]> code.delx.au - gnu-emacs/blob - src/alloc.c
Prefer memcpy and memset to doing it by hand
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25 #include <signal.h> /* For SIGABRT, SIGDANGER. */
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 #include "lisp.h"
32 #include "dispextern.h"
33 #include "intervals.h"
34 #include "puresize.h"
35 #include "sheap.h"
36 #include "systime.h"
37 #include "character.h"
38 #include "buffer.h"
39 #include "window.h"
40 #include "keyboard.h"
41 #include "frame.h"
42 #include "blockinput.h"
43 #include "termhooks.h" /* For struct terminal. */
44 #ifdef HAVE_WINDOW_SYSTEM
45 #include TERM_HEADER
46 #endif /* HAVE_WINDOW_SYSTEM */
47
48 #include <verify.h>
49 #include <execinfo.h> /* For backtrace. */
50
51 #ifdef HAVE_LINUX_SYSINFO
52 #include <sys/sysinfo.h>
53 #endif
54
55 #ifdef MSDOS
56 #include "dosfns.h" /* For dos_memory_info. */
57 #endif
58
59 #ifdef HAVE_MALLOC_H
60 # include <malloc.h>
61 #endif
62
63 #if (defined ENABLE_CHECKING \
64 && defined HAVE_VALGRIND_VALGRIND_H \
65 && !defined USE_VALGRIND)
66 # define USE_VALGRIND 1
67 #endif
68
69 #if USE_VALGRIND
70 #include <valgrind/valgrind.h>
71 #include <valgrind/memcheck.h>
72 static bool valgrind_p;
73 #endif
74
75 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
76
77 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
78 memory. Can do this only if using gmalloc.c and if not checking
79 marked objects. */
80
81 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
82 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
83 #undef GC_MALLOC_CHECK
84 #endif
85
86 #include <unistd.h>
87 #include <fcntl.h>
88
89 #ifdef USE_GTK
90 # include "gtkutil.h"
91 #endif
92 #ifdef WINDOWSNT
93 #include "w32.h"
94 #include "w32heap.h" /* for sbrk */
95 #endif
96
97 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
98 /* The address where the heap starts. */
99 void *
100 my_heap_start (void)
101 {
102 static void *start;
103 if (! start)
104 start = sbrk (0);
105 return start;
106 }
107 #endif
108
109 #ifdef DOUG_LEA_MALLOC
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Restore the dumped malloc state. Because malloc can be invoked
121 even before main (e.g. by the dynamic linker), the dumped malloc
122 state must be restored as early as possible using this special hook. */
123 static void
124 malloc_initialize_hook (void)
125 {
126 static bool malloc_using_checking;
127
128 if (! initialized)
129 {
130 my_heap_start ();
131 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
132 }
133 else
134 {
135 if (!malloc_using_checking)
136 {
137 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
138 ignored if the heap to be restored was constructed without
139 malloc checking. Can't use unsetenv, since that calls malloc. */
140 char **p = environ;
141 if (p)
142 for (; *p; p++)
143 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
144 {
145 do
146 *p = p[1];
147 while (*++p);
148
149 break;
150 }
151 }
152
153 malloc_set_state (malloc_state_ptr);
154 # ifndef XMALLOC_OVERRUN_CHECK
155 alloc_unexec_post ();
156 # endif
157 }
158 }
159
160 /* Declare the malloc initialization hook, which runs before 'main' starts.
161 EXTERNALLY_VISIBLE works around Bug#22522. */
162 # ifndef __MALLOC_HOOK_VOLATILE
163 # define __MALLOC_HOOK_VOLATILE
164 # endif
165 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
166 = malloc_initialize_hook;
167
168 #endif
169
170 /* Allocator-related actions to do just before and after unexec. */
171
172 void
173 alloc_unexec_pre (void)
174 {
175 #ifdef DOUG_LEA_MALLOC
176 malloc_state_ptr = malloc_get_state ();
177 #endif
178 #ifdef HYBRID_MALLOC
179 bss_sbrk_did_unexec = true;
180 #endif
181 }
182
183 void
184 alloc_unexec_post (void)
185 {
186 #ifdef DOUG_LEA_MALLOC
187 free (malloc_state_ptr);
188 #endif
189 #ifdef HYBRID_MALLOC
190 bss_sbrk_did_unexec = false;
191 #endif
192 }
193
194 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
195 to a struct Lisp_String. */
196
197 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
198 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
199 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
200
201 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
202 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
203 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
204
205 /* Default value of gc_cons_threshold (see below). */
206
207 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
208
209 /* Global variables. */
210 struct emacs_globals globals;
211
212 /* Number of bytes of consing done since the last gc. */
213
214 EMACS_INT consing_since_gc;
215
216 /* Similar minimum, computed from Vgc_cons_percentage. */
217
218 EMACS_INT gc_relative_threshold;
219
220 /* Minimum number of bytes of consing since GC before next GC,
221 when memory is full. */
222
223 EMACS_INT memory_full_cons_threshold;
224
225 /* True during GC. */
226
227 bool gc_in_progress;
228
229 /* True means abort if try to GC.
230 This is for code which is written on the assumption that
231 no GC will happen, so as to verify that assumption. */
232
233 bool abort_on_gc;
234
235 /* Number of live and free conses etc. */
236
237 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
238 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
239 static EMACS_INT total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block, or to see
248 whether this much is available when malloc fails on a larger request. */
249
250 #define SPARE_MEMORY (1 << 14)
251
252 /* Initialize it to a nonzero value to force it into data space
253 (rather than bss space). That way unexec will remap it into text
254 space (pure), on some systems. We have not implemented the
255 remapping on more recent systems because this is less important
256 nowadays than in the days of small memories and timesharing. */
257
258 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
259 #define PUREBEG (char *) pure
260
261 /* Pointer to the pure area, and its size. */
262
263 static char *purebeg;
264 static ptrdiff_t pure_size;
265
266 /* Number of bytes of pure storage used before pure storage overflowed.
267 If this is non-zero, this implies that an overflow occurred. */
268
269 static ptrdiff_t pure_bytes_used_before_overflow;
270
271 /* Index in pure at which next pure Lisp object will be allocated.. */
272
273 static ptrdiff_t pure_bytes_used_lisp;
274
275 /* Number of bytes allocated for non-Lisp objects in pure storage. */
276
277 static ptrdiff_t pure_bytes_used_non_lisp;
278
279 /* If nonzero, this is a warning delivered by malloc and not yet
280 displayed. */
281
282 const char *pending_malloc_warning;
283
284 #if 0 /* Normally, pointer sanity only on request... */
285 #ifdef ENABLE_CHECKING
286 #define SUSPICIOUS_OBJECT_CHECKING 1
287 #endif
288 #endif
289
290 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
291 bug is unresolved. */
292 #define SUSPICIOUS_OBJECT_CHECKING 1
293
294 #ifdef SUSPICIOUS_OBJECT_CHECKING
295 struct suspicious_free_record
296 {
297 void *suspicious_object;
298 void *backtrace[128];
299 };
300 static void *suspicious_objects[32];
301 static int suspicious_object_index;
302 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
303 static int suspicious_free_history_index;
304 /* Find the first currently-monitored suspicious pointer in range
305 [begin,end) or NULL if no such pointer exists. */
306 static void *find_suspicious_object_in_range (void *begin, void *end);
307 static void detect_suspicious_free (void *ptr);
308 #else
309 # define find_suspicious_object_in_range(begin, end) NULL
310 # define detect_suspicious_free(ptr) (void)
311 #endif
312
313 /* Maximum amount of C stack to save when a GC happens. */
314
315 #ifndef MAX_SAVE_STACK
316 #define MAX_SAVE_STACK 16000
317 #endif
318
319 /* Buffer in which we save a copy of the C stack at each GC. */
320
321 #if MAX_SAVE_STACK > 0
322 static char *stack_copy;
323 static ptrdiff_t stack_copy_size;
324
325 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
326 avoiding any address sanitization. */
327
328 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
329 no_sanitize_memcpy (void *dest, void const *src, size_t size)
330 {
331 if (! ADDRESS_SANITIZER)
332 return memcpy (dest, src, size);
333 else
334 {
335 size_t i;
336 char *d = dest;
337 char const *s = src;
338 for (i = 0; i < size; i++)
339 d[i] = s[i];
340 return dest;
341 }
342 }
343
344 #endif /* MAX_SAVE_STACK > 0 */
345
346 static void mark_terminals (void);
347 static void gc_sweep (void);
348 static Lisp_Object make_pure_vector (ptrdiff_t);
349 static void mark_buffer (struct buffer *);
350
351 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
352 static void refill_memory_reserve (void);
353 #endif
354 static void compact_small_strings (void);
355 static void free_large_strings (void);
356 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
357
358 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
359 what memory allocated via lisp_malloc and lisp_align_malloc is intended
360 for what purpose. This enumeration specifies the type of memory. */
361
362 enum mem_type
363 {
364 MEM_TYPE_NON_LISP,
365 MEM_TYPE_BUFFER,
366 MEM_TYPE_CONS,
367 MEM_TYPE_STRING,
368 MEM_TYPE_MISC,
369 MEM_TYPE_SYMBOL,
370 MEM_TYPE_FLOAT,
371 /* Since all non-bool pseudovectors are small enough to be
372 allocated from vector blocks, this memory type denotes
373 large regular vectors and large bool pseudovectors. */
374 MEM_TYPE_VECTORLIKE,
375 /* Special type to denote vector blocks. */
376 MEM_TYPE_VECTOR_BLOCK,
377 /* Special type to denote reserved memory. */
378 MEM_TYPE_SPARE
379 };
380
381 /* A unique object in pure space used to make some Lisp objects
382 on free lists recognizable in O(1). */
383
384 static Lisp_Object Vdead;
385 #define DEADP(x) EQ (x, Vdead)
386
387 #ifdef GC_MALLOC_CHECK
388
389 enum mem_type allocated_mem_type;
390
391 #endif /* GC_MALLOC_CHECK */
392
393 /* A node in the red-black tree describing allocated memory containing
394 Lisp data. Each such block is recorded with its start and end
395 address when it is allocated, and removed from the tree when it
396 is freed.
397
398 A red-black tree is a balanced binary tree with the following
399 properties:
400
401 1. Every node is either red or black.
402 2. Every leaf is black.
403 3. If a node is red, then both of its children are black.
404 4. Every simple path from a node to a descendant leaf contains
405 the same number of black nodes.
406 5. The root is always black.
407
408 When nodes are inserted into the tree, or deleted from the tree,
409 the tree is "fixed" so that these properties are always true.
410
411 A red-black tree with N internal nodes has height at most 2
412 log(N+1). Searches, insertions and deletions are done in O(log N).
413 Please see a text book about data structures for a detailed
414 description of red-black trees. Any book worth its salt should
415 describe them. */
416
417 struct mem_node
418 {
419 /* Children of this node. These pointers are never NULL. When there
420 is no child, the value is MEM_NIL, which points to a dummy node. */
421 struct mem_node *left, *right;
422
423 /* The parent of this node. In the root node, this is NULL. */
424 struct mem_node *parent;
425
426 /* Start and end of allocated region. */
427 void *start, *end;
428
429 /* Node color. */
430 enum {MEM_BLACK, MEM_RED} color;
431
432 /* Memory type. */
433 enum mem_type type;
434 };
435
436 /* Base address of stack. Set in main. */
437
438 Lisp_Object *stack_base;
439
440 /* Root of the tree describing allocated Lisp memory. */
441
442 static struct mem_node *mem_root;
443
444 /* Lowest and highest known address in the heap. */
445
446 static void *min_heap_address, *max_heap_address;
447
448 /* Sentinel node of the tree. */
449
450 static struct mem_node mem_z;
451 #define MEM_NIL &mem_z
452
453 static struct mem_node *mem_insert (void *, void *, enum mem_type);
454 static void mem_insert_fixup (struct mem_node *);
455 static void mem_rotate_left (struct mem_node *);
456 static void mem_rotate_right (struct mem_node *);
457 static void mem_delete (struct mem_node *);
458 static void mem_delete_fixup (struct mem_node *);
459 static struct mem_node *mem_find (void *);
460
461 #ifndef DEADP
462 # define DEADP(x) 0
463 #endif
464
465 /* Addresses of staticpro'd variables. Initialize it to a nonzero
466 value; otherwise some compilers put it into BSS. */
467
468 enum { NSTATICS = 2048 };
469 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
470
471 /* Index of next unused slot in staticvec. */
472
473 static int staticidx;
474
475 static void *pure_alloc (size_t, int);
476
477 /* Return X rounded to the next multiple of Y. Arguments should not
478 have side effects, as they are evaluated more than once. Assume X
479 + Y - 1 does not overflow. Tune for Y being a power of 2. */
480
481 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
482 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
483 : ((x) + (y) - 1) & ~ ((y) - 1))
484
485 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
486
487 static void *
488 ALIGN (void *ptr, int alignment)
489 {
490 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
491 }
492
493 /* Extract the pointer hidden within A, if A is not a symbol.
494 If A is a symbol, extract the hidden pointer's offset from lispsym,
495 converted to void *. */
496
497 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
498 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
499
500 /* Extract the pointer hidden within A. */
501
502 #define macro_XPNTR(a) \
503 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
504 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
505
506 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
507 functions, as functions are cleaner and can be used in debuggers.
508 Also, define them as macros if being compiled with GCC without
509 optimization, for performance in that case. The macro_* names are
510 private to this section of code. */
511
512 static ATTRIBUTE_UNUSED void *
513 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
514 {
515 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
516 }
517 static ATTRIBUTE_UNUSED void *
518 XPNTR (Lisp_Object a)
519 {
520 return macro_XPNTR (a);
521 }
522
523 #if DEFINE_KEY_OPS_AS_MACROS
524 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
525 # define XPNTR(a) macro_XPNTR (a)
526 #endif
527
528 static void
529 XFLOAT_INIT (Lisp_Object f, double n)
530 {
531 XFLOAT (f)->u.data = n;
532 }
533
534 #ifdef DOUG_LEA_MALLOC
535 static bool
536 pointers_fit_in_lispobj_p (void)
537 {
538 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
539 }
540
541 static bool
542 mmap_lisp_allowed_p (void)
543 {
544 /* If we can't store all memory addresses in our lisp objects, it's
545 risky to let the heap use mmap and give us addresses from all
546 over our address space. We also can't use mmap for lisp objects
547 if we might dump: unexec doesn't preserve the contents of mmapped
548 regions. */
549 return pointers_fit_in_lispobj_p () && !might_dump;
550 }
551 #endif
552
553 /* Head of a circularly-linked list of extant finalizers. */
554 static struct Lisp_Finalizer finalizers;
555
556 /* Head of a circularly-linked list of finalizers that must be invoked
557 because we deemed them unreachable. This list must be global, and
558 not a local inside garbage_collect_1, in case we GC again while
559 running finalizers. */
560 static struct Lisp_Finalizer doomed_finalizers;
561
562 \f
563 /************************************************************************
564 Malloc
565 ************************************************************************/
566
567 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
568
569 /* Function malloc calls this if it finds we are near exhausting storage. */
570
571 void
572 malloc_warning (const char *str)
573 {
574 pending_malloc_warning = str;
575 }
576
577 #endif
578
579 /* Display an already-pending malloc warning. */
580
581 void
582 display_malloc_warning (void)
583 {
584 call3 (intern ("display-warning"),
585 intern ("alloc"),
586 build_string (pending_malloc_warning),
587 intern ("emergency"));
588 pending_malloc_warning = 0;
589 }
590 \f
591 /* Called if we can't allocate relocatable space for a buffer. */
592
593 void
594 buffer_memory_full (ptrdiff_t nbytes)
595 {
596 /* If buffers use the relocating allocator, no need to free
597 spare_memory, because we may have plenty of malloc space left
598 that we could get, and if we don't, the malloc that fails will
599 itself cause spare_memory to be freed. If buffers don't use the
600 relocating allocator, treat this like any other failing
601 malloc. */
602
603 #ifndef REL_ALLOC
604 memory_full (nbytes);
605 #else
606 /* This used to call error, but if we've run out of memory, we could
607 get infinite recursion trying to build the string. */
608 xsignal (Qnil, Vmemory_signal_data);
609 #endif
610 }
611
612 /* A common multiple of the positive integers A and B. Ideally this
613 would be the least common multiple, but there's no way to do that
614 as a constant expression in C, so do the best that we can easily do. */
615 #define COMMON_MULTIPLE(a, b) \
616 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
617
618 #ifndef XMALLOC_OVERRUN_CHECK
619 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
620 #else
621
622 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
623 around each block.
624
625 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
626 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
627 block size in little-endian order. The trailer consists of
628 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
629
630 The header is used to detect whether this block has been allocated
631 through these functions, as some low-level libc functions may
632 bypass the malloc hooks. */
633
634 #define XMALLOC_OVERRUN_CHECK_SIZE 16
635 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
636 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
637
638 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
639 hold a size_t value and (2) the header size is a multiple of the
640 alignment that Emacs needs for C types and for USE_LSB_TAG. */
641 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
642
643 #define XMALLOC_HEADER_ALIGNMENT \
644 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
645 #define XMALLOC_OVERRUN_SIZE_SIZE \
646 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
647 + XMALLOC_HEADER_ALIGNMENT - 1) \
648 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
649 - XMALLOC_OVERRUN_CHECK_SIZE)
650
651 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
652 { '\x9a', '\x9b', '\xae', '\xaf',
653 '\xbf', '\xbe', '\xce', '\xcf',
654 '\xea', '\xeb', '\xec', '\xed',
655 '\xdf', '\xde', '\x9c', '\x9d' };
656
657 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
658 { '\xaa', '\xab', '\xac', '\xad',
659 '\xba', '\xbb', '\xbc', '\xbd',
660 '\xca', '\xcb', '\xcc', '\xcd',
661 '\xda', '\xdb', '\xdc', '\xdd' };
662
663 /* Insert and extract the block size in the header. */
664
665 static void
666 xmalloc_put_size (unsigned char *ptr, size_t size)
667 {
668 int i;
669 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
670 {
671 *--ptr = size & ((1 << CHAR_BIT) - 1);
672 size >>= CHAR_BIT;
673 }
674 }
675
676 static size_t
677 xmalloc_get_size (unsigned char *ptr)
678 {
679 size_t size = 0;
680 int i;
681 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
683 {
684 size <<= CHAR_BIT;
685 size += *ptr++;
686 }
687 return size;
688 }
689
690
691 /* Like malloc, but wraps allocated block with header and trailer. */
692
693 static void *
694 overrun_check_malloc (size_t size)
695 {
696 register unsigned char *val;
697 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
698 emacs_abort ();
699
700 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 if (val)
702 {
703 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
704 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
705 xmalloc_put_size (val, size);
706 memcpy (val + size, xmalloc_overrun_check_trailer,
707 XMALLOC_OVERRUN_CHECK_SIZE);
708 }
709 return val;
710 }
711
712
713 /* Like realloc, but checks old block for overrun, and wraps new block
714 with header and trailer. */
715
716 static void *
717 overrun_check_realloc (void *block, size_t size)
718 {
719 register unsigned char *val = (unsigned char *) block;
720 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
721 emacs_abort ();
722
723 if (val
724 && memcmp (xmalloc_overrun_check_header,
725 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
726 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
727 {
728 size_t osize = xmalloc_get_size (val);
729 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
730 XMALLOC_OVERRUN_CHECK_SIZE))
731 emacs_abort ();
732 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
733 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
734 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
735 }
736
737 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
738
739 if (val)
740 {
741 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
742 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
743 xmalloc_put_size (val, size);
744 memcpy (val + size, xmalloc_overrun_check_trailer,
745 XMALLOC_OVERRUN_CHECK_SIZE);
746 }
747 return val;
748 }
749
750 /* Like free, but checks block for overrun. */
751
752 static void
753 overrun_check_free (void *block)
754 {
755 unsigned char *val = (unsigned char *) block;
756
757 if (val
758 && memcmp (xmalloc_overrun_check_header,
759 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
760 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
761 {
762 size_t osize = xmalloc_get_size (val);
763 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
764 XMALLOC_OVERRUN_CHECK_SIZE))
765 emacs_abort ();
766 #ifdef XMALLOC_CLEAR_FREE_MEMORY
767 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
768 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
769 #else
770 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
771 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
772 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
773 #endif
774 }
775
776 free (val);
777 }
778
779 #undef malloc
780 #undef realloc
781 #undef free
782 #define malloc overrun_check_malloc
783 #define realloc overrun_check_realloc
784 #define free overrun_check_free
785 #endif
786
787 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
788 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
789 If that variable is set, block input while in one of Emacs's memory
790 allocation functions. There should be no need for this debugging
791 option, since signal handlers do not allocate memory, but Emacs
792 formerly allocated memory in signal handlers and this compile-time
793 option remains as a way to help debug the issue should it rear its
794 ugly head again. */
795 #ifdef XMALLOC_BLOCK_INPUT_CHECK
796 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
797 static void
798 malloc_block_input (void)
799 {
800 if (block_input_in_memory_allocators)
801 block_input ();
802 }
803 static void
804 malloc_unblock_input (void)
805 {
806 if (block_input_in_memory_allocators)
807 unblock_input ();
808 }
809 # define MALLOC_BLOCK_INPUT malloc_block_input ()
810 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
811 #else
812 # define MALLOC_BLOCK_INPUT ((void) 0)
813 # define MALLOC_UNBLOCK_INPUT ((void) 0)
814 #endif
815
816 #define MALLOC_PROBE(size) \
817 do { \
818 if (profiler_memory_running) \
819 malloc_probe (size); \
820 } while (0)
821
822
823 /* Like malloc but check for no memory and block interrupt input.. */
824
825 void *
826 xmalloc (size_t size)
827 {
828 void *val;
829
830 MALLOC_BLOCK_INPUT;
831 val = malloc (size);
832 MALLOC_UNBLOCK_INPUT;
833
834 if (!val && size)
835 memory_full (size);
836 MALLOC_PROBE (size);
837 return val;
838 }
839
840 /* Like the above, but zeroes out the memory just allocated. */
841
842 void *
843 xzalloc (size_t size)
844 {
845 void *val;
846
847 MALLOC_BLOCK_INPUT;
848 val = malloc (size);
849 MALLOC_UNBLOCK_INPUT;
850
851 if (!val && size)
852 memory_full (size);
853 memset (val, 0, size);
854 MALLOC_PROBE (size);
855 return val;
856 }
857
858 /* Like realloc but check for no memory and block interrupt input.. */
859
860 void *
861 xrealloc (void *block, size_t size)
862 {
863 void *val;
864
865 MALLOC_BLOCK_INPUT;
866 /* We must call malloc explicitly when BLOCK is 0, since some
867 reallocs don't do this. */
868 if (! block)
869 val = malloc (size);
870 else
871 val = realloc (block, size);
872 MALLOC_UNBLOCK_INPUT;
873
874 if (!val && size)
875 memory_full (size);
876 MALLOC_PROBE (size);
877 return val;
878 }
879
880
881 /* Like free but block interrupt input. */
882
883 void
884 xfree (void *block)
885 {
886 if (!block)
887 return;
888 MALLOC_BLOCK_INPUT;
889 free (block);
890 MALLOC_UNBLOCK_INPUT;
891 /* We don't call refill_memory_reserve here
892 because in practice the call in r_alloc_free seems to suffice. */
893 }
894
895
896 /* Other parts of Emacs pass large int values to allocator functions
897 expecting ptrdiff_t. This is portable in practice, but check it to
898 be safe. */
899 verify (INT_MAX <= PTRDIFF_MAX);
900
901
902 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
903 Signal an error on memory exhaustion, and block interrupt input. */
904
905 void *
906 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
907 {
908 eassert (0 <= nitems && 0 < item_size);
909 ptrdiff_t nbytes;
910 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
911 memory_full (SIZE_MAX);
912 return xmalloc (nbytes);
913 }
914
915
916 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
917 Signal an error on memory exhaustion, and block interrupt input. */
918
919 void *
920 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
921 {
922 eassert (0 <= nitems && 0 < item_size);
923 ptrdiff_t nbytes;
924 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
925 memory_full (SIZE_MAX);
926 return xrealloc (pa, nbytes);
927 }
928
929
930 /* Grow PA, which points to an array of *NITEMS items, and return the
931 location of the reallocated array, updating *NITEMS to reflect its
932 new size. The new array will contain at least NITEMS_INCR_MIN more
933 items, but will not contain more than NITEMS_MAX items total.
934 ITEM_SIZE is the size of each item, in bytes.
935
936 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
937 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
938 infinity.
939
940 If PA is null, then allocate a new array instead of reallocating
941 the old one.
942
943 Block interrupt input as needed. If memory exhaustion occurs, set
944 *NITEMS to zero if PA is null, and signal an error (i.e., do not
945 return).
946
947 Thus, to grow an array A without saving its old contents, do
948 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
949 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
950 and signals an error, and later this code is reexecuted and
951 attempts to free A. */
952
953 void *
954 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
955 ptrdiff_t nitems_max, ptrdiff_t item_size)
956 {
957 ptrdiff_t n0 = *nitems;
958 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
959
960 /* The approximate size to use for initial small allocation
961 requests. This is the largest "small" request for the GNU C
962 library malloc. */
963 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
964
965 /* If the array is tiny, grow it to about (but no greater than)
966 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
967 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
968 NITEMS_MAX, and what the C language can represent safely. */
969
970 ptrdiff_t n, nbytes;
971 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
972 n = PTRDIFF_MAX;
973 if (0 <= nitems_max && nitems_max < n)
974 n = nitems_max;
975
976 ptrdiff_t adjusted_nbytes
977 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
978 ? min (PTRDIFF_MAX, SIZE_MAX)
979 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
980 if (adjusted_nbytes)
981 {
982 n = adjusted_nbytes / item_size;
983 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
984 }
985
986 if (! pa)
987 *nitems = 0;
988 if (n - n0 < nitems_incr_min
989 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
990 || (0 <= nitems_max && nitems_max < n)
991 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
992 memory_full (SIZE_MAX);
993 pa = xrealloc (pa, nbytes);
994 *nitems = n;
995 return pa;
996 }
997
998
999 /* Like strdup, but uses xmalloc. */
1000
1001 char *
1002 xstrdup (const char *s)
1003 {
1004 ptrdiff_t size;
1005 eassert (s);
1006 size = strlen (s) + 1;
1007 return memcpy (xmalloc (size), s, size);
1008 }
1009
1010 /* Like above, but duplicates Lisp string to C string. */
1011
1012 char *
1013 xlispstrdup (Lisp_Object string)
1014 {
1015 ptrdiff_t size = SBYTES (string) + 1;
1016 return memcpy (xmalloc (size), SSDATA (string), size);
1017 }
1018
1019 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1020 pointed to. If STRING is null, assign it without copying anything.
