]> code.delx.au - gnu-emacs/blob - src/intervals.c
Rework C source files to avoid ^(
[gnu-emacs] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2016 Free Software
3 Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or (at
10 your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* NOTES:
22
23 Have to ensure that we can't put symbol nil on a plist, or some
24 functions may work incorrectly.
25
26 An idea: Have the owner of the tree keep count of splits and/or
27 insertion lengths (in intervals), and balance after every N.
28
29 Need to call *_left_hook when buffer is killed.
30
31 Scan for zero-length, or 0-length to see notes about handling
32 zero length interval-markers.
33
34 There are comments around about freeing intervals. It might be
35 faster to explicitly free them (put them on the free list) than
36 to GC them.
37
38 */
39
40
41 #include <config.h>
42
43 #include <intprops.h>
44 #include "lisp.h"
45 #include "intervals.h"
46 #include "buffer.h"
47 #include "puresize.h"
48 #include "keymap.h"
49
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
52
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
54
55 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
56 static INTERVAL merge_interval_right (INTERVAL);
57 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
58 \f
59 /* Utility functions for intervals. */
60
61 /* Use these functions to set pointer slots of struct interval. */
62
63 static void
64 set_interval_left (INTERVAL i, INTERVAL left)
65 {
66 i->left = left;
67 }
68
69 static void
70 set_interval_right (INTERVAL i, INTERVAL right)
71 {
72 i->right = right;
73 }
74
75 /* Make the parent of D be whatever the parent of S is, regardless
76 of the type. This is used when balancing an interval tree. */
77
78 static void
79 copy_interval_parent (INTERVAL d, INTERVAL s)
80 {
81 d->up = s->up;
82 d->up_obj = s->up_obj;
83 }
84
85 /* Create the root interval of some object, a buffer or string. */
86
87 INTERVAL
88 create_root_interval (Lisp_Object parent)
89 {
90 INTERVAL new;
91
92 new = make_interval ();
93
94 if (! STRINGP (parent))
95 {
96 new->total_length = (BUF_Z (XBUFFER (parent))
97 - BUF_BEG (XBUFFER (parent)));
98 eassert (TOTAL_LENGTH (new) >= 0);
99 set_buffer_intervals (XBUFFER (parent), new);
100 new->position = BEG;
101 }
102 else
103 {
104 CHECK_IMPURE (parent, XSTRING (parent));
105 new->total_length = SCHARS (parent);
106 eassert (TOTAL_LENGTH (new) >= 0);
107 set_string_intervals (parent, new);
108 new->position = 0;
109 }
110 eassert (LENGTH (new) > 0);
111
112 set_interval_object (new, parent);
113
114 return new;
115 }
116
117 /* Make the interval TARGET have exactly the properties of SOURCE. */
118
119 void
120 copy_properties (register INTERVAL source, register INTERVAL target)
121 {
122 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
123 return;
124
125 COPY_INTERVAL_CACHE (source, target);
126 set_interval_plist (target, Fcopy_sequence (source->plist));
127 }
128
129 /* Merge the properties of interval SOURCE into the properties
130 of interval TARGET. That is to say, each property in SOURCE
131 is added to TARGET if TARGET has no such property as yet. */
132
133 static void
134 merge_properties (register INTERVAL source, register INTERVAL target)
135 {
136 register Lisp_Object o, sym, val;
137
138 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
139 return;
140
141 MERGE_INTERVAL_CACHE (source, target);
142
143 o = source->plist;
144 while (CONSP (o))
145 {
146 sym = XCAR (o);
147 o = XCDR (o);
148 CHECK_CONS (o);
149
150 val = target->plist;
151 while (CONSP (val) && !EQ (XCAR (val), sym))
152 {
153 val = XCDR (val);
154 if (!CONSP (val))
155 break;
156 val = XCDR (val);
157 }
158
159 if (NILP (val))
160 {
161 val = XCAR (o);
162 set_interval_plist (target, Fcons (sym, Fcons (val, target->plist)));
163 }
164 o = XCDR (o);
165 }
166 }
167
168 /* Return true if the two intervals have the same properties. */
169
170 bool
171 intervals_equal (INTERVAL i0, INTERVAL i1)
172 {
173 Lisp_Object i0_cdr, i0_sym;
174 Lisp_Object i1_cdr, i1_val;
175
176 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
177 return true;
178
179 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
180 return false;
181
182 i0_cdr = i0->plist;
183 i1_cdr = i1->plist;
184 while (CONSP (i0_cdr) && CONSP (i1_cdr))
185 {
186 i0_sym = XCAR (i0_cdr);
187 i0_cdr = XCDR (i0_cdr);
188 if (!CONSP (i0_cdr))
189 return false;
190 i1_val = i1->plist;
191 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
192 {
193 i1_val = XCDR (i1_val);
194 if (!CONSP (i1_val))
195 return false;
196 i1_val = XCDR (i1_val);
197 }
198
199 /* i0 has something i1 doesn't. */
200 if (EQ (i1_val, Qnil))
201 return false;
202
203 /* i0 and i1 both have sym, but it has different values in each. */
204 if (!CONSP (i1_val)
205 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
206 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
207 return false;
208
209 i0_cdr = XCDR (i0_cdr);
210
211 i1_cdr = XCDR (i1_cdr);
212 if (!CONSP (i1_cdr))
213 return false;
214 i1_cdr = XCDR (i1_cdr);
215 }
216
217 /* Lengths of the two plists were equal. */
218 return (NILP (i0_cdr) && NILP (i1_cdr));
219 }
220 \f
221
222 /* Traverse an interval tree TREE, performing FUNCTION on each node.
223 No guarantee is made about the order of traversal.
224 Pass FUNCTION two args: an interval, and ARG. */
225
226 void
227 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
228 {
229 /* Minimize stack usage. */
230 while (tree)
231 {
232 (*function) (tree, arg);
233 if (!tree->right)
234 tree = tree->left;
235 else
236 {
237 traverse_intervals_noorder (tree->left, function, arg);
238 tree = tree->right;
239 }
240 }
241 }
242
243 /* Traverse an interval tree TREE, performing FUNCTION on each node.
244 Pass FUNCTION two args: an interval, and ARG. */
245
246 void
247 traverse_intervals (INTERVAL tree, ptrdiff_t position,
248 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
249 {
250 while (tree)
251 {
252 traverse_intervals (tree->left, position, function, arg);
253 position += LEFT_TOTAL_LENGTH (tree);
254 tree->position = position;
255 (*function) (tree, arg);
256 position += LENGTH (tree); tree = tree->right;
257 }
258 }
259 \f
260 #if 0
261
262 static int icount;
263 static int idepth;
264 static int zero_length;
265
266 /* These functions are temporary, for debugging purposes only. */
267
268 INTERVAL search_interval, found_interval;
269
270 void
271 check_for_interval (INTERVAL i)
272 {
273 if (i == search_interval)
274 {
275 found_interval = i;
276 icount++;
277 }
278 }
279
280 INTERVAL
281 search_for_interval (INTERVAL i, INTERVAL tree)
282 {
283 icount = 0;
284 search_interval = i;
285 found_interval = NULL;
286 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
287 return found_interval;
288 }
289
290 static void
291 inc_interval_count (INTERVAL i)
292 {
293 icount++;
294 if (LENGTH (i) == 0)
295 zero_length++;
296 if (depth > idepth)
297 idepth = depth;
298 }
299
300 int
301 count_intervals (INTERVAL i)
302 {
303 icount = 0;
304 idepth = 0;
305 zero_length = 0;
306 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
307
308 return icount;
309 }
310
311 static INTERVAL
312 root_interval (INTERVAL interval)
313 {
314 register INTERVAL i = interval;
315
316 while (! ROOT_INTERVAL_P (i))
317 i = INTERVAL_PARENT (i);
318
319 return i;
320 }
321 #endif
322 \f
323 /* Assuming that a left child exists, perform the following operation:
324
325 A B
326 / \ / \
327 B => A
328 / \ / \
329 c c
330 */
331
332 static INTERVAL
333 rotate_right (INTERVAL A)
334 {
335 INTERVAL B = A->left;
336 INTERVAL c = B->right;
337 ptrdiff_t old_total = A->total_length;
338
339 eassert (old_total > 0);
340 eassert (LENGTH (A) > 0);
341 eassert (LENGTH (B) > 0);
342
343 /* Deal with any Parent of A; make it point to B. */
344 if (! ROOT_INTERVAL_P (A))
345 {
346 if (AM_LEFT_CHILD (A))
347 set_interval_left (INTERVAL_PARENT (A), B);
348 else
349 set_interval_right (INTERVAL_PARENT (A), B);
350 }
351 copy_interval_parent (B, A);
352
353 /* Make B the parent of A. */
354 set_interval_right (B, A);
355 set_interval_parent (A, B);
356
