]> code.delx.au - gnu-emacs/blob - src/alloc.c
Fix removal of variables from process-environment
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "dispextern.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
49
50 #include <verify.h>
51 #include <execinfo.h> /* For backtrace. */
52
53 #ifdef HAVE_LINUX_SYSINFO
54 #include <sys/sysinfo.h>
55 #endif
56
57 #ifdef MSDOS
58 #include "dosfns.h" /* For dos_memory_info. */
59 #endif
60
61 #if (defined ENABLE_CHECKING \
62 && defined HAVE_VALGRIND_VALGRIND_H \
63 && !defined USE_VALGRIND)
64 # define USE_VALGRIND 1
65 #endif
66
67 #if USE_VALGRIND
68 #include <valgrind/valgrind.h>
69 #include <valgrind/memcheck.h>
70 static bool valgrind_p;
71 #endif
72
73 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
74
75 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
76 memory. Can do this only if using gmalloc.c and if not checking
77 marked objects. */
78
79 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
80 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
81 #undef GC_MALLOC_CHECK
82 #endif
83
84 #include <unistd.h>
85 #include <fcntl.h>
86
87 #ifdef USE_GTK
88 # include "gtkutil.h"
89 #endif
90 #ifdef WINDOWSNT
91 #include "w32.h"
92 #include "w32heap.h" /* for sbrk */
93 #endif
94
95 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
96 /* The address where the heap starts. */
97 void *
98 my_heap_start (void)
99 {
100 static void *start;
101 if (! start)
102 start = sbrk (0);
103 return start;
104 }
105 #endif
106
107 #ifdef DOUG_LEA_MALLOC
108
109 #include <malloc.h>
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Get and free this pointer; useful around unexec. */
121 void
122 alloc_unexec_pre (void)
123 {
124 malloc_state_ptr = malloc_get_state ();
125 }
126 void
127 alloc_unexec_post (void)
128 {
129 free (malloc_state_ptr);
130 }
131
132 /* Restore the dumped malloc state. Because malloc can be invoked
133 even before main (e.g. by the dynamic linker), the dumped malloc
134 state must be restored as early as possible using this special hook. */
135 static void
136 malloc_initialize_hook (void)
137 {
138 static bool malloc_using_checking;
139
140 if (! initialized)
141 {
142 my_heap_start ();
143 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
144 }
145 else
146 {
147 if (!malloc_using_checking)
148 {
149 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
150 ignored if the heap to be restored was constructed without
151 malloc checking. Can't use unsetenv, since that calls malloc. */
152 char **p = environ;
153 if (p)
154 for (; *p; p++)
155 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
156 {
157 do
158 *p = p[1];
159 while (*++p);
160
161 break;
162 }
163 }
164
165 malloc_set_state (malloc_state_ptr);
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
169 }
170 }
171
172 # ifndef __MALLOC_HOOK_VOLATILE
173 # define __MALLOC_HOOK_VOLATILE
174 # endif
175 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook
176 = malloc_initialize_hook;
177
178 #endif
179
180 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
181 to a struct Lisp_String. */
182
183 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
184 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
185 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
186
187 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
188 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
189 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
190
191 /* Default value of gc_cons_threshold (see below). */
192
193 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
194
195 /* Global variables. */
196 struct emacs_globals globals;
197
198 /* Number of bytes of consing done since the last gc. */
199
200 EMACS_INT consing_since_gc;
201
202 /* Similar minimum, computed from Vgc_cons_percentage. */
203
204 EMACS_INT gc_relative_threshold;
205
206 /* Minimum number of bytes of consing since GC before next GC,
207 when memory is full. */
208
209 EMACS_INT memory_full_cons_threshold;
210
211 /* True during GC. */
212
213 bool gc_in_progress;
214
215 /* True means abort if try to GC.
216 This is for code which is written on the assumption that
217 no GC will happen, so as to verify that assumption. */
218
219 bool abort_on_gc;
220
221 /* Number of live and free conses etc. */
222
223 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
224 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
225 static EMACS_INT total_free_floats, total_floats;
226
227 /* Points to memory space allocated as "spare", to be freed if we run
228 out of memory. We keep one large block, four cons-blocks, and
229 two string blocks. */
230
231 static char *spare_memory[7];
232
233 /* Amount of spare memory to keep in large reserve block, or to see
234 whether this much is available when malloc fails on a larger request. */
235
236 #define SPARE_MEMORY (1 << 14)
237
238 /* Initialize it to a nonzero value to force it into data space
239 (rather than bss space). That way unexec will remap it into text
240 space (pure), on some systems. We have not implemented the
241 remapping on more recent systems because this is less important
242 nowadays than in the days of small memories and timesharing. */
243
244 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
245 #define PUREBEG (char *) pure
246
247 /* Pointer to the pure area, and its size. */
248
249 static char *purebeg;
250 static ptrdiff_t pure_size;
251
252 /* Number of bytes of pure storage used before pure storage overflowed.
253 If this is non-zero, this implies that an overflow occurred. */
254
255 static ptrdiff_t pure_bytes_used_before_overflow;
256
257 /* Index in pure at which next pure Lisp object will be allocated.. */
258
259 static ptrdiff_t pure_bytes_used_lisp;
260
261 /* Number of bytes allocated for non-Lisp objects in pure storage. */
262
263 static ptrdiff_t pure_bytes_used_non_lisp;
264
265 /* If nonzero, this is a warning delivered by malloc and not yet
266 displayed. */
267
268 const char *pending_malloc_warning;
269
270 #if 0 /* Normally, pointer sanity only on request... */
271 #ifdef ENABLE_CHECKING
272 #define SUSPICIOUS_OBJECT_CHECKING 1
273 #endif
274 #endif
275
276 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
277 bug is unresolved. */
278 #define SUSPICIOUS_OBJECT_CHECKING 1
279
280 #ifdef SUSPICIOUS_OBJECT_CHECKING
281 struct suspicious_free_record
282 {
283 void *suspicious_object;
284 void *backtrace[128];
285 };
286 static void *suspicious_objects[32];
287 static int suspicious_object_index;
288 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
289 static int suspicious_free_history_index;
290 /* Find the first currently-monitored suspicious pointer in range
291 [begin,end) or NULL if no such pointer exists. */
292 static void *find_suspicious_object_in_range (void *begin, void *end);
293 static void detect_suspicious_free (void *ptr);
294 #else
295 # define find_suspicious_object_in_range(begin, end) NULL
296 # define detect_suspicious_free(ptr) (void)
297 #endif
298
299 /* Maximum amount of C stack to save when a GC happens. */
300
301 #ifndef MAX_SAVE_STACK
302 #define MAX_SAVE_STACK 16000
303 #endif
304
305 /* Buffer in which we save a copy of the C stack at each GC. */
306
307 #if MAX_SAVE_STACK > 0
308 static char *stack_copy;
309 static ptrdiff_t stack_copy_size;
310
311 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
312 avoiding any address sanitization. */
313
314 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
315 no_sanitize_memcpy (void *dest, void const *src, size_t size)
316 {
317 if (! ADDRESS_SANITIZER)
318 return memcpy (dest, src, size);
319 else
320 {
321 size_t i;
322 char *d = dest;
323 char const *s = src;
324 for (i = 0; i < size; i++)
325 d[i] = s[i];
326 return dest;
327 }
328 }
329
330 #endif /* MAX_SAVE_STACK > 0 */
331
332 static void mark_terminals (void);
333 static void gc_sweep (void);
334 static Lisp_Object make_pure_vector (ptrdiff_t);
335 static void mark_buffer (struct buffer *);
336
337 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
338 static void refill_memory_reserve (void);
339 #endif
340 static void compact_small_strings (void);
341 static void free_large_strings (void);
342 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
343
344 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
345 what memory allocated via lisp_malloc and lisp_align_malloc is intended
346 for what purpose. This enumeration specifies the type of memory. */
347
348 enum mem_type
349 {
350 MEM_TYPE_NON_LISP,
351 MEM_TYPE_BUFFER,
352 MEM_TYPE_CONS,
353 MEM_TYPE_STRING,
354 MEM_TYPE_MISC,
355 MEM_TYPE_SYMBOL,
356 MEM_TYPE_FLOAT,
357 /* Since all non-bool pseudovectors are small enough to be
358 allocated from vector blocks, this memory type denotes
359 large regular vectors and large bool pseudovectors. */
360 MEM_TYPE_VECTORLIKE,
361 /* Special type to denote vector blocks. */
362 MEM_TYPE_VECTOR_BLOCK,
363 /* Special type to denote reserved memory. */
364 MEM_TYPE_SPARE
365 };
366
367 /* A unique object in pure space used to make some Lisp objects
368 on free lists recognizable in O(1). */
369
370 static Lisp_Object Vdead;
371 #define DEADP(x) EQ (x, Vdead)
372
373 #ifdef GC_MALLOC_CHECK
374
375 enum mem_type allocated_mem_type;
376
377 #endif /* GC_MALLOC_CHECK */
378
379 /* A node in the red-black tree describing allocated memory containing
380 Lisp data. Each such block is recorded with its start and end
381 address when it is allocated, and removed from the tree when it
382 is freed.
383
384 A red-black tree is a balanced binary tree with the following
385 properties:
386
387 1. Every node is either red or black.
388 2. Every leaf is black.
389 3. If a node is red, then both of its children are black.
390 4. Every simple path from a node to a descendant leaf contains
391 the same number of black nodes.
392 5. The root is always black.
393
394 When nodes are inserted into the tree, or deleted from the tree,
395 the tree is "fixed" so that these properties are always true.
396
397 A red-black tree with N internal nodes has height at most 2
398 log(N+1). Searches, insertions and deletions are done in O(log N).
399 Please see a text book about data structures for a detailed
400 description of red-black trees. Any book worth its salt should
401 describe them. */
402
403 struct mem_node
404 {
405 /* Children of this node. These pointers are never NULL. When there
406 is no child, the value is MEM_NIL, which points to a dummy node. */
407 struct mem_node *left, *right;
408
409 /* The parent of this node. In the root node, this is NULL. */
410 struct mem_node *parent;
411
412 /* Start and end of allocated region. */
413 void *start, *end;
414
415 /* Node color. */
416 enum {MEM_BLACK, MEM_RED} color;
417
418 /* Memory type. */
419 enum mem_type type;
420 };
421
422 /* Base address of stack. Set in main. */
423
424 Lisp_Object *stack_base;
425
426 /* Root of the tree describing allocated Lisp memory. */
427
428 static struct mem_node *mem_root;
429
430 /* Lowest and highest known address in the heap. */
431
432 static void *min_heap_address, *max_heap_address;
433
434 /* Sentinel node of the tree. */
435
436 static struct mem_node mem_z;
437 #define MEM_NIL &mem_z
438
439 static struct mem_node *mem_insert (void *, void *, enum mem_type);
440 static void mem_insert_fixup (struct mem_node *);
441 static void mem_rotate_left (struct mem_node *);
442 static void mem_rotate_right (struct mem_node *);
443 static void mem_delete (struct mem_node *);
444 static void mem_delete_fixup (struct mem_node *);
445 static struct mem_node *mem_find (void *);
446
447 #ifndef DEADP
448 # define DEADP(x) 0
449 #endif
450
451 /* Addresses of staticpro'd variables. Initialize it to a nonzero
452 value; otherwise some compilers put it into BSS. */
453
454 enum { NSTATICS = 2048 };
455 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
456
457 /* Index of next unused slot in staticvec. */
458
459 static int staticidx;
460
461 static void *pure_alloc (size_t, int);
462
463 /* Return X rounded to the next multiple of Y. Arguments should not
464 have side effects, as they are evaluated more than once. Assume X
465 + Y - 1 does not overflow. Tune for Y being a power of 2. */
466
467 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
468 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
469 : ((x) + (y) - 1) & ~ ((y) - 1))
470
471 /* Bug#23764 */
472 #ifdef ALIGN
473 # undef ALIGN
474 #endif
475
476 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
477
478 static void *
479 ALIGN (void *ptr, int alignment)
480 {
481 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
482 }
483
484 /* Extract the pointer hidden within A, if A is not a symbol.
485 If A is a symbol, extract the hidden pointer's offset from lispsym,
486 converted to void *. */
487
488 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
489 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
490
491 /* Extract the pointer hidden within A. */
492
493 #define macro_XPNTR(a) \
494 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
495 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
496
497 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
498 functions, as functions are cleaner and can be used in debuggers.
499 Also, define them as macros if being compiled with GCC without
500 optimization, for performance in that case. The macro_* names are
501 private to this section of code. */
502
503 static ATTRIBUTE_UNUSED void *
504 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
505 {
506 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
507 }
508 static ATTRIBUTE_UNUSED void *
509 XPNTR (Lisp_Object a)
510 {
511 return macro_XPNTR (a);
512 }
513
514 #if DEFINE_KEY_OPS_AS_MACROS
515 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
516 # define XPNTR(a) macro_XPNTR (a)
517 #endif
518
519 static void
520 XFLOAT_INIT (Lisp_Object f, double n)
521 {
522 XFLOAT (f)->u.data = n;
523 }
524
525 #ifdef DOUG_LEA_MALLOC
526 static bool
527 pointers_fit_in_lispobj_p (void)
528 {
529 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
530 }
531
532 static bool
533 mmap_lisp_allowed_p (void)
534 {
535 /* If we can't store all memory addresses in our lisp objects, it's
536 risky to let the heap use mmap and give us addresses from all
537 over our address space. We also can't use mmap for lisp objects
538 if we might dump: unexec doesn't preserve the contents of mmapped
539 regions. */
540 return pointers_fit_in_lispobj_p () && !might_dump;
541 }
542 #endif
543
544 /* Head of a circularly-linked list of extant finalizers. */
545 static struct Lisp_Finalizer finalizers;
546
547 /* Head of a circularly-linked list of finalizers that must be invoked
548 because we deemed them unreachable. This list must be global, and
549 not a local inside garbage_collect_1, in case we GC again while
550 running finalizers. */
551 static struct Lisp_Finalizer doomed_finalizers;
552
553 \f
554 /************************************************************************
555 Malloc
556 ************************************************************************/
557
558 /* Function malloc calls this if it finds we are near exhausting storage. */
559
560 void
561 malloc_warning (const char *str)
562 {
563 pending_malloc_warning = str;
564 }
565
566
567 /* Display an already-pending malloc warning. */
568
569 void
570 display_malloc_warning (void)
571 {
572 call3 (intern ("display-warning"),
573 intern ("alloc"),
574 build_string (pending_malloc_warning),
575 intern ("emergency"));
576 pending_malloc_warning = 0;
577 }
578 \f
579 /* Called if we can't allocate relocatable space for a buffer. */
580
581 void
582 buffer_memory_full (ptrdiff_t nbytes)
583 {
584 /* If buffers use the relocating allocator, no need to free
585 spare_memory, because we may have plenty of malloc space left
586 that we could get, and if we don't, the malloc that fails will
587 itself cause spare_memory to be freed. If buffers don't use the
588 relocating allocator, treat this like any other failing
589 malloc. */
590
591 #ifndef REL_ALLOC
592 memory_full (nbytes);
593 #else
594 /* This used to call error, but if we've run out of memory, we could
595 get infinite recursion trying to build the string. */
596 xsignal (Qnil, Vmemory_signal_data);
597 #endif
598 }
599
600 /* A common multiple of the positive integers A and B. Ideally this
601 would be the least common multiple, but there's no way to do that
602 as a constant expression in C, so do the best that we can easily do. */
603 #define COMMON_MULTIPLE(a, b) \
604 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
605
606 #ifndef XMALLOC_OVERRUN_CHECK
607 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
608 #else
609
610 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
611 around each block.
612
613 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
614 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
615 block size in little-endian order. The trailer consists of
616 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
617
618 The header is used to detect whether this block has been allocated
619 through these functions, as some low-level libc functions may
620 bypass the malloc hooks. */
621
622 #define XMALLOC_OVERRUN_CHECK_SIZE 16
623 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
624 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
625
626 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
627 hold a size_t value and (2) the header size is a multiple of the
628 alignment that Emacs needs for C types and for USE_LSB_TAG. */
629 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
630
631 #define XMALLOC_HEADER_ALIGNMENT \
632 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
633 #define XMALLOC_OVERRUN_SIZE_SIZE \
634 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
635 + XMALLOC_HEADER_ALIGNMENT - 1) \
636 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
637 - XMALLOC_OVERRUN_CHECK_SIZE)
638
639 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
640 { '\x9a', '\x9b', '\xae', '\xaf',
641 '\xbf', '\xbe', '\xce', '\xcf',
642 '\xea', '\xeb', '\xec', '\xed',
643 '\xdf', '\xde', '\x9c', '\x9d' };
644
645 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
646 { '\xaa', '\xab', '\xac', '\xad',
647 '\xba', '\xbb', '\xbc', '\xbd',
648 '\xca', '\xcb', '\xcc', '\xcd',
649 '\xda', '\xdb', '\xdc', '\xdd' };
650
651 /* Insert and extract the block size in the header. */
652
653 static void
654 xmalloc_put_size (unsigned char *ptr, size_t size)
655 {
656 int i;
657 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
658 {
659 *--ptr = size & ((1 << CHAR_BIT) - 1);
660 size >>= CHAR_BIT;
661 }
662 }
663
664 static size_t
665 xmalloc_get_size (unsigned char *ptr)
666 {
667 size_t size = 0;
668 int i;
669 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
670 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
671 {
672 size <<= CHAR_BIT;
673 size += *ptr++;
674 }
675 return size;
676 }
677
678
679 /* Like malloc, but wraps allocated block with header and trailer. */
680
681 static void *
682 overrun_check_malloc (size_t size)
683 {
684 register unsigned char *val;
685 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
686 emacs_abort ();
687
688 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
689 if (val)
690 {
691 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
692 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
693 xmalloc_put_size (val, size);
694 memcpy (val + size, xmalloc_overrun_check_trailer,
695 XMALLOC_OVERRUN_CHECK_SIZE);
696 }
697 return val;
698 }
699
700
701 /* Like realloc, but checks old block for overrun, and wraps new block
702 with header and trailer. */
703
704 static void *
705 overrun_check_realloc (void *block, size_t size)
706 {
707 register unsigned char *val = (unsigned char *) block;
708 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
709 emacs_abort ();
710
711 if (val
712 && memcmp (xmalloc_overrun_check_header,
713 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
714 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
715 {
716 size_t osize = xmalloc_get_size (val);
717 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
718 XMALLOC_OVERRUN_CHECK_SIZE))
719 emacs_abort ();
720 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
721 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
722 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
723 }
724
725 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
726
727 if (val)
728 {
729 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
730 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
731 xmalloc_put_size (val, size);
732 memcpy (val + size, xmalloc_overrun_check_trailer,
733 XMALLOC_OVERRUN_CHECK_SIZE);
734 }
735 return val;
736 }
737
738 /* Like free, but checks block for overrun. */
739
740 static void
741 overrun_check_free (void *block)
742 {
743 unsigned char *val = (unsigned char *) block;
744
745 if (val
746 && memcmp (xmalloc_overrun_check_header,
747 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
748 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
749 {
750 size_t osize = xmalloc_get_size (val);
751 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
752 XMALLOC_OVERRUN_CHECK_SIZE))
753 emacs_abort ();
754 #ifdef XMALLOC_CLEAR_FREE_MEMORY
755 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
756 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
757 #else
758 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
759 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
760 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
761 #endif
762 }
763
764 free (val);
765 }
766
767 #undef malloc
768 #undef realloc
769 #undef free
770 #define malloc overrun_check_malloc
771 #define realloc overrun_check_realloc
772 #define free overrun_check_free
773 #endif
774
775 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
776 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
777 If that variable is set, block input while in one of Emacs's memory
778 allocation functions. There should be no need for this debugging
779 option, since signal handlers do not allocate memory, but Emacs
780 formerly allocated memory in signal handlers and this compile-time
781 option remains as a way to help debug the issue should it rear its
782 ugly head again. */
783 #ifdef XMALLOC_BLOCK_INPUT_CHECK
784 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
785 static void
786 malloc_block_input (void)
787 {
788 if (block_input_in_memory_allocators)
789 block_input ();
790 }
791 static void
792 malloc_unblock_input (void)
793 {
794 if (block_input_in_memory_allocators)
795 unblock_input ();
796 }
797 # define MALLOC_BLOCK_INPUT malloc_block_input ()
798 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
799 #else
800 # define MALLOC_BLOCK_INPUT ((void) 0)
801 # define MALLOC_UNBLOCK_INPUT ((void) 0)
802 #endif
803
804 #define MALLOC_PROBE(size) \
805 do { \
806 if (profiler_memory_running) \
807 malloc_probe (size); \
808 } while (0)
809
810 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
811 static void *lrealloc (void *, size_t);
812
813 /* Like malloc but check for no memory and block interrupt input. */
814
815 void *
816 xmalloc (size_t size)
817 {
818 void *val;
819
820 MALLOC_BLOCK_INPUT;
821 val = lmalloc (size);
822 MALLOC_UNBLOCK_INPUT;
823
824 if (!val && size)
825 memory_full (size);
826 MALLOC_PROBE (size);
827 return val;
828 }
829
830 /* Like the above, but zeroes out the memory just allocated. */
831
832 void *
833 xzalloc (size_t size)
834 {
835 void *val;
836
837 MALLOC_BLOCK_INPUT;
838 val = lmalloc (size);
839 MALLOC_UNBLOCK_INPUT;
840
841 if (!val && size)
842 memory_full (size);
843 memset (val, 0, size);
844 MALLOC_PROBE (size);
845 return val;
846 }
847
848 /* Like realloc but check for no memory and block interrupt input.. */
849
850 void *
851 xrealloc (void *block, size_t size)
852 {
853 void *val;
854
855 MALLOC_BLOCK_INPUT;
856 /* We must call malloc explicitly when BLOCK is 0, since some
857 reallocs don't do this. */
858 if (! block)
859 val = lmalloc (size);
860 else
861 val = lrealloc (block, size);
862 MALLOC_UNBLOCK_INPUT;
863
864 if (!val && size)
865 memory_full (size);
866 MALLOC_PROBE (size);
867 return val;
868 }
869
870
871 /* Like free but block interrupt input. */
872
873 void
874 xfree (void *block)
875 {
876 if (!block)
877 return;
878 MALLOC_BLOCK_INPUT;
879 free (block);
880 MALLOC_UNBLOCK_INPUT;
881 /* We don't call refill_memory_reserve here
882 because in practice the call in r_alloc_free seems to suffice. */
883 }
884
885
886 /* Other parts of Emacs pass large int values to allocator functions
887 expecting ptrdiff_t. This is portable in practice, but check it to
888 be safe. */
889 verify (INT_MAX <= PTRDIFF_MAX);
890
891
892 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
893 Signal an error on memory exhaustion, and block interrupt input. */
894
895 void *
896 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
897 {
898 eassert (0 <= nitems && 0 < item_size);
899 ptrdiff_t nbytes;
900 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
901 memory_full (SIZE_MAX);
902 return xmalloc (nbytes);
903 }
904
905
906 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
907 Signal an error on memory exhaustion, and block interrupt input. */
908
909 void *
910 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
911 {
912 eassert (0 <= nitems && 0 < item_size);
913 ptrdiff_t nbytes;
914 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
915 memory_full (SIZE_MAX);
916 return xrealloc (pa, nbytes);
917 }
918
919
920 /* Grow PA, which points to an array of *NITEMS items, and return the
921 location of the reallocated array, updating *NITEMS to reflect its
922 new size. The new array will contain at least NITEMS_INCR_MIN more
923 items, but will not contain more than NITEMS_MAX items total.
924 ITEM_SIZE is the size of each item, in bytes.
925
926 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
927 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
928 infinity.
929
930 If PA is null, then allocate a new array instead of reallocating
931 the old one.
932
933 Block interrupt input as needed. If memory exhaustion occurs, set
934 *NITEMS to zero if PA is null, and signal an error (i.e., do not
935 return).
936
937 Thus, to grow an array A without saving its old contents, do
938 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
939 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
940 and signals an error, and later this code is reexecuted and
941 attempts to free A. */
942
943 void *
944 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
945 ptrdiff_t nitems_max, ptrdiff_t item_size)
946 {
947 ptrdiff_t n0 = *nitems;
948 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
949
950 /* The approximate size to use for initial small allocation
951 requests. This is the largest "small" request for the GNU C
952 library malloc. */
953 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
954
955 /* If the array is tiny, grow it to about (but no greater than)
956 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
957 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
958 NITEMS_MAX, and what the C language can represent safely. */
959
960 ptrdiff_t n, nbytes;
961 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
962 n = PTRDIFF_MAX;
963 if (0 <= nitems_max && nitems_max < n)
964 n = nitems_max;
965
966 ptrdiff_t adjusted_nbytes
967 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
968 ? min (PTRDIFF_MAX, SIZE_MAX)
969 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
970 if (adjusted_nbytes)
971 {
972 n = adjusted_nbytes / item_size;
973 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
974 }
975
976 if (! pa)
977 *nitems = 0;
978 if (n - n0 < nitems_incr_min
979 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
980 || (0 <= nitems_max && nitems_max < n)
981 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
982 memory_full (SIZE_MAX);
983 pa = xrealloc (pa, nbytes);
984 *nitems = n;
985 return pa;
986 }
987
988
989 /* Like strdup, but uses xmalloc. */
990
991 char *
992 xstrdup (const char *s)
993 {
994 ptrdiff_t size;
995 eassert (s);
996 size = strlen (s) + 1;
997 return memcpy (xmalloc (size), s, size);
998 }
999
1000 /* Like above, but duplicates Lisp string to C string. */
1001
1002 char *
1003 xlispstrdup (Lisp_Object string)
1004 {
1005 ptrdiff_t size = SBYTES (string) + 1;
1006 return memcpy (xmalloc (size), SSDATA (string), size);
1007 }
1008
1009 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1010 pointed to. If STRING is null, assign it without copying anything.
