]> code.delx.au - gnu-emacs/blob - src/alloc.c
Tweak for sgml-transformation-function
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #include <fcntl.h>
67
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
75
76 #ifdef DOUG_LEA_MALLOC
77
78 #include <malloc.h>
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
89
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
93
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
97
98 /* Default value of gc_cons_threshold (see below). */
99
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
101
102 /* Global variables. */
103 struct emacs_globals globals;
104
105 /* Number of bytes of consing done since the last gc. */
106
107 EMACS_INT consing_since_gc;
108
109 /* Similar minimum, computed from Vgc_cons_percentage. */
110
111 EMACS_INT gc_relative_threshold;
112
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
115
116 EMACS_INT memory_full_cons_threshold;
117
118 /* True during GC. */
119
120 bool gc_in_progress;
121
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
125
126 bool abort_on_gc;
127
128 /* Number of live and free conses etc. */
129
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
133
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
137
138 static char *spare_memory[7];
139
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
142
143 #define SPARE_MEMORY (1 << 14)
144
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
150
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
153
154 /* Pointer to the pure area, and its size. */
155
156 static char *purebeg;
157 static ptrdiff_t pure_size;
158
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
161
162 static ptrdiff_t pure_bytes_used_before_overflow;
163
164 /* True if P points into pure space. */
165
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
168
169 /* Index in pure at which next pure Lisp object will be allocated.. */
170
171 static ptrdiff_t pure_bytes_used_lisp;
172
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
174
175 static ptrdiff_t pure_bytes_used_non_lisp;
176
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
179
180 const char *pending_malloc_warning;
181
182 /* Maximum amount of C stack to save when a GC happens. */
183
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
187
188 /* Buffer in which we save a copy of the C stack at each GC. */
189
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
194
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
207
208 /* Hook run after GC has finished. */
209
210 static Lisp_Object Qpost_gc_hook;
211
212 static void free_save_value (Lisp_Object);
213 static void mark_terminals (void);
214 static void gc_sweep (void);
215 static Lisp_Object make_pure_vector (ptrdiff_t);
216 static void mark_buffer (struct buffer *);
217
218 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
219 static void refill_memory_reserve (void);
220 #endif
221 static void compact_small_strings (void);
222 static void free_large_strings (void);
223 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
224
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
228
229 enum mem_type
230 {
231 MEM_TYPE_NON_LISP,
232 MEM_TYPE_BUFFER,
233 MEM_TYPE_CONS,
234 MEM_TYPE_STRING,
235 MEM_TYPE_MISC,
236 MEM_TYPE_SYMBOL,
237 MEM_TYPE_FLOAT,
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
241 MEM_TYPE_VECTORLIKE,
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK,
244 /* Special type to denote reserved memory. */
245 MEM_TYPE_SPARE
246 };
247
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
249
250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
251 #include <stdio.h> /* For fprintf. */
252 #endif
253
254 /* A unique object in pure space used to make some Lisp objects
255 on free lists recognizable in O(1). */
256
257 static Lisp_Object Vdead;
258 #define DEADP(x) EQ (x, Vdead)
259
260 #ifdef GC_MALLOC_CHECK
261
262 enum mem_type allocated_mem_type;
263
264 #endif /* GC_MALLOC_CHECK */
265
266 /* A node in the red-black tree describing allocated memory containing
267 Lisp data. Each such block is recorded with its start and end
268 address when it is allocated, and removed from the tree when it
269 is freed.
270
271 A red-black tree is a balanced binary tree with the following
272 properties:
273
274 1. Every node is either red or black.
275 2. Every leaf is black.
276 3. If a node is red, then both of its children are black.
277 4. Every simple path from a node to a descendant leaf contains
278 the same number of black nodes.
279 5. The root is always black.
280
281 When nodes are inserted into the tree, or deleted from the tree,
282 the tree is "fixed" so that these properties are always true.
283
284 A red-black tree with N internal nodes has height at most 2
285 log(N+1). Searches, insertions and deletions are done in O(log N).
286 Please see a text book about data structures for a detailed
287 description of red-black trees. Any book worth its salt should
288 describe them. */
289
290 struct mem_node
291 {
292 /* Children of this node. These pointers are never NULL. When there
293 is no child, the value is MEM_NIL, which points to a dummy node. */
294 struct mem_node *left, *right;
295
296 /* The parent of this node. In the root node, this is NULL. */
297 struct mem_node *parent;
298
299 /* Start and end of allocated region. */
300 void *start, *end;
301
302 /* Node color. */
303 enum {MEM_BLACK, MEM_RED} color;
304
305 /* Memory type. */
306 enum mem_type type;
307 };
308
309 /* Base address of stack. Set in main. */
310
311 Lisp_Object *stack_base;
312
313 /* Root of the tree describing allocated Lisp memory. */
314
315 static struct mem_node *mem_root;
316
317 /* Lowest and highest known address in the heap. */
318
319 static void *min_heap_address, *max_heap_address;
320
321 /* Sentinel node of the tree. */
322
323 static struct mem_node mem_z;
324 #define MEM_NIL &mem_z
325
326 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
327 static void lisp_free (void *);
328 static void mark_stack (void);
329 static bool live_vector_p (struct mem_node *, void *);
330 static bool live_buffer_p (struct mem_node *, void *);
331 static bool live_string_p (struct mem_node *, void *);
332 static bool live_cons_p (struct mem_node *, void *);
333 static bool live_symbol_p (struct mem_node *, void *);
334 static bool live_float_p (struct mem_node *, void *);
335 static bool live_misc_p (struct mem_node *, void *);
336 static void mark_maybe_object (Lisp_Object);
337 static void mark_memory (void *, void *);
338 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
339 static void mem_init (void);
340 static struct mem_node *mem_insert (void *, void *, enum mem_type);
341 static void mem_insert_fixup (struct mem_node *);
342 static void mem_rotate_left (struct mem_node *);
343 static void mem_rotate_right (struct mem_node *);
344 static void mem_delete (struct mem_node *);
345 static void mem_delete_fixup (struct mem_node *);
346 static struct mem_node *mem_find (void *);
347 #endif
348
349
350 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
351 static void check_gcpros (void);
352 #endif
353
354 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
355
356 #ifndef DEADP
357 # define DEADP(x) 0
358 #endif
359
360 /* Recording what needs to be marked for gc. */
361
362 struct gcpro *gcprolist;
363
364 /* Addresses of staticpro'd variables. Initialize it to a nonzero
365 value; otherwise some compilers put it into BSS. */
366
367 #define NSTATICS 0x800
368 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
369
370 /* Index of next unused slot in staticvec. */
371
372 static int staticidx;
373
374 static void *pure_alloc (size_t, int);
375
376
377 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
378 ALIGNMENT must be a power of 2. */
379
380 #define ALIGN(ptr, ALIGNMENT) \
381 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
382 & ~ ((ALIGNMENT) - 1)))
383
384
385 \f
386 /************************************************************************
387 Malloc
388 ************************************************************************/
389
390 /* Function malloc calls this if it finds we are near exhausting storage. */
391
392 void
393 malloc_warning (const char *str)
394 {
395 pending_malloc_warning = str;
396 }
397
398
399 /* Display an already-pending malloc warning. */
400
401 void
402 display_malloc_warning (void)
403 {
404 call3 (intern ("display-warning"),
405 intern ("alloc"),
406 build_string (pending_malloc_warning),
407 intern ("emergency"));
408 pending_malloc_warning = 0;
409 }
410 \f
411 /* Called if we can't allocate relocatable space for a buffer. */
412
413 void
414 buffer_memory_full (ptrdiff_t nbytes)
415 {
416 /* If buffers use the relocating allocator, no need to free
417 spare_memory, because we may have plenty of malloc space left
418 that we could get, and if we don't, the malloc that fails will
419 itself cause spare_memory to be freed. If buffers don't use the
420 relocating allocator, treat this like any other failing
421 malloc. */
422
423 #ifndef REL_ALLOC
424 memory_full (nbytes);
425 #endif
426
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil, Vmemory_signal_data);
430 }
431
432 /* A common multiple of the positive integers A and B. Ideally this
433 would be the least common multiple, but there's no way to do that
434 as a constant expression in C, so do the best that we can easily do. */
435 #define COMMON_MULTIPLE(a, b) \
436 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
437
438 #ifndef XMALLOC_OVERRUN_CHECK
439 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
440 #else
441
442 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
443 around each block.
444
445 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
446 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
447 block size in little-endian order. The trailer consists of
448 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
449
450 The header is used to detect whether this block has been allocated
451 through these functions, as some low-level libc functions may
452 bypass the malloc hooks. */
453
454 #define XMALLOC_OVERRUN_CHECK_SIZE 16
455 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
456 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
457
458 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
459 hold a size_t value and (2) the header size is a multiple of the
460 alignment that Emacs needs for C types and for USE_LSB_TAG. */
461 #define XMALLOC_BASE_ALIGNMENT \
462 alignof (union { long double d; intmax_t i; void *p; })
463
464 #if USE_LSB_TAG
465 # define XMALLOC_HEADER_ALIGNMENT \
466 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
467 #else
468 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
469 #endif
470 #define XMALLOC_OVERRUN_SIZE_SIZE \
471 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
472 + XMALLOC_HEADER_ALIGNMENT - 1) \
473 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
474 - XMALLOC_OVERRUN_CHECK_SIZE)
475
476 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
477 { '\x9a', '\x9b', '\xae', '\xaf',
478 '\xbf', '\xbe', '\xce', '\xcf',
479 '\xea', '\xeb', '\xec', '\xed',
480 '\xdf', '\xde', '\x9c', '\x9d' };
481
482 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
483 { '\xaa', '\xab', '\xac', '\xad',
484 '\xba', '\xbb', '\xbc', '\xbd',
485 '\xca', '\xcb', '\xcc', '\xcd',
486 '\xda', '\xdb', '\xdc', '\xdd' };
487
488 /* Insert and extract the block size in the header. */
489
490 static void
491 xmalloc_put_size (unsigned char *ptr, size_t size)
492 {
493 int i;
494 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
495 {
496 *--ptr = size & ((1 << CHAR_BIT) - 1);
497 size >>= CHAR_BIT;
498 }
499 }
500
501 static size_t
502 xmalloc_get_size (unsigned char *ptr)
503 {
504 size_t size = 0;
505 int i;
506 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
507 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
508 {
509 size <<= CHAR_BIT;
510 size += *ptr++;
511 }
512 return size;
513 }
514
515
516 /* Like malloc, but wraps allocated block with header and trailer. */
517
518 static void *
519 overrun_check_malloc (size_t size)
520 {
521 register unsigned char *val;
522 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
523 emacs_abort ();
524
525 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
526 if (val)
527 {
528 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
529 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
530 xmalloc_put_size (val, size);
531 memcpy (val + size, xmalloc_overrun_check_trailer,
532 XMALLOC_OVERRUN_CHECK_SIZE);
533 }
534 return val;
535 }
536
537
538 /* Like realloc, but checks old block for overrun, and wraps new block
539 with header and trailer. */
540
541 static void *
542 overrun_check_realloc (void *block, size_t size)
543 {
544 register unsigned char *val = (unsigned char *) block;
545 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
546 emacs_abort ();
547
548 if (val
549 && memcmp (xmalloc_overrun_check_header,
550 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
551 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
552 {
553 size_t osize = xmalloc_get_size (val);
554 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
555 XMALLOC_OVERRUN_CHECK_SIZE))
556 emacs_abort ();
557 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
558 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
559 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
560 }
561
562 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
563
564 if (val)
565 {
566 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
567 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
568 xmalloc_put_size (val, size);
569 memcpy (val + size, xmalloc_overrun_check_trailer,
570 XMALLOC_OVERRUN_CHECK_SIZE);
571 }
572 return val;
573 }
574
575 /* Like free, but checks block for overrun. */
576
577 static void
578 overrun_check_free (void *block)
579 {
580 unsigned char *val = (unsigned char *) block;
581
582 if (val
583 && memcmp (xmalloc_overrun_check_header,
584 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
585 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
586 {
587 size_t osize = xmalloc_get_size (val);
588 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
589 XMALLOC_OVERRUN_CHECK_SIZE))
590 emacs_abort ();
591 #ifdef XMALLOC_CLEAR_FREE_MEMORY
592 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
593 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
594 #else
595 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
596 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
597 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
598 #endif
599 }
600
601 free (val);
602 }
603
604 #undef malloc
605 #undef realloc
606 #undef free
607 #define malloc overrun_check_malloc
608 #define realloc overrun_check_realloc
609 #define free overrun_check_free
610 #endif
611
612 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
613 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
614 If that variable is set, block input while in one of Emacs's memory
615 allocation functions. There should be no need for this debugging
616 option, since signal handlers do not allocate memory, but Emacs
617 formerly allocated memory in signal handlers and this compile-time
618 option remains as a way to help debug the issue should it rear its
619 ugly head again. */
620 #ifdef XMALLOC_BLOCK_INPUT_CHECK
621 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
622 static void
623 malloc_block_input (void)
624 {
625 if (block_input_in_memory_allocators)
626 block_input ();
627 }
628 static void
629 malloc_unblock_input (void)
630 {
631 if (block_input_in_memory_allocators)
632 unblock_input ();
633 }
634 # define MALLOC_BLOCK_INPUT malloc_block_input ()
635 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
636 #else
637 # define MALLOC_BLOCK_INPUT ((void) 0)
638 # define MALLOC_UNBLOCK_INPUT ((void) 0)
639 #endif
640
641 #define MALLOC_PROBE(size) \
642 do { \
643 if (profiler_memory_running) \
644 malloc_probe (size); \
645 } while (0)
646
647
648 /* Like malloc but check for no memory and block interrupt input.. */
649
650 void *
651 xmalloc (size_t size)
652 {
653 void *val;
654
655 MALLOC_BLOCK_INPUT;
656 val = malloc (size);
657 MALLOC_UNBLOCK_INPUT;
658
659 if (!val && size)
660 memory_full (size);
661 MALLOC_PROBE (size);
662 return val;
663 }
664
665 /* Like the above, but zeroes out the memory just allocated. */
666
667 void *
668 xzalloc (size_t size)
669 {
670 void *val;
671
672 MALLOC_BLOCK_INPUT;
673 val = malloc (size);
674 MALLOC_UNBLOCK_INPUT;
675
676 if (!val && size)
677 memory_full (size);
678 memset (val, 0, size);
679 MALLOC_PROBE (size);
680 return val;
681 }
682
683 /* Like realloc but check for no memory and block interrupt input.. */
684
685 void *
686 xrealloc (void *block, size_t size)
687 {
688 void *val;
689
690 MALLOC_BLOCK_INPUT;
691 /* We must call malloc explicitly when BLOCK is 0, since some
692 reallocs don't do this. */
693 if (! block)
694 val = malloc (size);
695 else
696 val = realloc (block, size);
697 MALLOC_UNBLOCK_INPUT;
698
699 if (!val && size)
700 memory_full (size);
701 MALLOC_PROBE (size);
702 return val;
703 }
704
705
706 /* Like free but block interrupt input. */
707
708 void
709 xfree (void *block)
710 {
711 if (!block)
712 return;
713 MALLOC_BLOCK_INPUT;
714 free (block);
715 MALLOC_UNBLOCK_INPUT;
716 /* We don't call refill_memory_reserve here
717 because in practice the call in r_alloc_free seems to suffice. */
718 }
719
720
721 /* Other parts of Emacs pass large int values to allocator functions
722 expecting ptrdiff_t. This is portable in practice, but check it to
723 be safe. */
724 verify (INT_MAX <= PTRDIFF_MAX);
725
726
727 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
728 Signal an error on memory exhaustion, and block interrupt input. */
729
730 void *
731 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
732 {
733 eassert (0 <= nitems && 0 < item_size);
734 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
735 memory_full (SIZE_MAX);
736 return xmalloc (nitems * item_size);
737 }
738
739
740 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
741 Signal an error on memory exhaustion, and block interrupt input. */
742
743 void *
744 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
745 {
746 eassert (0 <= nitems && 0 < item_size);
747 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
748 memory_full (SIZE_MAX);
749 return xrealloc (pa, nitems * item_size);
750 }
751
752
753 /* Grow PA, which points to an array of *NITEMS items, and return the
754 location of the reallocated array, updating *NITEMS to reflect its
755 new size. The new array will contain at least NITEMS_INCR_MIN more
756 items, but will not contain more than NITEMS_MAX items total.
757 ITEM_SIZE is the size of each item, in bytes.
758
759 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
760 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
761 infinity.
762
763 If PA is null, then allocate a new array instead of reallocating
764 the old one.
765
766 Block interrupt input as needed. If memory exhaustion occurs, set
767 *NITEMS to zero if PA is null, and signal an error (i.e., do not
768 return).
769
770 Thus, to grow an array A without saving its old contents, do
771 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
772 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
773 and signals an error, and later this code is reexecuted and
774 attempts to free A. */
775
776 void *
777 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
778 ptrdiff_t nitems_max, ptrdiff_t item_size)
779 {
780 /* The approximate size to use for initial small allocation
781 requests. This is the largest "small" request for the GNU C
782 library malloc. */
783 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
784
785 /* If the array is tiny, grow it to about (but no greater than)
786 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
787 ptrdiff_t n = *nitems;
788 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
789 ptrdiff_t half_again = n >> 1;
790 ptrdiff_t incr_estimate = max (tiny_max, half_again);
791
792 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
794 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
795 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
796 ? nitems_max : C_language_max);
797 ptrdiff_t nitems_incr_max = n_max - n;
798 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
799
800 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
801 if (! pa)
802 *nitems = 0;
803 if (nitems_incr_max < incr)
804 memory_full (SIZE_MAX);
805 n += incr;
806 pa = xrealloc (pa, n * item_size);
807 *nitems = n;
808 return pa;
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (const char *s)
816 {
817 size_t len = strlen (s) + 1;
818 char *p = xmalloc (len);
819 memcpy (p, s, len);
820 return p;
821 }
822
823 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
824 argument is a const pointer. */
825
826 void
827 xputenv (char const *string)
828 {
829 if (putenv ((char *) string) != 0)
830 memory_full (0);
831 }
832
833 /* Unwind for SAFE_ALLOCA */
834
835 Lisp_Object
836 safe_alloca_unwind (Lisp_Object arg)
837 {
838 free_save_value (arg);
839 return Qnil;
840 }
841
842 /* Return a newly allocated memory block of SIZE bytes, remembering
843 to free it when unwinding. */
844 void *
845 record_xmalloc (size_t size)
846 {
847 void *p = xmalloc (size);
848 record_unwind_protect (safe_alloca_unwind, make_save_pointer (p));
849 return p;
850 }
851
852
853 /* Like malloc but used for allocating Lisp data. NBYTES is the
854 number of bytes to allocate, TYPE describes the intended use of the
855 allocated memory block (for strings, for conses, ...). */
856
857 #if ! USE_LSB_TAG
858 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
859 #endif
860
861 static void *
862 lisp_malloc (size_t nbytes, enum mem_type type)
863 {
864 register void *val;
865
866 MALLOC_BLOCK_INPUT;
867
868 #ifdef GC_MALLOC_CHECK
869 allocated_mem_type = type;
870 #endif
871
872 val = malloc (nbytes);
873
874 #if ! USE_LSB_TAG
875 /* If the memory just allocated cannot be addressed thru a Lisp
876 object's pointer, and it needs to be,
877 that's equivalent to running out of memory. */
878 if (val && type != MEM_TYPE_NON_LISP)
879 {
880 Lisp_Object tem;
881 XSETCONS (tem, (char *) val + nbytes - 1);
882 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
883 {
884 lisp_malloc_loser = val;
885 free (val);
886 val = 0;
887 }
888 }
889 #endif
890
891 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
892 if (val && type != MEM_TYPE_NON_LISP)
893 mem_insert (val, (char *) val + nbytes, type);
894 #endif
895
896 MALLOC_UNBLOCK_INPUT;
897 if (!val && nbytes)
898 memory_full (nbytes);
899 MALLOC_PROBE (nbytes);
900 return val;
901 }
902
903 /* Free BLOCK. This must be called to free memory allocated with a
904 call to lisp_malloc. */
905
906 static void
907 lisp_free (void *block)
908 {
909 MALLOC_BLOCK_INPUT;
910 free (block);
911 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
912 mem_delete (mem_find (block));
913 #endif
914 MALLOC_UNBLOCK_INPUT;
915 }
916
917 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
918
919 /* The entry point is lisp_align_malloc which returns blocks of at most
920 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
921
922 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
923 #define USE_POSIX_MEMALIGN 1
924 #endif
925
926 /* BLOCK_ALIGN has to be a power of 2. */
927 #define BLOCK_ALIGN (1 << 10)
928
929 /* Padding to leave at the end of a malloc'd block. This is to give
930 malloc a chance to minimize the amount of memory wasted to alignment.
931 It should be tuned to the particular malloc library used.
932 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
933 posix_memalign on the other hand would ideally prefer a value of 4
934 because otherwise, there's 1020 bytes wasted between each ablocks.
935 In Emacs, testing shows that those 1020 can most of the time be
936 efficiently used by malloc to place other objects, so a value of 0 can
937 still preferable unless you have a lot of aligned blocks and virtually
938 nothing else. */
939 #define BLOCK_PADDING 0
940 #define BLOCK_BYTES \
941 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
942
943 /* Internal data structures and constants. */
944
945 #define ABLOCKS_SIZE 16
946
947 /* An aligned block of memory. */
948 struct ablock
949 {
950 union
951 {
952 char payload[BLOCK_BYTES];
953 struct ablock *next_free;
954 } x;
955 /* `abase' is the aligned base of the ablocks. */
956 /* It is overloaded to hold the virtual `busy' field that counts
957 the number of used ablock in the parent ablocks.
958 The first ablock has the `busy' field, the others have the `abase'
959 field. To tell the difference, we assume that pointers will have
960 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
961 is used to tell whether the real base of the parent ablocks is `abase'
962 (if not, the word before the first ablock holds a pointer to the
963 real base). */
964 struct ablocks *abase;
965 /* The padding of all but the last ablock is unused. The padding of
966 the last ablock in an ablocks is not allocated. */
967 #if BLOCK_PADDING
968 char padding[BLOCK_PADDING];
969 #endif
970 };
971
972 /* A bunch of consecutive aligned blocks. */
973 struct ablocks
974 {
975 struct ablock blocks[ABLOCKS_SIZE];
976 };
977
978 /* Size of the block requested from malloc or posix_memalign. */
979 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
980
981 #define ABLOCK_ABASE(block) \
982 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
983 ? (struct ablocks *)(block) \
984 : (block)->abase)
985
986 /* Virtual `busy' field. */
987 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
988
989 /* Pointer to the (not necessarily aligned) malloc block. */
990 #ifdef USE_POSIX_MEMALIGN
991 #define ABLOCKS_BASE(abase) (abase)
992 #else
993 #define ABLOCKS_BASE(abase) \
994 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
995 #endif
996
997 /* The list of free ablock. */
998 static struct ablock *free_ablock;
999
1000 /* Allocate an aligned block of nbytes.
