111 object, we don't need a Lisp interface to make it. */
3112
3113 Lisp_Object
3114 make_sub_char_table (init)
3115 Lisp_Object init;
3116 {
3117 Lisp_Object vector
3118 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3119 XCHAR_TABLE (vector)->top = Qnil;
3120 XCHAR_TABLE (vector)->defalt = Qnil;
3121 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3122 return vector;
3123 }
3124
3125
3126 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3127 doc: /* Return a newly created vector with specified arguments as elements.
3128 Any number of arguments, even zero arguments, are allowed.
3129 usage: (vector &rest OBJECTS) */)
3130 (nargs, args)
3131 register int nargs;
3132 Lisp_Object *args;
3133 {
3134 register Lisp_Object len, val;
3135 register int index;
3136 register struct Lisp_Vector *p;
3137
3138 XSETFASTINT (len, nargs);
3139 val = Fmake_vector (len, Qnil);
3140 p = XVECTOR (val);
3141 for (index = 0; index < nargs; index++)
3142 p->contents[index] = args[index];
3143 return val;
3144 }
3145
3146
3147 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3148 doc: /* Create a byte-code object with specified arguments as elements.
3149 The arguments should be the arglist, bytecode-string, constant vector,
3150 stack size, (optional) doc string, and (optional) interactive spec.
3151 The first four arguments are required; at most six have any
3152 significance.
3153 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3154 (nargs, args)
3155 register int nargs;
3156 Lisp_Object *args;
3157 {
3158 register Lisp_Object len, val;
3159 register int index;
3160 register struct Lisp_Vector *p;
3161
3162 XSETFASTINT (len, nargs);
3163 if (!NILP (Vpurify_flag))
3164 val = make_pure_vector ((EMACS_INT) nargs);
3165 else
3166 val = Fmake_vector (len, Qnil);
3167
3168 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3169 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3170 earlier because they produced a raw 8-bit string for byte-code
3171 and now such a byte-code string is loaded as multibyte while
3172 raw 8-bit characters converted to multibyte form. Thus, now we
3173 must convert them back to the original unibyte form. */
3174 args[1] = Fstring_as_unibyte (args[1]);
3175
3176 p = XVECTOR (val);
3177 for (index = 0; index < nargs; index++)
3178 {
3179 if (!NILP (Vpurify_flag))
3180 args[index] = Fpurecopy (args[index]);
3181 p->contents[index] = args[index];
3182 }
3183 XSETCOMPILED (val, p);
3184 return val;
3185 }
3186
3187
3188 \f
3189 /***********************************************************************
3190 Symbol Allocation
3191 ***********************************************************************/
3192
3193 /* Each symbol_block is just under 1020 bytes long, since malloc
3194 really allocates in units of powers of two and uses 4 bytes for its
3195 own overhead. */
3196
3197 #define SYMBOL_BLOCK_SIZE \
3198 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3199
3200 struct symbol_block
3201 {
3202 /* Place `symbols' first, to preserve alignment. */
3203 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3204 struct symbol_block *next;
3205 };
3206
3207 /* Current symbol block and index of first unused Lisp_Symbol
3208 structure in it. */
3209
3210 struct symbol_block *symbol_block;
3211 int symbol_block_index;
3212
3213 /* List of free symbols. */
3214
3215 struct Lisp_Symbol *symbol_free_list;
3216
3217 /* Total number of symbol blocks now in use. */
3218
3219 int n_symbol_blocks;
3220
3221
3222 /* Initialize symbol allocation. */
3223
3224 void
3225 init_symbol ()
3226 {
3227 symbol_block = NULL;
3228 symbol_block_index = SYMBOL_BLOCK_SIZE;
3229 symbol_free_list = 0;
3230 n_symbol_blocks = 0;
3231 }
3232
3233
3234 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3235 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3236 Its value and function definition are void, and its property list is nil. */)
3237 (name)
3238 Lisp_Object name;
3239 {
3240 register Lisp_Object val;
3241 register struct Lisp_Symbol *p;
3242
3243 CHECK_STRING (name);
3244
3245 /* eassert (!handling_signal); */
3246
3247 #ifndef SYNC_INPUT
3248 BLOCK_INPUT;
3249 #endif
3250
3251 if (symbol_free_list)
3252 {
3253 XSETSYMBOL (val, symbol_free_list);
3254 symbol_free_list = symbol_free_list->next;
3255 }
3256 else
3257 {
3258 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3259 {
3260 struct symbol_block *new;
3261 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3262 MEM_TYPE_SYMBOL);
3263 new->next = symbol_block;
3264 symbol_block = new;
3265 symbol_block_index = 0;
3266 n_symbol_blocks++;
3267 }
3268 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3269 symbol_block_index++;
3270 }
3271
3272 #ifndef SYNC_INPUT
3273 UNBLOCK_INPUT;
3274 #endif
3275
3276 p = XSYMBOL (val);
3277 p->xname = name;
3278 p->plist = Qnil;
3279 p->value = Qunbound;
3280 p->function = Qunbound;
3281 p->next = NULL;
3282 p->gcmarkbit = 0;
3283 p->interned = SYMBOL_UNINTERNED;
3284 p->constant = 0;
3285 p->indirect_variable = 0;
3286 consing_since_gc += sizeof (struct Lisp_Symbol);
3287 symbols_consed++;
3288 return val;
3289 }
3290
3291
3292 \f
3293 /***********************************************************************
3294 Marker (Misc) Allocation
3295 ***********************************************************************/
3296
3297 /* Allocation of markers and other objects that share that structure.
3298 Works like allocation of conses. */
3299
3300 #define MARKER_BLOCK_SIZE \
3301 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3302
3303 struct marker_block
3304 {
3305 /* Place `markers' first, to preserve alignment. */
3306 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3307 struct marker_block *next;
3308 };
3309
3310 struct marker_block *marker_block;
3311 int marker_block_index;
3312
3313 union Lisp_Misc *marker_free_list;
3314
3315 /* Total number of marker blocks now in use. */
3316
3317 int n_marker_blocks;
3318
3319 void
3320 init_marker ()
3321 {
3322 marker_block = NULL;
3323 marker_block_index = MARKER_BLOCK_SIZE;
3324 marker_free_list = 0;
3325 n_marker_blocks = 0;
3326 }
3327
3328 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3329
3330 Lisp_Object
3331 allocate_misc ()
3332 {
3333 Lisp_Object val;
3334
3335 /* eassert (!handling_signal); */
3336
3337 #ifndef SYNC_INPUT
3338 BLOCK_INPUT;
3339 #endif
3340
3341 if (marker_free_list)
3342 {
3343 XSETMISC (val, marker_free_list);
3344 marker_free_list = marker_free_list->u_free.chain;
3345 }
3346 else
3347 {
3348 if (marker_block_index == MARKER_BLOCK_SIZE)
3349 {
3350 struct marker_block *new;
3351 new = (struct marker_block *) lisp_malloc (sizeof *new,
3352 MEM_TYPE_MISC);
3353 new->next = marker_block;
3354 marker_block = new;
3355 marker_block_index = 0;
3356 n_marker_blocks++;
3357 total_free_markers += MARKER_BLOCK_SIZE;
3358 }
3359 XSETMISC (val, &marker_block->markers[marker_block_index]);
3360 marker_block_index++;
3361 }
3362
3363 #ifndef SYNC_INPUT
3364 UNBLOCK_INPUT;
3365 #endif
3366
3367 --total_free_markers;
3368 consing_since_gc += sizeof (union Lisp_Misc);
3369 misc_objects_consed++;
3370 XMARKER (val)->gcmarkbit = 0;
3371 return val;
3372 }
3373
3374 /* Free a Lisp_Misc object */
3375
3376 void
3377 free_misc (misc)
3378 Lisp_Object misc;
3379 {
3380 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3381 XMISC (misc)->u_free.chain = marker_free_list;
3382 marker_free_list = XMISC (misc);
3383
3384 total_free_markers++;
3385 }
3386
3387 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3388 INTEGER. This is used to package C values to call record_unwind_protect.
3389 The unwind function can get the C values back using XSAVE_VALUE. */
3390
3391 Lisp_Object
3392 make_save_value (pointer, integer)
3393 void *pointer;
3394 int integer;
3395 {
3396 register Lisp_Object val;
3397 register struct Lisp_Save_Value *p;
3398
3399 val = allocate_misc ();
3400 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3401 p = XSAVE_VALUE (val);
3402 p->pointer = pointer;
3403 p->integer = integer;
3404 p->dogc = 0;
3405 return val;
3406 }
3407
3408 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3409 doc: /* Return a newly allocated marker which does not point at any place. */)
3410 ()
3411 {
3412 register Lisp_Object val;
3413 register struct Lisp_Marker *p;
3414
3415 val = allocate_misc ();
3416 XMISCTYPE (val) = Lisp_Misc_Marker;
3417 p = XMARKER (val);
3418 p->buffer = 0;
3419 p->bytepos = 0;
3420 p->charpos = 0;
3421 p->next = NULL;
3422 p->insertion_type = 0;
3423 return val;
3424 }
3425
3426 /* Put MARKER back on the free list after using it temporarily. */
3427
3428 void
3429 free_marker (marker)
3430 Lisp_Object marker;
3431 {
3432 unchain_marker (XMARKER (marker));
3433 free_misc (marker);
3434 }
3435
3436 \f
3437 /* Return a newly created vector or string with specified arguments as
3438 elements. If all the arguments are characters that can fit
3439 in a string of events, make a string; otherwise, make a vector.
3440
3441 Any number of arguments, even zero arguments, are allowed. */
3442
3443 Lisp_Object
3444 make_event_array (nargs, args)
3445 register int nargs;
3446 Lisp_Object *args;
3447 {
3448 int i;
3449
3450 for (i = 0; i < nargs; i++)
3451 /* The things that fit in a string
3452 are characters that are in 0...127,
3453 after discarding the meta bit and all the bits above it. */
3454 if (!INTEGERP (args[i])
3455 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3456 return Fvector (nargs, args);
3457
3458 /* Since the loop exited, we know that all the things in it are
3459 characters, so we can make a string. */
3460 {
3461 Lisp_Object result;
3462
3463 result = Fmake_string (make_number (nargs), make_number (0));
3464 for (i = 0; i < nargs; i++)
3465 {
3466 SSET (result, i, XINT (args[i]));
3467 /* Move the meta bit to the right place for a string char. */
3468 if (XINT (args[i]) & CHAR_META)
3469 SSET (result, i, SREF (result, i) | 0x80);
3470 }
3471
3472 return result;
3473 }
3474 }
3475
3476
3477 \f
3478 /************************************************************************
3479 Memory Full Handling
3480 ************************************************************************/
3481
3482
3483 /* Called if malloc returns zero. */
3484
3485 void
3486 memory_full ()
3487 {
3488 int i;
3489
3490 Vmemory_full = Qt;
3491
3492 memory_full_cons_threshold = sizeof (struct cons_block);
3493
3494 /* The first time we get here, free the spare memory. */
3495 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3496 if (spare_memory[i])
3497 {
3498 if (i == 0)
3499 free (spare_memory[i]);
3500 else if (i >= 1 && i <= 4)
3501 lisp_align_free (spare_memory[i]);
3502 else
3503 lisp_free (spare_memory[i]);
3504 spare_memory[i] = 0;
3505 }
3506
3507 /* Record the space now used. When it decreases substantially,
3508 we can refill the memory reserve. */
3509 #ifndef SYSTEM_MALLOC
3510 bytes_used_when_full = BYTES_USED;
3511 #endif
3512
3513 /* This used to call error, but if we've run out of memory, we could
3514 get infinite recursion trying to build the string. */
3515 xsignal (Qnil, Vmemory_signal_data);
3516 }
3517
3518 /* If we released our reserve (due to running out of memory),
3519 and we have a fair amount free once again,
3520 try to set aside another reserve in case we run out once more.