357 /* Make A point to c. */
358 set_interval_left (A, c);
359 if (c)
360 set_interval_parent (c, A);
361
362 /* A's total length is decreased by the length of B and its left child. */
363 A->total_length -= B->total_length - TOTAL_LENGTH (c);
364 eassert (TOTAL_LENGTH (A) > 0);
365 eassert (LENGTH (A) > 0);
366
367 /* B must have the same total length of A. */
368 B->total_length = old_total;
369 eassert (LENGTH (B) > 0);
370
371 return B;
372 }
373
374 /* Assuming that a right child exists, perform the following operation:
375
376 A B
377 / \ / \
378 B => A
379 / \ / \
380 c c
381 */
382
383 static INTERVAL
384 rotate_left (INTERVAL A)
385 {
386 INTERVAL B = A->right;
387 INTERVAL c = B->left;
388 ptrdiff_t old_total = A->total_length;
389
390 eassert (old_total > 0);
391 eassert (LENGTH (A) > 0);
392 eassert (LENGTH (B) > 0);
393
394 /* Deal with any parent of A; make it point to B. */
395 if (! ROOT_INTERVAL_P (A))
396 {
397 if (AM_LEFT_CHILD (A))
398 set_interval_left (INTERVAL_PARENT (A), B);
399 else
400 set_interval_right (INTERVAL_PARENT (A), B);
401 }
402 copy_interval_parent (B, A);
403
404 /* Make B the parent of A. */
405 set_interval_left (B, A);
406 set_interval_parent (A, B);
407
408 /* Make A point to c. */
409 set_interval_right (A, c);
410 if (c)
411 set_interval_parent (c, A);
412
413 /* A's total length is decreased by the length of B and its right child. */
414 A->total_length -= B->total_length - TOTAL_LENGTH (c);
415 eassert (TOTAL_LENGTH (A) > 0);
416 eassert (LENGTH (A) > 0);
417
418 /* B must have the same total length of A. */
419 B->total_length = old_total;
420 eassert (LENGTH (B) > 0);
421
422 return B;
423 }
424 \f
425 /* Balance an interval tree with the assumption that the subtrees
426 themselves are already balanced. */
427
428 static INTERVAL
429 balance_an_interval (INTERVAL i)
430 {
431 register ptrdiff_t old_diff, new_diff;
432
433 eassert (LENGTH (i) > 0);
434 eassert (TOTAL_LENGTH (i) >= LENGTH (i));
435
436 while (1)
437 {
438 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
439 if (old_diff > 0)
440 {
441 /* Since the left child is longer, there must be one. */
442 new_diff = i->total_length - i->left->total_length
443 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
444 if (eabs (new_diff) >= old_diff)
445 break;
446 i = rotate_right (i);
447 balance_an_interval (i->right);
448 }
449 else if (old_diff < 0)
450 {
451 /* Since the right child is longer, there must be one. */
452 new_diff = i->total_length - i->right->total_length
453 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
454 if (eabs (new_diff) >= -old_diff)
455 break;
456 i = rotate_left (i);
457 balance_an_interval (i->left);
458 }
459 else
460 break;
461 }
462 return i;
463 }
464
465 /* Balance INTERVAL, potentially stuffing it back into its parent
466 Lisp Object. */
467
468 static INTERVAL
469 balance_possible_root_interval (INTERVAL interval)
470 {
471 Lisp_Object parent;
472 bool have_parent = false;
473
474 if (INTERVAL_HAS_OBJECT (interval))
475 {
476 have_parent = true;
477 GET_INTERVAL_OBJECT (parent, interval);
478 }
479 else if (!INTERVAL_HAS_PARENT (interval))
480 return interval;
481
482 interval = balance_an_interval (interval);
483
484 if (have_parent)
485 {
486 if (BUFFERP (parent))
487 set_buffer_intervals (XBUFFER (parent), interval);
488 else if (STRINGP (parent))
489 set_string_intervals (parent, interval);
490 }
491
492 return interval;
493 }
494
495 /* Balance the interval tree TREE. Balancing is by weight
496 (the amount of text). */
497
498 static INTERVAL
499 balance_intervals_internal (register INTERVAL tree)
500 {
501 /* Balance within each side. */
502 if (tree->left)
503 balance_intervals_internal (tree->left);
504 if (tree->right)
505 balance_intervals_internal (tree->right);
506 return balance_an_interval (tree);
507 }
508
509 /* Advertised interface to balance intervals. */
510
511 INTERVAL
512 balance_intervals (INTERVAL tree)
513 {
514 return tree ? balance_intervals_internal (tree) : NULL;
515 }
516
517 /* Rebalance text properties of B. */
518
519 static void
520 buffer_balance_intervals (struct buffer *b)
521 {
522 INTERVAL i;
523
524 eassert (b != NULL);
525 i = buffer_intervals (b);
526 if (i)
527 set_buffer_intervals (b, balance_an_interval (i));
528 }
529
530 /* Split INTERVAL into two pieces, starting the second piece at
531 character position OFFSET (counting from 0), relative to INTERVAL.
532 INTERVAL becomes the left-hand piece, and the right-hand piece
533 (second, lexicographically) is returned.
534
535 The size and position fields of the two intervals are set based upon
536 those of the original interval. The property list of the new interval
537 is reset, thus it is up to the caller to do the right thing with the
538 result.
539
540 Note that this does not change the position of INTERVAL; if it is a root,
541 it is still a root after this operation. */
542
543 INTERVAL
544 split_interval_right (INTERVAL interval, ptrdiff_t offset)
545 {
546 INTERVAL new = make_interval ();
547 ptrdiff_t position = interval->position;
548 ptrdiff_t new_length = LENGTH (interval) - offset;
549
550 new->position = position + offset;
551 set_interval_parent (new, interval);
552
553 if (NULL_RIGHT_CHILD (interval))
554 {
555 set_interval_right (interval, new);
556 new->total_length = new_length;
557 eassert (LENGTH (new) > 0);
558 }
559 else
560 {
561 /* Insert the new node between INTERVAL and its right child. */
562 set_interval_right (new, interval->right);
563 set_interval_parent (interval->right, new);
564 set_interval_right (interval, new);
565 new->total_length = new_length + new->right->total_length;
566 balance_an_interval (new);
567 }
568
569 balance_possible_root_interval (interval);
570
571 return new;
572 }
573
574 /* Split INTERVAL into two pieces, starting the second piece at
575 character position OFFSET (counting from 0), relative to INTERVAL.
576 INTERVAL becomes the right-hand piece, and the left-hand piece
577 (first, lexicographically) is returned.
578
579 The size and position fields of the two intervals are set based upon
580 those of the original interval. The property list of the new interval
581 is reset, thus it is up to the caller to do the right thing with the
582 result.
583
584 Note that this does not change the position of INTERVAL; if it is a root,
585 it is still a root after this operation. */
586
587 INTERVAL
588 split_interval_left (INTERVAL interval, ptrdiff_t offset)
589 {
590 INTERVAL new = make_interval ();
591 ptrdiff_t new_length = offset;
592
593 new->position = interval->position;
594 interval->position = interval->position + offset;
595 set_interval_parent (new, interval);
596
597 if (NULL_LEFT_CHILD (interval))
598 {
599 set_interval_left (interval, new);
600 new->total_length = new_length;
601 eassert (LENGTH (new) > 0);
602 }
603 else
604 {
605 /* Insert the new node between INTERVAL and its left child. */
606 set_interval_left (new, interval->left);
607 set_interval_parent (new->left, new);
608 set_interval_left (interval, new);
609 new->total_length = new_length + new->left->total_length;
610 balance_an_interval (new);
611 }
612
613 balance_possible_root_interval (interval);
614
615 return new;
616 }
617 \f
618 /* Return the proper position for the first character
619 described by the interval tree SOURCE.
620 This is 1 if the parent is a buffer,
621 0 if the parent is a string or if there is no parent.
622
623 Don't use this function on an interval which is the child
624 of another interval! */
625
626 static int
627 interval_start_pos (INTERVAL source)
628 {
629 Lisp_Object parent;
630
631 if (!source)
632 return 0;
633
634 if (! INTERVAL_HAS_OBJECT (source))
635 return 0;
636 GET_INTERVAL_OBJECT (parent, source);
637 if (BUFFERP (parent))
638 return BUF_BEG (XBUFFER (parent));
639 return 0;
640 }
641
642 /* Find the interval containing text position POSITION in the text
643 represented by the interval tree TREE. POSITION is a buffer
644 position (starting from 1) or a string index (starting from 0).
645 If POSITION is at the end of the buffer or string,
646 return the interval containing the last character.