1001 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1002 smaller or equal to BLOCK_BYTES. */
1003 static void *
1004 lisp_align_malloc (size_t nbytes, enum mem_type type)
1005 {
1006 void *base, *val;
1007 struct ablocks *abase;
1008
1009 eassert (nbytes <= BLOCK_BYTES);
1010
1011 MALLOC_BLOCK_INPUT;
1012
1013 #ifdef GC_MALLOC_CHECK
1014 allocated_mem_type = type;
1015 #endif
1016
1017 if (!free_ablock)
1018 {
1019 int i;
1020 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1021
1022 #ifdef DOUG_LEA_MALLOC
1023 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1024 because mapped region contents are not preserved in
1025 a dumped Emacs. */
1026 mallopt (M_MMAP_MAX, 0);
1027 #endif
1028
1029 #ifdef USE_POSIX_MEMALIGN
1030 {
1031 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1032 if (err)
1033 base = NULL;
1034 abase = base;
1035 }
1036 #else
1037 base = malloc (ABLOCKS_BYTES);
1038 abase = ALIGN (base, BLOCK_ALIGN);
1039 #endif
1040
1041 if (base == 0)
1042 {
1043 MALLOC_UNBLOCK_INPUT;
1044 memory_full (ABLOCKS_BYTES);
1045 }
1046
1047 aligned = (base == abase);
1048 if (!aligned)
1049 ((void**)abase)[-1] = base;
1050
1051 #ifdef DOUG_LEA_MALLOC
1052 /* Back to a reasonable maximum of mmap'ed areas. */
1053 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1054 #endif
1055
1056 #if ! USE_LSB_TAG
1057 /* If the memory just allocated cannot be addressed thru a Lisp
1058 object's pointer, and it needs to be, that's equivalent to
1059 running out of memory. */
1060 if (type != MEM_TYPE_NON_LISP)
1061 {
1062 Lisp_Object tem;
1063 char *end = (char *) base + ABLOCKS_BYTES - 1;
1064 XSETCONS (tem, end);
1065 if ((char *) XCONS (tem) != end)
1066 {
1067 lisp_malloc_loser = base;
1068 free (base);
1069 MALLOC_UNBLOCK_INPUT;
1070 memory_full (SIZE_MAX);
1071 }
1072 }
1073 #endif
1074
1075 /* Initialize the blocks and put them on the free list.
1076 If `base' was not properly aligned, we can't use the last block. */
1077 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1078 {
1079 abase->blocks[i].abase = abase;
1080 abase->blocks[i].x.next_free = free_ablock;
1081 free_ablock = &abase->blocks[i];
1082 }
1083 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1084
1085 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1086 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1087 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1088 eassert (ABLOCKS_BASE (abase) == base);
1089 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1090 }
1091
1092 abase = ABLOCK_ABASE (free_ablock);
1093 ABLOCKS_BUSY (abase) =
1094 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1095 val = free_ablock;
1096 free_ablock = free_ablock->x.next_free;
1097
1098 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1099 if (type != MEM_TYPE_NON_LISP)
1100 mem_insert (val, (char *) val + nbytes, type);
1101 #endif
1102
1103 MALLOC_UNBLOCK_INPUT;
1104
1105 MALLOC_PROBE (nbytes);
1106
1107 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1108 return val;
1109 }
1110
1111 static void
1112 lisp_align_free (void *block)
1113 {
1114 struct ablock *ablock = block;
1115 struct ablocks *abase = ABLOCK_ABASE (ablock);
1116
1117 MALLOC_BLOCK_INPUT;
1118 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1119 mem_delete (mem_find (block));
1120 #endif
1121 /* Put on free list. */
1122 ablock->x.next_free = free_ablock;
1123 free_ablock = ablock;
1124 /* Update busy count. */
1125 ABLOCKS_BUSY (abase)
1126 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1127
1128 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1129 { /* All the blocks are free. */
1130 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1131 struct ablock **tem = &free_ablock;
1132 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1133
1134 while (*tem)
1135 {
1136 if (*tem >= (struct ablock *) abase && *tem < atop)
1137 {
1138 i++;
1139 *tem = (*tem)->x.next_free;
1140 }
1141 else
1142 tem = &(*tem)->x.next_free;
1143 }
1144 eassert ((aligned & 1) == aligned);
1145 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1146 #ifdef USE_POSIX_MEMALIGN
1147 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1148 #endif
1149 free (ABLOCKS_BASE (abase));
1150 }
1151 MALLOC_UNBLOCK_INPUT;
1152 }
1153
1154 \f
1155 /***********************************************************************
1156 Interval Allocation
1157 ***********************************************************************/
1158
1159 /* Number of intervals allocated in an interval_block structure.
1160 The 1020 is 1024 minus malloc overhead. */
1161
1162 #define INTERVAL_BLOCK_SIZE \
1163 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1164
1165 /* Intervals are allocated in chunks in form of an interval_block
1166 structure. */
1167
1168 struct interval_block
1169 {
1170 /* Place `intervals' first, to preserve alignment. */
1171 struct interval intervals[INTERVAL_BLOCK_SIZE];
1172 struct interval_block *next;
1173 };
1174
1175 /* Current interval block. Its `next' pointer points to older
1176 blocks. */
1177
1178 static struct interval_block *interval_block;
1179
1180 /* Index in interval_block above of the next unused interval
1181 structure. */
1182
1183 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1184
1185 /* Number of free and live intervals. */
1186
1187 static EMACS_INT total_free_intervals, total_intervals;
1188
1189 /* List of free intervals. */
1190
1191 static INTERVAL interval_free_list;
1192
1193 /* Return a new interval. */
1194
1195 INTERVAL
1196 make_interval (void)
1197 {
1198 INTERVAL val;
1199
1200 MALLOC_BLOCK_INPUT;
1201
1202 if (interval_free_list)
1203 {
1204 val = interval_free_list;
1205 interval_free_list = INTERVAL_PARENT (interval_free_list);
1206 }
1207 else
1208 {
1209 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1210 {
1211 struct interval_block *newi
1212 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1213
1214 newi->next = interval_block;
1215 interval_block = newi;
1216 interval_block_index = 0;
1217 total_free_intervals += INTERVAL_BLOCK_SIZE;
1218 }
1219 val = &interval_block->intervals[interval_block_index++];
1220 }
1221
1222 MALLOC_UNBLOCK_INPUT;
1223
1224 consing_since_gc += sizeof (struct interval);
1225 intervals_consed++;
1226 total_free_intervals--;
1227 RESET_INTERVAL (val);
1228 val->gcmarkbit = 0;
1229 return val;
1230 }
1231
1232
1233 /* Mark Lisp objects in interval I. */
1234
1235 static void
1236 mark_interval (register INTERVAL i, Lisp_Object dummy)
1237 {
1238 /* Intervals should never be shared. So, if extra internal checking is
1239 enabled, GC aborts if it seems to have visited an interval twice. */
1240 eassert (!i->gcmarkbit);
1241 i->gcmarkbit = 1;
1242 mark_object (i->plist);
1243 }
1244
1245 /* Mark the interval tree rooted in I. */
1246
1247 #define MARK_INTERVAL_TREE(i) \
1248 do { \
1249 if (i && !i->gcmarkbit) \
1250 traverse_intervals_noorder (i, mark_interval, Qnil); \
1251 } while (0)
1252
1253 /***********************************************************************
1254 String Allocation
1255 ***********************************************************************/
1256
1257 /* Lisp_Strings are allocated in string_block structures. When a new
1258 string_block is allocated, all the Lisp_Strings it contains are
1259 added to a free-list string_free_list. When a new Lisp_String is
1260 needed, it is taken from that list. During the sweep phase of GC,
1261 string_blocks that are entirely free are freed, except two which
1262 we keep.
1263
1264 String data is allocated from sblock structures. Strings larger
1265 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1266 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1267
1268 Sblocks consist internally of sdata structures, one for each
1269 Lisp_String. The sdata structure points to the Lisp_String it
1270 belongs to. The Lisp_String points back to the `u.data' member of
1271 its sdata structure.
1272
1273 When a Lisp_String is freed during GC, it is put back on
1274 string_free_list, and its `data' member and its sdata's `string'
1275 pointer is set to null. The size of the string is recorded in the
1276 `u.nbytes' member of the sdata. So, sdata structures that are no
1277 longer used, can be easily recognized, and it's easy to compact the
1278 sblocks of small strings which we do in compact_small_strings. */
1279
1280 /* Size in bytes of an sblock structure used for small strings. This
1281 is 8192 minus malloc overhead. */
1282
1283 #define SBLOCK_SIZE 8188
1284
1285 /* Strings larger than this are considered large strings. String data
1286 for large strings is allocated from individual sblocks. */
1287
1288 #define LARGE_STRING_BYTES 1024
1289
1290 /* Structure describing string memory sub-allocated from an sblock.
1291 This is where the contents of Lisp strings are stored. */
1292
1293 struct sdata
1294 {
1295 /* Back-pointer to the string this sdata belongs to. If null, this
1296 structure is free, and the NBYTES member of the union below
1297 contains the string's byte size (the same value that STRING_BYTES
1298 would return if STRING were non-null). If non-null, STRING_BYTES
1299 (STRING) is the size of the data, and DATA contains the string's
1300 contents. */
1301 struct Lisp_String *string;
1302
1303 #ifdef GC_CHECK_STRING_BYTES
1304
1305 ptrdiff_t nbytes;
1306 unsigned char data[1];
1307
1308 #define SDATA_NBYTES(S) (S)->nbytes
1309 #define SDATA_DATA(S) (S)->data
1310 #define SDATA_SELECTOR(member) member
1311
1312 #else /* not GC_CHECK_STRING_BYTES */
1313
1314 union
1315 {
1316 /* When STRING is non-null. */
1317 unsigned char data[1];
1318
1319 /* When STRING is null. */
1320 ptrdiff_t nbytes;
1321 } u;
1322
1323 #define SDATA_NBYTES(S) (S)->u.nbytes
1324 #define SDATA_DATA(S) (S)->u.data
1325 #define SDATA_SELECTOR(member) u.member
1326
1327 #endif /* not GC_CHECK_STRING_BYTES */
1328
1329 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1330 };
1331
1332
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1337
1338 struct sblock
1339 {
1340 /* Next in list. */
1341 struct sblock *next;
1342
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 struct sdata *next_free;
1346
1347 /* Start of data. */
1348 struct sdata first_data;
1349 };
1350
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1353
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1356
1357 /* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1359
1360 struct string_block
1361 {
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
1364 struct string_block *next;
1365 };
1366
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1370
1371 static struct sblock *oldest_sblock, *current_sblock;
1372
1373 /* List of sblocks for large strings. */
1374
1375 static struct sblock *large_sblocks;
1376
1377 /* List of string_block structures. */
1378
1379 static struct string_block *string_blocks;
1380
1381 /* Free-list of Lisp_Strings. */
1382
1383 static struct Lisp_String *string_free_list;
1384
1385 /* Number of live and free Lisp_Strings. */
1386
1387 static EMACS_INT total_strings, total_free_strings;
1388
1389 /* Number of bytes used by live strings. */
1390
1391 static EMACS_INT total_string_bytes;
1392
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1396
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1398
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1403
1404 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1405
1406
1407 #ifdef GC_CHECK_STRING_OVERRUN
1408
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1412
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1416
1417 #else
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1419 #endif
1420
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1424
1425 #ifdef GC_CHECK_STRING_BYTES
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (NBYTES) + 1 \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1432
1433 #else /* not GC_CHECK_STRING_BYTES */
1434
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1439
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1443 ? NBYTES \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1445 + 1 \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Extra bytes to allocate for each string. */
1452
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1454
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
1467
1468 /* Initialize string allocation. Called from init_alloc_once. */
1469
1470 static void
1471 init_strings (void)
1472 {
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1475 }
1476
1477
1478 #ifdef GC_CHECK_STRING_BYTES
1479
1480 static int check_string_bytes_count;
1481
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1484
1485 ptrdiff_t
1486 string_bytes (struct Lisp_String *s)
1487 {
1488 ptrdiff_t nbytes =
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1490
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1494 emacs_abort ();
1495 return nbytes;
1496 }
1497
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1499
1500 static void
1501 check_sblock (struct sblock *b)
1502 {
1503 struct sdata *from, *end, *from_end;
1504
1505 end = b->next_free;
1506
1507 for (from = &b->first_data; from < end; from = from_end)
1508 {
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1511 ptrdiff_t nbytes;
1512
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
1517 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1518 }
1519 }
1520
1521
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1525
1526 static void
1527 check_string_bytes (bool all_p)
1528 {
1529 if (all_p)
1530 {
1531 struct sblock *b;
1532
1533 for (b = large_sblocks; b; b = b->next)
1534 {
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
1537 string_bytes (s);
1538 }
1539
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
1542 }
1543 else if (current_sblock)
1544 check_sblock (current_sblock);
1545 }
1546
1547 #else /* not GC_CHECK_STRING_BYTES */
1548
1549 #define check_string_bytes(all) ((void) 0)
1550
1551 #endif /* GC_CHECK_STRING_BYTES */
1552
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1554
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1557
1558 static void
1559 check_string_free_list (void)
1560 {
1561 struct Lisp_String *s;
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1566 {
1567 if ((uintptr_t) s < 1024)
1568 emacs_abort ();
1569 s = NEXT_FREE_LISP_STRING (s);
1570 }
1571 }
1572 #else
1573 #define check_string_free_list()
1574 #endif
1575
1576 /* Return a new Lisp_String. */
1577
1578 static struct Lisp_String *
1579 allocate_string (void)
1580 {
1581 struct Lisp_String *s;
1582
1583 MALLOC_BLOCK_INPUT;
1584
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
1588 {
1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1590 int i;
1591
1592 b->next = string_blocks;
1593 string_blocks = b;
1594
1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1596 {
1597 s = b->strings + i;
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
1602 }
1603
1604 total_free_strings += STRING_BLOCK_SIZE;
1605 }
1606
1607 check_string_free_list ();
1608
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
1612
1613 MALLOC_UNBLOCK_INPUT;
1614
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
1619
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive)
1622 {
1623 if (++check_string_bytes_count == 200)
1624 {
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1627 }
1628 else
1629 check_string_bytes (0);
1630 }
1631 #endif /* GC_CHECK_STRING_BYTES */
1632
1633 return s;
1634 }
1635
1636
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1642
1643 void
1644 allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
1646 {
1647 struct sdata *data, *old_data;
1648 struct sblock *b;
1649 ptrdiff_t needed, old_nbytes;
1650
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1653
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
1657 if (s->data)
1658 {
1659 old_data = SDATA_OF_STRING (s);
1660 old_nbytes = STRING_BYTES (s);
1661 }
1662 else
1663 old_data = NULL;
1664
1665 MALLOC_BLOCK_INPUT;
1666
1667 if (nbytes > LARGE_STRING_BYTES)
1668 {
1669 size_t size = offsetof (struct sblock, first_data) + needed;
1670
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1674 a dumped Emacs.
1675
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX, 0);
1682 #endif
1683
1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1685
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689 #endif
1690
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1695 }
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
1699 < (needed + GC_STRING_EXTRA)))
1700 {
1701 /* Not enough room in the current sblock. */
1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1706
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1712 }
1713 else
1714 b = current_sblock;
1715
1716 data = b->next_free;
1717 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1718
1719 MALLOC_UNBLOCK_INPUT;
1720
1721 data->string = s;
1722 s->data = SDATA_DATA (data);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725 #endif
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
1732 #endif
1733
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1738 {
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1741 }
1742
1743 consing_since_gc += needed;
1744 }
1745
1746
1747 /* Sweep and compact strings. */
1748
1749 static void
1750 sweep_strings (void)
1751 {
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
1754
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
1757 total_string_bytes = 0;
1758
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1761 {
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1764
1765 next = b->next;
1766
1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1768 {
1769 struct Lisp_String *s = b->strings + i;
1770
1771 if (s->data)
1772 {
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1775 {
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
1778
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
1781
1782 ++total_strings;
1783 total_string_bytes += STRING_BYTES (s);
1784 }
1785 else
1786 {
1787 /* String is dead. Put it on the free-list. */
1788 struct sdata *data = SDATA_OF_STRING (s);
1789
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s) != SDATA_NBYTES (data))
1795 emacs_abort ();
1796 #else
1797 data->u.nbytes = STRING_BYTES (s);
1798 #endif
1799 data->string = NULL;
1800
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1804
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1809 }
1810 }
1811 else
1812 {
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1817 }
1818 }
1819
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
1824 {
1825 lisp_free (b);
1826 string_free_list = free_list_before;
1827 }
1828 else
1829 {
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1833 }
1834 }
1835
1836 check_string_free_list ();
1837
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
1841
1842 check_string_free_list ();
1843 }
1844
1845
1846 /* Free dead large strings. */
1847
1848 static void
1849 free_large_strings (void)
1850 {
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
1853
1854 for (b = large_sblocks; b; b = next)
1855 {
1856 next = b->next;
1857
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1861 {
1862 b->next = live_blocks;
1863 live_blocks = b;
1864 }
1865 }
1866
1867 large_sblocks = live_blocks;
1868 }
1869
1870
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1873
1874 static void
1875 compact_small_strings (void)
1876 {
1877 struct sblock *b, *tb, *next;
1878 struct sdata *from, *to, *end, *tb_end;
1879 struct sdata *to_end, *from_end;
1880
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
1884 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1885 to = &tb->first_data;
1886
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1891 {
1892 end = b->next_free;
1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1894
1895 for (from = &b->first_data; from < end; from = from_end)
1896 {
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1899 ptrdiff_t nbytes;
1900 struct Lisp_String *s = from->string;
1901
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1906 emacs_abort ();
1907 #endif /* GC_CHECK_STRING_BYTES */
1908
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
1911
1912 nbytes = SDATA_SIZE (nbytes);
1913 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1914
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1919 emacs_abort ();
1920 #endif
1921
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
1924 {
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 if (to_end > tb_end)
1928 {
1929 tb->next_free = to;
1930 tb = tb->next;
1931 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1932 to = &tb->first_data;
1933 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1934 }
1935
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1938 {
1939 eassert (tb != b || to < from);
1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
1941 to->string->data = SDATA_DATA (to);
1942 }
1943
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1946 }
1947 }
1948 }
1949
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1953 {
1954 next = b->next;
1955 lisp_free (b);
1956 }
1957
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1961 }
1962
1963 void
1964 string_overflow (void)
1965 {
1966 error ("Maximum string size exceeded");
1967 }
1968
1969 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length, Lisp_Object init)
1974 {
1975 register Lisp_Object val;
1976 register unsigned char *p, *end;
1977 int c;
1978 EMACS_INT nbytes;
1979
1980 CHECK_NATNUM (length);
1981 CHECK_CHARACTER (init);
1982
1983 c = XFASTINT (init);
1984 if (ASCII_CHAR_P (c))
1985 {
1986 nbytes = XINT (length);
1987 val = make_uninit_string (nbytes);
1988 p = SDATA (val);
1989 end = p + SCHARS (val);
1990 while (p != end)
1991 *p++ = c;
1992 }
1993 else
1994 {
1995 unsigned char str[MAX_MULTIBYTE_LENGTH];
1996 int len = CHAR_STRING (c, str);
1997 EMACS_INT string_len = XINT (length);
1998
1999 if (string_len > STRING_BYTES_MAX / len)
2000 string_overflow ();
2001 nbytes = len * string_len;
2002 val = make_uninit_multibyte_string (string_len, nbytes);
2003 p = SDATA (val);
2004 end = p + nbytes;
2005 while (p != end)
2006 {
2007 memcpy (p, str, len);
2008 p += len;
2009 }
2010 }
2011
2012 *p = 0;
2013 return val;
2014 }
2015
2016
2017 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2018 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2019 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2020 (Lisp_Object length, Lisp_Object init)
2021 {
2022 register Lisp_Object val;
2023 struct Lisp_Bool_Vector *p;
2024 ptrdiff_t length_in_chars;
2025 EMACS_INT length_in_elts;
2026 int bits_per_value;
2027 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2028 / word_size);
2029
2030 CHECK_NATNUM (length);
2031
2032 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2033
2034 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2035
2036 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2037
2038 /* No Lisp_Object to trace in there. */
2039 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2040
2041 p = XBOOL_VECTOR (val);
2042 p->size = XFASTINT (length);
2043
2044 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2045 / BOOL_VECTOR_BITS_PER_CHAR);
2046 if (length_in_chars)
2047 {
2048 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2049
2050 /* Clear any extraneous bits in the last byte. */
2051 p->data[length_in_chars - 1]
2052 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2053 }
2054
2055 return val;
2056 }
2057
2058
2059 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2060 of characters from the contents. This string may be unibyte or
2061 multibyte, depending on the contents. */
2062
2063 Lisp_Object
2064 make_string (const char *contents, ptrdiff_t nbytes)
2065 {
2066 register Lisp_Object val;
2067 ptrdiff_t nchars, multibyte_nbytes;
2068
2069 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2070 &nchars, &multibyte_nbytes);
2071 if (nbytes == nchars || nbytes != multibyte_nbytes)
2072 /* CONTENTS contains no multibyte sequences or contains an invalid
2073 multibyte sequence. We must make unibyte string. */
2074 val = make_unibyte_string (contents, nbytes);
2075 else
2076 val = make_multibyte_string (contents, nchars, nbytes);
2077 return val;
2078 }
2079
2080
2081 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2082
2083 Lisp_Object
2084 make_unibyte_string (const char *contents, ptrdiff_t length)
2085 {
2086 register Lisp_Object val;
2087 val = make_uninit_string (length);
2088 memcpy (SDATA (val), contents, length);
2089 return val;
2090 }
2091
2092
2093 /* Make a multibyte string from NCHARS characters occupying NBYTES
2094 bytes at CONTENTS. */
2095
2096 Lisp_Object
2097 make_multibyte_string (const char *contents,
2098 ptrdiff_t nchars, ptrdiff_t nbytes)
2099 {
2100 register Lisp_Object val;
2101 val = make_uninit_multibyte_string (nchars, nbytes);
2102 memcpy (SDATA (val), contents, nbytes);
2103 return val;
2104 }
2105
2106
2107 /* Make a string from NCHARS characters occupying NBYTES bytes at
2108 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2109
2110 Lisp_Object
2111 make_string_from_bytes (const char *contents,
2112 ptrdiff_t nchars, ptrdiff_t nbytes)
2113 {
2114 register Lisp_Object val;
2115 val = make_uninit_multibyte_string (nchars, nbytes);
2116 memcpy (SDATA (val), contents, nbytes);
2117 if (SBYTES (val) == SCHARS (val))
2118 STRING_SET_UNIBYTE (val);
2119 return val;
2120 }
2121
2122
2123 /* Make a string from NCHARS characters occupying NBYTES bytes at
2124 CONTENTS. The argument MULTIBYTE controls whether to label the
2125 string as multibyte. If NCHARS is negative, it counts the number of
2126 characters by itself. */
2127
2128 Lisp_Object
2129 make_specified_string (const char *contents,
2130 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2131 {
2132 Lisp_Object val;
2133
2134 if (nchars < 0)
2135 {
2136 if (multibyte)
2137 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2138 nbytes);
2139 else
2140 nchars = nbytes;
2141 }
2142 val = make_uninit_multibyte_string (nchars, nbytes);
2143 memcpy (SDATA (val), contents, nbytes);
2144 if (!multibyte)
2145 STRING_SET_UNIBYTE (val);
2146 return val;
2147 }
2148
2149
2150 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2151 occupying LENGTH bytes. */
2152
2153 Lisp_Object
2154 make_uninit_string (EMACS_INT length)
2155 {
2156 Lisp_Object val;
2157
2158 if (!length)
2159 return empty_unibyte_string;
2160 val = make_uninit_multibyte_string (length, length);
2161 STRING_SET_UNIBYTE (val);
2162 return val;
2163 }
2164
2165
2166 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2167 which occupy NBYTES bytes. */
2168
2169 Lisp_Object
2170 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2171 {
2172 Lisp_Object string;
2173 struct Lisp_String *s;
2174
2175 if (nchars < 0)
2176 emacs_abort ();
2177 if (!nbytes)
2178 return empty_multibyte_string;
2179
2180 s = allocate_string ();
2181 s->intervals = NULL;
2182 allocate_string_data (s, nchars, nbytes);
2183 XSETSTRING (string, s);
2184 string_chars_consed += nbytes;
2185 return string;
2186 }
2187
2188 /* Print arguments to BUF according to a FORMAT, then return
2189 a Lisp_String initialized with the data from BUF. */
2190
2191 Lisp_Object
2192 make_formatted_string (char *buf, const char *format, ...)