1021 Allocate before freeing, to avoid a dangling pointer if allocation
1022 fails. */
1023
1024 void
1025 dupstring (char **ptr, char const *string)
1026 {
1027 char *old = *ptr;
1028 *ptr = string ? xstrdup (string) : 0;
1029 xfree (old);
1030 }
1031
1032
1033 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1034 argument is a const pointer. */
1035
1036 void
1037 xputenv (char const *string)
1038 {
1039 if (putenv ((char *) string) != 0)
1040 memory_full (0);
1041 }
1042
1043 /* Return a newly allocated memory block of SIZE bytes, remembering
1044 to free it when unwinding. */
1045 void *
1046 record_xmalloc (size_t size)
1047 {
1048 void *p = xmalloc (size);
1049 record_unwind_protect_ptr (xfree, p);
1050 return p;
1051 }
1052
1053
1054 /* Like malloc but used for allocating Lisp data. NBYTES is the
1055 number of bytes to allocate, TYPE describes the intended use of the
1056 allocated memory block (for strings, for conses, ...). */
1057
1058 #if ! USE_LSB_TAG
1059 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1060 #endif
1061
1062 static void *
1063 lisp_malloc (size_t nbytes, enum mem_type type)
1064 {
1065 register void *val;
1066
1067 MALLOC_BLOCK_INPUT;
1068
1069 #ifdef GC_MALLOC_CHECK
1070 allocated_mem_type = type;
1071 #endif
1072
1073 val = malloc (nbytes);
1074
1075 #if ! USE_LSB_TAG
1076 /* If the memory just allocated cannot be addressed thru a Lisp
1077 object's pointer, and it needs to be,
1078 that's equivalent to running out of memory. */
1079 if (val && type != MEM_TYPE_NON_LISP)
1080 {
1081 Lisp_Object tem;
1082 XSETCONS (tem, (char *) val + nbytes - 1);
1083 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1084 {
1085 lisp_malloc_loser = val;
1086 free (val);
1087 val = 0;
1088 }
1089 }
1090 #endif
1091
1092 #ifndef GC_MALLOC_CHECK
1093 if (val && type != MEM_TYPE_NON_LISP)
1094 mem_insert (val, (char *) val + nbytes, type);
1095 #endif
1096
1097 MALLOC_UNBLOCK_INPUT;
1098 if (!val && nbytes)
1099 memory_full (nbytes);
1100 MALLOC_PROBE (nbytes);
1101 return val;
1102 }
1103
1104 /* Free BLOCK. This must be called to free memory allocated with a
1105 call to lisp_malloc. */
1106
1107 static void
1108 lisp_free (void *block)
1109 {
1110 MALLOC_BLOCK_INPUT;
1111 free (block);
1112 #ifndef GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 MALLOC_UNBLOCK_INPUT;
1116 }
1117
1118 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1119
1120 /* The entry point is lisp_align_malloc which returns blocks of at most
1121 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1122
1123 /* Use aligned_alloc if it or a simple substitute is available.
1124 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1125 clang 3.3 anyway. Aligned allocation is incompatible with
1126 unexmacosx.c, so don't use it on Darwin. */
1127
1128 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1129 # if (defined HAVE_ALIGNED_ALLOC \
1130 || (defined HYBRID_MALLOC \
1131 ? defined HAVE_POSIX_MEMALIGN \
1132 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1133 # define USE_ALIGNED_ALLOC 1
1134 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1135 # define USE_ALIGNED_ALLOC 1
1136 static void *
1137 aligned_alloc (size_t alignment, size_t size)
1138 {
1139 void *p;
1140 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1141 }
1142 # endif
1143 #endif
1144
1145 /* BLOCK_ALIGN has to be a power of 2. */
1146 #define BLOCK_ALIGN (1 << 10)
1147
1148 /* Padding to leave at the end of a malloc'd block. This is to give
1149 malloc a chance to minimize the amount of memory wasted to alignment.
1150 It should be tuned to the particular malloc library used.
1151 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1152 aligned_alloc on the other hand would ideally prefer a value of 4
1153 because otherwise, there's 1020 bytes wasted between each ablocks.
1154 In Emacs, testing shows that those 1020 can most of the time be
1155 efficiently used by malloc to place other objects, so a value of 0 can
1156 still preferable unless you have a lot of aligned blocks and virtually
1157 nothing else. */
1158 #define BLOCK_PADDING 0
1159 #define BLOCK_BYTES \
1160 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1161
1162 /* Internal data structures and constants. */
1163
1164 #define ABLOCKS_SIZE 16
1165
1166 /* An aligned block of memory. */
1167 struct ablock
1168 {
1169 union
1170 {
1171 char payload[BLOCK_BYTES];
1172 struct ablock *next_free;
1173 } x;
1174 /* `abase' is the aligned base of the ablocks. */
1175 /* It is overloaded to hold the virtual `busy' field that counts
1176 the number of used ablock in the parent ablocks.
1177 The first ablock has the `busy' field, the others have the `abase'
1178 field. To tell the difference, we assume that pointers will have
1179 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1180 is used to tell whether the real base of the parent ablocks is `abase'
1181 (if not, the word before the first ablock holds a pointer to the
1182 real base). */
1183 struct ablocks *abase;
1184 /* The padding of all but the last ablock is unused. The padding of
1185 the last ablock in an ablocks is not allocated. */
1186 #if BLOCK_PADDING
1187 char padding[BLOCK_PADDING];
1188 #endif
1189 };
1190
1191 /* A bunch of consecutive aligned blocks. */
1192 struct ablocks
1193 {
1194 struct ablock blocks[ABLOCKS_SIZE];
1195 };
1196
1197 /* Size of the block requested from malloc or aligned_alloc. */
1198 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1199
1200 #define ABLOCK_ABASE(block) \
1201 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1202 ? (struct ablocks *)(block) \
1203 : (block)->abase)
1204
1205 /* Virtual `busy' field. */
1206 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1207
1208 /* Pointer to the (not necessarily aligned) malloc block. */
1209 #ifdef USE_ALIGNED_ALLOC
1210 #define ABLOCKS_BASE(abase) (abase)
1211 #else
1212 #define ABLOCKS_BASE(abase) \
1213 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1214 #endif
1215
1216 /* The list of free ablock. */
1217 static struct ablock *free_ablock;
1218
1219 /* Allocate an aligned block of nbytes.
1220 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1221 smaller or equal to BLOCK_BYTES. */
1222 static void *
1223 lisp_align_malloc (size_t nbytes, enum mem_type type)
1224 {
1225 void *base, *val;
1226 struct ablocks *abase;
1227
1228 eassert (nbytes <= BLOCK_BYTES);
1229
1230 MALLOC_BLOCK_INPUT;
1231
1232 #ifdef GC_MALLOC_CHECK
1233 allocated_mem_type = type;
1234 #endif
1235
1236 if (!free_ablock)
1237 {
1238 int i;
1239 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1240
1241 #ifdef DOUG_LEA_MALLOC
1242 if (!mmap_lisp_allowed_p ())
1243 mallopt (M_MMAP_MAX, 0);
1244 #endif
1245
1246 #ifdef USE_ALIGNED_ALLOC
1247 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1248 #else
1249 base = malloc (ABLOCKS_BYTES);
1250 abase = ALIGN (base, BLOCK_ALIGN);
1251 #endif
1252
1253 if (base == 0)
1254 {
1255 MALLOC_UNBLOCK_INPUT;
1256 memory_full (ABLOCKS_BYTES);
1257 }
1258
1259 aligned = (base == abase);
1260 if (!aligned)
1261 ((void **) abase)[-1] = base;
1262
1263 #ifdef DOUG_LEA_MALLOC
1264 if (!mmap_lisp_allowed_p ())
1265 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1266 #endif
1267
1268 #if ! USE_LSB_TAG
1269 /* If the memory just allocated cannot be addressed thru a Lisp
1270 object's pointer, and it needs to be, that's equivalent to
1271 running out of memory. */
1272 if (type != MEM_TYPE_NON_LISP)
1273 {
1274 Lisp_Object tem;
1275 char *end = (char *) base + ABLOCKS_BYTES - 1;
1276 XSETCONS (tem, end);
1277 if ((char *) XCONS (tem) != end)
1278 {
1279 lisp_malloc_loser = base;
1280 free (base);
1281 MALLOC_UNBLOCK_INPUT;
1282 memory_full (SIZE_MAX);
1283 }
1284 }
1285 #endif
1286
1287 /* Initialize the blocks and put them on the free list.
1288 If `base' was not properly aligned, we can't use the last block. */
1289 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1290 {
1291 abase->blocks[i].abase = abase;
1292 abase->blocks[i].x.next_free = free_ablock;
1293 free_ablock = &abase->blocks[i];
1294 }
1295 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1296
1297 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1298 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1299 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1300 eassert (ABLOCKS_BASE (abase) == base);
1301 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1302 }
1303
1304 abase = ABLOCK_ABASE (free_ablock);
1305 ABLOCKS_BUSY (abase)
1306 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1307 val = free_ablock;
1308 free_ablock = free_ablock->x.next_free;
1309
1310 #ifndef GC_MALLOC_CHECK
1311 if (type != MEM_TYPE_NON_LISP)
1312 mem_insert (val, (char *) val + nbytes, type);
1313 #endif
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 MALLOC_PROBE (nbytes);
1318
1319 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1320 return val;
1321 }
1322
1323 static void
1324 lisp_align_free (void *block)
1325 {
1326 struct ablock *ablock = block;
1327 struct ablocks *abase = ABLOCK_ABASE (ablock);
1328
1329 MALLOC_BLOCK_INPUT;
1330 #ifndef GC_MALLOC_CHECK
1331 mem_delete (mem_find (block));
1332 #endif
1333 /* Put on free list. */
1334 ablock->x.next_free = free_ablock;
1335 free_ablock = ablock;
1336 /* Update busy count. */
1337 ABLOCKS_BUSY (abase)
1338 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1339
1340 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1341 { /* All the blocks are free. */
1342 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1343 struct ablock **tem = &free_ablock;
1344 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1345
1346 while (*tem)
1347 {
1348 if (*tem >= (struct ablock *) abase && *tem < atop)
1349 {
1350 i++;
1351 *tem = (*tem)->x.next_free;
1352 }
1353 else
1354 tem = &(*tem)->x.next_free;
1355 }
1356 eassert ((aligned & 1) == aligned);
1357 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1358 #ifdef USE_POSIX_MEMALIGN
1359 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1360 #endif
1361 free (ABLOCKS_BASE (abase));
1362 }
1363 MALLOC_UNBLOCK_INPUT;
1364 }
1365
1366 \f
1367 /***********************************************************************
1368 Interval Allocation
1369 ***********************************************************************/
1370
1371 /* Number of intervals allocated in an interval_block structure.
1372 The 1020 is 1024 minus malloc overhead. */
1373
1374 #define INTERVAL_BLOCK_SIZE \
1375 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1376
1377 /* Intervals are allocated in chunks in the form of an interval_block
1378 structure. */
1379
1380 struct interval_block
1381 {
1382 /* Place `intervals' first, to preserve alignment. */
1383 struct interval intervals[INTERVAL_BLOCK_SIZE];
1384 struct interval_block *next;
1385 };
1386
1387 /* Current interval block. Its `next' pointer points to older
1388 blocks. */
1389
1390 static struct interval_block *interval_block;
1391
1392 /* Index in interval_block above of the next unused interval
1393 structure. */
1394
1395 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1396
1397 /* Number of free and live intervals. */
1398
1399 static EMACS_INT total_free_intervals, total_intervals;
1400
1401 /* List of free intervals. */
1402
1403 static INTERVAL interval_free_list;
1404
1405 /* Return a new interval. */
1406
1407 INTERVAL
1408 make_interval (void)
1409 {
1410 INTERVAL val;
1411
1412 MALLOC_BLOCK_INPUT;
1413
1414 if (interval_free_list)
1415 {
1416 val = interval_free_list;
1417 interval_free_list = INTERVAL_PARENT (interval_free_list);
1418 }
1419 else
1420 {
1421 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1422 {
1423 struct interval_block *newi
1424 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1425
1426 newi->next = interval_block;
1427 interval_block = newi;
1428 interval_block_index = 0;
1429 total_free_intervals += INTERVAL_BLOCK_SIZE;
1430 }
1431 val = &interval_block->intervals[interval_block_index++];
1432 }
1433
1434 MALLOC_UNBLOCK_INPUT;
1435
1436 consing_since_gc += sizeof (struct interval);
1437 intervals_consed++;
1438 total_free_intervals--;
1439 RESET_INTERVAL (val);
1440 val->gcmarkbit = 0;
1441 return val;
1442 }
1443
1444
1445 /* Mark Lisp objects in interval I. */
1446
1447 static void
1448 mark_interval (register INTERVAL i, Lisp_Object dummy)
1449 {
1450 /* Intervals should never be shared. So, if extra internal checking is
1451 enabled, GC aborts if it seems to have visited an interval twice. */
1452 eassert (!i->gcmarkbit);
1453 i->gcmarkbit = 1;
1454 mark_object (i->plist);
1455 }
1456
1457 /* Mark the interval tree rooted in I. */
1458
1459 #define MARK_INTERVAL_TREE(i) \
1460 do { \
1461 if (i && !i->gcmarkbit) \
1462 traverse_intervals_noorder (i, mark_interval, Qnil); \
1463 } while (0)
1464
1465 /***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1468
1469 /* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
1471 added to a free-list string_free_list. When a new Lisp_String is
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
1475
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
1484
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `n.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
1491
1492 /* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
1494
1495 #define SBLOCK_SIZE 8188
1496
1497 /* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
1499
1500 #define LARGE_STRING_BYTES 1024
1501
1502 /* The SDATA typedef is a struct or union describing string memory
1503 sub-allocated from an sblock. This is where the contents of Lisp
1504 strings are stored. */
1505
1506 struct sdata
1507 {
1508 /* Back-pointer to the string this sdata belongs to. If null, this
1509 structure is free, and NBYTES (in this structure or in the union below)
1510 contains the string's byte size (the same value that STRING_BYTES
1511 would return if STRING were non-null). If non-null, STRING_BYTES
1512 (STRING) is the size of the data, and DATA contains the string's
1513 contents. */
1514 struct Lisp_String *string;
1515
1516 #ifdef GC_CHECK_STRING_BYTES
1517 ptrdiff_t nbytes;
1518 #endif
1519
1520 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1521 };
1522
1523 #ifdef GC_CHECK_STRING_BYTES
1524
1525 typedef struct sdata sdata;
1526 #define SDATA_NBYTES(S) (S)->nbytes
1527 #define SDATA_DATA(S) (S)->data
1528
1529 #else
1530
1531 typedef union
1532 {
1533 struct Lisp_String *string;
1534
1535 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1536 which has a flexible array member. However, if implemented by
1537 giving this union a member of type 'struct sdata', the union
1538 could not be the last (flexible) member of 'struct sblock',
1539 because C99 prohibits a flexible array member from having a type
1540 that is itself a flexible array. So, comment this member out here,
1541 but remember that the option's there when using this union. */
1542 #if 0
1543 struct sdata u;
1544 #endif
1545
1546 /* When STRING is null. */
1547 struct
1548 {
1549 struct Lisp_String *string;
1550 ptrdiff_t nbytes;
1551 } n;
1552 } sdata;
1553
1554 #define SDATA_NBYTES(S) (S)->n.nbytes
1555 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1556
1557 #endif /* not GC_CHECK_STRING_BYTES */
1558
1559 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1560
1561 /* Structure describing a block of memory which is sub-allocated to
1562 obtain string data memory for strings. Blocks for small strings
1563 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1564 as large as needed. */
1565
1566 struct sblock
1567 {
1568 /* Next in list. */
1569 struct sblock *next;
1570
1571 /* Pointer to the next free sdata block. This points past the end
1572 of the sblock if there isn't any space left in this block. */
1573 sdata *next_free;
1574
1575 /* String data. */
1576 sdata data[FLEXIBLE_ARRAY_MEMBER];
1577 };
1578
1579 /* Number of Lisp strings in a string_block structure. The 1020 is
1580 1024 minus malloc overhead. */
1581
1582 #define STRING_BLOCK_SIZE \
1583 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1584
1585 /* Structure describing a block from which Lisp_String structures
1586 are allocated. */
1587
1588 struct string_block
1589 {
1590 /* Place `strings' first, to preserve alignment. */
1591 struct Lisp_String strings[STRING_BLOCK_SIZE];
1592 struct string_block *next;
1593 };
1594
1595 /* Head and tail of the list of sblock structures holding Lisp string
1596 data. We always allocate from current_sblock. The NEXT pointers
1597 in the sblock structures go from oldest_sblock to current_sblock. */
1598
1599 static struct sblock *oldest_sblock, *current_sblock;
1600
1601 /* List of sblocks for large strings. */
1602
1603 static struct sblock *large_sblocks;
1604
1605 /* List of string_block structures. */
1606
1607 static struct string_block *string_blocks;
1608
1609 /* Free-list of Lisp_Strings. */
1610
1611 static struct Lisp_String *string_free_list;
1612
1613 /* Number of live and free Lisp_Strings. */
1614
1615 static EMACS_INT total_strings, total_free_strings;
1616
1617 /* Number of bytes used by live strings. */
1618
1619 static EMACS_INT total_string_bytes;
1620
1621 /* Given a pointer to a Lisp_String S which is on the free-list
1622 string_free_list, return a pointer to its successor in the
1623 free-list. */
1624
1625 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1626
1627 /* Return a pointer to the sdata structure belonging to Lisp string S.
1628 S must be live, i.e. S->data must not be null. S->data is actually
1629 a pointer to the `u.data' member of its sdata structure; the
1630 structure starts at a constant offset in front of that. */
1631
1632 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1633
1634
1635 #ifdef GC_CHECK_STRING_OVERRUN
1636
1637 /* We check for overrun in string data blocks by appending a small
1638 "cookie" after each allocated string data block, and check for the
1639 presence of this cookie during GC. */
1640
1641 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1642 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1643 { '\xde', '\xad', '\xbe', '\xef' };
1644
1645 #else
1646 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1647 #endif
1648
1649 /* Value is the size of an sdata structure large enough to hold NBYTES
1650 bytes of string data. The value returned includes a terminating
1651 NUL byte, the size of the sdata structure, and padding. */
1652
1653 #ifdef GC_CHECK_STRING_BYTES
1654
1655 #define SDATA_SIZE(NBYTES) \
1656 ((SDATA_DATA_OFFSET \
1657 + (NBYTES) + 1 \
1658 + sizeof (ptrdiff_t) - 1) \
1659 & ~(sizeof (ptrdiff_t) - 1))
1660
1661 #else /* not GC_CHECK_STRING_BYTES */
1662
1663 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1664 less than the size of that member. The 'max' is not needed when
1665 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1666 alignment code reserves enough space. */
1667
1668 #define SDATA_SIZE(NBYTES) \
1669 ((SDATA_DATA_OFFSET \
1670 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1671 ? NBYTES \
1672 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1673 + 1 \
1674 + sizeof (ptrdiff_t) - 1) \
1675 & ~(sizeof (ptrdiff_t) - 1))
1676
1677 #endif /* not GC_CHECK_STRING_BYTES */
1678
1679 /* Extra bytes to allocate for each string. */
1680
1681 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1682
1683 /* Exact bound on the number of bytes in a string, not counting the
1684 terminating null. A string cannot contain more bytes than
1685 STRING_BYTES_BOUND, nor can it be so long that the size_t
1686 arithmetic in allocate_string_data would overflow while it is
1687 calculating a value to be passed to malloc. */
1688 static ptrdiff_t const STRING_BYTES_MAX =
1689 min (STRING_BYTES_BOUND,
1690 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1691 - GC_STRING_EXTRA
1692 - offsetof (struct sblock, data)
1693 - SDATA_DATA_OFFSET)
1694 & ~(sizeof (EMACS_INT) - 1)));
1695
1696 /* Initialize string allocation. Called from init_alloc_once. */
1697
1698 static void
1699 init_strings (void)
1700 {
1701 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1702 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1703 }
1704
1705
1706 #ifdef GC_CHECK_STRING_BYTES
1707
1708 static int check_string_bytes_count;
1709
1710 /* Like STRING_BYTES, but with debugging check. Can be
1711 called during GC, so pay attention to the mark bit. */
1712
1713 ptrdiff_t
1714 string_bytes (struct Lisp_String *s)
1715 {
1716 ptrdiff_t nbytes =
1717 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1718
1719 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1720 emacs_abort ();
1721 return nbytes;
1722 }
1723
1724 /* Check validity of Lisp strings' string_bytes member in B. */
1725
1726 static void
1727 check_sblock (struct sblock *b)
1728 {
1729 sdata *from, *end, *from_end;
1730
1731 end = b->next_free;
1732
1733 for (from = b->data; from < end; from = from_end)
1734 {
1735 /* Compute the next FROM here because copying below may
1736 overwrite data we need to compute it. */
1737 ptrdiff_t nbytes;
1738
1739 /* Check that the string size recorded in the string is the
1740 same as the one recorded in the sdata structure. */
1741 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1742 : SDATA_NBYTES (from));
1743 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1744 }
1745 }
1746
1747
1748 /* Check validity of Lisp strings' string_bytes member. ALL_P
1749 means check all strings, otherwise check only most
1750 recently allocated strings. Used for hunting a bug. */
1751
1752 static void
1753 check_string_bytes (bool all_p)
1754 {
1755 if (all_p)
1756 {
1757 struct sblock *b;
1758
1759 for (b = large_sblocks; b; b = b->next)
1760 {
1761 struct Lisp_String *s = b->data[0].string;
1762 if (s)
1763 string_bytes (s);
1764 }
1765
1766 for (b = oldest_sblock; b; b = b->next)
1767 check_sblock (b);
1768 }
1769 else if (current_sblock)
1770 check_sblock (current_sblock);
1771 }
1772
1773 #else /* not GC_CHECK_STRING_BYTES */
1774
1775 #define check_string_bytes(all) ((void) 0)
1776
1777 #endif /* GC_CHECK_STRING_BYTES */
1778
1779 #ifdef GC_CHECK_STRING_FREE_LIST
1780
1781 /* Walk through the string free list looking for bogus next pointers.