3521
3522 This is called when a relocatable block is freed in ralloc.c,
3523 and also directly from this file, in case we're not using ralloc.c. */
3524
3525 void
3526 refill_memory_reserve ()
3527 {
3528 #ifndef SYSTEM_MALLOC
3529 if (spare_memory[0] == 0)
3530 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3531 if (spare_memory[1] == 0)
3532 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3533 MEM_TYPE_CONS);
3534 if (spare_memory[2] == 0)
3535 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3536 MEM_TYPE_CONS);
3537 if (spare_memory[3] == 0)
3538 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3539 MEM_TYPE_CONS);
3540 if (spare_memory[4] == 0)
3541 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3542 MEM_TYPE_CONS);
3543 if (spare_memory[5] == 0)
3544 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3545 MEM_TYPE_STRING);
3546 if (spare_memory[6] == 0)
3547 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3548 MEM_TYPE_STRING);
3549 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3550 Vmemory_full = Qnil;
3551 #endif
3552 }
3553 \f
3554 /************************************************************************
3555 C Stack Marking
3556 ************************************************************************/
3557
3558 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3559
3560 /* Conservative C stack marking requires a method to identify possibly
3561 live Lisp objects given a pointer value. We do this by keeping
3562 track of blocks of Lisp data that are allocated in a red-black tree
3563 (see also the comment of mem_node which is the type of nodes in
3564 that tree). Function lisp_malloc adds information for an allocated
3565 block to the red-black tree with calls to mem_insert, and function
3566 lisp_free removes it with mem_delete. Functions live_string_p etc
3567 call mem_find to lookup information about a given pointer in the
3568 tree, and use that to determine if the pointer points to a Lisp
3569 object or not. */
3570
3571 /* Initialize this part of alloc.c. */
3572
3573 static void
3574 mem_init ()
3575 {
3576 mem_z.left = mem_z.right = MEM_NIL;
3577 mem_z.parent = NULL;
3578 mem_z.color = MEM_BLACK;
3579 mem_z.start = mem_z.end = NULL;
3580 mem_root = MEM_NIL;
3581 }
3582
3583
3584 /* Value is a pointer to the mem_node containing START. Value is
3585 MEM_NIL if there is no node in the tree containing START. */
3586
3587 static INLINE struct mem_node *
3588 mem_find (start)
3589 void *start;
3590 {
3591 struct mem_node *p;
3592
3593 if (start < min_heap_address || start > max_heap_address)
3594 return MEM_NIL;
3595
3596 /* Make the search always successful to speed up the loop below. */
3597 mem_z.start = start;
3598 mem_z.end = (char *) start + 1;
3599
3600 p = mem_root;
3601 while (start < p->start || start >= p->end)
3602 p = start < p->start ? p->left : p->right;
3603 return p;
3604 }
3605
3606
3607 /* Insert a new node into the tree for a block of memory with start
3608 address START, end address END, and type TYPE. Value is a
3609 pointer to the node that was inserted. */
3610
3611 static struct mem_node *
3612 mem_insert (start, end, type)
3613 void *start, *end;
3614 enum mem_type type;
3615 {
3616 struct mem_node *c, *parent, *x;
3617
3618 if (start < min_heap_address)
3619 min_heap_address = start;
3620 if (end > max_heap_address)
3621 max_heap_address = end;
3622
3623 /* See where in the tree a node for START belongs. In this
3624 particular application, it shouldn't happen that a node is already
3625 present. For debugging purposes, let's check that. */
3626 c = mem_root;
3627 parent = NULL;
3628
3629 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3630
3631 while (c != MEM_NIL)
3632 {
3633 if (start >= c->start && start < c->end)
3634 abort ();
3635 parent = c;
3636 c = start < c->start ? c->left : c->right;
3637 }
3638
3639 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3640
3641 while (c != MEM_NIL)
3642 {
3643 parent = c;
3644 c = start < c->start ? c->left : c->right;
3645 }
3646
3647 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3648
3649 /* Create a new node. */
3650 #ifdef GC_MALLOC_CHECK
3651 x = (struct mem_node *) _malloc_internal (sizeof *x);
3652 if (x == NULL)
3653 abort ();
3654 #else
3655 x = (struct mem_node *) xmalloc (sizeof *x);
3656 #endif
3657 x->start = start;
3658 x->end = end;
3659 x->type = type;
3660 x->parent = parent;
3661 x->left = x->right = MEM_NIL;
3662 x->color = MEM_RED;
3663
3664 /* Insert it as child of PARENT or install it as root. */
3665 if (parent)
3666 {
3667 if (start < parent->start)
3668 parent->left = x;
3669 else
3670 parent->right = x;
3671 }
3672 else
3673 mem_root = x;
3674
3675 /* Re-establish red-black tree properties. */
3676 mem_insert_fixup (x);
3677
3678 return x;
3679 }
3680
3681
3682 /* Re-establish the red-black properties of the tree, and thereby
3683 balance the tree, after node X has been inserted; X is always red. */
3684
3685 static void
3686 mem_insert_fixup (x)
3687 struct mem_node *x;
3688 {
3689 while (x != mem_root && x->parent->color == MEM_RED)
3690 {
3691 /* X is red and its parent is red. This is a violation of
3692 red-black tree property #3. */
3693
3694 if (x->parent == x->parent->parent->left)
3695 {
3696 /* We're on the left side of our grandparent, and Y is our
3697 "uncle". */
3698 struct mem_node *y = x->parent->parent->right;
3699
3700 if (y->color == MEM_RED)
3701 {
3702 /* Uncle and parent are red but should be black because
3703 X is red. Change the colors accordingly and proceed
3704 with the grandparent. */
3705 x->parent->color = MEM_BLACK;
3706 y->color = MEM_BLACK;
3707 x->parent->parent->color = MEM_RED;
3708 x = x->parent->parent;
3709 }
3710 else
3711 {
3712 /* Parent and uncle have different colors; parent is
3713 red, uncle is black. */
3714 if (x == x->parent->right)
3715 {
3716 x = x->parent;
3717 mem_rotate_left (x);
3718 }
3719
3720 x->parent->color = MEM_BLACK;
3721 x->parent->parent->color = MEM_RED;
3722 mem_rotate_right (x->parent->parent);
3723 }
3724 }
3725 else
3726 {
3727 /* This is the symmetrical case of above. */
3728 struct mem_node *y = x->parent->parent->left;
3729
3730 if (y->color == MEM_RED)
3731 {
3732 x->parent->color = MEM_BLACK;
3733 y->color = MEM_BLACK;
3734 x->parent->parent->color = MEM_RED;
3735 x = x->parent->parent;
3736 }
3737 else
3738 {
3739 if (x == x->parent->left)
3740 {
3741 x = x->parent;
3742 mem_rotate_right (x);
3743 }
3744
3745 x->parent->color = MEM_BLACK;
3746 x->parent->parent->color = MEM_RED;
3747 mem_rotate_left (x->parent->parent);
3748 }
3749 }
3750 }
3751
3752 /* The root may have been changed to red due to the algorithm. Set
3753 it to black so that property #5 is satisfied. */
3754 mem_root->color = MEM_BLACK;
3755 }
3756
3757
3758 /* (x) (y)
3759 / \ / \
3760 a (y) ===> (x) c
3761 / \ / \
3762 b c a b */
3763
3764 static void
3765 mem_rotate_left (x)
3766 struct mem_node *x;
3767 {
3768 struct mem_node *y;
3769
3770 /* Turn y's left sub-tree into x's right sub-tree. */
3771 y = x->right;
3772 x->right = y->left;
3773 if (y->left != MEM_NIL)
3774 y->left->parent = x;
3775
3776 /* Y's parent was x's parent. */
3777 if (y != MEM_NIL)
3778 y->parent = x->parent;
3779
3780 /* Get the parent to point to y instead of x. */
3781 if (x->parent)
3782 {
3783 if (x == x->parent->left)
3784 x->parent->left = y;
3785 else
3786 x->parent->right = y;
3787 }
3788 else
3789 mem_root = y;
3790
3791 /* Put x on y's left. */
3792 y->left = x;
3793 if (x != MEM_NIL)
3794 x->parent = y;
3795 }
3796
3797
3798 /* (x) (Y)
3799 / \ / \
3800 (y) c ===> a (x)
3801 / \ / \
3802 a b b c */
3803
3804 static void
3805 mem_rotate_right (x)
3806 struct mem_node *x;
3807 {
3808 struct mem_node *y = x->left;
3809
3810 x->left = y->right;
3811 if (y->right != MEM_NIL)
3812 y->right->parent = x;
3813
3814 if (y != MEM_NIL)
3815 y->parent = x->parent;
3816 if (x->parent)
3817 {
3818 if (x == x->parent->right)
3819 x->parent->right = y;
3820 else
3821 x->parent->left = y;
3822 }
3823 else
3824 mem_root = y;
3825
3826 y->right = x;
3827 if (x != MEM_NIL)
3828 x->parent = y;
3829 }
3830
3831
3832 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3833
3834 static void
3835 mem_delete (z)
3836 struct mem_node *z;
3837 {
3838 struct mem_node *x, *y;
3839
3840 if (!z || z == MEM_NIL)
3841 return;
3842
3843 if (z->left == MEM_NIL || z->right == MEM_NIL)
3844 y = z;
3845 else
3846 {
3847 y = z->right;
3848 while (y->left != MEM_NIL)
3849 y = y->left;
3850 }
3851
3852 if (y->left != MEM_NIL)
3853 x = y->left;
3854 else
3855 x = y->right;
3856
3857 x->parent = y->parent;
3858 if (y->parent)
3859 {
3860 if (y == y->parent->left)
3861 y->parent->left = x;
3862 else
3863 y->parent->right = x;
3864 }
3865 else
3866 mem_root = x;
3867
3868 if (y != z)
3869 {
3870 z->start = y->start;
3871 z->end = y->end;
3872 z->type = y->type;
3873 }
3874
3875 if (y->color == MEM_BLACK)
3876 mem_delete_fixup (x);
3877
3878 #ifdef GC_MALLOC_CHECK
3879 _free_internal (y);
3880 #else
3881 xfree (y);
3882 #endif
3883 }
3884
3885
3886 /* Re-establish the red-black properties of the tree, after a
3887 deletion. */
3888
3889 static void
3890 mem_delete_fixup (x)
3891 struct mem_node *x;
3892 {
3893 while (x != mem_root && x->color == MEM_BLACK)
3894 {
3895 if (x == x->parent->left)
3896 {
3897 struct mem_node *w = x->parent->right;
3898
3899 if (w->color == MEM_RED)
3900 {
3901 w->color = MEM_BLACK;
3902 x->parent->color = MEM_RED;
3903 mem_rotate_left (x->parent);
3904 w = x->parent->right;
3905 }
3906
3907 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3908 {
3909 w->color = MEM_RED;
3910 x = x->parent;
3911 }
3912 else
3913 {
3914 if (w->right->color == MEM_BLACK)
3915 {
3916 w->left->color = MEM_BLACK;
3917 w->color = MEM_RED;
3918 mem_rotate_right (w);
3919 w = x->parent->right;
3920 }
3921 w->color = x->parent->color;
3922 x->parent->color = MEM_BLACK;
3923 w->right->color = MEM_BLACK;
3924 mem_rotate_left (x->parent);
3925 x = mem_root;
3926 }
3927 }
3928 else
3929 {
3930 struct mem_node *w = x->parent->left;
3931
3932 if (w->color == MEM_RED)
3933 {
3934 w->color = MEM_BLACK;
3935 x->parent->color = MEM_RED;
3936 mem_rotate_right (x->parent);
3937 w = x->parent->left;
3938 }
3939
3940 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3941 {
3942 w->color = MEM_RED;
3943 x = x->parent;
3944 }
3945 else
3946 {
3947 if (w->left->color == MEM_BLACK)
3948 {
3949 w->right->color = MEM_BLACK;
3950 w->color = MEM_RED;
3951 mem_rotate_left (w);
3952 w = x->parent->left;
3953 }
3954
3955 w->color = x->parent->color;
3956 x->parent->color = MEM_BLACK;
3957 w->left->color = MEM_BLACK;
3958 mem_rotate_right (x->parent);
3959 x = mem_root;
3960 }
3961 }
3962 }
3963
3964 x->color = MEM_BLACK;
3965 }
3966
3967
3968 /* Value is non-zero if P is a pointer to a live Lisp string on
3969 the heap. M is a pointer to the mem_block for P. */
3970
3971 static INLINE int
3972 live_string_p (m, p)
3973 struct mem_node *m;
3974 void *p;
3975 {
3976 if (m->type == MEM_TYPE_STRING)
3977 {
3978 struct string_block *b = (struct string_block *) m->start;
3979 int offset = (char *) p - (char *) &b->strings[0];
3980
3981 /* P must point to the start of a Lisp_String structure, and it
3982 must not be on the free-list. */
3983 return (offset >= 0
3984 && offset % sizeof b->strings[0] == 0
3985 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3986 && ((struct Lisp_String *) p)->data != NULL);
3987 }
3988 else
3989 return 0;
3990 }
3991
3992
3993 /* Value is non-zero if P is a pointer to a live Lisp cons on
3994 the heap. M is a pointer to the mem_block for P. */
3995
3996 static INLINE int
3997 live_cons_p (m, p)
3998 struct mem_node *m;
3999 void *p;
4000 {
4001 if (m->type == MEM_TYPE_CONS)
4002 {
4003 struct cons_block *b = (struct cons_block *) m->start;
4004 int offset = (char *) p - (char *) &b->conses[0];
4005
4006 /* P must point to the start of a Lisp_Cons, not be
4007 one of the unused cells in the current cons block,
4008 and not be on the free-list. */
4009 return (offset >= 0
4010 && offset % sizeof b->conses[0] == 0
4011 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4012 && (b != cons_block
4013 || offset / sizeof b->conses[0] < cons_block_index)
4014 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4015 }
4016 else
4017 return 0;
4018 }
4019
4020
4021 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4022 the heap. M is a pointer to the mem_block for P. */
4023
4024 static INLINE int
4025 live_symbol_p (m, p)
4026 struct mem_node *m;
4027 void *p;
4028 {
4029 if (m->type == MEM_TYPE_SYMBOL)
4030 {
4031 struct symbol_block *b = (struct symbol_block *) m->start;
4032 int offset = (char *) p - (char *) &b->symbols[0];
4033
4034 /* P must point to the start of a Lisp_Symbol, not be
4035 one of the unused cells in the current symbol block,
4036 and not be on the free-list. */
4037 return (offset >= 0
4038 && offset % sizeof b->symbols[0] == 0
4039 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4040 && (b != symbol_block
4041 || offset / sizeof b->symbols[0] < symbol_block_index)
4042 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4043 }
4044 else
4045 return 0;
4046 }
4047
4048
4049 /* Value is non-zero if P is a pointer to a live Lisp float on
4050 the heap. M is a pointer to the mem_block for P. */
4051
4052 static INLINE int
4053 live_float_p (m, p)
4054 struct mem_node *m;
4055 void *p;
4056 {
4057 if (m->type == MEM_TYPE_FLOAT)
4058 {
4059 struct float_block *b = (struct float_block *) m->start;
4060 int offset = (char *) p - (char *) &b->floats[0];
4061
4062 /* P must point to the start of a Lisp_Float and not be
4063 one of the unused cells in the current float block. */
4064 return (offset >= 0
4065 && offset % sizeof b->floats[0] == 0
4066 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4067 && (b != float_block
4068 || offset / sizeof b->floats[0] < float_block_index));
4069 }
4070 else
4071 return 0;
4072 }
4073
4074
4075 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4076 the heap. M is a pointer to the mem_block for P. */
4077
4078 static INLINE int
4079 live_misc_p (m, p)
4080 struct mem_node *m;
4081 void *p;
4082 {
4083 if (m->type == MEM_TYPE_MISC)
4084 {
4085 struct marker_block *b = (struct marker_block *) m->start;
4086 int offset = (char *) p - (char *) &b->markers[0];
4087
4088 /* P must point to the start of a Lisp_Misc, not be
4089 one of the unused cells in the current misc block,
4090 and not be on the free-list. */
4091 return (offset >= 0
4092 && offset % sizeof b->markers[0] == 0
4093 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4094 && (b != marker_block
4095 || offset / sizeof b->markers[0] < marker_block_index)
4096 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4097 }
4098 else
4099 return 0;
4100 }
4101
4102
4103 /* Value is non-zero if P is a pointer to a live vector-like object.