2193 {
2194 va_list ap;
2195 int length;
2196
2197 va_start (ap, format);
2198 length = vsprintf (buf, format, ap);
2199 va_end (ap);
2200 return make_string (buf, length);
2201 }
2202
2203 \f
2204 /***********************************************************************
2205 Float Allocation
2206 ***********************************************************************/
2207
2208 /* We store float cells inside of float_blocks, allocating a new
2209 float_block with malloc whenever necessary. Float cells reclaimed
2210 by GC are put on a free list to be reallocated before allocating
2211 any new float cells from the latest float_block. */
2212
2213 #define FLOAT_BLOCK_SIZE \
2214 (((BLOCK_BYTES - sizeof (struct float_block *) \
2215 /* The compiler might add padding at the end. */ \
2216 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2217 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2218
2219 #define GETMARKBIT(block,n) \
2220 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2221 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2222 & 1)
2223
2224 #define SETMARKBIT(block,n) \
2225 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2226 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2227
2228 #define UNSETMARKBIT(block,n) \
2229 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2230 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2231
2232 #define FLOAT_BLOCK(fptr) \
2233 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2234
2235 #define FLOAT_INDEX(fptr) \
2236 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2237
2238 struct float_block
2239 {
2240 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2241 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2242 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2243 struct float_block *next;
2244 };
2245
2246 #define FLOAT_MARKED_P(fptr) \
2247 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2248
2249 #define FLOAT_MARK(fptr) \
2250 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2251
2252 #define FLOAT_UNMARK(fptr) \
2253 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2254
2255 /* Current float_block. */
2256
2257 static struct float_block *float_block;
2258
2259 /* Index of first unused Lisp_Float in the current float_block. */
2260
2261 static int float_block_index = FLOAT_BLOCK_SIZE;
2262
2263 /* Free-list of Lisp_Floats. */
2264
2265 static struct Lisp_Float *float_free_list;
2266
2267 /* Return a new float object with value FLOAT_VALUE. */
2268
2269 Lisp_Object
2270 make_float (double float_value)
2271 {
2272 register Lisp_Object val;
2273
2274 MALLOC_BLOCK_INPUT;
2275
2276 if (float_free_list)
2277 {
2278 /* We use the data field for chaining the free list
2279 so that we won't use the same field that has the mark bit. */
2280 XSETFLOAT (val, float_free_list);
2281 float_free_list = float_free_list->u.chain;
2282 }
2283 else
2284 {
2285 if (float_block_index == FLOAT_BLOCK_SIZE)
2286 {
2287 struct float_block *new
2288 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2289 new->next = float_block;
2290 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2291 float_block = new;
2292 float_block_index = 0;
2293 total_free_floats += FLOAT_BLOCK_SIZE;
2294 }
2295 XSETFLOAT (val, &float_block->floats[float_block_index]);
2296 float_block_index++;
2297 }
2298
2299 MALLOC_UNBLOCK_INPUT;
2300
2301 XFLOAT_INIT (val, float_value);
2302 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2303 consing_since_gc += sizeof (struct Lisp_Float);
2304 floats_consed++;
2305 total_free_floats--;
2306 return val;
2307 }
2308
2309
2310 \f
2311 /***********************************************************************
2312 Cons Allocation
2313 ***********************************************************************/
2314
2315 /* We store cons cells inside of cons_blocks, allocating a new
2316 cons_block with malloc whenever necessary. Cons cells reclaimed by
2317 GC are put on a free list to be reallocated before allocating
2318 any new cons cells from the latest cons_block. */
2319
2320 #define CONS_BLOCK_SIZE \
2321 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2322 /* The compiler might add padding at the end. */ \
2323 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2324 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2325
2326 #define CONS_BLOCK(fptr) \
2327 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2328
2329 #define CONS_INDEX(fptr) \
2330 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2331
2332 struct cons_block
2333 {
2334 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2335 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2336 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2337 struct cons_block *next;
2338 };
2339
2340 #define CONS_MARKED_P(fptr) \
2341 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2342
2343 #define CONS_MARK(fptr) \
2344 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2345
2346 #define CONS_UNMARK(fptr) \
2347 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2348
2349 /* Current cons_block. */
2350
2351 static struct cons_block *cons_block;
2352
2353 /* Index of first unused Lisp_Cons in the current block. */
2354
2355 static int cons_block_index = CONS_BLOCK_SIZE;
2356
2357 /* Free-list of Lisp_Cons structures. */
2358
2359 static struct Lisp_Cons *cons_free_list;
2360
2361 /* Explicitly free a cons cell by putting it on the free-list. */
2362
2363 void
2364 free_cons (struct Lisp_Cons *ptr)
2365 {
2366 ptr->u.chain = cons_free_list;
2367 #if GC_MARK_STACK
2368 ptr->car = Vdead;
2369 #endif
2370 cons_free_list = ptr;
2371 consing_since_gc -= sizeof *ptr;
2372 total_free_conses++;
2373 }
2374
2375 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2376 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2377 (Lisp_Object car, Lisp_Object cdr)
2378 {
2379 register Lisp_Object val;
2380
2381 MALLOC_BLOCK_INPUT;
2382
2383 if (cons_free_list)
2384 {
2385 /* We use the cdr for chaining the free list
2386 so that we won't use the same field that has the mark bit. */
2387 XSETCONS (val, cons_free_list);
2388 cons_free_list = cons_free_list->u.chain;
2389 }
2390 else
2391 {
2392 if (cons_block_index == CONS_BLOCK_SIZE)
2393 {
2394 struct cons_block *new
2395 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2396 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2397 new->next = cons_block;
2398 cons_block = new;
2399 cons_block_index = 0;
2400 total_free_conses += CONS_BLOCK_SIZE;
2401 }
2402 XSETCONS (val, &cons_block->conses[cons_block_index]);
2403 cons_block_index++;
2404 }
2405
2406 MALLOC_UNBLOCK_INPUT;
2407
2408 XSETCAR (val, car);
2409 XSETCDR (val, cdr);
2410 eassert (!CONS_MARKED_P (XCONS (val)));
2411 consing_since_gc += sizeof (struct Lisp_Cons);
2412 total_free_conses--;
2413 cons_cells_consed++;
2414 return val;
2415 }
2416
2417 #ifdef GC_CHECK_CONS_LIST
2418 /* Get an error now if there's any junk in the cons free list. */
2419 void
2420 check_cons_list (void)
2421 {
2422 struct Lisp_Cons *tail = cons_free_list;
2423
2424 while (tail)
2425 tail = tail->u.chain;
2426 }
2427 #endif
2428
2429 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2430
2431 Lisp_Object
2432 list1 (Lisp_Object arg1)
2433 {
2434 return Fcons (arg1, Qnil);
2435 }
2436
2437 Lisp_Object
2438 list2 (Lisp_Object arg1, Lisp_Object arg2)
2439 {
2440 return Fcons (arg1, Fcons (arg2, Qnil));
2441 }
2442
2443
2444 Lisp_Object
2445 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2446 {
2447 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2448 }
2449
2450
2451 Lisp_Object
2452 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2453 {
2454 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2455 }
2456
2457
2458 Lisp_Object
2459 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2460 {
2461 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2462 Fcons (arg5, Qnil)))));
2463 }
2464
2465 /* Make a list of COUNT Lisp_Objects, where ARG is the
2466 first one. Allocate conses from pure space if TYPE
2467 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2468
2469 Lisp_Object
2470 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2471 {
2472 va_list ap;
2473 ptrdiff_t i;
2474 Lisp_Object val, *objp;
2475
2476 /* Change to SAFE_ALLOCA if you hit this eassert. */
2477 eassert (count <= MAX_ALLOCA / word_size);
2478
2479 objp = alloca (count * word_size);
2480 objp[0] = arg;
2481 va_start (ap, arg);
2482 for (i = 1; i < count; i++)
2483 objp[i] = va_arg (ap, Lisp_Object);
2484 va_end (ap);
2485
2486 for (val = Qnil, i = count - 1; i >= 0; i--)
2487 {
2488 if (type == CONSTYPE_PURE)
2489 val = pure_cons (objp[i], val);
2490 else if (type == CONSTYPE_HEAP)
2491 val = Fcons (objp[i], val);
2492 else
2493 emacs_abort ();
2494 }
2495 return val;
2496 }
2497
2498 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2499 doc: /* Return a newly created list with specified arguments as elements.
2500 Any number of arguments, even zero arguments, are allowed.
2501 usage: (list &rest OBJECTS) */)
2502 (ptrdiff_t nargs, Lisp_Object *args)
2503 {
2504 register Lisp_Object val;
2505 val = Qnil;
2506
2507 while (nargs > 0)
2508 {
2509 nargs--;
2510 val = Fcons (args[nargs], val);
2511 }
2512 return val;
2513 }
2514
2515
2516 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2517 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2518 (register Lisp_Object length, Lisp_Object init)
2519 {
2520 register Lisp_Object val;
2521 register EMACS_INT size;
2522
2523 CHECK_NATNUM (length);
2524 size = XFASTINT (length);
2525
2526 val = Qnil;
2527 while (size > 0)
2528 {
2529 val = Fcons (init, val);
2530 --size;
2531
2532 if (size > 0)
2533 {
2534 val = Fcons (init, val);
2535 --size;
2536
2537 if (size > 0)
2538 {
2539 val = Fcons (init, val);
2540 --size;
2541
2542 if (size > 0)
2543 {
2544 val = Fcons (init, val);
2545 --size;
2546
2547 if (size > 0)
2548 {
2549 val = Fcons (init, val);
2550 --size;
2551 }
2552 }
2553 }
2554 }
2555
2556 QUIT;
2557 }
2558
2559 return val;
2560 }
2561
2562
2563 \f
2564 /***********************************************************************
2565 Vector Allocation
2566 ***********************************************************************/
2567
2568 /* This value is balanced well enough to avoid too much internal overhead
2569 for the most common cases; it's not required to be a power of two, but
2570 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2571
2572 #define VECTOR_BLOCK_SIZE 4096
2573
2574 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2575 enum
2576 {
2577 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2578 };
2579
2580 /* ROUNDUP_SIZE must be a power of 2. */
2581 verify ((roundup_size & (roundup_size - 1)) == 0);
2582
2583 /* Verify assumptions described above. */
2584 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2585 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2586
2587 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2588
2589 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2590
2591 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2592
2593 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2594
2595 /* Size of the minimal vector allocated from block. */
2596
2597 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2598
2599 /* Size of the largest vector allocated from block. */
2600
2601 #define VBLOCK_BYTES_MAX \
2602 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2603
2604 /* We maintain one free list for each possible block-allocated
2605 vector size, and this is the number of free lists we have. */
2606
2607 #define VECTOR_MAX_FREE_LIST_INDEX \
2608 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2609
2610 /* Common shortcut to advance vector pointer over a block data. */
2611
2612 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2613
2614 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2615
2616 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2617
2618 /* Get and set the next field in block-allocated vectorlike objects on
2619 the free list. Doing it this way respects C's aliasing rules.
2620 We could instead make 'contents' a union, but that would mean
2621 changes everywhere that the code uses 'contents'. */
2622 static struct Lisp_Vector *
2623 next_in_free_list (struct Lisp_Vector *v)
2624 {
2625 intptr_t i = XLI (v->contents[0]);
2626 return (struct Lisp_Vector *) i;
2627 }
2628 static void
2629 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2630 {
2631 v->contents[0] = XIL ((intptr_t) next);
2632 }
2633
2634 /* Common shortcut to setup vector on a free list. */
2635
2636 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2637 do { \
2638 (tmp) = ((nbytes - header_size) / word_size); \
2639 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2640 eassert ((nbytes) % roundup_size == 0); \
2641 (tmp) = VINDEX (nbytes); \
2642 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2643 set_next_in_free_list (v, vector_free_lists[tmp]); \
2644 vector_free_lists[tmp] = (v); \
2645 total_free_vector_slots += (nbytes) / word_size; \
2646 } while (0)
2647
2648 /* This internal type is used to maintain the list of large vectors
2649 which are allocated at their own, e.g. outside of vector blocks. */
2650
2651 struct large_vector
2652 {
2653 union {
2654 struct large_vector *vector;
2655 #if USE_LSB_TAG
2656 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2657 unsigned char c[vroundup (sizeof (struct large_vector *))];
2658 #endif
2659 } next;
2660 struct Lisp_Vector v;
2661 };
2662
2663 /* This internal type is used to maintain an underlying storage
2664 for small vectors. */
2665
2666 struct vector_block
2667 {
2668 char data[VECTOR_BLOCK_BYTES];
2669 struct vector_block *next;
2670 };
2671
2672 /* Chain of vector blocks. */
2673
2674 static struct vector_block *vector_blocks;
2675
2676 /* Vector free lists, where NTH item points to a chain of free
2677 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2678
2679 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2680
2681 /* Singly-linked list of large vectors. */
2682
2683 static struct large_vector *large_vectors;
2684
2685 /* The only vector with 0 slots, allocated from pure space. */
2686
2687 Lisp_Object zero_vector;
2688
2689 /* Number of live vectors. */
2690
2691 static EMACS_INT total_vectors;
2692
2693 /* Total size of live and free vectors, in Lisp_Object units. */
2694
2695 static EMACS_INT total_vector_slots, total_free_vector_slots;
2696
2697 /* Get a new vector block. */
2698
2699 static struct vector_block *
2700 allocate_vector_block (void)
2701 {
2702 struct vector_block *block = xmalloc (sizeof *block);
2703
2704 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2705 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2706 MEM_TYPE_VECTOR_BLOCK);
2707 #endif
2708
2709 block->next = vector_blocks;
2710 vector_blocks = block;
2711 return block;
2712 }
2713
2714 /* Called once to initialize vector allocation. */
2715
2716 static void
2717 init_vectors (void)
2718 {
2719 zero_vector = make_pure_vector (0);
2720 }
2721
2722 /* Allocate vector from a vector block. */
2723
2724 static struct Lisp_Vector *
2725 allocate_vector_from_block (size_t nbytes)
2726 {
2727 struct Lisp_Vector *vector;
2728 struct vector_block *block;
2729 size_t index, restbytes;
2730
2731 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2732 eassert (nbytes % roundup_size == 0);
2733
2734 /* First, try to allocate from a free list
2735 containing vectors of the requested size. */
2736 index = VINDEX (nbytes);
2737 if (vector_free_lists[index])
2738 {
2739 vector = vector_free_lists[index];
2740 vector_free_lists[index] = next_in_free_list (vector);
2741 total_free_vector_slots -= nbytes / word_size;
2742 return vector;
2743 }
2744
2745 /* Next, check free lists containing larger vectors. Since
2746 we will split the result, we should have remaining space
2747 large enough to use for one-slot vector at least. */
2748 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2749 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2750 if (vector_free_lists[index])
2751 {
2752 /* This vector is larger than requested. */
2753 vector = vector_free_lists[index];
2754 vector_free_lists[index] = next_in_free_list (vector);
2755 total_free_vector_slots -= nbytes / word_size;
2756
2757 /* Excess bytes are used for the smaller vector,
2758 which should be set on an appropriate free list. */
2759 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2760 eassert (restbytes % roundup_size == 0);
2761 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2762 return vector;
2763 }
2764
2765 /* Finally, need a new vector block. */
2766 block = allocate_vector_block ();
2767
2768 /* New vector will be at the beginning of this block. */
2769 vector = (struct Lisp_Vector *) block->data;
2770
2771 /* If the rest of space from this block is large enough
2772 for one-slot vector at least, set up it on a free list. */
2773 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2774 if (restbytes >= VBLOCK_BYTES_MIN)
2775 {
2776 eassert (restbytes % roundup_size == 0);
2777 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2778 }
2779 return vector;
2780 }
2781
2782 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2783
2784 #define VECTOR_IN_BLOCK(vector, block) \
2785 ((char *) (vector) <= (block)->data \
2786 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2787
2788 /* Return the memory footprint of V in bytes. */
2789
2790 static ptrdiff_t
2791 vector_nbytes (struct Lisp_Vector *v)
2792 {
2793 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2794
2795 if (size & PSEUDOVECTOR_FLAG)
2796 {
2797 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2798 size = (bool_header_size
2799 + (((struct Lisp_Bool_Vector *) v)->size
2800 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2801 / BOOL_VECTOR_BITS_PER_CHAR);
2802 else
2803 size = (header_size
2804 + ((size & PSEUDOVECTOR_SIZE_MASK)
2805 + ((size & PSEUDOVECTOR_REST_MASK)
2806 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2807 }
2808 else
2809 size = header_size + size * word_size;
2810 return vroundup (size);
2811 }
2812
2813 /* Reclaim space used by unmarked vectors. */
2814
2815 static void
2816 sweep_vectors (void)
2817 {
2818 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2819 struct large_vector *lv, **lvprev = &large_vectors;
2820 struct Lisp_Vector *vector, *next;
2821
2822 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2823 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2824
2825 /* Looking through vector blocks. */
2826
2827 for (block = vector_blocks; block; block = *bprev)
2828 {
2829 bool free_this_block = 0;
2830 ptrdiff_t nbytes;
2831
2832 for (vector = (struct Lisp_Vector *) block->data;
2833 VECTOR_IN_BLOCK (vector, block); vector = next)
2834 {
2835 if (VECTOR_MARKED_P (vector))
2836 {
2837 VECTOR_UNMARK (vector);
2838 total_vectors++;
2839 nbytes = vector_nbytes (vector);
2840 total_vector_slots += nbytes / word_size;
2841 next = ADVANCE (vector, nbytes);
2842 }
2843 else
2844 {
2845 ptrdiff_t total_bytes;
2846
2847 nbytes = vector_nbytes (vector);
2848 total_bytes = nbytes;
2849 next = ADVANCE (vector, nbytes);
2850
2851 /* While NEXT is not marked, try to coalesce with VECTOR,
2852 thus making VECTOR of the largest possible size. */
2853
2854 while (VECTOR_IN_BLOCK (next, block))
2855 {
2856 if (VECTOR_MARKED_P (next))
2857 break;
2858 nbytes = vector_nbytes (next);
2859 total_bytes += nbytes;
2860 next = ADVANCE (next, nbytes);
2861 }
2862
2863 eassert (total_bytes % roundup_size == 0);
2864
2865 if (vector == (struct Lisp_Vector *) block->data
2866 && !VECTOR_IN_BLOCK (next, block))
2867 /* This block should be freed because all of it's
2868 space was coalesced into the only free vector. */
2869 free_this_block = 1;
2870 else
2871 {
2872 int tmp;
2873 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2874 }
2875 }
2876 }
2877
2878 if (free_this_block)
2879 {
2880 *bprev = block->next;
2881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2882 mem_delete (mem_find (block->data));
2883 #endif
2884 xfree (block);
2885 }
2886 else
2887 bprev = &block->next;
2888 }
2889
2890 /* Sweep large vectors. */
2891
2892 for (lv = large_vectors; lv; lv = *lvprev)
2893 {
2894 vector = &lv->v;
2895 if (VECTOR_MARKED_P (vector))
2896 {
2897 VECTOR_UNMARK (vector);
2898 total_vectors++;
2899 if (vector->header.size & PSEUDOVECTOR_FLAG)
2900 {
2901 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2902
2903 /* All non-bool pseudovectors are small enough to be allocated
2904 from vector blocks. This code should be redesigned if some
2905 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2906 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2907
2908 total_vector_slots
2909 += (bool_header_size
2910 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2911 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2912 }
2913 else
2914 total_vector_slots
2915 += header_size / word_size + vector->header.size;
2916 lvprev = &lv->next.vector;
2917 }
2918 else
2919 {
2920 *lvprev = lv->next.vector;
2921 lisp_free (lv);
2922 }
2923 }
2924 }
2925
2926 /* Value is a pointer to a newly allocated Lisp_Vector structure
2927 with room for LEN Lisp_Objects. */
2928
2929 static struct Lisp_Vector *
2930 allocate_vectorlike (ptrdiff_t len)
2931 {
2932 struct Lisp_Vector *p;
2933
2934 MALLOC_BLOCK_INPUT;
2935
2936 if (len == 0)
2937 p = XVECTOR (zero_vector);
2938 else
2939 {
2940 size_t nbytes = header_size + len * word_size;
2941
2942 #ifdef DOUG_LEA_MALLOC
2943 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2944 because mapped region contents are not preserved in
2945 a dumped Emacs. */
2946 mallopt (M_MMAP_MAX, 0);
2947 #endif
2948
2949 if (nbytes <= VBLOCK_BYTES_MAX)
2950 p = allocate_vector_from_block (vroundup (nbytes));
2951 else
2952 {
2953 struct large_vector *lv
2954 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2955 MEM_TYPE_VECTORLIKE);
2956 lv->next.vector = large_vectors;
2957 large_vectors = lv;
2958 p = &lv->v;
2959 }
2960
2961 #ifdef DOUG_LEA_MALLOC
2962 /* Back to a reasonable maximum of mmap'ed areas. */
2963 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2964 #endif
2965
2966 consing_since_gc += nbytes;
2967 vector_cells_consed += len;
2968 }
2969
2970 MALLOC_UNBLOCK_INPUT;
2971
2972 return p;
2973 }
2974
2975
2976 /* Allocate a vector with LEN slots. */
2977
2978 struct Lisp_Vector *
2979 allocate_vector (EMACS_INT len)
2980 {
2981 struct Lisp_Vector *v;
2982 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2983
2984 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2985 memory_full (SIZE_MAX);
2986 v = allocate_vectorlike (len);
2987 v->header.size = len;
2988 return v;
2989 }
2990
2991
2992 /* Allocate other vector-like structures. */
2993
2994 struct Lisp_Vector *
2995 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2996 {
2997 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2998 int i;
2999
3000 /* Catch bogus values. */
3001 eassert (tag <= PVEC_FONT);
3002 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3003 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3004
3005 /* Only the first lisplen slots will be traced normally by the GC. */
3006 for (i = 0; i < lisplen; ++i)
3007 v->contents[i] = Qnil;
3008
3009 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3010 return v;
3011 }
3012
3013 struct buffer *
3014 allocate_buffer (void)
3015 {
3016 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3017
3018 BUFFER_PVEC_INIT (b);
3019 /* Put B on the chain of all buffers including killed ones. */
3020 b->next = all_buffers;
3021 all_buffers = b;
3022 /* Note that the rest fields of B are not initialized. */
3023 return b;
3024 }
3025
3026 struct Lisp_Hash_Table *
3027 allocate_hash_table (void)
3028 {
3029 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3030 }
3031
3032 struct window *
3033 allocate_window (void)
3034 {
3035 struct window *w;
3036
3037 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3038 /* Users assumes that non-Lisp data is zeroed. */
3039 memset (&w->current_matrix, 0,
3040 sizeof (*w) - offsetof (struct window, current_matrix));
3041 return w;
3042 }
3043
3044 struct terminal *
3045 allocate_terminal (void)
3046 {
3047 struct terminal *t;
3048
3049 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3050 /* Users assumes that non-Lisp data is zeroed. */
3051 memset (&t->next_terminal, 0,
3052 sizeof (*t) - offsetof (struct terminal, next_terminal));
3053 return t;
3054 }
3055
3056 struct frame *
3057 allocate_frame (void)
3058 {
3059 struct frame *f;
3060
3061 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3062 /* Users assumes that non-Lisp data is zeroed. */
3063 memset (&f->face_cache, 0,
3064 sizeof (*f) - offsetof (struct frame, face_cache));
3065 return f;
3066 }
3067
3068 struct Lisp_Process *
3069 allocate_process (void)
3070 {
3071 struct Lisp_Process *p;
3072
3073 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3074 /* Users assumes that non-Lisp data is zeroed. */
3075 memset (&p->pid, 0,
3076 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3077 return p;
3078 }
3079
3080 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3081 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3082 See also the function `vector'. */)
3083 (register Lisp_Object length, Lisp_Object init)
3084 {
3085 Lisp_Object vector;
3086 register ptrdiff_t sizei;
3087 register ptrdiff_t i;
3088 register struct Lisp_Vector *p;
3089
3090 CHECK_NATNUM (length);
3091
3092 p = allocate_vector (XFASTINT (length));
3093 sizei = XFASTINT (length);
3094 for (i = 0; i < sizei; i++)
3095 p->contents[i] = init;
3096
3097 XSETVECTOR (vector, p);
3098 return vector;
3099 }
3100
3101
3102 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3103 doc: /* Return a newly created vector with specified arguments as elements.