1782 This may catch buffer overrun from a previous string. */
1783
1784 static void
1785 check_string_free_list (void)
1786 {
1787 struct Lisp_String *s;
1788
1789 /* Pop a Lisp_String off the free-list. */
1790 s = string_free_list;
1791 while (s != NULL)
1792 {
1793 if ((uintptr_t) s < 1024)
1794 emacs_abort ();
1795 s = NEXT_FREE_LISP_STRING (s);
1796 }
1797 }
1798 #else
1799 #define check_string_free_list()
1800 #endif
1801
1802 /* Return a new Lisp_String. */
1803
1804 static struct Lisp_String *
1805 allocate_string (void)
1806 {
1807 struct Lisp_String *s;
1808
1809 MALLOC_BLOCK_INPUT;
1810
1811 /* If the free-list is empty, allocate a new string_block, and
1812 add all the Lisp_Strings in it to the free-list. */
1813 if (string_free_list == NULL)
1814 {
1815 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1816 int i;
1817
1818 b->next = string_blocks;
1819 string_blocks = b;
1820
1821 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1822 {
1823 s = b->strings + i;
1824 /* Every string on a free list should have NULL data pointer. */
1825 s->data = NULL;
1826 NEXT_FREE_LISP_STRING (s) = string_free_list;
1827 string_free_list = s;
1828 }
1829
1830 total_free_strings += STRING_BLOCK_SIZE;
1831 }
1832
1833 check_string_free_list ();
1834
1835 /* Pop a Lisp_String off the free-list. */
1836 s = string_free_list;
1837 string_free_list = NEXT_FREE_LISP_STRING (s);
1838
1839 MALLOC_UNBLOCK_INPUT;
1840
1841 --total_free_strings;
1842 ++total_strings;
1843 ++strings_consed;
1844 consing_since_gc += sizeof *s;
1845
1846 #ifdef GC_CHECK_STRING_BYTES
1847 if (!noninteractive)
1848 {
1849 if (++check_string_bytes_count == 200)
1850 {
1851 check_string_bytes_count = 0;
1852 check_string_bytes (1);
1853 }
1854 else
1855 check_string_bytes (0);
1856 }
1857 #endif /* GC_CHECK_STRING_BYTES */
1858
1859 return s;
1860 }
1861
1862
1863 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1864 plus a NUL byte at the end. Allocate an sdata structure for S, and
1865 set S->data to its `u.data' member. Store a NUL byte at the end of
1866 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1867 S->data if it was initially non-null. */
1868
1869 void
1870 allocate_string_data (struct Lisp_String *s,
1871 EMACS_INT nchars, EMACS_INT nbytes)
1872 {
1873 sdata *data, *old_data;
1874 struct sblock *b;
1875 ptrdiff_t needed, old_nbytes;
1876
1877 if (STRING_BYTES_MAX < nbytes)
1878 string_overflow ();
1879
1880 /* Determine the number of bytes needed to store NBYTES bytes
1881 of string data. */
1882 needed = SDATA_SIZE (nbytes);
1883 if (s->data)
1884 {
1885 old_data = SDATA_OF_STRING (s);
1886 old_nbytes = STRING_BYTES (s);
1887 }
1888 else
1889 old_data = NULL;
1890
1891 MALLOC_BLOCK_INPUT;
1892
1893 if (nbytes > LARGE_STRING_BYTES)
1894 {
1895 size_t size = offsetof (struct sblock, data) + needed;
1896
1897 #ifdef DOUG_LEA_MALLOC
1898 if (!mmap_lisp_allowed_p ())
1899 mallopt (M_MMAP_MAX, 0);
1900 #endif
1901
1902 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1903
1904 #ifdef DOUG_LEA_MALLOC
1905 if (!mmap_lisp_allowed_p ())
1906 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1907 #endif
1908
1909 b->next_free = b->data;
1910 b->data[0].string = NULL;
1911 b->next = large_sblocks;
1912 large_sblocks = b;
1913 }
1914 else if (current_sblock == NULL
1915 || (((char *) current_sblock + SBLOCK_SIZE
1916 - (char *) current_sblock->next_free)
1917 < (needed + GC_STRING_EXTRA)))
1918 {
1919 /* Not enough room in the current sblock. */
1920 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1921 b->next_free = b->data;
1922 b->data[0].string = NULL;
1923 b->next = NULL;
1924
1925 if (current_sblock)
1926 current_sblock->next = b;
1927 else
1928 oldest_sblock = b;
1929 current_sblock = b;
1930 }
1931 else
1932 b = current_sblock;
1933
1934 data = b->next_free;
1935 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1936
1937 MALLOC_UNBLOCK_INPUT;
1938
1939 data->string = s;
1940 s->data = SDATA_DATA (data);
1941 #ifdef GC_CHECK_STRING_BYTES
1942 SDATA_NBYTES (data) = nbytes;
1943 #endif
1944 s->size = nchars;
1945 s->size_byte = nbytes;
1946 s->data[nbytes] = '\0';
1947 #ifdef GC_CHECK_STRING_OVERRUN
1948 memcpy ((char *) data + needed, string_overrun_cookie,
1949 GC_STRING_OVERRUN_COOKIE_SIZE);
1950 #endif
1951
1952 /* Note that Faset may call to this function when S has already data
1953 assigned. In this case, mark data as free by setting it's string
1954 back-pointer to null, and record the size of the data in it. */
1955 if (old_data)
1956 {
1957 SDATA_NBYTES (old_data) = old_nbytes;
1958 old_data->string = NULL;
1959 }
1960
1961 consing_since_gc += needed;
1962 }
1963
1964
1965 /* Sweep and compact strings. */
1966
1967 NO_INLINE /* For better stack traces */
1968 static void
1969 sweep_strings (void)
1970 {
1971 struct string_block *b, *next;
1972 struct string_block *live_blocks = NULL;
1973
1974 string_free_list = NULL;
1975 total_strings = total_free_strings = 0;
1976 total_string_bytes = 0;
1977
1978 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1979 for (b = string_blocks; b; b = next)
1980 {
1981 int i, nfree = 0;
1982 struct Lisp_String *free_list_before = string_free_list;
1983
1984 next = b->next;
1985
1986 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1987 {
1988 struct Lisp_String *s = b->strings + i;
1989
1990 if (s->data)
1991 {
1992 /* String was not on free-list before. */
1993 if (STRING_MARKED_P (s))
1994 {
1995 /* String is live; unmark it and its intervals. */
1996 UNMARK_STRING (s);
1997
1998 /* Do not use string_(set|get)_intervals here. */
1999 s->intervals = balance_intervals (s->intervals);
2000
2001 ++total_strings;
2002 total_string_bytes += STRING_BYTES (s);
2003 }
2004 else
2005 {
2006 /* String is dead. Put it on the free-list. */
2007 sdata *data = SDATA_OF_STRING (s);
2008
2009 /* Save the size of S in its sdata so that we know
2010 how large that is. Reset the sdata's string
2011 back-pointer so that we know it's free. */
2012 #ifdef GC_CHECK_STRING_BYTES
2013 if (string_bytes (s) != SDATA_NBYTES (data))
2014 emacs_abort ();
2015 #else
2016 data->n.nbytes = STRING_BYTES (s);
2017 #endif
2018 data->string = NULL;
2019
2020 /* Reset the strings's `data' member so that we
2021 know it's free. */
2022 s->data = NULL;
2023
2024 /* Put the string on the free-list. */
2025 NEXT_FREE_LISP_STRING (s) = string_free_list;
2026 string_free_list = s;
2027 ++nfree;
2028 }
2029 }
2030 else
2031 {
2032 /* S was on the free-list before. Put it there again. */
2033 NEXT_FREE_LISP_STRING (s) = string_free_list;
2034 string_free_list = s;
2035 ++nfree;
2036 }
2037 }
2038
2039 /* Free blocks that contain free Lisp_Strings only, except
2040 the first two of them. */
2041 if (nfree == STRING_BLOCK_SIZE
2042 && total_free_strings > STRING_BLOCK_SIZE)
2043 {
2044 lisp_free (b);
2045 string_free_list = free_list_before;
2046 }
2047 else
2048 {
2049 total_free_strings += nfree;
2050 b->next = live_blocks;
2051 live_blocks = b;
2052 }
2053 }
2054
2055 check_string_free_list ();
2056
2057 string_blocks = live_blocks;
2058 free_large_strings ();
2059 compact_small_strings ();
2060
2061 check_string_free_list ();
2062 }
2063
2064
2065 /* Free dead large strings. */
2066
2067 static void
2068 free_large_strings (void)
2069 {
2070 struct sblock *b, *next;
2071 struct sblock *live_blocks = NULL;
2072
2073 for (b = large_sblocks; b; b = next)
2074 {
2075 next = b->next;
2076
2077 if (b->data[0].string == NULL)
2078 lisp_free (b);
2079 else
2080 {
2081 b->next = live_blocks;
2082 live_blocks = b;
2083 }
2084 }
2085
2086 large_sblocks = live_blocks;
2087 }
2088
2089
2090 /* Compact data of small strings. Free sblocks that don't contain
2091 data of live strings after compaction. */
2092
2093 static void
2094 compact_small_strings (void)
2095 {
2096 struct sblock *b, *tb, *next;
2097 sdata *from, *to, *end, *tb_end;
2098 sdata *to_end, *from_end;
2099
2100 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2101 to, and TB_END is the end of TB. */
2102 tb = oldest_sblock;
2103 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2104 to = tb->data;
2105
2106 /* Step through the blocks from the oldest to the youngest. We
2107 expect that old blocks will stabilize over time, so that less
2108 copying will happen this way. */
2109 for (b = oldest_sblock; b; b = b->next)
2110 {
2111 end = b->next_free;
2112 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2113
2114 for (from = b->data; from < end; from = from_end)
2115 {
2116 /* Compute the next FROM here because copying below may
2117 overwrite data we need to compute it. */
2118 ptrdiff_t nbytes;
2119 struct Lisp_String *s = from->string;
2120
2121 #ifdef GC_CHECK_STRING_BYTES
2122 /* Check that the string size recorded in the string is the
2123 same as the one recorded in the sdata structure. */
2124 if (s && string_bytes (s) != SDATA_NBYTES (from))
2125 emacs_abort ();
2126 #endif /* GC_CHECK_STRING_BYTES */
2127
2128 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2129 eassert (nbytes <= LARGE_STRING_BYTES);
2130
2131 nbytes = SDATA_SIZE (nbytes);
2132 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2133
2134 #ifdef GC_CHECK_STRING_OVERRUN
2135 if (memcmp (string_overrun_cookie,
2136 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2137 GC_STRING_OVERRUN_COOKIE_SIZE))
2138 emacs_abort ();
2139 #endif
2140
2141 /* Non-NULL S means it's alive. Copy its data. */
2142 if (s)
2143 {
2144 /* If TB is full, proceed with the next sblock. */
2145 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2146 if (to_end > tb_end)
2147 {
2148 tb->next_free = to;
2149 tb = tb->next;
2150 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2151 to = tb->data;
2152 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2153 }
2154
2155 /* Copy, and update the string's `data' pointer. */
2156 if (from != to)
2157 {
2158 eassert (tb != b || to < from);
2159 memmove (to, from, nbytes + GC_STRING_EXTRA);
2160 to->string->data = SDATA_DATA (to);
2161 }
2162
2163 /* Advance past the sdata we copied to. */
2164 to = to_end;
2165 }
2166 }
2167 }
2168
2169 /* The rest of the sblocks following TB don't contain live data, so
2170 we can free them. */
2171 for (b = tb->next; b; b = next)
2172 {
2173 next = b->next;
2174 lisp_free (b);
2175 }
2176
2177 tb->next_free = to;
2178 tb->next = NULL;
2179 current_sblock = tb;
2180 }
2181
2182 void
2183 string_overflow (void)
2184 {
2185 error ("Maximum string size exceeded");
2186 }
2187
2188 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2189 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2190 LENGTH must be an integer.
2191 INIT must be an integer that represents a character. */)
2192 (Lisp_Object length, Lisp_Object init)
2193 {
2194 register Lisp_Object val;
2195 int c;
2196 EMACS_INT nbytes;
2197
2198 CHECK_NATNUM (length);
2199 CHECK_CHARACTER (init);
2200
2201 c = XFASTINT (init);
2202 if (ASCII_CHAR_P (c))
2203 {
2204 nbytes = XINT (length);
2205 val = make_uninit_string (nbytes);
2206 if (nbytes)
2207 {
2208 memset (SDATA (val), c, nbytes);
2209 SDATA (val)[nbytes] = 0;
2210 }
2211 }
2212 else
2213 {
2214 unsigned char str[MAX_MULTIBYTE_LENGTH];
2215 ptrdiff_t len = CHAR_STRING (c, str);
2216 EMACS_INT string_len = XINT (length);
2217 unsigned char *p, *beg, *end;
2218
2219 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2220 string_overflow ();
2221 val = make_uninit_multibyte_string (string_len, nbytes);
2222 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2223 {
2224 /* First time we just copy `str' to the data of `val'. */
2225 if (p == beg)
2226 memcpy (p, str, len);
2227 else
2228 {
2229 /* Next time we copy largest possible chunk from
2230 initialized to uninitialized part of `val'. */
2231 len = min (p - beg, end - p);
2232 memcpy (p, beg, len);
2233 }
2234 }
2235 if (nbytes)
2236 *p = 0;
2237 }
2238
2239 return val;
2240 }
2241
2242 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2243 Return A. */
2244
2245 Lisp_Object
2246 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2247 {
2248 EMACS_INT nbits = bool_vector_size (a);
2249 if (0 < nbits)
2250 {
2251 unsigned char *data = bool_vector_uchar_data (a);
2252 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2253 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2254 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2255 memset (data, pattern, nbytes - 1);
2256 data[nbytes - 1] = pattern & last_mask;
2257 }
2258 return a;
2259 }
2260
2261 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2262
2263 Lisp_Object
2264 make_uninit_bool_vector (EMACS_INT nbits)
2265 {
2266 Lisp_Object val;
2267 EMACS_INT words = bool_vector_words (nbits);
2268 EMACS_INT word_bytes = words * sizeof (bits_word);
2269 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2270 + word_size - 1)
2271 / word_size);
2272 struct Lisp_Bool_Vector *p
2273 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2274 XSETVECTOR (val, p);
2275 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2276 p->size = nbits;
2277
2278 /* Clear padding at the end. */
2279 if (words)
2280 p->data[words - 1] = 0;
2281
2282 return val;
2283 }
2284
2285 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2286 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2287 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2288 (Lisp_Object length, Lisp_Object init)
2289 {
2290 Lisp_Object val;
2291
2292 CHECK_NATNUM (length);
2293 val = make_uninit_bool_vector (XFASTINT (length));
2294 return bool_vector_fill (val, init);
2295 }
2296
2297 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2298 doc: /* Return a new bool-vector with specified arguments as elements.
2299 Any number of arguments, even zero arguments, are allowed.
2300 usage: (bool-vector &rest OBJECTS) */)
2301 (ptrdiff_t nargs, Lisp_Object *args)
2302 {
2303 ptrdiff_t i;
2304 Lisp_Object vector;
2305
2306 vector = make_uninit_bool_vector (nargs);
2307 for (i = 0; i < nargs; i++)
2308 bool_vector_set (vector, i, !NILP (args[i]));
2309
2310 return vector;
2311 }
2312
2313 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2314 of characters from the contents. This string may be unibyte or
2315 multibyte, depending on the contents. */
2316
2317 Lisp_Object
2318 make_string (const char *contents, ptrdiff_t nbytes)
2319 {
2320 register Lisp_Object val;
2321 ptrdiff_t nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2324 &nchars, &multibyte_nbytes);
2325 if (nbytes == nchars || nbytes != multibyte_nbytes)
2326 /* CONTENTS contains no multibyte sequences or contains an invalid
2327 multibyte sequence. We must make unibyte string. */
2328 val = make_unibyte_string (contents, nbytes);
2329 else
2330 val = make_multibyte_string (contents, nchars, nbytes);
2331 return val;
2332 }
2333
2334 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2335
2336 Lisp_Object
2337 make_unibyte_string (const char *contents, ptrdiff_t length)
2338 {
2339 register Lisp_Object val;
2340 val = make_uninit_string (length);
2341 memcpy (SDATA (val), contents, length);
2342 return val;
2343 }
2344
2345
2346 /* Make a multibyte string from NCHARS characters occupying NBYTES
2347 bytes at CONTENTS. */
2348
2349 Lisp_Object
2350 make_multibyte_string (const char *contents,
2351 ptrdiff_t nchars, ptrdiff_t nbytes)
2352 {
2353 register Lisp_Object val;
2354 val = make_uninit_multibyte_string (nchars, nbytes);
2355 memcpy (SDATA (val), contents, nbytes);
2356 return val;
2357 }
2358
2359
2360 /* Make a string from NCHARS characters occupying NBYTES bytes at
2361 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2362
2363 Lisp_Object
2364 make_string_from_bytes (const char *contents,
2365 ptrdiff_t nchars, ptrdiff_t nbytes)
2366 {
2367 register Lisp_Object val;
2368 val = make_uninit_multibyte_string (nchars, nbytes);
2369 memcpy (SDATA (val), contents, nbytes);
2370 if (SBYTES (val) == SCHARS (val))
2371 STRING_SET_UNIBYTE (val);
2372 return val;
2373 }
2374
2375
2376 /* Make a string from NCHARS characters occupying NBYTES bytes at
2377 CONTENTS. The argument MULTIBYTE controls whether to label the
2378 string as multibyte. If NCHARS is negative, it counts the number of
2379 characters by itself. */
2380
2381 Lisp_Object
2382 make_specified_string (const char *contents,
2383 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2384 {
2385 Lisp_Object val;
2386
2387 if (nchars < 0)
2388 {
2389 if (multibyte)
2390 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2391 nbytes);
2392 else
2393 nchars = nbytes;
2394 }
2395 val = make_uninit_multibyte_string (nchars, nbytes);
2396 memcpy (SDATA (val), contents, nbytes);
2397 if (!multibyte)
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2404 occupying LENGTH bytes. */
2405
2406 Lisp_Object
2407 make_uninit_string (EMACS_INT length)
2408 {
2409 Lisp_Object val;
2410
2411 if (!length)
2412 return empty_unibyte_string;
2413 val = make_uninit_multibyte_string (length, length);
2414 STRING_SET_UNIBYTE (val);
2415 return val;
2416 }
2417
2418
2419 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2420 which occupy NBYTES bytes. */
2421
2422 Lisp_Object
2423 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2424 {
2425 Lisp_Object string;
2426 struct Lisp_String *s;
2427
2428 if (nchars < 0)
2429 emacs_abort ();
2430 if (!nbytes)
2431 return empty_multibyte_string;
2432
2433 s = allocate_string ();
2434 s->intervals = NULL;
2435 allocate_string_data (s, nchars, nbytes);
2436 XSETSTRING (string, s);
2437 string_chars_consed += nbytes;
2438 return string;
2439 }
2440
2441 /* Print arguments to BUF according to a FORMAT, then return
2442 a Lisp_String initialized with the data from BUF. */
2443
2444 Lisp_Object
2445 make_formatted_string (char *buf, const char *format, ...)
2446 {
2447 va_list ap;
2448 int length;
2449
2450 va_start (ap, format);
2451 length = vsprintf (buf, format, ap);
2452 va_end (ap);
2453 return make_string (buf, length);
2454 }
2455
2456 \f
2457 /***********************************************************************
2458 Float Allocation
2459 ***********************************************************************/
2460
2461 /* We store float cells inside of float_blocks, allocating a new
2462 float_block with malloc whenever necessary. Float cells reclaimed
2463 by GC are put on a free list to be reallocated before allocating
2464 any new float cells from the latest float_block. */
2465
2466 #define FLOAT_BLOCK_SIZE \
2467 (((BLOCK_BYTES - sizeof (struct float_block *) \
2468 /* The compiler might add padding at the end. */ \
2469 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2470 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2471
2472 #define GETMARKBIT(block,n) \
2473 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2474 >> ((n) % BITS_PER_BITS_WORD)) \
2475 & 1)
2476
2477 #define SETMARKBIT(block,n) \
2478 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2479 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2480
2481 #define UNSETMARKBIT(block,n) \
2482 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2483 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2484
2485 #define FLOAT_BLOCK(fptr) \
2486 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2487
2488 #define FLOAT_INDEX(fptr) \
2489 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2490
2491 struct float_block
2492 {
2493 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2494 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2495 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2496 struct float_block *next;
2497 };
2498
2499 #define FLOAT_MARKED_P(fptr) \
2500 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2501
2502 #define FLOAT_MARK(fptr) \
2503 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2504
2505 #define FLOAT_UNMARK(fptr) \
2506 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2507
2508 /* Current float_block. */
2509
2510 static struct float_block *float_block;
2511
2512 /* Index of first unused Lisp_Float in the current float_block. */
2513
2514 static int float_block_index = FLOAT_BLOCK_SIZE;
2515
2516 /* Free-list of Lisp_Floats. */
2517
2518 static struct Lisp_Float *float_free_list;
2519
2520 /* Return a new float object with value FLOAT_VALUE. */
2521
2522 Lisp_Object
2523 make_float (double float_value)
2524 {
2525 register Lisp_Object val;
2526
2527 MALLOC_BLOCK_INPUT;
2528
2529 if (float_free_list)
2530 {
2531 /* We use the data field for chaining the free list
2532 so that we won't use the same field that has the mark bit. */
2533 XSETFLOAT (val, float_free_list);
2534 float_free_list = float_free_list->u.chain;
2535 }
2536 else
2537 {
2538 if (float_block_index == FLOAT_BLOCK_SIZE)
2539 {
2540 struct float_block *new
2541 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2542 new->next = float_block;
2543 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2544 float_block = new;
2545 float_block_index = 0;
2546 total_free_floats += FLOAT_BLOCK_SIZE;
2547 }
2548 XSETFLOAT (val, &float_block->floats[float_block_index]);
2549 float_block_index++;
2550 }
2551
2552 MALLOC_UNBLOCK_INPUT;
2553
2554 XFLOAT_INIT (val, float_value);
2555 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2556 consing_since_gc += sizeof (struct Lisp_Float);
2557 floats_consed++;
2558 total_free_floats--;
2559 return val;
2560 }
2561
2562
2563 \f
2564 /***********************************************************************
2565 Cons Allocation
2566 ***********************************************************************/
2567
2568 /* We store cons cells inside of cons_blocks, allocating a new
2569 cons_block with malloc whenever necessary. Cons cells reclaimed by
2570 GC are put on a free list to be reallocated before allocating
2571 any new cons cells from the latest cons_block. */
2572
2573 #define CONS_BLOCK_SIZE \
2574 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2575 /* The compiler might add padding at the end. */ \
2576 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2577 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2578
2579 #define CONS_BLOCK(fptr) \
2580 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2581
2582 #define CONS_INDEX(fptr) \
2583 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2584
2585 struct cons_block
2586 {
2587 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2588 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2589 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2590 struct cons_block *next;
2591 };
2592
2593 #define CONS_MARKED_P(fptr) \
2594 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2595
2596 #define CONS_MARK(fptr) \
2597 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2598
2599 #define CONS_UNMARK(fptr) \
2600 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2601
2602 /* Current cons_block. */
2603
2604 static struct cons_block *cons_block;
2605
2606 /* Index of first unused Lisp_Cons in the current block. */
2607
2608 static int cons_block_index = CONS_BLOCK_SIZE;
2609
2610 /* Free-list of Lisp_Cons structures. */
2611
2612 static struct Lisp_Cons *cons_free_list;
2613
2614 /* Explicitly free a cons cell by putting it on the free-list. */
2615
2616 void
2617 free_cons (struct Lisp_Cons *ptr)
2618 {
2619 ptr->u.chain = cons_free_list;
2620 ptr->car = Vdead;
2621 cons_free_list = ptr;
2622 consing_since_gc -= sizeof *ptr;
2623 total_free_conses++;
2624 }
2625
2626 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2627 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2628 (Lisp_Object car, Lisp_Object cdr)
2629 {
2630 register Lisp_Object val;
2631
2632 MALLOC_BLOCK_INPUT;
2633
2634 if (cons_free_list)
2635 {
2636 /* We use the cdr for chaining the free list
2637 so that we won't use the same field that has the mark bit. */
2638 XSETCONS (val, cons_free_list);
2639 cons_free_list = cons_free_list->u.chain;
2640 }
2641 else
2642 {
2643 if (cons_block_index == CONS_BLOCK_SIZE)
2644 {
2645 struct cons_block *new
2646 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2647 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2648 new->next = cons_block;
2649 cons_block = new;
2650 cons_block_index = 0;
2651 total_free_conses += CONS_BLOCK_SIZE;
2652 }
2653 XSETCONS (val, &cons_block->conses[cons_block_index]);
2654 cons_block_index++;
2655 }
2656
2657 MALLOC_UNBLOCK_INPUT;
2658
2659 XSETCAR (val, car);
2660 XSETCDR (val, cdr);
2661 eassert (!CONS_MARKED_P (XCONS (val)));
2662 consing_since_gc += sizeof (struct Lisp_Cons);
2663 total_free_conses--;
2664 cons_cells_consed++;
2665 return val;
2666 }
2667
2668 #ifdef GC_CHECK_CONS_LIST
2669 /* Get an error now if there's any junk in the cons free list. */
2670 void
2671 check_cons_list (void)
2672 {
2673 struct Lisp_Cons *tail = cons_free_list;
2674
2675 while (tail)
2676 tail = tail->u.chain;
2677 }
2678 #endif
2679
2680 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2681
2682 Lisp_Object
2683 list1 (Lisp_Object arg1)
2684 {
2685 return Fcons (arg1, Qnil);
2686 }
2687
2688 Lisp_Object
2689 list2 (Lisp_Object arg1, Lisp_Object arg2)
2690 {
2691 return Fcons (arg1, Fcons (arg2, Qnil));
2692 }
2693
2694
2695 Lisp_Object
2696 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2697 {
2698 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2699 }
2700
2701
2702 Lisp_Object
2703 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2704 {
2705 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2706 }
2707
2708
2709 Lisp_Object
2710 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2711 {
2712 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2713 Fcons (arg5, Qnil)))));
2714 }
2715
2716 /* Make a list of COUNT Lisp_Objects, where ARG is the
2717 first one. Allocate conses from pure space if TYPE
2718 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2719
2720 Lisp_Object
2721 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2722 {
2723 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2724 switch (type)
2725 {
2726 case CONSTYPE_PURE: cons = pure_cons; break;
2727 case CONSTYPE_HEAP: cons = Fcons; break;
2728 default: emacs_abort ();
2729 }
2730
2731 eassume (0 < count);
2732 Lisp_Object val = cons (arg, Qnil);
2733 Lisp_Object tail = val;
2734
2735 va_list ap;
2736 va_start (ap, arg);
2737 for (ptrdiff_t i = 1; i < count; i++)
2738 {
2739 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2740 XSETCDR (tail, elem);
2741 tail = elem;
2742 }
2743 va_end (ap);
2744
2745 return val;
2746 }
2747
2748 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2749 doc: /* Return a newly created list with specified arguments as elements.
2750 Any number of arguments, even zero arguments, are allowed.
2751 usage: (list &rest OBJECTS) */)
2752 (ptrdiff_t nargs, Lisp_Object *args)
2753 {
2754 register Lisp_Object val;
2755 val = Qnil;
2756
2757 while (nargs > 0)
2758 {
2759 nargs--;
2760 val = Fcons (args[nargs], val);
2761 }
2762 return val;
2763 }
2764
2765
2766 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2767 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2768 (register Lisp_Object length, Lisp_Object init)
2769 {
2770 register Lisp_Object val;
2771 register EMACS_INT size;
2772
2773 CHECK_NATNUM (length);
2774 size = XFASTINT (length);
2775
2776 val = Qnil;
2777 while (size > 0)
2778 {
2779 val = Fcons (init, val);
2780 --size;
2781
2782 if (size > 0)
2783 {
2784 val = Fcons (init, val);
2785 --size;
2786
2787 if (size > 0)
2788 {
2789 val = Fcons (init, val);
2790 --size;
2791
2792 if (size > 0)
2793 {
2794 val = Fcons (init, val);
2795 --size;
2796
2797 if (size > 0)
2798 {
2799 val = Fcons (init, val);
2800 --size;
2801 }
2802 }
2803 }
2804 }
2805
2806 QUIT;
2807 }
2808
2809 return val;
2810 }
2811
2812
2813 \f
2814 /***********************************************************************
2815 Vector Allocation
2816 ***********************************************************************/
2817
2818 /* Sometimes a vector's contents are merely a pointer internally used
2819 in vector allocation code. On the rare platforms where a null
2820 pointer cannot be tagged, represent it with a Lisp 0.
2821 Usually you don't want to touch this. */
2822
2823 static struct Lisp_Vector *
2824 next_vector (struct Lisp_Vector *v)
2825 {
2826 return XUNTAG (v->contents[0], Lisp_Int0);
2827 }
2828
2829 static void
2830 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2831 {
2832 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2833 }
2834
2835 /* This value is balanced well enough to avoid too much internal overhead
2836 for the most common cases; it's not required to be a power of two, but
2837 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2838
2839 #define VECTOR_BLOCK_SIZE 4096
2840
2841 enum
2842 {
2843 /* Alignment of struct Lisp_Vector objects. */
2844 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2845 GCALIGNMENT),
2846
2847 /* Vector size requests are a multiple of this. */
2848 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2849 };
2850
2851 /* Verify assumptions described above. */
2852 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2853 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2854
2855 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2856 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2857 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2858 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2859
2860 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2861
2862 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2863
2864 /* Size of the minimal vector allocated from block. */
2865
2866 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2867
2868 /* Size of the largest vector allocated from block. */
2869
2870 #define VBLOCK_BYTES_MAX \
2871 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2872
2873 /* We maintain one free list for each possible block-allocated
2874 vector size, and this is the number of free lists we have. */
2875
2876 #define VECTOR_MAX_FREE_LIST_INDEX \
2877 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2878
2879 /* Common shortcut to advance vector pointer over a block data. */
2880
2881 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2882
2883 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2884
2885 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2886
2887 /* Common shortcut to setup vector on a free list. */
2888
2889 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2890 do { \
2891 (tmp) = ((nbytes - header_size) / word_size); \
2892 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2893 eassert ((nbytes) % roundup_size == 0); \
2894 (tmp) = VINDEX (nbytes); \
2895 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2896 set_next_vector (v, vector_free_lists[tmp]); \
2897 vector_free_lists[tmp] = (v); \
2898 total_free_vector_slots += (nbytes) / word_size; \
2899 } while (0)
2900
2901 /* This internal type is used to maintain the list of large vectors
2902 which are allocated at their own, e.g. outside of vector blocks.