1011 Allocate before freeing, to avoid a dangling pointer if allocation
1012 fails. */
1013
1014 void
1015 dupstring (char **ptr, char const *string)
1016 {
1017 char *old = *ptr;
1018 *ptr = string ? xstrdup (string) : 0;
1019 xfree (old);
1020 }
1021
1022
1023 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1024 argument is a const pointer. */
1025
1026 void
1027 xputenv (char const *string)
1028 {
1029 if (putenv ((char *) string) != 0)
1030 memory_full (0);
1031 }
1032
1033 /* Return a newly allocated memory block of SIZE bytes, remembering
1034 to free it when unwinding. */
1035 void *
1036 record_xmalloc (size_t size)
1037 {
1038 void *p = xmalloc (size);
1039 record_unwind_protect_ptr (xfree, p);
1040 return p;
1041 }
1042
1043
1044 /* Like malloc but used for allocating Lisp data. NBYTES is the
1045 number of bytes to allocate, TYPE describes the intended use of the
1046 allocated memory block (for strings, for conses, ...). */
1047
1048 #if ! USE_LSB_TAG
1049 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1050 #endif
1051
1052 static void *
1053 lisp_malloc (size_t nbytes, enum mem_type type)
1054 {
1055 register void *val;
1056
1057 MALLOC_BLOCK_INPUT;
1058
1059 #ifdef GC_MALLOC_CHECK
1060 allocated_mem_type = type;
1061 #endif
1062
1063 val = lmalloc (nbytes);
1064
1065 #if ! USE_LSB_TAG
1066 /* If the memory just allocated cannot be addressed thru a Lisp
1067 object's pointer, and it needs to be,
1068 that's equivalent to running out of memory. */
1069 if (val && type != MEM_TYPE_NON_LISP)
1070 {
1071 Lisp_Object tem;
1072 XSETCONS (tem, (char *) val + nbytes - 1);
1073 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1074 {
1075 lisp_malloc_loser = val;
1076 free (val);
1077 val = 0;
1078 }
1079 }
1080 #endif
1081
1082 #ifndef GC_MALLOC_CHECK
1083 if (val && type != MEM_TYPE_NON_LISP)
1084 mem_insert (val, (char *) val + nbytes, type);
1085 #endif
1086
1087 MALLOC_UNBLOCK_INPUT;
1088 if (!val && nbytes)
1089 memory_full (nbytes);
1090 MALLOC_PROBE (nbytes);
1091 return val;
1092 }
1093
1094 /* Free BLOCK. This must be called to free memory allocated with a
1095 call to lisp_malloc. */
1096
1097 static void
1098 lisp_free (void *block)
1099 {
1100 MALLOC_BLOCK_INPUT;
1101 free (block);
1102 #ifndef GC_MALLOC_CHECK
1103 mem_delete (mem_find (block));
1104 #endif
1105 MALLOC_UNBLOCK_INPUT;
1106 }
1107
1108 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1109
1110 /* The entry point is lisp_align_malloc which returns blocks of at most
1111 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1112
1113 /* Use aligned_alloc if it or a simple substitute is available.
1114 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1115 clang 3.3 anyway. Aligned allocation is incompatible with
1116 unexmacosx.c, so don't use it on Darwin. */
1117
1118 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1119 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1120 # define USE_ALIGNED_ALLOC 1
1121 # ifndef HAVE_ALIGNED_ALLOC
1122 /* Defined in gmalloc.c. */
1123 void *aligned_alloc (size_t, size_t);
1124 # endif
1125 # elif defined HYBRID_MALLOC
1126 # if defined HAVE_ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1127 # define USE_ALIGNED_ALLOC 1
1128 # define aligned_alloc hybrid_aligned_alloc
1129 /* Defined in gmalloc.c. */
1130 void *aligned_alloc (size_t, size_t);
1131 # endif
1132 # elif defined HAVE_ALIGNED_ALLOC
1133 # define USE_ALIGNED_ALLOC 1
1134 # elif defined HAVE_POSIX_MEMALIGN
1135 # define USE_ALIGNED_ALLOC 1
1136 static void *
1137 aligned_alloc (size_t alignment, size_t size)
1138 {
1139 void *p;
1140 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1141 }
1142 # endif
1143 #endif
1144
1145 /* BLOCK_ALIGN has to be a power of 2. */
1146 #define BLOCK_ALIGN (1 << 10)
1147
1148 /* Padding to leave at the end of a malloc'd block. This is to give
1149 malloc a chance to minimize the amount of memory wasted to alignment.
1150 It should be tuned to the particular malloc library used.
1151 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1152 aligned_alloc on the other hand would ideally prefer a value of 4
1153 because otherwise, there's 1020 bytes wasted between each ablocks.
1154 In Emacs, testing shows that those 1020 can most of the time be
1155 efficiently used by malloc to place other objects, so a value of 0 can
1156 still preferable unless you have a lot of aligned blocks and virtually
1157 nothing else. */
1158 #define BLOCK_PADDING 0
1159 #define BLOCK_BYTES \
1160 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1161
1162 /* Internal data structures and constants. */
1163
1164 #define ABLOCKS_SIZE 16
1165
1166 /* An aligned block of memory. */
1167 struct ablock
1168 {
1169 union
1170 {
1171 char payload[BLOCK_BYTES];
1172 struct ablock *next_free;
1173 } x;
1174 /* `abase' is the aligned base of the ablocks. */
1175 /* It is overloaded to hold the virtual `busy' field that counts
1176 the number of used ablock in the parent ablocks.
1177 The first ablock has the `busy' field, the others have the `abase'
1178 field. To tell the difference, we assume that pointers will have
1179 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1180 is used to tell whether the real base of the parent ablocks is `abase'
1181 (if not, the word before the first ablock holds a pointer to the
1182 real base). */
1183 struct ablocks *abase;
1184 /* The padding of all but the last ablock is unused. The padding of
1185 the last ablock in an ablocks is not allocated. */
1186 #if BLOCK_PADDING
1187 char padding[BLOCK_PADDING];
1188 #endif
1189 };
1190
1191 /* A bunch of consecutive aligned blocks. */
1192 struct ablocks
1193 {
1194 struct ablock blocks[ABLOCKS_SIZE];
1195 };
1196
1197 /* Size of the block requested from malloc or aligned_alloc. */
1198 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1199
1200 #define ABLOCK_ABASE(block) \
1201 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1202 ? (struct ablocks *)(block) \
1203 : (block)->abase)
1204
1205 /* Virtual `busy' field. */
1206 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1207
1208 /* Pointer to the (not necessarily aligned) malloc block. */
1209 #ifdef USE_ALIGNED_ALLOC
1210 #define ABLOCKS_BASE(abase) (abase)
1211 #else
1212 #define ABLOCKS_BASE(abase) \
1213 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1214 #endif
1215
1216 /* The list of free ablock. */
1217 static struct ablock *free_ablock;
1218
1219 /* Allocate an aligned block of nbytes.
1220 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1221 smaller or equal to BLOCK_BYTES. */
1222 static void *
1223 lisp_align_malloc (size_t nbytes, enum mem_type type)
1224 {
1225 void *base, *val;
1226 struct ablocks *abase;
1227
1228 eassert (nbytes <= BLOCK_BYTES);
1229
1230 MALLOC_BLOCK_INPUT;
1231
1232 #ifdef GC_MALLOC_CHECK
1233 allocated_mem_type = type;
1234 #endif
1235
1236 if (!free_ablock)
1237 {
1238 int i;
1239 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1240
1241 #ifdef DOUG_LEA_MALLOC
1242 if (!mmap_lisp_allowed_p ())
1243 mallopt (M_MMAP_MAX, 0);
1244 #endif
1245
1246 #ifdef USE_ALIGNED_ALLOC
1247 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1248 #else
1249 base = malloc (ABLOCKS_BYTES);
1250 abase = ALIGN (base, BLOCK_ALIGN);
1251 #endif
1252
1253 if (base == 0)
1254 {
1255 MALLOC_UNBLOCK_INPUT;
1256 memory_full (ABLOCKS_BYTES);
1257 }
1258
1259 aligned = (base == abase);
1260 if (!aligned)
1261 ((void **) abase)[-1] = base;
1262
1263 #ifdef DOUG_LEA_MALLOC
1264 if (!mmap_lisp_allowed_p ())
1265 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1266 #endif
1267
1268 #if ! USE_LSB_TAG
1269 /* If the memory just allocated cannot be addressed thru a Lisp
1270 object's pointer, and it needs to be, that's equivalent to
1271 running out of memory. */
1272 if (type != MEM_TYPE_NON_LISP)
1273 {
1274 Lisp_Object tem;
1275 char *end = (char *) base + ABLOCKS_BYTES - 1;
1276 XSETCONS (tem, end);
1277 if ((char *) XCONS (tem) != end)
1278 {
1279 lisp_malloc_loser = base;
1280 free (base);
1281 MALLOC_UNBLOCK_INPUT;
1282 memory_full (SIZE_MAX);
1283 }
1284 }
1285 #endif
1286
1287 /* Initialize the blocks and put them on the free list.
1288 If `base' was not properly aligned, we can't use the last block. */
1289 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1290 {
1291 abase->blocks[i].abase = abase;
1292 abase->blocks[i].x.next_free = free_ablock;
1293 free_ablock = &abase->blocks[i];
1294 }
1295 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1296
1297 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1298 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1299 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1300 eassert (ABLOCKS_BASE (abase) == base);
1301 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1302 }
1303
1304 abase = ABLOCK_ABASE (free_ablock);
1305 ABLOCKS_BUSY (abase)
1306 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1307 val = free_ablock;
1308 free_ablock = free_ablock->x.next_free;
1309
1310 #ifndef GC_MALLOC_CHECK
1311 if (type != MEM_TYPE_NON_LISP)
1312 mem_insert (val, (char *) val + nbytes, type);
1313 #endif
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 MALLOC_PROBE (nbytes);
1318
1319 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1320 return val;
1321 }
1322
1323 static void
1324 lisp_align_free (void *block)
1325 {
1326 struct ablock *ablock = block;
1327 struct ablocks *abase = ABLOCK_ABASE (ablock);
1328
1329 MALLOC_BLOCK_INPUT;
1330 #ifndef GC_MALLOC_CHECK
1331 mem_delete (mem_find (block));
1332 #endif
1333 /* Put on free list. */
1334 ablock->x.next_free = free_ablock;
1335 free_ablock = ablock;
1336 /* Update busy count. */
1337 ABLOCKS_BUSY (abase)
1338 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1339
1340 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1341 { /* All the blocks are free. */
1342 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1343 struct ablock **tem = &free_ablock;
1344 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1345
1346 while (*tem)
1347 {
1348 if (*tem >= (struct ablock *) abase && *tem < atop)
1349 {
1350 i++;
1351 *tem = (*tem)->x.next_free;
1352 }
1353 else
1354 tem = &(*tem)->x.next_free;
1355 }
1356 eassert ((aligned & 1) == aligned);
1357 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1358 #ifdef USE_POSIX_MEMALIGN
1359 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1360 #endif
1361 free (ABLOCKS_BASE (abase));
1362 }
1363 MALLOC_UNBLOCK_INPUT;
1364 }
1365
1366 #if !defined __GNUC__ && !defined __alignof__
1367 # define __alignof__(type) alignof (type)
1368 #endif
1369
1370 /* True if malloc returns a multiple of GCALIGNMENT. In practice this
1371 holds if __alignof__ (max_align_t) is a multiple. Use __alignof__
1372 if available, as otherwise this check would fail with GCC x86.
1373 This is a macro, not an enum constant, for portability to HP-UX
1374 10.20 cc and AIX 3.2.5 xlc. */
1375 #define MALLOC_IS_GC_ALIGNED (__alignof__ (max_align_t) % GCALIGNMENT == 0)
1376
1377 /* True if P is suitably aligned for SIZE, where Lisp alignment may be
1378 needed if SIZE is Lisp-aligned. */
1379
1380 static bool
1381 laligned (void *p, size_t size)
1382 {
1383 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1384 || size % GCALIGNMENT != 0);
1385 }
1386
1387 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1388 sure the result is too, if necessary by reallocating (typically
1389 with larger and larger sizes) until the allocator returns a
1390 Lisp-aligned pointer. Code that needs to allocate C heap memory
1391 for a Lisp object should use one of these functions to obtain a
1392 pointer P; that way, if T is an enum Lisp_Type value and L ==
1393 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1394
1395 On typical modern platforms these functions' loops do not iterate.
1396 On now-rare (and perhaps nonexistent) platforms, the loops in
1397 theory could repeat forever. If an infinite loop is possible on a
1398 platform, a build would surely loop and the builder can then send
1399 us a bug report. Adding a counter to try to detect any such loop
1400 would complicate the code (and possibly introduce bugs, in code
1401 that's never really exercised) for little benefit. */
1402
1403 static void *
1404 lmalloc (size_t size)
1405 {
1406 #if USE_ALIGNED_ALLOC
1407 if (! MALLOC_IS_GC_ALIGNED)
1408 return aligned_alloc (GCALIGNMENT, size);
1409 #endif
1410
1411 void *p;
1412 while (true)
1413 {
1414 p = malloc (size);
1415 if (laligned (p, size))
1416 break;
1417 free (p);
1418 size_t bigger;
1419 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1420 size = bigger;
1421 }
1422
1423 eassert ((intptr_t) p % GCALIGNMENT == 0);
1424 return p;
1425 }
1426
1427 static void *
1428 lrealloc (void *p, size_t size)
1429 {
1430 while (true)
1431 {
1432 p = realloc (p, size);
1433 if (laligned (p, size))
1434 break;
1435 size_t bigger;
1436 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1437 size = bigger;
1438 }
1439
1440 eassert ((intptr_t) p % GCALIGNMENT == 0);
1441 return p;
1442 }
1443
1444 \f
1445 /***********************************************************************
1446 Interval Allocation
1447 ***********************************************************************/
1448
1449 /* Number of intervals allocated in an interval_block structure.
1450 The 1020 is 1024 minus malloc overhead. */
1451
1452 #define INTERVAL_BLOCK_SIZE \
1453 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1454
1455 /* Intervals are allocated in chunks in the form of an interval_block
1456 structure. */
1457
1458 struct interval_block
1459 {
1460 /* Place `intervals' first, to preserve alignment. */
1461 struct interval intervals[INTERVAL_BLOCK_SIZE];
1462 struct interval_block *next;
1463 };
1464
1465 /* Current interval block. Its `next' pointer points to older
1466 blocks. */
1467
1468 static struct interval_block *interval_block;
1469
1470 /* Index in interval_block above of the next unused interval
1471 structure. */
1472
1473 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1474
1475 /* Number of free and live intervals. */
1476
1477 static EMACS_INT total_free_intervals, total_intervals;
1478
1479 /* List of free intervals. */
1480
1481 static INTERVAL interval_free_list;
1482
1483 /* Return a new interval. */
1484
1485 INTERVAL
1486 make_interval (void)
1487 {
1488 INTERVAL val;
1489
1490 MALLOC_BLOCK_INPUT;
1491
1492 if (interval_free_list)
1493 {
1494 val = interval_free_list;
1495 interval_free_list = INTERVAL_PARENT (interval_free_list);
1496 }
1497 else
1498 {
1499 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1500 {
1501 struct interval_block *newi
1502 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1503
1504 newi->next = interval_block;
1505 interval_block = newi;
1506 interval_block_index = 0;
1507 total_free_intervals += INTERVAL_BLOCK_SIZE;
1508 }
1509 val = &interval_block->intervals[interval_block_index++];
1510 }
1511
1512 MALLOC_UNBLOCK_INPUT;
1513
1514 consing_since_gc += sizeof (struct interval);
1515 intervals_consed++;
1516 total_free_intervals--;
1517 RESET_INTERVAL (val);
1518 val->gcmarkbit = 0;
1519 return val;
1520 }
1521
1522
1523 /* Mark Lisp objects in interval I. */
1524
1525 static void
1526 mark_interval (register INTERVAL i, Lisp_Object dummy)
1527 {
1528 /* Intervals should never be shared. So, if extra internal checking is
1529 enabled, GC aborts if it seems to have visited an interval twice. */
1530 eassert (!i->gcmarkbit);
1531 i->gcmarkbit = 1;
1532 mark_object (i->plist);
1533 }
1534
1535 /* Mark the interval tree rooted in I. */
1536
1537 #define MARK_INTERVAL_TREE(i) \
1538 do { \
1539 if (i && !i->gcmarkbit) \
1540 traverse_intervals_noorder (i, mark_interval, Qnil); \
1541 } while (0)
1542
1543 /***********************************************************************
1544 String Allocation
1545 ***********************************************************************/
1546
1547 /* Lisp_Strings are allocated in string_block structures. When a new
1548 string_block is allocated, all the Lisp_Strings it contains are
1549 added to a free-list string_free_list. When a new Lisp_String is
1550 needed, it is taken from that list. During the sweep phase of GC,
1551 string_blocks that are entirely free are freed, except two which
1552 we keep.
1553
1554 String data is allocated from sblock structures. Strings larger
1555 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1556 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1557
1558 Sblocks consist internally of sdata structures, one for each
1559 Lisp_String. The sdata structure points to the Lisp_String it
1560 belongs to. The Lisp_String points back to the `u.data' member of
1561 its sdata structure.
1562
1563 When a Lisp_String is freed during GC, it is put back on
1564 string_free_list, and its `data' member and its sdata's `string'
1565 pointer is set to null. The size of the string is recorded in the
1566 `n.nbytes' member of the sdata. So, sdata structures that are no
1567 longer used, can be easily recognized, and it's easy to compact the
1568 sblocks of small strings which we do in compact_small_strings. */
1569
1570 /* Size in bytes of an sblock structure used for small strings. This
1571 is 8192 minus malloc overhead. */
1572
1573 #define SBLOCK_SIZE 8188
1574
1575 /* Strings larger than this are considered large strings. String data
1576 for large strings is allocated from individual sblocks. */
1577
1578 #define LARGE_STRING_BYTES 1024
1579
1580 /* The SDATA typedef is a struct or union describing string memory
1581 sub-allocated from an sblock. This is where the contents of Lisp
1582 strings are stored. */
1583
1584 struct sdata
1585 {
1586 /* Back-pointer to the string this sdata belongs to. If null, this
1587 structure is free, and NBYTES (in this structure or in the union below)
1588 contains the string's byte size (the same value that STRING_BYTES
1589 would return if STRING were non-null). If non-null, STRING_BYTES
1590 (STRING) is the size of the data, and DATA contains the string's
1591 contents. */
1592 struct Lisp_String *string;
1593
1594 #ifdef GC_CHECK_STRING_BYTES
1595 ptrdiff_t nbytes;
1596 #endif
1597
1598 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1599 };
1600
1601 #ifdef GC_CHECK_STRING_BYTES
1602
1603 typedef struct sdata sdata;
1604 #define SDATA_NBYTES(S) (S)->nbytes
1605 #define SDATA_DATA(S) (S)->data
1606
1607 #else
1608
1609 typedef union
1610 {
1611 struct Lisp_String *string;
1612
1613 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1614 which has a flexible array member. However, if implemented by
1615 giving this union a member of type 'struct sdata', the union
1616 could not be the last (flexible) member of 'struct sblock',
1617 because C99 prohibits a flexible array member from having a type
1618 that is itself a flexible array. So, comment this member out here,
1619 but remember that the option's there when using this union. */
1620 #if 0
1621 struct sdata u;
1622 #endif
1623
1624 /* When STRING is null. */
1625 struct
1626 {
1627 struct Lisp_String *string;
1628 ptrdiff_t nbytes;
1629 } n;
1630 } sdata;
1631
1632 #define SDATA_NBYTES(S) (S)->n.nbytes
1633 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1634
1635 #endif /* not GC_CHECK_STRING_BYTES */
1636
1637 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1638
1639 /* Structure describing a block of memory which is sub-allocated to
1640 obtain string data memory for strings. Blocks for small strings
1641 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1642 as large as needed. */
1643
1644 struct sblock
1645 {
1646 /* Next in list. */
1647 struct sblock *next;
1648
1649 /* Pointer to the next free sdata block. This points past the end
1650 of the sblock if there isn't any space left in this block. */
1651 sdata *next_free;
1652
1653 /* String data. */
1654 sdata data[FLEXIBLE_ARRAY_MEMBER];
1655 };
1656
1657 /* Number of Lisp strings in a string_block structure. The 1020 is
1658 1024 minus malloc overhead. */
1659
1660 #define STRING_BLOCK_SIZE \
1661 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1662
1663 /* Structure describing a block from which Lisp_String structures
1664 are allocated. */
1665
1666 struct string_block
1667 {
1668 /* Place `strings' first, to preserve alignment. */
1669 struct Lisp_String strings[STRING_BLOCK_SIZE];
1670 struct string_block *next;
1671 };
1672
1673 /* Head and tail of the list of sblock structures holding Lisp string
1674 data. We always allocate from current_sblock. The NEXT pointers
1675 in the sblock structures go from oldest_sblock to current_sblock. */
1676
1677 static struct sblock *oldest_sblock, *current_sblock;
1678
1679 /* List of sblocks for large strings. */
1680
1681 static struct sblock *large_sblocks;
1682
1683 /* List of string_block structures. */
1684
1685 static struct string_block *string_blocks;
1686
1687 /* Free-list of Lisp_Strings. */
1688
1689 static struct Lisp_String *string_free_list;
1690
1691 /* Number of live and free Lisp_Strings. */
1692
1693 static EMACS_INT total_strings, total_free_strings;
1694
1695 /* Number of bytes used by live strings. */
1696
1697 static EMACS_INT total_string_bytes;
1698
1699 /* Given a pointer to a Lisp_String S which is on the free-list
1700 string_free_list, return a pointer to its successor in the
1701 free-list. */
1702
1703 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1704
1705 /* Return a pointer to the sdata structure belonging to Lisp string S.
1706 S must be live, i.e. S->data must not be null. S->data is actually
1707 a pointer to the `u.data' member of its sdata structure; the
1708 structure starts at a constant offset in front of that. */
1709
1710 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1711
1712
1713 #ifdef GC_CHECK_STRING_OVERRUN
1714
1715 /* We check for overrun in string data blocks by appending a small
1716 "cookie" after each allocated string data block, and check for the
1717 presence of this cookie during GC. */
1718
1719 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1720 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1721 { '\xde', '\xad', '\xbe', '\xef' };
1722
1723 #else
1724 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1725 #endif
1726
1727 /* Value is the size of an sdata structure large enough to hold NBYTES
1728 bytes of string data. The value returned includes a terminating
1729 NUL byte, the size of the sdata structure, and padding. */
1730
1731 #ifdef GC_CHECK_STRING_BYTES
1732
1733 #define SDATA_SIZE(NBYTES) \
1734 ((SDATA_DATA_OFFSET \
1735 + (NBYTES) + 1 \
1736 + sizeof (ptrdiff_t) - 1) \
1737 & ~(sizeof (ptrdiff_t) - 1))
1738
1739 #else /* not GC_CHECK_STRING_BYTES */
1740
1741 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1742 less than the size of that member. The 'max' is not needed when
1743 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1744 alignment code reserves enough space. */
1745
1746 #define SDATA_SIZE(NBYTES) \
1747 ((SDATA_DATA_OFFSET \
1748 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1749 ? NBYTES \
1750 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1751 + 1 \
1752 + sizeof (ptrdiff_t) - 1) \
1753 & ~(sizeof (ptrdiff_t) - 1))
1754
1755 #endif /* not GC_CHECK_STRING_BYTES */
1756
1757 /* Extra bytes to allocate for each string. */
1758
1759 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1760
1761 /* Exact bound on the number of bytes in a string, not counting the
1762 terminating null. A string cannot contain more bytes than
1763 STRING_BYTES_BOUND, nor can it be so long that the size_t
1764 arithmetic in allocate_string_data would overflow while it is
1765 calculating a value to be passed to malloc. */
1766 static ptrdiff_t const STRING_BYTES_MAX =
1767 min (STRING_BYTES_BOUND,
1768 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1769 - GC_STRING_EXTRA
1770 - offsetof (struct sblock, data)
1771 - SDATA_DATA_OFFSET)
1772 & ~(sizeof (EMACS_INT) - 1)));
1773
1774 /* Initialize string allocation. Called from init_alloc_once. */
1775
1776 static void
1777 init_strings (void)
1778 {
1779 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1780 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1781 }
1782
1783
1784 #ifdef GC_CHECK_STRING_BYTES
1785
1786 static int check_string_bytes_count;
1787
1788 /* Like STRING_BYTES, but with debugging check. Can be
1789 called during GC, so pay attention to the mark bit. */
1790
1791 ptrdiff_t
1792 string_bytes (struct Lisp_String *s)
1793 {
1794 ptrdiff_t nbytes =
1795 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1796
1797 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1798 emacs_abort ();
1799 return nbytes;
1800 }
1801
1802 /* Check validity of Lisp strings' string_bytes member in B. */
1803
1804 static void
1805 check_sblock (struct sblock *b)
1806 {
1807 sdata *from, *end, *from_end;
1808
1809 end = b->next_free;
1810
1811 for (from = b->data; from < end; from = from_end)
1812 {
1813 /* Compute the next FROM here because copying below may
1814 overwrite data we need to compute it. */
1815 ptrdiff_t nbytes;
1816
1817 /* Check that the string size recorded in the string is the
1818 same as the one recorded in the sdata structure. */
1819 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1820 : SDATA_NBYTES (from));
1821 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1822 }
1823 }
1824
1825
1826 /* Check validity of Lisp strings' string_bytes member. ALL_P
1827 means check all strings, otherwise check only most
1828 recently allocated strings. Used for hunting a bug. */
1829
1830 static void
1831 check_string_bytes (bool all_p)
1832 {
1833 if (all_p)
1834 {
1835 struct sblock *b;
1836
1837 for (b = large_sblocks; b; b = b->next)
1838 {
1839 struct Lisp_String *s = b->data[0].string;
1840 if (s)
1841 string_bytes (s);
1842 }
1843
1844 for (b = oldest_sblock; b; b = b->next)
1845 check_sblock (b);
1846 }
1847 else if (current_sblock)
1848 check_sblock (current_sblock);
1849 }
1850
1851 #else /* not GC_CHECK_STRING_BYTES */
1852
1853 #define check_string_bytes(all) ((void) 0)
1854
1855 #endif /* GC_CHECK_STRING_BYTES */
1856
1857 #ifdef GC_CHECK_STRING_FREE_LIST
1858
1859 /* Walk through the string free list looking for bogus next pointers.