3104 Any number of arguments, even zero arguments, are allowed.
3105 usage: (vector &rest OBJECTS) */)
3106 (ptrdiff_t nargs, Lisp_Object *args)
3107 {
3108 ptrdiff_t i;
3109 register Lisp_Object val = make_uninit_vector (nargs);
3110 register struct Lisp_Vector *p = XVECTOR (val);
3111
3112 for (i = 0; i < nargs; i++)
3113 p->contents[i] = args[i];
3114 return val;
3115 }
3116
3117 void
3118 make_byte_code (struct Lisp_Vector *v)
3119 {
3120 if (v->header.size > 1 && STRINGP (v->contents[1])
3121 && STRING_MULTIBYTE (v->contents[1]))
3122 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3123 earlier because they produced a raw 8-bit string for byte-code
3124 and now such a byte-code string is loaded as multibyte while
3125 raw 8-bit characters converted to multibyte form. Thus, now we
3126 must convert them back to the original unibyte form. */
3127 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3128 XSETPVECTYPE (v, PVEC_COMPILED);
3129 }
3130
3131 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3132 doc: /* Create a byte-code object with specified arguments as elements.
3133 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3134 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3135 and (optional) INTERACTIVE-SPEC.
3136 The first four arguments are required; at most six have any
3137 significance.
3138 The ARGLIST can be either like the one of `lambda', in which case the arguments
3139 will be dynamically bound before executing the byte code, or it can be an
3140 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3141 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3142 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3143 argument to catch the left-over arguments. If such an integer is used, the
3144 arguments will not be dynamically bound but will be instead pushed on the
3145 stack before executing the byte-code.
3146 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3147 (ptrdiff_t nargs, Lisp_Object *args)
3148 {
3149 ptrdiff_t i;
3150 register Lisp_Object val = make_uninit_vector (nargs);
3151 register struct Lisp_Vector *p = XVECTOR (val);
3152
3153 /* We used to purecopy everything here, if purify-flag was set. This worked
3154 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3155 dangerous, since make-byte-code is used during execution to build
3156 closures, so any closure built during the preload phase would end up
3157 copied into pure space, including its free variables, which is sometimes
3158 just wasteful and other times plainly wrong (e.g. those free vars may want
3159 to be setcar'd). */
3160
3161 for (i = 0; i < nargs; i++)
3162 p->contents[i] = args[i];
3163 make_byte_code (p);
3164 XSETCOMPILED (val, p);
3165 return val;
3166 }
3167
3168
3169 \f
3170 /***********************************************************************
3171 Symbol Allocation
3172 ***********************************************************************/
3173
3174 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3175 of the required alignment if LSB tags are used. */
3176
3177 union aligned_Lisp_Symbol
3178 {
3179 struct Lisp_Symbol s;
3180 #if USE_LSB_TAG
3181 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3182 & -GCALIGNMENT];
3183 #endif
3184 };
3185
3186 /* Each symbol_block is just under 1020 bytes long, since malloc
3187 really allocates in units of powers of two and uses 4 bytes for its
3188 own overhead. */
3189
3190 #define SYMBOL_BLOCK_SIZE \
3191 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3192
3193 struct symbol_block
3194 {
3195 /* Place `symbols' first, to preserve alignment. */
3196 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3197 struct symbol_block *next;
3198 };
3199
3200 /* Current symbol block and index of first unused Lisp_Symbol
3201 structure in it. */
3202
3203 static struct symbol_block *symbol_block;
3204 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3205
3206 /* List of free symbols. */
3207
3208 static struct Lisp_Symbol *symbol_free_list;
3209
3210 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3211 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3212 Its value is void, and its function definition and property list are nil. */)
3213 (Lisp_Object name)
3214 {
3215 register Lisp_Object val;
3216 register struct Lisp_Symbol *p;
3217
3218 CHECK_STRING (name);
3219
3220 MALLOC_BLOCK_INPUT;
3221
3222 if (symbol_free_list)
3223 {
3224 XSETSYMBOL (val, symbol_free_list);
3225 symbol_free_list = symbol_free_list->next;
3226 }
3227 else
3228 {
3229 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3230 {
3231 struct symbol_block *new
3232 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3233 new->next = symbol_block;
3234 symbol_block = new;
3235 symbol_block_index = 0;
3236 total_free_symbols += SYMBOL_BLOCK_SIZE;
3237 }
3238 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3239 symbol_block_index++;
3240 }
3241
3242 MALLOC_UNBLOCK_INPUT;
3243
3244 p = XSYMBOL (val);
3245 set_symbol_name (val, name);
3246 set_symbol_plist (val, Qnil);
3247 p->redirect = SYMBOL_PLAINVAL;
3248 SET_SYMBOL_VAL (p, Qunbound);
3249 set_symbol_function (val, Qnil);
3250 set_symbol_next (val, NULL);
3251 p->gcmarkbit = 0;
3252 p->interned = SYMBOL_UNINTERNED;
3253 p->constant = 0;
3254 p->declared_special = 0;
3255 consing_since_gc += sizeof (struct Lisp_Symbol);
3256 symbols_consed++;
3257 total_free_symbols--;
3258 return val;
3259 }
3260
3261
3262 \f
3263 /***********************************************************************
3264 Marker (Misc) Allocation
3265 ***********************************************************************/
3266
3267 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3268 the required alignment when LSB tags are used. */
3269
3270 union aligned_Lisp_Misc
3271 {
3272 union Lisp_Misc m;
3273 #if USE_LSB_TAG
3274 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3275 & -GCALIGNMENT];
3276 #endif
3277 };
3278
3279 /* Allocation of markers and other objects that share that structure.
3280 Works like allocation of conses. */
3281
3282 #define MARKER_BLOCK_SIZE \
3283 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3284
3285 struct marker_block
3286 {
3287 /* Place `markers' first, to preserve alignment. */
3288 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3289 struct marker_block *next;
3290 };
3291
3292 static struct marker_block *marker_block;
3293 static int marker_block_index = MARKER_BLOCK_SIZE;
3294
3295 static union Lisp_Misc *marker_free_list;
3296
3297 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3298
3299 static Lisp_Object
3300 allocate_misc (enum Lisp_Misc_Type type)
3301 {
3302 Lisp_Object val;
3303
3304 MALLOC_BLOCK_INPUT;
3305
3306 if (marker_free_list)
3307 {
3308 XSETMISC (val, marker_free_list);
3309 marker_free_list = marker_free_list->u_free.chain;
3310 }
3311 else
3312 {
3313 if (marker_block_index == MARKER_BLOCK_SIZE)
3314 {
3315 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3316 new->next = marker_block;
3317 marker_block = new;
3318 marker_block_index = 0;
3319 total_free_markers += MARKER_BLOCK_SIZE;
3320 }
3321 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3322 marker_block_index++;
3323 }
3324
3325 MALLOC_UNBLOCK_INPUT;
3326
3327 --total_free_markers;
3328 consing_since_gc += sizeof (union Lisp_Misc);
3329 misc_objects_consed++;
3330 XMISCTYPE (val) = type;
3331 XMISCANY (val)->gcmarkbit = 0;
3332 return val;
3333 }
3334
3335 /* Free a Lisp_Misc object. */
3336
3337 void
3338 free_misc (Lisp_Object misc)
3339 {
3340 XMISCTYPE (misc) = Lisp_Misc_Free;
3341 XMISC (misc)->u_free.chain = marker_free_list;
3342 marker_free_list = XMISC (misc);
3343 consing_since_gc -= sizeof (union Lisp_Misc);
3344 total_free_markers++;
3345 }
3346
3347 /* Return a Lisp_Save_Value object with the data saved according to
3348 FMT. Format specifiers are `i' for an integer, `p' for a pointer
3349 and `o' for Lisp_Object. Up to 4 objects can be specified. */
3350
3351 Lisp_Object
3352 make_save_value (const char *fmt, ...)
3353 {
3354 va_list ap;
3355 int len = strlen (fmt);
3356 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3357 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3358
3359 eassert (0 < len && len < 5);
3360 va_start (ap, fmt);
3361
3362 #define INITX(index) \
3363 do { \
3364 if (len <= index) \
3365 p->type ## index = SAVE_UNUSED; \
3366 else \
3367 { \
3368 if (fmt[index] == 'i') \
3369 { \
3370 p->type ## index = SAVE_INTEGER; \
3371 p->data[index].integer = va_arg (ap, ptrdiff_t); \
3372 } \
3373 else if (fmt[index] == 'p') \
3374 { \
3375 p->type ## index = SAVE_POINTER; \
3376 p->data[index].pointer = va_arg (ap, void *); \
3377 } \
3378 else if (fmt[index] == 'o') \
3379 { \
3380 p->type ## index = SAVE_OBJECT; \
3381 p->data[index].object = va_arg (ap, Lisp_Object); \
3382 } \
3383 else \
3384 emacs_abort (); \
3385 } \
3386 } while (0)
3387
3388 INITX (0);
3389 INITX (1);
3390 INITX (2);
3391 INITX (3);
3392
3393 #undef INITX
3394
3395 va_end (ap);
3396 p->area = 0;
3397 return val;
3398 }
3399
3400 /* The most common task it to save just one C pointer. */
3401
3402 Lisp_Object
3403 make_save_pointer (void *pointer)
3404 {
3405 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3406 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3407
3408 p->area = 0;
3409 p->type0 = SAVE_POINTER;
3410 p->data[0].pointer = pointer;
3411 p->type1 = p->type2 = p->type3 = SAVE_UNUSED;
3412 return val;
3413 }
3414
3415 /* Free a Lisp_Save_Value object. Do not use this function
3416 if SAVE contains pointer other than returned by xmalloc. */
3417
3418 static void
3419 free_save_value (Lisp_Object save)
3420 {
3421 xfree (XSAVE_POINTER (save, 0));
3422 free_misc (save);
3423 }
3424
3425 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3426
3427 Lisp_Object
3428 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3429 {
3430 register Lisp_Object overlay;
3431
3432 overlay = allocate_misc (Lisp_Misc_Overlay);
3433 OVERLAY_START (overlay) = start;
3434 OVERLAY_END (overlay) = end;
3435 set_overlay_plist (overlay, plist);
3436 XOVERLAY (overlay)->next = NULL;
3437 return overlay;
3438 }
3439
3440 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3441 doc: /* Return a newly allocated marker which does not point at any place. */)
3442 (void)
3443 {
3444 register Lisp_Object val;
3445 register struct Lisp_Marker *p;
3446
3447 val = allocate_misc (Lisp_Misc_Marker);
3448 p = XMARKER (val);
3449 p->buffer = 0;
3450 p->bytepos = 0;
3451 p->charpos = 0;
3452 p->next = NULL;
3453 p->insertion_type = 0;
3454 return val;
3455 }
3456
3457 /* Return a newly allocated marker which points into BUF
3458 at character position CHARPOS and byte position BYTEPOS. */
3459
3460 Lisp_Object
3461 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3462 {
3463 Lisp_Object obj;
3464 struct Lisp_Marker *m;
3465
3466 /* No dead buffers here. */
3467 eassert (BUFFER_LIVE_P (buf));
3468
3469 /* Every character is at least one byte. */
3470 eassert (charpos <= bytepos);
3471
3472 obj = allocate_misc (Lisp_Misc_Marker);
3473 m = XMARKER (obj);
3474 m->buffer = buf;
3475 m->charpos = charpos;
3476 m->bytepos = bytepos;
3477 m->insertion_type = 0;
3478 m->next = BUF_MARKERS (buf);
3479 BUF_MARKERS (buf) = m;
3480 return obj;
3481 }
3482
3483 /* Put MARKER back on the free list after using it temporarily. */
3484
3485 void
3486 free_marker (Lisp_Object marker)
3487 {
3488 unchain_marker (XMARKER (marker));
3489 free_misc (marker);
3490 }
3491
3492 \f
3493 /* Return a newly created vector or string with specified arguments as
3494 elements. If all the arguments are characters that can fit
3495 in a string of events, make a string; otherwise, make a vector.
3496
3497 Any number of arguments, even zero arguments, are allowed. */
3498
3499 Lisp_Object
3500 make_event_array (register int nargs, Lisp_Object *args)
3501 {
3502 int i;
3503
3504 for (i = 0; i < nargs; i++)
3505 /* The things that fit in a string
3506 are characters that are in 0...127,
3507 after discarding the meta bit and all the bits above it. */
3508 if (!INTEGERP (args[i])
3509 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3510 return Fvector (nargs, args);
3511
3512 /* Since the loop exited, we know that all the things in it are
3513 characters, so we can make a string. */
3514 {
3515 Lisp_Object result;
3516
3517 result = Fmake_string (make_number (nargs), make_number (0));
3518 for (i = 0; i < nargs; i++)
3519 {
3520 SSET (result, i, XINT (args[i]));
3521 /* Move the meta bit to the right place for a string char. */
3522 if (XINT (args[i]) & CHAR_META)
3523 SSET (result, i, SREF (result, i) | 0x80);
3524 }
3525
3526 return result;
3527 }
3528 }
3529
3530
3531 \f
3532 /************************************************************************
3533 Memory Full Handling
3534 ************************************************************************/
3535
3536
3537 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3538 there may have been size_t overflow so that malloc was never
3539 called, or perhaps malloc was invoked successfully but the
3540 resulting pointer had problems fitting into a tagged EMACS_INT. In
3541 either case this counts as memory being full even though malloc did
3542 not fail. */
3543
3544 void
3545 memory_full (size_t nbytes)
3546 {
3547 /* Do not go into hysterics merely because a large request failed. */
3548 bool enough_free_memory = 0;
3549 if (SPARE_MEMORY < nbytes)
3550 {
3551 void *p;
3552
3553 MALLOC_BLOCK_INPUT;
3554 p = malloc (SPARE_MEMORY);
3555 if (p)
3556 {
3557 free (p);
3558 enough_free_memory = 1;
3559 }
3560 MALLOC_UNBLOCK_INPUT;
3561 }
3562
3563 if (! enough_free_memory)
3564 {
3565 int i;
3566
3567 Vmemory_full = Qt;
3568
3569 memory_full_cons_threshold = sizeof (struct cons_block);
3570
3571 /* The first time we get here, free the spare memory. */
3572 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3573 if (spare_memory[i])
3574 {
3575 if (i == 0)
3576 free (spare_memory[i]);
3577 else if (i >= 1 && i <= 4)
3578 lisp_align_free (spare_memory[i]);
3579 else
3580 lisp_free (spare_memory[i]);
3581 spare_memory[i] = 0;
3582 }
3583 }
3584
3585 /* This used to call error, but if we've run out of memory, we could
3586 get infinite recursion trying to build the string. */
3587 xsignal (Qnil, Vmemory_signal_data);
3588 }
3589
3590 /* If we released our reserve (due to running out of memory),
3591 and we have a fair amount free once again,
3592 try to set aside another reserve in case we run out once more.