2903
2904 struct large_vector itself cannot contain a struct Lisp_Vector, as
2905 the latter contains a flexible array member and C99 does not allow
2906 such structs to be nested. Instead, each struct large_vector
2907 object LV is followed by a struct Lisp_Vector, which is at offset
2908 large_vector_offset from LV, and whose address is therefore
2909 large_vector_vec (&LV). */
2910
2911 struct large_vector
2912 {
2913 struct large_vector *next;
2914 };
2915
2916 enum
2917 {
2918 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2919 };
2920
2921 static struct Lisp_Vector *
2922 large_vector_vec (struct large_vector *p)
2923 {
2924 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2925 }
2926
2927 /* This internal type is used to maintain an underlying storage
2928 for small vectors. */
2929
2930 struct vector_block
2931 {
2932 char data[VECTOR_BLOCK_BYTES];
2933 struct vector_block *next;
2934 };
2935
2936 /* Chain of vector blocks. */
2937
2938 static struct vector_block *vector_blocks;
2939
2940 /* Vector free lists, where NTH item points to a chain of free
2941 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2942
2943 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2944
2945 /* Singly-linked list of large vectors. */
2946
2947 static struct large_vector *large_vectors;
2948
2949 /* The only vector with 0 slots, allocated from pure space. */
2950
2951 Lisp_Object zero_vector;
2952
2953 /* Number of live vectors. */
2954
2955 static EMACS_INT total_vectors;
2956
2957 /* Total size of live and free vectors, in Lisp_Object units. */
2958
2959 static EMACS_INT total_vector_slots, total_free_vector_slots;
2960
2961 /* Get a new vector block. */
2962
2963 static struct vector_block *
2964 allocate_vector_block (void)
2965 {
2966 struct vector_block *block = xmalloc (sizeof *block);
2967
2968 #ifndef GC_MALLOC_CHECK
2969 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2970 MEM_TYPE_VECTOR_BLOCK);
2971 #endif
2972
2973 block->next = vector_blocks;
2974 vector_blocks = block;
2975 return block;
2976 }
2977
2978 /* Called once to initialize vector allocation. */
2979
2980 static void
2981 init_vectors (void)
2982 {
2983 zero_vector = make_pure_vector (0);
2984 }
2985
2986 /* Allocate vector from a vector block. */
2987
2988 static struct Lisp_Vector *
2989 allocate_vector_from_block (size_t nbytes)
2990 {
2991 struct Lisp_Vector *vector;
2992 struct vector_block *block;
2993 size_t index, restbytes;
2994
2995 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2996 eassert (nbytes % roundup_size == 0);
2997
2998 /* First, try to allocate from a free list
2999 containing vectors of the requested size. */
3000 index = VINDEX (nbytes);
3001 if (vector_free_lists[index])
3002 {
3003 vector = vector_free_lists[index];
3004 vector_free_lists[index] = next_vector (vector);
3005 total_free_vector_slots -= nbytes / word_size;
3006 return vector;
3007 }
3008
3009 /* Next, check free lists containing larger vectors. Since
3010 we will split the result, we should have remaining space
3011 large enough to use for one-slot vector at least. */
3012 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3013 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3014 if (vector_free_lists[index])
3015 {
3016 /* This vector is larger than requested. */
3017 vector = vector_free_lists[index];
3018 vector_free_lists[index] = next_vector (vector);
3019 total_free_vector_slots -= nbytes / word_size;
3020
3021 /* Excess bytes are used for the smaller vector,
3022 which should be set on an appropriate free list. */
3023 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3024 eassert (restbytes % roundup_size == 0);
3025 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3026 return vector;
3027 }
3028
3029 /* Finally, need a new vector block. */
3030 block = allocate_vector_block ();
3031
3032 /* New vector will be at the beginning of this block. */
3033 vector = (struct Lisp_Vector *) block->data;
3034
3035 /* If the rest of space from this block is large enough
3036 for one-slot vector at least, set up it on a free list. */
3037 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3038 if (restbytes >= VBLOCK_BYTES_MIN)
3039 {
3040 eassert (restbytes % roundup_size == 0);
3041 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3042 }
3043 return vector;
3044 }
3045
3046 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3047
3048 #define VECTOR_IN_BLOCK(vector, block) \
3049 ((char *) (vector) <= (block)->data \
3050 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3051
3052 /* Return the memory footprint of V in bytes. */
3053
3054 static ptrdiff_t
3055 vector_nbytes (struct Lisp_Vector *v)
3056 {
3057 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3058 ptrdiff_t nwords;
3059
3060 if (size & PSEUDOVECTOR_FLAG)
3061 {
3062 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3063 {
3064 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3065 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3066 * sizeof (bits_word));
3067 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3068 verify (header_size <= bool_header_size);
3069 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3070 }
3071 else
3072 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3073 + ((size & PSEUDOVECTOR_REST_MASK)
3074 >> PSEUDOVECTOR_SIZE_BITS));
3075 }
3076 else
3077 nwords = size;
3078 return vroundup (header_size + word_size * nwords);
3079 }
3080
3081 /* Release extra resources still in use by VECTOR, which may be any
3082 vector-like object. For now, this is used just to free data in
3083 font objects. */
3084
3085 static void
3086 cleanup_vector (struct Lisp_Vector *vector)
3087 {
3088 detect_suspicious_free (vector);
3089 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3090 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3091 == FONT_OBJECT_MAX))
3092 {
3093 struct font_driver *drv = ((struct font *) vector)->driver;
3094
3095 /* The font driver might sometimes be NULL, e.g. if Emacs was
3096 interrupted before it had time to set it up. */
3097 if (drv)
3098 {
3099 /* Attempt to catch subtle bugs like Bug#16140. */
3100 eassert (valid_font_driver (drv));
3101 drv->close ((struct font *) vector);
3102 }
3103 }
3104 }
3105
3106 /* Reclaim space used by unmarked vectors. */
3107
3108 NO_INLINE /* For better stack traces */
3109 static void
3110 sweep_vectors (void)
3111 {
3112 struct vector_block *block, **bprev = &vector_blocks;
3113 struct large_vector *lv, **lvprev = &large_vectors;
3114 struct Lisp_Vector *vector, *next;
3115
3116 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3117 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3118
3119 /* Looking through vector blocks. */
3120
3121 for (block = vector_blocks; block; block = *bprev)
3122 {
3123 bool free_this_block = 0;
3124 ptrdiff_t nbytes;
3125
3126 for (vector = (struct Lisp_Vector *) block->data;
3127 VECTOR_IN_BLOCK (vector, block); vector = next)
3128 {
3129 if (VECTOR_MARKED_P (vector))
3130 {
3131 VECTOR_UNMARK (vector);
3132 total_vectors++;
3133 nbytes = vector_nbytes (vector);
3134 total_vector_slots += nbytes / word_size;
3135 next = ADVANCE (vector, nbytes);
3136 }
3137 else
3138 {
3139 ptrdiff_t total_bytes;
3140
3141 cleanup_vector (vector);
3142 nbytes = vector_nbytes (vector);
3143 total_bytes = nbytes;
3144 next = ADVANCE (vector, nbytes);
3145
3146 /* While NEXT is not marked, try to coalesce with VECTOR,
3147 thus making VECTOR of the largest possible size. */
3148
3149 while (VECTOR_IN_BLOCK (next, block))
3150 {
3151 if (VECTOR_MARKED_P (next))
3152 break;
3153 cleanup_vector (next);
3154 nbytes = vector_nbytes (next);
3155 total_bytes += nbytes;
3156 next = ADVANCE (next, nbytes);
3157 }
3158
3159 eassert (total_bytes % roundup_size == 0);
3160
3161 if (vector == (struct Lisp_Vector *) block->data
3162 && !VECTOR_IN_BLOCK (next, block))
3163 /* This block should be freed because all of its
3164 space was coalesced into the only free vector. */
3165 free_this_block = 1;
3166 else
3167 {
3168 size_t tmp;
3169 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3170 }
3171 }
3172 }
3173
3174 if (free_this_block)
3175 {
3176 *bprev = block->next;
3177 #ifndef GC_MALLOC_CHECK
3178 mem_delete (mem_find (block->data));
3179 #endif
3180 xfree (block);
3181 }
3182 else
3183 bprev = &block->next;
3184 }
3185
3186 /* Sweep large vectors. */
3187
3188 for (lv = large_vectors; lv; lv = *lvprev)
3189 {
3190 vector = large_vector_vec (lv);
3191 if (VECTOR_MARKED_P (vector))
3192 {
3193 VECTOR_UNMARK (vector);
3194 total_vectors++;
3195 if (vector->header.size & PSEUDOVECTOR_FLAG)
3196 {
3197 /* All non-bool pseudovectors are small enough to be allocated
3198 from vector blocks. This code should be redesigned if some
3199 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3200 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3201 total_vector_slots += vector_nbytes (vector) / word_size;
3202 }
3203 else
3204 total_vector_slots
3205 += header_size / word_size + vector->header.size;
3206 lvprev = &lv->next;
3207 }
3208 else
3209 {
3210 *lvprev = lv->next;
3211 lisp_free (lv);
3212 }
3213 }
3214 }
3215
3216 /* Value is a pointer to a newly allocated Lisp_Vector structure
3217 with room for LEN Lisp_Objects. */
3218
3219 static struct Lisp_Vector *
3220 allocate_vectorlike (ptrdiff_t len)
3221 {
3222 struct Lisp_Vector *p;
3223
3224 MALLOC_BLOCK_INPUT;
3225
3226 if (len == 0)
3227 p = XVECTOR (zero_vector);
3228 else
3229 {
3230 size_t nbytes = header_size + len * word_size;
3231
3232 #ifdef DOUG_LEA_MALLOC
3233 if (!mmap_lisp_allowed_p ())
3234 mallopt (M_MMAP_MAX, 0);
3235 #endif
3236
3237 if (nbytes <= VBLOCK_BYTES_MAX)
3238 p = allocate_vector_from_block (vroundup (nbytes));
3239 else
3240 {
3241 struct large_vector *lv
3242 = lisp_malloc ((large_vector_offset + header_size
3243 + len * word_size),
3244 MEM_TYPE_VECTORLIKE);
3245 lv->next = large_vectors;
3246 large_vectors = lv;
3247 p = large_vector_vec (lv);
3248 }
3249
3250 #ifdef DOUG_LEA_MALLOC
3251 if (!mmap_lisp_allowed_p ())
3252 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3253 #endif
3254
3255 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3256 emacs_abort ();
3257
3258 consing_since_gc += nbytes;
3259 vector_cells_consed += len;
3260 }
3261
3262 MALLOC_UNBLOCK_INPUT;
3263
3264 return p;
3265 }
3266
3267
3268 /* Allocate a vector with LEN slots. */
3269
3270 struct Lisp_Vector *
3271 allocate_vector (EMACS_INT len)
3272 {
3273 struct Lisp_Vector *v;
3274 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3275
3276 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3277 memory_full (SIZE_MAX);
3278 v = allocate_vectorlike (len);
3279 if (len)
3280 v->header.size = len;
3281 return v;
3282 }
3283
3284
3285 /* Allocate other vector-like structures. */
3286
3287 struct Lisp_Vector *
3288 allocate_pseudovector (int memlen, int lisplen,
3289 int zerolen, enum pvec_type tag)
3290 {
3291 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3292
3293 /* Catch bogus values. */
3294 eassert (0 <= tag && tag <= PVEC_FONT);
3295 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3296 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3297 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3298
3299 /* Only the first LISPLEN slots will be traced normally by the GC. */
3300 memclear (v->contents, zerolen * word_size);
3301 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3302 return v;
3303 }
3304
3305 struct buffer *
3306 allocate_buffer (void)
3307 {
3308 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3309
3310 BUFFER_PVEC_INIT (b);
3311 /* Put B on the chain of all buffers including killed ones. */
3312 b->next = all_buffers;
3313 all_buffers = b;
3314 /* Note that the rest fields of B are not initialized. */
3315 return b;
3316 }
3317
3318 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3319 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3320 See also the function `vector'. */)
3321 (Lisp_Object length, Lisp_Object init)
3322 {
3323 CHECK_NATNUM (length);
3324
3325 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3326 if (XLI (init) == 0)
3327 memset (p->contents, 0, XFASTINT (length) * sizeof p->contents[0]);
3328 else
3329 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3330 p->contents[i] = init;
3331
3332 return make_lisp_ptr (p, Lisp_Vectorlike);
3333 }
3334
3335 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3336 doc: /* Return a newly created vector with specified arguments as elements.
3337 Any number of arguments, even zero arguments, are allowed.
3338 usage: (vector &rest OBJECTS) */)
3339 (ptrdiff_t nargs, Lisp_Object *args)
3340 {
3341 Lisp_Object val = make_uninit_vector (nargs);
3342 struct Lisp_Vector *p = XVECTOR (val);
3343 memcpy (p->contents, args, nargs * sizeof *args);
3344 return val;
3345 }
3346
3347 void
3348 make_byte_code (struct Lisp_Vector *v)
3349 {
3350 /* Don't allow the global zero_vector to become a byte code object. */
3351 eassert (0 < v->header.size);
3352
3353 if (v->header.size > 1 && STRINGP (v->contents[1])
3354 && STRING_MULTIBYTE (v->contents[1]))
3355 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3356 earlier because they produced a raw 8-bit string for byte-code
3357 and now such a byte-code string is loaded as multibyte while
3358 raw 8-bit characters converted to multibyte form. Thus, now we
3359 must convert them back to the original unibyte form. */
3360 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3361 XSETPVECTYPE (v, PVEC_COMPILED);
3362 }
3363
3364 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3365 doc: /* Create a byte-code object with specified arguments as elements.
3366 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3367 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3368 and (optional) INTERACTIVE-SPEC.
3369 The first four arguments are required; at most six have any
3370 significance.
3371 The ARGLIST can be either like the one of `lambda', in which case the arguments
3372 will be dynamically bound before executing the byte code, or it can be an
3373 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3374 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3375 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3376 argument to catch the left-over arguments. If such an integer is used, the
3377 arguments will not be dynamically bound but will be instead pushed on the
3378 stack before executing the byte-code.
3379 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3380 (ptrdiff_t nargs, Lisp_Object *args)
3381 {
3382 Lisp_Object val = make_uninit_vector (nargs);
3383 struct Lisp_Vector *p = XVECTOR (val);
3384
3385 /* We used to purecopy everything here, if purify-flag was set. This worked
3386 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3387 dangerous, since make-byte-code is used during execution to build
3388 closures, so any closure built during the preload phase would end up
3389 copied into pure space, including its free variables, which is sometimes
3390 just wasteful and other times plainly wrong (e.g. those free vars may want
3391 to be setcar'd). */
3392
3393 memcpy (p->contents, args, nargs * sizeof *args);
3394 make_byte_code (p);
3395 XSETCOMPILED (val, p);
3396 return val;
3397 }
3398
3399
3400 \f
3401 /***********************************************************************
3402 Symbol Allocation
3403 ***********************************************************************/
3404
3405 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3406 of the required alignment. */
3407
3408 union aligned_Lisp_Symbol
3409 {
3410 struct Lisp_Symbol s;
3411 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3412 & -GCALIGNMENT];
3413 };
3414
3415 /* Each symbol_block is just under 1020 bytes long, since malloc
3416 really allocates in units of powers of two and uses 4 bytes for its
3417 own overhead. */
3418
3419 #define SYMBOL_BLOCK_SIZE \
3420 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3421
3422 struct symbol_block
3423 {
3424 /* Place `symbols' first, to preserve alignment. */
3425 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3426 struct symbol_block *next;
3427 };
3428
3429 /* Current symbol block and index of first unused Lisp_Symbol
3430 structure in it. */
3431
3432 static struct symbol_block *symbol_block;
3433 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3434 /* Pointer to the first symbol_block that contains pinned symbols.
3435 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3436 10K of which are pinned (and all but 250 of them are interned in obarray),
3437 whereas a "typical session" has in the order of 30K symbols.
3438 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3439 than 30K to find the 10K symbols we need to mark. */
3440 static struct symbol_block *symbol_block_pinned;
3441
3442 /* List of free symbols. */
3443
3444 static struct Lisp_Symbol *symbol_free_list;
3445
3446 static void
3447 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3448 {
3449 XSYMBOL (sym)->name = name;
3450 }
3451
3452 void
3453 init_symbol (Lisp_Object val, Lisp_Object name)
3454 {
3455 struct Lisp_Symbol *p = XSYMBOL (val);
3456 set_symbol_name (val, name);
3457 set_symbol_plist (val, Qnil);
3458 p->redirect = SYMBOL_PLAINVAL;
3459 SET_SYMBOL_VAL (p, Qunbound);
3460 set_symbol_function (val, Qnil);
3461 set_symbol_next (val, NULL);
3462 p->gcmarkbit = false;
3463 p->interned = SYMBOL_UNINTERNED;
3464 p->constant = 0;
3465 p->declared_special = false;
3466 p->pinned = false;
3467 }
3468
3469 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3470 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3471 Its value is void, and its function definition and property list are nil. */)
3472 (Lisp_Object name)
3473 {
3474 Lisp_Object val;
3475
3476 CHECK_STRING (name);
3477
3478 MALLOC_BLOCK_INPUT;
3479
3480 if (symbol_free_list)
3481 {
3482 XSETSYMBOL (val, symbol_free_list);
3483 symbol_free_list = symbol_free_list->next;
3484 }
3485 else
3486 {
3487 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3488 {
3489 struct symbol_block *new
3490 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3491 new->next = symbol_block;
3492 symbol_block = new;
3493 symbol_block_index = 0;
3494 total_free_symbols += SYMBOL_BLOCK_SIZE;
3495 }
3496 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3497 symbol_block_index++;
3498 }
3499
3500 MALLOC_UNBLOCK_INPUT;
3501
3502 init_symbol (val, name);
3503 consing_since_gc += sizeof (struct Lisp_Symbol);
3504 symbols_consed++;
3505 total_free_symbols--;
3506 return val;
3507 }
3508
3509
3510 \f
3511 /***********************************************************************
3512 Marker (Misc) Allocation
3513 ***********************************************************************/
3514
3515 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3516 the required alignment. */
3517
3518 union aligned_Lisp_Misc
3519 {
3520 union Lisp_Misc m;
3521 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3522 & -GCALIGNMENT];
3523 };
3524
3525 /* Allocation of markers and other objects that share that structure.
3526 Works like allocation of conses. */
3527
3528 #define MARKER_BLOCK_SIZE \
3529 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3530
3531 struct marker_block
3532 {
3533 /* Place `markers' first, to preserve alignment. */
3534 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3535 struct marker_block *next;
3536 };
3537
3538 static struct marker_block *marker_block;
3539 static int marker_block_index = MARKER_BLOCK_SIZE;
3540
3541 static union Lisp_Misc *marker_free_list;
3542
3543 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3544
3545 static Lisp_Object
3546 allocate_misc (enum Lisp_Misc_Type type)
3547 {
3548 Lisp_Object val;
3549
3550 MALLOC_BLOCK_INPUT;
3551
3552 if (marker_free_list)
3553 {
3554 XSETMISC (val, marker_free_list);
3555 marker_free_list = marker_free_list->u_free.chain;
3556 }
3557 else
3558 {
3559 if (marker_block_index == MARKER_BLOCK_SIZE)
3560 {
3561 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3562 new->next = marker_block;
3563 marker_block = new;
3564 marker_block_index = 0;
3565 total_free_markers += MARKER_BLOCK_SIZE;
3566 }
3567 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3568 marker_block_index++;
3569 }
3570
3571 MALLOC_UNBLOCK_INPUT;
3572
3573 --total_free_markers;
3574 consing_since_gc += sizeof (union Lisp_Misc);
3575 misc_objects_consed++;
3576 XMISCANY (val)->type = type;
3577 XMISCANY (val)->gcmarkbit = 0;
3578 return val;
3579 }
3580
3581 /* Free a Lisp_Misc object. */
3582
3583 void
3584 free_misc (Lisp_Object misc)
3585 {
3586 XMISCANY (misc)->type = Lisp_Misc_Free;
3587 XMISC (misc)->u_free.chain = marker_free_list;
3588 marker_free_list = XMISC (misc);
3589 consing_since_gc -= sizeof (union Lisp_Misc);
3590 total_free_markers++;
3591 }
3592
3593 /* Verify properties of Lisp_Save_Value's representation
3594 that are assumed here and elsewhere. */
3595
3596 verify (SAVE_UNUSED == 0);
3597 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3598 >> SAVE_SLOT_BITS)
3599 == 0);
3600
3601 /* Return Lisp_Save_Value objects for the various combinations
3602 that callers need. */
3603
3604 Lisp_Object
3605 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3606 {
3607 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3608 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3609 p->save_type = SAVE_TYPE_INT_INT_INT;
3610 p->data[0].integer = a;
3611 p->data[1].integer = b;
3612 p->data[2].integer = c;
3613 return val;
3614 }
3615
3616 Lisp_Object
3617 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3618 Lisp_Object d)
3619 {
3620 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3621 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3622 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3623 p->data[0].object = a;
3624 p->data[1].object = b;
3625 p->data[2].object = c;
3626 p->data[3].object = d;
3627 return val;
3628 }
3629
3630 Lisp_Object
3631 make_save_ptr (void *a)
3632 {
3633 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3634 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3635 p->save_type = SAVE_POINTER;
3636 p->data[0].pointer = a;
3637 return val;
3638 }
3639
3640 Lisp_Object
3641 make_save_ptr_int (void *a, ptrdiff_t b)
3642 {
3643 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3644 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3645 p->save_type = SAVE_TYPE_PTR_INT;
3646 p->data[0].pointer = a;
3647 p->data[1].integer = b;
3648 return val;
3649 }
3650
3651 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3652 Lisp_Object
3653 make_save_ptr_ptr (void *a, void *b)
3654 {
3655 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3656 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3657 p->save_type = SAVE_TYPE_PTR_PTR;
3658 p->data[0].pointer = a;
3659 p->data[1].pointer = b;
3660 return val;
3661 }
3662 #endif
3663
3664 Lisp_Object
3665 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3666 {
3667 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3668 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3669 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3670 p->data[0].funcpointer = a;
3671 p->data[1].pointer = b;
3672 p->data[2].object = c;
3673 return val;
3674 }
3675
3676 /* Return a Lisp_Save_Value object that represents an array A
3677 of N Lisp objects. */
3678
3679 Lisp_Object
3680 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3681 {
3682 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3683 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3684 p->save_type = SAVE_TYPE_MEMORY;
3685 p->data[0].pointer = a;
3686 p->data[1].integer = n;
3687 return val;
3688 }
3689
3690 /* Free a Lisp_Save_Value object. Do not use this function
3691 if SAVE contains pointer other than returned by xmalloc. */
3692
3693 void
3694 free_save_value (Lisp_Object save)
3695 {
3696 xfree (XSAVE_POINTER (save, 0));
3697 free_misc (save);
3698 }
3699
3700 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3701
3702 Lisp_Object
3703 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3704 {
3705 register Lisp_Object overlay;
3706
3707 overlay = allocate_misc (Lisp_Misc_Overlay);
3708 OVERLAY_START (overlay) = start;
3709 OVERLAY_END (overlay) = end;
3710 set_overlay_plist (overlay, plist);
3711 XOVERLAY (overlay)->next = NULL;
3712 return overlay;
3713 }
3714
3715 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3716 doc: /* Return a newly allocated marker which does not point at any place. */)
3717 (void)
3718 {
3719 register Lisp_Object val;
3720 register struct Lisp_Marker *p;
3721
3722 val = allocate_misc (Lisp_Misc_Marker);
3723 p = XMARKER (val);
3724 p->buffer = 0;
3725 p->bytepos = 0;
3726 p->charpos = 0;
3727 p->next = NULL;
3728 p->insertion_type = 0;
3729 p->need_adjustment = 0;
3730 return val;
3731 }
3732
3733 /* Return a newly allocated marker which points into BUF
3734 at character position CHARPOS and byte position BYTEPOS. */
3735
3736 Lisp_Object
3737 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3738 {
3739 Lisp_Object obj;
3740 struct Lisp_Marker *m;
3741
3742 /* No dead buffers here. */
3743 eassert (BUFFER_LIVE_P (buf));
3744
3745 /* Every character is at least one byte. */
3746 eassert (charpos <= bytepos);
3747
3748 obj = allocate_misc (Lisp_Misc_Marker);
3749 m = XMARKER (obj);
3750 m->buffer = buf;
3751 m->charpos = charpos;
3752 m->bytepos = bytepos;
3753 m->insertion_type = 0;
3754 m->need_adjustment = 0;
3755 m->next = BUF_MARKERS (buf);
3756 BUF_MARKERS (buf) = m;
3757 return obj;
3758 }
3759
3760 /* Put MARKER back on the free list after using it temporarily. */
3761
3762 void
3763 free_marker (Lisp_Object marker)
3764 {
3765 unchain_marker (XMARKER (marker));
3766 free_misc (marker);
3767 }
3768
3769 \f
3770 /* Return a newly created vector or string with specified arguments as
3771 elements. If all the arguments are characters that can fit
3772 in a string of events, make a string; otherwise, make a vector.