647
648 The `position' field, which is a cache of an interval's position,
649 is updated in the interval found. Other functions (e.g., next_interval)
650 will update this cache based on the result of find_interval. */
651
652 INTERVAL
653 find_interval (register INTERVAL tree, register ptrdiff_t position)
654 {
655 /* The distance from the left edge of the subtree at TREE
656 to POSITION. */
657 register ptrdiff_t relative_position;
658
659 if (!tree)
660 return NULL;
661
662 relative_position = position;
663 if (INTERVAL_HAS_OBJECT (tree))
664 {
665 Lisp_Object parent;
666 GET_INTERVAL_OBJECT (parent, tree);
667 if (BUFFERP (parent))
668 relative_position -= BUF_BEG (XBUFFER (parent));
669 }
670
671 eassert (relative_position <= TOTAL_LENGTH (tree));
672
673 tree = balance_possible_root_interval (tree);
674
675 while (1)
676 {
677 eassert (tree);
678 if (relative_position < LEFT_TOTAL_LENGTH (tree))
679 {
680 tree = tree->left;
681 }
682 else if (! NULL_RIGHT_CHILD (tree)
683 && relative_position >= (TOTAL_LENGTH (tree)
684 - RIGHT_TOTAL_LENGTH (tree)))
685 {
686 relative_position -= (TOTAL_LENGTH (tree)
687 - RIGHT_TOTAL_LENGTH (tree));
688 tree = tree->right;
689 }
690 else
691 {
692 tree->position
693 = (position - relative_position /* left edge of *tree. */
694 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
695
696 return tree;
697 }
698 }
699 }
700 \f
701 /* Find the succeeding interval (lexicographically) to INTERVAL.
702 Sets the `position' field based on that of INTERVAL (see
703 find_interval). */
704
705 INTERVAL
706 next_interval (register INTERVAL interval)
707 {
708 register INTERVAL i = interval;
709 register ptrdiff_t next_position;
710
711 if (!i)
712 return NULL;
713 next_position = interval->position + LENGTH (interval);
714
715 if (! NULL_RIGHT_CHILD (i))
716 {
717 i = i->right;
718 while (! NULL_LEFT_CHILD (i))
719 i = i->left;
720
721 i->position = next_position;
722 return i;
723 }
724
725 while (! NULL_PARENT (i))
726 {
727 if (AM_LEFT_CHILD (i))
728 {
729 i = INTERVAL_PARENT (i);
730 i->position = next_position;
731 return i;
732 }
733
734 i = INTERVAL_PARENT (i);
735 }
736
737 return NULL;
738 }
739
740 /* Find the preceding interval (lexicographically) to INTERVAL.
741 Sets the `position' field based on that of INTERVAL (see
742 find_interval). */
743
744 INTERVAL
745 previous_interval (register INTERVAL interval)
746 {
747 register INTERVAL i;
748
749 if (!interval)
750 return NULL;
751
752 if (! NULL_LEFT_CHILD (interval))
753 {
754 i = interval->left;
755 while (! NULL_RIGHT_CHILD (i))
756 i = i->right;
757
758 i->position = interval->position - LENGTH (i);
759 return i;
760 }
761
762 i = interval;
763 while (! NULL_PARENT (i))
764 {
765 if (AM_RIGHT_CHILD (i))
766 {
767 i = INTERVAL_PARENT (i);
768
769 i->position = interval->position - LENGTH (i);
770 return i;
771 }
772 i = INTERVAL_PARENT (i);
773 }
774
775 return NULL;
776 }
777
778 /* Find the interval containing POS given some non-NULL INTERVAL
779 in the same tree. Note that we need to update interval->position
780 if we go down the tree.
781 To speed up the process, we assume that the ->position of
782 I and all its parents is already uptodate. */
783 INTERVAL
784 update_interval (register INTERVAL i, ptrdiff_t pos)
785 {
786 if (!i)
787 return NULL;
788
789 while (1)
790 {
791 if (pos < i->position)
792 {
793 /* Move left. */
794 if (pos >= i->position - TOTAL_LENGTH (i->left))
795 {
796 i->left->position = i->position - TOTAL_LENGTH (i->left)
797 + LEFT_TOTAL_LENGTH (i->left);
798 i = i->left; /* Move to the left child. */
799 }
800 else if (NULL_PARENT (i))
801 error ("Point before start of properties");
802 else
803 i = INTERVAL_PARENT (i);
804 continue;
805 }
806 else if (pos >= INTERVAL_LAST_POS (i))
807 {
808 /* Move right. */
809 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
810 {
811 i->right->position = INTERVAL_LAST_POS (i)
812 + LEFT_TOTAL_LENGTH (i->right);
813 i = i->right; /* Move to the right child. */
814 }
815 else if (NULL_PARENT (i))
816 error ("Point %"pD"d after end of properties", pos);
817 else
818 i = INTERVAL_PARENT (i);
819 continue;
820 }
821 else
822 return i;
823 }
824 }
825
826 /* Effect an adjustment corresponding to the addition of LENGTH characters
827 of text. Do this by finding the interval containing POSITION in the
828 interval tree TREE, and then adjusting all of its ancestors by adding
829 LENGTH to them.
830
831 If POSITION is the first character of an interval, meaning that point
832 is actually between the two intervals, make the new text belong to
833 the interval which is "sticky".
834
835 If both intervals are "sticky", then make them belong to the left-most
836 interval. Another possibility would be to create a new interval for
837 this text, and make it have the merged properties of both ends. */
838
839 static INTERVAL
840 adjust_intervals_for_insertion (INTERVAL tree,
841 ptrdiff_t position, ptrdiff_t length)
842 {
843 INTERVAL i;
844 INTERVAL temp;
845 bool eobp = 0;
846 Lisp_Object parent;
847 ptrdiff_t offset;
848
849 eassert (TOTAL_LENGTH (tree) > 0);
850
851 GET_INTERVAL_OBJECT (parent, tree);
852 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
853
854 /* If inserting at point-max of a buffer, that position will be out
855 of range. Remember that buffer positions are 1-based. */
856 if (position >= TOTAL_LENGTH (tree) + offset)
857 {
858 position = TOTAL_LENGTH (tree) + offset;
859 eobp = 1;
860 }
861
862 i = find_interval (tree, position);
863
864 /* If in middle of an interval which is not sticky either way,
865 we must not just give its properties to the insertion.
866 So split this interval at the insertion point.
867
868 Originally, the if condition here was this:
869 (! (position == i->position || eobp)
870 && END_NONSTICKY_P (i)
871 && FRONT_NONSTICKY_P (i))
872 But, these macros are now unreliable because of introduction of
873 Vtext_property_default_nonsticky. So, we always check properties
874 one by one if POSITION is in middle of an interval. */
875 if (! (position == i->position || eobp))
876 {
877 Lisp_Object tail;
878 Lisp_Object front, rear;
879
880 tail = i->plist;
881
882 /* Properties font-sticky and rear-nonsticky override
883 Vtext_property_default_nonsticky. So, if they are t, we can
884 skip one by one checking of properties. */
885 rear = textget (i->plist, Qrear_nonsticky);
886 if (! CONSP (rear) && ! NILP (rear))
887 {
888 /* All properties are nonsticky. We split the interval. */
889 goto check_done;
890 }
891 front = textget (i->plist, Qfront_sticky);
892 if (! CONSP (front) && ! NILP (front))
893 {
894 /* All properties are sticky. We don't split the interval. */
895 tail = Qnil;
896 goto check_done;
897 }
898
899 /* Does any actual property pose an actual problem? We break
900 the loop if we find a nonsticky property. */
901 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
902 {
903 Lisp_Object prop, tmp;
904 prop = XCAR (tail);
905
906 /* Is this particular property front-sticky? */
907 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
908 continue;
909
910 /* Is this particular property rear-nonsticky? */
911 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
912 break;
913
914 /* Is this particular property recorded as sticky or
915 nonsticky in Vtext_property_default_nonsticky? */
916 tmp = Fassq (prop, Vtext_property_default_nonsticky);
917 if (CONSP (tmp))
918 {
919 if (NILP (tmp))
920 continue;
921 break;
922 }
923
924 /* By default, a text property is rear-sticky, thus we
925 continue the loop. */
926 }
927
928 check_done:
929 /* If any property is a real problem, split the interval. */
930 if (! NILP (tail))
931 {
932 temp = split_interval_right (i, position - i->position);
933 copy_properties (i, temp);
934 i = temp;
935 }
936 }
937
938 /* If we are positioned between intervals, check the stickiness of
939 both of them. We have to do this too, if we are at BEG or Z. */
940 if (position == i->position || eobp)
941 {
942 register INTERVAL prev;
943
944 if (position == BEG)
945 prev = 0;
946 else if (eobp)
947 {
948 prev = i;
949 i = 0;
950 }
951 else
952 prev = previous_interval (i);
953
954 /* Even if we are positioned between intervals, we default
955 to the left one if it exists. We extend it now and split
956 off a part later, if stickiness demands it. */
957 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
958 {
959 temp->total_length += length;
960 temp = balance_possible_root_interval (temp);
961 }
962
963 /* If at least one interval has sticky properties,
964 we check the stickiness property by property.