4104 M is a pointer to the mem_block for P. */
4105
4106 static INLINE int
4107 live_vector_p (m, p)
4108 struct mem_node *m;
4109 void *p;
4110 {
4111 return (p == m->start
4112 && m->type >= MEM_TYPE_VECTOR
4113 && m->type <= MEM_TYPE_WINDOW);
4114 }
4115
4116
4117 /* Value is non-zero if P is a pointer to a live buffer. M is a
4118 pointer to the mem_block for P. */
4119
4120 static INLINE int
4121 live_buffer_p (m, p)
4122 struct mem_node *m;
4123 void *p;
4124 {
4125 /* P must point to the start of the block, and the buffer
4126 must not have been killed. */
4127 return (m->type == MEM_TYPE_BUFFER
4128 && p == m->start
4129 && !NILP (((struct buffer *) p)->name));
4130 }
4131
4132 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4133
4134 #if GC_MARK_STACK
4135
4136 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4137
4138 /* Array of objects that are kept alive because the C stack contains
4139 a pattern that looks like a reference to them . */
4140
4141 #define MAX_ZOMBIES 10
4142 static Lisp_Object zombies[MAX_ZOMBIES];
4143
4144 /* Number of zombie objects. */
4145
4146 static int nzombies;
4147
4148 /* Number of garbage collections. */
4149
4150 static int ngcs;
4151
4152 /* Average percentage of zombies per collection. */
4153
4154 static double avg_zombies;
4155
4156 /* Max. number of live and zombie objects. */
4157
4158 static int max_live, max_zombies;
4159
4160 /* Average number of live objects per GC. */
4161
4162 static double avg_live;
4163
4164 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4165 doc: /* Show information about live and zombie objects. */)
4166 ()
4167 {
4168 Lisp_Object args[8], zombie_list = Qnil;
4169 int i;
4170 for (i = 0; i < nzombies; i++)
4171 zombie_list = Fcons (zombies[i], zombie_list);
4172 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4173 args[1] = make_number (ngcs);
4174 args[2] = make_float (avg_live);
4175 args[3] = make_float (avg_zombies);
4176 args[4] = make_float (avg_zombies / avg_live / 100);
4177 args[5] = make_number (max_live);
4178 args[6] = make_number (max_zombies);
4179 args[7] = zombie_list;
4180 return Fmessage (8, args);
4181 }
4182
4183 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4184
4185
4186 /* Mark OBJ if we can prove it's a Lisp_Object. */
4187
4188 static INLINE void
4189 mark_maybe_object (obj)
4190 Lisp_Object obj;
4191 {
4192 void *po = (void *) XPNTR (obj);
4193 struct mem_node *m = mem_find (po);
4194
4195 if (m != MEM_NIL)
4196 {
4197 int mark_p = 0;
4198
4199 switch (XGCTYPE (obj))
4200 {
4201 case Lisp_String:
4202 mark_p = (live_string_p (m, po)
4203 && !STRING_MARKED_P ((struct Lisp_String *) po));
4204 break;
4205
4206 case Lisp_Cons:
4207 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4208 break;
4209
4210 case Lisp_Symbol:
4211 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4212 break;
4213
4214 case Lisp_Float:
4215 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4216 break;
4217
4218 case Lisp_Vectorlike:
4219 /* Note: can't check GC_BUFFERP before we know it's a
4220 buffer because checking that dereferences the pointer
4221 PO which might point anywhere. */
4222 if (live_vector_p (m, po))
4223 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4224 else if (live_buffer_p (m, po))
4225 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4226 break;
4227
4228 case Lisp_Misc:
4229 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4230 break;
4231
4232 case Lisp_Int:
4233 case Lisp_Type_Limit:
4234 break;
4235 }
4236
4237 if (mark_p)
4238 {
4239 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4240 if (nzombies < MAX_ZOMBIES)
4241 zombies[nzombies] = obj;
4242 ++nzombies;
4243 #endif
4244 mark_object (obj);
4245 }
4246 }
4247 }
4248
4249
4250 /* If P points to Lisp data, mark that as live if it isn't already
4251 marked. */
4252
4253 static INLINE void
4254 mark_maybe_pointer (p)
4255 void *p;
4256 {
4257 struct mem_node *m;
4258
4259 /* Quickly rule out some values which can't point to Lisp data. We
4260 assume that Lisp data is aligned on even addresses. */
4261 if ((EMACS_INT) p & 1)
4262 return;
4263
4264 m = mem_find (p);
4265 if (m != MEM_NIL)
4266 {
4267 Lisp_Object obj = Qnil;
4268
4269 switch (m->type)
4270 {
4271 case MEM_TYPE_NON_LISP:
4272 /* Nothing to do; not a pointer to Lisp memory. */
4273 break;
4274
4275 case MEM_TYPE_BUFFER:
4276 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4277 XSETVECTOR (obj, p);
4278 break;
4279
4280 case MEM_TYPE_CONS:
4281 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4282 XSETCONS (obj, p);
4283 break;
4284
4285 case MEM_TYPE_STRING:
4286 if (live_string_p (m, p)
4287 && !STRING_MARKED_P ((struct Lisp_String *) p))
4288 XSETSTRING (obj, p);
4289 break;
4290
4291 case MEM_TYPE_MISC:
4292 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4293 XSETMISC (obj, p);
4294 break;
4295
4296 case MEM_TYPE_SYMBOL:
4297 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4298 XSETSYMBOL (obj, p);
4299 break;
4300
4301 case MEM_TYPE_FLOAT:
4302 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4303 XSETFLOAT (obj, p);
4304 break;
4305
4306 case MEM_TYPE_VECTOR:
4307 case MEM_TYPE_PROCESS:
4308 case MEM_TYPE_HASH_TABLE:
4309 case MEM_TYPE_FRAME:
4310 case MEM_TYPE_WINDOW:
4311 if (live_vector_p (m, p))
4312 {
4313 Lisp_Object tem;
4314 XSETVECTOR (tem, p);
4315 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4316 obj = tem;
4317 }
4318 break;
4319
4320 default:
4321 abort ();
4322 }
4323
4324 if (!GC_NILP (obj))
4325 mark_object (obj);
4326 }
4327 }
4328
4329
4330 /* Mark Lisp objects referenced from the address range START..END. */
4331
4332 static void
4333 mark_memory (start, end)
4334 void *start, *end;
4335 {
4336 Lisp_Object *p;
4337 void **pp;
4338
4339 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4340 nzombies = 0;
4341 #endif
4342
4343 /* Make START the pointer to the start of the memory region,
4344 if it isn't already. */
4345 if (end < start)
4346 {
4347 void *tem = start;
4348 start = end;
4349 end = tem;
4350 }
4351
4352 /* Mark Lisp_Objects. */
4353 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4354 mark_maybe_object (*p);
4355
4356 /* Mark Lisp data pointed to. This is necessary because, in some
4357 situations, the C compiler optimizes Lisp objects away, so that
4358 only a pointer to them remains. Example:
4359
4360 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4361 ()
4362 {
4363 Lisp_Object obj = build_string ("test");
4364 struct Lisp_String *s = XSTRING (obj);
4365 Fgarbage_collect ();
4366 fprintf (stderr, "test `%s'\n", s->data);
4367 return Qnil;
4368 }
4369
4370 Here, `obj' isn't really used, and the compiler optimizes it
4371 away. The only reference to the life string is through the
4372 pointer `s'. */
4373
4374 for (pp = (void **) start; (void *) pp < end; ++pp)
4375 mark_maybe_pointer (*pp);
4376 }
4377
4378 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4379 the GCC system configuration. In gcc 3.2, the only systems for
4380 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4381 by others?) and ns32k-pc532-min. */
4382
4383 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4384
4385 static int setjmp_tested_p, longjmps_done;
4386
4387 #define SETJMP_WILL_LIKELY_WORK "\
4388 \n\
4389 Emacs garbage collector has been changed to use conservative stack\n\
4390 marking. Emacs has determined that the method it uses to do the\n\
4391 marking will likely work on your system, but this isn't sure.\n\
4392 \n\
4393 If you are a system-programmer, or can get the help of a local wizard\n\
4394 who is, please take a look at the function mark_stack in alloc.c, and\n\
4395 verify that the methods used are appropriate for your system.\n\
4396 \n\
4397 Please mail the result to <emacs-devel@gnu.org>.\n\
4398 "
4399
4400 #define SETJMP_WILL_NOT_WORK "\
4401 \n\
4402 Emacs garbage collector has been changed to use conservative stack\n\
4403 marking. Emacs has determined that the default method it uses to do the\n\
4404 marking will not work on your system. We will need a system-dependent\n\
4405 solution for your system.\n\
4406 \n\
4407 Please take a look at the function mark_stack in alloc.c, and\n\
4408 try to find a way to make it work on your system.\n\
4409 \n\
4410 Note that you may get false negatives, depending on the compiler.\n\
4411 In particular, you need to use -O with GCC for this test.\n\
4412 \n\
4413 Please mail the result to <emacs-devel@gnu.org>.\n\
4414 "
4415
4416
4417 /* Perform a quick check if it looks like setjmp saves registers in a
4418 jmp_buf. Print a message to stderr saying so. When this test
4419 succeeds, this is _not_ a proof that setjmp is sufficient for
4420 conservative stack marking. Only the sources or a disassembly
4421 can prove that. */
4422
4423 static void
4424 test_setjmp ()
4425 {
4426 char buf[10];
4427 register int x;
4428 jmp_buf jbuf;
4429 int result = 0;
4430
4431 /* Arrange for X to be put in a register. */
4432 sprintf (buf, "1");
4433 x = strlen (buf);
4434 x = 2 * x - 1;
4435
4436 setjmp (jbuf);
4437 if (longjmps_done == 1)
4438 {
4439 /* Came here after the longjmp at the end of the function.