1860 This may catch buffer overrun from a previous string. */
1861
1862 static void
1863 check_string_free_list (void)
1864 {
1865 struct Lisp_String *s;
1866
1867 /* Pop a Lisp_String off the free-list. */
1868 s = string_free_list;
1869 while (s != NULL)
1870 {
1871 if ((uintptr_t) s < 1024)
1872 emacs_abort ();
1873 s = NEXT_FREE_LISP_STRING (s);
1874 }
1875 }
1876 #else
1877 #define check_string_free_list()
1878 #endif
1879
1880 /* Return a new Lisp_String. */
1881
1882 static struct Lisp_String *
1883 allocate_string (void)
1884 {
1885 struct Lisp_String *s;
1886
1887 MALLOC_BLOCK_INPUT;
1888
1889 /* If the free-list is empty, allocate a new string_block, and
1890 add all the Lisp_Strings in it to the free-list. */
1891 if (string_free_list == NULL)
1892 {
1893 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1894 int i;
1895
1896 b->next = string_blocks;
1897 string_blocks = b;
1898
1899 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1900 {
1901 s = b->strings + i;
1902 /* Every string on a free list should have NULL data pointer. */
1903 s->data = NULL;
1904 NEXT_FREE_LISP_STRING (s) = string_free_list;
1905 string_free_list = s;
1906 }
1907
1908 total_free_strings += STRING_BLOCK_SIZE;
1909 }
1910
1911 check_string_free_list ();
1912
1913 /* Pop a Lisp_String off the free-list. */
1914 s = string_free_list;
1915 string_free_list = NEXT_FREE_LISP_STRING (s);
1916
1917 MALLOC_UNBLOCK_INPUT;
1918
1919 --total_free_strings;
1920 ++total_strings;
1921 ++strings_consed;
1922 consing_since_gc += sizeof *s;
1923
1924 #ifdef GC_CHECK_STRING_BYTES
1925 if (!noninteractive)
1926 {
1927 if (++check_string_bytes_count == 200)
1928 {
1929 check_string_bytes_count = 0;
1930 check_string_bytes (1);
1931 }
1932 else
1933 check_string_bytes (0);
1934 }
1935 #endif /* GC_CHECK_STRING_BYTES */
1936
1937 return s;
1938 }
1939
1940
1941 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1942 plus a NUL byte at the end. Allocate an sdata structure for S, and
1943 set S->data to its `u.data' member. Store a NUL byte at the end of
1944 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1945 S->data if it was initially non-null. */
1946
1947 void
1948 allocate_string_data (struct Lisp_String *s,
1949 EMACS_INT nchars, EMACS_INT nbytes)
1950 {
1951 sdata *data, *old_data;
1952 struct sblock *b;
1953 ptrdiff_t needed, old_nbytes;
1954
1955 if (STRING_BYTES_MAX < nbytes)
1956 string_overflow ();
1957
1958 /* Determine the number of bytes needed to store NBYTES bytes
1959 of string data. */
1960 needed = SDATA_SIZE (nbytes);
1961 if (s->data)
1962 {
1963 old_data = SDATA_OF_STRING (s);
1964 old_nbytes = STRING_BYTES (s);
1965 }
1966 else
1967 old_data = NULL;
1968
1969 MALLOC_BLOCK_INPUT;
1970
1971 if (nbytes > LARGE_STRING_BYTES)
1972 {
1973 size_t size = offsetof (struct sblock, data) + needed;
1974
1975 #ifdef DOUG_LEA_MALLOC
1976 if (!mmap_lisp_allowed_p ())
1977 mallopt (M_MMAP_MAX, 0);
1978 #endif
1979
1980 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1981
1982 #ifdef DOUG_LEA_MALLOC
1983 if (!mmap_lisp_allowed_p ())
1984 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1985 #endif
1986
1987 b->next_free = b->data;
1988 b->data[0].string = NULL;
1989 b->next = large_sblocks;
1990 large_sblocks = b;
1991 }
1992 else if (current_sblock == NULL
1993 || (((char *) current_sblock + SBLOCK_SIZE
1994 - (char *) current_sblock->next_free)
1995 < (needed + GC_STRING_EXTRA)))
1996 {
1997 /* Not enough room in the current sblock. */
1998 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1999 b->next_free = b->data;
2000 b->data[0].string = NULL;
2001 b->next = NULL;
2002
2003 if (current_sblock)
2004 current_sblock->next = b;
2005 else
2006 oldest_sblock = b;
2007 current_sblock = b;
2008 }
2009 else
2010 b = current_sblock;
2011
2012 data = b->next_free;
2013 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2014
2015 MALLOC_UNBLOCK_INPUT;
2016
2017 data->string = s;
2018 s->data = SDATA_DATA (data);
2019 #ifdef GC_CHECK_STRING_BYTES
2020 SDATA_NBYTES (data) = nbytes;
2021 #endif
2022 s->size = nchars;
2023 s->size_byte = nbytes;
2024 s->data[nbytes] = '\0';
2025 #ifdef GC_CHECK_STRING_OVERRUN
2026 memcpy ((char *) data + needed, string_overrun_cookie,
2027 GC_STRING_OVERRUN_COOKIE_SIZE);
2028 #endif
2029
2030 /* Note that Faset may call to this function when S has already data
2031 assigned. In this case, mark data as free by setting it's string
2032 back-pointer to null, and record the size of the data in it. */
2033 if (old_data)
2034 {
2035 SDATA_NBYTES (old_data) = old_nbytes;
2036 old_data->string = NULL;
2037 }
2038
2039 consing_since_gc += needed;
2040 }
2041
2042
2043 /* Sweep and compact strings. */
2044
2045 NO_INLINE /* For better stack traces */
2046 static void
2047 sweep_strings (void)
2048 {
2049 struct string_block *b, *next;
2050 struct string_block *live_blocks = NULL;
2051
2052 string_free_list = NULL;
2053 total_strings = total_free_strings = 0;
2054 total_string_bytes = 0;
2055
2056 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2057 for (b = string_blocks; b; b = next)
2058 {
2059 int i, nfree = 0;
2060 struct Lisp_String *free_list_before = string_free_list;
2061
2062 next = b->next;
2063
2064 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2065 {
2066 struct Lisp_String *s = b->strings + i;
2067
2068 if (s->data)
2069 {
2070 /* String was not on free-list before. */
2071 if (STRING_MARKED_P (s))
2072 {
2073 /* String is live; unmark it and its intervals. */
2074 UNMARK_STRING (s);
2075
2076 /* Do not use string_(set|get)_intervals here. */
2077 s->intervals = balance_intervals (s->intervals);
2078
2079 ++total_strings;
2080 total_string_bytes += STRING_BYTES (s);
2081 }
2082 else
2083 {
2084 /* String is dead. Put it on the free-list. */
2085 sdata *data = SDATA_OF_STRING (s);
2086
2087 /* Save the size of S in its sdata so that we know
2088 how large that is. Reset the sdata's string
2089 back-pointer so that we know it's free. */
2090 #ifdef GC_CHECK_STRING_BYTES
2091 if (string_bytes (s) != SDATA_NBYTES (data))
2092 emacs_abort ();
2093 #else
2094 data->n.nbytes = STRING_BYTES (s);
2095 #endif
2096 data->string = NULL;
2097
2098 /* Reset the strings's `data' member so that we
2099 know it's free. */
2100 s->data = NULL;
2101
2102 /* Put the string on the free-list. */
2103 NEXT_FREE_LISP_STRING (s) = string_free_list;
2104 string_free_list = s;
2105 ++nfree;
2106 }
2107 }
2108 else
2109 {
2110 /* S was on the free-list before. Put it there again. */
2111 NEXT_FREE_LISP_STRING (s) = string_free_list;
2112 string_free_list = s;
2113 ++nfree;
2114 }
2115 }
2116
2117 /* Free blocks that contain free Lisp_Strings only, except
2118 the first two of them. */
2119 if (nfree == STRING_BLOCK_SIZE
2120 && total_free_strings > STRING_BLOCK_SIZE)
2121 {
2122 lisp_free (b);
2123 string_free_list = free_list_before;
2124 }
2125 else
2126 {
2127 total_free_strings += nfree;
2128 b->next = live_blocks;
2129 live_blocks = b;
2130 }
2131 }
2132
2133 check_string_free_list ();
2134
2135 string_blocks = live_blocks;
2136 free_large_strings ();
2137 compact_small_strings ();
2138
2139 check_string_free_list ();
2140 }
2141
2142
2143 /* Free dead large strings. */
2144
2145 static void
2146 free_large_strings (void)
2147 {
2148 struct sblock *b, *next;
2149 struct sblock *live_blocks = NULL;
2150
2151 for (b = large_sblocks; b; b = next)
2152 {
2153 next = b->next;
2154
2155 if (b->data[0].string == NULL)
2156 lisp_free (b);
2157 else
2158 {
2159 b->next = live_blocks;
2160 live_blocks = b;
2161 }
2162 }
2163
2164 large_sblocks = live_blocks;
2165 }
2166
2167
2168 /* Compact data of small strings. Free sblocks that don't contain
2169 data of live strings after compaction. */
2170
2171 static void
2172 compact_small_strings (void)
2173 {
2174 struct sblock *b, *tb, *next;
2175 sdata *from, *to, *end, *tb_end;
2176 sdata *to_end, *from_end;
2177
2178 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2179 to, and TB_END is the end of TB. */
2180 tb = oldest_sblock;
2181 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2182 to = tb->data;
2183
2184 /* Step through the blocks from the oldest to the youngest. We
2185 expect that old blocks will stabilize over time, so that less
2186 copying will happen this way. */
2187 for (b = oldest_sblock; b; b = b->next)
2188 {
2189 end = b->next_free;
2190 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2191
2192 for (from = b->data; from < end; from = from_end)
2193 {
2194 /* Compute the next FROM here because copying below may
2195 overwrite data we need to compute it. */
2196 ptrdiff_t nbytes;
2197 struct Lisp_String *s = from->string;
2198
2199 #ifdef GC_CHECK_STRING_BYTES
2200 /* Check that the string size recorded in the string is the
2201 same as the one recorded in the sdata structure. */
2202 if (s && string_bytes (s) != SDATA_NBYTES (from))
2203 emacs_abort ();
2204 #endif /* GC_CHECK_STRING_BYTES */
2205
2206 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2207 eassert (nbytes <= LARGE_STRING_BYTES);
2208
2209 nbytes = SDATA_SIZE (nbytes);
2210 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2211
2212 #ifdef GC_CHECK_STRING_OVERRUN
2213 if (memcmp (string_overrun_cookie,
2214 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2215 GC_STRING_OVERRUN_COOKIE_SIZE))
2216 emacs_abort ();
2217 #endif
2218
2219 /* Non-NULL S means it's alive. Copy its data. */
2220 if (s)
2221 {
2222 /* If TB is full, proceed with the next sblock. */
2223 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2224 if (to_end > tb_end)
2225 {
2226 tb->next_free = to;
2227 tb = tb->next;
2228 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2229 to = tb->data;
2230 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2231 }
2232
2233 /* Copy, and update the string's `data' pointer. */
2234 if (from != to)
2235 {
2236 eassert (tb != b || to < from);
2237 memmove (to, from, nbytes + GC_STRING_EXTRA);
2238 to->string->data = SDATA_DATA (to);
2239 }
2240
2241 /* Advance past the sdata we copied to. */
2242 to = to_end;
2243 }
2244 }
2245 }
2246
2247 /* The rest of the sblocks following TB don't contain live data, so
2248 we can free them. */
2249 for (b = tb->next; b; b = next)
2250 {
2251 next = b->next;
2252 lisp_free (b);
2253 }
2254
2255 tb->next_free = to;
2256 tb->next = NULL;
2257 current_sblock = tb;
2258 }
2259
2260 void
2261 string_overflow (void)
2262 {
2263 error ("Maximum string size exceeded");
2264 }
2265
2266 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2267 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2268 LENGTH must be an integer.
2269 INIT must be an integer that represents a character. */)
2270 (Lisp_Object length, Lisp_Object init)
2271 {
2272 register Lisp_Object val;
2273 int c;
2274 EMACS_INT nbytes;
2275
2276 CHECK_NATNUM (length);
2277 CHECK_CHARACTER (init);
2278
2279 c = XFASTINT (init);
2280 if (ASCII_CHAR_P (c))
2281 {
2282 nbytes = XINT (length);
2283 val = make_uninit_string (nbytes);
2284 if (nbytes)
2285 {
2286 memset (SDATA (val), c, nbytes);
2287 SDATA (val)[nbytes] = 0;
2288 }
2289 }
2290 else
2291 {
2292 unsigned char str[MAX_MULTIBYTE_LENGTH];
2293 ptrdiff_t len = CHAR_STRING (c, str);
2294 EMACS_INT string_len = XINT (length);
2295 unsigned char *p, *beg, *end;
2296
2297 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2298 string_overflow ();
2299 val = make_uninit_multibyte_string (string_len, nbytes);
2300 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2301 {
2302 /* First time we just copy `str' to the data of `val'. */
2303 if (p == beg)
2304 memcpy (p, str, len);
2305 else
2306 {
2307 /* Next time we copy largest possible chunk from
2308 initialized to uninitialized part of `val'. */
2309 len = min (p - beg, end - p);
2310 memcpy (p, beg, len);
2311 }
2312 }
2313 if (nbytes)
2314 *p = 0;
2315 }
2316
2317 return val;
2318 }
2319
2320 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2321 Return A. */
2322
2323 Lisp_Object
2324 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2325 {
2326 EMACS_INT nbits = bool_vector_size (a);
2327 if (0 < nbits)
2328 {
2329 unsigned char *data = bool_vector_uchar_data (a);
2330 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2331 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2332 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2333 memset (data, pattern, nbytes - 1);
2334 data[nbytes - 1] = pattern & last_mask;
2335 }
2336 return a;
2337 }
2338
2339 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2340
2341 Lisp_Object
2342 make_uninit_bool_vector (EMACS_INT nbits)
2343 {
2344 Lisp_Object val;
2345 EMACS_INT words = bool_vector_words (nbits);
2346 EMACS_INT word_bytes = words * sizeof (bits_word);
2347 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2348 + word_size - 1)
2349 / word_size);
2350 struct Lisp_Bool_Vector *p
2351 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2352 XSETVECTOR (val, p);
2353 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2354 p->size = nbits;
2355
2356 /* Clear padding at the end. */
2357 if (words)
2358 p->data[words - 1] = 0;
2359
2360 return val;
2361 }
2362
2363 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2364 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2365 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2366 (Lisp_Object length, Lisp_Object init)
2367 {
2368 Lisp_Object val;
2369
2370 CHECK_NATNUM (length);
2371 val = make_uninit_bool_vector (XFASTINT (length));
2372 return bool_vector_fill (val, init);
2373 }
2374
2375 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2376 doc: /* Return a new bool-vector with specified arguments as elements.
2377 Any number of arguments, even zero arguments, are allowed.
2378 usage: (bool-vector &rest OBJECTS) */)
2379 (ptrdiff_t nargs, Lisp_Object *args)
2380 {
2381 ptrdiff_t i;
2382 Lisp_Object vector;
2383
2384 vector = make_uninit_bool_vector (nargs);
2385 for (i = 0; i < nargs; i++)
2386 bool_vector_set (vector, i, !NILP (args[i]));
2387
2388 return vector;
2389 }
2390
2391 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2392 of characters from the contents. This string may be unibyte or
2393 multibyte, depending on the contents. */
2394
2395 Lisp_Object
2396 make_string (const char *contents, ptrdiff_t nbytes)
2397 {
2398 register Lisp_Object val;
2399 ptrdiff_t nchars, multibyte_nbytes;
2400
2401 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2402 &nchars, &multibyte_nbytes);
2403 if (nbytes == nchars || nbytes != multibyte_nbytes)
2404 /* CONTENTS contains no multibyte sequences or contains an invalid
2405 multibyte sequence. We must make unibyte string. */
2406 val = make_unibyte_string (contents, nbytes);
2407 else
2408 val = make_multibyte_string (contents, nchars, nbytes);
2409 return val;
2410 }
2411
2412 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2413
2414 Lisp_Object
2415 make_unibyte_string (const char *contents, ptrdiff_t length)
2416 {
2417 register Lisp_Object val;
2418 val = make_uninit_string (length);
2419 memcpy (SDATA (val), contents, length);
2420 return val;
2421 }
2422
2423
2424 /* Make a multibyte string from NCHARS characters occupying NBYTES
2425 bytes at CONTENTS. */
2426
2427 Lisp_Object
2428 make_multibyte_string (const char *contents,
2429 ptrdiff_t nchars, ptrdiff_t nbytes)
2430 {
2431 register Lisp_Object val;
2432 val = make_uninit_multibyte_string (nchars, nbytes);
2433 memcpy (SDATA (val), contents, nbytes);
2434 return val;
2435 }
2436
2437
2438 /* Make a string from NCHARS characters occupying NBYTES bytes at
2439 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2440
2441 Lisp_Object
2442 make_string_from_bytes (const char *contents,
2443 ptrdiff_t nchars, ptrdiff_t nbytes)
2444 {
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
2447 memcpy (SDATA (val), contents, nbytes);
2448 if (SBYTES (val) == SCHARS (val))
2449 STRING_SET_UNIBYTE (val);
2450 return val;
2451 }
2452
2453
2454 /* Make a string from NCHARS characters occupying NBYTES bytes at
2455 CONTENTS. The argument MULTIBYTE controls whether to label the
2456 string as multibyte. If NCHARS is negative, it counts the number of
2457 characters by itself. */
2458
2459 Lisp_Object
2460 make_specified_string (const char *contents,
2461 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2462 {
2463 Lisp_Object val;
2464
2465 if (nchars < 0)
2466 {
2467 if (multibyte)
2468 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2469 nbytes);
2470 else
2471 nchars = nbytes;
2472 }
2473 val = make_uninit_multibyte_string (nchars, nbytes);
2474 memcpy (SDATA (val), contents, nbytes);
2475 if (!multibyte)
2476 STRING_SET_UNIBYTE (val);
2477 return val;
2478 }
2479
2480
2481 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2482 occupying LENGTH bytes. */
2483
2484 Lisp_Object
2485 make_uninit_string (EMACS_INT length)
2486 {
2487 Lisp_Object val;
2488
2489 if (!length)
2490 return empty_unibyte_string;
2491 val = make_uninit_multibyte_string (length, length);
2492 STRING_SET_UNIBYTE (val);
2493 return val;
2494 }
2495
2496
2497 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2498 which occupy NBYTES bytes. */
2499
2500 Lisp_Object
2501 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2502 {
2503 Lisp_Object string;
2504 struct Lisp_String *s;
2505
2506 if (nchars < 0)
2507 emacs_abort ();
2508 if (!nbytes)
2509 return empty_multibyte_string;
2510
2511 s = allocate_string ();
2512 s->intervals = NULL;
2513 allocate_string_data (s, nchars, nbytes);
2514 XSETSTRING (string, s);
2515 string_chars_consed += nbytes;
2516 return string;
2517 }
2518
2519 /* Print arguments to BUF according to a FORMAT, then return
2520 a Lisp_String initialized with the data from BUF. */
2521
2522 Lisp_Object
2523 make_formatted_string (char *buf, const char *format, ...)
2524 {
2525 va_list ap;
2526 int length;
2527
2528 va_start (ap, format);
2529 length = vsprintf (buf, format, ap);
2530 va_end (ap);
2531 return make_string (buf, length);
2532 }
2533
2534 \f
2535 /***********************************************************************
2536 Float Allocation
2537 ***********************************************************************/
2538
2539 /* We store float cells inside of float_blocks, allocating a new
2540 float_block with malloc whenever necessary. Float cells reclaimed
2541 by GC are put on a free list to be reallocated before allocating
2542 any new float cells from the latest float_block. */
2543
2544 #define FLOAT_BLOCK_SIZE \
2545 (((BLOCK_BYTES - sizeof (struct float_block *) \
2546 /* The compiler might add padding at the end. */ \
2547 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2548 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2549
2550 #define GETMARKBIT(block,n) \
2551 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2552 >> ((n) % BITS_PER_BITS_WORD)) \
2553 & 1)
2554
2555 #define SETMARKBIT(block,n) \
2556 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2557 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2558
2559 #define UNSETMARKBIT(block,n) \
2560 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2561 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2562
2563 #define FLOAT_BLOCK(fptr) \
2564 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2565
2566 #define FLOAT_INDEX(fptr) \
2567 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2568
2569 struct float_block
2570 {
2571 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2572 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2573 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2574 struct float_block *next;
2575 };
2576
2577 #define FLOAT_MARKED_P(fptr) \
2578 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2579
2580 #define FLOAT_MARK(fptr) \
2581 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2582
2583 #define FLOAT_UNMARK(fptr) \
2584 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2585
2586 /* Current float_block. */
2587
2588 static struct float_block *float_block;
2589
2590 /* Index of first unused Lisp_Float in the current float_block. */
2591
2592 static int float_block_index = FLOAT_BLOCK_SIZE;
2593
2594 /* Free-list of Lisp_Floats. */
2595
2596 static struct Lisp_Float *float_free_list;
2597
2598 /* Return a new float object with value FLOAT_VALUE. */
2599
2600 Lisp_Object
2601 make_float (double float_value)
2602 {
2603 register Lisp_Object val;
2604
2605 MALLOC_BLOCK_INPUT;
2606
2607 if (float_free_list)
2608 {
2609 /* We use the data field for chaining the free list
2610 so that we won't use the same field that has the mark bit. */
2611 XSETFLOAT (val, float_free_list);
2612 float_free_list = float_free_list->u.chain;
2613 }
2614 else
2615 {
2616 if (float_block_index == FLOAT_BLOCK_SIZE)
2617 {
2618 struct float_block *new
2619 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2620 new->next = float_block;
2621 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2622 float_block = new;
2623 float_block_index = 0;
2624 total_free_floats += FLOAT_BLOCK_SIZE;
2625 }
2626 XSETFLOAT (val, &float_block->floats[float_block_index]);
2627 float_block_index++;
2628 }
2629
2630 MALLOC_UNBLOCK_INPUT;
2631
2632 XFLOAT_INIT (val, float_value);
2633 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2634 consing_since_gc += sizeof (struct Lisp_Float);
2635 floats_consed++;
2636 total_free_floats--;
2637 return val;
2638 }
2639
2640
2641 \f
2642 /***********************************************************************
2643 Cons Allocation
2644 ***********************************************************************/
2645
2646 /* We store cons cells inside of cons_blocks, allocating a new
2647 cons_block with malloc whenever necessary. Cons cells reclaimed by
2648 GC are put on a free list to be reallocated before allocating
2649 any new cons cells from the latest cons_block. */
2650
2651 #define CONS_BLOCK_SIZE \
2652 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2653 /* The compiler might add padding at the end. */ \
2654 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2655 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2656
2657 #define CONS_BLOCK(fptr) \
2658 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2659
2660 #define CONS_INDEX(fptr) \
2661 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2662
2663 struct cons_block
2664 {
2665 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2666 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2667 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2668 struct cons_block *next;
2669 };
2670
2671 #define CONS_MARKED_P(fptr) \
2672 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2673
2674 #define CONS_MARK(fptr) \
2675 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2676
2677 #define CONS_UNMARK(fptr) \
2678 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2679
2680 /* Current cons_block. */
2681
2682 static struct cons_block *cons_block;
2683
2684 /* Index of first unused Lisp_Cons in the current block. */
2685
2686 static int cons_block_index = CONS_BLOCK_SIZE;
2687
2688 /* Free-list of Lisp_Cons structures. */
2689
2690 static struct Lisp_Cons *cons_free_list;
2691
2692 /* Explicitly free a cons cell by putting it on the free-list. */
2693
2694 void
2695 free_cons (struct Lisp_Cons *ptr)
2696 {
2697 ptr->u.chain = cons_free_list;
2698 ptr->car = Vdead;
2699 cons_free_list = ptr;
2700 consing_since_gc -= sizeof *ptr;
2701 total_free_conses++;
2702 }
2703
2704 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2705 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2706 (Lisp_Object car, Lisp_Object cdr)
2707 {
2708 register Lisp_Object val;
2709
2710 MALLOC_BLOCK_INPUT;
2711
2712 if (cons_free_list)
2713 {
2714 /* We use the cdr for chaining the free list
2715 so that we won't use the same field that has the mark bit. */
2716 XSETCONS (val, cons_free_list);
2717 cons_free_list = cons_free_list->u.chain;
2718 }
2719 else
2720 {
2721 if (cons_block_index == CONS_BLOCK_SIZE)
2722 {
2723 struct cons_block *new
2724 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2725 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2726 new->next = cons_block;
2727 cons_block = new;
2728 cons_block_index = 0;
2729 total_free_conses += CONS_BLOCK_SIZE;
2730 }
2731 XSETCONS (val, &cons_block->conses[cons_block_index]);
2732 cons_block_index++;
2733 }
2734
2735 MALLOC_UNBLOCK_INPUT;
2736
2737 XSETCAR (val, car);
2738 XSETCDR (val, cdr);
2739 eassert (!CONS_MARKED_P (XCONS (val)));
2740 consing_since_gc += sizeof (struct Lisp_Cons);
2741 total_free_conses--;
2742 cons_cells_consed++;
2743 return val;
2744 }
2745
2746 #ifdef GC_CHECK_CONS_LIST
2747 /* Get an error now if there's any junk in the cons free list. */
2748 void
2749 check_cons_list (void)
2750 {
2751 struct Lisp_Cons *tail = cons_free_list;
2752
2753 while (tail)
2754 tail = tail->u.chain;
2755 }
2756 #endif
2757
2758 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2759
2760 Lisp_Object
2761 list1 (Lisp_Object arg1)
2762 {
2763 return Fcons (arg1, Qnil);
2764 }
2765
2766 Lisp_Object
2767 list2 (Lisp_Object arg1, Lisp_Object arg2)
2768 {
2769 return Fcons (arg1, Fcons (arg2, Qnil));
2770 }
2771
2772
2773 Lisp_Object
2774 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2775 {
2776 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2777 }
2778
2779
2780 Lisp_Object
2781 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2782 {
2783 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2784 }
2785
2786
2787 Lisp_Object
2788 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2789 {
2790 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2791 Fcons (arg5, Qnil)))));
2792 }
2793
2794 /* Make a list of COUNT Lisp_Objects, where ARG is the
2795 first one. Allocate conses from pure space if TYPE
2796 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2797
2798 Lisp_Object
2799 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2800 {
2801 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2802 switch (type)
2803 {
2804 case CONSTYPE_PURE: cons = pure_cons; break;
2805 case CONSTYPE_HEAP: cons = Fcons; break;
2806 default: emacs_abort ();
2807 }
2808
2809 eassume (0 < count);
2810 Lisp_Object val = cons (arg, Qnil);
2811 Lisp_Object tail = val;
2812
2813 va_list ap;
2814 va_start (ap, arg);
2815 for (ptrdiff_t i = 1; i < count; i++)
2816 {
2817 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2818 XSETCDR (tail, elem);
2819 tail = elem;
2820 }
2821 va_end (ap);
2822
2823 return val;
2824 }
2825
2826 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2827 doc: /* Return a newly created list with specified arguments as elements.
2828 Any number of arguments, even zero arguments, are allowed.
2829 usage: (list &rest OBJECTS) */)
2830 (ptrdiff_t nargs, Lisp_Object *args)
2831 {
2832 register Lisp_Object val;
2833 val = Qnil;
2834
2835 while (nargs > 0)
2836 {
2837 nargs--;
2838 val = Fcons (args[nargs], val);
2839 }
2840 return val;
2841 }
2842
2843
2844 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2845 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2846 (register Lisp_Object length, Lisp_Object init)
2847 {
2848 register Lisp_Object val;
2849 register EMACS_INT size;
2850
2851 CHECK_NATNUM (length);
2852 size = XFASTINT (length);
2853
2854 val = Qnil;
2855 while (size > 0)
2856 {
2857 val = Fcons (init, val);
2858 --size;
2859
2860 if (size > 0)
2861 {
2862 val = Fcons (init, val);
2863 --size;
2864
2865 if (size > 0)
2866 {
2867 val = Fcons (init, val);
2868 --size;
2869
2870 if (size > 0)
2871 {
2872 val = Fcons (init, val);
2873 --size;
2874
2875 if (size > 0)
2876 {
2877 val = Fcons (init, val);
2878 --size;
2879 }
2880 }
2881 }
2882 }
2883
2884 QUIT;
2885 }
2886
2887 return val;
2888 }
2889
2890
2891 \f
2892 /***********************************************************************
2893 Vector Allocation
2894 ***********************************************************************/
2895
2896 /* Sometimes a vector's contents are merely a pointer internally used
2897 in vector allocation code. On the rare platforms where a null
2898 pointer cannot be tagged, represent it with a Lisp 0.