3773
3774 Any number of arguments, even zero arguments, are allowed. */
3775
3776 Lisp_Object
3777 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3778 {
3779 ptrdiff_t i;
3780
3781 for (i = 0; i < nargs; i++)
3782 /* The things that fit in a string
3783 are characters that are in 0...127,
3784 after discarding the meta bit and all the bits above it. */
3785 if (!INTEGERP (args[i])
3786 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3787 return Fvector (nargs, args);
3788
3789 /* Since the loop exited, we know that all the things in it are
3790 characters, so we can make a string. */
3791 {
3792 Lisp_Object result;
3793
3794 result = Fmake_string (make_number (nargs), make_number (0));
3795 for (i = 0; i < nargs; i++)
3796 {
3797 SSET (result, i, XINT (args[i]));
3798 /* Move the meta bit to the right place for a string char. */
3799 if (XINT (args[i]) & CHAR_META)
3800 SSET (result, i, SREF (result, i) | 0x80);
3801 }
3802
3803 return result;
3804 }
3805 }
3806
3807 #ifdef HAVE_MODULES
3808 /* Create a new module user ptr object. */
3809 Lisp_Object
3810 make_user_ptr (void (*finalizer) (void *), void *p)
3811 {
3812 Lisp_Object obj;
3813 struct Lisp_User_Ptr *uptr;
3814
3815 obj = allocate_misc (Lisp_Misc_User_Ptr);
3816 uptr = XUSER_PTR (obj);
3817 uptr->finalizer = finalizer;
3818 uptr->p = p;
3819 return obj;
3820 }
3821
3822 #endif
3823
3824 static void
3825 init_finalizer_list (struct Lisp_Finalizer *head)
3826 {
3827 head->prev = head->next = head;
3828 }
3829
3830 /* Insert FINALIZER before ELEMENT. */
3831
3832 static void
3833 finalizer_insert (struct Lisp_Finalizer *element,
3834 struct Lisp_Finalizer *finalizer)
3835 {
3836 eassert (finalizer->prev == NULL);
3837 eassert (finalizer->next == NULL);
3838 finalizer->next = element;
3839 finalizer->prev = element->prev;
3840 finalizer->prev->next = finalizer;
3841 element->prev = finalizer;
3842 }
3843
3844 static void
3845 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3846 {
3847 if (finalizer->prev != NULL)
3848 {
3849 eassert (finalizer->next != NULL);
3850 finalizer->prev->next = finalizer->next;
3851 finalizer->next->prev = finalizer->prev;
3852 finalizer->prev = finalizer->next = NULL;
3853 }
3854 }
3855
3856 static void
3857 mark_finalizer_list (struct Lisp_Finalizer *head)
3858 {
3859 for (struct Lisp_Finalizer *finalizer = head->next;
3860 finalizer != head;
3861 finalizer = finalizer->next)
3862 {
3863 finalizer->base.gcmarkbit = true;
3864 mark_object (finalizer->function);
3865 }
3866 }
3867
3868 /* Move doomed finalizers to list DEST from list SRC. A doomed
3869 finalizer is one that is not GC-reachable and whose
3870 finalizer->function is non-nil. */
3871
3872 static void
3873 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3874 struct Lisp_Finalizer *src)
3875 {
3876 struct Lisp_Finalizer *finalizer = src->next;
3877 while (finalizer != src)
3878 {
3879 struct Lisp_Finalizer *next = finalizer->next;
3880 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3881 {
3882 unchain_finalizer (finalizer);
3883 finalizer_insert (dest, finalizer);
3884 }
3885
3886 finalizer = next;
3887 }
3888 }
3889
3890 static Lisp_Object
3891 run_finalizer_handler (Lisp_Object args)
3892 {
3893 add_to_log ("finalizer failed: %S", args);
3894 return Qnil;
3895 }
3896
3897 static void
3898 run_finalizer_function (Lisp_Object function)
3899 {
3900 ptrdiff_t count = SPECPDL_INDEX ();
3901
3902 specbind (Qinhibit_quit, Qt);
3903 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3904 unbind_to (count, Qnil);
3905 }
3906
3907 static void
3908 run_finalizers (struct Lisp_Finalizer *finalizers)
3909 {
3910 struct Lisp_Finalizer *finalizer;
3911 Lisp_Object function;
3912
3913 while (finalizers->next != finalizers)
3914 {
3915 finalizer = finalizers->next;
3916 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3917 unchain_finalizer (finalizer);
3918 function = finalizer->function;
3919 if (!NILP (function))
3920 {
3921 finalizer->function = Qnil;
3922 run_finalizer_function (function);
3923 }
3924 }
3925 }
3926
3927 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3928 doc: /* Make a finalizer that will run FUNCTION.
3929 FUNCTION will be called after garbage collection when the returned
3930 finalizer object becomes unreachable. If the finalizer object is
3931 reachable only through references from finalizer objects, it does not
3932 count as reachable for the purpose of deciding whether to run
3933 FUNCTION. FUNCTION will be run once per finalizer object. */)
3934 (Lisp_Object function)
3935 {
3936 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3937 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3938 finalizer->function = function;
3939 finalizer->prev = finalizer->next = NULL;
3940 finalizer_insert (&finalizers, finalizer);
3941 return val;
3942 }
3943
3944 \f
3945 /************************************************************************
3946 Memory Full Handling
3947 ************************************************************************/
3948
3949
3950 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3951 there may have been size_t overflow so that malloc was never
3952 called, or perhaps malloc was invoked successfully but the
3953 resulting pointer had problems fitting into a tagged EMACS_INT. In
3954 either case this counts as memory being full even though malloc did
3955 not fail. */
3956
3957 void
3958 memory_full (size_t nbytes)
3959 {
3960 /* Do not go into hysterics merely because a large request failed. */
3961 bool enough_free_memory = 0;
3962 if (SPARE_MEMORY < nbytes)
3963 {
3964 void *p;
3965
3966 MALLOC_BLOCK_INPUT;
3967 p = malloc (SPARE_MEMORY);
3968 if (p)
3969 {
3970 free (p);
3971 enough_free_memory = 1;
3972 }
3973 MALLOC_UNBLOCK_INPUT;
3974 }
3975
3976 if (! enough_free_memory)
3977 {
3978 int i;
3979
3980 Vmemory_full = Qt;
3981
3982 memory_full_cons_threshold = sizeof (struct cons_block);
3983
3984 /* The first time we get here, free the spare memory. */
3985 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3986 if (spare_memory[i])
3987 {
3988 if (i == 0)
3989 free (spare_memory[i]);
3990 else if (i >= 1 && i <= 4)
3991 lisp_align_free (spare_memory[i]);
3992 else
3993 lisp_free (spare_memory[i]);
3994 spare_memory[i] = 0;
3995 }
3996 }
3997
3998 /* This used to call error, but if we've run out of memory, we could
3999 get infinite recursion trying to build the string. */
4000 xsignal (Qnil, Vmemory_signal_data);
4001 }
4002
4003 /* If we released our reserve (due to running out of memory),
4004 and we have a fair amount free once again,
4005 try to set aside another reserve in case we run out once more.
4006
4007 This is called when a relocatable block is freed in ralloc.c,
4008 and also directly from this file, in case we're not using ralloc.c. */
4009
4010 void
4011 refill_memory_reserve (void)
4012 {
4013 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4014 if (spare_memory[0] == 0)
4015 spare_memory[0] = malloc (SPARE_MEMORY);
4016 if (spare_memory[1] == 0)
4017 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4018 MEM_TYPE_SPARE);
4019 if (spare_memory[2] == 0)
4020 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4021 MEM_TYPE_SPARE);
4022 if (spare_memory[3] == 0)
4023 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4024 MEM_TYPE_SPARE);
4025 if (spare_memory[4] == 0)
4026 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4027 MEM_TYPE_SPARE);
4028 if (spare_memory[5] == 0)
4029 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4030 MEM_TYPE_SPARE);
4031 if (spare_memory[6] == 0)
4032 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4033 MEM_TYPE_SPARE);
4034 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4035 Vmemory_full = Qnil;
4036 #endif
4037 }
4038 \f
4039 /************************************************************************
4040 C Stack Marking
4041 ************************************************************************/
4042
4043 /* Conservative C stack marking requires a method to identify possibly
4044 live Lisp objects given a pointer value. We do this by keeping
4045 track of blocks of Lisp data that are allocated in a red-black tree
4046 (see also the comment of mem_node which is the type of nodes in
4047 that tree). Function lisp_malloc adds information for an allocated
4048 block to the red-black tree with calls to mem_insert, and function
4049 lisp_free removes it with mem_delete. Functions live_string_p etc
4050 call mem_find to lookup information about a given pointer in the
4051 tree, and use that to determine if the pointer points to a Lisp
4052 object or not. */
4053
4054 /* Initialize this part of alloc.c. */
4055
4056 static void
4057 mem_init (void)
4058 {
4059 mem_z.left = mem_z.right = MEM_NIL;
4060 mem_z.parent = NULL;
4061 mem_z.color = MEM_BLACK;
4062 mem_z.start = mem_z.end = NULL;
4063 mem_root = MEM_NIL;
4064 }
4065
4066
4067 /* Value is a pointer to the mem_node containing START. Value is
4068 MEM_NIL if there is no node in the tree containing START. */
4069
4070 static struct mem_node *
4071 mem_find (void *start)
4072 {
4073 struct mem_node *p;
4074
4075 if (start < min_heap_address || start > max_heap_address)
4076 return MEM_NIL;
4077
4078 /* Make the search always successful to speed up the loop below. */
4079 mem_z.start = start;
4080 mem_z.end = (char *) start + 1;
4081
4082 p = mem_root;
4083 while (start < p->start || start >= p->end)
4084 p = start < p->start ? p->left : p->right;
4085 return p;
4086 }
4087
4088
4089 /* Insert a new node into the tree for a block of memory with start
4090 address START, end address END, and type TYPE. Value is a
4091 pointer to the node that was inserted. */
4092
4093 static struct mem_node *
4094 mem_insert (void *start, void *end, enum mem_type type)
4095 {
4096 struct mem_node *c, *parent, *x;
4097
4098 if (min_heap_address == NULL || start < min_heap_address)
4099 min_heap_address = start;
4100 if (max_heap_address == NULL || end > max_heap_address)
4101 max_heap_address = end;
4102
4103 /* See where in the tree a node for START belongs. In this
4104 particular application, it shouldn't happen that a node is already
4105 present. For debugging purposes, let's check that. */
4106 c = mem_root;
4107 parent = NULL;
4108
4109 while (c != MEM_NIL)
4110 {
4111 parent = c;
4112 c = start < c->start ? c->left : c->right;
4113 }
4114
4115 /* Create a new node. */
4116 #ifdef GC_MALLOC_CHECK
4117 x = malloc (sizeof *x);
4118 if (x == NULL)
4119 emacs_abort ();
4120 #else
4121 x = xmalloc (sizeof *x);
4122 #endif
4123 x->start = start;
4124 x->end = end;
4125 x->type = type;
4126 x->parent = parent;
4127 x->left = x->right = MEM_NIL;
4128 x->color = MEM_RED;
4129
4130 /* Insert it as child of PARENT or install it as root. */
4131 if (parent)
4132 {
4133 if (start < parent->start)
4134 parent->left = x;
4135 else
4136 parent->right = x;
4137 }
4138 else
4139 mem_root = x;
4140
4141 /* Re-establish red-black tree properties. */
4142 mem_insert_fixup (x);
4143
4144 return x;
4145 }
4146
4147
4148 /* Re-establish the red-black properties of the tree, and thereby
4149 balance the tree, after node X has been inserted; X is always red. */
4150
4151 static void
4152 mem_insert_fixup (struct mem_node *x)
4153 {
4154 while (x != mem_root && x->parent->color == MEM_RED)
4155 {
4156 /* X is red and its parent is red. This is a violation of
4157 red-black tree property #3. */
4158
4159 if (x->parent == x->parent->parent->left)
4160 {
4161 /* We're on the left side of our grandparent, and Y is our
4162 "uncle". */
4163 struct mem_node *y = x->parent->parent->right;
4164
4165 if (y->color == MEM_RED)
4166 {
4167 /* Uncle and parent are red but should be black because
4168 X is red. Change the colors accordingly and proceed
4169 with the grandparent. */
4170 x->parent->color = MEM_BLACK;
4171 y->color = MEM_BLACK;
4172 x->parent->parent->color = MEM_RED;
4173 x = x->parent->parent;
4174 }
4175 else
4176 {
4177 /* Parent and uncle have different colors; parent is
4178 red, uncle is black. */
4179 if (x == x->parent->right)
4180 {
4181 x = x->parent;
4182 mem_rotate_left (x);
4183 }
4184
4185 x->parent->color = MEM_BLACK;
4186 x->parent->parent->color = MEM_RED;
4187 mem_rotate_right (x->parent->parent);
4188 }
4189 }
4190 else
4191 {
4192 /* This is the symmetrical case of above. */
4193 struct mem_node *y = x->parent->parent->left;
4194
4195 if (y->color == MEM_RED)
4196 {
4197 x->parent->color = MEM_BLACK;
4198 y->color = MEM_BLACK;
4199 x->parent->parent->color = MEM_RED;
4200 x = x->parent->parent;
4201 }
4202 else
4203 {
4204 if (x == x->parent->left)
4205 {
4206 x = x->parent;
4207 mem_rotate_right (x);
4208 }
4209
4210 x->parent->color = MEM_BLACK;
4211 x->parent->parent->color = MEM_RED;
4212 mem_rotate_left (x->parent->parent);
4213 }
4214 }
4215 }
4216
4217 /* The root may have been changed to red due to the algorithm. Set
4218 it to black so that property #5 is satisfied. */
4219 mem_root->color = MEM_BLACK;
4220 }
4221
4222
4223 /* (x) (y)
4224 / \ / \
4225 a (y) ===> (x) c
4226 / \ / \
4227 b c a b */
4228
4229 static void
4230 mem_rotate_left (struct mem_node *x)
4231 {
4232 struct mem_node *y;
4233
4234 /* Turn y's left sub-tree into x's right sub-tree. */
4235 y = x->right;
4236 x->right = y->left;
4237 if (y->left != MEM_NIL)
4238 y->left->parent = x;
4239
4240 /* Y's parent was x's parent. */
4241 if (y != MEM_NIL)
4242 y->parent = x->parent;
4243
4244 /* Get the parent to point to y instead of x. */
4245 if (x->parent)
4246 {
4247 if (x == x->parent->left)
4248 x->parent->left = y;
4249 else
4250 x->parent->right = y;
4251 }
4252 else
4253 mem_root = y;
4254
4255 /* Put x on y's left. */
4256 y->left = x;
4257 if (x != MEM_NIL)
4258 x->parent = y;
4259 }
4260
4261
4262 /* (x) (Y)
4263 / \ / \
4264 (y) c ===> a (x)
4265 / \ / \
4266 a b b c */
4267
4268 static void
4269 mem_rotate_right (struct mem_node *x)
4270 {
4271 struct mem_node *y = x->left;
4272
4273 x->left = y->right;
4274 if (y->right != MEM_NIL)
4275 y->right->parent = x;
4276
4277 if (y != MEM_NIL)
4278 y->parent = x->parent;
4279 if (x->parent)
4280 {
4281 if (x == x->parent->right)
4282 x->parent->right = y;
4283 else
4284 x->parent->left = y;
4285 }
4286 else
4287 mem_root = y;
4288
4289 y->right = x;
4290 if (x != MEM_NIL)
4291 x->parent = y;
4292 }
4293
4294
4295 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4296
4297 static void
4298 mem_delete (struct mem_node *z)
4299 {
4300 struct mem_node *x, *y;
4301
4302 if (!z || z == MEM_NIL)
4303 return;
4304
4305 if (z->left == MEM_NIL || z->right == MEM_NIL)
4306 y = z;
4307 else
4308 {
4309 y = z->right;
4310 while (y->left != MEM_NIL)
4311 y = y->left;
4312 }
4313
4314 if (y->left != MEM_NIL)
4315 x = y->left;
4316 else
4317 x = y->right;
4318
4319 x->parent = y->parent;
4320 if (y->parent)
4321 {
4322 if (y == y->parent->left)
4323 y->parent->left = x;
4324 else
4325 y->parent->right = x;
4326 }
4327 else
4328 mem_root = x;
4329
4330 if (y != z)
4331 {
4332 z->start = y->start;
4333 z->end = y->end;
4334 z->type = y->type;
4335 }
4336
4337 if (y->color == MEM_BLACK)
4338 mem_delete_fixup (x);
4339
4340 #ifdef GC_MALLOC_CHECK
4341 free (y);
4342 #else
4343 xfree (y);
4344 #endif
4345 }
4346
4347
4348 /* Re-establish the red-black properties of the tree, after a
4349 deletion. */
4350
4351 static void
4352 mem_delete_fixup (struct mem_node *x)
4353 {
4354 while (x != mem_root && x->color == MEM_BLACK)
4355 {
4356 if (x == x->parent->left)
4357 {
4358 struct mem_node *w = x->parent->right;
4359
4360 if (w->color == MEM_RED)
4361 {
4362 w->color = MEM_BLACK;
4363 x->parent->color = MEM_RED;
4364 mem_rotate_left (x->parent);
4365 w = x->parent->right;
4366 }
4367
4368 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4369 {
4370 w->color = MEM_RED;
4371 x = x->parent;
4372 }
4373 else
4374 {
4375 if (w->right->color == MEM_BLACK)
4376 {
4377 w->left->color = MEM_BLACK;
4378 w->color = MEM_RED;
4379 mem_rotate_right (w);
4380 w = x->parent->right;
4381 }
4382 w->color = x->parent->color;
4383 x->parent->color = MEM_BLACK;
4384 w->right->color = MEM_BLACK;
4385 mem_rotate_left (x->parent);
4386 x = mem_root;
4387 }
4388 }
4389 else
4390 {
4391 struct mem_node *w = x->parent->left;
4392
4393 if (w->color == MEM_RED)
4394 {
4395 w->color = MEM_BLACK;
4396 x->parent->color = MEM_RED;
4397 mem_rotate_right (x->parent);
4398 w = x->parent->left;
4399 }
4400
4401 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4402 {
4403 w->color = MEM_RED;
4404 x = x->parent;
4405 }
4406 else
4407 {
4408 if (w->left->color == MEM_BLACK)
4409 {
4410 w->right->color = MEM_BLACK;
4411 w->color = MEM_RED;
4412 mem_rotate_left (w);
4413 w = x->parent->left;
4414 }
4415
4416 w->color = x->parent->color;
4417 x->parent->color = MEM_BLACK;
4418 w->left->color = MEM_BLACK;
4419 mem_rotate_right (x->parent);
4420 x = mem_root;
4421 }
4422 }
4423 }
4424
4425 x->color = MEM_BLACK;
4426 }
4427
4428
4429 /* Value is non-zero if P is a pointer to a live Lisp string on
4430 the heap. M is a pointer to the mem_block for P. */
4431
4432 static bool
4433 live_string_p (struct mem_node *m, void *p)
4434 {
4435 if (m->type == MEM_TYPE_STRING)
4436 {
4437 struct string_block *b = m->start;
4438 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4439
4440 /* P must point to the start of a Lisp_String structure, and it
4441 must not be on the free-list. */
4442 return (offset >= 0
4443 && offset % sizeof b->strings[0] == 0
4444 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4445 && ((struct Lisp_String *) p)->data != NULL);
4446 }
4447 else
4448 return 0;
4449 }
4450
4451
4452 /* Value is non-zero if P is a pointer to a live Lisp cons on
4453 the heap. M is a pointer to the mem_block for P. */
4454
4455 static bool
4456 live_cons_p (struct mem_node *m, void *p)
4457 {
4458 if (m->type == MEM_TYPE_CONS)
4459 {
4460 struct cons_block *b = m->start;
4461 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4462
4463 /* P must point to the start of a Lisp_Cons, not be
4464 one of the unused cells in the current cons block,
4465 and not be on the free-list. */
4466 return (offset >= 0
4467 && offset % sizeof b->conses[0] == 0
4468 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4469 && (b != cons_block
4470 || offset / sizeof b->conses[0] < cons_block_index)
4471 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4472 }
4473 else
4474 return 0;
4475 }
4476
4477
4478 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4479 the heap. M is a pointer to the mem_block for P. */
4480
4481 static bool
4482 live_symbol_p (struct mem_node *m, void *p)
4483 {
4484 if (m->type == MEM_TYPE_SYMBOL)
4485 {
4486 struct symbol_block *b = m->start;
4487 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4488
4489 /* P must point to the start of a Lisp_Symbol, not be
4490 one of the unused cells in the current symbol block,
4491 and not be on the free-list. */
4492 return (offset >= 0
4493 && offset % sizeof b->symbols[0] == 0
4494 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4495 && (b != symbol_block
4496 || offset / sizeof b->symbols[0] < symbol_block_index)
4497 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4498 }
4499 else
4500 return 0;
4501 }
4502
4503
4504 /* Value is non-zero if P is a pointer to a live Lisp float on
4505 the heap. M is a pointer to the mem_block for P. */
4506
4507 static bool
4508 live_float_p (struct mem_node *m, void *p)
4509 {
4510 if (m->type == MEM_TYPE_FLOAT)
4511 {
4512 struct float_block *b = m->start;
4513 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4514
4515 /* P must point to the start of a Lisp_Float and not be
4516 one of the unused cells in the current float block. */
4517 return (offset >= 0
4518 && offset % sizeof b->floats[0] == 0
4519 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4520 && (b != float_block
4521 || offset / sizeof b->floats[0] < float_block_index));
4522 }
4523 else
4524 return 0;
4525 }
4526
4527
4528 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4529 the heap. M is a pointer to the mem_block for P. */
4530
4531 static bool
4532 live_misc_p (struct mem_node *m, void *p)
4533 {
4534 if (m->type == MEM_TYPE_MISC)
4535 {
4536 struct marker_block *b = m->start;
4537 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4538
4539 /* P must point to the start of a Lisp_Misc, not be
4540 one of the unused cells in the current misc block,
4541 and not be on the free-list. */
4542 return (offset >= 0
4543 && offset % sizeof b->markers[0] == 0
4544 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4545 && (b != marker_block
4546 || offset / sizeof b->markers[0] < marker_block_index)
4547 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4548 }
4549 else
4550 return 0;
4551 }
4552
4553
4554 /* Value is non-zero if P is a pointer to a live vector-like object.
4555 M is a pointer to the mem_block for P. */
4556
4557 static bool
4558 live_vector_p (struct mem_node *m, void *p)
4559 {
4560 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4561 {
4562 /* This memory node corresponds to a vector block. */
4563 struct vector_block *block = m->start;
4564 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4565
4566 /* P is in the block's allocation range. Scan the block
4567 up to P and see whether P points to the start of some
4568 vector which is not on a free list. FIXME: check whether
4569 some allocation patterns (probably a lot of short vectors)
4570 may cause a substantial overhead of this loop. */
4571 while (VECTOR_IN_BLOCK (vector, block)
4572 && vector <= (struct Lisp_Vector *) p)
4573 {
4574 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4575 return 1;
4576 else
4577 vector = ADVANCE (vector, vector_nbytes (vector));
4578 }
4579 }
4580 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4581 /* This memory node corresponds to a large vector. */
4582 return 1;
4583 return 0;
4584 }
4585
4586
4587 /* Value is non-zero if P is a pointer to a live buffer. M is a
4588 pointer to the mem_block for P. */
4589
4590 static bool
4591 live_buffer_p (struct mem_node *m, void *p)
4592 {
4593 /* P must point to the start of the block, and the buffer
4594 must not have been killed. */
4595 return (m->type == MEM_TYPE_BUFFER
4596 && p == m->start
4597 && !NILP (((struct buffer *) p)->name_));
4598 }
4599
4600 /* Mark OBJ if we can prove it's a Lisp_Object. */
4601
4602 static void
4603 mark_maybe_object (Lisp_Object obj)
4604 {
4605 #if USE_VALGRIND
4606 if (valgrind_p)
4607 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4608 #endif
4609
4610 if (INTEGERP (obj))
4611 return;
4612
4613 void *po = XPNTR (obj);
4614 struct mem_node *m = mem_find (po);
4615
4616 if (m != MEM_NIL)
4617 {
4618 bool mark_p = false;
4619
4620 switch (XTYPE (obj))
4621 {
4622 case Lisp_String:
4623 mark_p = (live_string_p (m, po)
4624 && !STRING_MARKED_P ((struct Lisp_String *) po));
4625 break;
4626
4627 case Lisp_Cons:
4628 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4629 break;
4630
4631 case Lisp_Symbol:
4632 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4633 break;
4634
4635 case Lisp_Float:
4636 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4637 break;
4638
4639 case Lisp_Vectorlike:
4640 /* Note: can't check BUFFERP before we know it's a
4641 buffer because checking that dereferences the pointer
4642 PO which might point anywhere. */
4643 if (live_vector_p (m, po))
4644 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4645 else if (live_buffer_p (m, po))
4646 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4647 break;
4648
4649 case Lisp_Misc:
4650 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4651 break;
4652
4653 default:
4654 break;
4655 }
4656
4657 if (mark_p)
4658 mark_object (obj);
4659 }
4660 }
4661
4662 /* Return true if P can point to Lisp data, and false otherwise.