4440
4441 If x == 1, the longjmp has restored the register to its
4442 value before the setjmp, and we can hope that setjmp
4443 saves all such registers in the jmp_buf, although that
4444 isn't sure.
4445
4446 For other values of X, either something really strange is
4447 taking place, or the setjmp just didn't save the register. */
4448
4449 if (x == 1)
4450 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4451 else
4452 {
4453 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4454 exit (1);
4455 }
4456 }
4457
4458 ++longjmps_done;
4459 x = 2;
4460 if (longjmps_done == 1)
4461 longjmp (jbuf, 1);
4462 }
4463
4464 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4465
4466
4467 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4468
4469 /* Abort if anything GCPRO'd doesn't survive the GC. */
4470
4471 static void
4472 check_gcpros ()
4473 {
4474 struct gcpro *p;
4475 int i;
4476
4477 for (p = gcprolist; p; p = p->next)
4478 for (i = 0; i < p->nvars; ++i)
4479 if (!survives_gc_p (p->var[i]))
4480 /* FIXME: It's not necessarily a bug. It might just be that the
4481 GCPRO is unnecessary or should release the object sooner. */
4482 abort ();
4483 }
4484
4485 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4486
4487 static void
4488 dump_zombies ()
4489 {
4490 int i;
4491
4492 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4493 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4494 {
4495 fprintf (stderr, " %d = ", i);
4496 debug_print (zombies[i]);
4497 }
4498 }
4499
4500 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4501
4502
4503 /* Mark live Lisp objects on the C stack.
4504
4505 There are several system-dependent problems to consider when
4506 porting this to new architectures:
4507
4508 Processor Registers
4509
4510 We have to mark Lisp objects in CPU registers that can hold local
4511 variables or are used to pass parameters.
4512
4513 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4514 something that either saves relevant registers on the stack, or
4515 calls mark_maybe_object passing it each register's contents.
4516
4517 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4518 implementation assumes that calling setjmp saves registers we need
4519 to see in a jmp_buf which itself lies on the stack. This doesn't
4520 have to be true! It must be verified for each system, possibly
4521 by taking a look at the source code of setjmp.
4522
4523 Stack Layout
4524
4525 Architectures differ in the way their processor stack is organized.
4526 For example, the stack might look like this
4527
4528 +----------------+
4529 | Lisp_Object | size = 4
4530 +----------------+
4531 | something else | size = 2
4532 +----------------+
4533 | Lisp_Object | size = 4
4534 +----------------+
4535 | ... |
4536
4537 In such a case, not every Lisp_Object will be aligned equally. To
4538 find all Lisp_Object on the stack it won't be sufficient to walk
4539 the stack in steps of 4 bytes. Instead, two passes will be
4540 necessary, one starting at the start of the stack, and a second
4541 pass starting at the start of the stack + 2. Likewise, if the
4542 minimal alignment of Lisp_Objects on the stack is 1, four passes
4543 would be necessary, each one starting with one byte more offset
4544 from the stack start.
4545
4546 The current code assumes by default that Lisp_Objects are aligned
4547 equally on the stack. */
4548
4549 static void
4550 mark_stack ()
4551 {
4552 int i;
4553 jmp_buf j;
4554 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4555 void *end;
4556
4557 /* This trick flushes the register windows so that all the state of
4558 the process is contained in the stack. */
4559 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4560 needed on ia64 too. See mach_dep.c, where it also says inline
4561 assembler doesn't work with relevant proprietary compilers. */
4562 #ifdef sparc
4563 asm ("ta 3");
4564 #endif
4565
4566 /* Save registers that we need to see on the stack. We need to see
4567 registers used to hold register variables and registers used to
4568 pass parameters. */
4569 #ifdef GC_SAVE_REGISTERS_ON_STACK
4570 GC_SAVE_REGISTERS_ON_STACK (end);
4571 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4572
4573 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4574 setjmp will definitely work, test it
4575 and print a message with the result
4576 of the test. */
4577 if (!setjmp_tested_p)
4578 {
4579 setjmp_tested_p = 1;
4580 test_setjmp ();
4581 }
4582 #endif /* GC_SETJMP_WORKS */
4583
4584 setjmp (j);
4585 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4586 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4587
4588 /* This assumes that the stack is a contiguous region in memory. If
4589 that's not the case, something has to be done here to iterate
4590 over the stack segments. */
4591 #ifndef GC_LISP_OBJECT_ALIGNMENT
4592 #ifdef __GNUC__
4593 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4594 #else
4595 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4596 #endif
4597 #endif
4598 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4599 mark_memory ((char *) stack_base + i, end);
4600 /* Allow for marking a secondary stack, like the register stack on the
4601 ia64. */
4602 #ifdef GC_MARK_SECONDARY_STACK
4603 GC_MARK_SECONDARY_STACK ();
4604 #endif
4605
4606 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4607 check_gcpros ();
4608 #endif
4609 }
4610
4611 #endif /* GC_MARK_STACK != 0 */
4612
4613
4614 /* Determine whether it is safe to access memory at address P. */
4615 int
4616 valid_pointer_p (p)
4617 void *p;
4618 {
4619 #ifdef WINDOWSNT
4620 return w32_valid_pointer_p (p, 16);
4621 #else
4622 int fd;
4623
4624 /* Obviously, we cannot just access it (we would SEGV trying), so we
4625 trick the o/s to tell us whether p is a valid pointer.
4626 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4627 not validate p in that case. */
4628
4629 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4630 {
4631 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4632 emacs_close (fd);
4633 unlink ("__Valid__Lisp__Object__");
4634 return valid;
4635 }
4636
4637 return -1;
4638 #endif
4639 }
4640
4641 /* Return 1 if OBJ is a valid lisp object.
4642 Return 0 if OBJ is NOT a valid lisp object.
4643 Return -1 if we cannot validate OBJ.
4644 This function can be quite slow,
4645 so it should only be used in code for manual debugging. */
4646
4647 int
4648 valid_lisp_object_p (obj)
4649 Lisp_Object obj;
4650 {
4651 void *p;
4652 #if GC_MARK_STACK
4653 struct mem_node *m;
4654 #endif
4655
4656 if (INTEGERP (obj))
4657 return 1;
4658
4659 p = (void *) XPNTR (obj);
4660 if (PURE_POINTER_P (p))
4661 return 1;
4662
4663 #if !GC_MARK_STACK
4664 return valid_pointer_p (p);
4665 #else
4666
4667 m = mem_find (p);
4668
4669 if (m == MEM_NIL)
4670 {
4671 int valid = valid_pointer_p (p);
4672 if (valid <= 0)
4673 return valid;
4674
4675 if (SUBRP (obj))
4676 return 1;
4677
4678 return 0;
4679 }
4680
4681 switch (m->type)
4682 {
4683 case MEM_TYPE_NON_LISP:
4684 return 0;
4685
4686 case MEM_TYPE_BUFFER:
4687 return live_buffer_p (m, p);
4688
4689 case MEM_TYPE_CONS:
4690 return live_cons_p (m, p);
4691
4692 case MEM_TYPE_STRING:
4693 return live_string_p (m, p);
4694
4695 case MEM_TYPE_MISC:
4696 return live_misc_p (m, p);
4697
4698 case MEM_TYPE_SYMBOL:
4699 return live_symbol_p (m, p);
4700
4701 case MEM_TYPE_FLOAT:
4702 return live_float_p (m, p);
4703
4704 case MEM_TYPE_VECTOR:
4705 case MEM_TYPE_PROCESS:
4706 case MEM_TYPE_HASH_TABLE:
4707 case MEM_TYPE_FRAME:
4708 case MEM_TYPE_WINDOW:
4709 return live_vector_p (m, p);
4710
4711 default:
4712 break;
4713 }
4714
4715 return 0;
4716 #endif
4717 }
4718
4719
4720
4721 \f
4722 /***********************************************************************
4723 Pure Storage Management
4724 ***********************************************************************/
4725
4726 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4727 pointer to it. TYPE is the Lisp type for which the memory is
4728 allocated. TYPE < 0 means it's not used for a Lisp object. */
4729
4730 static POINTER_TYPE *
4731 pure_alloc (size, type)
4732 size_t size;
4733 int type;
4734 {
4735 POINTER_TYPE *result;
4736 #ifdef USE_LSB_TAG
4737 size_t alignment = (1 << GCTYPEBITS);
4738 #else
4739 size_t alignment = sizeof (EMACS_INT);
4740
4741 /* Give Lisp_Floats an extra alignment. */
4742 if (type == Lisp_Float)
4743 {
4744 #if defined __GNUC__ && __GNUC__ >= 2
4745 alignment = __alignof (struct Lisp_Float);
4746 #else
4747 alignment = sizeof (struct Lisp_Float);
4748 #endif
4749 }
4750 #endif
4751
4752 again:
4753 if (type >= 0)
4754 {
4755 /* Allocate space for a Lisp object from the beginning of the free
4756 space with taking account of alignment. */
4757 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4758 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4759 }
4760 else
4761 {
4762 /* Allocate space for a non-Lisp object from the end of the free
4763 space. */
4764 pure_bytes_used_non_lisp += size;
4765 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4766 }
4767 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4768
4769 if (pure_bytes_used <= pure_size)
4770 return result;
4771
4772 /* Don't allocate a large amount here,
4773 because it might get mmap'd and then its address
4774 might not be usable. */
4775 purebeg = (char *) xmalloc (10000);
4776 pure_size = 10000;
4777 pure_bytes_used_before_overflow += pure_bytes_used - size;
4778 pure_bytes_used = 0;
4779 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4780 goto again;
4781 }
4782
4783
4784 /* Print a warning if PURESIZE is too small. */
4785
4786 void
4787 check_pure_size ()
4788 {
4789 if (pure_bytes_used_before_overflow)
4790 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4791 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4792 }
4793
4794
4795 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4796 the non-Lisp data pool of the pure storage, and return its start
4797 address. Return NULL if not found. */
4798
4799 static char *
4800 find_string_data_in_pure (data, nbytes)
4801 char *data;
4802 int nbytes;
4803 {
4804 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4805 unsigned char *p;
4806 char *non_lisp_beg;
4807
4808 if (pure_bytes_used_non_lisp < nbytes + 1)
4809 return NULL;
4810
4811 /* Set up the Boyer-Moore table. */
4812 skip = nbytes + 1;
4813 for (i = 0; i < 256; i++)
4814 bm_skip[i] = skip;
4815
4816 p = (unsigned char *) data;
4817 while (--skip > 0)
4818 bm_skip[*p++] = skip;
4819
4820 last_char_skip = bm_skip['\0'];
4821
4822 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4823 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4824
4825 /* See the comments in the function `boyer_moore' (search.c) for the
4826 use of `infinity'. */
4827 infinity = pure_bytes_used_non_lisp + 1;
4828 bm_skip['\0'] = infinity;
4829
4830 p = (unsigned char *) non_lisp_beg + nbytes;
4831 start = 0;
4832 do
4833 {
4834 /* Check the last character (== '\0'). */
4835 do
4836 {
4837 start += bm_skip[*(p + start)];
4838 }
4839 while (start <= start_max);
4840
4841 if (start < infinity)
4842 /* Couldn't find the last character. */
4843 return NULL;
4844
4845 /* No less than `infinity' means we could find the last
4846 character at `p[start - infinity]'. */
4847 start -= infinity;
4848
4849 /* Check the remaining characters. */
4850 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4851 /* Found. */
4852 return non_lisp_beg + start;
4853
4854 start += last_char_skip;
4855 }
4856 while (start <= start_max);
4857
4858 return NULL;
4859 }
4860
4861
4862 /* Return a string allocated in pure space. DATA is a buffer holding
4863 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4864 non-zero means make the result string multibyte.