2899 Usually you don't want to touch this. */
2900
2901 static struct Lisp_Vector *
2902 next_vector (struct Lisp_Vector *v)
2903 {
2904 return XUNTAG (v->contents[0], Lisp_Int0);
2905 }
2906
2907 static void
2908 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2909 {
2910 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2911 }
2912
2913 /* This value is balanced well enough to avoid too much internal overhead
2914 for the most common cases; it's not required to be a power of two, but
2915 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2916
2917 #define VECTOR_BLOCK_SIZE 4096
2918
2919 enum
2920 {
2921 /* Alignment of struct Lisp_Vector objects. */
2922 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2923 GCALIGNMENT),
2924
2925 /* Vector size requests are a multiple of this. */
2926 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2927 };
2928
2929 /* Verify assumptions described above. */
2930 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2931 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2932
2933 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2934 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2935 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2936 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2937
2938 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2939
2940 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2941
2942 /* Size of the minimal vector allocated from block. */
2943
2944 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2945
2946 /* Size of the largest vector allocated from block. */
2947
2948 #define VBLOCK_BYTES_MAX \
2949 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2950
2951 /* We maintain one free list for each possible block-allocated
2952 vector size, and this is the number of free lists we have. */
2953
2954 #define VECTOR_MAX_FREE_LIST_INDEX \
2955 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2956
2957 /* Common shortcut to advance vector pointer over a block data. */
2958
2959 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2960
2961 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2962
2963 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2964
2965 /* Common shortcut to setup vector on a free list. */
2966
2967 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2968 do { \
2969 (tmp) = ((nbytes - header_size) / word_size); \
2970 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2971 eassert ((nbytes) % roundup_size == 0); \
2972 (tmp) = VINDEX (nbytes); \
2973 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2974 set_next_vector (v, vector_free_lists[tmp]); \
2975 vector_free_lists[tmp] = (v); \
2976 total_free_vector_slots += (nbytes) / word_size; \
2977 } while (0)
2978
2979 /* This internal type is used to maintain the list of large vectors
2980 which are allocated at their own, e.g. outside of vector blocks.
2981
2982 struct large_vector itself cannot contain a struct Lisp_Vector, as
2983 the latter contains a flexible array member and C99 does not allow
2984 such structs to be nested. Instead, each struct large_vector
2985 object LV is followed by a struct Lisp_Vector, which is at offset
2986 large_vector_offset from LV, and whose address is therefore
2987 large_vector_vec (&LV). */
2988
2989 struct large_vector
2990 {
2991 struct large_vector *next;
2992 };
2993
2994 enum
2995 {
2996 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2997 };
2998
2999 static struct Lisp_Vector *
3000 large_vector_vec (struct large_vector *p)
3001 {
3002 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3003 }
3004
3005 /* This internal type is used to maintain an underlying storage
3006 for small vectors. */
3007
3008 struct vector_block
3009 {
3010 char data[VECTOR_BLOCK_BYTES];
3011 struct vector_block *next;
3012 };
3013
3014 /* Chain of vector blocks. */
3015
3016 static struct vector_block *vector_blocks;
3017
3018 /* Vector free lists, where NTH item points to a chain of free
3019 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3020
3021 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3022
3023 /* Singly-linked list of large vectors. */
3024
3025 static struct large_vector *large_vectors;
3026
3027 /* The only vector with 0 slots, allocated from pure space. */
3028
3029 Lisp_Object zero_vector;
3030
3031 /* Number of live vectors. */
3032
3033 static EMACS_INT total_vectors;
3034
3035 /* Total size of live and free vectors, in Lisp_Object units. */
3036
3037 static EMACS_INT total_vector_slots, total_free_vector_slots;
3038
3039 /* Get a new vector block. */
3040
3041 static struct vector_block *
3042 allocate_vector_block (void)
3043 {
3044 struct vector_block *block = xmalloc (sizeof *block);
3045
3046 #ifndef GC_MALLOC_CHECK
3047 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3048 MEM_TYPE_VECTOR_BLOCK);
3049 #endif
3050
3051 block->next = vector_blocks;
3052 vector_blocks = block;
3053 return block;
3054 }
3055
3056 /* Called once to initialize vector allocation. */
3057
3058 static void
3059 init_vectors (void)
3060 {
3061 zero_vector = make_pure_vector (0);
3062 }
3063
3064 /* Allocate vector from a vector block. */
3065
3066 static struct Lisp_Vector *
3067 allocate_vector_from_block (size_t nbytes)
3068 {
3069 struct Lisp_Vector *vector;
3070 struct vector_block *block;
3071 size_t index, restbytes;
3072
3073 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3074 eassert (nbytes % roundup_size == 0);
3075
3076 /* First, try to allocate from a free list
3077 containing vectors of the requested size. */
3078 index = VINDEX (nbytes);
3079 if (vector_free_lists[index])
3080 {
3081 vector = vector_free_lists[index];
3082 vector_free_lists[index] = next_vector (vector);
3083 total_free_vector_slots -= nbytes / word_size;
3084 return vector;
3085 }
3086
3087 /* Next, check free lists containing larger vectors. Since
3088 we will split the result, we should have remaining space
3089 large enough to use for one-slot vector at least. */
3090 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3091 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3092 if (vector_free_lists[index])
3093 {
3094 /* This vector is larger than requested. */
3095 vector = vector_free_lists[index];
3096 vector_free_lists[index] = next_vector (vector);
3097 total_free_vector_slots -= nbytes / word_size;
3098
3099 /* Excess bytes are used for the smaller vector,
3100 which should be set on an appropriate free list. */
3101 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3102 eassert (restbytes % roundup_size == 0);
3103 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3104 return vector;
3105 }
3106
3107 /* Finally, need a new vector block. */
3108 block = allocate_vector_block ();
3109
3110 /* New vector will be at the beginning of this block. */
3111 vector = (struct Lisp_Vector *) block->data;
3112
3113 /* If the rest of space from this block is large enough
3114 for one-slot vector at least, set up it on a free list. */
3115 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3116 if (restbytes >= VBLOCK_BYTES_MIN)
3117 {
3118 eassert (restbytes % roundup_size == 0);
3119 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3120 }
3121 return vector;
3122 }
3123
3124 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3125
3126 #define VECTOR_IN_BLOCK(vector, block) \
3127 ((char *) (vector) <= (block)->data \
3128 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3129
3130 /* Return the memory footprint of V in bytes. */
3131
3132 static ptrdiff_t
3133 vector_nbytes (struct Lisp_Vector *v)
3134 {
3135 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3136 ptrdiff_t nwords;
3137
3138 if (size & PSEUDOVECTOR_FLAG)
3139 {
3140 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3141 {
3142 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3143 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3144 * sizeof (bits_word));
3145 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3146 verify (header_size <= bool_header_size);
3147 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3148 }
3149 else
3150 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3151 + ((size & PSEUDOVECTOR_REST_MASK)
3152 >> PSEUDOVECTOR_SIZE_BITS));
3153 }
3154 else
3155 nwords = size;
3156 return vroundup (header_size + word_size * nwords);
3157 }
3158
3159 /* Release extra resources still in use by VECTOR, which may be any
3160 vector-like object. For now, this is used just to free data in
3161 font objects. */
3162
3163 static void
3164 cleanup_vector (struct Lisp_Vector *vector)
3165 {
3166 detect_suspicious_free (vector);
3167 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3168 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3169 == FONT_OBJECT_MAX))
3170 {
3171 struct font_driver *drv = ((struct font *) vector)->driver;
3172
3173 /* The font driver might sometimes be NULL, e.g. if Emacs was
3174 interrupted before it had time to set it up. */
3175 if (drv)
3176 {
3177 /* Attempt to catch subtle bugs like Bug#16140. */
3178 eassert (valid_font_driver (drv));
3179 drv->close ((struct font *) vector);
3180 }
3181 }
3182 }
3183
3184 /* Reclaim space used by unmarked vectors. */
3185
3186 NO_INLINE /* For better stack traces */
3187 static void
3188 sweep_vectors (void)
3189 {
3190 struct vector_block *block, **bprev = &vector_blocks;
3191 struct large_vector *lv, **lvprev = &large_vectors;
3192 struct Lisp_Vector *vector, *next;
3193
3194 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3195 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3196
3197 /* Looking through vector blocks. */
3198
3199 for (block = vector_blocks; block; block = *bprev)
3200 {
3201 bool free_this_block = 0;
3202 ptrdiff_t nbytes;
3203
3204 for (vector = (struct Lisp_Vector *) block->data;
3205 VECTOR_IN_BLOCK (vector, block); vector = next)
3206 {
3207 if (VECTOR_MARKED_P (vector))
3208 {
3209 VECTOR_UNMARK (vector);
3210 total_vectors++;
3211 nbytes = vector_nbytes (vector);
3212 total_vector_slots += nbytes / word_size;
3213 next = ADVANCE (vector, nbytes);
3214 }
3215 else
3216 {
3217 ptrdiff_t total_bytes;
3218
3219 cleanup_vector (vector);
3220 nbytes = vector_nbytes (vector);
3221 total_bytes = nbytes;
3222 next = ADVANCE (vector, nbytes);
3223
3224 /* While NEXT is not marked, try to coalesce with VECTOR,
3225 thus making VECTOR of the largest possible size. */
3226
3227 while (VECTOR_IN_BLOCK (next, block))
3228 {
3229 if (VECTOR_MARKED_P (next))
3230 break;
3231 cleanup_vector (next);
3232 nbytes = vector_nbytes (next);
3233 total_bytes += nbytes;
3234 next = ADVANCE (next, nbytes);
3235 }
3236
3237 eassert (total_bytes % roundup_size == 0);
3238
3239 if (vector == (struct Lisp_Vector *) block->data
3240 && !VECTOR_IN_BLOCK (next, block))
3241 /* This block should be freed because all of its
3242 space was coalesced into the only free vector. */
3243 free_this_block = 1;
3244 else
3245 {
3246 size_t tmp;
3247 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3248 }
3249 }
3250 }
3251
3252 if (free_this_block)
3253 {
3254 *bprev = block->next;
3255 #ifndef GC_MALLOC_CHECK
3256 mem_delete (mem_find (block->data));
3257 #endif
3258 xfree (block);
3259 }
3260 else
3261 bprev = &block->next;
3262 }
3263
3264 /* Sweep large vectors. */
3265
3266 for (lv = large_vectors; lv; lv = *lvprev)
3267 {
3268 vector = large_vector_vec (lv);
3269 if (VECTOR_MARKED_P (vector))
3270 {
3271 VECTOR_UNMARK (vector);
3272 total_vectors++;
3273 if (vector->header.size & PSEUDOVECTOR_FLAG)
3274 {
3275 /* All non-bool pseudovectors are small enough to be allocated
3276 from vector blocks. This code should be redesigned if some
3277 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3278 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3279 total_vector_slots += vector_nbytes (vector) / word_size;
3280 }
3281 else
3282 total_vector_slots
3283 += header_size / word_size + vector->header.size;
3284 lvprev = &lv->next;
3285 }
3286 else
3287 {
3288 *lvprev = lv->next;
3289 lisp_free (lv);
3290 }
3291 }
3292 }
3293
3294 /* Value is a pointer to a newly allocated Lisp_Vector structure
3295 with room for LEN Lisp_Objects. */
3296
3297 static struct Lisp_Vector *
3298 allocate_vectorlike (ptrdiff_t len)
3299 {
3300 struct Lisp_Vector *p;
3301
3302 MALLOC_BLOCK_INPUT;
3303
3304 if (len == 0)
3305 p = XVECTOR (zero_vector);
3306 else
3307 {
3308 size_t nbytes = header_size + len * word_size;
3309
3310 #ifdef DOUG_LEA_MALLOC
3311 if (!mmap_lisp_allowed_p ())
3312 mallopt (M_MMAP_MAX, 0);
3313 #endif
3314
3315 if (nbytes <= VBLOCK_BYTES_MAX)
3316 p = allocate_vector_from_block (vroundup (nbytes));
3317 else
3318 {
3319 struct large_vector *lv
3320 = lisp_malloc ((large_vector_offset + header_size
3321 + len * word_size),
3322 MEM_TYPE_VECTORLIKE);
3323 lv->next = large_vectors;
3324 large_vectors = lv;
3325 p = large_vector_vec (lv);
3326 }
3327
3328 #ifdef DOUG_LEA_MALLOC
3329 if (!mmap_lisp_allowed_p ())
3330 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3331 #endif
3332
3333 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3334 emacs_abort ();
3335
3336 consing_since_gc += nbytes;
3337 vector_cells_consed += len;
3338 }
3339
3340 MALLOC_UNBLOCK_INPUT;
3341
3342 return p;
3343 }
3344
3345
3346 /* Allocate a vector with LEN slots. */
3347
3348 struct Lisp_Vector *
3349 allocate_vector (EMACS_INT len)
3350 {
3351 struct Lisp_Vector *v;
3352 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3353
3354 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3355 memory_full (SIZE_MAX);
3356 v = allocate_vectorlike (len);
3357 if (len)
3358 v->header.size = len;
3359 return v;
3360 }
3361
3362
3363 /* Allocate other vector-like structures. */
3364
3365 struct Lisp_Vector *
3366 allocate_pseudovector (int memlen, int lisplen,
3367 int zerolen, enum pvec_type tag)
3368 {
3369 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3370
3371 /* Catch bogus values. */
3372 eassert (0 <= tag && tag <= PVEC_FONT);
3373 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3374 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3375 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3376
3377 /* Only the first LISPLEN slots will be traced normally by the GC. */
3378 memclear (v->contents, zerolen * word_size);
3379 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3380 return v;
3381 }
3382
3383 struct buffer *
3384 allocate_buffer (void)
3385 {
3386 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3387
3388 BUFFER_PVEC_INIT (b);
3389 /* Put B on the chain of all buffers including killed ones. */
3390 b->next = all_buffers;
3391 all_buffers = b;
3392 /* Note that the rest fields of B are not initialized. */
3393 return b;
3394 }
3395
3396 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3397 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3398 See also the function `vector'. */)
3399 (register Lisp_Object length, Lisp_Object init)
3400 {
3401 Lisp_Object vector;
3402 register ptrdiff_t sizei;
3403 register ptrdiff_t i;
3404 register struct Lisp_Vector *p;
3405
3406 CHECK_NATNUM (length);
3407
3408 p = allocate_vector (XFASTINT (length));
3409 sizei = XFASTINT (length);
3410 for (i = 0; i < sizei; i++)
3411 p->contents[i] = init;
3412
3413 XSETVECTOR (vector, p);
3414 return vector;
3415 }
3416
3417 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3418 doc: /* Return a newly created vector with specified arguments as elements.
3419 Any number of arguments, even zero arguments, are allowed.
3420 usage: (vector &rest OBJECTS) */)
3421 (ptrdiff_t nargs, Lisp_Object *args)
3422 {
3423 ptrdiff_t i;
3424 register Lisp_Object val = make_uninit_vector (nargs);
3425 register struct Lisp_Vector *p = XVECTOR (val);
3426
3427 for (i = 0; i < nargs; i++)
3428 p->contents[i] = args[i];
3429 return val;
3430 }
3431
3432 void
3433 make_byte_code (struct Lisp_Vector *v)
3434 {
3435 /* Don't allow the global zero_vector to become a byte code object. */
3436 eassert (0 < v->header.size);
3437
3438 if (v->header.size > 1 && STRINGP (v->contents[1])
3439 && STRING_MULTIBYTE (v->contents[1]))
3440 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3441 earlier because they produced a raw 8-bit string for byte-code
3442 and now such a byte-code string is loaded as multibyte while
3443 raw 8-bit characters converted to multibyte form. Thus, now we
3444 must convert them back to the original unibyte form. */
3445 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3446 XSETPVECTYPE (v, PVEC_COMPILED);
3447 }
3448
3449 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3450 doc: /* Create a byte-code object with specified arguments as elements.
3451 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3452 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3453 and (optional) INTERACTIVE-SPEC.
3454 The first four arguments are required; at most six have any
3455 significance.
3456 The ARGLIST can be either like the one of `lambda', in which case the arguments
3457 will be dynamically bound before executing the byte code, or it can be an
3458 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3459 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3460 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3461 argument to catch the left-over arguments. If such an integer is used, the
3462 arguments will not be dynamically bound but will be instead pushed on the
3463 stack before executing the byte-code.
3464 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3465 (ptrdiff_t nargs, Lisp_Object *args)
3466 {
3467 ptrdiff_t i;
3468 register Lisp_Object val = make_uninit_vector (nargs);
3469 register struct Lisp_Vector *p = XVECTOR (val);
3470
3471 /* We used to purecopy everything here, if purify-flag was set. This worked
3472 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3473 dangerous, since make-byte-code is used during execution to build
3474 closures, so any closure built during the preload phase would end up
3475 copied into pure space, including its free variables, which is sometimes
3476 just wasteful and other times plainly wrong (e.g. those free vars may want
3477 to be setcar'd). */
3478
3479 for (i = 0; i < nargs; i++)
3480 p->contents[i] = args[i];
3481 make_byte_code (p);
3482 XSETCOMPILED (val, p);
3483 return val;
3484 }
3485
3486
3487 \f
3488 /***********************************************************************
3489 Symbol Allocation
3490 ***********************************************************************/
3491
3492 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3493 of the required alignment. */
3494
3495 union aligned_Lisp_Symbol
3496 {
3497 struct Lisp_Symbol s;
3498 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3499 & -GCALIGNMENT];
3500 };
3501
3502 /* Each symbol_block is just under 1020 bytes long, since malloc
3503 really allocates in units of powers of two and uses 4 bytes for its
3504 own overhead. */
3505
3506 #define SYMBOL_BLOCK_SIZE \
3507 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3508
3509 struct symbol_block
3510 {
3511 /* Place `symbols' first, to preserve alignment. */
3512 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3513 struct symbol_block *next;
3514 };
3515
3516 /* Current symbol block and index of first unused Lisp_Symbol
3517 structure in it. */
3518
3519 static struct symbol_block *symbol_block;
3520 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3521 /* Pointer to the first symbol_block that contains pinned symbols.
3522 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3523 10K of which are pinned (and all but 250 of them are interned in obarray),
3524 whereas a "typical session" has in the order of 30K symbols.
3525 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3526 than 30K to find the 10K symbols we need to mark. */
3527 static struct symbol_block *symbol_block_pinned;
3528
3529 /* List of free symbols. */
3530
3531 static struct Lisp_Symbol *symbol_free_list;
3532
3533 static void
3534 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3535 {
3536 XSYMBOL (sym)->name = name;
3537 }
3538
3539 void
3540 init_symbol (Lisp_Object val, Lisp_Object name)
3541 {
3542 struct Lisp_Symbol *p = XSYMBOL (val);
3543 set_symbol_name (val, name);
3544 set_symbol_plist (val, Qnil);
3545 p->redirect = SYMBOL_PLAINVAL;
3546 SET_SYMBOL_VAL (p, Qunbound);
3547 set_symbol_function (val, Qnil);
3548 set_symbol_next (val, NULL);
3549 p->gcmarkbit = false;
3550 p->interned = SYMBOL_UNINTERNED;
3551 p->constant = 0;
3552 p->declared_special = false;
3553 p->pinned = false;
3554 }
3555
3556 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3557 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3558 Its value is void, and its function definition and property list are nil. */)
3559 (Lisp_Object name)
3560 {
3561 Lisp_Object val;
3562
3563 CHECK_STRING (name);
3564
3565 MALLOC_BLOCK_INPUT;
3566
3567 if (symbol_free_list)
3568 {
3569 XSETSYMBOL (val, symbol_free_list);
3570 symbol_free_list = symbol_free_list->next;
3571 }
3572 else
3573 {
3574 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3575 {
3576 struct symbol_block *new
3577 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3578 new->next = symbol_block;
3579 symbol_block = new;
3580 symbol_block_index = 0;
3581 total_free_symbols += SYMBOL_BLOCK_SIZE;
3582 }
3583 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3584 symbol_block_index++;
3585 }
3586
3587 MALLOC_UNBLOCK_INPUT;
3588
3589 init_symbol (val, name);
3590 consing_since_gc += sizeof (struct Lisp_Symbol);
3591 symbols_consed++;
3592 total_free_symbols--;
3593 return val;
3594 }
3595
3596
3597 \f
3598 /***********************************************************************
3599 Marker (Misc) Allocation
3600 ***********************************************************************/
3601
3602 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3603 the required alignment. */
3604
3605 union aligned_Lisp_Misc
3606 {
3607 union Lisp_Misc m;
3608 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3609 & -GCALIGNMENT];
3610 };
3611
3612 /* Allocation of markers and other objects that share that structure.
3613 Works like allocation of conses. */
3614
3615 #define MARKER_BLOCK_SIZE \
3616 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3617
3618 struct marker_block
3619 {
3620 /* Place `markers' first, to preserve alignment. */
3621 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3622 struct marker_block *next;
3623 };
3624
3625 static struct marker_block *marker_block;
3626 static int marker_block_index = MARKER_BLOCK_SIZE;
3627
3628 static union Lisp_Misc *marker_free_list;
3629
3630 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3631
3632 static Lisp_Object
3633 allocate_misc (enum Lisp_Misc_Type type)
3634 {
3635 Lisp_Object val;
3636
3637 MALLOC_BLOCK_INPUT;
3638
3639 if (marker_free_list)
3640 {
3641 XSETMISC (val, marker_free_list);
3642 marker_free_list = marker_free_list->u_free.chain;
3643 }
3644 else
3645 {
3646 if (marker_block_index == MARKER_BLOCK_SIZE)
3647 {
3648 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3649 new->next = marker_block;
3650 marker_block = new;
3651 marker_block_index = 0;
3652 total_free_markers += MARKER_BLOCK_SIZE;
3653 }
3654 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3655 marker_block_index++;
3656 }
3657
3658 MALLOC_UNBLOCK_INPUT;
3659
3660 --total_free_markers;
3661 consing_since_gc += sizeof (union Lisp_Misc);
3662 misc_objects_consed++;
3663 XMISCANY (val)->type = type;
3664 XMISCANY (val)->gcmarkbit = 0;
3665 return val;
3666 }
3667
3668 /* Free a Lisp_Misc object. */
3669
3670 void
3671 free_misc (Lisp_Object misc)
3672 {
3673 XMISCANY (misc)->type = Lisp_Misc_Free;
3674 XMISC (misc)->u_free.chain = marker_free_list;
3675 marker_free_list = XMISC (misc);
3676 consing_since_gc -= sizeof (union Lisp_Misc);
3677 total_free_markers++;
3678 }
3679
3680 /* Verify properties of Lisp_Save_Value's representation
3681 that are assumed here and elsewhere. */
3682
3683 verify (SAVE_UNUSED == 0);
3684 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3685 >> SAVE_SLOT_BITS)
3686 == 0);
3687
3688 /* Return Lisp_Save_Value objects for the various combinations
3689 that callers need. */
3690
3691 Lisp_Object
3692 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3693 {
3694 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3695 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3696 p->save_type = SAVE_TYPE_INT_INT_INT;
3697 p->data[0].integer = a;
3698 p->data[1].integer = b;
3699 p->data[2].integer = c;
3700 return val;
3701 }
3702
3703 Lisp_Object
3704 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3705 Lisp_Object d)
3706 {
3707 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3708 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3709 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3710 p->data[0].object = a;
3711 p->data[1].object = b;
3712 p->data[2].object = c;
3713 p->data[3].object = d;
3714 return val;
3715 }
3716
3717 Lisp_Object
3718 make_save_ptr (void *a)
3719 {
3720 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3721 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3722 p->save_type = SAVE_POINTER;
3723 p->data[0].pointer = a;
3724 return val;
3725 }
3726
3727 Lisp_Object
3728 make_save_ptr_int (void *a, ptrdiff_t b)
3729 {
3730 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3731 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3732 p->save_type = SAVE_TYPE_PTR_INT;
3733 p->data[0].pointer = a;
3734 p->data[1].integer = b;
3735 return val;
3736 }
3737
3738 Lisp_Object
3739 make_save_ptr_ptr (void *a, void *b)
3740 {
3741 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3742 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3743 p->save_type = SAVE_TYPE_PTR_PTR;
3744 p->data[0].pointer = a;
3745 p->data[1].pointer = b;
3746 return val;
3747 }
3748
3749 Lisp_Object
3750 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3751 {
3752 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3753 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3754 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3755 p->data[0].funcpointer = a;
3756 p->data[1].pointer = b;
3757 p->data[2].object = c;
3758 return val;
3759 }
3760
3761 /* Return a Lisp_Save_Value object that represents an array A
3762 of N Lisp objects. */
3763
3764 Lisp_Object
3765 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3766 {
3767 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3768 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3769 p->save_type = SAVE_TYPE_MEMORY;
3770 p->data[0].pointer = a;
3771 p->data[1].integer = n;
3772 return val;
3773 }
3774
3775 /* Free a Lisp_Save_Value object. Do not use this function
3776 if SAVE contains pointer other than returned by xmalloc. */
3777
3778 void
3779 free_save_value (Lisp_Object save)
3780 {
3781 xfree (XSAVE_POINTER (save, 0));
3782 free_misc (save);
3783 }
3784
3785 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3786
3787 Lisp_Object
3788 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3789 {
3790 register Lisp_Object overlay;
3791
3792 overlay = allocate_misc (Lisp_Misc_Overlay);
3793 OVERLAY_START (overlay) = start;
3794 OVERLAY_END (overlay) = end;
3795 set_overlay_plist (overlay, plist);
3796 XOVERLAY (overlay)->next = NULL;
3797 return overlay;
3798 }
3799
3800 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3801 doc: /* Return a newly allocated marker which does not point at any place. */)
3802 (void)
3803 {
3804 register Lisp_Object val;
3805 register struct Lisp_Marker *p;
3806
3807 val = allocate_misc (Lisp_Misc_Marker);
3808 p = XMARKER (val);
3809 p->buffer = 0;
3810 p->bytepos = 0;
3811 p->charpos = 0;
3812 p->next = NULL;
3813 p->insertion_type = 0;
3814 p->need_adjustment = 0;
3815 return val;
3816 }
3817
3818 /* Return a newly allocated marker which points into BUF
3819 at character position CHARPOS and byte position BYTEPOS. */
3820
3821 Lisp_Object
3822 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3823 {
3824 Lisp_Object obj;
3825 struct Lisp_Marker *m;
3826
3827 /* No dead buffers here. */
3828 eassert (BUFFER_LIVE_P (buf));
3829
3830 /* Every character is at least one byte. */
3831 eassert (charpos <= bytepos);
3832
3833 obj = allocate_misc (Lisp_Misc_Marker);
3834 m = XMARKER (obj);
3835 m->buffer = buf;
3836 m->charpos = charpos;
3837 m->bytepos = bytepos;
3838 m->insertion_type = 0;
3839 m->need_adjustment = 0;
3840 m->next = BUF_MARKERS (buf);
3841 BUF_MARKERS (buf) = m;
3842 return obj;
3843 }
3844
3845 /* Put MARKER back on the free list after using it temporarily. */
3846
3847 void
3848 free_marker (Lisp_Object marker)
3849 {
3850 unchain_marker (XMARKER (marker));
3851 free_misc (marker);
3852 }
3853
3854 \f
3855 /* Return a newly created vector or string with specified arguments as
3856 elements. If all the arguments are characters that can fit
3857 in a string of events, make a string; otherwise, make a vector.