965
966 Originally, the if condition here was this:
967 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
968 But, these macros are now unreliable because of introduction
969 of Vtext_property_default_nonsticky. So, we always have to
970 check stickiness of properties one by one. If cache of
971 stickiness is implemented in the future, we may be able to
972 use those macros again. */
973 if (1)
974 {
975 Lisp_Object pleft, pright;
976 struct interval newi;
977
978 RESET_INTERVAL (&newi);
979 pleft = prev ? prev->plist : Qnil;
980 pright = i ? i->plist : Qnil;
981 set_interval_plist (&newi, merge_properties_sticky (pleft, pright));
982
983 if (! prev) /* i.e. position == BEG */
984 {
985 if (! intervals_equal (i, &newi))
986 {
987 i = split_interval_left (i, length);
988 set_interval_plist (i, newi.plist);
989 }
990 }
991 else if (! intervals_equal (prev, &newi))
992 {
993 prev = split_interval_right (prev, position - prev->position);
994 set_interval_plist (prev, newi.plist);
995 if (i && intervals_equal (prev, i))
996 merge_interval_right (prev);
997 }
998
999 /* We will need to update the cache here later. */
1000 }
1001 else if (! prev && ! NILP (i->plist))
1002 {
1003 /* Just split off a new interval at the left.
1004 Since I wasn't front-sticky, the empty plist is ok. */
1005 i = split_interval_left (i, length);
1006 }
1007 }
1008
1009 /* Otherwise just extend the interval. */
1010 else
1011 {
1012 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1013 {
1014 temp->total_length += length;
1015 temp = balance_possible_root_interval (temp);
1016 }
1017 }
1018
1019 return tree;
1020 }
1021
1022 /* Any property might be front-sticky on the left, rear-sticky on the left,
1023 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1024 can be arranged in a matrix with rows denoting the left conditions and
1025 columns denoting the right conditions:
1026 _ __ _
1027 _ FR FR FR FR
1028 FR__ 0 1 2 3
1029 _FR 4 5 6 7
1030 FR 8 9 A B
1031 FR C D E F
1032
1033 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1034 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1035 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1036 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1037 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1038 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1039 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1040 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1041
1042 We inherit from whoever has a sticky side facing us. If both sides
1043 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1044 non-nil value for the current property. If both sides do, then we take
1045 from the left.
1046
1047 When we inherit a property, we get its stickiness as well as its value.
1048 So, when we merge the above two lists, we expect to get this:
1049
1050 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1051 rear-nonsticky (p6 pa)
1052 p0 L p1 L p2 L p3 L p6 R p7 R
1053 pa R pb R pc L pd L pe L pf L)
1054
1055 The optimizable special cases are:
1056 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1057 left rear-nonsticky = t, right front-sticky = t (inherit right)
1058 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1059 */
1060
1061 static Lisp_Object
1062 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1063 {
1064 Lisp_Object props, front, rear;
1065 Lisp_Object lfront, lrear, rfront, rrear;
1066 Lisp_Object tail1, tail2, sym, lval, rval, cat;
1067 bool use_left, use_right, lpresent;
1068
1069 props = Qnil;
1070 front = Qnil;
1071 rear = Qnil;
1072 lfront = textget (pleft, Qfront_sticky);
1073 lrear = textget (pleft, Qrear_nonsticky);
1074 rfront = textget (pright, Qfront_sticky);
1075 rrear = textget (pright, Qrear_nonsticky);
1076
1077 /* Go through each element of PRIGHT. */
1078 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1079 {
1080 Lisp_Object tmp;
1081
1082 sym = XCAR (tail1);
1083
1084 /* Sticky properties get special treatment. */
1085 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1086 continue;
1087
1088 rval = Fcar (XCDR (tail1));
1089 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1090 if (EQ (sym, XCAR (tail2)))
1091 break;
1092
1093 /* Indicate whether the property is explicitly defined on the left.
1094 (We know it is defined explicitly on the right
1095 because otherwise we don't get here.) */
1096 lpresent = ! NILP (tail2);
1097 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1098
1099 /* Even if lrear or rfront say nothing about the stickiness of
1100 SYM, Vtext_property_default_nonsticky may give default
1101 stickiness to SYM. */
1102 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1103 use_left = (lpresent
1104 && ! (TMEM (sym, lrear)
1105 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1106 use_right = (TMEM (sym, rfront)
1107 || (CONSP (tmp) && NILP (XCDR (tmp))));
1108 if (use_left && use_right)
1109 {
1110 if (NILP (lval))
1111 use_left = 0;
1112 else if (NILP (rval))
1113 use_right = 0;
1114 }
1115 if (use_left)
1116 {
1117 /* We build props as (value sym ...) rather than (sym value ...)
1118 because we plan to nreverse it when we're done. */
1119 props = Fcons (lval, Fcons (sym, props));
1120 if (TMEM (sym, lfront))
1121 front = Fcons (sym, front);
1122 if (TMEM (sym, lrear))
1123 rear = Fcons (sym, rear);
1124 }
1125 else if (use_right)
1126 {
1127 props = Fcons (rval, Fcons (sym, props));
1128 if (TMEM (sym, rfront))
1129 front = Fcons (sym, front);
1130 if (TMEM (sym, rrear))
1131 rear = Fcons (sym, rear);
1132 }
1133 }
1134
1135 /* Now go through each element of PLEFT. */
1136 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1137 {
1138 Lisp_Object tmp;
1139
1140 sym = XCAR (tail2);
1141
1142 /* Sticky properties get special treatment. */
1143 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1144 continue;
1145
1146 /* If sym is in PRIGHT, we've already considered it. */
1147 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1148 if (EQ (sym, XCAR (tail1)))
1149 break;
1150 if (! NILP (tail1))
1151 continue;
1152
1153 lval = Fcar (XCDR (tail2));
1154
1155 /* Even if lrear or rfront say nothing about the stickiness of
1156 SYM, Vtext_property_default_nonsticky may give default
1157 stickiness to SYM. */
1158 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1159
1160 /* Since rval is known to be nil in this loop, the test simplifies. */
1161 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1162 {
1163 props = Fcons (lval, Fcons (sym, props));
1164 if (TMEM (sym, lfront))
1165 front = Fcons (sym, front);
1166 }
1167 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1168 {
1169 /* The value is nil, but we still inherit the stickiness
1170 from the right. */
1171 front = Fcons (sym, front);
1172 if (TMEM (sym, rrear))
1173 rear = Fcons (sym, rear);
1174 }
1175 }
1176 props = Fnreverse (props);
1177 if (! NILP (rear))
1178 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1179
1180 cat = textget (props, Qcategory);
1181 if (! NILP (front)
1182 &&
1183 /* If we have inherited a front-stick category property that is t,
1184 we don't need to set up a detailed one. */
1185 ! (! NILP (cat) && SYMBOLP (cat)
1186 && EQ (Fget (cat, Qfront_sticky), Qt)))
1187 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1188 return props;
1189 }
1190
1191 \f
1192 /* Delete a node I from its interval tree by merging its subtrees
1193 into one subtree which is then returned. Caller is responsible for
1194 storing the resulting subtree into its parent. */
1195
1196 static INTERVAL
1197 delete_node (register INTERVAL i)
1198 {
1199 register INTERVAL migrate, this;
1200 register ptrdiff_t migrate_amt;
1201
1202 if (!i->left)
1203 return i->right;
1204 if (!i->right)
1205 return i->left;
1206
1207 migrate = i->left;
1208 migrate_amt = i->left->total_length;
1209 this = i->right;
1210 this->total_length += migrate_amt;
1211 while (this->left)
1212 {
1213 this = this->left;
1214 this->total_length += migrate_amt;
1215 }
1216 set_interval_left (this, migrate);
1217 set_interval_parent (migrate, this);
1218 eassert (LENGTH (this) > 0);
1219 eassert (LENGTH (i->right) > 0);
1220
1221 return i->right;
1222 }
1223
1224 /* Delete interval I from its tree by calling `delete_node'
1225 and properly connecting the resultant subtree.