4865
4866 Must get an error if pure storage is full, since if it cannot hold
4867 a large string it may be able to hold conses that point to that
4868 string; then the string is not protected from gc. */
4869
4870 Lisp_Object
4871 make_pure_string (data, nchars, nbytes, multibyte)
4872 char *data;
4873 int nchars, nbytes;
4874 int multibyte;
4875 {
4876 Lisp_Object string;
4877 struct Lisp_String *s;
4878
4879 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4880 s->data = find_string_data_in_pure (data, nbytes);
4881 if (s->data == NULL)
4882 {
4883 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4884 bcopy (data, s->data, nbytes);
4885 s->data[nbytes] = '\0';
4886 }
4887 s->size = nchars;
4888 s->size_byte = multibyte ? nbytes : -1;
4889 s->intervals = NULL_INTERVAL;
4890 XSETSTRING (string, s);
4891 return string;
4892 }
4893
4894
4895 /* Return a cons allocated from pure space. Give it pure copies
4896 of CAR as car and CDR as cdr. */
4897
4898 Lisp_Object
4899 pure_cons (car, cdr)
4900 Lisp_Object car, cdr;
4901 {
4902 register Lisp_Object new;
4903 struct Lisp_Cons *p;
4904
4905 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4906 XSETCONS (new, p);
4907 XSETCAR (new, Fpurecopy (car));
4908 XSETCDR (new, Fpurecopy (cdr));
4909 return new;
4910 }
4911
4912
4913 /* Value is a float object with value NUM allocated from pure space. */
4914
4915 Lisp_Object
4916 make_pure_float (num)
4917 double num;
4918 {
4919 register Lisp_Object new;
4920 struct Lisp_Float *p;
4921
4922 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4923 XSETFLOAT (new, p);
4924 XFLOAT_DATA (new) = num;
4925 return new;
4926 }
4927
4928
4929 /* Return a vector with room for LEN Lisp_Objects allocated from
4930 pure space. */
4931
4932 Lisp_Object
4933 make_pure_vector (len)
4934 EMACS_INT len;
4935 {
4936 Lisp_Object new;
4937 struct Lisp_Vector *p;
4938 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4939
4940 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4941 XSETVECTOR (new, p);
4942 XVECTOR (new)->size = len;
4943 return new;
4944 }
4945
4946
4947 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4948 doc: /* Make a copy of object OBJ in pure storage.
4949 Recursively copies contents of vectors and cons cells.
4950 Does not copy symbols. Copies strings without text properties. */)
4951 (obj)
4952 register Lisp_Object obj;
4953 {
4954 if (NILP (Vpurify_flag))
4955 return obj;
4956
4957 if (PURE_POINTER_P (XPNTR (obj)))
4958 return obj;
4959
4960 if (CONSP (obj))
4961 return pure_cons (XCAR (obj), XCDR (obj));
4962 else if (FLOATP (obj))
4963 return make_pure_float (XFLOAT_DATA (obj));
4964 else if (STRINGP (obj))
4965 return make_pure_string (SDATA (obj), SCHARS (obj),
4966 SBYTES (obj),
4967 STRING_MULTIBYTE (obj));
4968 else if (COMPILEDP (obj) || VECTORP (obj))
4969 {
4970 register struct Lisp_Vector *vec;
4971 register int i;
4972 EMACS_INT size;
4973
4974 size = XVECTOR (obj)->size;
4975 if (size & PSEUDOVECTOR_FLAG)
4976 size &= PSEUDOVECTOR_SIZE_MASK;
4977 vec = XVECTOR (make_pure_vector (size));
4978 for (i = 0; i < size; i++)
4979 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4980 if (COMPILEDP (obj))
4981 XSETCOMPILED (obj, vec);
4982 else
4983 XSETVECTOR (obj, vec);
4984 return obj;
4985 }
4986 else if (MARKERP (obj))
4987 error ("Attempt to copy a marker to pure storage");
4988
4989 return obj;
4990 }
4991
4992
4993 \f
4994 /***********************************************************************
4995 Protection from GC
4996 ***********************************************************************/
4997
4998 /* Put an entry in staticvec, pointing at the variable with address
4999 VARADDRESS. */
5000
5001 void
5002 staticpro (varaddress)
5003 Lisp_Object *varaddress;
5004 {
5005 staticvec[staticidx++] = varaddress;
5006 if (staticidx >= NSTATICS)
5007 abort ();
5008 }
5009
5010 struct catchtag
5011 {
5012 Lisp_Object tag;
5013 Lisp_Object val;
5014 struct catchtag *next;
5015 };
5016
5017 \f
5018 /***********************************************************************
5019 Protection from GC
5020 ***********************************************************************/
5021
5022 /* Temporarily prevent garbage collection. */
5023
5024 int
5025 inhibit_garbage_collection ()
5026 {
5027 int count = SPECPDL_INDEX ();
5028 int nbits = min (VALBITS, BITS_PER_INT);
5029
5030 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5031 return count;
5032 }
5033
5034
5035 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5036 doc: /* Reclaim storage for Lisp objects no longer needed.
5037 Garbage collection happens automatically if you cons more than
5038 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5039 `garbage-collect' normally returns a list with info on amount of space in use:
5040 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5041 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5042 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5043 (USED-STRINGS . FREE-STRINGS))
5044 However, if there was overflow in pure space, `garbage-collect'
5045 returns nil, because real GC can't be done. */)
5046 ()
5047 {
5048 register struct specbinding *bind;
5049 struct catchtag *catch;
5050 struct handler *handler;
5051 char stack_top_variable;
5052 register int i;
5053 int message_p;
5054 Lisp_Object total[8];
5055 int count = SPECPDL_INDEX ();
5056 EMACS_TIME t1, t2, t3;
5057
5058 if (abort_on_gc)
5059 abort ();
5060
5061 /* Can't GC if pure storage overflowed because we can't determine
5062 if something is a pure object or not. */
5063 if (pure_bytes_used_before_overflow)
5064 return Qnil;
5065
5066 CHECK_CONS_LIST ();
5067
5068 /* Don't keep undo information around forever.
5069 Do this early on, so it is no problem if the user quits. */
5070 {
5071 register struct buffer *nextb = all_buffers;
5072
5073 while (nextb)
5074 {
5075 /* If a buffer's undo list is Qt, that means that undo is
5076 turned off in that buffer. Calling truncate_undo_list on
5077 Qt tends to return NULL, which effectively turns undo back on.
5078 So don't call truncate_undo_list if undo_list is Qt. */
5079 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5080 truncate_undo_list (nextb);
5081
5082 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5083 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5084 {
5085 /* If a buffer's gap size is more than 10% of the buffer
5086 size, or larger than 2000 bytes, then shrink it
5087 accordingly. Keep a minimum size of 20 bytes. */
5088 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5089
5090 if (nextb->text->gap_size > size)
5091 {
5092 struct buffer *save_current = current_buffer;
5093 current_buffer = nextb;
5094 make_gap (-(nextb->text->gap_size - size));
5095 current_buffer = save_current;
5096 }
5097 }
5098
5099 nextb = nextb->next;
5100 }
5101 }
5102
5103 EMACS_GET_TIME (t1);
5104
5105 /* In case user calls debug_print during GC,
5106 don't let that cause a recursive GC. */
5107 consing_since_gc = 0;
5108
5109 /* Save what's currently displayed in the echo area. */
5110 message_p = push_message ();
5111 record_unwind_protect (pop_message_unwind, Qnil);
5112
5113 /* Save a copy of the contents of the stack, for debugging. */
5114 #if MAX_SAVE_STACK > 0
5115 if (NILP (Vpurify_flag))
5116 {
5117 i = &stack_top_variable - stack_bottom;
5118 if (i < 0) i = -i;
5119 if (i < MAX_SAVE_STACK)
5120 {
5121 if (stack_copy == 0)
5122 stack_copy = (char *) xmalloc (stack_copy_size = i);
5123 else if (stack_copy_size < i)
5124 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5125 if (stack_copy)
5126 {
5127 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5128 bcopy (stack_bottom, stack_copy, i);
5129 else
5130 bcopy (&stack_top_variable, stack_copy, i);
5131 }
5132 }
5133 }
5134 #endif /* MAX_SAVE_STACK > 0 */
5135
5136 if (garbage_collection_messages)
5137 message1_nolog ("Garbage collecting...");
5138
5139 BLOCK_INPUT;
5140
5141 shrink_regexp_cache ();
5142
5143 gc_in_progress = 1;
5144
5145 /* clear_marks (); */
5146
5147 /* Mark all the special slots that serve as the roots of accessibility. */
5148
5149 for (i = 0; i < staticidx; i++)
5150 mark_object (*staticvec[i]);
5151
5152 for (bind = specpdl; bind != specpdl_ptr; bind++)
5153 {
5154 mark_object (bind->symbol);
5155 mark_object (bind->old_value);
5156 }
5157 mark_kboards ();
5158
5159 #ifdef USE_GTK
5160 {
5161 extern void xg_mark_data ();
5162 xg_mark_data ();
5163 }
5164 #endif
5165
5166 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5167 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5168 mark_stack ();
5169 #else
5170 {
5171 register struct gcpro *tail;
5172 for (tail = gcprolist; tail; tail = tail->next)
5173 for (i = 0; i < tail->nvars; i++)
5174 mark_object (tail->var[i]);
5175 }
5176 #endif
5177
5178 mark_byte_stack ();
5179 for (catch = catchlist; catch; catch = catch->next)
5180 {
5181 mark_object (catch->tag);
5182 mark_object (catch->val);
5183 }
5184 for (handler = handlerlist; handler; handler = handler->next)
5185 {
5186 mark_object (handler->handler);
5187 mark_object (handler->var);
5188 }
5189 mark_backtrace ();
5190
5191 #ifdef HAVE_WINDOW_SYSTEM
5192 mark_fringe_data ();
5193 #endif
5194
5195 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5196 mark_stack ();
5197 #endif
5198
5199 /* Everything is now marked, except for the things that require special
5200 finalization, i.e. the undo_list.
5201 Look thru every buffer's undo list
5202 for elements that update markers that were not marked,
5203 and delete them. */
5204 {
5205 register struct buffer *nextb = all_buffers;
5206
5207 while (nextb)