3593
3594 This is called when a relocatable block is freed in ralloc.c,
3595 and also directly from this file, in case we're not using ralloc.c. */
3596
3597 void
3598 refill_memory_reserve (void)
3599 {
3600 #ifndef SYSTEM_MALLOC
3601 if (spare_memory[0] == 0)
3602 spare_memory[0] = malloc (SPARE_MEMORY);
3603 if (spare_memory[1] == 0)
3604 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3605 MEM_TYPE_SPARE);
3606 if (spare_memory[2] == 0)
3607 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3608 MEM_TYPE_SPARE);
3609 if (spare_memory[3] == 0)
3610 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3611 MEM_TYPE_SPARE);
3612 if (spare_memory[4] == 0)
3613 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3614 MEM_TYPE_SPARE);
3615 if (spare_memory[5] == 0)
3616 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3617 MEM_TYPE_SPARE);
3618 if (spare_memory[6] == 0)
3619 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3620 MEM_TYPE_SPARE);
3621 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3622 Vmemory_full = Qnil;
3623 #endif
3624 }
3625 \f
3626 /************************************************************************
3627 C Stack Marking
3628 ************************************************************************/
3629
3630 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3631
3632 /* Conservative C stack marking requires a method to identify possibly
3633 live Lisp objects given a pointer value. We do this by keeping
3634 track of blocks of Lisp data that are allocated in a red-black tree
3635 (see also the comment of mem_node which is the type of nodes in
3636 that tree). Function lisp_malloc adds information for an allocated
3637 block to the red-black tree with calls to mem_insert, and function
3638 lisp_free removes it with mem_delete. Functions live_string_p etc
3639 call mem_find to lookup information about a given pointer in the
3640 tree, and use that to determine if the pointer points to a Lisp
3641 object or not. */
3642
3643 /* Initialize this part of alloc.c. */
3644
3645 static void
3646 mem_init (void)
3647 {
3648 mem_z.left = mem_z.right = MEM_NIL;
3649 mem_z.parent = NULL;
3650 mem_z.color = MEM_BLACK;
3651 mem_z.start = mem_z.end = NULL;
3652 mem_root = MEM_NIL;
3653 }
3654
3655
3656 /* Value is a pointer to the mem_node containing START. Value is
3657 MEM_NIL if there is no node in the tree containing START. */
3658
3659 static struct mem_node *
3660 mem_find (void *start)
3661 {
3662 struct mem_node *p;
3663
3664 if (start < min_heap_address || start > max_heap_address)
3665 return MEM_NIL;
3666
3667 /* Make the search always successful to speed up the loop below. */
3668 mem_z.start = start;
3669 mem_z.end = (char *) start + 1;
3670
3671 p = mem_root;
3672 while (start < p->start || start >= p->end)
3673 p = start < p->start ? p->left : p->right;
3674 return p;
3675 }
3676
3677
3678 /* Insert a new node into the tree for a block of memory with start
3679 address START, end address END, and type TYPE. Value is a
3680 pointer to the node that was inserted. */
3681
3682 static struct mem_node *
3683 mem_insert (void *start, void *end, enum mem_type type)
3684 {
3685 struct mem_node *c, *parent, *x;
3686
3687 if (min_heap_address == NULL || start < min_heap_address)
3688 min_heap_address = start;
3689 if (max_heap_address == NULL || end > max_heap_address)
3690 max_heap_address = end;
3691
3692 /* See where in the tree a node for START belongs. In this
3693 particular application, it shouldn't happen that a node is already
3694 present. For debugging purposes, let's check that. */
3695 c = mem_root;
3696 parent = NULL;
3697
3698 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3699
3700 while (c != MEM_NIL)
3701 {
3702 if (start >= c->start && start < c->end)
3703 emacs_abort ();
3704 parent = c;
3705 c = start < c->start ? c->left : c->right;
3706 }
3707
3708 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3709
3710 while (c != MEM_NIL)
3711 {
3712 parent = c;
3713 c = start < c->start ? c->left : c->right;
3714 }
3715
3716 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3717
3718 /* Create a new node. */
3719 #ifdef GC_MALLOC_CHECK
3720 x = malloc (sizeof *x);
3721 if (x == NULL)
3722 emacs_abort ();
3723 #else
3724 x = xmalloc (sizeof *x);
3725 #endif
3726 x->start = start;
3727 x->end = end;
3728 x->type = type;
3729 x->parent = parent;
3730 x->left = x->right = MEM_NIL;
3731 x->color = MEM_RED;
3732
3733 /* Insert it as child of PARENT or install it as root. */
3734 if (parent)
3735 {
3736 if (start < parent->start)
3737 parent->left = x;
3738 else
3739 parent->right = x;
3740 }
3741 else
3742 mem_root = x;
3743
3744 /* Re-establish red-black tree properties. */
3745 mem_insert_fixup (x);
3746
3747 return x;
3748 }
3749
3750
3751 /* Re-establish the red-black properties of the tree, and thereby
3752 balance the tree, after node X has been inserted; X is always red. */
3753
3754 static void
3755 mem_insert_fixup (struct mem_node *x)
3756 {
3757 while (x != mem_root && x->parent->color == MEM_RED)
3758 {
3759 /* X is red and its parent is red. This is a violation of
3760 red-black tree property #3. */
3761
3762 if (x->parent == x->parent->parent->left)
3763 {
3764 /* We're on the left side of our grandparent, and Y is our
3765 "uncle". */
3766 struct mem_node *y = x->parent->parent->right;
3767
3768 if (y->color == MEM_RED)
3769 {
3770 /* Uncle and parent are red but should be black because
3771 X is red. Change the colors accordingly and proceed
3772 with the grandparent. */
3773 x->parent->color = MEM_BLACK;
3774 y->color = MEM_BLACK;
3775 x->parent->parent->color = MEM_RED;
3776 x = x->parent->parent;
3777 }
3778 else
3779 {
3780 /* Parent and uncle have different colors; parent is
3781 red, uncle is black. */
3782 if (x == x->parent->right)
3783 {
3784 x = x->parent;
3785 mem_rotate_left (x);
3786 }
3787
3788 x->parent->color = MEM_BLACK;
3789 x->parent->parent->color = MEM_RED;
3790 mem_rotate_right (x->parent->parent);
3791 }
3792 }
3793 else
3794 {
3795 /* This is the symmetrical case of above. */
3796 struct mem_node *y = x->parent->parent->left;
3797
3798 if (y->color == MEM_RED)
3799 {
3800 x->parent->color = MEM_BLACK;
3801 y->color = MEM_BLACK;
3802 x->parent->parent->color = MEM_RED;
3803 x = x->parent->parent;
3804 }
3805 else
3806 {
3807 if (x == x->parent->left)
3808 {
3809 x = x->parent;
3810 mem_rotate_right (x);
3811 }
3812
3813 x->parent->color = MEM_BLACK;
3814 x->parent->parent->color = MEM_RED;
3815 mem_rotate_left (x->parent->parent);
3816 }
3817 }
3818 }
3819
3820 /* The root may have been changed to red due to the algorithm. Set
3821 it to black so that property #5 is satisfied. */
3822 mem_root->color = MEM_BLACK;
3823 }
3824
3825
3826 /* (x) (y)
3827 / \ / \
3828 a (y) ===> (x) c
3829 / \ / \
3830 b c a b */
3831
3832 static void
3833 mem_rotate_left (struct mem_node *x)
3834 {
3835 struct mem_node *y;
3836
3837 /* Turn y's left sub-tree into x's right sub-tree. */
3838 y = x->right;
3839 x->right = y->left;
3840 if (y->left != MEM_NIL)
3841 y->left->parent = x;
3842
3843 /* Y's parent was x's parent. */
3844 if (y != MEM_NIL)
3845 y->parent = x->parent;
3846
3847 /* Get the parent to point to y instead of x. */
3848 if (x->parent)
3849 {
3850 if (x == x->parent->left)
3851 x->parent->left = y;
3852 else
3853 x->parent->right = y;
3854 }
3855 else
3856 mem_root = y;
3857
3858 /* Put x on y's left. */
3859 y->left = x;
3860 if (x != MEM_NIL)
3861 x->parent = y;
3862 }
3863
3864
3865 /* (x) (Y)
3866 / \ / \
3867 (y) c ===> a (x)
3868 / \ / \
3869 a b b c */
3870
3871 static void
3872 mem_rotate_right (struct mem_node *x)
3873 {
3874 struct mem_node *y = x->left;
3875
3876 x->left = y->right;
3877 if (y->right != MEM_NIL)
3878 y->right->parent = x;
3879
3880 if (y != MEM_NIL)
3881 y->parent = x->parent;
3882 if (x->parent)
3883 {
3884 if (x == x->parent->right)
3885 x->parent->right = y;
3886 else
3887 x->parent->left = y;
3888 }
3889 else
3890 mem_root = y;
3891
3892 y->right = x;
3893 if (x != MEM_NIL)
3894 x->parent = y;
3895 }
3896
3897
3898 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3899
3900 static void
3901 mem_delete (struct mem_node *z)
3902 {
3903 struct mem_node *x, *y;
3904
3905 if (!z || z == MEM_NIL)
3906 return;
3907
3908 if (z->left == MEM_NIL || z->right == MEM_NIL)
3909 y = z;
3910 else
3911 {
3912 y = z->right;
3913 while (y->left != MEM_NIL)
3914 y = y->left;
3915 }
3916
3917 if (y->left != MEM_NIL)
3918 x = y->left;
3919 else
3920 x = y->right;
3921
3922 x->parent = y->parent;
3923 if (y->parent)
3924 {
3925 if (y == y->parent->left)
3926 y->parent->left = x;
3927 else
3928 y->parent->right = x;
3929 }
3930 else
3931 mem_root = x;
3932
3933 if (y != z)
3934 {
3935 z->start = y->start;
3936 z->end = y->end;
3937 z->type = y->type;
3938 }
3939
3940 if (y->color == MEM_BLACK)
3941 mem_delete_fixup (x);
3942
3943 #ifdef GC_MALLOC_CHECK
3944 free (y);
3945 #else
3946 xfree (y);
3947 #endif
3948 }
3949
3950
3951 /* Re-establish the red-black properties of the tree, after a
3952 deletion. */
3953
3954 static void
3955 mem_delete_fixup (struct mem_node *x)
3956 {
3957 while (x != mem_root && x->color == MEM_BLACK)
3958 {
3959 if (x == x->parent->left)
3960 {
3961 struct mem_node *w = x->parent->right;
3962
3963 if (w->color == MEM_RED)
3964 {
3965 w->color = MEM_BLACK;
3966 x->parent->color = MEM_RED;
3967 mem_rotate_left (x->parent);
3968 w = x->parent->right;
3969 }
3970
3971 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3972 {
3973 w->color = MEM_RED;
3974 x = x->parent;
3975 }
3976 else
3977 {
3978 if (w->right->color == MEM_BLACK)
3979 {
3980 w->left->color = MEM_BLACK;
3981 w->color = MEM_RED;
3982 mem_rotate_right (w);
3983 w = x->parent->right;
3984 }
3985 w->color = x->parent->color;
3986 x->parent->color = MEM_BLACK;
3987 w->right->color = MEM_BLACK;
3988 mem_rotate_left (x->parent);
3989 x = mem_root;
3990 }
3991 }
3992 else
3993 {
3994 struct mem_node *w = x->parent->left;
3995
3996 if (w->color == MEM_RED)
3997 {
3998 w->color = MEM_BLACK;
3999 x->parent->color = MEM_RED;
4000 mem_rotate_right (x->parent);
4001 w = x->parent->left;
4002 }
4003
4004 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4005 {
4006 w->color = MEM_RED;
4007 x = x->parent;
4008 }
4009 else
4010 {
4011 if (w->left->color == MEM_BLACK)
4012 {
4013 w->right->color = MEM_BLACK;
4014 w->color = MEM_RED;
4015 mem_rotate_left (w);
4016 w = x->parent->left;
4017 }
4018
4019 w->color = x->parent->color;
4020 x->parent->color = MEM_BLACK;
4021 w->left->color = MEM_BLACK;
4022 mem_rotate_right (x->parent);
4023 x = mem_root;
4024 }
4025 }
4026 }
4027
4028 x->color = MEM_BLACK;
4029 }
4030
4031
4032 /* Value is non-zero if P is a pointer to a live Lisp string on
4033 the heap. M is a pointer to the mem_block for P. */
4034
4035 static bool
4036 live_string_p (struct mem_node *m, void *p)
4037 {
4038 if (m->type == MEM_TYPE_STRING)
4039 {
4040 struct string_block *b = (struct string_block *) m->start;
4041 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4042
4043 /* P must point to the start of a Lisp_String structure, and it
4044 must not be on the free-list. */
4045 return (offset >= 0
4046 && offset % sizeof b->strings[0] == 0
4047 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4048 && ((struct Lisp_String *) p)->data != NULL);
4049 }
4050 else
4051 return 0;
4052 }
4053
4054
4055 /* Value is non-zero if P is a pointer to a live Lisp cons on
4056 the heap. M is a pointer to the mem_block for P. */
4057
4058 static bool
4059 live_cons_p (struct mem_node *m, void *p)
4060 {
4061 if (m->type == MEM_TYPE_CONS)
4062 {
4063 struct cons_block *b = (struct cons_block *) m->start;
4064 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4065
4066 /* P must point to the start of a Lisp_Cons, not be
4067 one of the unused cells in the current cons block,
4068 and not be on the free-list. */
4069 return (offset >= 0
4070 && offset % sizeof b->conses[0] == 0
4071 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4072 && (b != cons_block
4073 || offset / sizeof b->conses[0] < cons_block_index)
4074 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4075 }
4076 else
4077 return 0;
4078 }
4079
4080
4081 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4082 the heap. M is a pointer to the mem_block for P. */
4083
4084 static bool
4085 live_symbol_p (struct mem_node *m, void *p)
4086 {
4087 if (m->type == MEM_TYPE_SYMBOL)
4088 {
4089 struct symbol_block *b = (struct symbol_block *) m->start;
4090 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4091
4092 /* P must point to the start of a Lisp_Symbol, not be
4093 one of the unused cells in the current symbol block,
4094 and not be on the free-list. */
4095 return (offset >= 0
4096 && offset % sizeof b->symbols[0] == 0
4097 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4098 && (b != symbol_block
4099 || offset / sizeof b->symbols[0] < symbol_block_index)
4100 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4101 }
4102 else
4103 return 0;
4104 }
4105
4106
4107 /* Value is non-zero if P is a pointer to a live Lisp float on
4108 the heap. M is a pointer to the mem_block for P. */
4109
4110 static bool
4111 live_float_p (struct mem_node *m, void *p)
4112 {
4113 if (m->type == MEM_TYPE_FLOAT)
4114 {
4115 struct float_block *b = (struct float_block *) m->start;
4116 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4117
4118 /* P must point to the start of a Lisp_Float and not be
4119 one of the unused cells in the current float block. */
4120 return (offset >= 0
4121 && offset % sizeof b->floats[0] == 0
4122 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4123 && (b != float_block
4124 || offset / sizeof b->floats[0] < float_block_index));
4125 }
4126 else
4127 return 0;
4128 }
4129
4130
4131 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4132 the heap. M is a pointer to the mem_block for P. */
4133
4134 static bool
4135 live_misc_p (struct mem_node *m, void *p)
4136 {
4137 if (m->type == MEM_TYPE_MISC)
4138 {
4139 struct marker_block *b = (struct marker_block *) m->start;
4140 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4141
4142 /* P must point to the start of a Lisp_Misc, not be
4143 one of the unused cells in the current misc block,
4144 and not be on the free-list. */
4145 return (offset >= 0
4146 && offset % sizeof b->markers[0] == 0
4147 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4148 && (b != marker_block
4149 || offset / sizeof b->markers[0] < marker_block_index)
4150 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4151 }
4152 else
4153 return 0;
4154 }
4155
4156
4157 /* Value is non-zero if P is a pointer to a live vector-like object.
4158 M is a pointer to the mem_block for P. */
4159
4160 static bool
4161 live_vector_p (struct mem_node *m, void *p)
4162 {
4163 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4164 {
4165 /* This memory node corresponds to a vector block. */
4166 struct vector_block *block = (struct vector_block *) m->start;
4167 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4168
4169 /* P is in the block's allocation range. Scan the block
4170 up to P and see whether P points to the start of some
4171 vector which is not on a free list. FIXME: check whether
4172 some allocation patterns (probably a lot of short vectors)
4173 may cause a substantial overhead of this loop. */
4174 while (VECTOR_IN_BLOCK (vector, block)
4175 && vector <= (struct Lisp_Vector *) p)
4176 {
4177 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4178 return 1;
4179 else
4180 vector = ADVANCE (vector, vector_nbytes (vector));
4181 }
4182 }
4183 else if (m->type == MEM_TYPE_VECTORLIKE
4184 && (char *) p == ((char *) m->start
4185 + offsetof (struct large_vector, v)))
4186 /* This memory node corresponds to a large vector. */
4187 return 1;
4188 return 0;
4189 }
4190
4191
4192 /* Value is non-zero if P is a pointer to a live buffer. M is a
4193 pointer to the mem_block for P. */
4194
4195 static bool
4196 live_buffer_p (struct mem_node *m, void *p)
4197 {
4198 /* P must point to the start of the block, and the buffer
4199 must not have been killed. */
4200 return (m->type == MEM_TYPE_BUFFER
4201 && p == m->start
4202 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4203 }
4204
4205 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4206
4207 #if GC_MARK_STACK
4208
4209 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4210
4211 /* Array of objects that are kept alive because the C stack contains
4212 a pattern that looks like a reference to them . */
4213
4214 #define MAX_ZOMBIES 10
4215 static Lisp_Object zombies[MAX_ZOMBIES];
4216
4217 /* Number of zombie objects. */
4218
4219 static EMACS_INT nzombies;
4220
4221 /* Number of garbage collections. */
4222
4223 static EMACS_INT ngcs;
4224
4225 /* Average percentage of zombies per collection. */
4226
4227 static double avg_zombies;
4228
4229 /* Max. number of live and zombie objects. */
4230
4231 static EMACS_INT max_live, max_zombies;
4232
4233 /* Average number of live objects per GC. */
4234
4235 static double avg_live;
4236
4237 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4238 doc: /* Show information about live and zombie objects. */)
4239 (void)
4240 {
4241 Lisp_Object args[8], zombie_list = Qnil;
4242 EMACS_INT i;
4243 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4244 zombie_list = Fcons (zombies[i], zombie_list);
4245 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4246 args[1] = make_number (ngcs);
4247 args[2] = make_float (avg_live);
4248 args[3] = make_float (avg_zombies);
4249 args[4] = make_float (avg_zombies / avg_live / 100);
4250 args[5] = make_number (max_live);
4251 args[6] = make_number (max_zombies);
4252 args[7] = zombie_list;
4253 return Fmessage (8, args);
4254 }
4255
4256 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4257
4258
4259 /* Mark OBJ if we can prove it's a Lisp_Object. */
4260
4261 static void
4262 mark_maybe_object (Lisp_Object obj)
4263 {
4264 void *po;
4265 struct mem_node *m;
4266
4267 if (INTEGERP (obj))
4268 return;
4269
4270 po = (void *) XPNTR (obj);
4271 m = mem_find (po);
4272
4273 if (m != MEM_NIL)
4274 {
4275 bool mark_p = 0;
4276
4277 switch (XTYPE (obj))
4278 {
4279 case Lisp_String:
4280 mark_p = (live_string_p (m, po)
4281 && !STRING_MARKED_P ((struct Lisp_String *) po));
4282 break;
4283
4284 case Lisp_Cons:
4285 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4286 break;
4287
4288 case Lisp_Symbol:
4289 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4290 break;
4291
4292 case Lisp_Float:
4293 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4294 break;
4295
4296 case Lisp_Vectorlike:
4297 /* Note: can't check BUFFERP before we know it's a
4298 buffer because checking that dereferences the pointer
4299 PO which might point anywhere. */
4300 if (live_vector_p (m, po))
4301 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4302 else if (live_buffer_p (m, po))
4303 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4304 break;
4305
4306 case Lisp_Misc:
4307 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4308 break;
4309
4310 default:
4311 break;
4312 }
4313
4314 if (mark_p)
4315 {
4316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4317 if (nzombies < MAX_ZOMBIES)
4318 zombies[nzombies] = obj;
4319 ++nzombies;
4320 #endif
4321 mark_object (obj);
4322 }
4323 }
4324 }
4325
4326
4327 /* If P points to Lisp data, mark that as live if it isn't already
4328 marked. */
4329
4330 static void
4331 mark_maybe_pointer (void *p)
4332 {
4333 struct mem_node *m;
4334
4335 /* Quickly rule out some values which can't point to Lisp data.
4336 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4337 Otherwise, assume that Lisp data is aligned on even addresses. */
4338 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4339 return;
4340
4341 m = mem_find (p);
4342 if (m != MEM_NIL)
4343 {
4344 Lisp_Object obj = Qnil;
4345
4346 switch (m->type)
4347 {
4348 case MEM_TYPE_NON_LISP:
4349 case MEM_TYPE_SPARE:
4350 /* Nothing to do; not a pointer to Lisp memory. */
4351 break;
4352
4353 case MEM_TYPE_BUFFER:
4354 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4355 XSETVECTOR (obj, p);
4356 break;
4357
4358 case MEM_TYPE_CONS:
4359 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4360 XSETCONS (obj, p);
4361 break;
4362
4363 case MEM_TYPE_STRING:
4364 if (live_string_p (m, p)
4365 && !STRING_MARKED_P ((struct Lisp_String *) p))
4366 XSETSTRING (obj, p);
4367 break;
4368
4369 case MEM_TYPE_MISC:
4370 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4371 XSETMISC (obj, p);
4372 break;
4373
4374 case MEM_TYPE_SYMBOL:
4375 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4376 XSETSYMBOL (obj, p);
4377 break;
4378
4379 case MEM_TYPE_FLOAT:
4380 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4381 XSETFLOAT (obj, p);
4382 break;
4383
4384 case MEM_TYPE_VECTORLIKE:
4385 case MEM_TYPE_VECTOR_BLOCK:
4386 if (live_vector_p (m, p))
4387 {
4388 Lisp_Object tem;
4389 XSETVECTOR (tem, p);
4390 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4391 obj = tem;
4392 }
4393 break;
4394
4395 default:
4396 emacs_abort ();
4397 }
4398
4399 if (!NILP (obj))
4400 mark_object (obj);
4401 }
4402 }
4403
4404
4405 /* Alignment of pointer values. Use alignof, as it sometimes returns
4406 a smaller alignment than GCC's __alignof__ and mark_memory might
4407 miss objects if __alignof__ were used. */
4408 #define GC_POINTER_ALIGNMENT alignof (void *)
4409
4410 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4411 not suffice, which is the typical case. A host where a Lisp_Object is
4412 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4413 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4414 suffice to widen it to to a Lisp_Object and check it that way. */
4415 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4416 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4417 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4418 nor mark_maybe_object can follow the pointers. This should not occur on
4419 any practical porting target. */
4420 # error "MSB type bits straddle pointer-word boundaries"
4421 # endif
4422 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4423 pointer words that hold pointers ORed with type bits. */
4424 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4425 #else
4426 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4427 words that hold unmodified pointers. */
4428 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4429 #endif
4430
4431 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4432 or END+OFFSET..START. */
4433
4434 static void
4435 mark_memory (void *start, void *end)
4436 #if defined (__clang__) && defined (__has_feature)
4437 #if __has_feature(address_sanitizer)
4438 /* Do not allow -faddress-sanitizer to check this function, since it
4439 crosses the function stack boundary, and thus would yield many
4440 false positives. */
4441 __attribute__((no_address_safety_analysis))
4442 #endif
4443 #endif
4444 {
4445 void **pp;
4446 int i;
4447
4448 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4449 nzombies = 0;
4450 #endif
4451
4452 /* Make START the pointer to the start of the memory region,
4453 if it isn't already. */
4454 if (end < start)
4455 {
4456 void *tem = start;
4457 start = end;
4458 end = tem;
4459 }
4460
4461 /* Mark Lisp data pointed to. This is necessary because, in some
4462 situations, the C compiler optimizes Lisp objects away, so that
4463 only a pointer to them remains. Example:
4464
4465 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4466 ()
4467 {
4468 Lisp_Object obj = build_string ("test");
4469 struct Lisp_String *s = XSTRING (obj);
4470 Fgarbage_collect ();
4471 fprintf (stderr, "test `%s'\n", s->data);
4472 return Qnil;
4473 }
4474
4475 Here, `obj' isn't really used, and the compiler optimizes it
4476 away. The only reference to the life string is through the
4477 pointer `s'. */
4478
4479 for (pp = start; (void *) pp < end; pp++)
4480 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4481 {
4482 void *p = *(void **) ((char *) pp + i);
4483 mark_maybe_pointer (p);
4484 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4485 mark_maybe_object (XIL ((intptr_t) p));
4486 }
4487 }
4488
4489 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4490
4491 static bool setjmp_tested_p;
4492 static int longjmps_done;
4493
4494 #define SETJMP_WILL_LIKELY_WORK "\
4495 \n\
4496 Emacs garbage collector has been changed to use conservative stack\n\
4497 marking. Emacs has determined that the method it uses to do the\n\
4498 marking will likely work on your system, but this isn't sure.\n\
4499 \n\
4500 If you are a system-programmer, or can get the help of a local wizard\n\
4501 who is, please take a look at the function mark_stack in alloc.c, and\n\
4502 verify that the methods used are appropriate for your system.\n\
4503 \n\
4504 Please mail the result to <emacs-devel@gnu.org>.\n\
4505 "
4506
4507 #define SETJMP_WILL_NOT_WORK "\
4508 \n\
4509 Emacs garbage collector has been changed to use conservative stack\n\
4510 marking. Emacs has determined that the default method it uses to do the\n\
4511 marking will not work on your system. We will need a system-dependent\n\
4512 solution for your system.\n\
4513 \n\
4514 Please take a look at the function mark_stack in alloc.c, and\n\
4515 try to find a way to make it work on your system.\n\
4516 \n\
4517 Note that you may get false negatives, depending on the compiler.\n\
4518 In particular, you need to use -O with GCC for this test.\n\
4519 \n\
4520 Please mail the result to <emacs-devel@gnu.org>.\n\
4521 "
4522
4523
4524 /* Perform a quick check if it looks like setjmp saves registers in a
4525 jmp_buf. Print a message to stderr saying so. When this test
4526 succeeds, this is _not_ a proof that setjmp is sufficient for
4527 conservative stack marking. Only the sources or a disassembly
4528 can prove that. */
4529
4530 static void
4531 test_setjmp (void)
4532 {
4533 char buf[10];
4534 register int x;
4535 sys_jmp_buf jbuf;
4536
4537 /* Arrange for X to be put in a register. */
4538 sprintf (buf, "1");
4539 x = strlen (buf);
4540 x = 2 * x - 1;
4541
4542 sys_setjmp (jbuf);
4543 if (longjmps_done == 1)
4544 {
4545 /* Came here after the longjmp at the end of the function.