1226
1227 I is presumed to be empty; that is, no adjustments are made
1228 for the length of I. */
1229
1230 static void
1231 delete_interval (register INTERVAL i)
1232 {
1233 register INTERVAL parent;
1234 ptrdiff_t amt = LENGTH (i);
1235
1236 eassert (amt == 0); /* Only used on zero-length intervals now. */
1237
1238 if (ROOT_INTERVAL_P (i))
1239 {
1240 Lisp_Object owner;
1241 GET_INTERVAL_OBJECT (owner, i);
1242 parent = delete_node (i);
1243 if (parent)
1244 set_interval_object (parent, owner);
1245
1246 if (BUFFERP (owner))
1247 set_buffer_intervals (XBUFFER (owner), parent);
1248 else if (STRINGP (owner))
1249 set_string_intervals (owner, parent);
1250 else
1251 emacs_abort ();
1252
1253 return;
1254 }
1255
1256 parent = INTERVAL_PARENT (i);
1257 if (AM_LEFT_CHILD (i))
1258 {
1259 set_interval_left (parent, delete_node (i));
1260 if (parent->left)
1261 set_interval_parent (parent->left, parent);
1262 }
1263 else
1264 {
1265 set_interval_right (parent, delete_node (i));
1266 if (parent->right)
1267 set_interval_parent (parent->right, parent);
1268 }
1269 }
1270 \f
1271 /* Find the interval in TREE corresponding to the relative position
1272 FROM and delete as much as possible of AMOUNT from that interval.
1273 Return the amount actually deleted, and if the interval was
1274 zeroed-out, delete that interval node from the tree.
1275
1276 Note that FROM is actually origin zero, aka relative to the
1277 leftmost edge of tree. This is appropriate since we call ourselves
1278 recursively on subtrees.
1279
1280 Do this by recursing down TREE to the interval in question, and
1281 deleting the appropriate amount of text. */
1282
1283 static ptrdiff_t
1284 interval_deletion_adjustment (register INTERVAL tree, register ptrdiff_t from,
1285 register ptrdiff_t amount)
1286 {
1287 register ptrdiff_t relative_position = from;
1288
1289 if (!tree)
1290 return 0;
1291
1292 /* Left branch. */
1293 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1294 {
1295 ptrdiff_t subtract = interval_deletion_adjustment (tree->left,
1296 relative_position,
1297 amount);
1298 tree->total_length -= subtract;
1299 eassert (LENGTH (tree) > 0);
1300 return subtract;
1301 }
1302 /* Right branch. */
1303 else if (relative_position >= (TOTAL_LENGTH (tree)
1304 - RIGHT_TOTAL_LENGTH (tree)))
1305 {
1306 ptrdiff_t subtract;
1307
1308 relative_position -= (tree->total_length
1309 - RIGHT_TOTAL_LENGTH (tree));
1310 subtract = interval_deletion_adjustment (tree->right,
1311 relative_position,
1312 amount);
1313 tree->total_length -= subtract;
1314 eassert (LENGTH (tree) > 0);
1315 return subtract;
1316 }
1317 /* Here -- this node. */
1318 else
1319 {
1320 /* How much can we delete from this interval? */
1321 ptrdiff_t my_amount = ((tree->total_length
1322 - RIGHT_TOTAL_LENGTH (tree))
1323 - relative_position);
1324
1325 if (amount > my_amount)
1326 amount = my_amount;
1327
1328 tree->total_length -= amount;
1329 eassert (LENGTH (tree) >= 0);
1330 if (LENGTH (tree) == 0)
1331 delete_interval (tree);
1332
1333 return amount;
1334 }
1335
1336 /* Never reach here. */
1337 }
1338
1339 /* Effect the adjustments necessary to the interval tree of BUFFER to
1340 correspond to the deletion of LENGTH characters from that buffer
1341 text. The deletion is effected at position START (which is a
1342 buffer position, i.e. origin 1). */
1343
1344 static void
1345 adjust_intervals_for_deletion (struct buffer *buffer,
1346 ptrdiff_t start, ptrdiff_t length)
1347 {
1348 ptrdiff_t left_to_delete = length;
1349 INTERVAL tree = buffer_intervals (buffer);
1350 Lisp_Object parent;
1351 ptrdiff_t offset;
1352
1353 GET_INTERVAL_OBJECT (parent, tree);
1354 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1355
1356 if (!tree)
1357 return;
1358
1359 eassert (start <= offset + TOTAL_LENGTH (tree)
1360 && start + length <= offset + TOTAL_LENGTH (tree));
1361
1362 if (length == TOTAL_LENGTH (tree))
1363 {
1364 set_buffer_intervals (buffer, NULL);
1365 return;
1366 }
1367
1368 if (ONLY_INTERVAL_P (tree))
1369 {
1370 tree->total_length -= length;
1371 eassert (LENGTH (tree) > 0);
1372 return;
1373 }
1374
1375 if (start > offset + TOTAL_LENGTH (tree))
1376 start = offset + TOTAL_LENGTH (tree);
1377 while (left_to_delete > 0)
1378 {
1379 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1380 left_to_delete);
1381 tree = buffer_intervals (buffer);
1382 if (left_to_delete == tree->total_length)
1383 {
1384 set_buffer_intervals (buffer, NULL);
1385 return;
1386 }
1387 }
1388 }
1389 \f
1390 /* Make the adjustments necessary to the interval tree of BUFFER to
1391 represent an addition or deletion of LENGTH characters starting
1392 at position START. Addition or deletion is indicated by the sign
1393 of LENGTH. */
1394
1395 void
1396 offset_intervals (struct buffer *buffer, ptrdiff_t start, ptrdiff_t length)
1397 {
1398 if (!buffer_intervals (buffer) || length == 0)
1399 return;
1400
1401 if (length > 0)
1402 adjust_intervals_for_insertion (buffer_intervals (buffer),
1403 start, length);
1404 else
1405 adjust_intervals_for_deletion (buffer, start, -length);
1406 }
1407 \f
1408 /* Merge interval I with its lexicographic successor. The resulting
1409 interval is returned, and has the properties of the original
1410 successor. The properties of I are lost. I is removed from the
1411 interval tree.
1412
1413 IMPORTANT:
1414 The caller must verify that this is not the last (rightmost)
1415 interval. */
1416
1417 static INTERVAL
1418 merge_interval_right (register INTERVAL i)
1419 {
1420 register ptrdiff_t absorb = LENGTH (i);
1421 register INTERVAL successor;
1422
1423 /* Find the succeeding interval. */
1424 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1425 as we descend. */
1426 {
1427 successor = i->right;
1428 while (! NULL_LEFT_CHILD (successor))
1429 {
1430 successor->total_length += absorb;
1431 eassert (LENGTH (successor) > 0);
1432 successor = successor->left;
1433 }
1434
1435 successor->total_length += absorb;
1436 eassert (LENGTH (successor) > 0);
1437 delete_interval (i);
1438 return successor;
1439 }
1440
1441 /* Zero out this interval. */
1442 i->total_length -= absorb;
1443 eassert (TOTAL_LENGTH (i) >= 0);
1444
1445 successor = i;
1446 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1447 we ascend. */
1448 {
1449 if (AM_LEFT_CHILD (successor))
1450 {
1451 successor = INTERVAL_PARENT (successor);
1452 delete_interval (i);
1453 return successor;
1454 }
1455
1456 successor = INTERVAL_PARENT (successor);
1457 successor->total_length -= absorb;
1458 eassert (LENGTH (successor) > 0);
1459 }
1460
1461 /* This must be the rightmost or last interval and cannot
1462 be merged right. The caller should have known. */
1463 emacs_abort ();
1464 }
1465 \f
1466 /* Merge interval I with its lexicographic predecessor. The resulting
1467 interval is returned, and has the properties of the original predecessor.