3858
3859 Any number of arguments, even zero arguments, are allowed. */
3860
3861 Lisp_Object
3862 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3863 {
3864 ptrdiff_t i;
3865
3866 for (i = 0; i < nargs; i++)
3867 /* The things that fit in a string
3868 are characters that are in 0...127,
3869 after discarding the meta bit and all the bits above it. */
3870 if (!INTEGERP (args[i])
3871 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3872 return Fvector (nargs, args);
3873
3874 /* Since the loop exited, we know that all the things in it are
3875 characters, so we can make a string. */
3876 {
3877 Lisp_Object result;
3878
3879 result = Fmake_string (make_number (nargs), make_number (0));
3880 for (i = 0; i < nargs; i++)
3881 {
3882 SSET (result, i, XINT (args[i]));
3883 /* Move the meta bit to the right place for a string char. */
3884 if (XINT (args[i]) & CHAR_META)
3885 SSET (result, i, SREF (result, i) | 0x80);
3886 }
3887
3888 return result;
3889 }
3890 }
3891
3892 #ifdef HAVE_MODULES
3893 /* Create a new module user ptr object. */
3894 Lisp_Object
3895 make_user_ptr (void (*finalizer) (void *), void *p)
3896 {
3897 Lisp_Object obj;
3898 struct Lisp_User_Ptr *uptr;
3899
3900 obj = allocate_misc (Lisp_Misc_User_Ptr);
3901 uptr = XUSER_PTR (obj);
3902 uptr->finalizer = finalizer;
3903 uptr->p = p;
3904 return obj;
3905 }
3906
3907 #endif
3908
3909 static void
3910 init_finalizer_list (struct Lisp_Finalizer *head)
3911 {
3912 head->prev = head->next = head;
3913 }
3914
3915 /* Insert FINALIZER before ELEMENT. */
3916
3917 static void
3918 finalizer_insert (struct Lisp_Finalizer *element,
3919 struct Lisp_Finalizer *finalizer)
3920 {
3921 eassert (finalizer->prev == NULL);
3922 eassert (finalizer->next == NULL);
3923 finalizer->next = element;
3924 finalizer->prev = element->prev;
3925 finalizer->prev->next = finalizer;
3926 element->prev = finalizer;
3927 }
3928
3929 static void
3930 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3931 {
3932 if (finalizer->prev != NULL)
3933 {
3934 eassert (finalizer->next != NULL);
3935 finalizer->prev->next = finalizer->next;
3936 finalizer->next->prev = finalizer->prev;
3937 finalizer->prev = finalizer->next = NULL;
3938 }
3939 }
3940
3941 static void
3942 mark_finalizer_list (struct Lisp_Finalizer *head)
3943 {
3944 for (struct Lisp_Finalizer *finalizer = head->next;
3945 finalizer != head;
3946 finalizer = finalizer->next)
3947 {
3948 finalizer->base.gcmarkbit = true;
3949 mark_object (finalizer->function);
3950 }
3951 }
3952
3953 /* Move doomed finalizers to list DEST from list SRC. A doomed
3954 finalizer is one that is not GC-reachable and whose
3955 finalizer->function is non-nil. */
3956
3957 static void
3958 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3959 struct Lisp_Finalizer *src)
3960 {
3961 struct Lisp_Finalizer *finalizer = src->next;
3962 while (finalizer != src)
3963 {
3964 struct Lisp_Finalizer *next = finalizer->next;
3965 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3966 {
3967 unchain_finalizer (finalizer);
3968 finalizer_insert (dest, finalizer);
3969 }
3970
3971 finalizer = next;
3972 }
3973 }
3974
3975 static Lisp_Object
3976 run_finalizer_handler (Lisp_Object args)
3977 {
3978 add_to_log ("finalizer failed: %S", args);
3979 return Qnil;
3980 }
3981
3982 static void
3983 run_finalizer_function (Lisp_Object function)
3984 {
3985 ptrdiff_t count = SPECPDL_INDEX ();
3986
3987 specbind (Qinhibit_quit, Qt);
3988 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3989 unbind_to (count, Qnil);
3990 }
3991
3992 static void
3993 run_finalizers (struct Lisp_Finalizer *finalizers)
3994 {
3995 struct Lisp_Finalizer *finalizer;
3996 Lisp_Object function;
3997
3998 while (finalizers->next != finalizers)
3999 {
4000 finalizer = finalizers->next;
4001 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
4002 unchain_finalizer (finalizer);
4003 function = finalizer->function;
4004 if (!NILP (function))
4005 {
4006 finalizer->function = Qnil;
4007 run_finalizer_function (function);
4008 }
4009 }
4010 }
4011
4012 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4013 doc: /* Make a finalizer that will run FUNCTION.
4014 FUNCTION will be called after garbage collection when the returned
4015 finalizer object becomes unreachable. If the finalizer object is
4016 reachable only through references from finalizer objects, it does not
4017 count as reachable for the purpose of deciding whether to run
4018 FUNCTION. FUNCTION will be run once per finalizer object. */)
4019 (Lisp_Object function)
4020 {
4021 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4022 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4023 finalizer->function = function;
4024 finalizer->prev = finalizer->next = NULL;
4025 finalizer_insert (&finalizers, finalizer);
4026 return val;
4027 }
4028
4029 \f
4030 /************************************************************************
4031 Memory Full Handling
4032 ************************************************************************/
4033
4034
4035 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4036 there may have been size_t overflow so that malloc was never
4037 called, or perhaps malloc was invoked successfully but the
4038 resulting pointer had problems fitting into a tagged EMACS_INT. In
4039 either case this counts as memory being full even though malloc did
4040 not fail. */
4041
4042 void
4043 memory_full (size_t nbytes)
4044 {
4045 /* Do not go into hysterics merely because a large request failed. */
4046 bool enough_free_memory = 0;
4047 if (SPARE_MEMORY < nbytes)
4048 {
4049 void *p;
4050
4051 MALLOC_BLOCK_INPUT;
4052 p = malloc (SPARE_MEMORY);
4053 if (p)
4054 {
4055 free (p);
4056 enough_free_memory = 1;
4057 }
4058 MALLOC_UNBLOCK_INPUT;
4059 }
4060
4061 if (! enough_free_memory)
4062 {
4063 int i;
4064
4065 Vmemory_full = Qt;
4066
4067 memory_full_cons_threshold = sizeof (struct cons_block);
4068
4069 /* The first time we get here, free the spare memory. */
4070 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4071 if (spare_memory[i])
4072 {
4073 if (i == 0)
4074 free (spare_memory[i]);
4075 else if (i >= 1 && i <= 4)
4076 lisp_align_free (spare_memory[i]);
4077 else
4078 lisp_free (spare_memory[i]);
4079 spare_memory[i] = 0;
4080 }
4081 }
4082
4083 /* This used to call error, but if we've run out of memory, we could
4084 get infinite recursion trying to build the string. */
4085 xsignal (Qnil, Vmemory_signal_data);
4086 }
4087
4088 /* If we released our reserve (due to running out of memory),
4089 and we have a fair amount free once again,
4090 try to set aside another reserve in case we run out once more.
4091
4092 This is called when a relocatable block is freed in ralloc.c,
4093 and also directly from this file, in case we're not using ralloc.c. */
4094
4095 void
4096 refill_memory_reserve (void)
4097 {
4098 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4099 if (spare_memory[0] == 0)
4100 spare_memory[0] = malloc (SPARE_MEMORY);
4101 if (spare_memory[1] == 0)
4102 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4103 MEM_TYPE_SPARE);
4104 if (spare_memory[2] == 0)
4105 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4106 MEM_TYPE_SPARE);
4107 if (spare_memory[3] == 0)
4108 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4109 MEM_TYPE_SPARE);
4110 if (spare_memory[4] == 0)
4111 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4112 MEM_TYPE_SPARE);
4113 if (spare_memory[5] == 0)
4114 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4115 MEM_TYPE_SPARE);
4116 if (spare_memory[6] == 0)
4117 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4118 MEM_TYPE_SPARE);
4119 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4120 Vmemory_full = Qnil;
4121 #endif
4122 }
4123 \f
4124 /************************************************************************
4125 C Stack Marking
4126 ************************************************************************/
4127
4128 /* Conservative C stack marking requires a method to identify possibly
4129 live Lisp objects given a pointer value. We do this by keeping
4130 track of blocks of Lisp data that are allocated in a red-black tree
4131 (see also the comment of mem_node which is the type of nodes in
4132 that tree). Function lisp_malloc adds information for an allocated
4133 block to the red-black tree with calls to mem_insert, and function
4134 lisp_free removes it with mem_delete. Functions live_string_p etc
4135 call mem_find to lookup information about a given pointer in the
4136 tree, and use that to determine if the pointer points to a Lisp
4137 object or not. */
4138
4139 /* Initialize this part of alloc.c. */
4140
4141 static void
4142 mem_init (void)
4143 {
4144 mem_z.left = mem_z.right = MEM_NIL;
4145 mem_z.parent = NULL;
4146 mem_z.color = MEM_BLACK;
4147 mem_z.start = mem_z.end = NULL;
4148 mem_root = MEM_NIL;
4149 }
4150
4151
4152 /* Value is a pointer to the mem_node containing START. Value is
4153 MEM_NIL if there is no node in the tree containing START. */
4154
4155 static struct mem_node *
4156 mem_find (void *start)
4157 {
4158 struct mem_node *p;
4159
4160 if (start < min_heap_address || start > max_heap_address)
4161 return MEM_NIL;
4162
4163 /* Make the search always successful to speed up the loop below. */
4164 mem_z.start = start;
4165 mem_z.end = (char *) start + 1;
4166
4167 p = mem_root;
4168 while (start < p->start || start >= p->end)
4169 p = start < p->start ? p->left : p->right;
4170 return p;
4171 }
4172
4173
4174 /* Insert a new node into the tree for a block of memory with start
4175 address START, end address END, and type TYPE. Value is a
4176 pointer to the node that was inserted. */
4177
4178 static struct mem_node *
4179 mem_insert (void *start, void *end, enum mem_type type)
4180 {
4181 struct mem_node *c, *parent, *x;
4182
4183 if (min_heap_address == NULL || start < min_heap_address)
4184 min_heap_address = start;
4185 if (max_heap_address == NULL || end > max_heap_address)
4186 max_heap_address = end;
4187
4188 /* See where in the tree a node for START belongs. In this
4189 particular application, it shouldn't happen that a node is already
4190 present. For debugging purposes, let's check that. */
4191 c = mem_root;
4192 parent = NULL;
4193
4194 while (c != MEM_NIL)
4195 {
4196 parent = c;
4197 c = start < c->start ? c->left : c->right;
4198 }
4199
4200 /* Create a new node. */
4201 #ifdef GC_MALLOC_CHECK
4202 x = malloc (sizeof *x);
4203 if (x == NULL)
4204 emacs_abort ();
4205 #else
4206 x = xmalloc (sizeof *x);
4207 #endif
4208 x->start = start;
4209 x->end = end;
4210 x->type = type;
4211 x->parent = parent;
4212 x->left = x->right = MEM_NIL;
4213 x->color = MEM_RED;
4214
4215 /* Insert it as child of PARENT or install it as root. */
4216 if (parent)
4217 {
4218 if (start < parent->start)
4219 parent->left = x;
4220 else
4221 parent->right = x;
4222 }
4223 else
4224 mem_root = x;
4225
4226 /* Re-establish red-black tree properties. */
4227 mem_insert_fixup (x);
4228
4229 return x;
4230 }
4231
4232
4233 /* Re-establish the red-black properties of the tree, and thereby
4234 balance the tree, after node X has been inserted; X is always red. */
4235
4236 static void
4237 mem_insert_fixup (struct mem_node *x)
4238 {
4239 while (x != mem_root && x->parent->color == MEM_RED)
4240 {
4241 /* X is red and its parent is red. This is a violation of
4242 red-black tree property #3. */
4243
4244 if (x->parent == x->parent->parent->left)
4245 {
4246 /* We're on the left side of our grandparent, and Y is our
4247 "uncle". */
4248 struct mem_node *y = x->parent->parent->right;
4249
4250 if (y->color == MEM_RED)
4251 {
4252 /* Uncle and parent are red but should be black because
4253 X is red. Change the colors accordingly and proceed
4254 with the grandparent. */
4255 x->parent->color = MEM_BLACK;
4256 y->color = MEM_BLACK;
4257 x->parent->parent->color = MEM_RED;
4258 x = x->parent->parent;
4259 }
4260 else
4261 {
4262 /* Parent and uncle have different colors; parent is
4263 red, uncle is black. */
4264 if (x == x->parent->right)
4265 {
4266 x = x->parent;
4267 mem_rotate_left (x);
4268 }
4269
4270 x->parent->color = MEM_BLACK;
4271 x->parent->parent->color = MEM_RED;
4272 mem_rotate_right (x->parent->parent);
4273 }
4274 }
4275 else
4276 {
4277 /* This is the symmetrical case of above. */
4278 struct mem_node *y = x->parent->parent->left;
4279
4280 if (y->color == MEM_RED)
4281 {
4282 x->parent->color = MEM_BLACK;
4283 y->color = MEM_BLACK;
4284 x->parent->parent->color = MEM_RED;
4285 x = x->parent->parent;
4286 }
4287 else
4288 {
4289 if (x == x->parent->left)
4290 {
4291 x = x->parent;
4292 mem_rotate_right (x);
4293 }
4294
4295 x->parent->color = MEM_BLACK;
4296 x->parent->parent->color = MEM_RED;
4297 mem_rotate_left (x->parent->parent);
4298 }
4299 }
4300 }
4301
4302 /* The root may have been changed to red due to the algorithm. Set
4303 it to black so that property #5 is satisfied. */
4304 mem_root->color = MEM_BLACK;
4305 }
4306
4307
4308 /* (x) (y)
4309 / \ / \
4310 a (y) ===> (x) c
4311 / \ / \
4312 b c a b */
4313
4314 static void
4315 mem_rotate_left (struct mem_node *x)
4316 {
4317 struct mem_node *y;
4318
4319 /* Turn y's left sub-tree into x's right sub-tree. */
4320 y = x->right;
4321 x->right = y->left;
4322 if (y->left != MEM_NIL)
4323 y->left->parent = x;
4324
4325 /* Y's parent was x's parent. */
4326 if (y != MEM_NIL)
4327 y->parent = x->parent;
4328
4329 /* Get the parent to point to y instead of x. */
4330 if (x->parent)
4331 {
4332 if (x == x->parent->left)
4333 x->parent->left = y;
4334 else
4335 x->parent->right = y;
4336 }
4337 else
4338 mem_root = y;
4339
4340 /* Put x on y's left. */
4341 y->left = x;
4342 if (x != MEM_NIL)
4343 x->parent = y;
4344 }
4345
4346
4347 /* (x) (Y)
4348 / \ / \
4349 (y) c ===> a (x)
4350 / \ / \
4351 a b b c */
4352
4353 static void
4354 mem_rotate_right (struct mem_node *x)
4355 {
4356 struct mem_node *y = x->left;
4357
4358 x->left = y->right;
4359 if (y->right != MEM_NIL)
4360 y->right->parent = x;
4361
4362 if (y != MEM_NIL)
4363 y->parent = x->parent;
4364 if (x->parent)
4365 {
4366 if (x == x->parent->right)
4367 x->parent->right = y;
4368 else
4369 x->parent->left = y;
4370 }
4371 else
4372 mem_root = y;
4373
4374 y->right = x;
4375 if (x != MEM_NIL)
4376 x->parent = y;
4377 }
4378
4379
4380 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4381
4382 static void
4383 mem_delete (struct mem_node *z)
4384 {
4385 struct mem_node *x, *y;
4386
4387 if (!z || z == MEM_NIL)
4388 return;
4389
4390 if (z->left == MEM_NIL || z->right == MEM_NIL)
4391 y = z;
4392 else
4393 {
4394 y = z->right;
4395 while (y->left != MEM_NIL)
4396 y = y->left;
4397 }
4398
4399 if (y->left != MEM_NIL)
4400 x = y->left;
4401 else
4402 x = y->right;
4403
4404 x->parent = y->parent;
4405 if (y->parent)
4406 {
4407 if (y == y->parent->left)
4408 y->parent->left = x;
4409 else
4410 y->parent->right = x;
4411 }
4412 else
4413 mem_root = x;
4414
4415 if (y != z)
4416 {
4417 z->start = y->start;
4418 z->end = y->end;
4419 z->type = y->type;
4420 }
4421
4422 if (y->color == MEM_BLACK)
4423 mem_delete_fixup (x);
4424
4425 #ifdef GC_MALLOC_CHECK
4426 free (y);
4427 #else
4428 xfree (y);
4429 #endif
4430 }
4431
4432
4433 /* Re-establish the red-black properties of the tree, after a
4434 deletion. */
4435
4436 static void
4437 mem_delete_fixup (struct mem_node *x)
4438 {
4439 while (x != mem_root && x->color == MEM_BLACK)
4440 {
4441 if (x == x->parent->left)
4442 {
4443 struct mem_node *w = x->parent->right;
4444
4445 if (w->color == MEM_RED)
4446 {
4447 w->color = MEM_BLACK;
4448 x->parent->color = MEM_RED;
4449 mem_rotate_left (x->parent);
4450 w = x->parent->right;
4451 }
4452
4453 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4454 {
4455 w->color = MEM_RED;
4456 x = x->parent;
4457 }
4458 else
4459 {
4460 if (w->right->color == MEM_BLACK)
4461 {
4462 w->left->color = MEM_BLACK;
4463 w->color = MEM_RED;
4464 mem_rotate_right (w);
4465 w = x->parent->right;
4466 }
4467 w->color = x->parent->color;
4468 x->parent->color = MEM_BLACK;
4469 w->right->color = MEM_BLACK;
4470 mem_rotate_left (x->parent);
4471 x = mem_root;
4472 }
4473 }
4474 else
4475 {
4476 struct mem_node *w = x->parent->left;
4477
4478 if (w->color == MEM_RED)
4479 {
4480 w->color = MEM_BLACK;
4481 x->parent->color = MEM_RED;
4482 mem_rotate_right (x->parent);
4483 w = x->parent->left;
4484 }
4485
4486 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4487 {
4488 w->color = MEM_RED;
4489 x = x->parent;
4490 }
4491 else
4492 {
4493 if (w->left->color == MEM_BLACK)
4494 {
4495 w->right->color = MEM_BLACK;
4496 w->color = MEM_RED;
4497 mem_rotate_left (w);
4498 w = x->parent->left;
4499 }
4500
4501 w->color = x->parent->color;
4502 x->parent->color = MEM_BLACK;
4503 w->left->color = MEM_BLACK;
4504 mem_rotate_right (x->parent);
4505 x = mem_root;
4506 }
4507 }
4508 }
4509
4510 x->color = MEM_BLACK;
4511 }
4512
4513
4514 /* Value is non-zero if P is a pointer to a live Lisp string on
4515 the heap. M is a pointer to the mem_block for P. */
4516
4517 static bool
4518 live_string_p (struct mem_node *m, void *p)
4519 {
4520 if (m->type == MEM_TYPE_STRING)
4521 {
4522 struct string_block *b = m->start;
4523 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4524
4525 /* P must point to the start of a Lisp_String structure, and it
4526 must not be on the free-list. */
4527 return (offset >= 0
4528 && offset % sizeof b->strings[0] == 0
4529 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4530 && ((struct Lisp_String *) p)->data != NULL);
4531 }
4532 else
4533 return 0;
4534 }
4535
4536
4537 /* Value is non-zero if P is a pointer to a live Lisp cons on
4538 the heap. M is a pointer to the mem_block for P. */
4539
4540 static bool
4541 live_cons_p (struct mem_node *m, void *p)
4542 {
4543 if (m->type == MEM_TYPE_CONS)
4544 {
4545 struct cons_block *b = m->start;
4546 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4547
4548 /* P must point to the start of a Lisp_Cons, not be
4549 one of the unused cells in the current cons block,
4550 and not be on the free-list. */
4551 return (offset >= 0
4552 && offset % sizeof b->conses[0] == 0
4553 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4554 && (b != cons_block
4555 || offset / sizeof b->conses[0] < cons_block_index)
4556 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4557 }
4558 else
4559 return 0;
4560 }
4561
4562
4563 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4564 the heap. M is a pointer to the mem_block for P. */
4565
4566 static bool
4567 live_symbol_p (struct mem_node *m, void *p)
4568 {
4569 if (m->type == MEM_TYPE_SYMBOL)
4570 {
4571 struct symbol_block *b = m->start;
4572 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4573
4574 /* P must point to the start of a Lisp_Symbol, not be
4575 one of the unused cells in the current symbol block,
4576 and not be on the free-list. */
4577 return (offset >= 0
4578 && offset % sizeof b->symbols[0] == 0
4579 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4580 && (b != symbol_block
4581 || offset / sizeof b->symbols[0] < symbol_block_index)
4582 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4583 }
4584 else
4585 return 0;
4586 }
4587
4588
4589 /* Value is non-zero if P is a pointer to a live Lisp float on
4590 the heap. M is a pointer to the mem_block for P. */
4591
4592 static bool
4593 live_float_p (struct mem_node *m, void *p)
4594 {
4595 if (m->type == MEM_TYPE_FLOAT)
4596 {
4597 struct float_block *b = m->start;
4598 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4599
4600 /* P must point to the start of a Lisp_Float and not be
4601 one of the unused cells in the current float block. */
4602 return (offset >= 0
4603 && offset % sizeof b->floats[0] == 0
4604 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4605 && (b != float_block
4606 || offset / sizeof b->floats[0] < float_block_index));
4607 }
4608 else
4609 return 0;
4610 }
4611
4612
4613 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4614 the heap. M is a pointer to the mem_block for P. */
4615
4616 static bool
4617 live_misc_p (struct mem_node *m, void *p)
4618 {
4619 if (m->type == MEM_TYPE_MISC)
4620 {
4621 struct marker_block *b = m->start;
4622 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4623
4624 /* P must point to the start of a Lisp_Misc, not be
4625 one of the unused cells in the current misc block,
4626 and not be on the free-list. */
4627 return (offset >= 0
4628 && offset % sizeof b->markers[0] == 0
4629 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4630 && (b != marker_block
4631 || offset / sizeof b->markers[0] < marker_block_index)
4632 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4633 }
4634 else
4635 return 0;
4636 }
4637
4638
4639 /* Value is non-zero if P is a pointer to a live vector-like object.
4640 M is a pointer to the mem_block for P. */
4641
4642 static bool
4643 live_vector_p (struct mem_node *m, void *p)
4644 {
4645 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4646 {
4647 /* This memory node corresponds to a vector block. */
4648 struct vector_block *block = m->start;
4649 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4650
4651 /* P is in the block's allocation range. Scan the block
4652 up to P and see whether P points to the start of some
4653 vector which is not on a free list. FIXME: check whether
4654 some allocation patterns (probably a lot of short vectors)
4655 may cause a substantial overhead of this loop. */
4656 while (VECTOR_IN_BLOCK (vector, block)
4657 && vector <= (struct Lisp_Vector *) p)
4658 {
4659 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4660 return 1;
4661 else
4662 vector = ADVANCE (vector, vector_nbytes (vector));
4663 }
4664 }
4665 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4666 /* This memory node corresponds to a large vector. */
4667 return 1;
4668 return 0;
4669 }
4670
4671
4672 /* Value is non-zero if P is a pointer to a live buffer. M is a
4673 pointer to the mem_block for P. */
4674
4675 static bool
4676 live_buffer_p (struct mem_node *m, void *p)
4677 {
4678 /* P must point to the start of the block, and the buffer
4679 must not have been killed. */
4680 return (m->type == MEM_TYPE_BUFFER
4681 && p == m->start
4682 && !NILP (((struct buffer *) p)->name_));
4683 }
4684
4685 /* Mark OBJ if we can prove it's a Lisp_Object. */
4686
4687 static void
4688 mark_maybe_object (Lisp_Object obj)
4689 {
4690 #if USE_VALGRIND
4691 if (valgrind_p)
4692 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4693 #endif
4694
4695 if (INTEGERP (obj))
4696 return;
4697
4698 void *po = XPNTR (obj);
4699 struct mem_node *m = mem_find (po);
4700
4701 if (m != MEM_NIL)
4702 {
4703 bool mark_p = false;
4704
4705 switch (XTYPE (obj))
4706 {
4707 case Lisp_String:
4708 mark_p = (live_string_p (m, po)
4709 && !STRING_MARKED_P ((struct Lisp_String *) po));
4710 break;
4711
4712 case Lisp_Cons:
4713 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4714 break;
4715
4716 case Lisp_Symbol:
4717 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4718 break;
4719
4720 case Lisp_Float:
4721 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4722 break;
4723
4724 case Lisp_Vectorlike:
4725 /* Note: can't check BUFFERP before we know it's a
4726 buffer because checking that dereferences the pointer
4727 PO which might point anywhere. */
4728 if (live_vector_p (m, po))
4729 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4730 else if (live_buffer_p (m, po))
4731 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4732 break;
4733
4734 case Lisp_Misc:
4735 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4736 break;
4737
4738 default:
4739 break;
4740 }
4741
4742 if (mark_p)
4743 mark_object (obj);
4744 }
4745 }
4746
4747 /* Return true if P can point to Lisp data, and false otherwise.