4546
4547 If x == 1, the longjmp has restored the register to its
4548 value before the setjmp, and we can hope that setjmp
4549 saves all such registers in the jmp_buf, although that
4550 isn't sure.
4551
4552 For other values of X, either something really strange is
4553 taking place, or the setjmp just didn't save the register. */
4554
4555 if (x == 1)
4556 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4557 else
4558 {
4559 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4560 exit (1);
4561 }
4562 }
4563
4564 ++longjmps_done;
4565 x = 2;
4566 if (longjmps_done == 1)
4567 sys_longjmp (jbuf, 1);
4568 }
4569
4570 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4571
4572
4573 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4574
4575 /* Abort if anything GCPRO'd doesn't survive the GC. */
4576
4577 static void
4578 check_gcpros (void)
4579 {
4580 struct gcpro *p;
4581 ptrdiff_t i;
4582
4583 for (p = gcprolist; p; p = p->next)
4584 for (i = 0; i < p->nvars; ++i)
4585 if (!survives_gc_p (p->var[i]))
4586 /* FIXME: It's not necessarily a bug. It might just be that the
4587 GCPRO is unnecessary or should release the object sooner. */
4588 emacs_abort ();
4589 }
4590
4591 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4592
4593 static void
4594 dump_zombies (void)
4595 {
4596 int i;
4597
4598 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4599 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4600 {
4601 fprintf (stderr, " %d = ", i);
4602 debug_print (zombies[i]);
4603 }
4604 }
4605
4606 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4607
4608
4609 /* Mark live Lisp objects on the C stack.
4610
4611 There are several system-dependent problems to consider when
4612 porting this to new architectures:
4613
4614 Processor Registers
4615
4616 We have to mark Lisp objects in CPU registers that can hold local
4617 variables or are used to pass parameters.
4618
4619 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4620 something that either saves relevant registers on the stack, or
4621 calls mark_maybe_object passing it each register's contents.
4622
4623 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4624 implementation assumes that calling setjmp saves registers we need
4625 to see in a jmp_buf which itself lies on the stack. This doesn't
4626 have to be true! It must be verified for each system, possibly
4627 by taking a look at the source code of setjmp.
4628
4629 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4630 can use it as a machine independent method to store all registers
4631 to the stack. In this case the macros described in the previous
4632 two paragraphs are not used.
4633
4634 Stack Layout
4635
4636 Architectures differ in the way their processor stack is organized.
4637 For example, the stack might look like this
4638
4639 +----------------+
4640 | Lisp_Object | size = 4
4641 +----------------+
4642 | something else | size = 2
4643 +----------------+
4644 | Lisp_Object | size = 4
4645 +----------------+
4646 | ... |
4647
4648 In such a case, not every Lisp_Object will be aligned equally. To
4649 find all Lisp_Object on the stack it won't be sufficient to walk
4650 the stack in steps of 4 bytes. Instead, two passes will be
4651 necessary, one starting at the start of the stack, and a second
4652 pass starting at the start of the stack + 2. Likewise, if the
4653 minimal alignment of Lisp_Objects on the stack is 1, four passes
4654 would be necessary, each one starting with one byte more offset
4655 from the stack start. */
4656
4657 static void
4658 mark_stack (void)
4659 {
4660 void *end;
4661
4662 #ifdef HAVE___BUILTIN_UNWIND_INIT
4663 /* Force callee-saved registers and register windows onto the stack.
4664 This is the preferred method if available, obviating the need for
4665 machine dependent methods. */
4666 __builtin_unwind_init ();
4667 end = &end;
4668 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4669 #ifndef GC_SAVE_REGISTERS_ON_STACK
4670 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4671 union aligned_jmpbuf {
4672 Lisp_Object o;
4673 sys_jmp_buf j;
4674 } j;
4675 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4676 #endif
4677 /* This trick flushes the register windows so that all the state of
4678 the process is contained in the stack. */
4679 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4680 needed on ia64 too. See mach_dep.c, where it also says inline
4681 assembler doesn't work with relevant proprietary compilers. */
4682 #ifdef __sparc__
4683 #if defined (__sparc64__) && defined (__FreeBSD__)
4684 /* FreeBSD does not have a ta 3 handler. */
4685 asm ("flushw");
4686 #else
4687 asm ("ta 3");
4688 #endif
4689 #endif
4690
4691 /* Save registers that we need to see on the stack. We need to see
4692 registers used to hold register variables and registers used to
4693 pass parameters. */
4694 #ifdef GC_SAVE_REGISTERS_ON_STACK
4695 GC_SAVE_REGISTERS_ON_STACK (end);
4696 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4697
4698 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4699 setjmp will definitely work, test it
4700 and print a message with the result
4701 of the test. */
4702 if (!setjmp_tested_p)
4703 {
4704 setjmp_tested_p = 1;
4705 test_setjmp ();
4706 }
4707 #endif /* GC_SETJMP_WORKS */
4708
4709 sys_setjmp (j.j);
4710 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4711 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4712 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4713
4714 /* This assumes that the stack is a contiguous region in memory. If
4715 that's not the case, something has to be done here to iterate
4716 over the stack segments. */
4717 mark_memory (stack_base, end);
4718
4719 /* Allow for marking a secondary stack, like the register stack on the
4720 ia64. */
4721 #ifdef GC_MARK_SECONDARY_STACK
4722 GC_MARK_SECONDARY_STACK ();
4723 #endif
4724
4725 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4726 check_gcpros ();
4727 #endif
4728 }
4729
4730 #endif /* GC_MARK_STACK != 0 */
4731
4732
4733 /* Determine whether it is safe to access memory at address P. */
4734 static int
4735 valid_pointer_p (void *p)
4736 {
4737 #ifdef WINDOWSNT
4738 return w32_valid_pointer_p (p, 16);
4739 #else
4740 int fd[2];
4741
4742 /* Obviously, we cannot just access it (we would SEGV trying), so we
4743 trick the o/s to tell us whether p is a valid pointer.
4744 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4745 not validate p in that case. */
4746
4747 if (pipe (fd) == 0)
4748 {
4749 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4750 emacs_close (fd[1]);
4751 emacs_close (fd[0]);
4752 return valid;
4753 }
4754
4755 return -1;
4756 #endif
4757 }
4758
4759 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4760 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4761 cannot validate OBJ. This function can be quite slow, so its primary
4762 use is the manual debugging. The only exception is print_object, where
4763 we use it to check whether the memory referenced by the pointer of
4764 Lisp_Save_Value object contains valid objects. */
4765
4766 int
4767 valid_lisp_object_p (Lisp_Object obj)
4768 {
4769 void *p;
4770 #if GC_MARK_STACK
4771 struct mem_node *m;
4772 #endif
4773
4774 if (INTEGERP (obj))
4775 return 1;
4776
4777 p = (void *) XPNTR (obj);
4778 if (PURE_POINTER_P (p))
4779 return 1;
4780
4781 if (p == &buffer_defaults || p == &buffer_local_symbols)
4782 return 2;
4783
4784 #if !GC_MARK_STACK
4785 return valid_pointer_p (p);
4786 #else
4787
4788 m = mem_find (p);
4789
4790 if (m == MEM_NIL)
4791 {
4792 int valid = valid_pointer_p (p);
4793 if (valid <= 0)
4794 return valid;
4795
4796 if (SUBRP (obj))
4797 return 1;
4798
4799 return 0;
4800 }
4801
4802 switch (m->type)
4803 {
4804 case MEM_TYPE_NON_LISP:
4805 case MEM_TYPE_SPARE:
4806 return 0;
4807
4808 case MEM_TYPE_BUFFER:
4809 return live_buffer_p (m, p) ? 1 : 2;
4810
4811 case MEM_TYPE_CONS:
4812 return live_cons_p (m, p);
4813
4814 case MEM_TYPE_STRING:
4815 return live_string_p (m, p);
4816
4817 case MEM_TYPE_MISC:
4818 return live_misc_p (m, p);
4819
4820 case MEM_TYPE_SYMBOL:
4821 return live_symbol_p (m, p);
4822
4823 case MEM_TYPE_FLOAT:
4824 return live_float_p (m, p);
4825
4826 case MEM_TYPE_VECTORLIKE:
4827 case MEM_TYPE_VECTOR_BLOCK:
4828 return live_vector_p (m, p);
4829
4830 default:
4831 break;
4832 }
4833
4834 return 0;
4835 #endif
4836 }
4837
4838
4839
4840 \f
4841 /***********************************************************************
4842 Pure Storage Management
4843 ***********************************************************************/
4844
4845 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4846 pointer to it. TYPE is the Lisp type for which the memory is
4847 allocated. TYPE < 0 means it's not used for a Lisp object. */
4848
4849 static void *
4850 pure_alloc (size_t size, int type)
4851 {
4852 void *result;
4853 #if USE_LSB_TAG
4854 size_t alignment = GCALIGNMENT;
4855 #else
4856 size_t alignment = alignof (EMACS_INT);
4857
4858 /* Give Lisp_Floats an extra alignment. */
4859 if (type == Lisp_Float)
4860 alignment = alignof (struct Lisp_Float);
4861 #endif
4862
4863 again:
4864 if (type >= 0)
4865 {
4866 /* Allocate space for a Lisp object from the beginning of the free
4867 space with taking account of alignment. */
4868 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4869 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4870 }
4871 else
4872 {
4873 /* Allocate space for a non-Lisp object from the end of the free
4874 space. */
4875 pure_bytes_used_non_lisp += size;
4876 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4877 }
4878 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4879
4880 if (pure_bytes_used <= pure_size)
4881 return result;
4882
4883 /* Don't allocate a large amount here,
4884 because it might get mmap'd and then its address
4885 might not be usable. */
4886 purebeg = xmalloc (10000);
4887 pure_size = 10000;
4888 pure_bytes_used_before_overflow += pure_bytes_used - size;
4889 pure_bytes_used = 0;
4890 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4891 goto again;
4892 }
4893
4894
4895 /* Print a warning if PURESIZE is too small. */
4896
4897 void
4898 check_pure_size (void)
4899 {
4900 if (pure_bytes_used_before_overflow)
4901 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4902 " bytes needed)"),
4903 pure_bytes_used + pure_bytes_used_before_overflow);
4904 }
4905
4906
4907 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4908 the non-Lisp data pool of the pure storage, and return its start
4909 address. Return NULL if not found. */
4910
4911 static char *
4912 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4913 {
4914 int i;
4915 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4916 const unsigned char *p;
4917 char *non_lisp_beg;
4918
4919 if (pure_bytes_used_non_lisp <= nbytes)
4920 return NULL;
4921
4922 /* Set up the Boyer-Moore table. */
4923 skip = nbytes + 1;
4924 for (i = 0; i < 256; i++)
4925 bm_skip[i] = skip;
4926
4927 p = (const unsigned char *) data;
4928 while (--skip > 0)
4929 bm_skip[*p++] = skip;
4930
4931 last_char_skip = bm_skip['\0'];
4932
4933 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4934 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4935
4936 /* See the comments in the function `boyer_moore' (search.c) for the
4937 use of `infinity'. */
4938 infinity = pure_bytes_used_non_lisp + 1;
4939 bm_skip['\0'] = infinity;
4940
4941 p = (const unsigned char *) non_lisp_beg + nbytes;
4942 start = 0;
4943 do
4944 {
4945 /* Check the last character (== '\0'). */
4946 do
4947 {
4948 start += bm_skip[*(p + start)];
4949 }
4950 while (start <= start_max);
4951
4952 if (start < infinity)
4953 /* Couldn't find the last character. */
4954 return NULL;
4955
4956 /* No less than `infinity' means we could find the last
4957 character at `p[start - infinity]'. */
4958 start -= infinity;
4959
4960 /* Check the remaining characters. */
4961 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4962 /* Found. */
4963 return non_lisp_beg + start;
4964
4965 start += last_char_skip;
4966 }
4967 while (start <= start_max);
4968
4969 return NULL;
4970 }
4971
4972
4973 /* Return a string allocated in pure space. DATA is a buffer holding
4974 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4975 means make the result string multibyte.
4976
4977 Must get an error if pure storage is full, since if it cannot hold
4978 a large string it may be able to hold conses that point to that
4979 string; then the string is not protected from gc. */
4980
4981 Lisp_Object
4982 make_pure_string (const char *data,
4983 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4984 {
4985 Lisp_Object string;
4986 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4987 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4988 if (s->data == NULL)
4989 {
4990 s->data = pure_alloc (nbytes + 1, -1);
4991 memcpy (s->data, data, nbytes);
4992 s->data[nbytes] = '\0';
4993 }
4994 s->size = nchars;
4995 s->size_byte = multibyte ? nbytes : -1;
4996 s->intervals = NULL;
4997 XSETSTRING (string, s);
4998 return string;
4999 }
5000
5001 /* Return a string allocated in pure space. Do not
5002 allocate the string data, just point to DATA. */
5003
5004 Lisp_Object
5005 make_pure_c_string (const char *data, ptrdiff_t nchars)
5006 {
5007 Lisp_Object string;
5008 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5009 s->size = nchars;
5010 s->size_byte = -1;
5011 s->data = (unsigned char *) data;
5012 s->intervals = NULL;
5013 XSETSTRING (string, s);
5014 return string;
5015 }
5016
5017 /* Return a cons allocated from pure space. Give it pure copies
5018 of CAR as car and CDR as cdr. */
5019
5020 Lisp_Object
5021 pure_cons (Lisp_Object car, Lisp_Object cdr)
5022 {
5023 Lisp_Object new;
5024 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5025 XSETCONS (new, p);
5026 XSETCAR (new, Fpurecopy (car));
5027 XSETCDR (new, Fpurecopy (cdr));
5028 return new;
5029 }
5030
5031
5032 /* Value is a float object with value NUM allocated from pure space. */
5033
5034 static Lisp_Object
5035 make_pure_float (double num)
5036 {
5037 Lisp_Object new;
5038 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5039 XSETFLOAT (new, p);
5040 XFLOAT_INIT (new, num);
5041 return new;
5042 }
5043
5044
5045 /* Return a vector with room for LEN Lisp_Objects allocated from
5046 pure space. */
5047
5048 static Lisp_Object
5049 make_pure_vector (ptrdiff_t len)
5050 {
5051 Lisp_Object new;
5052 size_t size = header_size + len * word_size;
5053 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5054 XSETVECTOR (new, p);
5055 XVECTOR (new)->header.size = len;
5056 return new;
5057 }
5058
5059
5060 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5061 doc: /* Make a copy of object OBJ in pure storage.
5062 Recursively copies contents of vectors and cons cells.
5063 Does not copy symbols. Copies strings without text properties. */)
5064 (register Lisp_Object obj)
5065 {
5066 if (NILP (Vpurify_flag))
5067 return obj;
5068
5069 if (PURE_POINTER_P (XPNTR (obj)))
5070 return obj;
5071
5072 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5073 {
5074 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5075 if (!NILP (tmp))
5076 return tmp;
5077 }
5078
5079 if (CONSP (obj))
5080 obj = pure_cons (XCAR (obj), XCDR (obj));
5081 else if (FLOATP (obj))
5082 obj = make_pure_float (XFLOAT_DATA (obj));
5083 else if (STRINGP (obj))
5084 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5085 SBYTES (obj),
5086 STRING_MULTIBYTE (obj));
5087 else if (COMPILEDP (obj) || VECTORP (obj))
5088 {
5089 register struct Lisp_Vector *vec;
5090 register ptrdiff_t i;
5091 ptrdiff_t size;
5092
5093 size = ASIZE (obj);
5094 if (size & PSEUDOVECTOR_FLAG)
5095 size &= PSEUDOVECTOR_SIZE_MASK;
5096 vec = XVECTOR (make_pure_vector (size));
5097 for (i = 0; i < size; i++)
5098 vec->contents[i] = Fpurecopy (AREF (obj, i));
5099 if (COMPILEDP (obj))
5100 {
5101 XSETPVECTYPE (vec, PVEC_COMPILED);
5102 XSETCOMPILED (obj, vec);
5103 }
5104 else
5105 XSETVECTOR (obj, vec);
5106 }
5107 else if (MARKERP (obj))
5108 error ("Attempt to copy a marker to pure storage");
5109 else
5110 /* Not purified, don't hash-cons. */
5111 return obj;
5112
5113 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5114 Fputhash (obj, obj, Vpurify_flag);
5115
5116 return obj;
5117 }
5118
5119
5120 \f
5121 /***********************************************************************
5122 Protection from GC
5123 ***********************************************************************/
5124
5125 /* Put an entry in staticvec, pointing at the variable with address
5126 VARADDRESS. */
5127
5128 void
5129 staticpro (Lisp_Object *varaddress)
5130 {
5131 staticvec[staticidx++] = varaddress;
5132 if (staticidx >= NSTATICS)
5133 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5134 }
5135
5136 \f
5137 /***********************************************************************
5138 Protection from GC
5139 ***********************************************************************/
5140
5141 /* Temporarily prevent garbage collection. */
5142
5143 ptrdiff_t
5144 inhibit_garbage_collection (void)
5145 {
5146 ptrdiff_t count = SPECPDL_INDEX ();
5147
5148 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5149 return count;
5150 }
5151
5152 /* Used to avoid possible overflows when
5153 converting from C to Lisp integers. */
5154
5155 static Lisp_Object
5156 bounded_number (EMACS_INT number)
5157 {
5158 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5159 }
5160
5161 /* Calculate total bytes of live objects. */
5162
5163 static size_t
5164 total_bytes_of_live_objects (void)
5165 {
5166 size_t tot = 0;
5167 tot += total_conses * sizeof (struct Lisp_Cons);
5168 tot += total_symbols * sizeof (struct Lisp_Symbol);
5169 tot += total_markers * sizeof (union Lisp_Misc);
5170 tot += total_string_bytes;
5171 tot += total_vector_slots * word_size;
5172 tot += total_floats * sizeof (struct Lisp_Float);
5173 tot += total_intervals * sizeof (struct interval);
5174 tot += total_strings * sizeof (struct Lisp_String);
5175 return tot;
5176 }
5177
5178 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5179 doc: /* Reclaim storage for Lisp objects no longer needed.
5180 Garbage collection happens automatically if you cons more than
5181 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5182 `garbage-collect' normally returns a list with info on amount of space in use,
5183 where each entry has the form (NAME SIZE USED FREE), where:
5184 - NAME is a symbol describing the kind of objects this entry represents,
5185 - SIZE is the number of bytes used by each one,
5186 - USED is the number of those objects that were found live in the heap,
5187 - FREE is the number of those objects that are not live but that Emacs
5188 keeps around for future allocations (maybe because it does not know how
5189 to return them to the OS).
5190 However, if there was overflow in pure space, `garbage-collect'
5191 returns nil, because real GC can't be done.
5192 See Info node `(elisp)Garbage Collection'. */)
5193 (void)
5194 {
5195 struct specbinding *bind;
5196 struct buffer *nextb;
5197 char stack_top_variable;
5198 ptrdiff_t i;
5199 bool message_p;
5200 ptrdiff_t count = SPECPDL_INDEX ();
5201 EMACS_TIME start;
5202 Lisp_Object retval = Qnil;
5203 size_t tot_before = 0;
5204 struct backtrace backtrace;
5205
5206 if (abort_on_gc)
5207 emacs_abort ();
5208
5209 /* Can't GC if pure storage overflowed because we can't determine
5210 if something is a pure object or not. */
5211 if (pure_bytes_used_before_overflow)
5212 return Qnil;
5213
5214 /* Record this function, so it appears on the profiler's backtraces. */
5215 backtrace.next = backtrace_list;
5216 backtrace.function = Qautomatic_gc;
5217 backtrace.args = &Qnil;
5218 backtrace.nargs = 0;
5219 backtrace.debug_on_exit = 0;
5220 backtrace_list = &backtrace;
5221
5222 check_cons_list ();
5223
5224 /* Don't keep undo information around forever.