1468 The properties of I are lost. Interval node I is removed from the tree.
1469
1470 IMPORTANT:
1471 The caller must verify that this is not the first (leftmost) interval. */
1472
1473 INTERVAL
1474 merge_interval_left (register INTERVAL i)
1475 {
1476 register ptrdiff_t absorb = LENGTH (i);
1477 register INTERVAL predecessor;
1478
1479 /* Find the preceding interval. */
1480 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1481 adding ABSORB as we go. */
1482 {
1483 predecessor = i->left;
1484 while (! NULL_RIGHT_CHILD (predecessor))
1485 {
1486 predecessor->total_length += absorb;
1487 eassert (LENGTH (predecessor) > 0);
1488 predecessor = predecessor->right;
1489 }
1490
1491 predecessor->total_length += absorb;
1492 eassert (LENGTH (predecessor) > 0);
1493 delete_interval (i);
1494 return predecessor;
1495 }
1496
1497 /* Zero out this interval. */
1498 i->total_length -= absorb;
1499 eassert (TOTAL_LENGTH (i) >= 0);
1500
1501 predecessor = i;
1502 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1503 subtracting ABSORB. */
1504 {
1505 if (AM_RIGHT_CHILD (predecessor))
1506 {
1507 predecessor = INTERVAL_PARENT (predecessor);
1508 delete_interval (i);
1509 return predecessor;
1510 }
1511
1512 predecessor = INTERVAL_PARENT (predecessor);
1513 predecessor->total_length -= absorb;
1514 eassert (LENGTH (predecessor) > 0);
1515 }
1516
1517 /* This must be the leftmost or first interval and cannot
1518 be merged left. The caller should have known. */
1519 emacs_abort ();
1520 }
1521 \f
1522 /* Create a copy of SOURCE but with the default value of UP. */
1523
1524 static INTERVAL
1525 reproduce_interval (INTERVAL source)
1526 {
1527 register INTERVAL target = make_interval ();
1528
1529 eassert (LENGTH (source) > 0);
1530
1531 target->total_length = source->total_length;
1532 target->position = source->position;
1533
1534 copy_properties (source, target);
1535
1536 if (! NULL_LEFT_CHILD (source))
1537 set_interval_left (target, reproduce_tree (source->left, target));
1538 if (! NULL_RIGHT_CHILD (source))
1539 set_interval_right (target, reproduce_tree (source->right, target));
1540
1541 eassert (LENGTH (target) > 0);
1542 return target;
1543 }
1544
1545 /* Make an exact copy of interval tree SOURCE which descends from
1546 PARENT. This is done by recursing through SOURCE, copying
1547 the current interval and its properties, and then adjusting
1548 the pointers of the copy. */
1549
1550 static INTERVAL
1551 reproduce_tree (INTERVAL source, INTERVAL parent)
1552 {
1553 INTERVAL target = reproduce_interval (source);
1554 set_interval_parent (target, parent);
1555 return target;
1556 }
1557
1558 static INTERVAL
1559 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1560 {
1561 INTERVAL target = reproduce_interval (source);
1562 set_interval_object (target, parent);
1563 return target;
1564 }
1565 \f
1566 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1567 LENGTH is the length of the text in SOURCE.
1568
1569 The `position' field of the SOURCE intervals is assumed to be
1570 consistent with its parent; therefore, SOURCE must be an
1571 interval tree made with copy_interval or must be the whole
1572 tree of a buffer or a string.
1573
1574 This is used in insdel.c when inserting Lisp_Strings into the
1575 buffer. The text corresponding to SOURCE is already in the buffer
1576 when this is called. The intervals of new tree are a copy of those
1577 belonging to the string being inserted; intervals are never
1578 shared.
1579
1580 If the inserted text had no intervals associated, and we don't
1581 want to inherit the surrounding text's properties, this function
1582 simply returns -- offset_intervals should handle placing the
1583 text in the correct interval, depending on the sticky bits.
1584
1585 If the inserted text had properties (intervals), then there are two
1586 cases -- either insertion happened in the middle of some interval,
1587 or between two intervals.
1588
1589 If the text goes into the middle of an interval, then new intervals
1590 are created in the middle, and new text has the union of its properties
1591 and those of the text into which it was inserted.
1592
1593 If the text goes between two intervals, then if neither interval
1594 had its appropriate sticky property set (front_sticky, rear_sticky),
1595 the new text has only its properties. If one of the sticky properties
1596 is set, then the new text "sticks" to that region and its properties
1597 depend on merging as above. If both the preceding and succeeding
1598 intervals to the new text are "sticky", then the new text retains
1599 only its properties, as if neither sticky property were set. Perhaps
1600 we should consider merging all three sets of properties onto the new
1601 text... */
1602
1603 void
1604 graft_intervals_into_buffer (INTERVAL source, ptrdiff_t position,
1605 ptrdiff_t length, struct buffer *buffer,
1606 bool inherit)
1607 {
1608 INTERVAL tree = buffer_intervals (buffer);
1609 INTERVAL under, over, this;
1610 ptrdiff_t over_used;
1611
1612 /* If the new text has no properties, then with inheritance it
1613 becomes part of whatever interval it was inserted into.
1614 To prevent inheritance, we must clear out the properties
1615 of the newly inserted text. */
1616 if (!source)
1617 {
1618 Lisp_Object buf;
1619 if (!inherit && tree && length > 0)
1620 {
1621 XSETBUFFER (buf, buffer);
1622 set_text_properties_1 (make_number (position),
1623 make_number (position + length),
1624 Qnil, buf,
1625 find_interval (tree, position));
1626 }
1627 /* Shouldn't be necessary. --Stef */
1628 buffer_balance_intervals (buffer);
1629 return;
1630 }
1631
1632 eassert (length == TOTAL_LENGTH (source));
1633
1634 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == length)
1635 {
1636 /* The inserted text constitutes the whole buffer, so
1637 simply copy over the interval structure. */
1638 Lisp_Object buf;
1639
1640 XSETBUFFER (buf, buffer);
1641 set_buffer_intervals (buffer, reproduce_tree_obj (source, buf));
1642 buffer_intervals (buffer)->position = BUF_BEG (buffer);
1643 eassert (buffer_intervals (buffer)->up_obj == 1);
1644 return;
1645 }
1646 else if (!tree)
1647 {
1648 /* Create an interval tree in which to place a copy
1649 of the intervals of the inserted string. */
1650 Lisp_Object buf;
1651
1652 XSETBUFFER (buf, buffer);
1653 tree = create_root_interval (buf);
1654 }
1655 /* Paranoia -- the text has already been added, so
1656 this buffer should be of non-zero length. */
1657 eassert (TOTAL_LENGTH (tree) > 0);
1658
1659 this = under = find_interval (tree, position);
1660 eassert (under);
1661 over = find_interval (source, interval_start_pos (source));
1662
1663 /* Here for insertion in the middle of an interval.
1664 Split off an equivalent interval to the right,
1665 then don't bother with it any more. */
1666
1667 if (position > under->position)
1668 {
1669 INTERVAL end_unchanged
1670 = split_interval_left (this, position - under->position);
1671 copy_properties (under, end_unchanged);
1672 under->position = position;
1673 }
1674 else
1675 {
1676 /* This call may have some effect because previous_interval may
1677 update `position' fields of intervals. Thus, don't ignore it
1678 for the moment. Someone please tell me the truth (K.Handa). */
1679 INTERVAL prev = previous_interval (under);
1680 (void) prev;
1681 #if 0
1682 /* But, this code surely has no effect. And, anyway,
1683 END_NONSTICKY_P is unreliable now. */
1684 if (prev && !END_NONSTICKY_P (prev))
1685 prev = 0;
1686 #endif /* 0 */
1687 }
1688
1689 /* Insertion is now at beginning of UNDER. */
1690
1691 /* The inserted text "sticks" to the interval `under',
1692 which means it gets those properties.
1693 The properties of under are the result of
1694 adjust_intervals_for_insertion, so stickiness has
1695 already been taken care of. */
1696
1697 /* OVER is the interval we are copying from next.
1698 OVER_USED says how many characters' worth of OVER
1699 have already been copied into target intervals.
1700 UNDER is the next interval in the target. */
1701 over_used = 0;
1702 while (over)
1703 {
1704 /* If UNDER is longer than OVER, split it. */
1705 if (LENGTH (over) - over_used < LENGTH (under))
1706 {
1707 this = split_interval_left (under, LENGTH (over) - over_used);
1708 copy_properties (under, this);
1709 }
1710 else
1711 this = under;
1712
1713 /* THIS is now the interval to copy or merge into.
1714 OVER covers all of it. */
1715 if (inherit)
1716 merge_properties (over, this);
1717 else
1718 copy_properties (over, this);
1719
1720 /* If THIS and OVER end at the same place,
1721 advance OVER to a new source interval. */
1722 if (LENGTH (this) == LENGTH (over) - over_used)
1723 {
1724 over = next_interval (over);
1725 over_used = 0;
1726 }
1727 else
1728 /* Otherwise just record that more of OVER has been used. */
1729 over_used += LENGTH (this);
1730
1731 /* Always advance to a new target interval. */
1732 under = next_interval (this);
1733 }
1734
1735 buffer_balance_intervals (buffer);
1736 }
1737
1738 /* Get the value of property PROP from PLIST,
1739 which is the plist of an interval.