4748 Symbols are implemented via offsets not pointers, but the offsets
4749 are also multiples of GCALIGNMENT. */
4750
4751 static bool
4752 maybe_lisp_pointer (void *p)
4753 {
4754 return (uintptr_t) p % GCALIGNMENT == 0;
4755 }
4756
4757 #ifndef HAVE_MODULES
4758 enum { HAVE_MODULES = false };
4759 #endif
4760
4761 /* If P points to Lisp data, mark that as live if it isn't already
4762 marked. */
4763
4764 static void
4765 mark_maybe_pointer (void *p)
4766 {
4767 struct mem_node *m;
4768
4769 #if USE_VALGRIND
4770 if (valgrind_p)
4771 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4772 #endif
4773
4774 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4775 {
4776 if (!maybe_lisp_pointer (p))
4777 return;
4778 }
4779 else
4780 {
4781 /* For the wide-int case, also mark emacs_value tagged pointers,
4782 which can be generated by emacs-module.c's value_to_lisp. */
4783 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4784 }
4785
4786 m = mem_find (p);
4787 if (m != MEM_NIL)
4788 {
4789 Lisp_Object obj = Qnil;
4790
4791 switch (m->type)
4792 {
4793 case MEM_TYPE_NON_LISP:
4794 case MEM_TYPE_SPARE:
4795 /* Nothing to do; not a pointer to Lisp memory. */
4796 break;
4797
4798 case MEM_TYPE_BUFFER:
4799 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4800 XSETVECTOR (obj, p);
4801 break;
4802
4803 case MEM_TYPE_CONS:
4804 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4805 XSETCONS (obj, p);
4806 break;
4807
4808 case MEM_TYPE_STRING:
4809 if (live_string_p (m, p)
4810 && !STRING_MARKED_P ((struct Lisp_String *) p))
4811 XSETSTRING (obj, p);
4812 break;
4813
4814 case MEM_TYPE_MISC:
4815 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4816 XSETMISC (obj, p);
4817 break;
4818
4819 case MEM_TYPE_SYMBOL:
4820 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4821 XSETSYMBOL (obj, p);
4822 break;
4823
4824 case MEM_TYPE_FLOAT:
4825 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4826 XSETFLOAT (obj, p);
4827 break;
4828
4829 case MEM_TYPE_VECTORLIKE:
4830 case MEM_TYPE_VECTOR_BLOCK:
4831 if (live_vector_p (m, p))
4832 {
4833 Lisp_Object tem;
4834 XSETVECTOR (tem, p);
4835 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4836 obj = tem;
4837 }
4838 break;
4839
4840 default:
4841 emacs_abort ();
4842 }
4843
4844 if (!NILP (obj))
4845 mark_object (obj);
4846 }
4847 }
4848
4849
4850 /* Alignment of pointer values. Use alignof, as it sometimes returns
4851 a smaller alignment than GCC's __alignof__ and mark_memory might
4852 miss objects if __alignof__ were used. */
4853 #define GC_POINTER_ALIGNMENT alignof (void *)
4854
4855 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4856 or END+OFFSET..START. */
4857
4858 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4859 mark_memory (void *start, void *end)
4860 {
4861 char *pp;
4862
4863 /* Make START the pointer to the start of the memory region,
4864 if it isn't already. */
4865 if (end < start)
4866 {
4867 void *tem = start;
4868 start = end;
4869 end = tem;
4870 }
4871
4872 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4873
4874 /* Mark Lisp data pointed to. This is necessary because, in some
4875 situations, the C compiler optimizes Lisp objects away, so that
4876 only a pointer to them remains. Example:
4877
4878 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4879 ()
4880 {
4881 Lisp_Object obj = build_string ("test");
4882 struct Lisp_String *s = XSTRING (obj);
4883 Fgarbage_collect ();
4884 fprintf (stderr, "test '%s'\n", s->data);
4885 return Qnil;
4886 }
4887
4888 Here, `obj' isn't really used, and the compiler optimizes it
4889 away. The only reference to the life string is through the
4890 pointer `s'. */
4891
4892 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4893 {
4894 mark_maybe_pointer (*(void **) pp);
4895 mark_maybe_object (*(Lisp_Object *) pp);
4896 }
4897 }
4898
4899 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4900
4901 static bool setjmp_tested_p;
4902 static int longjmps_done;
4903
4904 #define SETJMP_WILL_LIKELY_WORK "\
4905 \n\
4906 Emacs garbage collector has been changed to use conservative stack\n\
4907 marking. Emacs has determined that the method it uses to do the\n\
4908 marking will likely work on your system, but this isn't sure.\n\
4909 \n\
4910 If you are a system-programmer, or can get the help of a local wizard\n\
4911 who is, please take a look at the function mark_stack in alloc.c, and\n\
4912 verify that the methods used are appropriate for your system.\n\
4913 \n\
4914 Please mail the result to <emacs-devel@gnu.org>.\n\
4915 "
4916
4917 #define SETJMP_WILL_NOT_WORK "\
4918 \n\
4919 Emacs garbage collector has been changed to use conservative stack\n\
4920 marking. Emacs has determined that the default method it uses to do the\n\
4921 marking will not work on your system. We will need a system-dependent\n\
4922 solution for your system.\n\
4923 \n\
4924 Please take a look at the function mark_stack in alloc.c, and\n\
4925 try to find a way to make it work on your system.\n\
4926 \n\
4927 Note that you may get false negatives, depending on the compiler.\n\
4928 In particular, you need to use -O with GCC for this test.\n\
4929 \n\
4930 Please mail the result to <emacs-devel@gnu.org>.\n\
4931 "
4932
4933
4934 /* Perform a quick check if it looks like setjmp saves registers in a
4935 jmp_buf. Print a message to stderr saying so. When this test
4936 succeeds, this is _not_ a proof that setjmp is sufficient for
4937 conservative stack marking. Only the sources or a disassembly
4938 can prove that. */
4939
4940 static void
4941 test_setjmp (void)
4942 {
4943 char buf[10];
4944 register int x;
4945 sys_jmp_buf jbuf;
4946
4947 /* Arrange for X to be put in a register. */
4948 sprintf (buf, "1");
4949 x = strlen (buf);
4950 x = 2 * x - 1;
4951
4952 sys_setjmp (jbuf);
4953 if (longjmps_done == 1)
4954 {
4955 /* Came here after the longjmp at the end of the function.
4956
4957 If x == 1, the longjmp has restored the register to its
4958 value before the setjmp, and we can hope that setjmp
4959 saves all such registers in the jmp_buf, although that
4960 isn't sure.
4961
4962 For other values of X, either something really strange is
4963 taking place, or the setjmp just didn't save the register. */
4964
4965 if (x == 1)
4966 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4967 else
4968 {
4969 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4970 exit (1);
4971 }
4972 }
4973
4974 ++longjmps_done;
4975 x = 2;
4976 if (longjmps_done == 1)
4977 sys_longjmp (jbuf, 1);
4978 }
4979
4980 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4981
4982
4983 /* Mark live Lisp objects on the C stack.
4984
4985 There are several system-dependent problems to consider when
4986 porting this to new architectures:
4987
4988 Processor Registers
4989
4990 We have to mark Lisp objects in CPU registers that can hold local
4991 variables or are used to pass parameters.
4992
4993 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4994 something that either saves relevant registers on the stack, or
4995 calls mark_maybe_object passing it each register's contents.
4996
4997 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4998 implementation assumes that calling setjmp saves registers we need
4999 to see in a jmp_buf which itself lies on the stack. This doesn't
5000 have to be true! It must be verified for each system, possibly
5001 by taking a look at the source code of setjmp.
5002
5003 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5004 can use it as a machine independent method to store all registers
5005 to the stack. In this case the macros described in the previous
5006 two paragraphs are not used.
5007
5008 Stack Layout
5009
5010 Architectures differ in the way their processor stack is organized.
5011 For example, the stack might look like this
5012
5013 +----------------+
5014 | Lisp_Object | size = 4
5015 +----------------+
5016 | something else | size = 2
5017 +----------------+
5018 | Lisp_Object | size = 4
5019 +----------------+
5020 | ... |
5021
5022 In such a case, not every Lisp_Object will be aligned equally. To
5023 find all Lisp_Object on the stack it won't be sufficient to walk
5024 the stack in steps of 4 bytes. Instead, two passes will be
5025 necessary, one starting at the start of the stack, and a second
5026 pass starting at the start of the stack + 2. Likewise, if the
5027 minimal alignment of Lisp_Objects on the stack is 1, four passes
5028 would be necessary, each one starting with one byte more offset
5029 from the stack start. */
5030
5031 static void
5032 mark_stack (void *end)
5033 {
5034
5035 /* This assumes that the stack is a contiguous region in memory. If
5036 that's not the case, something has to be done here to iterate
5037 over the stack segments. */
5038 mark_memory (stack_base, end);
5039
5040 /* Allow for marking a secondary stack, like the register stack on the
5041 ia64. */
5042 #ifdef GC_MARK_SECONDARY_STACK
5043 GC_MARK_SECONDARY_STACK ();
5044 #endif
5045 }
5046
5047 static bool
5048 c_symbol_p (struct Lisp_Symbol *sym)
5049 {
5050 char *lispsym_ptr = (char *) lispsym;
5051 char *sym_ptr = (char *) sym;
5052 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5053 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5054 }
5055
5056 /* Determine whether it is safe to access memory at address P. */
5057 static int
5058 valid_pointer_p (void *p)
5059 {
5060 #ifdef WINDOWSNT
5061 return w32_valid_pointer_p (p, 16);
5062 #else
5063
5064 if (ADDRESS_SANITIZER)
5065 return p ? -1 : 0;
5066
5067 int fd[2];
5068
5069 /* Obviously, we cannot just access it (we would SEGV trying), so we
5070 trick the o/s to tell us whether p is a valid pointer.
5071 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5072 not validate p in that case. */
5073
5074 if (emacs_pipe (fd) == 0)
5075 {
5076 bool valid = emacs_write (fd[1], p, 16) == 16;
5077 emacs_close (fd[1]);
5078 emacs_close (fd[0]);
5079 return valid;
5080 }
5081
5082 return -1;
5083 #endif
5084 }
5085
5086 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5087 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5088 cannot validate OBJ. This function can be quite slow, so its primary
5089 use is the manual debugging. The only exception is print_object, where
5090 we use it to check whether the memory referenced by the pointer of
5091 Lisp_Save_Value object contains valid objects. */
5092
5093 int
5094 valid_lisp_object_p (Lisp_Object obj)
5095 {
5096 if (INTEGERP (obj))
5097 return 1;
5098
5099 void *p = XPNTR (obj);
5100 if (PURE_P (p))
5101 return 1;
5102
5103 if (SYMBOLP (obj) && c_symbol_p (p))
5104 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5105
5106 if (p == &buffer_defaults || p == &buffer_local_symbols)
5107 return 2;
5108
5109 struct mem_node *m = mem_find (p);
5110
5111 if (m == MEM_NIL)
5112 {
5113 int valid = valid_pointer_p (p);
5114 if (valid <= 0)
5115 return valid;
5116
5117 if (SUBRP (obj))
5118 return 1;
5119
5120 return 0;
5121 }
5122
5123 switch (m->type)
5124 {
5125 case MEM_TYPE_NON_LISP:
5126 case MEM_TYPE_SPARE:
5127 return 0;
5128
5129 case MEM_TYPE_BUFFER:
5130 return live_buffer_p (m, p) ? 1 : 2;
5131
5132 case MEM_TYPE_CONS:
5133 return live_cons_p (m, p);
5134
5135 case MEM_TYPE_STRING:
5136 return live_string_p (m, p);
5137
5138 case MEM_TYPE_MISC:
5139 return live_misc_p (m, p);
5140
5141 case MEM_TYPE_SYMBOL:
5142 return live_symbol_p (m, p);
5143
5144 case MEM_TYPE_FLOAT:
5145 return live_float_p (m, p);
5146
5147 case MEM_TYPE_VECTORLIKE:
5148 case MEM_TYPE_VECTOR_BLOCK:
5149 return live_vector_p (m, p);
5150
5151 default:
5152 break;
5153 }
5154
5155 return 0;
5156 }
5157
5158 /***********************************************************************
5159 Pure Storage Management
5160 ***********************************************************************/
5161
5162 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5163 pointer to it. TYPE is the Lisp type for which the memory is
5164 allocated. TYPE < 0 means it's not used for a Lisp object. */
5165
5166 static void *
5167 pure_alloc (size_t size, int type)
5168 {
5169 void *result;
5170
5171 again:
5172 if (type >= 0)
5173 {
5174 /* Allocate space for a Lisp object from the beginning of the free
5175 space with taking account of alignment. */
5176 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5177 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5178 }
5179 else
5180 {
5181 /* Allocate space for a non-Lisp object from the end of the free
5182 space. */
5183 pure_bytes_used_non_lisp += size;
5184 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5185 }
5186 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5187
5188 if (pure_bytes_used <= pure_size)
5189 return result;
5190
5191 /* Don't allocate a large amount here,
5192 because it might get mmap'd and then its address
5193 might not be usable. */
5194 purebeg = xmalloc (10000);
5195 pure_size = 10000;
5196 pure_bytes_used_before_overflow += pure_bytes_used - size;
5197 pure_bytes_used = 0;
5198 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5199 goto again;
5200 }
5201
5202
5203 /* Print a warning if PURESIZE is too small. */
5204
5205 void
5206 check_pure_size (void)
5207 {
5208 if (pure_bytes_used_before_overflow)
5209 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5210 " bytes needed)"),
5211 pure_bytes_used + pure_bytes_used_before_overflow);
5212 }
5213
5214
5215 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5216 the non-Lisp data pool of the pure storage, and return its start
5217 address. Return NULL if not found. */
5218
5219 static char *
5220 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5221 {
5222 int i;
5223 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5224 const unsigned char *p;
5225 char *non_lisp_beg;
5226
5227 if (pure_bytes_used_non_lisp <= nbytes)
5228 return NULL;
5229
5230 /* Set up the Boyer-Moore table. */
5231 skip = nbytes + 1;
5232 for (i = 0; i < 256; i++)
5233 bm_skip[i] = skip;
5234
5235 p = (const unsigned char *) data;
5236 while (--skip > 0)
5237 bm_skip[*p++] = skip;
5238
5239 last_char_skip = bm_skip['\0'];
5240
5241 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5242 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5243
5244 /* See the comments in the function `boyer_moore' (search.c) for the
5245 use of `infinity'. */
5246 infinity = pure_bytes_used_non_lisp + 1;
5247 bm_skip['\0'] = infinity;
5248
5249 p = (const unsigned char *) non_lisp_beg + nbytes;
5250 start = 0;
5251 do
5252 {
5253 /* Check the last character (== '\0'). */
5254 do
5255 {
5256 start += bm_skip[*(p + start)];
5257 }
5258 while (start <= start_max);
5259
5260 if (start < infinity)
5261 /* Couldn't find the last character. */
5262 return NULL;
5263
5264 /* No less than `infinity' means we could find the last
5265 character at `p[start - infinity]'. */
5266 start -= infinity;
5267
5268 /* Check the remaining characters. */
5269 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5270 /* Found. */
5271 return non_lisp_beg + start;
5272
5273 start += last_char_skip;
5274 }
5275 while (start <= start_max);
5276
5277 return NULL;
5278 }
5279
5280
5281 /* Return a string allocated in pure space. DATA is a buffer holding
5282 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5283 means make the result string multibyte.
5284
5285 Must get an error if pure storage is full, since if it cannot hold
5286 a large string it may be able to hold conses that point to that
5287 string; then the string is not protected from gc. */
5288
5289 Lisp_Object
5290 make_pure_string (const char *data,
5291 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5292 {
5293 Lisp_Object string;
5294 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5295 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5296 if (s->data == NULL)
5297 {
5298 s->data = pure_alloc (nbytes + 1, -1);
5299 memcpy (s->data, data, nbytes);
5300 s->data[nbytes] = '\0';
5301 }
5302 s->size = nchars;
5303 s->size_byte = multibyte ? nbytes : -1;
5304 s->intervals = NULL;
5305 XSETSTRING (string, s);
5306 return string;
5307 }
5308
5309 /* Return a string allocated in pure space. Do not
5310 allocate the string data, just point to DATA. */
5311
5312 Lisp_Object
5313 make_pure_c_string (const char *data, ptrdiff_t nchars)
5314 {
5315 Lisp_Object string;
5316 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5317 s->size = nchars;
5318 s->size_byte = -1;
5319 s->data = (unsigned char *) data;
5320 s->intervals = NULL;
5321 XSETSTRING (string, s);
5322 return string;
5323 }
5324
5325 static Lisp_Object purecopy (Lisp_Object obj);
5326
5327 /* Return a cons allocated from pure space. Give it pure copies
5328 of CAR as car and CDR as cdr. */
5329
5330 Lisp_Object
5331 pure_cons (Lisp_Object car, Lisp_Object cdr)
5332 {
5333 Lisp_Object new;
5334 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5335 XSETCONS (new, p);
5336 XSETCAR (new, purecopy (car));
5337 XSETCDR (new, purecopy (cdr));
5338 return new;
5339 }
5340
5341
5342 /* Value is a float object with value NUM allocated from pure space. */
5343
5344 static Lisp_Object
5345 make_pure_float (double num)
5346 {
5347 Lisp_Object new;
5348 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5349 XSETFLOAT (new, p);
5350 XFLOAT_INIT (new, num);
5351 return new;
5352 }
5353
5354
5355 /* Return a vector with room for LEN Lisp_Objects allocated from
5356 pure space. */
5357
5358 static Lisp_Object
5359 make_pure_vector (ptrdiff_t len)
5360 {
5361 Lisp_Object new;
5362 size_t size = header_size + len * word_size;
5363 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5364 XSETVECTOR (new, p);
5365 XVECTOR (new)->header.size = len;
5366 return new;
5367 }
5368
5369 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5370 doc: /* Make a copy of object OBJ in pure storage.
5371 Recursively copies contents of vectors and cons cells.
5372 Does not copy symbols. Copies strings without text properties. */)
5373 (register Lisp_Object obj)
5374 {
5375 if (NILP (Vpurify_flag))
5376 return obj;
5377 else if (MARKERP (obj) || OVERLAYP (obj)
5378 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5379 /* Can't purify those. */
5380 return obj;
5381 else
5382 return purecopy (obj);
5383 }
5384
5385 static Lisp_Object
5386 purecopy (Lisp_Object obj)
5387 {
5388 if (INTEGERP (obj)
5389 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5390 || SUBRP (obj))
5391 return obj; /* Already pure. */
5392
5393 if (STRINGP (obj) && XSTRING (obj)->intervals)
5394 message_with_string ("Dropping text-properties while making string `%s' pure",
5395 obj, true);
5396
5397 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5398 {
5399 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5400 if (!NILP (tmp))
5401 return tmp;
5402 }
5403
5404 if (CONSP (obj))
5405 obj = pure_cons (XCAR (obj), XCDR (obj));
5406 else if (FLOATP (obj))
5407 obj = make_pure_float (XFLOAT_DATA (obj));
5408 else if (STRINGP (obj))
5409 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5410 SBYTES (obj),
5411 STRING_MULTIBYTE (obj));
5412 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5413 {
5414 struct Lisp_Vector *objp = XVECTOR (obj);
5415 ptrdiff_t nbytes = vector_nbytes (objp);
5416 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5417 register ptrdiff_t i;
5418 ptrdiff_t size = ASIZE (obj);
5419 if (size & PSEUDOVECTOR_FLAG)
5420 size &= PSEUDOVECTOR_SIZE_MASK;
5421 memcpy (vec, objp, nbytes);
5422 for (i = 0; i < size; i++)
5423 vec->contents[i] = purecopy (vec->contents[i]);
5424 XSETVECTOR (obj, vec);
5425 }
5426 else if (SYMBOLP (obj))
5427 {
5428 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5429 { /* We can't purify them, but they appear in many pure objects.
5430 Mark them as `pinned' so we know to mark them at every GC cycle. */
5431 XSYMBOL (obj)->pinned = true;
5432 symbol_block_pinned = symbol_block;
5433 }
5434 /* Don't hash-cons it. */
5435 return obj;
5436 }
5437 else
5438 {
5439 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5440 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5441 }
5442
5443 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5444 Fputhash (obj, obj, Vpurify_flag);
5445
5446 return obj;
5447 }
5448
5449
5450 \f
5451 /***********************************************************************
5452 Protection from GC
5453 ***********************************************************************/
5454
5455 /* Put an entry in staticvec, pointing at the variable with address
5456 VARADDRESS. */
5457
5458 void
5459 staticpro (Lisp_Object *varaddress)
5460 {
5461 if (staticidx >= NSTATICS)
5462 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5463 staticvec[staticidx++] = varaddress;
5464 }
5465
5466 \f
5467 /***********************************************************************
5468 Protection from GC
5469 ***********************************************************************/
5470
5471 /* Temporarily prevent garbage collection. */
5472
5473 ptrdiff_t
5474 inhibit_garbage_collection (void)
5475 {
5476 ptrdiff_t count = SPECPDL_INDEX ();
5477
5478 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5479 return count;
5480 }
5481
5482 /* Used to avoid possible overflows when
5483 converting from C to Lisp integers. */
5484
5485 static Lisp_Object
5486 bounded_number (EMACS_INT number)
5487 {
5488 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5489 }
5490
5491 /* Calculate total bytes of live objects. */
5492
5493 static size_t
5494 total_bytes_of_live_objects (void)
5495 {
5496 size_t tot = 0;
5497 tot += total_conses * sizeof (struct Lisp_Cons);
5498 tot += total_symbols * sizeof (struct Lisp_Symbol);
5499 tot += total_markers * sizeof (union Lisp_Misc);
5500 tot += total_string_bytes;
5501 tot += total_vector_slots * word_size;
5502 tot += total_floats * sizeof (struct Lisp_Float);
5503 tot += total_intervals * sizeof (struct interval);
5504 tot += total_strings * sizeof (struct Lisp_String);
5505 return tot;
5506 }
5507
5508 #ifdef HAVE_WINDOW_SYSTEM
5509
5510 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5511 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5512
5513 static Lisp_Object
5514 compact_font_cache_entry (Lisp_Object entry)
5515 {
5516 Lisp_Object tail, *prev = &entry;
5517
5518 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5519 {
5520 bool drop = 0;
5521 Lisp_Object obj = XCAR (tail);
5522
5523 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5524 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5525 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5526 /* Don't use VECTORP here, as that calls ASIZE, which could
5527 hit assertion violation during GC. */
5528 && (VECTORLIKEP (XCDR (obj))
5529 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5530 {
5531 ptrdiff_t i, size = gc_asize (XCDR (obj));
5532 Lisp_Object obj_cdr = XCDR (obj);
5533
5534 /* If font-spec is not marked, most likely all font-entities
5535 are not marked too. But we must be sure that nothing is
5536 marked within OBJ before we really drop it. */
5537 for (i = 0; i < size; i++)
5538 {
5539 Lisp_Object objlist;
5540
5541 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5542 break;
5543
5544 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5545 for (; CONSP (objlist); objlist = XCDR (objlist))
5546 {
5547 Lisp_Object val = XCAR (objlist);
5548 struct font *font = GC_XFONT_OBJECT (val);
5549
5550 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5551 && VECTOR_MARKED_P(font))
5552 break;
5553 }
5554 if (CONSP (objlist))
5555 {
5556 /* Found a marked font, bail out. */
5557 break;
5558 }
5559 }
5560
5561 if (i == size)
5562 {
5563 /* No marked fonts were found, so this entire font
5564 entity can be dropped. */
5565 drop = 1;
5566 }
5567 }
5568 if (drop)
5569 *prev = XCDR (tail);
5570 else
5571 prev = xcdr_addr (tail);
5572 }
5573 return entry;
5574 }
5575
5576 /* Compact font caches on all terminals and mark
5577 everything which is still here after compaction. */
5578
5579 static void
5580 compact_font_caches (void)
5581 {
5582 struct terminal *t;
5583
5584 for (t = terminal_list; t; t = t->next_terminal)
5585 {
5586 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5587 if (CONSP (cache))
5588 {
5589 Lisp_Object entry;
5590
5591 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5592 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5593 }
5594 mark_object (cache);
5595 }
5596 }
5597
5598 #else /* not HAVE_WINDOW_SYSTEM */
5599
5600 #define compact_font_caches() (void)(0)
5601
5602 #endif /* HAVE_WINDOW_SYSTEM */
5603
5604 /* Remove (MARKER . DATA) entries with unmarked MARKER
5605 from buffer undo LIST and return changed list. */
5606
5607 static Lisp_Object
5608 compact_undo_list (Lisp_Object list)
5609 {
5610 Lisp_Object tail, *prev = &list;
5611
5612 for (tail = list; CONSP (tail); tail = XCDR (tail))
5613 {
5614 if (CONSP (XCAR (tail))
5615 && MARKERP (XCAR (XCAR (tail)))
5616 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5617 *prev = XCDR (tail);
5618 else
5619 prev = xcdr_addr (tail);
5620 }
5621 return list;
5622 }
5623
5624 static void
5625 mark_pinned_symbols (void)
5626 {
5627 struct symbol_block *sblk;
5628 int lim = (symbol_block_pinned == symbol_block
5629 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5630
5631 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5632 {
5633 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5634 for (; sym < end; ++sym)
5635 if (sym->s.pinned)
5636 mark_object (make_lisp_symbol (&sym->s));
5637
5638 lim = SYMBOL_BLOCK_SIZE;
5639 }
5640 }
5641
5642 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5643 separate function so that we could limit mark_stack in searching
5644 the stack frames below this function, thus avoiding the rare cases
5645 where mark_stack finds values that look like live Lisp objects on
5646 portions of stack that couldn't possibly contain such live objects.
5647 For more details of this, see the discussion at
5648 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5649 static Lisp_Object
5650 garbage_collect_1 (void *end)
5651 {
5652 struct buffer *nextb;
5653 char stack_top_variable;
5654 ptrdiff_t i;
5655 bool message_p;
5656 ptrdiff_t count = SPECPDL_INDEX ();
5657 struct timespec start;
5658 Lisp_Object retval = Qnil;
5659 size_t tot_before = 0;
5660
5661 if (abort_on_gc)
5662 emacs_abort ();
5663
5664 /* Can't GC if pure storage overflowed because we can't determine
5665 if something is a pure object or not. */
5666 if (pure_bytes_used_before_overflow)
5667 return Qnil;
5668
5669 /* Record this function, so it appears on the profiler's backtraces. */
5670 record_in_backtrace (Qautomatic_gc, 0, 0);
5671
5672 check_cons_list ();
5673
5674 /* Don't keep undo information around forever.