4663 Symbols are implemented via offsets not pointers, but the offsets
4664 are also multiples of GCALIGNMENT. */
4665
4666 static bool
4667 maybe_lisp_pointer (void *p)
4668 {
4669 return (uintptr_t) p % GCALIGNMENT == 0;
4670 }
4671
4672 #ifndef HAVE_MODULES
4673 enum { HAVE_MODULES = false };
4674 #endif
4675
4676 /* If P points to Lisp data, mark that as live if it isn't already
4677 marked. */
4678
4679 static void
4680 mark_maybe_pointer (void *p)
4681 {
4682 struct mem_node *m;
4683
4684 #if USE_VALGRIND
4685 if (valgrind_p)
4686 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4687 #endif
4688
4689 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4690 {
4691 if (!maybe_lisp_pointer (p))
4692 return;
4693 }
4694 else
4695 {
4696 /* For the wide-int case, also mark emacs_value tagged pointers,
4697 which can be generated by emacs-module.c's value_to_lisp. */
4698 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4699 }
4700
4701 m = mem_find (p);
4702 if (m != MEM_NIL)
4703 {
4704 Lisp_Object obj = Qnil;
4705
4706 switch (m->type)
4707 {
4708 case MEM_TYPE_NON_LISP:
4709 case MEM_TYPE_SPARE:
4710 /* Nothing to do; not a pointer to Lisp memory. */
4711 break;
4712
4713 case MEM_TYPE_BUFFER:
4714 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4715 XSETVECTOR (obj, p);
4716 break;
4717
4718 case MEM_TYPE_CONS:
4719 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4720 XSETCONS (obj, p);
4721 break;
4722
4723 case MEM_TYPE_STRING:
4724 if (live_string_p (m, p)
4725 && !STRING_MARKED_P ((struct Lisp_String *) p))
4726 XSETSTRING (obj, p);
4727 break;
4728
4729 case MEM_TYPE_MISC:
4730 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4731 XSETMISC (obj, p);
4732 break;
4733
4734 case MEM_TYPE_SYMBOL:
4735 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4736 XSETSYMBOL (obj, p);
4737 break;
4738
4739 case MEM_TYPE_FLOAT:
4740 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4741 XSETFLOAT (obj, p);
4742 break;
4743
4744 case MEM_TYPE_VECTORLIKE:
4745 case MEM_TYPE_VECTOR_BLOCK:
4746 if (live_vector_p (m, p))
4747 {
4748 Lisp_Object tem;
4749 XSETVECTOR (tem, p);
4750 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4751 obj = tem;
4752 }
4753 break;
4754
4755 default:
4756 emacs_abort ();
4757 }
4758
4759 if (!NILP (obj))
4760 mark_object (obj);
4761 }
4762 }
4763
4764
4765 /* Alignment of pointer values. Use alignof, as it sometimes returns
4766 a smaller alignment than GCC's __alignof__ and mark_memory might
4767 miss objects if __alignof__ were used. */
4768 #define GC_POINTER_ALIGNMENT alignof (void *)
4769
4770 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4771 or END+OFFSET..START. */
4772
4773 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4774 mark_memory (void *start, void *end)
4775 {
4776 char *pp;
4777
4778 /* Make START the pointer to the start of the memory region,
4779 if it isn't already. */
4780 if (end < start)
4781 {
4782 void *tem = start;
4783 start = end;
4784 end = tem;
4785 }
4786
4787 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4788
4789 /* Mark Lisp data pointed to. This is necessary because, in some
4790 situations, the C compiler optimizes Lisp objects away, so that
4791 only a pointer to them remains. Example:
4792
4793 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4794 ()
4795 {
4796 Lisp_Object obj = build_string ("test");
4797 struct Lisp_String *s = XSTRING (obj);
4798 Fgarbage_collect ();
4799 fprintf (stderr, "test '%s'\n", s->data);
4800 return Qnil;
4801 }
4802
4803 Here, `obj' isn't really used, and the compiler optimizes it
4804 away. The only reference to the life string is through the
4805 pointer `s'. */
4806
4807 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4808 {
4809 mark_maybe_pointer (*(void **) pp);
4810 mark_maybe_object (*(Lisp_Object *) pp);
4811 }
4812 }
4813
4814 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4815
4816 static bool setjmp_tested_p;
4817 static int longjmps_done;
4818
4819 #define SETJMP_WILL_LIKELY_WORK "\
4820 \n\
4821 Emacs garbage collector has been changed to use conservative stack\n\
4822 marking. Emacs has determined that the method it uses to do the\n\
4823 marking will likely work on your system, but this isn't sure.\n\
4824 \n\
4825 If you are a system-programmer, or can get the help of a local wizard\n\
4826 who is, please take a look at the function mark_stack in alloc.c, and\n\
4827 verify that the methods used are appropriate for your system.\n\
4828 \n\
4829 Please mail the result to <emacs-devel@gnu.org>.\n\
4830 "
4831
4832 #define SETJMP_WILL_NOT_WORK "\
4833 \n\
4834 Emacs garbage collector has been changed to use conservative stack\n\
4835 marking. Emacs has determined that the default method it uses to do the\n\
4836 marking will not work on your system. We will need a system-dependent\n\
4837 solution for your system.\n\
4838 \n\
4839 Please take a look at the function mark_stack in alloc.c, and\n\
4840 try to find a way to make it work on your system.\n\
4841 \n\
4842 Note that you may get false negatives, depending on the compiler.\n\
4843 In particular, you need to use -O with GCC for this test.\n\
4844 \n\
4845 Please mail the result to <emacs-devel@gnu.org>.\n\
4846 "
4847
4848
4849 /* Perform a quick check if it looks like setjmp saves registers in a
4850 jmp_buf. Print a message to stderr saying so. When this test
4851 succeeds, this is _not_ a proof that setjmp is sufficient for
4852 conservative stack marking. Only the sources or a disassembly
4853 can prove that. */
4854
4855 static void
4856 test_setjmp (void)
4857 {
4858 char buf[10];
4859 register int x;
4860 sys_jmp_buf jbuf;
4861
4862 /* Arrange for X to be put in a register. */
4863 sprintf (buf, "1");
4864 x = strlen (buf);
4865 x = 2 * x - 1;
4866
4867 sys_setjmp (jbuf);
4868 if (longjmps_done == 1)
4869 {
4870 /* Came here after the longjmp at the end of the function.
4871
4872 If x == 1, the longjmp has restored the register to its
4873 value before the setjmp, and we can hope that setjmp
4874 saves all such registers in the jmp_buf, although that
4875 isn't sure.
4876
4877 For other values of X, either something really strange is
4878 taking place, or the setjmp just didn't save the register. */
4879
4880 if (x == 1)
4881 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4882 else
4883 {
4884 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4885 exit (1);
4886 }
4887 }
4888
4889 ++longjmps_done;
4890 x = 2;
4891 if (longjmps_done == 1)
4892 sys_longjmp (jbuf, 1);
4893 }
4894
4895 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4896
4897
4898 /* Mark live Lisp objects on the C stack.
4899
4900 There are several system-dependent problems to consider when
4901 porting this to new architectures:
4902
4903 Processor Registers
4904
4905 We have to mark Lisp objects in CPU registers that can hold local
4906 variables or are used to pass parameters.
4907
4908 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4909 something that either saves relevant registers on the stack, or
4910 calls mark_maybe_object passing it each register's contents.
4911
4912 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4913 implementation assumes that calling setjmp saves registers we need
4914 to see in a jmp_buf which itself lies on the stack. This doesn't
4915 have to be true! It must be verified for each system, possibly
4916 by taking a look at the source code of setjmp.
4917
4918 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4919 can use it as a machine independent method to store all registers
4920 to the stack. In this case the macros described in the previous
4921 two paragraphs are not used.
4922
4923 Stack Layout
4924
4925 Architectures differ in the way their processor stack is organized.
4926 For example, the stack might look like this
4927
4928 +----------------+
4929 | Lisp_Object | size = 4
4930 +----------------+
4931 | something else | size = 2
4932 +----------------+
4933 | Lisp_Object | size = 4
4934 +----------------+
4935 | ... |
4936
4937 In such a case, not every Lisp_Object will be aligned equally. To
4938 find all Lisp_Object on the stack it won't be sufficient to walk
4939 the stack in steps of 4 bytes. Instead, two passes will be
4940 necessary, one starting at the start of the stack, and a second
4941 pass starting at the start of the stack + 2. Likewise, if the
4942 minimal alignment of Lisp_Objects on the stack is 1, four passes
4943 would be necessary, each one starting with one byte more offset
4944 from the stack start. */
4945
4946 static void
4947 mark_stack (void *end)
4948 {
4949
4950 /* This assumes that the stack is a contiguous region in memory. If
4951 that's not the case, something has to be done here to iterate
4952 over the stack segments. */
4953 mark_memory (stack_base, end);
4954
4955 /* Allow for marking a secondary stack, like the register stack on the
4956 ia64. */
4957 #ifdef GC_MARK_SECONDARY_STACK
4958 GC_MARK_SECONDARY_STACK ();
4959 #endif
4960 }
4961
4962 static bool
4963 c_symbol_p (struct Lisp_Symbol *sym)
4964 {
4965 char *lispsym_ptr = (char *) lispsym;
4966 char *sym_ptr = (char *) sym;
4967 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4968 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4969 }
4970
4971 /* Determine whether it is safe to access memory at address P. */
4972 static int
4973 valid_pointer_p (void *p)
4974 {
4975 #ifdef WINDOWSNT
4976 return w32_valid_pointer_p (p, 16);
4977 #else
4978
4979 if (ADDRESS_SANITIZER)
4980 return p ? -1 : 0;
4981
4982 int fd[2];
4983
4984 /* Obviously, we cannot just access it (we would SEGV trying), so we
4985 trick the o/s to tell us whether p is a valid pointer.
4986 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4987 not validate p in that case. */
4988
4989 if (emacs_pipe (fd) == 0)
4990 {
4991 bool valid = emacs_write (fd[1], p, 16) == 16;
4992 emacs_close (fd[1]);
4993 emacs_close (fd[0]);
4994 return valid;
4995 }
4996
4997 return -1;
4998 #endif
4999 }
5000
5001 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5002 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5003 cannot validate OBJ. This function can be quite slow, so its primary
5004 use is the manual debugging. The only exception is print_object, where
5005 we use it to check whether the memory referenced by the pointer of
5006 Lisp_Save_Value object contains valid objects. */
5007
5008 int
5009 valid_lisp_object_p (Lisp_Object obj)
5010 {
5011 if (INTEGERP (obj))
5012 return 1;
5013
5014 void *p = XPNTR (obj);
5015 if (PURE_P (p))
5016 return 1;
5017
5018 if (SYMBOLP (obj) && c_symbol_p (p))
5019 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5020
5021 if (p == &buffer_defaults || p == &buffer_local_symbols)
5022 return 2;
5023
5024 struct mem_node *m = mem_find (p);
5025
5026 if (m == MEM_NIL)
5027 {
5028 int valid = valid_pointer_p (p);
5029 if (valid <= 0)
5030 return valid;
5031
5032 if (SUBRP (obj))
5033 return 1;
5034
5035 return 0;
5036 }
5037
5038 switch (m->type)
5039 {
5040 case MEM_TYPE_NON_LISP:
5041 case MEM_TYPE_SPARE:
5042 return 0;
5043
5044 case MEM_TYPE_BUFFER:
5045 return live_buffer_p (m, p) ? 1 : 2;
5046
5047 case MEM_TYPE_CONS:
5048 return live_cons_p (m, p);
5049
5050 case MEM_TYPE_STRING:
5051 return live_string_p (m, p);
5052
5053 case MEM_TYPE_MISC:
5054 return live_misc_p (m, p);
5055
5056 case MEM_TYPE_SYMBOL:
5057 return live_symbol_p (m, p);
5058
5059 case MEM_TYPE_FLOAT:
5060 return live_float_p (m, p);
5061
5062 case MEM_TYPE_VECTORLIKE:
5063 case MEM_TYPE_VECTOR_BLOCK:
5064 return live_vector_p (m, p);
5065
5066 default:
5067 break;
5068 }
5069
5070 return 0;
5071 }
5072
5073 /***********************************************************************
5074 Pure Storage Management
5075 ***********************************************************************/
5076
5077 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5078 pointer to it. TYPE is the Lisp type for which the memory is
5079 allocated. TYPE < 0 means it's not used for a Lisp object. */
5080
5081 static void *
5082 pure_alloc (size_t size, int type)
5083 {
5084 void *result;
5085
5086 again:
5087 if (type >= 0)
5088 {
5089 /* Allocate space for a Lisp object from the beginning of the free
5090 space with taking account of alignment. */
5091 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5092 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5093 }
5094 else
5095 {
5096 /* Allocate space for a non-Lisp object from the end of the free
5097 space. */
5098 pure_bytes_used_non_lisp += size;
5099 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5100 }
5101 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5102
5103 if (pure_bytes_used <= pure_size)
5104 return result;
5105
5106 /* Don't allocate a large amount here,
5107 because it might get mmap'd and then its address
5108 might not be usable. */
5109 purebeg = xmalloc (10000);
5110 pure_size = 10000;
5111 pure_bytes_used_before_overflow += pure_bytes_used - size;
5112 pure_bytes_used = 0;
5113 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5114 goto again;
5115 }
5116
5117
5118 /* Print a warning if PURESIZE is too small. */
5119
5120 void
5121 check_pure_size (void)
5122 {
5123 if (pure_bytes_used_before_overflow)
5124 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5125 " bytes needed)"),
5126 pure_bytes_used + pure_bytes_used_before_overflow);
5127 }
5128
5129
5130 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5131 the non-Lisp data pool of the pure storage, and return its start
5132 address. Return NULL if not found. */
5133
5134 static char *
5135 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5136 {
5137 int i;
5138 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5139 const unsigned char *p;
5140 char *non_lisp_beg;
5141
5142 if (pure_bytes_used_non_lisp <= nbytes)
5143 return NULL;
5144
5145 /* Set up the Boyer-Moore table. */
5146 skip = nbytes + 1;
5147 for (i = 0; i < 256; i++)
5148 bm_skip[i] = skip;
5149
5150 p = (const unsigned char *) data;
5151 while (--skip > 0)
5152 bm_skip[*p++] = skip;
5153
5154 last_char_skip = bm_skip['\0'];
5155
5156 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5157 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5158
5159 /* See the comments in the function `boyer_moore' (search.c) for the
5160 use of `infinity'. */
5161 infinity = pure_bytes_used_non_lisp + 1;
5162 bm_skip['\0'] = infinity;
5163
5164 p = (const unsigned char *) non_lisp_beg + nbytes;
5165 start = 0;
5166 do
5167 {
5168 /* Check the last character (== '\0'). */
5169 do
5170 {
5171 start += bm_skip[*(p + start)];
5172 }
5173 while (start <= start_max);
5174
5175 if (start < infinity)
5176 /* Couldn't find the last character. */
5177 return NULL;
5178
5179 /* No less than `infinity' means we could find the last
5180 character at `p[start - infinity]'. */
5181 start -= infinity;
5182
5183 /* Check the remaining characters. */
5184 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5185 /* Found. */
5186 return non_lisp_beg + start;
5187
5188 start += last_char_skip;
5189 }
5190 while (start <= start_max);
5191
5192 return NULL;
5193 }
5194
5195
5196 /* Return a string allocated in pure space. DATA is a buffer holding
5197 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5198 means make the result string multibyte.
5199
5200 Must get an error if pure storage is full, since if it cannot hold
5201 a large string it may be able to hold conses that point to that
5202 string; then the string is not protected from gc. */
5203
5204 Lisp_Object
5205 make_pure_string (const char *data,
5206 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5207 {
5208 Lisp_Object string;
5209 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5210 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5211 if (s->data == NULL)
5212 {
5213 s->data = pure_alloc (nbytes + 1, -1);
5214 memcpy (s->data, data, nbytes);
5215 s->data[nbytes] = '\0';
5216 }
5217 s->size = nchars;
5218 s->size_byte = multibyte ? nbytes : -1;
5219 s->intervals = NULL;
5220 XSETSTRING (string, s);
5221 return string;
5222 }
5223
5224 /* Return a string allocated in pure space. Do not
5225 allocate the string data, just point to DATA. */
5226
5227 Lisp_Object
5228 make_pure_c_string (const char *data, ptrdiff_t nchars)
5229 {
5230 Lisp_Object string;
5231 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5232 s->size = nchars;
5233 s->size_byte = -1;
5234 s->data = (unsigned char *) data;
5235 s->intervals = NULL;
5236 XSETSTRING (string, s);
5237 return string;
5238 }
5239
5240 static Lisp_Object purecopy (Lisp_Object obj);
5241
5242 /* Return a cons allocated from pure space. Give it pure copies
5243 of CAR as car and CDR as cdr. */
5244
5245 Lisp_Object
5246 pure_cons (Lisp_Object car, Lisp_Object cdr)
5247 {
5248 Lisp_Object new;
5249 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5250 XSETCONS (new, p);
5251 XSETCAR (new, purecopy (car));
5252 XSETCDR (new, purecopy (cdr));
5253 return new;
5254 }
5255
5256
5257 /* Value is a float object with value NUM allocated from pure space. */
5258
5259 static Lisp_Object
5260 make_pure_float (double num)
5261 {
5262 Lisp_Object new;
5263 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5264 XSETFLOAT (new, p);
5265 XFLOAT_INIT (new, num);
5266 return new;
5267 }
5268
5269
5270 /* Return a vector with room for LEN Lisp_Objects allocated from
5271 pure space. */
5272
5273 static Lisp_Object
5274 make_pure_vector (ptrdiff_t len)
5275 {
5276 Lisp_Object new;
5277 size_t size = header_size + len * word_size;
5278 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5279 XSETVECTOR (new, p);
5280 XVECTOR (new)->header.size = len;
5281 return new;
5282 }
5283
5284 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5285 doc: /* Make a copy of object OBJ in pure storage.
5286 Recursively copies contents of vectors and cons cells.
5287 Does not copy symbols. Copies strings without text properties. */)
5288 (register Lisp_Object obj)
5289 {
5290 if (NILP (Vpurify_flag))
5291 return obj;
5292 else if (MARKERP (obj) || OVERLAYP (obj)
5293 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5294 /* Can't purify those. */
5295 return obj;
5296 else
5297 return purecopy (obj);
5298 }
5299
5300 static Lisp_Object
5301 purecopy (Lisp_Object obj)
5302 {
5303 if (INTEGERP (obj)
5304 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5305 || SUBRP (obj))
5306 return obj; /* Already pure. */
5307
5308 if (STRINGP (obj) && XSTRING (obj)->intervals)
5309 message_with_string ("Dropping text-properties while making string `%s' pure",
5310 obj, true);
5311
5312 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5313 {
5314 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5315 if (!NILP (tmp))
5316 return tmp;
5317 }
5318
5319 if (CONSP (obj))
5320 obj = pure_cons (XCAR (obj), XCDR (obj));
5321 else if (FLOATP (obj))
5322 obj = make_pure_float (XFLOAT_DATA (obj));
5323 else if (STRINGP (obj))
5324 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5325 SBYTES (obj),
5326 STRING_MULTIBYTE (obj));
5327 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5328 {
5329 struct Lisp_Vector *objp = XVECTOR (obj);
5330 ptrdiff_t nbytes = vector_nbytes (objp);
5331 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5332 register ptrdiff_t i;
5333 ptrdiff_t size = ASIZE (obj);
5334 if (size & PSEUDOVECTOR_FLAG)
5335 size &= PSEUDOVECTOR_SIZE_MASK;
5336 memcpy (vec, objp, nbytes);
5337 for (i = 0; i < size; i++)
5338 vec->contents[i] = purecopy (vec->contents[i]);
5339 XSETVECTOR (obj, vec);
5340 }
5341 else if (SYMBOLP (obj))
5342 {
5343 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5344 { /* We can't purify them, but they appear in many pure objects.
5345 Mark them as `pinned' so we know to mark them at every GC cycle. */
5346 XSYMBOL (obj)->pinned = true;
5347 symbol_block_pinned = symbol_block;
5348 }
5349 /* Don't hash-cons it. */
5350 return obj;
5351 }
5352 else
5353 {
5354 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5355 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5356 }
5357
5358 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5359 Fputhash (obj, obj, Vpurify_flag);
5360
5361 return obj;
5362 }
5363
5364
5365 \f
5366 /***********************************************************************
5367 Protection from GC
5368 ***********************************************************************/
5369
5370 /* Put an entry in staticvec, pointing at the variable with address
5371 VARADDRESS. */
5372
5373 void
5374 staticpro (Lisp_Object *varaddress)
5375 {
5376 if (staticidx >= NSTATICS)
5377 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5378 staticvec[staticidx++] = varaddress;
5379 }
5380
5381 \f
5382 /***********************************************************************
5383 Protection from GC
5384 ***********************************************************************/
5385
5386 /* Temporarily prevent garbage collection. */
5387
5388 ptrdiff_t
5389 inhibit_garbage_collection (void)
5390 {
5391 ptrdiff_t count = SPECPDL_INDEX ();
5392
5393 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5394 return count;
5395 }
5396
5397 /* Used to avoid possible overflows when
5398 converting from C to Lisp integers. */
5399
5400 static Lisp_Object
5401 bounded_number (EMACS_INT number)
5402 {
5403 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5404 }
5405
5406 /* Calculate total bytes of live objects. */
5407
5408 static size_t
5409 total_bytes_of_live_objects (void)
5410 {
5411 size_t tot = 0;
5412 tot += total_conses * sizeof (struct Lisp_Cons);
5413 tot += total_symbols * sizeof (struct Lisp_Symbol);
5414 tot += total_markers * sizeof (union Lisp_Misc);
5415 tot += total_string_bytes;
5416 tot += total_vector_slots * word_size;
5417 tot += total_floats * sizeof (struct Lisp_Float);
5418 tot += total_intervals * sizeof (struct interval);
5419 tot += total_strings * sizeof (struct Lisp_String);
5420 return tot;
5421 }
5422
5423 #ifdef HAVE_WINDOW_SYSTEM
5424
5425 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5426 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5427
5428 static Lisp_Object
5429 compact_font_cache_entry (Lisp_Object entry)
5430 {
5431 Lisp_Object tail, *prev = &entry;
5432
5433 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5434 {
5435 bool drop = 0;
5436 Lisp_Object obj = XCAR (tail);
5437
5438 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5439 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5440 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5441 /* Don't use VECTORP here, as that calls ASIZE, which could
5442 hit assertion violation during GC. */
5443 && (VECTORLIKEP (XCDR (obj))
5444 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5445 {
5446 ptrdiff_t i, size = gc_asize (XCDR (obj));
5447 Lisp_Object obj_cdr = XCDR (obj);
5448
5449 /* If font-spec is not marked, most likely all font-entities
5450 are not marked too. But we must be sure that nothing is
5451 marked within OBJ before we really drop it. */
5452 for (i = 0; i < size; i++)
5453 {
5454 Lisp_Object objlist;
5455
5456 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5457 break;
5458
5459 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5460 for (; CONSP (objlist); objlist = XCDR (objlist))
5461 {
5462 Lisp_Object val = XCAR (objlist);
5463 struct font *font = GC_XFONT_OBJECT (val);
5464
5465 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5466 && VECTOR_MARKED_P(font))
5467 break;
5468 }
5469 if (CONSP (objlist))
5470 {
5471 /* Found a marked font, bail out. */
5472 break;
5473 }
5474 }
5475
5476 if (i == size)
5477 {
5478 /* No marked fonts were found, so this entire font
5479 entity can be dropped. */
5480 drop = 1;
5481 }
5482 }
5483 if (drop)
5484 *prev = XCDR (tail);
5485 else
5486 prev = xcdr_addr (tail);
5487 }
5488 return entry;
5489 }
5490
5491 /* Compact font caches on all terminals and mark
5492 everything which is still here after compaction. */
5493
5494 static void
5495 compact_font_caches (void)
5496 {
5497 struct terminal *t;
5498
5499 for (t = terminal_list; t; t = t->next_terminal)
5500 {
5501 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5502 if (CONSP (cache))
5503 {
5504 Lisp_Object entry;
5505
5506 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5507 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5508 }
5509 mark_object (cache);
5510 }
5511 }
5512
5513 #else /* not HAVE_WINDOW_SYSTEM */
5514
5515 #define compact_font_caches() (void)(0)
5516
5517 #endif /* HAVE_WINDOW_SYSTEM */
5518
5519 /* Remove (MARKER . DATA) entries with unmarked MARKER
5520 from buffer undo LIST and return changed list. */
5521
5522 static Lisp_Object
5523 compact_undo_list (Lisp_Object list)
5524 {
5525 Lisp_Object tail, *prev = &list;
5526
5527 for (tail = list; CONSP (tail); tail = XCDR (tail))
5528 {
5529 if (CONSP (XCAR (tail))
5530 && MARKERP (XCAR (XCAR (tail)))
5531 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5532 *prev = XCDR (tail);
5533 else
5534 prev = xcdr_addr (tail);
5535 }
5536 return list;
5537 }
5538
5539 static void
5540 mark_pinned_symbols (void)
5541 {
5542 struct symbol_block *sblk;
5543 int lim = (symbol_block_pinned == symbol_block
5544 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5545
5546 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5547 {
5548 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5549 for (; sym < end; ++sym)
5550 if (sym->s.pinned)
5551 mark_object (make_lisp_symbol (&sym->s));
5552
5553 lim = SYMBOL_BLOCK_SIZE;
5554 }
5555 }
5556
5557 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5558 separate function so that we could limit mark_stack in searching
5559 the stack frames below this function, thus avoiding the rare cases
5560 where mark_stack finds values that look like live Lisp objects on
5561 portions of stack that couldn't possibly contain such live objects.
5562 For more details of this, see the discussion at
5563 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5564 static Lisp_Object
5565 garbage_collect_1 (void *end)
5566 {
5567 struct buffer *nextb;
5568 char stack_top_variable;
5569 ptrdiff_t i;
5570 bool message_p;
5571 ptrdiff_t count = SPECPDL_INDEX ();
5572 struct timespec start;
5573 Lisp_Object retval = Qnil;
5574 size_t tot_before = 0;
5575
5576 if (abort_on_gc)
5577 emacs_abort ();
5578
5579 /* Can't GC if pure storage overflowed because we can't determine
5580 if something is a pure object or not. */
5581 if (pure_bytes_used_before_overflow)
5582 return Qnil;
5583
5584 /* Record this function, so it appears on the profiler's backtraces. */
5585 record_in_backtrace (Qautomatic_gc, 0, 0);
5586
5587 check_cons_list ();
5588
5589 /* Don't keep undo information around forever.