1740 We check for direct properties, for categories with property PROP,
1741 and for PROP appearing on the default-text-properties list. */
1742
1743 Lisp_Object
1744 textget (Lisp_Object plist, register Lisp_Object prop)
1745 {
1746 return lookup_char_property (plist, prop, 1);
1747 }
1748
1749 Lisp_Object
1750 lookup_char_property (Lisp_Object plist, Lisp_Object prop, bool textprop)
1751 {
1752 Lisp_Object tail, fallback = Qnil;
1753
1754 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1755 {
1756 register Lisp_Object tem;
1757 tem = XCAR (tail);
1758 if (EQ (prop, tem))
1759 return Fcar (XCDR (tail));
1760 if (EQ (tem, Qcategory))
1761 {
1762 tem = Fcar (XCDR (tail));
1763 if (SYMBOLP (tem))
1764 fallback = Fget (tem, prop);
1765 }
1766 }
1767
1768 if (! NILP (fallback))
1769 return fallback;
1770 /* Check for alternative properties. */
1771 tail = Fassq (prop, Vchar_property_alias_alist);
1772 if (! NILP (tail))
1773 {
1774 tail = XCDR (tail);
1775 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1776 fallback = Fplist_get (plist, XCAR (tail));
1777 }
1778
1779 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1780 fallback = Fplist_get (Vdefault_text_properties, prop);
1781 return fallback;
1782 }
1783
1784 \f
1785 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1786 byte position BYTEPOS. */
1787
1788 void
1789 temp_set_point_both (struct buffer *buffer,
1790 ptrdiff_t charpos, ptrdiff_t bytepos)
1791 {
1792 /* In a single-byte buffer, the two positions must be equal. */
1793 eassert (BUF_ZV (buffer) != BUF_ZV_BYTE (buffer) || charpos == bytepos);
1794
1795 eassert (charpos <= bytepos);
1796 eassert (charpos <= BUF_ZV (buffer) || BUF_BEGV (buffer) <= charpos);
1797
1798 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1799 }
1800
1801 /* Set point "temporarily", without checking any text properties. */
1802
1803 void
1804 temp_set_point (struct buffer *buffer, ptrdiff_t charpos)
1805 {
1806 temp_set_point_both (buffer, charpos,
1807 buf_charpos_to_bytepos (buffer, charpos));
1808 }
1809
1810 /* Set point in BUFFER to CHARPOS. If the target position is
1811 before an intangible character, move to an ok place. */
1812
1813 void
1814 set_point (ptrdiff_t charpos)
1815 {
1816 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1817 }
1818
1819 /* Set PT from MARKER's clipped position. */
1820
1821 void
1822 set_point_from_marker (Lisp_Object marker)
1823 {
1824 if (XMARKER (marker)->buffer != current_buffer)
1825 signal_error ("Marker points into wrong buffer", marker);
1826 set_point_both
1827 (clip_to_bounds (BEGV, marker_position (marker), ZV),
1828 clip_to_bounds (BEGV_BYTE, marker_byte_position (marker), ZV_BYTE));
1829 }
1830
1831 /* If there's an invisible character at position POS + TEST_OFFS in the
1832 current buffer, and the invisible property has a `stickiness' such that
1833 inserting a character at position POS would inherit the property it,
1834 return POS + ADJ, otherwise return POS. If TEST_INTANG, intangibility
1835 is required as well as invisibility.
1836
1837 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1838
1839 Note that `stickiness' is determined by overlay marker insertion types,
1840 if the invisible property comes from an overlay. */
1841
1842 static ptrdiff_t
1843 adjust_for_invis_intang (ptrdiff_t pos, ptrdiff_t test_offs, ptrdiff_t adj,
1844 bool test_intang)
1845 {
1846 Lisp_Object invis_propval, invis_overlay;
1847 Lisp_Object test_pos;
1848
1849 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1850 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1851 return pos;
1852
1853 test_pos = make_number (pos + test_offs);
1854
1855 invis_propval
1856 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1857 &invis_overlay);
1858
1859 if ((!test_intang
1860 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1861 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1862 /* This next test is true if the invisible property has a stickiness
1863 such that an insertion at POS would inherit it. */
1864 && (NILP (invis_overlay)
1865 /* Invisible property is from a text-property. */
1866 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1867 == (test_offs == 0 ? 1 : -1))
1868 /* Invisible property is from an overlay. */
1869 : (test_offs == 0
1870 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1871 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1872 pos += adj;
1873
1874 return pos;
1875 }
1876
1877 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1878 position BYTEPOS. If the target position is
1879 before an intangible character, move to an ok place. */
1880
1881 void
1882 set_point_both (ptrdiff_t charpos, ptrdiff_t bytepos)
1883 {
1884 register INTERVAL to, from, toprev, fromprev;
1885 ptrdiff_t buffer_point;
1886 ptrdiff_t old_position = PT;
1887 /* This ensures that we move forward past intangible text when the
1888 initial position is the same as the destination, in the rare
1889 instances where this is important, e.g. in line-move-finish
1890 (simple.el). */
1891 bool backwards = charpos < old_position;
1892 bool have_overlays;
1893 ptrdiff_t original_position;
1894
1895 bset_point_before_scroll (current_buffer, Qnil);
1896
1897 if (charpos == PT)
1898 return;
1899
1900 /* In a single-byte buffer, the two positions must be equal. */
1901 eassert (ZV != ZV_BYTE || charpos == bytepos);
1902
1903 /* Check this now, before checking if the buffer has any intervals.
1904 That way, we can catch conditions which break this sanity check
1905 whether or not there are intervals in the buffer. */
1906 eassert (charpos <= ZV && charpos >= BEGV);
1907
1908 have_overlays = buffer_has_overlays ();
1909
1910 /* If we have no text properties and overlays,
1911 then we can do it quickly. */
1912 if (!buffer_intervals (current_buffer) && ! have_overlays)
1913 {
1914 temp_set_point_both (current_buffer, charpos, bytepos);
1915 return;
1916 }
1917
1918 /* Set TO to the interval containing the char after CHARPOS,
1919 and TOPREV to the interval containing the char before CHARPOS.
1920 Either one may be null. They may be equal. */
1921 to = find_interval (buffer_intervals (current_buffer), charpos);
1922 if (charpos == BEGV)
1923 toprev = 0;
1924 else if (to && to->position == charpos)
1925 toprev = previous_interval (to);
1926 else
1927 toprev = to;
1928
1929 buffer_point = (PT == ZV ? ZV - 1 : PT);
1930
1931 /* Set FROM to the interval containing the char after PT,
1932 and FROMPREV to the interval containing the char before PT.
1933 Either one may be null. They may be equal. */
1934 /* We could cache this and save time. */
1935 from = find_interval (buffer_intervals (current_buffer), buffer_point);
1936 if (buffer_point == BEGV)
1937 fromprev = 0;
1938 else if (from && from->position == PT)
1939 fromprev = previous_interval (from);
1940 else if (buffer_point != PT)
1941 fromprev = from, from = 0;
1942 else
1943 fromprev = from;
1944
1945 /* Moving within an interval. */
1946 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1947 && ! have_overlays)
1948 {
1949 temp_set_point_both (current_buffer, charpos, bytepos);
1950 return;
1951 }
1952
1953 original_position = charpos;
1954
1955 /* If the new position is between two intangible characters
1956 with the same intangible property value,
1957 move forward or backward until a change in that property. */
1958 if (NILP (Vinhibit_point_motion_hooks)
1959 && ((to && toprev)
1960 || have_overlays)
1961 /* Intangibility never stops us from positioning at the beginning
1962 or end of the buffer, so don't bother checking in that case. */
1963 && charpos != BEGV && charpos != ZV)
1964 {
1965 Lisp_Object pos;
1966 Lisp_Object intangible_propval;
1967
1968 if (backwards)
1969 {
1970 /* If the preceding character is both intangible and invisible,
1971 and the invisible property is `rear-sticky', perturb it so
1972 that the search starts one character earlier -- this ensures
1973 that point can never move to the end of an invisible/
1974 intangible/rear-sticky region. */
1975 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
1976
1977 XSETINT (pos, charpos);
1978
1979 /* If following char is intangible,
1980 skip back over all chars with matching intangible property. */
1981
1982 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
1983
1984 if (! NILP (intangible_propval))
1985 {
1986 while (XINT (pos) > BEGV
1987 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1988 Qintangible, Qnil),
1989 intangible_propval))
1990 pos = Fprevious_char_property_change (pos, Qnil);
1991
1992 /* Set CHARPOS from POS, and if the final intangible character
1993 that we skipped over is also invisible, and the invisible
1994 property is `front-sticky', perturb it to be one character
1995 earlier -- this ensures that point can never move to the
1996 beginning of an invisible/intangible/front-sticky region. */
1997 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
1998 }
1999 }
2000 else
2001 {
2002 /* If the following character is both intangible and invisible,
2003 and the invisible property is `front-sticky', perturb it so
2004 that the search starts one character later -- this ensures
2005 that point can never move to the beginning of an
2006 invisible/intangible/front-sticky region. */
2007 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2008
2009 XSETINT (pos, charpos);
2010
2011 /* If preceding char is intangible,
2012 skip forward over all chars with matching intangible property. */
2013
2014 intangible_propval = Fget_char_property (make_number (charpos - 1),
2015 Qintangible, Qnil);
2016
2017 if (! NILP (intangible_propval))
2018 {
2019 while (XINT (pos) < ZV
2020 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2021 intangible_propval))
2022 pos = Fnext_char_property_change (pos, Qnil);
2023
2024 /* Set CHARPOS from POS, and if the final intangible character
2025 that we skipped over is also invisible, and the invisible
2026 property is `rear-sticky', perturb it to be one character
2027 later -- this ensures that point can never move to the
2028 end of an invisible/intangible/rear-sticky region. */
2029 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2030 }
2031 }
2032
2033 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2034 }
2035
2036 if (charpos != original_position)
2037 {
2038 /* Set TO to the interval containing the char after CHARPOS,
2039 and TOPREV to the interval containing the char before CHARPOS.