5675 Do this early on, so it is no problem if the user quits. */
5676 FOR_EACH_BUFFER (nextb)
5677 compact_buffer (nextb);
5678
5679 if (profiler_memory_running)
5680 tot_before = total_bytes_of_live_objects ();
5681
5682 start = current_timespec ();
5683
5684 /* In case user calls debug_print during GC,
5685 don't let that cause a recursive GC. */
5686 consing_since_gc = 0;
5687
5688 /* Save what's currently displayed in the echo area. Don't do that
5689 if we are GC'ing because we've run out of memory, since
5690 push_message will cons, and we might have no memory for that. */
5691 if (NILP (Vmemory_full))
5692 {
5693 message_p = push_message ();
5694 record_unwind_protect_void (pop_message_unwind);
5695 }
5696 else
5697 message_p = false;
5698
5699 /* Save a copy of the contents of the stack, for debugging. */
5700 #if MAX_SAVE_STACK > 0
5701 if (NILP (Vpurify_flag))
5702 {
5703 char *stack;
5704 ptrdiff_t stack_size;
5705 if (&stack_top_variable < stack_bottom)
5706 {
5707 stack = &stack_top_variable;
5708 stack_size = stack_bottom - &stack_top_variable;
5709 }
5710 else
5711 {
5712 stack = stack_bottom;
5713 stack_size = &stack_top_variable - stack_bottom;
5714 }
5715 if (stack_size <= MAX_SAVE_STACK)
5716 {
5717 if (stack_copy_size < stack_size)
5718 {
5719 stack_copy = xrealloc (stack_copy, stack_size);
5720 stack_copy_size = stack_size;
5721 }
5722 no_sanitize_memcpy (stack_copy, stack, stack_size);
5723 }
5724 }
5725 #endif /* MAX_SAVE_STACK > 0 */
5726
5727 if (garbage_collection_messages)
5728 message1_nolog ("Garbage collecting...");
5729
5730 block_input ();
5731
5732 shrink_regexp_cache ();
5733
5734 gc_in_progress = 1;
5735
5736 /* Mark all the special slots that serve as the roots of accessibility. */
5737
5738 mark_buffer (&buffer_defaults);
5739 mark_buffer (&buffer_local_symbols);
5740
5741 for (i = 0; i < ARRAYELTS (lispsym); i++)
5742 mark_object (builtin_lisp_symbol (i));
5743
5744 for (i = 0; i < staticidx; i++)
5745 mark_object (*staticvec[i]);
5746
5747 mark_pinned_symbols ();
5748 mark_specpdl ();
5749 mark_terminals ();
5750 mark_kboards ();
5751
5752 #ifdef USE_GTK
5753 xg_mark_data ();
5754 #endif
5755
5756 mark_stack (end);
5757
5758 {
5759 struct handler *handler;
5760 for (handler = handlerlist; handler; handler = handler->next)
5761 {
5762 mark_object (handler->tag_or_ch);
5763 mark_object (handler->val);
5764 }
5765 }
5766 #ifdef HAVE_WINDOW_SYSTEM
5767 mark_fringe_data ();
5768 #endif
5769
5770 /* Everything is now marked, except for the data in font caches,
5771 undo lists, and finalizers. The first two are compacted by
5772 removing an items which aren't reachable otherwise. */
5773
5774 compact_font_caches ();
5775
5776 FOR_EACH_BUFFER (nextb)
5777 {
5778 if (!EQ (BVAR (nextb, undo_list), Qt))
5779 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5780 /* Now that we have stripped the elements that need not be
5781 in the undo_list any more, we can finally mark the list. */
5782 mark_object (BVAR (nextb, undo_list));
5783 }
5784
5785 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5786 to doomed_finalizers so we can run their associated functions
5787 after GC. It's important to scan finalizers at this stage so
5788 that we can be sure that unmarked finalizers are really
5789 unreachable except for references from their associated functions
5790 and from other finalizers. */
5791
5792 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5793 mark_finalizer_list (&doomed_finalizers);
5794
5795 gc_sweep ();
5796
5797 relocate_byte_stack ();
5798
5799 /* Clear the mark bits that we set in certain root slots. */
5800 VECTOR_UNMARK (&buffer_defaults);
5801 VECTOR_UNMARK (&buffer_local_symbols);
5802
5803 check_cons_list ();
5804
5805 gc_in_progress = 0;
5806
5807 unblock_input ();
5808
5809 consing_since_gc = 0;
5810 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5811 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5812
5813 gc_relative_threshold = 0;
5814 if (FLOATP (Vgc_cons_percentage))
5815 { /* Set gc_cons_combined_threshold. */
5816 double tot = total_bytes_of_live_objects ();
5817
5818 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5819 if (0 < tot)
5820 {
5821 if (tot < TYPE_MAXIMUM (EMACS_INT))
5822 gc_relative_threshold = tot;
5823 else
5824 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5825 }
5826 }
5827
5828 if (garbage_collection_messages && NILP (Vmemory_full))
5829 {
5830 if (message_p || minibuf_level > 0)
5831 restore_message ();
5832 else
5833 message1_nolog ("Garbage collecting...done");
5834 }
5835
5836 unbind_to (count, Qnil);
5837
5838 Lisp_Object total[] = {
5839 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5840 bounded_number (total_conses),
5841 bounded_number (total_free_conses)),
5842 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5843 bounded_number (total_symbols),
5844 bounded_number (total_free_symbols)),
5845 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5846 bounded_number (total_markers),
5847 bounded_number (total_free_markers)),
5848 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5849 bounded_number (total_strings),
5850 bounded_number (total_free_strings)),
5851 list3 (Qstring_bytes, make_number (1),
5852 bounded_number (total_string_bytes)),
5853 list3 (Qvectors,
5854 make_number (header_size + sizeof (Lisp_Object)),
5855 bounded_number (total_vectors)),
5856 list4 (Qvector_slots, make_number (word_size),
5857 bounded_number (total_vector_slots),
5858 bounded_number (total_free_vector_slots)),
5859 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5860 bounded_number (total_floats),
5861 bounded_number (total_free_floats)),
5862 list4 (Qintervals, make_number (sizeof (struct interval)),
5863 bounded_number (total_intervals),
5864 bounded_number (total_free_intervals)),
5865 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5866 bounded_number (total_buffers)),
5867
5868 #ifdef DOUG_LEA_MALLOC
5869 list4 (Qheap, make_number (1024),
5870 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5871 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5872 #endif
5873 };
5874 retval = CALLMANY (Flist, total);
5875
5876 /* GC is complete: now we can run our finalizer callbacks. */
5877 run_finalizers (&doomed_finalizers);
5878
5879 if (!NILP (Vpost_gc_hook))
5880 {
5881 ptrdiff_t gc_count = inhibit_garbage_collection ();
5882 safe_run_hooks (Qpost_gc_hook);
5883 unbind_to (gc_count, Qnil);
5884 }
5885
5886 /* Accumulate statistics. */
5887 if (FLOATP (Vgc_elapsed))
5888 {
5889 struct timespec since_start = timespec_sub (current_timespec (), start);
5890 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5891 + timespectod (since_start));
5892 }
5893
5894 gcs_done++;
5895
5896 /* Collect profiling data. */
5897 if (profiler_memory_running)
5898 {
5899 size_t swept = 0;
5900 size_t tot_after = total_bytes_of_live_objects ();
5901 if (tot_before > tot_after)
5902 swept = tot_before - tot_after;
5903 malloc_probe (swept);
5904 }
5905
5906 return retval;
5907 }
5908
5909 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5910 doc: /* Reclaim storage for Lisp objects no longer needed.
5911 Garbage collection happens automatically if you cons more than
5912 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5913 `garbage-collect' normally returns a list with info on amount of space in use,
5914 where each entry has the form (NAME SIZE USED FREE), where:
5915 - NAME is a symbol describing the kind of objects this entry represents,
5916 - SIZE is the number of bytes used by each one,
5917 - USED is the number of those objects that were found live in the heap,
5918 - FREE is the number of those objects that are not live but that Emacs
5919 keeps around for future allocations (maybe because it does not know how
5920 to return them to the OS).
5921 However, if there was overflow in pure space, `garbage-collect'
5922 returns nil, because real GC can't be done.
5923 See Info node `(elisp)Garbage Collection'. */)
5924 (void)
5925 {
5926 void *end;
5927
5928 #ifdef HAVE___BUILTIN_UNWIND_INIT
5929 /* Force callee-saved registers and register windows onto the stack.
5930 This is the preferred method if available, obviating the need for
5931 machine dependent methods. */
5932 __builtin_unwind_init ();
5933 end = &end;
5934 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5935 #ifndef GC_SAVE_REGISTERS_ON_STACK
5936 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5937 union aligned_jmpbuf {
5938 Lisp_Object o;
5939 sys_jmp_buf j;
5940 } j;
5941 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5942 #endif
5943 /* This trick flushes the register windows so that all the state of
5944 the process is contained in the stack. */
5945 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5946 needed on ia64 too. See mach_dep.c, where it also says inline
5947 assembler doesn't work with relevant proprietary compilers. */
5948 #ifdef __sparc__
5949 #if defined (__sparc64__) && defined (__FreeBSD__)
5950 /* FreeBSD does not have a ta 3 handler. */
5951 asm ("flushw");
5952 #else
5953 asm ("ta 3");
5954 #endif
5955 #endif
5956
5957 /* Save registers that we need to see on the stack. We need to see
5958 registers used to hold register variables and registers used to
5959 pass parameters. */
5960 #ifdef GC_SAVE_REGISTERS_ON_STACK
5961 GC_SAVE_REGISTERS_ON_STACK (end);
5962 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5963
5964 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5965 setjmp will definitely work, test it
5966 and print a message with the result
5967 of the test. */
5968 if (!setjmp_tested_p)
5969 {
5970 setjmp_tested_p = 1;
5971 test_setjmp ();
5972 }
5973 #endif /* GC_SETJMP_WORKS */
5974
5975 sys_setjmp (j.j);
5976 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5977 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5978 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5979 return garbage_collect_1 (end);
5980 }
5981
5982 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5983 only interesting objects referenced from glyphs are strings. */
5984
5985 static void
5986 mark_glyph_matrix (struct glyph_matrix *matrix)
5987 {
5988 struct glyph_row *row = matrix->rows;
5989 struct glyph_row *end = row + matrix->nrows;
5990
5991 for (; row < end; ++row)
5992 if (row->enabled_p)
5993 {
5994 int area;
5995 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5996 {
5997 struct glyph *glyph = row->glyphs[area];
5998 struct glyph *end_glyph = glyph + row->used[area];
5999
6000 for (; glyph < end_glyph; ++glyph)
6001 if (STRINGP (glyph->object)
6002 && !STRING_MARKED_P (XSTRING (glyph->object)))
6003 mark_object (glyph->object);
6004 }
6005 }
6006 }
6007
6008 /* Mark reference to a Lisp_Object.
6009 If the object referred to has not been seen yet, recursively mark
6010 all the references contained in it. */
6011
6012 #define LAST_MARKED_SIZE 500
6013 static Lisp_Object last_marked[LAST_MARKED_SIZE];
6014 static int last_marked_index;
6015
6016 /* For debugging--call abort when we cdr down this many
6017 links of a list, in mark_object. In debugging,
6018 the call to abort will hit a breakpoint.
6019 Normally this is zero and the check never goes off. */
6020 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6021
6022 static void
6023 mark_vectorlike (struct Lisp_Vector *ptr)
6024 {
6025 ptrdiff_t size = ptr->header.size;
6026 ptrdiff_t i;
6027
6028 eassert (!VECTOR_MARKED_P (ptr));
6029 VECTOR_MARK (ptr); /* Else mark it. */
6030 if (size & PSEUDOVECTOR_FLAG)
6031 size &= PSEUDOVECTOR_SIZE_MASK;
6032
6033 /* Note that this size is not the memory-footprint size, but only
6034 the number of Lisp_Object fields that we should trace.
6035 The distinction is used e.g. by Lisp_Process which places extra
6036 non-Lisp_Object fields at the end of the structure... */
6037 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6038 mark_object (ptr->contents[i]);
6039 }
6040
6041 /* Like mark_vectorlike but optimized for char-tables (and
6042 sub-char-tables) assuming that the contents are mostly integers or
6043 symbols. */
6044
6045 static void
6046 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6047 {
6048 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6049 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6050 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6051
6052 eassert (!VECTOR_MARKED_P (ptr));
6053 VECTOR_MARK (ptr);
6054 for (i = idx; i < size; i++)
6055 {
6056 Lisp_Object val = ptr->contents[i];
6057
6058 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6059 continue;
6060 if (SUB_CHAR_TABLE_P (val))
6061 {
6062 if (! VECTOR_MARKED_P (XVECTOR (val)))
6063 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6064 }
6065 else
6066 mark_object (val);
6067 }
6068 }
6069
6070 NO_INLINE /* To reduce stack depth in mark_object. */
6071 static Lisp_Object
6072 mark_compiled (struct Lisp_Vector *ptr)
6073 {
6074 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6075
6076 VECTOR_MARK (ptr);
6077 for (i = 0; i < size; i++)
6078 if (i != COMPILED_CONSTANTS)
6079 mark_object (ptr->contents[i]);
6080 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6081 }
6082
6083 /* Mark the chain of overlays starting at PTR. */
6084
6085 static void
6086 mark_overlay (struct Lisp_Overlay *ptr)
6087 {
6088 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6089 {
6090 ptr->gcmarkbit = 1;
6091 /* These two are always markers and can be marked fast. */
6092 XMARKER (ptr->start)->gcmarkbit = 1;
6093 XMARKER (ptr->end)->gcmarkbit = 1;
6094 mark_object (ptr->plist);
6095 }
6096 }
6097
6098 /* Mark Lisp_Objects and special pointers in BUFFER. */
6099
6100 static void
6101 mark_buffer (struct buffer *buffer)
6102 {
6103 /* This is handled much like other pseudovectors... */
6104 mark_vectorlike ((struct Lisp_Vector *) buffer);
6105
6106 /* ...but there are some buffer-specific things. */
6107
6108 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6109
6110 /* For now, we just don't mark the undo_list. It's done later in
6111 a special way just before the sweep phase, and after stripping
6112 some of its elements that are not needed any more. */
6113
6114 mark_overlay (buffer->overlays_before);
6115 mark_overlay (buffer->overlays_after);
6116
6117 /* If this is an indirect buffer, mark its base buffer. */
6118 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6119 mark_buffer (buffer->base_buffer);
6120 }
6121
6122 /* Mark Lisp faces in the face cache C. */
6123
6124 NO_INLINE /* To reduce stack depth in mark_object. */
6125 static void
6126 mark_face_cache (struct face_cache *c)
6127 {
6128 if (c)
6129 {
6130 int i, j;
6131 for (i = 0; i < c->used; ++i)
6132 {
6133 struct face *face = FACE_FROM_ID (c->f, i);
6134
6135 if (face)
6136 {
6137 if (face->font && !VECTOR_MARKED_P (face->font))
6138 mark_vectorlike ((struct Lisp_Vector *) face->font);
6139
6140 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6141 mark_object (face->lface[j]);
6142 }
6143 }
6144 }
6145 }
6146
6147 NO_INLINE /* To reduce stack depth in mark_object. */
6148 static void
6149 mark_localized_symbol (struct Lisp_Symbol *ptr)
6150 {
6151 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6152 Lisp_Object where = blv->where;
6153 /* If the value is set up for a killed buffer or deleted
6154 frame, restore its global binding. If the value is
6155 forwarded to a C variable, either it's not a Lisp_Object
6156 var, or it's staticpro'd already. */
6157 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6158 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6159 swap_in_global_binding (ptr);
6160 mark_object (blv->where);
6161 mark_object (blv->valcell);
6162 mark_object (blv->defcell);
6163 }
6164
6165 NO_INLINE /* To reduce stack depth in mark_object. */
6166 static void
6167 mark_save_value (struct Lisp_Save_Value *ptr)
6168 {
6169 /* If `save_type' is zero, `data[0].pointer' is the address
6170 of a memory area containing `data[1].integer' potential
6171 Lisp_Objects. */
6172 if (ptr->save_type == SAVE_TYPE_MEMORY)
6173 {
6174 Lisp_Object *p = ptr->data[0].pointer;
6175 ptrdiff_t nelt;
6176 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6177 mark_maybe_object (*p);
6178 }
6179 else
6180 {
6181 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6182 int i;
6183 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6184 if (save_type (ptr, i) == SAVE_OBJECT)
6185 mark_object (ptr->data[i].object);
6186 }
6187 }
6188
6189 /* Remove killed buffers or items whose car is a killed buffer from
6190 LIST, and mark other items. Return changed LIST, which is marked. */
6191
6192 static Lisp_Object
6193 mark_discard_killed_buffers (Lisp_Object list)
6194 {
6195 Lisp_Object tail, *prev = &list;
6196
6197 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6198 tail = XCDR (tail))
6199 {
6200 Lisp_Object tem = XCAR (tail);
6201 if (CONSP (tem))
6202 tem = XCAR (tem);
6203 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6204 *prev = XCDR (tail);
6205 else
6206 {
6207 CONS_MARK (XCONS (tail));
6208 mark_object (XCAR (tail));
6209 prev = xcdr_addr (tail);
6210 }
6211 }
6212 mark_object (tail);
6213 return list;
6214 }
6215
6216 /* Determine type of generic Lisp_Object and mark it accordingly.
6217
6218 This function implements a straightforward depth-first marking
6219 algorithm and so the recursion depth may be very high (a few
6220 tens of thousands is not uncommon). To minimize stack usage,
6221 a few cold paths are moved out to NO_INLINE functions above.
6222 In general, inlining them doesn't help you to gain more speed. */
6223
6224 void
6225 mark_object (Lisp_Object arg)
6226 {
6227 register Lisp_Object obj;
6228 void *po;
6229 #ifdef GC_CHECK_MARKED_OBJECTS
6230 struct mem_node *m;
6231 #endif
6232 ptrdiff_t cdr_count = 0;
6233
6234 obj = arg;
6235 loop:
6236
6237 po = XPNTR (obj);
6238 if (PURE_P (po))
6239 return;
6240
6241 last_marked[last_marked_index++] = obj;
6242 if (last_marked_index == LAST_MARKED_SIZE)
6243 last_marked_index = 0;
6244
6245 /* Perform some sanity checks on the objects marked here. Abort if
6246 we encounter an object we know is bogus. This increases GC time
6247 by ~80%. */
6248 #ifdef GC_CHECK_MARKED_OBJECTS
6249
6250 /* Check that the object pointed to by PO is known to be a Lisp
6251 structure allocated from the heap. */
6252 #define CHECK_ALLOCATED() \
6253 do { \
6254 m = mem_find (po); \
6255 if (m == MEM_NIL) \
6256 emacs_abort (); \
6257 } while (0)
6258
6259 /* Check that the object pointed to by PO is live, using predicate
6260 function LIVEP. */
6261 #define CHECK_LIVE(LIVEP) \
6262 do { \
6263 if (!LIVEP (m, po)) \
6264 emacs_abort (); \
6265 } while (0)
6266
6267 /* Check both of the above conditions, for non-symbols. */
6268 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6269 do { \
6270 CHECK_ALLOCATED (); \
6271 CHECK_LIVE (LIVEP); \
6272 } while (0) \
6273
6274 /* Check both of the above conditions, for symbols. */
6275 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6276 do { \
6277 if (!c_symbol_p (ptr)) \
6278 { \
6279 CHECK_ALLOCATED (); \
6280 CHECK_LIVE (live_symbol_p); \
6281 } \
6282 } while (0) \
6283
6284 #else /* not GC_CHECK_MARKED_OBJECTS */
6285
6286 #define CHECK_LIVE(LIVEP) ((void) 0)
6287 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6288 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6289
6290 #endif /* not GC_CHECK_MARKED_OBJECTS */
6291
6292 switch (XTYPE (obj))
6293 {
6294 case Lisp_String:
6295 {
6296 register struct Lisp_String *ptr = XSTRING (obj);
6297 if (STRING_MARKED_P (ptr))
6298 break;
6299 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6300 MARK_STRING (ptr);
6301 MARK_INTERVAL_TREE (ptr->intervals);
6302 #ifdef GC_CHECK_STRING_BYTES
6303 /* Check that the string size recorded in the string is the
6304 same as the one recorded in the sdata structure. */
6305 string_bytes (ptr);
6306 #endif /* GC_CHECK_STRING_BYTES */
6307 }
6308 break;
6309
6310 case Lisp_Vectorlike:
6311 {
6312 register struct Lisp_Vector *ptr = XVECTOR (obj);
6313 register ptrdiff_t pvectype;
6314
6315 if (VECTOR_MARKED_P (ptr))
6316 break;
6317
6318 #ifdef GC_CHECK_MARKED_OBJECTS
6319 m = mem_find (po);
6320 if (m == MEM_NIL && !SUBRP (obj))
6321 emacs_abort ();
6322 #endif /* GC_CHECK_MARKED_OBJECTS */
6323
6324 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6325 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6326 >> PSEUDOVECTOR_AREA_BITS);
6327 else
6328 pvectype = PVEC_NORMAL_VECTOR;
6329
6330 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6331 CHECK_LIVE (live_vector_p);
6332
6333 switch (pvectype)
6334 {
6335 case PVEC_BUFFER:
6336 #ifdef GC_CHECK_MARKED_OBJECTS
6337 {
6338 struct buffer *b;
6339 FOR_EACH_BUFFER (b)
6340 if (b == po)
6341 break;
6342 if (b == NULL)
6343 emacs_abort ();
6344 }
6345 #endif /* GC_CHECK_MARKED_OBJECTS */
6346 mark_buffer ((struct buffer *) ptr);
6347 break;
6348
6349 case PVEC_COMPILED:
6350 /* Although we could treat this just like a vector, mark_compiled
6351 returns the COMPILED_CONSTANTS element, which is marked at the
6352 next iteration of goto-loop here. This is done to avoid a few
6353 recursive calls to mark_object. */
6354 obj = mark_compiled (ptr);
6355 if (!NILP (obj))
6356 goto loop;
6357 break;
6358
6359 case PVEC_FRAME:
6360 {
6361 struct frame *f = (struct frame *) ptr;
6362
6363 mark_vectorlike (ptr);
6364 mark_face_cache (f->face_cache);
6365 #ifdef HAVE_WINDOW_SYSTEM
6366 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6367 {
6368 struct font *font = FRAME_FONT (f);
6369
6370 if (font && !VECTOR_MARKED_P (font))
6371 mark_vectorlike ((struct Lisp_Vector *) font);
6372 }
6373 #endif
6374 }
6375 break;
6376
6377 case PVEC_WINDOW:
6378 {
6379 struct window *w = (struct window *) ptr;
6380
6381 mark_vectorlike (ptr);
6382
6383 /* Mark glyph matrices, if any. Marking window
6384 matrices is sufficient because frame matrices
6385 use the same glyph memory. */
6386 if (w->current_matrix)
6387 {
6388 mark_glyph_matrix (w->current_matrix);
6389 mark_glyph_matrix (w->desired_matrix);
6390 }
6391
6392 /* Filter out killed buffers from both buffer lists
6393 in attempt to help GC to reclaim killed buffers faster.
6394 We can do it elsewhere for live windows, but this is the
6395 best place to do it for dead windows. */
6396 wset_prev_buffers
6397 (w, mark_discard_killed_buffers (w->prev_buffers));
6398 wset_next_buffers
6399 (w, mark_discard_killed_buffers (w->next_buffers));
6400 }
6401 break;
6402
6403 case PVEC_HASH_TABLE:
6404 {
6405 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6406
6407 mark_vectorlike (ptr);
6408 mark_object (h->test.name);
6409 mark_object (h->test.user_hash_function);
6410 mark_object (h->test.user_cmp_function);
6411 /* If hash table is not weak, mark all keys and values.
6412 For weak tables, mark only the vector. */
6413 if (NILP (h->weak))
6414 mark_object (h->key_and_value);
6415 else
6416 VECTOR_MARK (XVECTOR (h->key_and_value));
6417 }
6418 break;
6419
6420 case PVEC_CHAR_TABLE:
6421 case PVEC_SUB_CHAR_TABLE:
6422 mark_char_table (ptr, (enum pvec_type) pvectype);
6423 break;
6424
6425 case PVEC_BOOL_VECTOR:
6426 /* No Lisp_Objects to mark in a bool vector. */
6427 VECTOR_MARK (ptr);
6428 break;
6429
6430 case PVEC_SUBR:
6431 break;
6432
6433 case PVEC_FREE:
6434 emacs_abort ();
6435
6436 default:
6437 mark_vectorlike (ptr);
6438 }
6439 }
6440 break;
6441
6442 case Lisp_Symbol:
6443 {
6444 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6445 nextsym:
6446 if (ptr->gcmarkbit)
6447 break;
6448 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6449 ptr->gcmarkbit = 1;
6450 /* Attempt to catch bogus objects. */
6451 eassert (valid_lisp_object_p (ptr->function));
6452 mark_object (ptr->function);
6453 mark_object (ptr->plist);
6454 switch (ptr->redirect)
6455 {
6456 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6457 case SYMBOL_VARALIAS:
6458 {
6459 Lisp_Object tem;
6460 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6461 mark_object (tem);
6462 break;
6463 }
6464 case SYMBOL_LOCALIZED:
6465 mark_localized_symbol (ptr);
6466 break;
6467 case SYMBOL_FORWARDED:
6468 /* If the value is forwarded to a buffer or keyboard field,
6469 these are marked when we see the corresponding object.
6470 And if it's forwarded to a C variable, either it's not
6471 a Lisp_Object var, or it's staticpro'd already. */
6472 break;
6473 default: emacs_abort ();
6474 }
6475 if (!PURE_P (XSTRING (ptr->name)))
6476 MARK_STRING (XSTRING (ptr->name));
6477 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6478 /* Inner loop to mark next symbol in this bucket, if any. */
6479 po = ptr = ptr->next;
6480 if (ptr)
6481 goto nextsym;
6482 }
6483 break;
6484
6485 case Lisp_Misc:
6486 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6487
6488 if (XMISCANY (obj)->gcmarkbit)
6489 break;
6490
6491 switch (XMISCTYPE (obj))
6492 {
6493 case Lisp_Misc_Marker:
6494 /* DO NOT mark thru the marker's chain.
6495 The buffer's markers chain does not preserve markers from gc;
6496 instead, markers are removed from the chain when freed by gc. */
6497 XMISCANY (obj)->gcmarkbit = 1;
6498 break;
6499
6500 case Lisp_Misc_Save_Value:
6501 XMISCANY (obj)->gcmarkbit = 1;
6502 mark_save_value (XSAVE_VALUE (obj));
6503 break;
6504
6505 case Lisp_Misc_Overlay:
6506 mark_overlay (XOVERLAY (obj));
6507 break;
6508
6509 case Lisp_Misc_Finalizer:
6510 XMISCANY (obj)->gcmarkbit = true;
6511 mark_object (XFINALIZER (obj)->function);
6512 break;
6513
6514 #ifdef HAVE_MODULES
6515 case Lisp_Misc_User_Ptr:
6516 XMISCANY (obj)->gcmarkbit = true;
6517 break;
6518 #endif
6519
6520 default:
6521 emacs_abort ();
6522 }
6523 break;
6524
6525 case Lisp_Cons:
6526 {
6527 register struct Lisp_Cons *ptr = XCONS (obj);
6528 if (CONS_MARKED_P (ptr))
6529 break;
6530 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6531 CONS_MARK (ptr);
6532 /* If the cdr is nil, avoid recursion for the car. */
6533 if (EQ (ptr->u.cdr, Qnil))
6534 {
6535 obj = ptr->car;
6536 cdr_count = 0;
6537 goto loop;
6538 }
6539 mark_object (ptr->car);
6540 obj = ptr->u.cdr;
6541 cdr_count++;
6542 if (cdr_count == mark_object_loop_halt)
6543 emacs_abort ();
6544 goto loop;
6545 }
6546
6547 case Lisp_Float:
6548 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6549 FLOAT_MARK (XFLOAT (obj));
6550 break;
6551
6552 case_Lisp_Int:
6553 break;
6554
6555 default:
6556 emacs_abort ();
6557 }
6558
6559 #undef CHECK_LIVE
6560 #undef CHECK_ALLOCATED
6561 #undef CHECK_ALLOCATED_AND_LIVE
6562 }
6563 /* Mark the Lisp pointers in the terminal objects.