5590 Do this early on, so it is no problem if the user quits. */
5591 FOR_EACH_BUFFER (nextb)
5592 compact_buffer (nextb);
5593
5594 if (profiler_memory_running)
5595 tot_before = total_bytes_of_live_objects ();
5596
5597 start = current_timespec ();
5598
5599 /* In case user calls debug_print during GC,
5600 don't let that cause a recursive GC. */
5601 consing_since_gc = 0;
5602
5603 /* Save what's currently displayed in the echo area. Don't do that
5604 if we are GC'ing because we've run out of memory, since
5605 push_message will cons, and we might have no memory for that. */
5606 if (NILP (Vmemory_full))
5607 {
5608 message_p = push_message ();
5609 record_unwind_protect_void (pop_message_unwind);
5610 }
5611 else
5612 message_p = false;
5613
5614 /* Save a copy of the contents of the stack, for debugging. */
5615 #if MAX_SAVE_STACK > 0
5616 if (NILP (Vpurify_flag))
5617 {
5618 char *stack;
5619 ptrdiff_t stack_size;
5620 if (&stack_top_variable < stack_bottom)
5621 {
5622 stack = &stack_top_variable;
5623 stack_size = stack_bottom - &stack_top_variable;
5624 }
5625 else
5626 {
5627 stack = stack_bottom;
5628 stack_size = &stack_top_variable - stack_bottom;
5629 }
5630 if (stack_size <= MAX_SAVE_STACK)
5631 {
5632 if (stack_copy_size < stack_size)
5633 {
5634 stack_copy = xrealloc (stack_copy, stack_size);
5635 stack_copy_size = stack_size;
5636 }
5637 no_sanitize_memcpy (stack_copy, stack, stack_size);
5638 }
5639 }
5640 #endif /* MAX_SAVE_STACK > 0 */
5641
5642 if (garbage_collection_messages)
5643 message1_nolog ("Garbage collecting...");
5644
5645 block_input ();
5646
5647 shrink_regexp_cache ();
5648
5649 gc_in_progress = 1;
5650
5651 /* Mark all the special slots that serve as the roots of accessibility. */
5652
5653 mark_buffer (&buffer_defaults);
5654 mark_buffer (&buffer_local_symbols);
5655
5656 for (i = 0; i < ARRAYELTS (lispsym); i++)
5657 mark_object (builtin_lisp_symbol (i));
5658
5659 for (i = 0; i < staticidx; i++)
5660 mark_object (*staticvec[i]);
5661
5662 mark_pinned_symbols ();
5663 mark_specpdl ();
5664 mark_terminals ();
5665 mark_kboards ();
5666
5667 #ifdef USE_GTK
5668 xg_mark_data ();
5669 #endif
5670
5671 mark_stack (end);
5672
5673 {
5674 struct handler *handler;
5675 for (handler = handlerlist; handler; handler = handler->next)
5676 {
5677 mark_object (handler->tag_or_ch);
5678 mark_object (handler->val);
5679 }
5680 }
5681 #ifdef HAVE_WINDOW_SYSTEM
5682 mark_fringe_data ();
5683 #endif
5684
5685 /* Everything is now marked, except for the data in font caches,
5686 undo lists, and finalizers. The first two are compacted by
5687 removing an items which aren't reachable otherwise. */
5688
5689 compact_font_caches ();
5690
5691 FOR_EACH_BUFFER (nextb)
5692 {
5693 if (!EQ (BVAR (nextb, undo_list), Qt))
5694 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5695 /* Now that we have stripped the elements that need not be
5696 in the undo_list any more, we can finally mark the list. */
5697 mark_object (BVAR (nextb, undo_list));
5698 }
5699
5700 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5701 to doomed_finalizers so we can run their associated functions
5702 after GC. It's important to scan finalizers at this stage so
5703 that we can be sure that unmarked finalizers are really
5704 unreachable except for references from their associated functions
5705 and from other finalizers. */
5706
5707 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5708 mark_finalizer_list (&doomed_finalizers);
5709
5710 gc_sweep ();
5711
5712 relocate_byte_stack ();
5713
5714 /* Clear the mark bits that we set in certain root slots. */
5715 VECTOR_UNMARK (&buffer_defaults);
5716 VECTOR_UNMARK (&buffer_local_symbols);
5717
5718 check_cons_list ();
5719
5720 gc_in_progress = 0;
5721
5722 unblock_input ();
5723
5724 consing_since_gc = 0;
5725 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5726 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5727
5728 gc_relative_threshold = 0;
5729 if (FLOATP (Vgc_cons_percentage))
5730 { /* Set gc_cons_combined_threshold. */
5731 double tot = total_bytes_of_live_objects ();
5732
5733 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5734 if (0 < tot)
5735 {
5736 if (tot < TYPE_MAXIMUM (EMACS_INT))
5737 gc_relative_threshold = tot;
5738 else
5739 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5740 }
5741 }
5742
5743 if (garbage_collection_messages && NILP (Vmemory_full))
5744 {
5745 if (message_p || minibuf_level > 0)
5746 restore_message ();
5747 else
5748 message1_nolog ("Garbage collecting...done");
5749 }
5750
5751 unbind_to (count, Qnil);
5752
5753 Lisp_Object total[] = {
5754 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5755 bounded_number (total_conses),
5756 bounded_number (total_free_conses)),
5757 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5758 bounded_number (total_symbols),
5759 bounded_number (total_free_symbols)),
5760 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5761 bounded_number (total_markers),
5762 bounded_number (total_free_markers)),
5763 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5764 bounded_number (total_strings),
5765 bounded_number (total_free_strings)),
5766 list3 (Qstring_bytes, make_number (1),
5767 bounded_number (total_string_bytes)),
5768 list3 (Qvectors,
5769 make_number (header_size + sizeof (Lisp_Object)),
5770 bounded_number (total_vectors)),
5771 list4 (Qvector_slots, make_number (word_size),
5772 bounded_number (total_vector_slots),
5773 bounded_number (total_free_vector_slots)),
5774 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5775 bounded_number (total_floats),
5776 bounded_number (total_free_floats)),
5777 list4 (Qintervals, make_number (sizeof (struct interval)),
5778 bounded_number (total_intervals),
5779 bounded_number (total_free_intervals)),
5780 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5781 bounded_number (total_buffers)),
5782
5783 #ifdef DOUG_LEA_MALLOC
5784 list4 (Qheap, make_number (1024),
5785 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5786 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5787 #endif
5788 };
5789 retval = CALLMANY (Flist, total);
5790
5791 /* GC is complete: now we can run our finalizer callbacks. */
5792 run_finalizers (&doomed_finalizers);
5793
5794 if (!NILP (Vpost_gc_hook))
5795 {
5796 ptrdiff_t gc_count = inhibit_garbage_collection ();
5797 safe_run_hooks (Qpost_gc_hook);
5798 unbind_to (gc_count, Qnil);
5799 }
5800
5801 /* Accumulate statistics. */
5802 if (FLOATP (Vgc_elapsed))
5803 {
5804 struct timespec since_start = timespec_sub (current_timespec (), start);
5805 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5806 + timespectod (since_start));
5807 }
5808
5809 gcs_done++;
5810
5811 /* Collect profiling data. */
5812 if (profiler_memory_running)
5813 {
5814 size_t swept = 0;
5815 size_t tot_after = total_bytes_of_live_objects ();
5816 if (tot_before > tot_after)
5817 swept = tot_before - tot_after;
5818 malloc_probe (swept);
5819 }
5820
5821 return retval;
5822 }
5823
5824 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5825 doc: /* Reclaim storage for Lisp objects no longer needed.
5826 Garbage collection happens automatically if you cons more than
5827 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5828 `garbage-collect' normally returns a list with info on amount of space in use,
5829 where each entry has the form (NAME SIZE USED FREE), where:
5830 - NAME is a symbol describing the kind of objects this entry represents,
5831 - SIZE is the number of bytes used by each one,
5832 - USED is the number of those objects that were found live in the heap,
5833 - FREE is the number of those objects that are not live but that Emacs
5834 keeps around for future allocations (maybe because it does not know how
5835 to return them to the OS).
5836 However, if there was overflow in pure space, `garbage-collect'
5837 returns nil, because real GC can't be done.
5838 See Info node `(elisp)Garbage Collection'. */)
5839 (void)
5840 {
5841 void *end;
5842
5843 #ifdef HAVE___BUILTIN_UNWIND_INIT
5844 /* Force callee-saved registers and register windows onto the stack.
5845 This is the preferred method if available, obviating the need for
5846 machine dependent methods. */
5847 __builtin_unwind_init ();
5848 end = &end;
5849 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5850 #ifndef GC_SAVE_REGISTERS_ON_STACK
5851 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5852 union aligned_jmpbuf {
5853 Lisp_Object o;
5854 sys_jmp_buf j;
5855 } j;
5856 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5857 #endif
5858 /* This trick flushes the register windows so that all the state of
5859 the process is contained in the stack. */
5860 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5861 needed on ia64 too. See mach_dep.c, where it also says inline
5862 assembler doesn't work with relevant proprietary compilers. */
5863 #ifdef __sparc__
5864 #if defined (__sparc64__) && defined (__FreeBSD__)
5865 /* FreeBSD does not have a ta 3 handler. */
5866 asm ("flushw");
5867 #else
5868 asm ("ta 3");
5869 #endif
5870 #endif
5871
5872 /* Save registers that we need to see on the stack. We need to see
5873 registers used to hold register variables and registers used to
5874 pass parameters. */
5875 #ifdef GC_SAVE_REGISTERS_ON_STACK
5876 GC_SAVE_REGISTERS_ON_STACK (end);
5877 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5878
5879 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5880 setjmp will definitely work, test it
5881 and print a message with the result
5882 of the test. */
5883 if (!setjmp_tested_p)
5884 {
5885 setjmp_tested_p = 1;
5886 test_setjmp ();
5887 }
5888 #endif /* GC_SETJMP_WORKS */
5889
5890 sys_setjmp (j.j);
5891 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5892 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5893 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5894 return garbage_collect_1 (end);
5895 }
5896
5897 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5898 only interesting objects referenced from glyphs are strings. */
5899
5900 static void
5901 mark_glyph_matrix (struct glyph_matrix *matrix)
5902 {
5903 struct glyph_row *row = matrix->rows;
5904 struct glyph_row *end = row + matrix->nrows;
5905
5906 for (; row < end; ++row)
5907 if (row->enabled_p)
5908 {
5909 int area;
5910 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5911 {
5912 struct glyph *glyph = row->glyphs[area];
5913 struct glyph *end_glyph = glyph + row->used[area];
5914
5915 for (; glyph < end_glyph; ++glyph)
5916 if (STRINGP (glyph->object)
5917 && !STRING_MARKED_P (XSTRING (glyph->object)))
5918 mark_object (glyph->object);
5919 }
5920 }
5921 }
5922
5923 /* Mark reference to a Lisp_Object.
5924 If the object referred to has not been seen yet, recursively mark
5925 all the references contained in it. */
5926
5927 #define LAST_MARKED_SIZE 500
5928 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5929 static int last_marked_index;
5930
5931 /* For debugging--call abort when we cdr down this many
5932 links of a list, in mark_object. In debugging,
5933 the call to abort will hit a breakpoint.
5934 Normally this is zero and the check never goes off. */
5935 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5936
5937 static void
5938 mark_vectorlike (struct Lisp_Vector *ptr)
5939 {
5940 ptrdiff_t size = ptr->header.size;
5941 ptrdiff_t i;
5942
5943 eassert (!VECTOR_MARKED_P (ptr));
5944 VECTOR_MARK (ptr); /* Else mark it. */
5945 if (size & PSEUDOVECTOR_FLAG)
5946 size &= PSEUDOVECTOR_SIZE_MASK;
5947
5948 /* Note that this size is not the memory-footprint size, but only
5949 the number of Lisp_Object fields that we should trace.
5950 The distinction is used e.g. by Lisp_Process which places extra
5951 non-Lisp_Object fields at the end of the structure... */
5952 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5953 mark_object (ptr->contents[i]);
5954 }
5955
5956 /* Like mark_vectorlike but optimized for char-tables (and
5957 sub-char-tables) assuming that the contents are mostly integers or
5958 symbols. */
5959
5960 static void
5961 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5962 {
5963 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5964 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5965 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5966
5967 eassert (!VECTOR_MARKED_P (ptr));
5968 VECTOR_MARK (ptr);
5969 for (i = idx; i < size; i++)
5970 {
5971 Lisp_Object val = ptr->contents[i];
5972
5973 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5974 continue;
5975 if (SUB_CHAR_TABLE_P (val))
5976 {
5977 if (! VECTOR_MARKED_P (XVECTOR (val)))
5978 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5979 }
5980 else
5981 mark_object (val);
5982 }
5983 }
5984
5985 NO_INLINE /* To reduce stack depth in mark_object. */
5986 static Lisp_Object
5987 mark_compiled (struct Lisp_Vector *ptr)
5988 {
5989 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5990
5991 VECTOR_MARK (ptr);
5992 for (i = 0; i < size; i++)
5993 if (i != COMPILED_CONSTANTS)
5994 mark_object (ptr->contents[i]);
5995 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5996 }
5997
5998 /* Mark the chain of overlays starting at PTR. */
5999
6000 static void
6001 mark_overlay (struct Lisp_Overlay *ptr)
6002 {
6003 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6004 {
6005 ptr->gcmarkbit = 1;
6006 /* These two are always markers and can be marked fast. */
6007 XMARKER (ptr->start)->gcmarkbit = 1;
6008 XMARKER (ptr->end)->gcmarkbit = 1;
6009 mark_object (ptr->plist);
6010 }
6011 }
6012
6013 /* Mark Lisp_Objects and special pointers in BUFFER. */
6014
6015 static void
6016 mark_buffer (struct buffer *buffer)
6017 {
6018 /* This is handled much like other pseudovectors... */
6019 mark_vectorlike ((struct Lisp_Vector *) buffer);
6020
6021 /* ...but there are some buffer-specific things. */
6022
6023 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6024
6025 /* For now, we just don't mark the undo_list. It's done later in
6026 a special way just before the sweep phase, and after stripping
6027 some of its elements that are not needed any more. */
6028
6029 mark_overlay (buffer->overlays_before);
6030 mark_overlay (buffer->overlays_after);
6031
6032 /* If this is an indirect buffer, mark its base buffer. */
6033 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6034 mark_buffer (buffer->base_buffer);
6035 }
6036
6037 /* Mark Lisp faces in the face cache C. */
6038
6039 NO_INLINE /* To reduce stack depth in mark_object. */
6040 static void
6041 mark_face_cache (struct face_cache *c)
6042 {
6043 if (c)
6044 {
6045 int i, j;
6046 for (i = 0; i < c->used; ++i)
6047 {
6048 struct face *face = FACE_FROM_ID (c->f, i);
6049
6050 if (face)
6051 {
6052 if (face->font && !VECTOR_MARKED_P (face->font))
6053 mark_vectorlike ((struct Lisp_Vector *) face->font);
6054
6055 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6056 mark_object (face->lface[j]);
6057 }
6058 }
6059 }
6060 }
6061
6062 NO_INLINE /* To reduce stack depth in mark_object. */
6063 static void
6064 mark_localized_symbol (struct Lisp_Symbol *ptr)
6065 {
6066 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6067 Lisp_Object where = blv->where;
6068 /* If the value is set up for a killed buffer or deleted
6069 frame, restore its global binding. If the value is
6070 forwarded to a C variable, either it's not a Lisp_Object
6071 var, or it's staticpro'd already. */
6072 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6073 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6074 swap_in_global_binding (ptr);
6075 mark_object (blv->where);
6076 mark_object (blv->valcell);
6077 mark_object (blv->defcell);
6078 }
6079
6080 NO_INLINE /* To reduce stack depth in mark_object. */
6081 static void
6082 mark_save_value (struct Lisp_Save_Value *ptr)
6083 {
6084 /* If `save_type' is zero, `data[0].pointer' is the address
6085 of a memory area containing `data[1].integer' potential
6086 Lisp_Objects. */
6087 if (ptr->save_type == SAVE_TYPE_MEMORY)
6088 {
6089 Lisp_Object *p = ptr->data[0].pointer;
6090 ptrdiff_t nelt;
6091 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6092 mark_maybe_object (*p);
6093 }
6094 else
6095 {
6096 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6097 int i;
6098 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6099 if (save_type (ptr, i) == SAVE_OBJECT)
6100 mark_object (ptr->data[i].object);
6101 }
6102 }
6103
6104 /* Remove killed buffers or items whose car is a killed buffer from
6105 LIST, and mark other items. Return changed LIST, which is marked. */
6106
6107 static Lisp_Object
6108 mark_discard_killed_buffers (Lisp_Object list)
6109 {
6110 Lisp_Object tail, *prev = &list;
6111
6112 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6113 tail = XCDR (tail))
6114 {
6115 Lisp_Object tem = XCAR (tail);
6116 if (CONSP (tem))
6117 tem = XCAR (tem);
6118 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6119 *prev = XCDR (tail);
6120 else
6121 {
6122 CONS_MARK (XCONS (tail));
6123 mark_object (XCAR (tail));
6124 prev = xcdr_addr (tail);
6125 }
6126 }
6127 mark_object (tail);
6128 return list;
6129 }
6130
6131 /* Determine type of generic Lisp_Object and mark it accordingly.
6132
6133 This function implements a straightforward depth-first marking
6134 algorithm and so the recursion depth may be very high (a few
6135 tens of thousands is not uncommon). To minimize stack usage,
6136 a few cold paths are moved out to NO_INLINE functions above.
6137 In general, inlining them doesn't help you to gain more speed. */
6138
6139 void
6140 mark_object (Lisp_Object arg)
6141 {
6142 register Lisp_Object obj;
6143 void *po;
6144 #ifdef GC_CHECK_MARKED_OBJECTS
6145 struct mem_node *m;
6146 #endif
6147 ptrdiff_t cdr_count = 0;
6148
6149 obj = arg;
6150 loop:
6151
6152 po = XPNTR (obj);
6153 if (PURE_P (po))
6154 return;
6155
6156 last_marked[last_marked_index++] = obj;
6157 if (last_marked_index == LAST_MARKED_SIZE)
6158 last_marked_index = 0;
6159
6160 /* Perform some sanity checks on the objects marked here. Abort if
6161 we encounter an object we know is bogus. This increases GC time
6162 by ~80%. */
6163 #ifdef GC_CHECK_MARKED_OBJECTS
6164
6165 /* Check that the object pointed to by PO is known to be a Lisp
6166 structure allocated from the heap. */
6167 #define CHECK_ALLOCATED() \
6168 do { \
6169 m = mem_find (po); \
6170 if (m == MEM_NIL) \
6171 emacs_abort (); \
6172 } while (0)
6173
6174 /* Check that the object pointed to by PO is live, using predicate
6175 function LIVEP. */
6176 #define CHECK_LIVE(LIVEP) \
6177 do { \
6178 if (!LIVEP (m, po)) \
6179 emacs_abort (); \
6180 } while (0)
6181
6182 /* Check both of the above conditions, for non-symbols. */
6183 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6184 do { \
6185 CHECK_ALLOCATED (); \
6186 CHECK_LIVE (LIVEP); \
6187 } while (0) \
6188
6189 /* Check both of the above conditions, for symbols. */
6190 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6191 do { \
6192 if (!c_symbol_p (ptr)) \
6193 { \
6194 CHECK_ALLOCATED (); \
6195 CHECK_LIVE (live_symbol_p); \
6196 } \
6197 } while (0) \
6198
6199 #else /* not GC_CHECK_MARKED_OBJECTS */
6200
6201 #define CHECK_LIVE(LIVEP) ((void) 0)
6202 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6203 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6204
6205 #endif /* not GC_CHECK_MARKED_OBJECTS */
6206
6207 switch (XTYPE (obj))
6208 {
6209 case Lisp_String:
6210 {
6211 register struct Lisp_String *ptr = XSTRING (obj);
6212 if (STRING_MARKED_P (ptr))
6213 break;
6214 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6215 MARK_STRING (ptr);
6216 MARK_INTERVAL_TREE (ptr->intervals);
6217 #ifdef GC_CHECK_STRING_BYTES
6218 /* Check that the string size recorded in the string is the
6219 same as the one recorded in the sdata structure. */
6220 string_bytes (ptr);
6221 #endif /* GC_CHECK_STRING_BYTES */
6222 }
6223 break;
6224
6225 case Lisp_Vectorlike:
6226 {
6227 register struct Lisp_Vector *ptr = XVECTOR (obj);
6228 register ptrdiff_t pvectype;
6229
6230 if (VECTOR_MARKED_P (ptr))
6231 break;
6232
6233 #ifdef GC_CHECK_MARKED_OBJECTS
6234 m = mem_find (po);
6235 if (m == MEM_NIL && !SUBRP (obj))
6236 emacs_abort ();
6237 #endif /* GC_CHECK_MARKED_OBJECTS */
6238
6239 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6240 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6241 >> PSEUDOVECTOR_AREA_BITS);
6242 else
6243 pvectype = PVEC_NORMAL_VECTOR;
6244
6245 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6246 CHECK_LIVE (live_vector_p);
6247
6248 switch (pvectype)
6249 {
6250 case PVEC_BUFFER:
6251 #ifdef GC_CHECK_MARKED_OBJECTS
6252 {
6253 struct buffer *b;
6254 FOR_EACH_BUFFER (b)
6255 if (b == po)
6256 break;
6257 if (b == NULL)
6258 emacs_abort ();
6259 }
6260 #endif /* GC_CHECK_MARKED_OBJECTS */
6261 mark_buffer ((struct buffer *) ptr);
6262 break;
6263
6264 case PVEC_COMPILED:
6265 /* Although we could treat this just like a vector, mark_compiled
6266 returns the COMPILED_CONSTANTS element, which is marked at the
6267 next iteration of goto-loop here. This is done to avoid a few
6268 recursive calls to mark_object. */
6269 obj = mark_compiled (ptr);
6270 if (!NILP (obj))
6271 goto loop;
6272 break;
6273
6274 case PVEC_FRAME:
6275 {
6276 struct frame *f = (struct frame *) ptr;
6277
6278 mark_vectorlike (ptr);
6279 mark_face_cache (f->face_cache);
6280 #ifdef HAVE_WINDOW_SYSTEM
6281 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6282 {
6283 struct font *font = FRAME_FONT (f);
6284
6285 if (font && !VECTOR_MARKED_P (font))
6286 mark_vectorlike ((struct Lisp_Vector *) font);
6287 }
6288 #endif
6289 }
6290 break;
6291
6292 case PVEC_WINDOW:
6293 {
6294 struct window *w = (struct window *) ptr;
6295
6296 mark_vectorlike (ptr);
6297
6298 /* Mark glyph matrices, if any. Marking window
6299 matrices is sufficient because frame matrices
6300 use the same glyph memory. */
6301 if (w->current_matrix)
6302 {
6303 mark_glyph_matrix (w->current_matrix);
6304 mark_glyph_matrix (w->desired_matrix);
6305 }
6306
6307 /* Filter out killed buffers from both buffer lists
6308 in attempt to help GC to reclaim killed buffers faster.
6309 We can do it elsewhere for live windows, but this is the
6310 best place to do it for dead windows. */
6311 wset_prev_buffers
6312 (w, mark_discard_killed_buffers (w->prev_buffers));
6313 wset_next_buffers
6314 (w, mark_discard_killed_buffers (w->next_buffers));
6315 }
6316 break;
6317
6318 case PVEC_HASH_TABLE:
6319 {
6320 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6321
6322 mark_vectorlike (ptr);
6323 mark_object (h->test.name);
6324 mark_object (h->test.user_hash_function);
6325 mark_object (h->test.user_cmp_function);
6326 /* If hash table is not weak, mark all keys and values.
6327 For weak tables, mark only the vector. */
6328 if (NILP (h->weak))
6329 mark_object (h->key_and_value);
6330 else
6331 VECTOR_MARK (XVECTOR (h->key_and_value));
6332 }
6333 break;
6334
6335 case PVEC_CHAR_TABLE:
6336 case PVEC_SUB_CHAR_TABLE:
6337 mark_char_table (ptr, (enum pvec_type) pvectype);
6338 break;
6339
6340 case PVEC_BOOL_VECTOR:
6341 /* No Lisp_Objects to mark in a bool vector. */
6342 VECTOR_MARK (ptr);
6343 break;
6344
6345 case PVEC_SUBR:
6346 break;
6347
6348 case PVEC_FREE:
6349 emacs_abort ();
6350
6351 default:
6352 mark_vectorlike (ptr);
6353 }
6354 }
6355 break;
6356
6357 case Lisp_Symbol:
6358 {
6359 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6360 nextsym:
6361 if (ptr->gcmarkbit)
6362 break;
6363 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6364 ptr->gcmarkbit = 1;
6365 /* Attempt to catch bogus objects. */
6366 eassert (valid_lisp_object_p (ptr->function));
6367 mark_object (ptr->function);
6368 mark_object (ptr->plist);
6369 switch (ptr->redirect)
6370 {
6371 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6372 case SYMBOL_VARALIAS:
6373 {
6374 Lisp_Object tem;
6375 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6376 mark_object (tem);
6377 break;
6378 }
6379 case SYMBOL_LOCALIZED:
6380 mark_localized_symbol (ptr);
6381 break;
6382 case SYMBOL_FORWARDED:
6383 /* If the value is forwarded to a buffer or keyboard field,
6384 these are marked when we see the corresponding object.
6385 And if it's forwarded to a C variable, either it's not
6386 a Lisp_Object var, or it's staticpro'd already. */
6387 break;
6388 default: emacs_abort ();
6389 }
6390 if (!PURE_P (XSTRING (ptr->name)))
6391 MARK_STRING (XSTRING (ptr->name));
6392 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6393 /* Inner loop to mark next symbol in this bucket, if any. */
6394 po = ptr = ptr->next;
6395 if (ptr)
6396 goto nextsym;
6397 }
6398 break;
6399
6400 case Lisp_Misc:
6401 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6402
6403 if (XMISCANY (obj)->gcmarkbit)
6404 break;
6405
6406 switch (XMISCTYPE (obj))
6407 {
6408 case Lisp_Misc_Marker:
6409 /* DO NOT mark thru the marker's chain.
6410 The buffer's markers chain does not preserve markers from gc;
6411 instead, markers are removed from the chain when freed by gc. */
6412 XMISCANY (obj)->gcmarkbit = 1;
6413 break;
6414
6415 case Lisp_Misc_Save_Value:
6416 XMISCANY (obj)->gcmarkbit = 1;
6417 mark_save_value (XSAVE_VALUE (obj));
6418 break;
6419
6420 case Lisp_Misc_Overlay:
6421 mark_overlay (XOVERLAY (obj));
6422 break;
6423
6424 case Lisp_Misc_Finalizer:
6425 XMISCANY (obj)->gcmarkbit = true;
6426 mark_object (XFINALIZER (obj)->function);
6427 break;
6428
6429 #ifdef HAVE_MODULES
6430 case Lisp_Misc_User_Ptr:
6431 XMISCANY (obj)->gcmarkbit = true;
6432 break;
6433 #endif
6434
6435 default:
6436 emacs_abort ();
6437 }
6438 break;
6439
6440 case Lisp_Cons:
6441 {
6442 register struct Lisp_Cons *ptr = XCONS (obj);
6443 if (CONS_MARKED_P (ptr))
6444 break;
6445 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6446 CONS_MARK (ptr);
6447 /* If the cdr is nil, avoid recursion for the car. */
6448 if (EQ (ptr->u.cdr, Qnil))
6449 {
6450 obj = ptr->car;
6451 cdr_count = 0;
6452 goto loop;
6453 }
6454 mark_object (ptr->car);
6455 obj = ptr->u.cdr;
6456 cdr_count++;
6457 if (cdr_count == mark_object_loop_halt)
6458 emacs_abort ();
6459 goto loop;
6460 }
6461
6462 case Lisp_Float:
6463 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6464 FLOAT_MARK (XFLOAT (obj));
6465 break;
6466
6467 case_Lisp_Int:
6468 break;
6469
6470 default:
6471 emacs_abort ();
6472 }
6473
6474 #undef CHECK_LIVE
6475 #undef CHECK_ALLOCATED
6476 #undef CHECK_ALLOCATED_AND_LIVE
6477 }
6478 /* Mark the Lisp pointers in the terminal objects.