5225 Do this early on, so it is no problem if the user quits. */
5226 FOR_EACH_BUFFER (nextb)
5227 compact_buffer (nextb);
5228
5229 if (profiler_memory_running)
5230 tot_before = total_bytes_of_live_objects ();
5231
5232 start = current_emacs_time ();
5233
5234 /* In case user calls debug_print during GC,
5235 don't let that cause a recursive GC. */
5236 consing_since_gc = 0;
5237
5238 /* Save what's currently displayed in the echo area. */
5239 message_p = push_message ();
5240 record_unwind_protect (pop_message_unwind, Qnil);
5241
5242 /* Save a copy of the contents of the stack, for debugging. */
5243 #if MAX_SAVE_STACK > 0
5244 if (NILP (Vpurify_flag))
5245 {
5246 char *stack;
5247 ptrdiff_t stack_size;
5248 if (&stack_top_variable < stack_bottom)
5249 {
5250 stack = &stack_top_variable;
5251 stack_size = stack_bottom - &stack_top_variable;
5252 }
5253 else
5254 {
5255 stack = stack_bottom;
5256 stack_size = &stack_top_variable - stack_bottom;
5257 }
5258 if (stack_size <= MAX_SAVE_STACK)
5259 {
5260 if (stack_copy_size < stack_size)
5261 {
5262 stack_copy = xrealloc (stack_copy, stack_size);
5263 stack_copy_size = stack_size;
5264 }
5265 memcpy (stack_copy, stack, stack_size);
5266 }
5267 }
5268 #endif /* MAX_SAVE_STACK > 0 */
5269
5270 if (garbage_collection_messages)
5271 message1_nolog ("Garbage collecting...");
5272
5273 block_input ();
5274
5275 shrink_regexp_cache ();
5276
5277 gc_in_progress = 1;
5278
5279 /* Mark all the special slots that serve as the roots of accessibility. */
5280
5281 mark_buffer (&buffer_defaults);
5282 mark_buffer (&buffer_local_symbols);
5283
5284 for (i = 0; i < staticidx; i++)
5285 mark_object (*staticvec[i]);
5286
5287 for (bind = specpdl; bind != specpdl_ptr; bind++)
5288 {
5289 mark_object (bind->symbol);
5290 mark_object (bind->old_value);
5291 }
5292 mark_terminals ();
5293 mark_kboards ();
5294
5295 #ifdef USE_GTK
5296 xg_mark_data ();
5297 #endif
5298
5299 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5300 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5301 mark_stack ();
5302 #else
5303 {
5304 register struct gcpro *tail;
5305 for (tail = gcprolist; tail; tail = tail->next)
5306 for (i = 0; i < tail->nvars; i++)
5307 mark_object (tail->var[i]);
5308 }
5309 mark_byte_stack ();
5310 {
5311 struct catchtag *catch;
5312 struct handler *handler;
5313
5314 for (catch = catchlist; catch; catch = catch->next)
5315 {
5316 mark_object (catch->tag);
5317 mark_object (catch->val);
5318 }
5319 for (handler = handlerlist; handler; handler = handler->next)
5320 {
5321 mark_object (handler->handler);
5322 mark_object (handler->var);
5323 }
5324 }
5325 mark_backtrace ();
5326 #endif
5327
5328 #ifdef HAVE_WINDOW_SYSTEM
5329 mark_fringe_data ();
5330 #endif
5331
5332 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5333 mark_stack ();
5334 #endif
5335
5336 /* Everything is now marked, except for the things that require special
5337 finalization, i.e. the undo_list.
5338 Look thru every buffer's undo list
5339 for elements that update markers that were not marked,
5340 and delete them. */
5341 FOR_EACH_BUFFER (nextb)
5342 {
5343 /* If a buffer's undo list is Qt, that means that undo is
5344 turned off in that buffer. Calling truncate_undo_list on
5345 Qt tends to return NULL, which effectively turns undo back on.
5346 So don't call truncate_undo_list if undo_list is Qt. */
5347 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5348 {
5349 Lisp_Object tail, prev;
5350 tail = nextb->INTERNAL_FIELD (undo_list);
5351 prev = Qnil;
5352 while (CONSP (tail))
5353 {
5354 if (CONSP (XCAR (tail))
5355 && MARKERP (XCAR (XCAR (tail)))
5356 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5357 {
5358 if (NILP (prev))
5359 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5360 else
5361 {
5362 tail = XCDR (tail);
5363 XSETCDR (prev, tail);
5364 }
5365 }
5366 else
5367 {
5368 prev = tail;
5369 tail = XCDR (tail);
5370 }
5371 }
5372 }
5373 /* Now that we have stripped the elements that need not be in the
5374 undo_list any more, we can finally mark the list. */
5375 mark_object (nextb->INTERNAL_FIELD (undo_list));
5376 }
5377
5378 gc_sweep ();
5379
5380 /* Clear the mark bits that we set in certain root slots. */
5381
5382 unmark_byte_stack ();
5383 VECTOR_UNMARK (&buffer_defaults);
5384 VECTOR_UNMARK (&buffer_local_symbols);
5385
5386 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5387 dump_zombies ();
5388 #endif
5389
5390 check_cons_list ();
5391
5392 gc_in_progress = 0;
5393
5394 unblock_input ();
5395
5396 consing_since_gc = 0;
5397 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5398 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5399
5400 gc_relative_threshold = 0;
5401 if (FLOATP (Vgc_cons_percentage))
5402 { /* Set gc_cons_combined_threshold. */
5403 double tot = total_bytes_of_live_objects ();
5404
5405 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5406 if (0 < tot)
5407 {
5408 if (tot < TYPE_MAXIMUM (EMACS_INT))
5409 gc_relative_threshold = tot;
5410 else
5411 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5412 }
5413 }
5414
5415 if (garbage_collection_messages)
5416 {
5417 if (message_p || minibuf_level > 0)
5418 restore_message ();
5419 else
5420 message1_nolog ("Garbage collecting...done");
5421 }
5422
5423 unbind_to (count, Qnil);
5424 {
5425 Lisp_Object total[11];
5426 int total_size = 10;
5427
5428 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5429 bounded_number (total_conses),
5430 bounded_number (total_free_conses));
5431
5432 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5433 bounded_number (total_symbols),
5434 bounded_number (total_free_symbols));
5435
5436 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5437 bounded_number (total_markers),
5438 bounded_number (total_free_markers));
5439
5440 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5441 bounded_number (total_strings),
5442 bounded_number (total_free_strings));
5443
5444 total[4] = list3 (Qstring_bytes, make_number (1),
5445 bounded_number (total_string_bytes));
5446
5447 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5448 bounded_number (total_vectors));
5449
5450 total[6] = list4 (Qvector_slots, make_number (word_size),
5451 bounded_number (total_vector_slots),
5452 bounded_number (total_free_vector_slots));
5453
5454 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5455 bounded_number (total_floats),
5456 bounded_number (total_free_floats));
5457
5458 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5459 bounded_number (total_intervals),
5460 bounded_number (total_free_intervals));
5461
5462 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5463 bounded_number (total_buffers));
5464
5465 #ifdef DOUG_LEA_MALLOC
5466 total_size++;
5467 total[10] = list4 (Qheap, make_number (1024),
5468 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5469 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5470 #endif
5471 retval = Flist (total_size, total);
5472 }
5473
5474 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5475 {
5476 /* Compute average percentage of zombies. */
5477 double nlive
5478 = (total_conses + total_symbols + total_markers + total_strings
5479 + total_vectors + total_floats + total_intervals + total_buffers);
5480
5481 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5482 max_live = max (nlive, max_live);
5483 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5484 max_zombies = max (nzombies, max_zombies);
5485 ++ngcs;
5486 }
5487 #endif
5488
5489 if (!NILP (Vpost_gc_hook))
5490 {
5491 ptrdiff_t gc_count = inhibit_garbage_collection ();
5492 safe_run_hooks (Qpost_gc_hook);
5493 unbind_to (gc_count, Qnil);
5494 }
5495
5496 /* Accumulate statistics. */
5497 if (FLOATP (Vgc_elapsed))
5498 {
5499 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5500 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5501 + EMACS_TIME_TO_DOUBLE (since_start));
5502 }
5503
5504 gcs_done++;
5505
5506 /* Collect profiling data. */
5507 if (profiler_memory_running)
5508 {
5509 size_t swept = 0;
5510 size_t tot_after = total_bytes_of_live_objects ();
5511 if (tot_before > tot_after)
5512 swept = tot_before - tot_after;
5513 malloc_probe (swept);
5514 }
5515
5516 backtrace_list = backtrace.next;
5517 return retval;
5518 }
5519
5520
5521 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5522 only interesting objects referenced from glyphs are strings. */
5523
5524 static void
5525 mark_glyph_matrix (struct glyph_matrix *matrix)
5526 {
5527 struct glyph_row *row = matrix->rows;
5528 struct glyph_row *end = row + matrix->nrows;
5529
5530 for (; row < end; ++row)
5531 if (row->enabled_p)
5532 {
5533 int area;
5534 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5535 {
5536 struct glyph *glyph = row->glyphs[area];
5537 struct glyph *end_glyph = glyph + row->used[area];
5538
5539 for (; glyph < end_glyph; ++glyph)
5540 if (STRINGP (glyph->object)
5541 && !STRING_MARKED_P (XSTRING (glyph->object)))
5542 mark_object (glyph->object);
5543 }
5544 }
5545 }
5546
5547
5548 /* Mark Lisp faces in the face cache C. */
5549
5550 static void
5551 mark_face_cache (struct face_cache *c)
5552 {
5553 if (c)
5554 {
5555 int i, j;
5556 for (i = 0; i < c->used; ++i)
5557 {
5558 struct face *face = FACE_FROM_ID (c->f, i);
5559
5560 if (face)
5561 {
5562 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5563 mark_object (face->lface[j]);
5564 }
5565 }
5566 }
5567 }
5568
5569
5570 \f
5571 /* Mark reference to a Lisp_Object.
5572 If the object referred to has not been seen yet, recursively mark
5573 all the references contained in it. */
5574
5575 #define LAST_MARKED_SIZE 500
5576 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5577 static int last_marked_index;
5578
5579 /* For debugging--call abort when we cdr down this many
5580 links of a list, in mark_object. In debugging,
5581 the call to abort will hit a breakpoint.
5582 Normally this is zero and the check never goes off. */
5583 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5584
5585 static void
5586 mark_vectorlike (struct Lisp_Vector *ptr)
5587 {
5588 ptrdiff_t size = ptr->header.size;
5589 ptrdiff_t i;
5590
5591 eassert (!VECTOR_MARKED_P (ptr));
5592 VECTOR_MARK (ptr); /* Else mark it. */
5593 if (size & PSEUDOVECTOR_FLAG)
5594 size &= PSEUDOVECTOR_SIZE_MASK;
5595
5596 /* Note that this size is not the memory-footprint size, but only
5597 the number of Lisp_Object fields that we should trace.
5598 The distinction is used e.g. by Lisp_Process which places extra
5599 non-Lisp_Object fields at the end of the structure... */
5600 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5601 mark_object (ptr->contents[i]);
5602 }
5603
5604 /* Like mark_vectorlike but optimized for char-tables (and
5605 sub-char-tables) assuming that the contents are mostly integers or
5606 symbols. */
5607
5608 static void
5609 mark_char_table (struct Lisp_Vector *ptr)
5610 {
5611 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5612 int i;
5613
5614 eassert (!VECTOR_MARKED_P (ptr));
5615 VECTOR_MARK (ptr);
5616 for (i = 0; i < size; i++)
5617 {
5618 Lisp_Object val = ptr->contents[i];
5619
5620 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5621 continue;
5622 if (SUB_CHAR_TABLE_P (val))
5623 {
5624 if (! VECTOR_MARKED_P (XVECTOR (val)))
5625 mark_char_table (XVECTOR (val));
5626 }
5627 else
5628 mark_object (val);
5629 }
5630 }
5631
5632 /* Mark the chain of overlays starting at PTR. */
5633
5634 static void
5635 mark_overlay (struct Lisp_Overlay *ptr)
5636 {
5637 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5638 {
5639 ptr->gcmarkbit = 1;
5640 mark_object (ptr->start);
5641 mark_object (ptr->end);
5642 mark_object (ptr->plist);
5643 }
5644 }
5645
5646 /* Mark Lisp_Objects and special pointers in BUFFER. */
5647
5648 static void
5649 mark_buffer (struct buffer *buffer)
5650 {
5651 /* This is handled much like other pseudovectors... */
5652 mark_vectorlike ((struct Lisp_Vector *) buffer);
5653
5654 /* ...but there are some buffer-specific things. */
5655
5656 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5657
5658 /* For now, we just don't mark the undo_list. It's done later in
5659 a special way just before the sweep phase, and after stripping
5660 some of its elements that are not needed any more. */
5661
5662 mark_overlay (buffer->overlays_before);
5663 mark_overlay (buffer->overlays_after);
5664
5665 /* If this is an indirect buffer, mark its base buffer. */
5666 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5667 mark_buffer (buffer->base_buffer);
5668 }
5669
5670 /* Remove killed buffers or items whose car is a killed buffer from
5671 LIST, and mark other items. Return changed LIST, which is marked. */
5672
5673 static Lisp_Object
5674 mark_discard_killed_buffers (Lisp_Object list)
5675 {
5676 Lisp_Object tail, *prev = &list;
5677
5678 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5679 tail = XCDR (tail))
5680 {
5681 Lisp_Object tem = XCAR (tail);
5682 if (CONSP (tem))
5683 tem = XCAR (tem);
5684 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5685 *prev = XCDR (tail);
5686 else
5687 {
5688 CONS_MARK (XCONS (tail));
5689 mark_object (XCAR (tail));
5690 prev = &XCDR_AS_LVALUE (tail);
5691 }
5692 }
5693 mark_object (tail);
5694 return list;
5695 }
5696
5697 /* Determine type of generic Lisp_Object and mark it accordingly. */
5698
5699 void
5700 mark_object (Lisp_Object arg)
5701 {
5702 register Lisp_Object obj = arg;
5703 #ifdef GC_CHECK_MARKED_OBJECTS
5704 void *po;
5705 struct mem_node *m;
5706 #endif
5707 ptrdiff_t cdr_count = 0;
5708
5709 loop:
5710
5711 if (PURE_POINTER_P (XPNTR (obj)))
5712 return;
5713
5714 last_marked[last_marked_index++] = obj;
5715 if (last_marked_index == LAST_MARKED_SIZE)
5716 last_marked_index = 0;
5717
5718 /* Perform some sanity checks on the objects marked here. Abort if
5719 we encounter an object we know is bogus. This increases GC time
5720 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5721 #ifdef GC_CHECK_MARKED_OBJECTS
5722
5723 po = (void *) XPNTR (obj);
5724
5725 /* Check that the object pointed to by PO is known to be a Lisp
5726 structure allocated from the heap. */
5727 #define CHECK_ALLOCATED() \
5728 do { \
5729 m = mem_find (po); \
5730 if (m == MEM_NIL) \
5731 emacs_abort (); \
5732 } while (0)
5733
5734 /* Check that the object pointed to by PO is live, using predicate
5735 function LIVEP. */
5736 #define CHECK_LIVE(LIVEP) \
5737 do { \
5738 if (!LIVEP (m, po)) \
5739 emacs_abort (); \
5740 } while (0)
5741
5742 /* Check both of the above conditions. */
5743 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5744 do { \
5745 CHECK_ALLOCATED (); \
5746 CHECK_LIVE (LIVEP); \
5747 } while (0) \
5748
5749 #else /* not GC_CHECK_MARKED_OBJECTS */
5750
5751 #define CHECK_LIVE(LIVEP) (void) 0
5752 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5753
5754 #endif /* not GC_CHECK_MARKED_OBJECTS */
5755
5756 switch (XTYPE (obj))
5757 {
5758 case Lisp_String:
5759 {
5760 register struct Lisp_String *ptr = XSTRING (obj);
5761 if (STRING_MARKED_P (ptr))
5762 break;
5763 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5764 MARK_STRING (ptr);
5765 MARK_INTERVAL_TREE (ptr->intervals);
5766 #ifdef GC_CHECK_STRING_BYTES
5767 /* Check that the string size recorded in the string is the
5768 same as the one recorded in the sdata structure. */
5769 string_bytes (ptr);
5770 #endif /* GC_CHECK_STRING_BYTES */
5771 }
5772 break;
5773
5774 case Lisp_Vectorlike:
5775 {
5776 register struct Lisp_Vector *ptr = XVECTOR (obj);
5777 register ptrdiff_t pvectype;
5778
5779 if (VECTOR_MARKED_P (ptr))
5780 break;
5781
5782 #ifdef GC_CHECK_MARKED_OBJECTS
5783 m = mem_find (po);
5784 if (m == MEM_NIL && !SUBRP (obj))
5785 emacs_abort ();
5786 #endif /* GC_CHECK_MARKED_OBJECTS */
5787
5788 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5789 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5790 >> PSEUDOVECTOR_AREA_BITS);
5791 else
5792 pvectype = PVEC_NORMAL_VECTOR;
5793
5794 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5795 CHECK_LIVE (live_vector_p);
5796
5797 switch (pvectype)
5798 {
5799 case PVEC_BUFFER:
5800 #ifdef GC_CHECK_MARKED_OBJECTS
5801 {
5802 struct buffer *b;
5803 FOR_EACH_BUFFER (b)
5804 if (b == po)
5805 break;
5806 if (b == NULL)
5807 emacs_abort ();
5808 }
5809 #endif /* GC_CHECK_MARKED_OBJECTS */
5810 mark_buffer ((struct buffer *) ptr);
5811 break;
5812
5813 case PVEC_COMPILED:
5814 { /* We could treat this just like a vector, but it is better
5815 to save the COMPILED_CONSTANTS element for last and avoid
5816 recursion there. */
5817 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5818 int i;
5819
5820 VECTOR_MARK (ptr);
5821 for (i = 0; i < size; i++)
5822 if (i != COMPILED_CONSTANTS)
5823 mark_object (ptr->contents[i]);
5824 if (size > COMPILED_CONSTANTS)
5825 {
5826 obj = ptr->contents[COMPILED_CONSTANTS];
5827 goto loop;
5828 }
5829 }
5830 break;
5831
5832 case PVEC_FRAME:
5833 mark_vectorlike (ptr);
5834 mark_face_cache (((struct frame *) ptr)->face_cache);
5835 break;
5836
5837 case PVEC_WINDOW:
5838 {
5839 struct window *w = (struct window *) ptr;
5840 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5841
5842 mark_vectorlike (ptr);
5843
5844 /* Mark glyphs for leaf windows. Marking window
5845 matrices is sufficient because frame matrices
5846 use the same glyph memory. */
5847 if (leaf && w->current_matrix)
5848 {
5849 mark_glyph_matrix (w->current_matrix);
5850 mark_glyph_matrix (w->desired_matrix);
5851 }
5852
5853 /* Filter out killed buffers from both buffer lists
5854 in attempt to help GC to reclaim killed buffers faster.
5855 We can do it elsewhere for live windows, but this is the
5856 best place to do it for dead windows. */
5857 wset_prev_buffers
5858 (w, mark_discard_killed_buffers (w->prev_buffers));
5859 wset_next_buffers
5860 (w, mark_discard_killed_buffers (w->next_buffers));
5861 }
5862 break;
5863
5864 case PVEC_HASH_TABLE:
5865 {
5866 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5867
5868 mark_vectorlike (ptr);
5869 mark_object (h->test.name);
5870 mark_object (h->test.user_hash_function);
5871 mark_object (h->test.user_cmp_function);
5872 /* If hash table is not weak, mark all keys and values.
5873 For weak tables, mark only the vector. */
5874 if (NILP (h->weak))
5875 mark_object (h->key_and_value);
5876 else
5877 VECTOR_MARK (XVECTOR (h->key_and_value));
5878 }
5879 break;
5880
5881 case PVEC_CHAR_TABLE:
5882 mark_char_table (ptr);
5883 break;
5884
5885 case PVEC_BOOL_VECTOR:
5886 /* No Lisp_Objects to mark in a bool vector. */
5887 VECTOR_MARK (ptr);
5888 break;
5889
5890 case PVEC_SUBR:
5891 break;
5892
5893 case PVEC_FREE:
5894 emacs_abort ();
5895
5896 default:
5897 mark_vectorlike (ptr);
5898 }
5899 }
5900 break;
5901
5902 case Lisp_Symbol:
5903 {
5904 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5905 struct Lisp_Symbol *ptrx;
5906
5907 if (ptr->gcmarkbit)
5908 break;
5909 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5910 ptr->gcmarkbit = 1;
5911 mark_object (ptr->function);
5912 mark_object (ptr->plist);
5913 switch (ptr->redirect)
5914 {
5915 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5916 case SYMBOL_VARALIAS:
5917 {
5918 Lisp_Object tem;
5919 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5920 mark_object (tem);
5921 break;
5922 }
5923 case SYMBOL_LOCALIZED:
5924 {
5925 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5926 Lisp_Object where = blv->where;
5927 /* If the value is set up for a killed buffer or deleted
5928 frame, restore it's global binding. If the value is
5929 forwarded to a C variable, either it's not a Lisp_Object
5930 var, or it's staticpro'd already. */
5931 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5932 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5933 swap_in_global_binding (ptr);
5934 mark_object (blv->where);
5935 mark_object (blv->valcell);
5936 mark_object (blv->defcell);
5937 break;
5938 }
5939 case SYMBOL_FORWARDED:
5940 /* If the value is forwarded to a buffer or keyboard field,
5941 these are marked when we see the corresponding object.
5942 And if it's forwarded to a C variable, either it's not
5943 a Lisp_Object var, or it's staticpro'd already. */
5944 break;
5945 default: emacs_abort ();
5946 }
5947 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5948 MARK_STRING (XSTRING (ptr->name));
5949 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5950
5951 ptr = ptr->next;
5952 if (ptr)
5953 {
5954 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5955 XSETSYMBOL (obj, ptrx);
5956 goto loop;
5957 }
5958 }
5959 break;
5960
5961 case Lisp_Misc:
5962 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5963
5964 if (XMISCANY (obj)->gcmarkbit)
5965 break;
5966
5967 switch (XMISCTYPE (obj))
5968 {
5969 case Lisp_Misc_Marker:
5970 /* DO NOT mark thru the marker's chain.