6564 Called by Fgarbage_collect. */
6565
6566 static void
6567 mark_terminals (void)
6568 {
6569 struct terminal *t;
6570 for (t = terminal_list; t; t = t->next_terminal)
6571 {
6572 eassert (t->name != NULL);
6573 #ifdef HAVE_WINDOW_SYSTEM
6574 /* If a terminal object is reachable from a stacpro'ed object,
6575 it might have been marked already. Make sure the image cache
6576 gets marked. */
6577 mark_image_cache (t->image_cache);
6578 #endif /* HAVE_WINDOW_SYSTEM */
6579 if (!VECTOR_MARKED_P (t))
6580 mark_vectorlike ((struct Lisp_Vector *)t);
6581 }
6582 }
6583
6584
6585
6586 /* Value is non-zero if OBJ will survive the current GC because it's
6587 either marked or does not need to be marked to survive. */
6588
6589 bool
6590 survives_gc_p (Lisp_Object obj)
6591 {
6592 bool survives_p;
6593
6594 switch (XTYPE (obj))
6595 {
6596 case_Lisp_Int:
6597 survives_p = 1;
6598 break;
6599
6600 case Lisp_Symbol:
6601 survives_p = XSYMBOL (obj)->gcmarkbit;
6602 break;
6603
6604 case Lisp_Misc:
6605 survives_p = XMISCANY (obj)->gcmarkbit;
6606 break;
6607
6608 case Lisp_String:
6609 survives_p = STRING_MARKED_P (XSTRING (obj));
6610 break;
6611
6612 case Lisp_Vectorlike:
6613 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6614 break;
6615
6616 case Lisp_Cons:
6617 survives_p = CONS_MARKED_P (XCONS (obj));
6618 break;
6619
6620 case Lisp_Float:
6621 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6622 break;
6623
6624 default:
6625 emacs_abort ();
6626 }
6627
6628 return survives_p || PURE_P (XPNTR (obj));
6629 }
6630
6631
6632 \f
6633
6634 NO_INLINE /* For better stack traces */
6635 static void
6636 sweep_conses (void)
6637 {
6638 struct cons_block *cblk;
6639 struct cons_block **cprev = &cons_block;
6640 int lim = cons_block_index;
6641 EMACS_INT num_free = 0, num_used = 0;
6642
6643 cons_free_list = 0;
6644
6645 for (cblk = cons_block; cblk; cblk = *cprev)
6646 {
6647 int i = 0;
6648 int this_free = 0;
6649 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6650
6651 /* Scan the mark bits an int at a time. */
6652 for (i = 0; i < ilim; i++)
6653 {
6654 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6655 {
6656 /* Fast path - all cons cells for this int are marked. */
6657 cblk->gcmarkbits[i] = 0;
6658 num_used += BITS_PER_BITS_WORD;
6659 }
6660 else
6661 {
6662 /* Some cons cells for this int are not marked.
6663 Find which ones, and free them. */
6664 int start, pos, stop;
6665
6666 start = i * BITS_PER_BITS_WORD;
6667 stop = lim - start;
6668 if (stop > BITS_PER_BITS_WORD)
6669 stop = BITS_PER_BITS_WORD;
6670 stop += start;
6671
6672 for (pos = start; pos < stop; pos++)
6673 {
6674 if (!CONS_MARKED_P (&cblk->conses[pos]))
6675 {
6676 this_free++;
6677 cblk->conses[pos].u.chain = cons_free_list;
6678 cons_free_list = &cblk->conses[pos];
6679 cons_free_list->car = Vdead;
6680 }
6681 else
6682 {
6683 num_used++;
6684 CONS_UNMARK (&cblk->conses[pos]);
6685 }
6686 }
6687 }
6688 }
6689
6690 lim = CONS_BLOCK_SIZE;
6691 /* If this block contains only free conses and we have already
6692 seen more than two blocks worth of free conses then deallocate
6693 this block. */
6694 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6695 {
6696 *cprev = cblk->next;
6697 /* Unhook from the free list. */
6698 cons_free_list = cblk->conses[0].u.chain;
6699 lisp_align_free (cblk);
6700 }
6701 else
6702 {
6703 num_free += this_free;
6704 cprev = &cblk->next;
6705 }
6706 }
6707 total_conses = num_used;
6708 total_free_conses = num_free;
6709 }
6710
6711 NO_INLINE /* For better stack traces */
6712 static void
6713 sweep_floats (void)
6714 {
6715 register struct float_block *fblk;
6716 struct float_block **fprev = &float_block;
6717 register int lim = float_block_index;
6718 EMACS_INT num_free = 0, num_used = 0;
6719
6720 float_free_list = 0;
6721
6722 for (fblk = float_block; fblk; fblk = *fprev)
6723 {
6724 register int i;
6725 int this_free = 0;
6726 for (i = 0; i < lim; i++)
6727 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6728 {
6729 this_free++;
6730 fblk->floats[i].u.chain = float_free_list;
6731 float_free_list = &fblk->floats[i];
6732 }
6733 else
6734 {
6735 num_used++;
6736 FLOAT_UNMARK (&fblk->floats[i]);
6737 }
6738 lim = FLOAT_BLOCK_SIZE;
6739 /* If this block contains only free floats and we have already
6740 seen more than two blocks worth of free floats then deallocate
6741 this block. */
6742 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6743 {
6744 *fprev = fblk->next;
6745 /* Unhook from the free list. */
6746 float_free_list = fblk->floats[0].u.chain;
6747 lisp_align_free (fblk);
6748 }
6749 else
6750 {
6751 num_free += this_free;
6752 fprev = &fblk->next;
6753 }
6754 }
6755 total_floats = num_used;
6756 total_free_floats = num_free;
6757 }
6758
6759 NO_INLINE /* For better stack traces */
6760 static void
6761 sweep_intervals (void)
6762 {
6763 register struct interval_block *iblk;
6764 struct interval_block **iprev = &interval_block;
6765 register int lim = interval_block_index;
6766 EMACS_INT num_free = 0, num_used = 0;
6767
6768 interval_free_list = 0;
6769
6770 for (iblk = interval_block; iblk; iblk = *iprev)
6771 {
6772 register int i;
6773 int this_free = 0;
6774
6775 for (i = 0; i < lim; i++)
6776 {
6777 if (!iblk->intervals[i].gcmarkbit)
6778 {
6779 set_interval_parent (&iblk->intervals[i], interval_free_list);
6780 interval_free_list = &iblk->intervals[i];
6781 this_free++;
6782 }
6783 else
6784 {
6785 num_used++;
6786 iblk->intervals[i].gcmarkbit = 0;
6787 }
6788 }
6789 lim = INTERVAL_BLOCK_SIZE;
6790 /* If this block contains only free intervals and we have already
6791 seen more than two blocks worth of free intervals then
6792 deallocate this block. */
6793 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6794 {
6795 *iprev = iblk->next;
6796 /* Unhook from the free list. */
6797 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6798 lisp_free (iblk);
6799 }
6800 else
6801 {
6802 num_free += this_free;
6803 iprev = &iblk->next;
6804 }
6805 }
6806 total_intervals = num_used;
6807 total_free_intervals = num_free;
6808 }
6809
6810 NO_INLINE /* For better stack traces */
6811 static void
6812 sweep_symbols (void)
6813 {
6814 struct symbol_block *sblk;
6815 struct symbol_block **sprev = &symbol_block;
6816 int lim = symbol_block_index;
6817 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6818
6819 symbol_free_list = NULL;
6820
6821 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6822 lispsym[i].gcmarkbit = 0;
6823
6824 for (sblk = symbol_block; sblk; sblk = *sprev)
6825 {
6826 int this_free = 0;
6827 union aligned_Lisp_Symbol *sym = sblk->symbols;
6828 union aligned_Lisp_Symbol *end = sym + lim;
6829
6830 for (; sym < end; ++sym)
6831 {
6832 if (!sym->s.gcmarkbit)
6833 {
6834 if (sym->s.redirect == SYMBOL_LOCALIZED)
6835 xfree (SYMBOL_BLV (&sym->s));
6836 sym->s.next = symbol_free_list;
6837 symbol_free_list = &sym->s;
6838 symbol_free_list->function = Vdead;
6839 ++this_free;
6840 }
6841 else
6842 {
6843 ++num_used;
6844 sym->s.gcmarkbit = 0;
6845 /* Attempt to catch bogus objects. */
6846 eassert (valid_lisp_object_p (sym->s.function));
6847 }
6848 }
6849
6850 lim = SYMBOL_BLOCK_SIZE;
6851 /* If this block contains only free symbols and we have already
6852 seen more than two blocks worth of free symbols then deallocate
6853 this block. */
6854 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6855 {
6856 *sprev = sblk->next;
6857 /* Unhook from the free list. */
6858 symbol_free_list = sblk->symbols[0].s.next;
6859 lisp_free (sblk);
6860 }
6861 else
6862 {
6863 num_free += this_free;
6864 sprev = &sblk->next;
6865 }
6866 }
6867 total_symbols = num_used;
6868 total_free_symbols = num_free;
6869 }
6870
6871 NO_INLINE /* For better stack traces. */
6872 static void
6873 sweep_misc (void)
6874 {
6875 register struct marker_block *mblk;
6876 struct marker_block **mprev = &marker_block;
6877 register int lim = marker_block_index;
6878 EMACS_INT num_free = 0, num_used = 0;
6879
6880 /* Put all unmarked misc's on free list. For a marker, first
6881 unchain it from the buffer it points into. */
6882
6883 marker_free_list = 0;
6884
6885 for (mblk = marker_block; mblk; mblk = *mprev)
6886 {
6887 register int i;
6888 int this_free = 0;
6889
6890 for (i = 0; i < lim; i++)
6891 {
6892 if (!mblk->markers[i].m.u_any.gcmarkbit)
6893 {
6894 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6895 unchain_marker (&mblk->markers[i].m.u_marker);
6896 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6897 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6898 #ifdef HAVE_MODULES
6899 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6900 {
6901 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6902 uptr->finalizer (uptr->p);
6903 }
6904 #endif
6905 /* Set the type of the freed object to Lisp_Misc_Free.
6906 We could leave the type alone, since nobody checks it,
6907 but this might catch bugs faster. */
6908 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6909 mblk->markers[i].m.u_free.chain = marker_free_list;
6910 marker_free_list = &mblk->markers[i].m;
6911 this_free++;
6912 }
6913 else
6914 {
6915 num_used++;
6916 mblk->markers[i].m.u_any.gcmarkbit = 0;
6917 }
6918 }
6919 lim = MARKER_BLOCK_SIZE;
6920 /* If this block contains only free markers and we have already
6921 seen more than two blocks worth of free markers then deallocate
6922 this block. */
6923 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6924 {
6925 *mprev = mblk->next;
6926 /* Unhook from the free list. */
6927 marker_free_list = mblk->markers[0].m.u_free.chain;
6928 lisp_free (mblk);
6929 }
6930 else
6931 {
6932 num_free += this_free;
6933 mprev = &mblk->next;
6934 }
6935 }
6936
6937 total_markers = num_used;
6938 total_free_markers = num_free;
6939 }
6940
6941 NO_INLINE /* For better stack traces */
6942 static void
6943 sweep_buffers (void)
6944 {
6945 register struct buffer *buffer, **bprev = &all_buffers;
6946
6947 total_buffers = 0;
6948 for (buffer = all_buffers; buffer; buffer = *bprev)
6949 if (!VECTOR_MARKED_P (buffer))
6950 {
6951 *bprev = buffer->next;
6952 lisp_free (buffer);
6953 }
6954 else
6955 {
6956 VECTOR_UNMARK (buffer);
6957 /* Do not use buffer_(set|get)_intervals here. */
6958 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6959 total_buffers++;
6960 bprev = &buffer->next;
6961 }
6962 }
6963
6964 /* Sweep: find all structures not marked, and free them. */
6965 static void
6966 gc_sweep (void)
6967 {
6968 /* Remove or mark entries in weak hash tables.
6969 This must be done before any object is unmarked. */
6970 sweep_weak_hash_tables ();
6971
6972 sweep_strings ();
6973 check_string_bytes (!noninteractive);
6974 sweep_conses ();
6975 sweep_floats ();
6976 sweep_intervals ();
6977 sweep_symbols ();
6978 sweep_misc ();
6979 sweep_buffers ();
6980 sweep_vectors ();
6981 check_string_bytes (!noninteractive);
6982 }
6983
6984 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6985 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6986 All values are in Kbytes. If there is no swap space,
6987 last two values are zero. If the system is not supported
6988 or memory information can't be obtained, return nil. */)
6989 (void)
6990 {
6991 #if defined HAVE_LINUX_SYSINFO
6992 struct sysinfo si;
6993 uintmax_t units;
6994
6995 if (sysinfo (&si))
6996 return Qnil;
6997 #ifdef LINUX_SYSINFO_UNIT
6998 units = si.mem_unit;
6999 #else
7000 units = 1;
7001 #endif
7002 return list4i ((uintmax_t) si.totalram * units / 1024,
7003 (uintmax_t) si.freeram * units / 1024,
7004 (uintmax_t) si.totalswap * units / 1024,
7005 (uintmax_t) si.freeswap * units / 1024);
7006 #elif defined WINDOWSNT
7007 unsigned long long totalram, freeram, totalswap, freeswap;
7008
7009 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7010 return list4i ((uintmax_t) totalram / 1024,
7011 (uintmax_t) freeram / 1024,
7012 (uintmax_t) totalswap / 1024,
7013 (uintmax_t) freeswap / 1024);
7014 else
7015 return Qnil;
7016 #elif defined MSDOS
7017 unsigned long totalram, freeram, totalswap, freeswap;
7018
7019 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7020 return list4i ((uintmax_t) totalram / 1024,
7021 (uintmax_t) freeram / 1024,
7022 (uintmax_t) totalswap / 1024,
7023 (uintmax_t) freeswap / 1024);
7024 else
7025 return Qnil;
7026 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7027 /* FIXME: add more systems. */
7028 return Qnil;
7029 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7030 }
7031
7032 /* Debugging aids. */
7033
7034 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7035 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7036 This may be helpful in debugging Emacs's memory usage.
7037 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7038 (void)
7039 {
7040 Lisp_Object end;
7041
7042 #ifdef HAVE_NS
7043 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7044 XSETINT (end, 0);
7045 #else
7046 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7047 #endif
7048
7049 return end;
7050 }
7051
7052 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7053 doc: /* Return a list of counters that measure how much consing there has been.
7054 Each of these counters increments for a certain kind of object.
7055 The counters wrap around from the largest positive integer to zero.
7056 Garbage collection does not decrease them.
7057 The elements of the value are as follows:
7058 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7059 All are in units of 1 = one object consed
7060 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7061 objects consed.
7062 MISCS include overlays, markers, and some internal types.
7063 Frames, windows, buffers, and subprocesses count as vectors
7064 (but the contents of a buffer's text do not count here). */)
7065 (void)
7066 {
7067 return listn (CONSTYPE_HEAP, 8,
7068 bounded_number (cons_cells_consed),
7069 bounded_number (floats_consed),
7070 bounded_number (vector_cells_consed),
7071 bounded_number (symbols_consed),
7072 bounded_number (string_chars_consed),
7073 bounded_number (misc_objects_consed),
7074 bounded_number (intervals_consed),
7075 bounded_number (strings_consed));
7076 }
7077
7078 static bool
7079 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7080 {
7081 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7082 Lisp_Object val = find_symbol_value (symbol);
7083 return (EQ (val, obj)
7084 || EQ (sym->function, obj)
7085 || (!NILP (sym->function)
7086 && COMPILEDP (sym->function)
7087 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7088 || (!NILP (val)
7089 && COMPILEDP (val)
7090 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7091 }
7092
7093 /* Find at most FIND_MAX symbols which have OBJ as their value or
7094 function. This is used in gdbinit's `xwhichsymbols' command. */
7095
7096 Lisp_Object
7097 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7098 {
7099 struct symbol_block *sblk;
7100 ptrdiff_t gc_count = inhibit_garbage_collection ();
7101 Lisp_Object found = Qnil;
7102
7103 if (! DEADP (obj))
7104 {
7105 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7106 {
7107 Lisp_Object sym = builtin_lisp_symbol (i);
7108 if (symbol_uses_obj (sym, obj))
7109 {
7110 found = Fcons (sym, found);
7111 if (--find_max == 0)
7112 goto out;
7113 }
7114 }
7115
7116 for (sblk = symbol_block; sblk; sblk = sblk->next)
7117 {
7118 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7119 int bn;
7120
7121 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7122 {
7123 if (sblk == symbol_block && bn >= symbol_block_index)
7124 break;
7125
7126 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7127 if (symbol_uses_obj (sym, obj))
7128 {
7129 found = Fcons (sym, found);
7130 if (--find_max == 0)
7131 goto out;
7132 }
7133 }
7134 }
7135 }
7136
7137 out:
7138 unbind_to (gc_count, Qnil);
7139 return found;
7140 }
7141
7142 #ifdef SUSPICIOUS_OBJECT_CHECKING
7143
7144 static void *
7145 find_suspicious_object_in_range (void *begin, void *end)
7146 {
7147 char *begin_a = begin;
7148 char *end_a = end;
7149 int i;
7150
7151 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7152 {
7153 char *suspicious_object = suspicious_objects[i];
7154 if (begin_a <= suspicious_object && suspicious_object < end_a)
7155 return suspicious_object;
7156 }
7157
7158 return NULL;
7159 }
7160
7161 static void
7162 note_suspicious_free (void* ptr)
7163 {
7164 struct suspicious_free_record* rec;
7165
7166 rec = &suspicious_free_history[suspicious_free_history_index++];
7167 if (suspicious_free_history_index ==
7168 ARRAYELTS (suspicious_free_history))
7169 {
7170 suspicious_free_history_index = 0;
7171 }
7172
7173 memset (rec, 0, sizeof (*rec));
7174 rec->suspicious_object = ptr;
7175 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7176 }
7177
7178 static void
7179 detect_suspicious_free (void* ptr)
7180 {
7181 int i;
7182
7183 eassert (ptr != NULL);
7184
7185 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7186 if (suspicious_objects[i] == ptr)
7187 {
7188 note_suspicious_free (ptr);
7189 suspicious_objects[i] = NULL;
7190 }
7191 }
7192
7193 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7194
7195 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7196 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7197 If Emacs is compiled with suspicious object checking, capture
7198 a stack trace when OBJ is freed in order to help track down
7199 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7200 (Lisp_Object obj)
7201 {
7202 #ifdef SUSPICIOUS_OBJECT_CHECKING
7203 /* Right now, we care only about vectors. */
7204 if (VECTORLIKEP (obj))
7205 {
7206 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7207 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7208 suspicious_object_index = 0;
7209 }
7210 #endif
7211 return obj;
7212 }
7213
7214 #ifdef ENABLE_CHECKING
7215
7216 bool suppress_checking;
7217
7218 void
7219 die (const char *msg, const char *file, int line)
7220 {
7221 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7222 file, line, msg);
7223 terminate_due_to_signal (SIGABRT, INT_MAX);
7224 }
7225
7226 #endif /* ENABLE_CHECKING */
7227
7228 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7229
7230 /* Debugging check whether STR is ASCII-only. */
7231
7232 const char *
7233 verify_ascii (const char *str)
7234 {
7235 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7236 while (ptr < end)
7237 {
7238 int c = STRING_CHAR_ADVANCE (ptr);
7239 if (!ASCII_CHAR_P (c))
7240 emacs_abort ();
7241 }
7242 return str;
7243 }
7244
7245 /* Stress alloca with inconveniently sized requests and check
7246 whether all allocated areas may be used for Lisp_Object. */
7247
7248 NO_INLINE static void
7249 verify_alloca (void)
7250 {
7251 int i;
7252 enum { ALLOCA_CHECK_MAX = 256 };
7253 /* Start from size of the smallest Lisp object. */
7254 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7255 {
7256 void *ptr = alloca (i);
7257 make_lisp_ptr (ptr, Lisp_Cons);
7258 }
7259 }
7260
7261 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7262
7263 #define verify_alloca() ((void) 0)
7264
7265 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7266
7267 /* Initialization. */
7268
7269 void
7270 init_alloc_once (void)
7271 {
7272 /* Even though Qt's contents are not set up, its address is known. */
7273 Vpurify_flag = Qt;
7274
7275 purebeg = PUREBEG;
7276 pure_size = PURESIZE;
7277
7278 verify_alloca ();
7279 init_finalizer_list (&finalizers);
7280 init_finalizer_list (&doomed_finalizers);
7281
7282 mem_init ();
7283 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7284
7285 #ifdef DOUG_LEA_MALLOC
7286 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7287 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7288 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7289 #endif
7290 init_strings ();
7291 init_vectors ();
7292
7293 refill_memory_reserve ();
7294 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7295 }
7296
7297 void
7298 init_alloc (void)
7299 {
7300 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7301 setjmp_tested_p = longjmps_done = 0;
7302 #endif
7303 Vgc_elapsed = make_float (0.0);
7304 gcs_done = 0;
7305
7306 #if USE_VALGRIND
7307 valgrind_p = RUNNING_ON_VALGRIND != 0;
7308 #endif
7309 }
7310
7311 void
7312 syms_of_alloc (void)
7313 {
7314 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7315 doc: /* Number of bytes of consing between garbage collections.
7316 Garbage collection can happen automatically once this many bytes have been
7317 allocated since the last garbage collection. All data types count.
7318
7319 Garbage collection happens automatically only when `eval' is called.
7320
7321 By binding this temporarily to a large number, you can effectively
7322 prevent garbage collection during a part of the program.
7323 See also `gc-cons-percentage'. */);
7324
7325 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7326 doc: /* Portion of the heap used for allocation.
7327 Garbage collection can happen automatically once this portion of the heap
7328 has been allocated since the last garbage collection.
7329 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7330 Vgc_cons_percentage = make_float (0.1);
7331
7332 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7333 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7334
7335 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7336 doc: /* Number of cons cells that have been consed so far. */);
7337
7338 DEFVAR_INT ("floats-consed", floats_consed,
7339 doc: /* Number of floats that have been consed so far. */);
7340
7341 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7342 doc: /* Number of vector cells that have been consed so far. */);
7343
7344 DEFVAR_INT ("symbols-consed", symbols_consed,
7345 doc: /* Number of symbols that have been consed so far. */);
7346 symbols_consed += ARRAYELTS (lispsym);
7347
7348 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7349 doc: /* Number of string characters that have been consed so far. */);
7350
7351 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7352 doc: /* Number of miscellaneous objects that have been consed so far.
7353 These include markers and overlays, plus certain objects not visible
7354 to users. */);
7355
7356 DEFVAR_INT ("intervals-consed", intervals_consed,
7357 doc: /* Number of intervals that have been consed so far. */);
7358
7359 DEFVAR_INT ("strings-consed", strings_consed,
7360 doc: /* Number of strings that have been consed so far. */);
7361
7362 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7363 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7364 This means that certain objects should be allocated in shared (pure) space.
7365 It can also be set to a hash-table, in which case this table is used to
7366 do hash-consing of the objects allocated to pure space. */);
7367
7368 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7369 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7370 garbage_collection_messages = 0;
7371
7372 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7373 doc: /* Hook run after garbage collection has finished. */);
7374 Vpost_gc_hook = Qnil;
7375 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7376
7377 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7378 doc: /* Precomputed `signal' argument for memory-full error. */);
7379 /* We build this in advance because if we wait until we need it, we might
7380 not be able to allocate the memory to hold it. */
7381 Vmemory_signal_data
7382 = listn (CONSTYPE_PURE, 2, Qerror,
7383 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7384
7385 DEFVAR_LISP ("memory-full", Vmemory_full,
7386 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7387 Vmemory_full = Qnil;
7388
7389 DEFSYM (Qconses, "conses");
7390 DEFSYM (Qsymbols, "symbols");
7391 DEFSYM (Qmiscs, "miscs");
7392 DEFSYM (Qstrings, "strings");
7393 DEFSYM (Qvectors, "vectors");
7394 DEFSYM (Qfloats, "floats");
7395 DEFSYM (Qintervals, "intervals");
7396 DEFSYM (Qbuffers, "buffers");
7397 DEFSYM (Qstring_bytes, "string-bytes");
7398 DEFSYM (Qvector_slots, "vector-slots");
7399 DEFSYM (Qheap, "heap");
7400 DEFSYM (Qautomatic_gc, "Automatic GC");
7401
7402 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7403 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7404
7405 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7406 doc: /* Accumulated time elapsed in garbage collections.
7407 The time is in seconds as a floating point value. */);
7408 DEFVAR_INT ("gcs-done", gcs_done,
7409 doc: /* Accumulated number of garbage collections done. */);
7410
7411 defsubr (&Scons);
7412 defsubr (&Slist);
7413 defsubr (&Svector);
7414 defsubr (&Sbool_vector);
7415 defsubr (&Smake_byte_code);
7416 defsubr (&Smake_list);
7417 defsubr (&Smake_vector);
7418 defsubr (&Smake_string);
7419 defsubr (&Smake_bool_vector);
7420 defsubr (&Smake_symbol);
7421 defsubr (&Smake_marker);
7422 defsubr (&Smake_finalizer);
7423 defsubr (&Spurecopy);
7424 defsubr (&Sgarbage_collect);
7425 defsubr (&Smemory_limit);
7426 defsubr (&Smemory_info);
7427 defsubr (&Smemory_use_counts);
7428 defsubr (&Ssuspicious_object);
7429 }
7430
7431 /* When compiled with GCC, GDB might say "No enum type named
7432 pvec_type" if we don't have at least one symbol with that type, and
7433 then xbacktrace could fail. Similarly for the other enums and
7434 their values. Some non-GCC compilers don't like these constructs. */
7435 #ifdef __GNUC__
7436 union
7437 {
7438 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7439 enum char_table_specials char_table_specials;
7440 enum char_bits char_bits;
7441 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7442 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7443 enum Lisp_Bits Lisp_Bits;
7444 enum Lisp_Compiled Lisp_Compiled;
7445 enum maxargs maxargs;
7446 enum MAX_ALLOCA MAX_ALLOCA;
7447 enum More_Lisp_Bits More_Lisp_Bits;
7448 enum pvec_type pvec_type;
7449 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7450 #endif /* __GNUC__ */