6479 Called by Fgarbage_collect. */
6480
6481 static void
6482 mark_terminals (void)
6483 {
6484 struct terminal *t;
6485 for (t = terminal_list; t; t = t->next_terminal)
6486 {
6487 eassert (t->name != NULL);
6488 #ifdef HAVE_WINDOW_SYSTEM
6489 /* If a terminal object is reachable from a stacpro'ed object,
6490 it might have been marked already. Make sure the image cache
6491 gets marked. */
6492 mark_image_cache (t->image_cache);
6493 #endif /* HAVE_WINDOW_SYSTEM */
6494 if (!VECTOR_MARKED_P (t))
6495 mark_vectorlike ((struct Lisp_Vector *)t);
6496 }
6497 }
6498
6499
6500
6501 /* Value is non-zero if OBJ will survive the current GC because it's
6502 either marked or does not need to be marked to survive. */
6503
6504 bool
6505 survives_gc_p (Lisp_Object obj)
6506 {
6507 bool survives_p;
6508
6509 switch (XTYPE (obj))
6510 {
6511 case_Lisp_Int:
6512 survives_p = 1;
6513 break;
6514
6515 case Lisp_Symbol:
6516 survives_p = XSYMBOL (obj)->gcmarkbit;
6517 break;
6518
6519 case Lisp_Misc:
6520 survives_p = XMISCANY (obj)->gcmarkbit;
6521 break;
6522
6523 case Lisp_String:
6524 survives_p = STRING_MARKED_P (XSTRING (obj));
6525 break;
6526
6527 case Lisp_Vectorlike:
6528 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6529 break;
6530
6531 case Lisp_Cons:
6532 survives_p = CONS_MARKED_P (XCONS (obj));
6533 break;
6534
6535 case Lisp_Float:
6536 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6537 break;
6538
6539 default:
6540 emacs_abort ();
6541 }
6542
6543 return survives_p || PURE_P (XPNTR (obj));
6544 }
6545
6546
6547 \f
6548
6549 NO_INLINE /* For better stack traces */
6550 static void
6551 sweep_conses (void)
6552 {
6553 struct cons_block *cblk;
6554 struct cons_block **cprev = &cons_block;
6555 int lim = cons_block_index;
6556 EMACS_INT num_free = 0, num_used = 0;
6557
6558 cons_free_list = 0;
6559
6560 for (cblk = cons_block; cblk; cblk = *cprev)
6561 {
6562 int i = 0;
6563 int this_free = 0;
6564 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6565
6566 /* Scan the mark bits an int at a time. */
6567 for (i = 0; i < ilim; i++)
6568 {
6569 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6570 {
6571 /* Fast path - all cons cells for this int are marked. */
6572 cblk->gcmarkbits[i] = 0;
6573 num_used += BITS_PER_BITS_WORD;
6574 }
6575 else
6576 {
6577 /* Some cons cells for this int are not marked.
6578 Find which ones, and free them. */
6579 int start, pos, stop;
6580
6581 start = i * BITS_PER_BITS_WORD;
6582 stop = lim - start;
6583 if (stop > BITS_PER_BITS_WORD)
6584 stop = BITS_PER_BITS_WORD;
6585 stop += start;
6586
6587 for (pos = start; pos < stop; pos++)
6588 {
6589 if (!CONS_MARKED_P (&cblk->conses[pos]))
6590 {
6591 this_free++;
6592 cblk->conses[pos].u.chain = cons_free_list;
6593 cons_free_list = &cblk->conses[pos];
6594 cons_free_list->car = Vdead;
6595 }
6596 else
6597 {
6598 num_used++;
6599 CONS_UNMARK (&cblk->conses[pos]);
6600 }
6601 }
6602 }
6603 }
6604
6605 lim = CONS_BLOCK_SIZE;
6606 /* If this block contains only free conses and we have already
6607 seen more than two blocks worth of free conses then deallocate
6608 this block. */
6609 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6610 {
6611 *cprev = cblk->next;
6612 /* Unhook from the free list. */
6613 cons_free_list = cblk->conses[0].u.chain;
6614 lisp_align_free (cblk);
6615 }
6616 else
6617 {
6618 num_free += this_free;
6619 cprev = &cblk->next;
6620 }
6621 }
6622 total_conses = num_used;
6623 total_free_conses = num_free;
6624 }
6625
6626 NO_INLINE /* For better stack traces */
6627 static void
6628 sweep_floats (void)
6629 {
6630 register struct float_block *fblk;
6631 struct float_block **fprev = &float_block;
6632 register int lim = float_block_index;
6633 EMACS_INT num_free = 0, num_used = 0;
6634
6635 float_free_list = 0;
6636
6637 for (fblk = float_block; fblk; fblk = *fprev)
6638 {
6639 register int i;
6640 int this_free = 0;
6641 for (i = 0; i < lim; i++)
6642 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6643 {
6644 this_free++;
6645 fblk->floats[i].u.chain = float_free_list;
6646 float_free_list = &fblk->floats[i];
6647 }
6648 else
6649 {
6650 num_used++;
6651 FLOAT_UNMARK (&fblk->floats[i]);
6652 }
6653 lim = FLOAT_BLOCK_SIZE;
6654 /* If this block contains only free floats and we have already
6655 seen more than two blocks worth of free floats then deallocate
6656 this block. */
6657 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6658 {
6659 *fprev = fblk->next;
6660 /* Unhook from the free list. */
6661 float_free_list = fblk->floats[0].u.chain;
6662 lisp_align_free (fblk);
6663 }
6664 else
6665 {
6666 num_free += this_free;
6667 fprev = &fblk->next;
6668 }
6669 }
6670 total_floats = num_used;
6671 total_free_floats = num_free;
6672 }
6673
6674 NO_INLINE /* For better stack traces */
6675 static void
6676 sweep_intervals (void)
6677 {
6678 register struct interval_block *iblk;
6679 struct interval_block **iprev = &interval_block;
6680 register int lim = interval_block_index;
6681 EMACS_INT num_free = 0, num_used = 0;
6682
6683 interval_free_list = 0;
6684
6685 for (iblk = interval_block; iblk; iblk = *iprev)
6686 {
6687 register int i;
6688 int this_free = 0;
6689
6690 for (i = 0; i < lim; i++)
6691 {
6692 if (!iblk->intervals[i].gcmarkbit)
6693 {
6694 set_interval_parent (&iblk->intervals[i], interval_free_list);
6695 interval_free_list = &iblk->intervals[i];
6696 this_free++;
6697 }
6698 else
6699 {
6700 num_used++;
6701 iblk->intervals[i].gcmarkbit = 0;
6702 }
6703 }
6704 lim = INTERVAL_BLOCK_SIZE;
6705 /* If this block contains only free intervals and we have already
6706 seen more than two blocks worth of free intervals then
6707 deallocate this block. */
6708 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6709 {
6710 *iprev = iblk->next;
6711 /* Unhook from the free list. */
6712 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6713 lisp_free (iblk);
6714 }
6715 else
6716 {
6717 num_free += this_free;
6718 iprev = &iblk->next;
6719 }
6720 }
6721 total_intervals = num_used;
6722 total_free_intervals = num_free;
6723 }
6724
6725 NO_INLINE /* For better stack traces */
6726 static void
6727 sweep_symbols (void)
6728 {
6729 struct symbol_block *sblk;
6730 struct symbol_block **sprev = &symbol_block;
6731 int lim = symbol_block_index;
6732 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6733
6734 symbol_free_list = NULL;
6735
6736 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6737 lispsym[i].gcmarkbit = 0;
6738
6739 for (sblk = symbol_block; sblk; sblk = *sprev)
6740 {
6741 int this_free = 0;
6742 union aligned_Lisp_Symbol *sym = sblk->symbols;
6743 union aligned_Lisp_Symbol *end = sym + lim;
6744
6745 for (; sym < end; ++sym)
6746 {
6747 if (!sym->s.gcmarkbit)
6748 {
6749 if (sym->s.redirect == SYMBOL_LOCALIZED)
6750 xfree (SYMBOL_BLV (&sym->s));
6751 sym->s.next = symbol_free_list;
6752 symbol_free_list = &sym->s;
6753 symbol_free_list->function = Vdead;
6754 ++this_free;
6755 }
6756 else
6757 {
6758 ++num_used;
6759 sym->s.gcmarkbit = 0;
6760 /* Attempt to catch bogus objects. */
6761 eassert (valid_lisp_object_p (sym->s.function));
6762 }
6763 }
6764
6765 lim = SYMBOL_BLOCK_SIZE;
6766 /* If this block contains only free symbols and we have already
6767 seen more than two blocks worth of free symbols then deallocate
6768 this block. */
6769 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6770 {
6771 *sprev = sblk->next;
6772 /* Unhook from the free list. */
6773 symbol_free_list = sblk->symbols[0].s.next;
6774 lisp_free (sblk);
6775 }
6776 else
6777 {
6778 num_free += this_free;
6779 sprev = &sblk->next;
6780 }
6781 }
6782 total_symbols = num_used;
6783 total_free_symbols = num_free;
6784 }
6785
6786 NO_INLINE /* For better stack traces. */
6787 static void
6788 sweep_misc (void)
6789 {
6790 register struct marker_block *mblk;
6791 struct marker_block **mprev = &marker_block;
6792 register int lim = marker_block_index;
6793 EMACS_INT num_free = 0, num_used = 0;
6794
6795 /* Put all unmarked misc's on free list. For a marker, first
6796 unchain it from the buffer it points into. */
6797
6798 marker_free_list = 0;
6799
6800 for (mblk = marker_block; mblk; mblk = *mprev)
6801 {
6802 register int i;
6803 int this_free = 0;
6804
6805 for (i = 0; i < lim; i++)
6806 {
6807 if (!mblk->markers[i].m.u_any.gcmarkbit)
6808 {
6809 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6810 unchain_marker (&mblk->markers[i].m.u_marker);
6811 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6812 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6813 #ifdef HAVE_MODULES
6814 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6815 {
6816 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6817 uptr->finalizer (uptr->p);
6818 }
6819 #endif
6820 /* Set the type of the freed object to Lisp_Misc_Free.
6821 We could leave the type alone, since nobody checks it,
6822 but this might catch bugs faster. */
6823 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6824 mblk->markers[i].m.u_free.chain = marker_free_list;
6825 marker_free_list = &mblk->markers[i].m;
6826 this_free++;
6827 }
6828 else
6829 {
6830 num_used++;
6831 mblk->markers[i].m.u_any.gcmarkbit = 0;
6832 }
6833 }
6834 lim = MARKER_BLOCK_SIZE;
6835 /* If this block contains only free markers and we have already
6836 seen more than two blocks worth of free markers then deallocate
6837 this block. */
6838 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6839 {
6840 *mprev = mblk->next;
6841 /* Unhook from the free list. */
6842 marker_free_list = mblk->markers[0].m.u_free.chain;
6843 lisp_free (mblk);
6844 }
6845 else
6846 {
6847 num_free += this_free;
6848 mprev = &mblk->next;
6849 }
6850 }
6851
6852 total_markers = num_used;
6853 total_free_markers = num_free;
6854 }
6855
6856 NO_INLINE /* For better stack traces */
6857 static void
6858 sweep_buffers (void)
6859 {
6860 register struct buffer *buffer, **bprev = &all_buffers;
6861
6862 total_buffers = 0;
6863 for (buffer = all_buffers; buffer; buffer = *bprev)
6864 if (!VECTOR_MARKED_P (buffer))
6865 {
6866 *bprev = buffer->next;
6867 lisp_free (buffer);
6868 }
6869 else
6870 {
6871 VECTOR_UNMARK (buffer);
6872 /* Do not use buffer_(set|get)_intervals here. */
6873 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6874 total_buffers++;
6875 bprev = &buffer->next;
6876 }
6877 }
6878
6879 /* Sweep: find all structures not marked, and free them. */
6880 static void
6881 gc_sweep (void)
6882 {
6883 /* Remove or mark entries in weak hash tables.
6884 This must be done before any object is unmarked. */
6885 sweep_weak_hash_tables ();
6886
6887 sweep_strings ();
6888 check_string_bytes (!noninteractive);
6889 sweep_conses ();
6890 sweep_floats ();
6891 sweep_intervals ();
6892 sweep_symbols ();
6893 sweep_misc ();
6894 sweep_buffers ();
6895 sweep_vectors ();
6896 check_string_bytes (!noninteractive);
6897 }
6898
6899 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6900 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6901 All values are in Kbytes. If there is no swap space,
6902 last two values are zero. If the system is not supported
6903 or memory information can't be obtained, return nil. */)
6904 (void)
6905 {
6906 #if defined HAVE_LINUX_SYSINFO
6907 struct sysinfo si;
6908 uintmax_t units;
6909
6910 if (sysinfo (&si))
6911 return Qnil;
6912 #ifdef LINUX_SYSINFO_UNIT
6913 units = si.mem_unit;
6914 #else
6915 units = 1;
6916 #endif
6917 return list4i ((uintmax_t) si.totalram * units / 1024,
6918 (uintmax_t) si.freeram * units / 1024,
6919 (uintmax_t) si.totalswap * units / 1024,
6920 (uintmax_t) si.freeswap * units / 1024);
6921 #elif defined WINDOWSNT
6922 unsigned long long totalram, freeram, totalswap, freeswap;
6923
6924 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6925 return list4i ((uintmax_t) totalram / 1024,
6926 (uintmax_t) freeram / 1024,
6927 (uintmax_t) totalswap / 1024,
6928 (uintmax_t) freeswap / 1024);
6929 else
6930 return Qnil;
6931 #elif defined MSDOS
6932 unsigned long totalram, freeram, totalswap, freeswap;
6933
6934 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6935 return list4i ((uintmax_t) totalram / 1024,
6936 (uintmax_t) freeram / 1024,
6937 (uintmax_t) totalswap / 1024,
6938 (uintmax_t) freeswap / 1024);
6939 else
6940 return Qnil;
6941 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6942 /* FIXME: add more systems. */
6943 return Qnil;
6944 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6945 }
6946
6947 /* Debugging aids. */
6948
6949 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6950 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6951 This may be helpful in debugging Emacs's memory usage.
6952 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6953 (void)
6954 {
6955 Lisp_Object end;
6956
6957 #ifdef HAVE_NS
6958 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6959 XSETINT (end, 0);
6960 #else
6961 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6962 #endif
6963
6964 return end;
6965 }
6966
6967 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6968 doc: /* Return a list of counters that measure how much consing there has been.
6969 Each of these counters increments for a certain kind of object.
6970 The counters wrap around from the largest positive integer to zero.
6971 Garbage collection does not decrease them.
6972 The elements of the value are as follows:
6973 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6974 All are in units of 1 = one object consed
6975 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6976 objects consed.
6977 MISCS include overlays, markers, and some internal types.
6978 Frames, windows, buffers, and subprocesses count as vectors
6979 (but the contents of a buffer's text do not count here). */)
6980 (void)
6981 {
6982 return listn (CONSTYPE_HEAP, 8,
6983 bounded_number (cons_cells_consed),
6984 bounded_number (floats_consed),
6985 bounded_number (vector_cells_consed),
6986 bounded_number (symbols_consed),
6987 bounded_number (string_chars_consed),
6988 bounded_number (misc_objects_consed),
6989 bounded_number (intervals_consed),
6990 bounded_number (strings_consed));
6991 }
6992
6993 static bool
6994 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6995 {
6996 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6997 Lisp_Object val = find_symbol_value (symbol);
6998 return (EQ (val, obj)
6999 || EQ (sym->function, obj)
7000 || (!NILP (sym->function)
7001 && COMPILEDP (sym->function)
7002 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7003 || (!NILP (val)
7004 && COMPILEDP (val)
7005 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7006 }
7007
7008 /* Find at most FIND_MAX symbols which have OBJ as their value or
7009 function. This is used in gdbinit's `xwhichsymbols' command. */
7010
7011 Lisp_Object
7012 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7013 {
7014 struct symbol_block *sblk;
7015 ptrdiff_t gc_count = inhibit_garbage_collection ();
7016 Lisp_Object found = Qnil;
7017
7018 if (! DEADP (obj))
7019 {
7020 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7021 {
7022 Lisp_Object sym = builtin_lisp_symbol (i);
7023 if (symbol_uses_obj (sym, obj))
7024 {
7025 found = Fcons (sym, found);
7026 if (--find_max == 0)
7027 goto out;
7028 }
7029 }
7030
7031 for (sblk = symbol_block; sblk; sblk = sblk->next)
7032 {
7033 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7034 int bn;
7035
7036 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7037 {
7038 if (sblk == symbol_block && bn >= symbol_block_index)
7039 break;
7040
7041 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7042 if (symbol_uses_obj (sym, obj))
7043 {
7044 found = Fcons (sym, found);
7045 if (--find_max == 0)
7046 goto out;
7047 }
7048 }
7049 }
7050 }
7051
7052 out:
7053 unbind_to (gc_count, Qnil);
7054 return found;
7055 }
7056
7057 #ifdef SUSPICIOUS_OBJECT_CHECKING
7058
7059 static void *
7060 find_suspicious_object_in_range (void *begin, void *end)
7061 {
7062 char *begin_a = begin;
7063 char *end_a = end;
7064 int i;
7065
7066 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7067 {
7068 char *suspicious_object = suspicious_objects[i];
7069 if (begin_a <= suspicious_object && suspicious_object < end_a)
7070 return suspicious_object;
7071 }
7072
7073 return NULL;
7074 }
7075
7076 static void
7077 note_suspicious_free (void* ptr)
7078 {
7079 struct suspicious_free_record* rec;
7080
7081 rec = &suspicious_free_history[suspicious_free_history_index++];
7082 if (suspicious_free_history_index ==
7083 ARRAYELTS (suspicious_free_history))
7084 {
7085 suspicious_free_history_index = 0;
7086 }
7087
7088 memset (rec, 0, sizeof (*rec));
7089 rec->suspicious_object = ptr;
7090 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7091 }
7092
7093 static void
7094 detect_suspicious_free (void* ptr)
7095 {
7096 int i;
7097
7098 eassert (ptr != NULL);
7099
7100 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7101 if (suspicious_objects[i] == ptr)
7102 {
7103 note_suspicious_free (ptr);
7104 suspicious_objects[i] = NULL;
7105 }
7106 }
7107
7108 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7109
7110 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7111 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7112 If Emacs is compiled with suspicious object checking, capture
7113 a stack trace when OBJ is freed in order to help track down
7114 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7115 (Lisp_Object obj)
7116 {
7117 #ifdef SUSPICIOUS_OBJECT_CHECKING
7118 /* Right now, we care only about vectors. */
7119 if (VECTORLIKEP (obj))
7120 {
7121 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7122 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7123 suspicious_object_index = 0;
7124 }
7125 #endif
7126 return obj;
7127 }
7128
7129 #ifdef ENABLE_CHECKING
7130
7131 bool suppress_checking;
7132
7133 void
7134 die (const char *msg, const char *file, int line)
7135 {
7136 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7137 file, line, msg);
7138 terminate_due_to_signal (SIGABRT, INT_MAX);
7139 }
7140
7141 #endif /* ENABLE_CHECKING */
7142
7143 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7144
7145 /* Debugging check whether STR is ASCII-only. */
7146
7147 const char *
7148 verify_ascii (const char *str)
7149 {
7150 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7151 while (ptr < end)
7152 {
7153 int c = STRING_CHAR_ADVANCE (ptr);
7154 if (!ASCII_CHAR_P (c))
7155 emacs_abort ();
7156 }
7157 return str;
7158 }
7159
7160 /* Stress alloca with inconveniently sized requests and check
7161 whether all allocated areas may be used for Lisp_Object. */
7162
7163 NO_INLINE static void
7164 verify_alloca (void)
7165 {
7166 int i;
7167 enum { ALLOCA_CHECK_MAX = 256 };
7168 /* Start from size of the smallest Lisp object. */
7169 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7170 {
7171 void *ptr = alloca (i);
7172 make_lisp_ptr (ptr, Lisp_Cons);
7173 }
7174 }
7175
7176 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7177
7178 #define verify_alloca() ((void) 0)
7179
7180 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7181
7182 /* Initialization. */
7183
7184 void
7185 init_alloc_once (void)
7186 {
7187 /* Even though Qt's contents are not set up, its address is known. */
7188 Vpurify_flag = Qt;
7189
7190 purebeg = PUREBEG;
7191 pure_size = PURESIZE;
7192
7193 verify_alloca ();
7194 init_finalizer_list (&finalizers);
7195 init_finalizer_list (&doomed_finalizers);
7196
7197 mem_init ();
7198 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7199
7200 #ifdef DOUG_LEA_MALLOC
7201 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7202 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7203 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7204 #endif
7205 init_strings ();
7206 init_vectors ();
7207
7208 refill_memory_reserve ();
7209 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7210 }
7211
7212 void
7213 init_alloc (void)
7214 {
7215 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7216 setjmp_tested_p = longjmps_done = 0;
7217 #endif
7218 Vgc_elapsed = make_float (0.0);
7219 gcs_done = 0;
7220
7221 #if USE_VALGRIND
7222 valgrind_p = RUNNING_ON_VALGRIND != 0;
7223 #endif
7224 }
7225
7226 void
7227 syms_of_alloc (void)
7228 {
7229 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7230 doc: /* Number of bytes of consing between garbage collections.
7231 Garbage collection can happen automatically once this many bytes have been
7232 allocated since the last garbage collection. All data types count.
7233
7234 Garbage collection happens automatically only when `eval' is called.
7235
7236 By binding this temporarily to a large number, you can effectively
7237 prevent garbage collection during a part of the program.
7238 See also `gc-cons-percentage'. */);
7239
7240 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7241 doc: /* Portion of the heap used for allocation.
7242 Garbage collection can happen automatically once this portion of the heap
7243 has been allocated since the last garbage collection.
7244 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7245 Vgc_cons_percentage = make_float (0.1);
7246
7247 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7248 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7249
7250 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7251 doc: /* Number of cons cells that have been consed so far. */);
7252
7253 DEFVAR_INT ("floats-consed", floats_consed,
7254 doc: /* Number of floats that have been consed so far. */);
7255
7256 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7257 doc: /* Number of vector cells that have been consed so far. */);
7258
7259 DEFVAR_INT ("symbols-consed", symbols_consed,
7260 doc: /* Number of symbols that have been consed so far. */);
7261 symbols_consed += ARRAYELTS (lispsym);
7262
7263 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7264 doc: /* Number of string characters that have been consed so far. */);
7265
7266 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7267 doc: /* Number of miscellaneous objects that have been consed so far.
7268 These include markers and overlays, plus certain objects not visible
7269 to users. */);
7270
7271 DEFVAR_INT ("intervals-consed", intervals_consed,
7272 doc: /* Number of intervals that have been consed so far. */);
7273
7274 DEFVAR_INT ("strings-consed", strings_consed,
7275 doc: /* Number of strings that have been consed so far. */);
7276
7277 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7278 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7279 This means that certain objects should be allocated in shared (pure) space.
7280 It can also be set to a hash-table, in which case this table is used to
7281 do hash-consing of the objects allocated to pure space. */);
7282
7283 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7284 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7285 garbage_collection_messages = 0;
7286
7287 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7288 doc: /* Hook run after garbage collection has finished. */);
7289 Vpost_gc_hook = Qnil;
7290 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7291
7292 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7293 doc: /* Precomputed `signal' argument for memory-full error. */);
7294 /* We build this in advance because if we wait until we need it, we might
7295 not be able to allocate the memory to hold it. */
7296 Vmemory_signal_data
7297 = listn (CONSTYPE_PURE, 2, Qerror,
7298 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7299
7300 DEFVAR_LISP ("memory-full", Vmemory_full,
7301 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7302 Vmemory_full = Qnil;
7303
7304 DEFSYM (Qconses, "conses");
7305 DEFSYM (Qsymbols, "symbols");
7306 DEFSYM (Qmiscs, "miscs");
7307 DEFSYM (Qstrings, "strings");
7308 DEFSYM (Qvectors, "vectors");
7309 DEFSYM (Qfloats, "floats");
7310 DEFSYM (Qintervals, "intervals");
7311 DEFSYM (Qbuffers, "buffers");
7312 DEFSYM (Qstring_bytes, "string-bytes");
7313 DEFSYM (Qvector_slots, "vector-slots");
7314 DEFSYM (Qheap, "heap");
7315 DEFSYM (Qautomatic_gc, "Automatic GC");
7316
7317 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7318 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7319
7320 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7321 doc: /* Accumulated time elapsed in garbage collections.
7322 The time is in seconds as a floating point value. */);
7323 DEFVAR_INT ("gcs-done", gcs_done,
7324 doc: /* Accumulated number of garbage collections done. */);
7325
7326 defsubr (&Scons);
7327 defsubr (&Slist);
7328 defsubr (&Svector);
7329 defsubr (&Sbool_vector);
7330 defsubr (&Smake_byte_code);
7331 defsubr (&Smake_list);
7332 defsubr (&Smake_vector);
7333 defsubr (&Smake_string);
7334 defsubr (&Smake_bool_vector);
7335 defsubr (&Smake_symbol);
7336 defsubr (&Smake_marker);
7337 defsubr (&Smake_finalizer);
7338 defsubr (&Spurecopy);
7339 defsubr (&Sgarbage_collect);
7340 defsubr (&Smemory_limit);
7341 defsubr (&Smemory_info);
7342 defsubr (&Smemory_use_counts);
7343 defsubr (&Ssuspicious_object);
7344 }
7345
7346 /* When compiled with GCC, GDB might say "No enum type named
7347 pvec_type" if we don't have at least one symbol with that type, and
7348 then xbacktrace could fail. Similarly for the other enums and
7349 their values. Some non-GCC compilers don't like these constructs. */
7350 #ifdef __GNUC__
7351 union
7352 {
7353 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7354 enum char_table_specials char_table_specials;
7355 enum char_bits char_bits;
7356 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7357 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7358 enum Lisp_Bits Lisp_Bits;
7359 enum Lisp_Compiled Lisp_Compiled;
7360 enum maxargs maxargs;
7361 enum MAX_ALLOCA MAX_ALLOCA;
7362 enum More_Lisp_Bits More_Lisp_Bits;
7363 enum pvec_type pvec_type;
7364 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7365 #endif /* __GNUC__ */