5208 {
5209 /* If a buffer's undo list is Qt, that means that undo is
5210 turned off in that buffer. Calling truncate_undo_list on
5211 Qt tends to return NULL, which effectively turns undo back on.
5212 So don't call truncate_undo_list if undo_list is Qt. */
5213 if (! EQ (nextb->undo_list, Qt))
5214 {
5215 Lisp_Object tail, prev;
5216 tail = nextb->undo_list;
5217 prev = Qnil;
5218 while (CONSP (tail))
5219 {
5220 if (GC_CONSP (XCAR (tail))
5221 && GC_MARKERP (XCAR (XCAR (tail)))
5222 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5223 {
5224 if (NILP (prev))
5225 nextb->undo_list = tail = XCDR (tail);
5226 else
5227 {
5228 tail = XCDR (tail);
5229 XSETCDR (prev, tail);
5230 }
5231 }
5232 else
5233 {
5234 prev = tail;
5235 tail = XCDR (tail);
5236 }
5237 }
5238 }
5239 /* Now that we have stripped the elements that need not be in the
5240 undo_list any more, we can finally mark the list. */
5241 mark_object (nextb->undo_list);
5242
5243 nextb = nextb->next;
5244 }
5245 }
5246
5247 gc_sweep ();
5248
5249 /* Clear the mark bits that we set in certain root slots. */
5250
5251 unmark_byte_stack ();
5252 VECTOR_UNMARK (&buffer_defaults);
5253 VECTOR_UNMARK (&buffer_local_symbols);
5254
5255 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5256 dump_zombies ();
5257 #endif
5258
5259 UNBLOCK_INPUT;
5260
5261 CHECK_CONS_LIST ();
5262
5263 /* clear_marks (); */
5264 gc_in_progress = 0;
5265
5266 consing_since_gc = 0;
5267 if (gc_cons_threshold < 10000)
5268 gc_cons_threshold = 10000;
5269
5270 if (FLOATP (Vgc_cons_percentage))
5271 { /* Set gc_cons_combined_threshold. */
5272 EMACS_INT total = 0;
5273
5274 total += total_conses * sizeof (struct Lisp_Cons);
5275 total += total_symbols * sizeof (struct Lisp_Symbol);
5276 total += total_markers * sizeof (union Lisp_Misc);
5277 total += total_string_size;
5278 total += total_vector_size * sizeof (Lisp_Object);
5279 total += total_floats * sizeof (struct Lisp_Float);
5280 total += total_intervals * sizeof (struct interval);
5281 total += total_strings * sizeof (struct Lisp_String);
5282
5283 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5284 }
5285 else
5286 gc_relative_threshold = 0;
5287
5288 if (garbage_collection_messages)
5289 {
5290 if (message_p || minibuf_level > 0)
5291 restore_message ();
5292 else
5293 message1_nolog ("Garbage collecting...done");
5294 }
5295
5296 unbind_to (count, Qnil);
5297
5298 total[0] = Fcons (make_number (total_conses),
5299 make_number (total_free_conses));
5300 total[1] = Fcons (make_number (total_symbols),
5301 make_number (total_free_symbols));
5302 total[2] = Fcons (make_number (total_markers),
5303 make_number (total_free_markers));
5304 total[3] = make_number (total_string_size);
5305 total[4] = make_number (total_vector_size);
5306 total[5] = Fcons (make_number (total_floats),
5307 make_number (total_free_floats));
5308 total[6] = Fcons (make_number (total_intervals),
5309 make_number (total_free_intervals));
5310 total[7] = Fcons (make_number (total_strings),
5311 make_number (total_free_strings));
5312
5313 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5314 {
5315 /* Compute average percentage of zombies. */
5316 double nlive = 0;
5317
5318 for (i = 0; i < 7; ++i)
5319 if (CONSP (total[i]))
5320 nlive += XFASTINT (XCAR (total[i]));
5321
5322 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5323 max_live = max (nlive, max_live);
5324 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5325 max_zombies = max (nzombies, max_zombies);
5326 ++ngcs;
5327 }
5328 #endif
5329
5330 if (!NILP (Vpost_gc_hook))
5331 {
5332 int count = inhibit_garbage_collection ();
5333 safe_run_hooks (Qpost_gc_hook);
5334 unbind_to (count, Qnil);
5335 }
5336
5337 /* Accumulate statistics. */
5338 EMACS_GET_TIME (t2);
5339 EMACS_SUB_TIME (t3, t2, t1);
5340 if (FLOATP (Vgc_elapsed))
5341 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5342 EMACS_SECS (t3) +
5343 EMACS_USECS (t3) * 1.0e-6);
5344 gcs_done++;
5345
5346 return Flist (sizeof total / sizeof *total, total);
5347 }
5348
5349
5350 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5351 only interesting objects referenced from glyphs are strings. */
5352
5353 static void
5354 mark_glyph_matrix (matrix)
5355 struct glyph_matrix *matrix;
5356 {
5357 struct glyph_row *row = matrix->rows;
5358 struct glyph_row *end = row + matrix->nrows;
5359
5360 for (; row < end; ++row)
5361 if (row->enabled_p)
5362 {
5363 int area;
5364 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5365 {
5366 struct glyph *glyph = row->glyphs[area];
5367 struct glyph *end_glyph = glyph + row->used[area];
5368
5369 for (; glyph < end_glyph; ++glyph)
5370 if (GC_STRINGP (glyph->object)
5371 && !STRING_MARKED_P (XSTRING (glyph->object)))
5372 mark_object (glyph->object);
5373 }
5374 }
5375 }
5376
5377
5378 /* Mark Lisp faces in the face cache C. */
5379
5380 static void
5381 mark_face_cache (c)
5382 struct face_cache *c;
5383 {
5384 if (c)
5385 {
5386 int i, j;
5387 for (i = 0; i < c->used; ++i)
5388 {
5389 struct face *face = FACE_FROM_ID (c->f, i);
5390
5391 if (face)
5392 {
5393 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5394 mark_object (face->lface[j]);
5395 }
5396 }
5397 }
5398 }
5399
5400
5401 #ifdef HAVE_WINDOW_SYSTEM
5402
5403 /* Mark Lisp objects in image IMG. */
5404
5405 static void
5406 mark_image (img)
5407 struct image *img;
5408 {
5409 mark_object (img->spec);
5410
5411 if (!NILP (img->data.lisp_val))
5412 mark_object (img->data.lisp_val);
5413 }
5414
5415
5416 /* Mark Lisp objects in image cache of frame F. It's done this way so
5417 that we don't have to include xterm.h here. */
5418
5419 static void
5420 mark_image_cache (f)
5421 struct frame *f;
5422 {
5423 forall_images_in_image_cache (f, mark_image);
5424 }
5425
5426 #endif /* HAVE_X_WINDOWS */
5427
5428
5429 \f
5430 /* Mark reference to a Lisp_Object.
5431 If the object referred to has not been seen yet, recursively mark
5432 all the references contained in it. */
5433
5434 #define LAST_MARKED_SIZE 500
5435 Lisp_Object last_marked[LAST_MARKED_SIZE];
5436 int last_marked_index;
5437
5438 /* For debugging--call abort when we cdr down this many
5439 links of a list, in mark_object. In debugging,
5440 the call to abort will hit a breakpoint.
5441 Normally this is zero and the check never goes off. */
5442 int mark_object_loop_halt;
5443
5444 void
5445 mark_object (arg)
5446 Lisp_Object arg;
5447 {
5448 register Lisp_Object obj = arg;
5449 #ifdef GC_CHECK_MARKED_OBJECTS
5450 void *po;
5451 struct mem_node *m;
5452 #endif
5453 int cdr_count = 0;
5454
5455 loop:
5456
5457 if (PURE_POINTER_P (XPNTR (obj)))
5458 return;
5459
5460 last_marked[last_marked_index++] = obj;
5461 if (last_marked_index == LAST_MARKED_SIZE)
5462 last_marked_index = 0;
5463
5464 /* Perform some sanity checks on the objects marked here. Abort if
5465 we encounter an object we know is bogus. This increases GC time
5466 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5467 #ifdef GC_CHECK_MARKED_OBJECTS
5468
5469 po = (void *) XPNTR (obj);
5470
5471 /* Check that the object pointed to by PO is known to be a Lisp
5472 structure allocated from the heap. */
5473 #define CHECK_ALLOCATED() \
5474 do { \
5475 m = mem_find (po); \
5476 if (m == MEM_NIL) \
5477 abort (); \
5478 } while (0)
5479
5480 /* Check that the object pointed to by PO is live, using predicate
5481 function LIVEP. */
5482 #define CHECK_LIVE(LIVEP) \
5483 do { \
5484 if (!LIVEP (m, po)) \
5485 abort (); \
5486 } while (0)
5487
5488 /* Check both of the above conditions. */
5489 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5490 do { \
5491 CHECK_ALLOCATED (); \
5492 CHECK_LIVE (LIVEP); \
5493 } while (0) \
5494
5495 #else /* not GC_CHECK_MARKED_OBJECTS */
5496
5497 #define CHECK_ALLOCATED() (void) 0
5498 #define CHECK_LIVE(LIVEP) (void) 0
5499 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5500
5501 #endif /* not GC_CHECK_MARKED_OBJECTS */
5502
5503 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5504 {
5505 case Lisp_String:
5506 {
5507 register struct Lisp_String *ptr = XSTRING (obj);
5508 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5509 MARK_INTERVAL_TREE (ptr->intervals);
5510 MARK_STRING (ptr);
5511 #ifdef GC_CHECK_STRING_BYTES
5512 /* Check that the string size recorded in the string is the
5513 same as the one recorded in the sdata structure. */
5514 CHECK_STRING_BYTES (ptr);
5515 #endif /* GC_CHECK_STRING_BYTES */
5516 }
5517 break;
5518
5519 case Lisp_Vectorlike:
5520 #ifdef GC_CHECK_MARKED_OBJECTS
5521 m = mem_find (po);
5522 if (m == MEM_NIL && !GC_SUBRP (obj)
5523 && po != &buffer_defaults
5524 && po != &buffer_local_symbols)
5525 abort ();
5526 #endif /* GC_CHECK_MARKED_OBJECTS */
5527
5528 if (GC_BUFFERP (obj))
5529 {
5530 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5531 {
5532 #ifdef GC_CHECK_MARKED_OBJECTS
5533 if (po != &buffer_defaults && po != &buffer_local_symbols)
5534 {
5535 struct buffer *b;
5536 for (b = all_buffers; b && b != po; b = b->next)
5537 ;
5538 if (b == NULL)
5539 abort ();
5540 }
5541 #endif /* GC_CHECK_MARKED_OBJECTS */
5542 mark_buffer (obj);
5543 }
5544 }
5545 else if (GC_SUBRP (obj))
5546 break;
5547 else if (GC_COMPILEDP (obj))
5548 /* We could treat this just like a vector, but it is better to
5549 save the COMPILED_CONSTANTS element for last and avoid
5550 recursion there. */
5551 {
5552 register struct Lisp_Vector *ptr = XVECTOR (obj);
5553 register EMACS_INT size = ptr->size;
5554 register int i;
5555
5556 if (VECTOR_MARKED_P (ptr))
5557 break; /* Already marked */
5558
5559 CHECK_LIVE (live_vector_p);
5560 VECTOR_MARK (ptr); /* Else mark it */
5561 size &= PSEUDOVECTOR_SIZE_MASK;
5562 for (i = 0; i < size; i++) /* and then mark its elements */
5563 {
5564 if (i != COMPILED_CONSTANTS)
5565 mark_object (ptr->contents[i]);
5566 }
5567 obj = ptr->contents[COMPILED_CONSTANTS];
5568 goto loop;
5569 }
5570 else if (GC_FRAMEP (obj))
5571 {
5572 register struct frame *ptr = XFRAME (obj);
5573
5574 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5575 VECTOR_MARK (ptr); /* Else mark it */
5576
5577 CHECK_LIVE (live_vector_p);
5578 mark_object (ptr->name);
5579 mark_object (ptr->icon_name);
5580 mark_object (ptr->title);
5581 mark_object (ptr->focus_frame);
5582 mark_object (ptr->selected_window);
5583 mark_object (ptr->minibuffer_window);
5584 mark_object (ptr->param_alist);
5585 mark_object (ptr->scroll_bars);
5586 mark_object (ptr->condemned_scroll_bars);
5587 mark_object (ptr->menu_bar_items);
5588 mark_object (ptr->face_alist);
5589 mark_object (ptr->menu_bar_vector);
5590 mark_object (ptr->buffer_predicate);
5591 mark_object (ptr->buffer_list);
5592 mark_object (ptr->menu_bar_window);
5593 mark_object (ptr->tool_bar_window);
5594 mark_face_cache (ptr->face_cache);
5595 #ifdef HAVE_WINDOW_SYSTEM
5596 mark_image_cache (ptr);
5597 mark_object (ptr->tool_bar_items);
5598 mark_object (ptr->desired_tool_bar_string);
5599 mark_object (ptr->current_tool_bar_string);
5600 #endif /* HAVE_WINDOW_SYSTEM */
5601 }
5602 else if (GC_BOOL_VECTOR_P (obj))
5603 {
5604 register struct Lisp_Vector *ptr = XVECTOR (obj);
5605
5606 if (VECTOR_MARKED_P (ptr))
5607 break; /* Already marked */
5608 CHECK_LIVE (live_vector_p);
5609 VECTOR_MARK (ptr); /* Else mark it */
5610 }
5611 else if (GC_WINDOWP (obj))
5612 {
5613 register struct Lisp_Vector *ptr = XVECTOR (obj);
5614 struct window *w = XWINDOW (obj);
5615 register int i;
5616
5617 /* Stop if already marked. */
5618 if (VECTOR_MARKED_P (ptr))
5619 break;
5620
5621 /* Mark it. */
5622 CHECK_LIVE (live_vector_p);
5623 VECTOR_MARK (ptr);
5624
5625 /* There is no Lisp data above The member CURRENT_MATRIX in
5626 struct WINDOW. Stop marking when that slot is reached. */
5627 for (i = 0;
5628 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5629 i++)
5630 mark_object (ptr->contents[i]);
5631
5632 /* Mark glyphs for leaf windows. Marking window matrices is
5633 sufficient because frame matrices use the same glyph
5634 memory. */
5635 if (NILP (w->hchild)
5636 && NILP (w->vchild)
5637 && w->current_matrix)
5638 {
5639 mark_glyph_matrix (w->current_matrix);
5640 mark_glyph_matrix (w->desired_matrix);
5641 }
5642 }
5643 else if (GC_HASH_TABLE_P (obj))
5644 {
5645 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5646
5647 /* Stop if already marked. */
5648 if (VECTOR_MARKED_P (h))
5649 break;
5650
5651 /* Mark it. */
5652 CHECK_LIVE (live_vector_p);
5653 VECTOR_MARK (h);
5654
5655 /* Mark contents. */
5656 /* Do not mark next_free or next_weak.