5971 The buffer's markers chain does not preserve markers from gc;
5972 instead, markers are removed from the chain when freed by gc. */
5973 XMISCANY (obj)->gcmarkbit = 1;
5974 break;
5975
5976 case Lisp_Misc_Save_Value:
5977 XMISCANY (obj)->gcmarkbit = 1;
5978 {
5979 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5980 /* If `area' is nonzero, `data[0].pointer' is the address
5981 of a memory area containing `data[1].integer' potential
5982 Lisp_Objects. */
5983 #if GC_MARK_STACK
5984 if (ptr->area)
5985 {
5986 Lisp_Object *p = ptr->data[0].pointer;
5987 ptrdiff_t nelt;
5988 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5989 mark_maybe_object (*p);
5990 }
5991 else
5992 #endif /* GC_MARK_STACK */
5993 {
5994 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5995 if (ptr->type0 == SAVE_OBJECT)
5996 mark_object (ptr->data[0].object);
5997 if (ptr->type1 == SAVE_OBJECT)
5998 mark_object (ptr->data[1].object);
5999 if (ptr->type2 == SAVE_OBJECT)
6000 mark_object (ptr->data[2].object);
6001 if (ptr->type3 == SAVE_OBJECT)
6002 mark_object (ptr->data[3].object);
6003 }
6004 }
6005 break;
6006
6007 case Lisp_Misc_Overlay:
6008 mark_overlay (XOVERLAY (obj));
6009 break;
6010
6011 default:
6012 emacs_abort ();
6013 }
6014 break;
6015
6016 case Lisp_Cons:
6017 {
6018 register struct Lisp_Cons *ptr = XCONS (obj);
6019 if (CONS_MARKED_P (ptr))
6020 break;
6021 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6022 CONS_MARK (ptr);
6023 /* If the cdr is nil, avoid recursion for the car. */
6024 if (EQ (ptr->u.cdr, Qnil))
6025 {
6026 obj = ptr->car;
6027 cdr_count = 0;
6028 goto loop;
6029 }
6030 mark_object (ptr->car);
6031 obj = ptr->u.cdr;
6032 cdr_count++;
6033 if (cdr_count == mark_object_loop_halt)
6034 emacs_abort ();
6035 goto loop;
6036 }
6037
6038 case Lisp_Float:
6039 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6040 FLOAT_MARK (XFLOAT (obj));
6041 break;
6042
6043 case_Lisp_Int:
6044 break;
6045
6046 default:
6047 emacs_abort ();
6048 }
6049
6050 #undef CHECK_LIVE
6051 #undef CHECK_ALLOCATED
6052 #undef CHECK_ALLOCATED_AND_LIVE
6053 }
6054 /* Mark the Lisp pointers in the terminal objects.
6055 Called by Fgarbage_collect. */
6056
6057 static void
6058 mark_terminals (void)
6059 {
6060 struct terminal *t;
6061 for (t = terminal_list; t; t = t->next_terminal)
6062 {
6063 eassert (t->name != NULL);
6064 #ifdef HAVE_WINDOW_SYSTEM
6065 /* If a terminal object is reachable from a stacpro'ed object,
6066 it might have been marked already. Make sure the image cache
6067 gets marked. */
6068 mark_image_cache (t->image_cache);
6069 #endif /* HAVE_WINDOW_SYSTEM */
6070 if (!VECTOR_MARKED_P (t))
6071 mark_vectorlike ((struct Lisp_Vector *)t);
6072 }
6073 }
6074
6075
6076
6077 /* Value is non-zero if OBJ will survive the current GC because it's
6078 either marked or does not need to be marked to survive. */
6079
6080 bool
6081 survives_gc_p (Lisp_Object obj)
6082 {
6083 bool survives_p;
6084
6085 switch (XTYPE (obj))
6086 {
6087 case_Lisp_Int:
6088 survives_p = 1;
6089 break;
6090
6091 case Lisp_Symbol:
6092 survives_p = XSYMBOL (obj)->gcmarkbit;
6093 break;
6094
6095 case Lisp_Misc:
6096 survives_p = XMISCANY (obj)->gcmarkbit;
6097 break;
6098
6099 case Lisp_String:
6100 survives_p = STRING_MARKED_P (XSTRING (obj));
6101 break;
6102
6103 case Lisp_Vectorlike:
6104 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6105 break;
6106
6107 case Lisp_Cons:
6108 survives_p = CONS_MARKED_P (XCONS (obj));
6109 break;
6110
6111 case Lisp_Float:
6112 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6113 break;
6114
6115 default:
6116 emacs_abort ();
6117 }
6118
6119 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6120 }
6121
6122
6123 \f
6124 /* Sweep: find all structures not marked, and free them. */
6125
6126 static void
6127 gc_sweep (void)
6128 {
6129 /* Remove or mark entries in weak hash tables.
6130 This must be done before any object is unmarked. */
6131 sweep_weak_hash_tables ();
6132
6133 sweep_strings ();
6134 check_string_bytes (!noninteractive);
6135
6136 /* Put all unmarked conses on free list */
6137 {
6138 register struct cons_block *cblk;
6139 struct cons_block **cprev = &cons_block;
6140 register int lim = cons_block_index;
6141 EMACS_INT num_free = 0, num_used = 0;
6142
6143 cons_free_list = 0;
6144
6145 for (cblk = cons_block; cblk; cblk = *cprev)
6146 {
6147 register int i = 0;
6148 int this_free = 0;
6149 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6150
6151 /* Scan the mark bits an int at a time. */
6152 for (i = 0; i < ilim; i++)
6153 {
6154 if (cblk->gcmarkbits[i] == -1)
6155 {
6156 /* Fast path - all cons cells for this int are marked. */
6157 cblk->gcmarkbits[i] = 0;
6158 num_used += BITS_PER_INT;
6159 }
6160 else
6161 {
6162 /* Some cons cells for this int are not marked.
6163 Find which ones, and free them. */
6164 int start, pos, stop;
6165
6166 start = i * BITS_PER_INT;
6167 stop = lim - start;
6168 if (stop > BITS_PER_INT)
6169 stop = BITS_PER_INT;
6170 stop += start;
6171
6172 for (pos = start; pos < stop; pos++)
6173 {
6174 if (!CONS_MARKED_P (&cblk->conses[pos]))
6175 {
6176 this_free++;
6177 cblk->conses[pos].u.chain = cons_free_list;
6178 cons_free_list = &cblk->conses[pos];
6179 #if GC_MARK_STACK
6180 cons_free_list->car = Vdead;
6181 #endif
6182 }
6183 else
6184 {
6185 num_used++;
6186 CONS_UNMARK (&cblk->conses[pos]);
6187 }
6188 }
6189 }
6190 }
6191
6192 lim = CONS_BLOCK_SIZE;
6193 /* If this block contains only free conses and we have already
6194 seen more than two blocks worth of free conses then deallocate
6195 this block. */
6196 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6197 {
6198 *cprev = cblk->next;
6199 /* Unhook from the free list. */
6200 cons_free_list = cblk->conses[0].u.chain;
6201 lisp_align_free (cblk);
6202 }
6203 else
6204 {
6205 num_free += this_free;
6206 cprev = &cblk->next;
6207 }
6208 }
6209 total_conses = num_used;
6210 total_free_conses = num_free;
6211 }
6212
6213 /* Put all unmarked floats on free list */
6214 {
6215 register struct float_block *fblk;
6216 struct float_block **fprev = &float_block;
6217 register int lim = float_block_index;
6218 EMACS_INT num_free = 0, num_used = 0;
6219
6220 float_free_list = 0;
6221
6222 for (fblk = float_block; fblk; fblk = *fprev)
6223 {
6224 register int i;
6225 int this_free = 0;
6226 for (i = 0; i < lim; i++)
6227 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6228 {
6229 this_free++;
6230 fblk->floats[i].u.chain = float_free_list;
6231 float_free_list = &fblk->floats[i];
6232 }
6233 else
6234 {
6235 num_used++;
6236 FLOAT_UNMARK (&fblk->floats[i]);
6237 }
6238 lim = FLOAT_BLOCK_SIZE;
6239 /* If this block contains only free floats and we have already
6240 seen more than two blocks worth of free floats then deallocate
6241 this block. */
6242 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6243 {
6244 *fprev = fblk->next;
6245 /* Unhook from the free list. */
6246 float_free_list = fblk->floats[0].u.chain;
6247 lisp_align_free (fblk);
6248 }
6249 else
6250 {
6251 num_free += this_free;
6252 fprev = &fblk->next;
6253 }
6254 }
6255 total_floats = num_used;
6256 total_free_floats = num_free;
6257 }
6258
6259 /* Put all unmarked intervals on free list */
6260 {
6261 register struct interval_block *iblk;
6262 struct interval_block **iprev = &interval_block;
6263 register int lim = interval_block_index;
6264 EMACS_INT num_free = 0, num_used = 0;
6265
6266 interval_free_list = 0;
6267
6268 for (iblk = interval_block; iblk; iblk = *iprev)
6269 {
6270 register int i;
6271 int this_free = 0;
6272
6273 for (i = 0; i < lim; i++)
6274 {
6275 if (!iblk->intervals[i].gcmarkbit)
6276 {
6277 set_interval_parent (&iblk->intervals[i], interval_free_list);
6278 interval_free_list = &iblk->intervals[i];
6279 this_free++;
6280 }
6281 else
6282 {
6283 num_used++;
6284 iblk->intervals[i].gcmarkbit = 0;
6285 }
6286 }
6287 lim = INTERVAL_BLOCK_SIZE;
6288 /* If this block contains only free intervals and we have already
6289 seen more than two blocks worth of free intervals then
6290 deallocate this block. */
6291 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6292 {
6293 *iprev = iblk->next;
6294 /* Unhook from the free list. */
6295 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6296 lisp_free (iblk);
6297 }
6298 else
6299 {
6300 num_free += this_free;
6301 iprev = &iblk->next;
6302 }
6303 }
6304 total_intervals = num_used;
6305 total_free_intervals = num_free;
6306 }
6307
6308 /* Put all unmarked symbols on free list */
6309 {
6310 register struct symbol_block *sblk;
6311 struct symbol_block **sprev = &symbol_block;
6312 register int lim = symbol_block_index;
6313 EMACS_INT num_free = 0, num_used = 0;
6314
6315 symbol_free_list = NULL;
6316
6317 for (sblk = symbol_block; sblk; sblk = *sprev)
6318 {
6319 int this_free = 0;
6320 union aligned_Lisp_Symbol *sym = sblk->symbols;
6321 union aligned_Lisp_Symbol *end = sym + lim;
6322
6323 for (; sym < end; ++sym)
6324 {
6325 /* Check if the symbol was created during loadup. In such a case
6326 it might be pointed to by pure bytecode which we don't trace,
6327 so we conservatively assume that it is live. */
6328 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6329
6330 if (!sym->s.gcmarkbit && !pure_p)
6331 {
6332 if (sym->s.redirect == SYMBOL_LOCALIZED)
6333 xfree (SYMBOL_BLV (&sym->s));
6334 sym->s.next = symbol_free_list;
6335 symbol_free_list = &sym->s;
6336 #if GC_MARK_STACK
6337 symbol_free_list->function = Vdead;
6338 #endif
6339 ++this_free;
6340 }
6341 else
6342 {
6343 ++num_used;
6344 if (!pure_p)
6345 UNMARK_STRING (XSTRING (sym->s.name));
6346 sym->s.gcmarkbit = 0;
6347 }
6348 }
6349
6350 lim = SYMBOL_BLOCK_SIZE;
6351 /* If this block contains only free symbols and we have already
6352 seen more than two blocks worth of free symbols then deallocate
6353 this block. */
6354 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6355 {
6356 *sprev = sblk->next;
6357 /* Unhook from the free list. */
6358 symbol_free_list = sblk->symbols[0].s.next;
6359 lisp_free (sblk);
6360 }
6361 else
6362 {
6363 num_free += this_free;
6364 sprev = &sblk->next;
6365 }
6366 }
6367 total_symbols = num_used;
6368 total_free_symbols = num_free;
6369 }
6370
6371 /* Put all unmarked misc's on free list.
6372 For a marker, first unchain it from the buffer it points into. */
6373 {
6374 register struct marker_block *mblk;
6375 struct marker_block **mprev = &marker_block;
6376 register int lim = marker_block_index;
6377 EMACS_INT num_free = 0, num_used = 0;
6378
6379 marker_free_list = 0;
6380
6381 for (mblk = marker_block; mblk; mblk = *mprev)
6382 {
6383 register int i;
6384 int this_free = 0;
6385
6386 for (i = 0; i < lim; i++)
6387 {
6388 if (!mblk->markers[i].m.u_any.gcmarkbit)
6389 {
6390 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6391 unchain_marker (&mblk->markers[i].m.u_marker);
6392 /* Set the type of the freed object to Lisp_Misc_Free.
6393 We could leave the type alone, since nobody checks it,
6394 but this might catch bugs faster. */
6395 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6396 mblk->markers[i].m.u_free.chain = marker_free_list;
6397 marker_free_list = &mblk->markers[i].m;
6398 this_free++;
6399 }
6400 else
6401 {
6402 num_used++;
6403 mblk->markers[i].m.u_any.gcmarkbit = 0;
6404 }
6405 }
6406 lim = MARKER_BLOCK_SIZE;
6407 /* If this block contains only free markers and we have already
6408 seen more than two blocks worth of free markers then deallocate
6409 this block. */
6410 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6411 {
6412 *mprev = mblk->next;
6413 /* Unhook from the free list. */
6414 marker_free_list = mblk->markers[0].m.u_free.chain;
6415 lisp_free (mblk);
6416 }
6417 else
6418 {
6419 num_free += this_free;
6420 mprev = &mblk->next;
6421 }
6422 }
6423
6424 total_markers = num_used;
6425 total_free_markers = num_free;
6426 }
6427
6428 /* Free all unmarked buffers */
6429 {
6430 register struct buffer *buffer, **bprev = &all_buffers;
6431
6432 total_buffers = 0;
6433 for (buffer = all_buffers; buffer; buffer = *bprev)
6434 if (!VECTOR_MARKED_P (buffer))
6435 {
6436 *bprev = buffer->next;
6437 lisp_free (buffer);
6438 }
6439 else
6440 {
6441 VECTOR_UNMARK (buffer);
6442 /* Do not use buffer_(set|get)_intervals here. */
6443 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6444 total_buffers++;
6445 bprev = &buffer->next;
6446 }
6447 }
6448
6449 sweep_vectors ();
6450 check_string_bytes (!noninteractive);
6451 }
6452
6453
6454
6455 \f
6456 /* Debugging aids. */
6457
6458 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6459 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6460 This may be helpful in debugging Emacs's memory usage.
6461 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6462 (void)
6463 {
6464 Lisp_Object end;
6465
6466 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6467
6468 return end;
6469 }
6470
6471 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6472 doc: /* Return a list of counters that measure how much consing there has been.
6473 Each of these counters increments for a certain kind of object.
6474 The counters wrap around from the largest positive integer to zero.
6475 Garbage collection does not decrease them.
6476 The elements of the value are as follows:
6477 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6478 All are in units of 1 = one object consed
6479 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6480 objects consed.
6481 MISCS include overlays, markers, and some internal types.
6482 Frames, windows, buffers, and subprocesses count as vectors
6483 (but the contents of a buffer's text do not count here). */)
6484 (void)
6485 {
6486 return listn (CONSTYPE_HEAP, 8,
6487 bounded_number (cons_cells_consed),
6488 bounded_number (floats_consed),
6489 bounded_number (vector_cells_consed),
6490 bounded_number (symbols_consed),
6491 bounded_number (string_chars_consed),
6492 bounded_number (misc_objects_consed),
6493 bounded_number (intervals_consed),
6494 bounded_number (strings_consed));
6495 }
6496
6497 /* Find at most FIND_MAX symbols which have OBJ as their value or
6498 function. This is used in gdbinit's `xwhichsymbols' command. */
6499
6500 Lisp_Object
6501 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6502 {
6503 struct symbol_block *sblk;
6504 ptrdiff_t gc_count = inhibit_garbage_collection ();
6505 Lisp_Object found = Qnil;
6506
6507 if (! DEADP (obj))
6508 {
6509 for (sblk = symbol_block; sblk; sblk = sblk->next)
6510 {
6511 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6512 int bn;
6513
6514 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6515 {
6516 struct Lisp_Symbol *sym = &aligned_sym->s;
6517 Lisp_Object val;
6518 Lisp_Object tem;
6519
6520 if (sblk == symbol_block && bn >= symbol_block_index)
6521 break;
6522
6523 XSETSYMBOL (tem, sym);
6524 val = find_symbol_value (tem);
6525 if (EQ (val, obj)
6526 || EQ (sym->function, obj)
6527 || (!NILP (sym->function)
6528 && COMPILEDP (sym->function)
6529 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6530 || (!NILP (val)
6531 && COMPILEDP (val)
6532 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6533 {
6534 found = Fcons (tem, found);
6535 if (--find_max == 0)
6536 goto out;
6537 }
6538 }
6539 }
6540 }
6541
6542 out:
6543 unbind_to (gc_count, Qnil);
6544 return found;
6545 }
6546
6547 #ifdef ENABLE_CHECKING
6548
6549 bool suppress_checking;
6550
6551 void
6552 die (const char *msg, const char *file, int line)
6553 {
6554 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6555 file, line, msg);
6556 terminate_due_to_signal (SIGABRT, INT_MAX);
6557 }
6558 #endif
6559 \f
6560 /* Initialization. */
6561
6562 void
6563 init_alloc_once (void)
6564 {
6565 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6566 purebeg = PUREBEG;
6567 pure_size = PURESIZE;
6568
6569 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6570 mem_init ();
6571 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6572 #endif
6573
6574 #ifdef DOUG_LEA_MALLOC
6575 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6576 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6577 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6578 #endif
6579 init_strings ();
6580 init_vectors ();
6581
6582 refill_memory_reserve ();
6583 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6584 }
6585
6586 void
6587 init_alloc (void)
6588 {
6589 gcprolist = 0;
6590 byte_stack_list = 0;
6591 #if GC_MARK_STACK
6592 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6593 setjmp_tested_p = longjmps_done = 0;
6594 #endif
6595 #endif
6596 Vgc_elapsed = make_float (0.0);
6597 gcs_done = 0;
6598 }
6599
6600 void
6601 syms_of_alloc (void)
6602 {
6603 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6604 doc: /* Number of bytes of consing between garbage collections.
6605 Garbage collection can happen automatically once this many bytes have been
6606 allocated since the last garbage collection. All data types count.
6607
6608 Garbage collection happens automatically only when `eval' is called.
6609
6610 By binding this temporarily to a large number, you can effectively
6611 prevent garbage collection during a part of the program.
6612 See also `gc-cons-percentage'. */);
6613
6614 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6615 doc: /* Portion of the heap used for allocation.
6616 Garbage collection can happen automatically once this portion of the heap
6617 has been allocated since the last garbage collection.
6618 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6619 Vgc_cons_percentage = make_float (0.1);
6620
6621 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6622 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6623
6624 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6625 doc: /* Number of cons cells that have been consed so far. */);
6626
6627 DEFVAR_INT ("floats-consed", floats_consed,
6628 doc: /* Number of floats that have been consed so far. */);
6629
6630 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6631 doc: /* Number of vector cells that have been consed so far. */);
6632
6633 DEFVAR_INT ("symbols-consed", symbols_consed,
6634 doc: /* Number of symbols that have been consed so far. */);
6635
6636 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6637 doc: /* Number of string characters that have been consed so far. */);
6638
6639 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6640 doc: /* Number of miscellaneous objects that have been consed so far.
6641 These include markers and overlays, plus certain objects not visible
6642 to users. */);
6643
6644 DEFVAR_INT ("intervals-consed", intervals_consed,
6645 doc: /* Number of intervals that have been consed so far. */);
6646
6647 DEFVAR_INT ("strings-consed", strings_consed,
6648 doc: /* Number of strings that have been consed so far. */);
6649
6650 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6651 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6652 This means that certain objects should be allocated in shared (pure) space.
6653 It can also be set to a hash-table, in which case this table is used to
6654 do hash-consing of the objects allocated to pure space. */);
6655
6656 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6657 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6658 garbage_collection_messages = 0;
6659
6660 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6661 doc: /* Hook run after garbage collection has finished. */);
6662 Vpost_gc_hook = Qnil;
6663 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6664
6665 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6666 doc: /* Precomputed `signal' argument for memory-full error. */);
6667 /* We build this in advance because if we wait until we need it, we might
6668 not be able to allocate the memory to hold it. */
6669 Vmemory_signal_data
6670 = listn (CONSTYPE_PURE, 2, Qerror,
6671 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6672
6673 DEFVAR_LISP ("memory-full", Vmemory_full,
6674 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6675 Vmemory_full = Qnil;
6676
6677 DEFSYM (Qconses, "conses");
6678 DEFSYM (Qsymbols, "symbols");
6679 DEFSYM (Qmiscs, "miscs");
6680 DEFSYM (Qstrings, "strings");
6681 DEFSYM (Qvectors, "vectors");
6682 DEFSYM (Qfloats, "floats");
6683 DEFSYM (Qintervals, "intervals");
6684 DEFSYM (Qbuffers, "buffers");
6685 DEFSYM (Qstring_bytes, "string-bytes");
6686 DEFSYM (Qvector_slots, "vector-slots");
6687 DEFSYM (Qheap, "heap");
6688 DEFSYM (Qautomatic_gc, "Automatic GC");
6689
6690 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6691 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6692
6693 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6694 doc: /* Accumulated time elapsed in garbage collections.
6695 The time is in seconds as a floating point value. */);
6696 DEFVAR_INT ("gcs-done", gcs_done,
6697 doc: /* Accumulated number of garbage collections done. */);
6698
6699 defsubr (&Scons);
6700 defsubr (&Slist);
6701 defsubr (&Svector);
6702 defsubr (&Smake_byte_code);
6703 defsubr (&Smake_list);
6704 defsubr (&Smake_vector);
6705 defsubr (&Smake_string);
6706 defsubr (&Smake_bool_vector);
6707 defsubr (&Smake_symbol);
6708 defsubr (&Smake_marker);
6709 defsubr (&Spurecopy);
6710 defsubr (&Sgarbage_collect);
6711 defsubr (&Smemory_limit);
6712 defsubr (&Smemory_use_counts);
6713
6714 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6715 defsubr (&Sgc_status);
6716 #endif
6717 }
6718
6719 /* When compiled with GCC, GDB might say "No enum type named
6720 pvec_type" if we don't have at least one symbol with that type, and
6721 then xbacktrace could fail. Similarly for the other enums and
6722 their values. Some non-GCC compilers don't like these constructs. */
6723 #ifdef __GNUC__
6724 union
6725 {
6726 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6727 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6728 enum char_bits char_bits;
6729 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6730 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6731 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6732 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6733 enum Lisp_Bits Lisp_Bits;
6734 enum Lisp_Compiled Lisp_Compiled;
6735 enum maxargs maxargs;
6736 enum MAX_ALLOCA MAX_ALLOCA;
6737 enum More_Lisp_Bits More_Lisp_Bits;
6738 enum pvec_type pvec_type;
6739 #if USE_LSB_TAG
6740 enum lsb_bits lsb_bits;
6741 #endif
6742 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6743 #endif /* __GNUC__ */