5657 Being in the next_weak chain
5658 should not keep the hash table alive.
5659 No need to mark `count' since it is an integer. */
5660 mark_object (h->test);
5661 mark_object (h->weak);
5662 mark_object (h->rehash_size);
5663 mark_object (h->rehash_threshold);
5664 mark_object (h->hash);
5665 mark_object (h->next);
5666 mark_object (h->index);
5667 mark_object (h->user_hash_function);
5668 mark_object (h->user_cmp_function);
5669
5670 /* If hash table is not weak, mark all keys and values.
5671 For weak tables, mark only the vector. */
5672 if (GC_NILP (h->weak))
5673 mark_object (h->key_and_value);
5674 else
5675 VECTOR_MARK (XVECTOR (h->key_and_value));
5676 }
5677 else
5678 {
5679 register struct Lisp_Vector *ptr = XVECTOR (obj);
5680 register EMACS_INT size = ptr->size;
5681 register int i;
5682
5683 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5684 CHECK_LIVE (live_vector_p);
5685 VECTOR_MARK (ptr); /* Else mark it */
5686 if (size & PSEUDOVECTOR_FLAG)
5687 size &= PSEUDOVECTOR_SIZE_MASK;
5688
5689 /* Note that this size is not the memory-footprint size, but only
5690 the number of Lisp_Object fields that we should trace.
5691 The distinction is used e.g. by Lisp_Process which places extra
5692 non-Lisp_Object fields at the end of the structure. */
5693 for (i = 0; i < size; i++) /* and then mark its elements */
5694 mark_object (ptr->contents[i]);
5695 }
5696 break;
5697
5698 case Lisp_Symbol:
5699 {
5700 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5701 struct Lisp_Symbol *ptrx;
5702
5703 if (ptr->gcmarkbit) break;
5704 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5705 ptr->gcmarkbit = 1;
5706 mark_object (ptr->value);
5707 mark_object (ptr->function);
5708 mark_object (ptr->plist);
5709
5710 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5711 MARK_STRING (XSTRING (ptr->xname));
5712 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5713
5714 /* Note that we do not mark the obarray of the symbol.
5715 It is safe not to do so because nothing accesses that
5716 slot except to check whether it is nil. */
5717 ptr = ptr->next;
5718 if (ptr)
5719 {
5720 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5721 XSETSYMBOL (obj, ptrx);
5722 goto loop;
5723 }
5724 }
5725 break;
5726
5727 case Lisp_Misc:
5728 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5729 if (XMARKER (obj)->gcmarkbit)
5730 break;
5731 XMARKER (obj)->gcmarkbit = 1;
5732
5733 switch (XMISCTYPE (obj))
5734 {
5735 case Lisp_Misc_Buffer_Local_Value:
5736 case Lisp_Misc_Some_Buffer_Local_Value:
5737 {
5738 register struct Lisp_Buffer_Local_Value *ptr
5739 = XBUFFER_LOCAL_VALUE (obj);
5740 /* If the cdr is nil, avoid recursion for the car. */
5741 if (EQ (ptr->cdr, Qnil))
5742 {
5743 obj = ptr->realvalue;
5744 goto loop;
5745 }
5746 mark_object (ptr->realvalue);
5747 mark_object (ptr->buffer);
5748 mark_object (ptr->frame);
5749 obj = ptr->cdr;
5750 goto loop;
5751 }
5752
5753 case Lisp_Misc_Marker:
5754 /* DO NOT mark thru the marker's chain.
5755 The buffer's markers chain does not preserve markers from gc;
5756 instead, markers are removed from the chain when freed by gc. */
5757 break;
5758
5759 case Lisp_Misc_Intfwd:
5760 case Lisp_Misc_Boolfwd:
5761 case Lisp_Misc_Objfwd:
5762 case Lisp_Misc_Buffer_Objfwd:
5763 case Lisp_Misc_Kboard_Objfwd:
5764 /* Don't bother with Lisp_Buffer_Objfwd,
5765 since all markable slots in current buffer marked anyway. */
5766 /* Don't need to do Lisp_Objfwd, since the places they point
5767 are protected with staticpro. */
5768 break;
5769
5770 case Lisp_Misc_Save_Value:
5771 #if GC_MARK_STACK
5772 {
5773 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5774 /* If DOGC is set, POINTER is the address of a memory
5775 area containing INTEGER potential Lisp_Objects. */
5776 if (ptr->dogc)
5777 {
5778 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5779 int nelt;
5780 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5781 mark_maybe_object (*p);
5782 }
5783 }
5784 #endif
5785 break;
5786
5787 case Lisp_Misc_Overlay:
5788 {
5789 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5790 mark_object (ptr->start);
5791 mark_object (ptr->end);
5792 mark_object (ptr->plist);
5793 if (ptr->next)
5794 {
5795 XSETMISC (obj, ptr->next);
5796 goto loop;
5797 }
5798 }
5799 break;
5800
5801 default:
5802 abort ();
5803 }
5804 break;
5805
5806 case Lisp_Cons:
5807 {
5808 register struct Lisp_Cons *ptr = XCONS (obj);
5809 if (CONS_MARKED_P (ptr)) break;
5810 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5811 CONS_MARK (ptr);
5812 /* If the cdr is nil, avoid recursion for the car. */
5813 if (EQ (ptr->u.cdr, Qnil))
5814 {
5815 obj = ptr->car;
5816 cdr_count = 0;
5817 goto loop;
5818 }
5819 mark_object (ptr->car);
5820 obj = ptr->u.cdr;
5821 cdr_count++;
5822 if (cdr_count == mark_object_loop_halt)
5823 abort ();
5824 goto loop;
5825 }
5826
5827 case Lisp_Float:
5828 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5829 FLOAT_MARK (XFLOAT (obj));
5830 break;
5831
5832 case Lisp_Int:
5833 break;
5834
5835 default:
5836 abort ();
5837 }
5838
5839 #undef CHECK_LIVE
5840 #undef CHECK_ALLOCATED
5841 #undef CHECK_ALLOCATED_AND_LIVE
5842 }
5843
5844 /* Mark the pointers in a buffer structure. */
5845
5846 static void
5847 mark_buffer (buf)
5848 Lisp_Object buf;
5849 {
5850 register struct buffer *buffer = XBUFFER (buf);
5851 register Lisp_Object *ptr, tmp;
5852 Lisp_Object base_buffer;
5853
5854 VECTOR_MARK (buffer);
5855
5856 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5857
5858 /* For now, we just don't mark the undo_list. It's done later in
5859 a special way just before the sweep phase, and after stripping
5860 some of its elements that are not needed any more. */
5861
5862 if (buffer->overlays_before)
5863 {
5864 XSETMISC (tmp, buffer->overlays_before);
5865 mark_object (tmp);
5866 }
5867 if (buffer->overlays_after)
5868 {
5869 XSETMISC (tmp, buffer->overlays_after);
5870 mark_object (tmp);
5871 }
5872
5873 for (ptr = &buffer->name;
5874 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5875 ptr++)
5876 mark_object (*ptr);
5877
5878 /* If this is an indirect buffer, mark its base buffer. */
5879 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5880 {
5881 XSETBUFFER (base_buffer, buffer->base_buffer);
5882 mark_buffer (base_buffer);
5883 }
5884 }
5885
5886
5887 /* Value is non-zero if OBJ will survive the current GC because it's
5888 either marked or does not need to be marked to survive. */
5889
5890 int
5891 survives_gc_p (obj)
5892 Lisp_Object obj;
5893 {
5894 int survives_p;
5895
5896 switch (XGCTYPE (obj))
5897 {
5898 case Lisp_Int:
5899 survives_p = 1;
5900 break;
5901
5902 case Lisp_Symbol:
5903 survives_p = XSYMBOL (obj)->gcmarkbit;
5904 break;
5905
5906 case Lisp_Misc:
5907 survives_p = XMARKER (obj)->gcmarkbit;
5908 break;
5909
5910 case Lisp_String:
5911 survives_p = STRING_MARKED_P (XSTRING (obj));
5912 break;
5913
5914 case Lisp_Vectorlike:
5915 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5916 break;
5917
5918 case Lisp_Cons:
5919 survives_p = CONS_MARKED_P (XCONS (obj));
5920 break;
5921
5922 case Lisp_Float:
5923 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5924 break;
5925
5926 default:
5927 abort ();
5928 }
5929
5930 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5931 }
5932
5933
5934 \f
5935 /* Sweep: find all structures not marked, and free them. */
5936
5937 static void
5938 gc_sweep ()
5939 {
5940 /* Remove or mark entries in weak hash tables.
5941 This must be done before any object is unmarked. */
5942 sweep_weak_hash_tables ();
5943
5944 sweep_strings ();
5945 #ifdef GC_CHECK_STRING_BYTES
5946 if (!noninteractive)
5947 check_string_bytes (1);
5948 #endif
5949
5950 /* Put all unmarked conses on free list */
5951 {
5952 register struct cons_block *cblk;
5953 struct cons_block **cprev = &cons_block;
5954 register int lim = cons_block_index;
5955 register int num_free = 0, num_used = 0;
5956
5957 cons_free_list = 0;
5958
5959 for (cblk = cons_block; cblk; cblk = *cprev)
5960 {
5961 register int i;
5962 int this_free = 0;
5963 for (i = 0; i < lim; i++)
5964 if (!CONS_MARKED_P (&cblk->conses[i]))
5965 {
5966 this_free++;
5967 cblk->conses[i].u.chain = cons_free_list;
5968 cons_free_list = &cblk->conses[i];
5969 #if GC_MARK_STACK
5970 cons_free_list->car = Vdead;
5971 #endif
5972 }
5973 else
5974 {
5975 num_used++;
5976 CONS_UNMARK (&cblk->conses[i]);
5977 }
5978 lim = CONS_BLOCK_SIZE;
5979 /* If this block contains only free conses and we have already
5980 seen more than two blocks worth of free conses then deallocate
5981 this block. */
5982 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5983 {
5984 *cprev = cblk->next;
5985 /* Unhook from the free list. */
5986 cons_free_list = cblk->conses[0].u.chain;
5987 lisp_align_free (cblk);
5988 n_cons_blocks--;
5989 }
5990 else
5991 {
5992 num_free += this_free;
5993 cprev = &cblk->next;
5994 }
5995 }
5996 total_conses = num_used;
5997 total_free_conses = num_free;
5998 }
5999
6000 /* Put all unmarked floats on free list */
6001 {
6002 register struct float_block *fblk;
6003 struct float_block **fprev = &float_block;
6004 register int lim = float_block_index;
6005 register int num_free = 0, num_used = 0;
6006
6007 float_free_list = 0;
6008
6009 for (fblk = float_block; fblk; fblk = *fprev)
6010 {
6011 register int i;
6012 int this_free = 0;
6013 for (i = 0; i < lim; i++)
6014 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6015 {
6016 this_free++;
6017 fblk->floats[i].u.chain = float_free_list;
6018 float_free_list = &fblk->floats[i];
6019 }
6020 else
6021 {
6022 num_used++;
6023 FLOAT_UNMARK (&fblk->floats[i]);
6024 }
6025 lim = FLOAT_BLOCK_SIZE;
6026 /* If this block contains only free floats and we have already
6027 seen more than two blocks worth of free floats then deallocate
6028 this block. */
6029 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6030 {
6031 *fprev = fblk->next;
6032 /* Unhook from the free list. */
6033 float_free_list = fblk->floats[0].u.chain;
6034 lisp_align_free (fblk);
6035 n_float_blocks--;
6036 }
6037 else
6038 {
6039 num_free += this_free;
6040 fprev = &fblk->next;
6041 }
6042 }
6043 total_floats = num_used;
6044 total_free_floats = num_free;
6045 }
6046
6047 /* Put all unmarked intervals on free list */
6048 {
6049 register struct interval_block *iblk;
6050 struct interval_block **iprev = &interval_block;
6051 register int lim = interval_block_index;
6052 register int num_free = 0, num_used = 0;
6053
6054 interval_free_list = 0;
6055
6056 for (iblk = interval_block; iblk; iblk = *iprev)
6057 {
6058 register int i;
6059 int this_free = 0;
6060
6061 for (i = 0; i < lim; i++)
6062 {
6063 if (!iblk->intervals[i].gcmarkbit)
6064 {
6065 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6066 interval_free_list = &iblk->intervals[i];
6067 this_free++;
6068 }
6069 else
6070 {
6071 num_used++;
6072 iblk->intervals[i].gcmarkbit = 0;
6073 }
6074 }
6075 lim = INTERVAL_BLOCK_SIZE;
6076 /* If this block contains only free intervals and we have already
6077 seen more than two blocks worth of free intervals then
6078 deallocate this block. */
6079 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6080 {
6081 *iprev = iblk->next;
6082 /* Unhook from the free list. */
6083 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6084 lisp_free (iblk);
6085 n_interval_blocks--;
6086 }
6087 else
6088 {
6089 num_free += this_free;
6090 iprev = &iblk->next;
6091 }
6092 }
6093 total_intervals = num_used;
6094 total_free_intervals = num_free;
6095 }
6096
6097 /* Put all unmarked symbols on free list */
6098 {
6099 register struct symbol_block *sblk;
6100 struct symbol_block **sprev = &symbol_block;
6101 register int lim = symbol_block_index;
6102 register int num_free = 0, num_used = 0;
6103
6104 symbol_free_list = NULL;
6105
6106 for (sblk = symbol_block; sblk; sblk = *sprev)
6107 {
6108 int this_free = 0;
6109 struct Lisp_Symbol *sym = sblk->symbols;
6110 struct Lisp_Symbol *end = sym + lim;
6111
6112 for (; sym < end; ++sym)
6113 {
6114 /* Check if the symbol was created during loadup. In such a case
6115 it might be pointed to by pure bytecode which we don't trace,
6116 so we conservatively assume that it is live. */
6117 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6118
6119 if (!sym->gcmarkbit && !pure_p)
6120 {
6121 sym->next = symbol_free_list;
6122 symbol_free_list = sym;
6123 #if GC_MARK_STACK
6124 symbol_free_list->function = Vdead;
6125 #endif
6126 ++this_free;
6127 }
6128 else
6129 {
6130 ++num_used;
6131 if (!pure_p)
6132 UNMARK_STRING (XSTRING (sym->xname));
6133 sym->gcmarkbit = 0;
6134 }
6135 }
6136
6137 lim = SYMBOL_BLOCK_SIZE;
6138 /* If this block contains only free symbols and we have already
6139 seen more than two blocks worth of free symbols then deallocate
6140 this block. */
6141 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6142 {
6143 *sprev = sblk->next;
6144 /* Unhook from the free list. */
6145 symbol_free_list = sblk->symbols[0].next;
6146 lisp_free (sblk);
6147 n_symbol_blocks--;
6148 }
6149 else
6150 {
6151 num_free += this_free;
6152 sprev = &sblk->next;
6153 }
6154 }
6155 total_symbols = num_used;
6156 total_free_symbols = num_free;
6157 }
6158
6159 /* Put all unmarked misc's on free list.
6160 For a marker, first unchain it from the buffer it points into. */
6161 {
6162 register struct marker_block *mblk;
6163 struct marker_block **mprev = &marker_block;
6164 register int lim = marker_block_index;
6165 register int num_free = 0, num_used = 0;
6166
6167 marker_free_list = 0;
6168
6169 for (mblk = marker_block; mblk; mblk = *mprev)
6170 {
6171 register int i;
6172 int this_free = 0;
6173
6174 for (i = 0; i < lim; i++)
6175 {
6176 if (!mblk->markers[i].u_marker.gcmarkbit)
6177 {
6178 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6179 unchain_marker (&mblk->markers[i].u_marker);
6180 /* Set the type of the freed object to Lisp_Misc_Free.
6181 We could leave the type alone, since nobody checks it,
6182 but this might catch bugs faster. */
6183 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6184 mblk->markers[i].u_free.chain = marker_free_list;
6185 marker_free_list = &mblk->markers[i];
6186 this_free++;
6187 }
6188 else
6189 {
6190 num_used++;
6191 mblk->markers[i].u_marker.gcmarkbit = 0;
6192 }
6193 }
6194 lim = MARKER_BLOCK_SIZE;
6195 /* If this block contains only free markers and we have already
6196 seen more than two blocks worth of free markers then deallocate
6197 this block. */
6198 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6199 {
6200 *mprev = mblk->next;
6201 /* Unhook from the free list. */
6202 marker_free_list = mblk->markers[0].u_free.chain;
6203 lisp_free (mblk);
6204 n_marker_blocks--;
6205 }
6206 else
6207 {
6208 num_free += this_free;
6209 mprev = &mblk->next;
6210 }
6211 }
6212
6213 total_markers = num_used;
6214 total_free_markers = num_free;
6215 }
6216
6217 /* Free all unmarked buffers */
6218 {
6219 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6220
6221 while (buffer)
6222 if (!VECTOR_MARKED_P (buffer))
6223 {
6224 if (prev)
6225 prev->next = buffer->next;
6226 else
6227 all_buffers = buffer->next;
6228 next = buffer->next;
6229 lisp_free (buffer);
6230 buffer = next;
6231 }
6232 else
6233 {
6234 VECTOR_UNMARK (buffer);
6235 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6236 prev = buffer, buffer = buffer->next;
6237 }
6238 }
6239
6240 /* Free all unmarked vectors */
6241 {
6242 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6243 total_vector_size = 0;
6244
6245 while (vector)
6246 if (!VECTOR_MARKED_P (vector))
6247 {
6248 if (prev)
6249 prev->next = vector->next;
6250 else
6251 all_vectors = vector->next;
6252 next = vector->next;
6253 lisp_free (vector);
6254 n_vectors--;
6255 vector = next;
6256
6257 }
6258 else
6259 {
6260 VECTOR_UNMARK (vector);
6261 if (vector->size & PSEUDOVECTOR_FLAG)
6262 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6263 else
6264 total_vector_size += vector->size;
6265 prev = vector, vector = vector->next;
6266 }
6267 }
6268
6269 #ifdef GC_CHECK_STRING_BYTES
6270 if (!noninteractive)
6271 check_string_bytes (1);
6272 #endif
6273 }
6274
6275
6276
6277 \f
6278 /* Debugging aids. */
6279
6280 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6281 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6282 This may be helpful in debugging Emacs's memory usage.
6283 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6284 ()
6285 {
6286 Lisp_Object end;
6287
6288 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6289
6290 return end;
6291 }
6292
6293 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6294 doc: /* Return a list of counters that measure how much consing there has been.
6295 Each of these counters increments for a certain kind of object.
6296 The counters wrap around from the largest positive integer to zero.
6297 Garbage collection does not decrease them.
6298 The elements of the value are as follows:
6299 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6300 All are in units of 1 = one object consed
6301 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6302 objects consed.
6303 MISCS include overlays, markers, and some internal types.
6304 Frames, windows, buffers, and subprocesses count as vectors
6305 (but the contents of a buffer's text do not count here). */)
6306 ()
6307 {
6308 Lisp_Object consed[8];
6309
6310 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6311 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6312 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6313 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6314 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6315 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6316 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6317 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6318
6319 return Flist (8, consed);
6320 }
6321
6322 int suppress_checking;
6323 void
6324 die (msg, file, line)
6325 const char *msg;
6326 const char *file;
6327 int line;
6328 {
6329 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6330 file, line, msg);
6331 abort ();
6332 }
6333 \f
6334 /* Initialization */
6335
6336 void
6337 init_alloc_once ()
6338 {
6339 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6340 purebeg = PUREBEG;
6341 pure_size = PURESIZE;
6342 pure_bytes_used = 0;
6343 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6344 pure_bytes_used_before_overflow = 0;
6345
6346 /* Initialize the list of free aligned blocks. */
6347 free_ablock = NULL;
6348
6349 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6350 mem_init ();
6351 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6352 #endif
6353
6354 all_vectors = 0;
6355 ignore_warnings = 1;
6356 #ifdef DOUG_LEA_MALLOC
6357 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6358 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6359 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6360 #endif
6361 init_strings ();
6362 init_cons ();
6363 init_symbol ();
6364 init_marker ();
6365 init_float ();
6366 init_intervals ();
6367
6368 #ifdef REL_ALLOC
6369 malloc_hysteresis = 32;
6370 #else
6371 malloc_hysteresis = 0;
6372 #endif
6373
6374 refill_memory_reserve ();
6375
6376 ignore_warnings = 0;
6377 gcprolist = 0;
6378 byte_stack_list = 0;
6379 staticidx = 0;
6380 consing_since_gc = 0;
6381 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6382 gc_relative_threshold = 0;
6383
6384 #ifdef VIRT_ADDR_VARIES
6385 malloc_sbrk_unused = 1<<22; /* A large number */
6386 malloc_sbrk_used = 100000; /* as reasonable as any number */
6387 #endif /* VIRT_ADDR_VARIES */
6388 }
6389
6390 void
6391 init_alloc ()
6392 {
6393 gcprolist = 0;
6394 byte_stack_list = 0;
6395 #if GC_MARK_STACK
6396 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6397 setjmp_tested_p = longjmps_done = 0;
6398 #endif
6399 #endif
6400 Vgc_elapsed = make_float (0.0);
6401 gcs_done = 0;
6402 }
6403
6404 void
6405 syms_of_alloc ()
6406 {
6407 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6408 doc: /* *Number of bytes of consing between garbage collections.
6409 Garbage collection can happen automatically once this many bytes have been
6410 allocated since the last garbage collection. All data types count.
6411
6412 Garbage collection happens automatically only when `eval' is called.
6413
6414 By binding this temporarily to a large number, you can effectively
6415 prevent garbage collection during a part of the program.
6416 See also `gc-cons-percentage'. */);
6417
6418 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6419 doc: /* *Portion of the heap used for allocation.
6420 Garbage collection can happen automatically once this portion of the heap
6421 has been allocated since the last garbage collection.
6422 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6423 Vgc_cons_percentage = make_float (0.1);
6424
6425 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6426 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6427
6428 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6429 doc: /* Number of cons cells that have been consed so far. */);
6430
6431 DEFVAR_INT ("floats-consed", &floats_consed,
6432 doc: /* Number of floats that have been consed so far. */);
6433
6434 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6435 doc: /* Number of vector cells that have been consed so far. */);
6436
6437 DEFVAR_INT ("symbols-consed", &symbols_consed,
6438 doc: /* Number of symbols that have been consed so far. */);
6439
6440 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6441 doc: /* Number of string characters that have been consed so far. */);
6442
6443 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6444 doc: /* Number of miscellaneous objects that have been consed so far. */);
6445
6446 DEFVAR_INT ("intervals-consed", &intervals_consed,
6447 doc: /* Number of intervals that have been consed so far. */);
6448
6449 DEFVAR_INT ("strings-consed", &strings_consed,
6450 doc: /* Number of strings that have been consed so far. */);
6451
6452 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6453 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6454 This means that certain objects should be allocated in shared (pure) space. */);
6455
6456 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6457 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6458 garbage_collection_messages = 0;
6459
6460 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6461 doc: /* Hook run after garbage collection has finished. */);
6462 Vpost_gc_hook = Qnil;
6463 Qpost_gc_hook = intern ("post-gc-hook");
6464 staticpro (&Qpost_gc_hook);
6465
6466 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6467 doc: /* Precomputed `signal' argument for memory-full error. */);
6468 /* We build this in advance because if we wait until we need it, we might
6469 not be able to allocate the memory to hold it. */
6470 Vmemory_signal_data
6471 = list2 (Qerror,
6472 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6473
6474 DEFVAR_LISP ("memory-full", &Vmemory_full,
6475 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6476 Vmemory_full = Qnil;
6477
6478 staticpro (&Qgc_cons_threshold);
6479 Qgc_cons_threshold = intern ("gc-cons-threshold");
6480
6481 staticpro (&Qchar_table_extra_slots);
6482 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6483
6484 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6485 doc: /* Accumulated time elapsed in garbage collections.
6486 The time is in seconds as a floating point value. */);
6487 DEFVAR_INT ("gcs-done", &gcs_done,
6488 doc: /* Accumulated number of garbage collections done. */);
6489
6490 defsubr (&Scons);
6491 defsubr (&Slist);
6492 defsubr (&Svector);
6493 defsubr (&Smake_byte_code);
6494 defsubr (&Smake_list);
6495 defsubr (&Smake_vector);
6496 defsubr (&Smake_char_table);
6497 defsubr (&Smake_string);
6498 defsubr (&Smake_bool_vector);
6499 defsubr (&Smake_symbol);
6500 defsubr (&Smake_marker);
6501 defsubr (&Spurecopy);
6502 defsubr (&Sgarbage_collect);
6503 defsubr (&Smemory_limit);
6504 defsubr (&Smemory_use_counts);
6505
6506 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6507 defsubr (&Sgc_status);
6508 #endif
6509 }
6510
6511 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6512 (do not change this comment) */