2040 Either one may be null. They may be equal. */
2041 to = find_interval (buffer_intervals (current_buffer), charpos);
2042 if (charpos == BEGV)
2043 toprev = 0;
2044 else if (to && to->position == charpos)
2045 toprev = previous_interval (to);
2046 else
2047 toprev = to;
2048 }
2049
2050 /* Here TO is the interval after the stopping point
2051 and TOPREV is the interval before the stopping point.
2052 One or the other may be null. */
2053
2054 temp_set_point_both (current_buffer, charpos, bytepos);
2055
2056 /* We run point-left and point-entered hooks here, if the
2057 two intervals are not equivalent. These hooks take
2058 (old_point, new_point) as arguments. */
2059 if (NILP (Vinhibit_point_motion_hooks)
2060 && (! intervals_equal (from, to)
2061 || ! intervals_equal (fromprev, toprev)))
2062 {
2063 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2064
2065 if (fromprev)
2066 leave_before = textget (fromprev->plist, Qpoint_left);
2067 else
2068 leave_before = Qnil;
2069
2070 if (from)
2071 leave_after = textget (from->plist, Qpoint_left);
2072 else
2073 leave_after = Qnil;
2074
2075 if (toprev)
2076 enter_before = textget (toprev->plist, Qpoint_entered);
2077 else
2078 enter_before = Qnil;
2079
2080 if (to)
2081 enter_after = textget (to->plist, Qpoint_entered);
2082 else
2083 enter_after = Qnil;
2084
2085 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2086 call2 (leave_before, make_number (old_position),
2087 make_number (charpos));
2088 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2089 call2 (leave_after, make_number (old_position),
2090 make_number (charpos));
2091
2092 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2093 call2 (enter_before, make_number (old_position),
2094 make_number (charpos));
2095 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2096 call2 (enter_after, make_number (old_position),
2097 make_number (charpos));
2098 }
2099 }
2100 \f
2101 /* Move point to POSITION, unless POSITION is inside an intangible
2102 segment that reaches all the way to point. */
2103
2104 void
2105 move_if_not_intangible (ptrdiff_t position)
2106 {
2107 Lisp_Object pos;
2108 Lisp_Object intangible_propval;
2109
2110 XSETINT (pos, position);
2111
2112 if (! NILP (Vinhibit_point_motion_hooks))
2113 /* If intangible is inhibited, always move point to POSITION. */
2114 ;
2115 else if (PT < position && XINT (pos) < ZV)
2116 {
2117 /* We want to move forward, so check the text before POSITION. */
2118
2119 intangible_propval = Fget_char_property (pos,
2120 Qintangible, Qnil);
2121
2122 /* If following char is intangible,
2123 skip back over all chars with matching intangible property. */
2124 if (! NILP (intangible_propval))
2125 while (XINT (pos) > BEGV
2126 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2127 Qintangible, Qnil),
2128 intangible_propval))
2129 pos = Fprevious_char_property_change (pos, Qnil);
2130 }
2131 else if (XINT (pos) > BEGV)
2132 {
2133 /* We want to move backward, so check the text after POSITION. */
2134
2135 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2136 Qintangible, Qnil);
2137
2138 /* If following char is intangible,
2139 skip forward over all chars with matching intangible property. */
2140 if (! NILP (intangible_propval))
2141 while (XINT (pos) < ZV
2142 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2143 intangible_propval))
2144 pos = Fnext_char_property_change (pos, Qnil);
2145
2146 }
2147 else if (position < BEGV)
2148 position = BEGV;
2149 else if (position > ZV)
2150 position = ZV;
2151
2152 /* If the whole stretch between PT and POSITION isn't intangible,
2153 try moving to POSITION (which means we actually move farther
2154 if POSITION is inside of intangible text). */
2155
2156 if (XINT (pos) != PT)
2157 SET_PT (position);
2158 }
2159 \f
2160 /* If text at position POS has property PROP, set *VAL to the property
2161 value, *START and *END to the beginning and end of a region that
2162 has the same property, and return true. Otherwise return false.
2163
2164 OBJECT is the string or buffer to look for the property in;
2165 nil means the current buffer. */
2166
2167 bool
2168 get_property_and_range (ptrdiff_t pos, Lisp_Object prop, Lisp_Object *val,
2169 ptrdiff_t *start, ptrdiff_t *end, Lisp_Object object)
2170 {
2171 INTERVAL i, prev, next;
2172
2173 if (NILP (object))
2174 i = find_interval (buffer_intervals (current_buffer), pos);
2175 else if (BUFFERP (object))
2176 i = find_interval (buffer_intervals (XBUFFER (object)), pos);
2177 else if (STRINGP (object))
2178 i = find_interval (string_intervals (object), pos);
2179 else
2180 emacs_abort ();
2181
2182 if (!i || (i->position + LENGTH (i) <= pos))
2183 return 0;
2184 *val = textget (i->plist, prop);
2185 if (NILP (*val))
2186 return 0;
2187
2188 next = i; /* remember it in advance */
2189 prev = previous_interval (i);
2190 while (prev
2191 && EQ (*val, textget (prev->plist, prop)))
2192 i = prev, prev = previous_interval (prev);
2193 *start = i->position;
2194
2195 next = next_interval (i);
2196 while (next && EQ (*val, textget (next->plist, prop)))
2197 i = next, next = next_interval (next);
2198 *end = i->position + LENGTH (i);
2199
2200 return 1;
2201 }
2202 \f
2203 /* Return the proper local keymap TYPE for position POSITION in
2204 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2205 specified by the PROP property, if any. Otherwise, if TYPE is
2206 `local-map' use BUFFER's local map. */
2207
2208 Lisp_Object
2209 get_local_map (ptrdiff_t position, struct buffer *buffer, Lisp_Object type)
2210 {
2211 Lisp_Object prop, lispy_position, lispy_buffer;
2212 ptrdiff_t old_begv, old_zv, old_begv_byte, old_zv_byte;
2213
2214 position = clip_to_bounds (BUF_BEGV (buffer), position, BUF_ZV (buffer));
2215
2216 /* Ignore narrowing, so that a local map continues to be valid even if
2217 the visible region contains no characters and hence no properties. */
2218 old_begv = BUF_BEGV (buffer);
2219 old_zv = BUF_ZV (buffer);
2220 old_begv_byte = BUF_BEGV_BYTE (buffer);
2221 old_zv_byte = BUF_ZV_BYTE (buffer);
2222
2223 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2224 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2225
2226 XSETFASTINT (lispy_position, position);
2227 XSETBUFFER (lispy_buffer, buffer);
2228 /* First check if the CHAR has any property. This is because when
2229 we click with the mouse, the mouse pointer is really pointing
2230 to the CHAR after POS. */
2231 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2232 /* If not, look at the POS's properties. This is necessary because when
2233 editing a field with a `local-map' property, we want insertion at the end
2234 to obey the `local-map' property. */
2235 if (NILP (prop))
2236 prop = Fget_pos_property (lispy_position, type, lispy_buffer);
2237
2238 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2239 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2240
2241 /* Use the local map only if it is valid. */
2242 prop = get_keymap (prop, 0, 0);
2243 if (CONSP (prop))
2244 return prop;
2245
2246 if (EQ (type, Qkeymap))
2247 return Qnil;
2248 else
2249 return BVAR (buffer, keymap);
2250 }
2251 \f
2252 /* Produce an interval tree reflecting the intervals in
2253 TREE from START to START + LENGTH.
2254 The new interval tree has no parent and has a starting-position of 0. */
2255
2256 INTERVAL
2257 copy_intervals (INTERVAL tree, ptrdiff_t start, ptrdiff_t length)
2258 {
2259 register INTERVAL i, new, t;
2260 register ptrdiff_t got, prevlen;
2261
2262 if (!tree || length <= 0)
2263 return NULL;
2264
2265 i = find_interval (tree, start);
2266 eassert (i && LENGTH (i) > 0);
2267
2268 /* If there is only one interval and it's the default, return nil. */
2269 if ((start - i->position + 1 + length) < LENGTH (i)
2270 && DEFAULT_INTERVAL_P (i))
2271 return NULL;
2272
2273 new = make_interval ();
2274 new->position = 0;
2275 got = (LENGTH (i) - (start - i->position));
2276 new->total_length = length;
2277 eassert (TOTAL_LENGTH (new) >= 0);
2278 copy_properties (i, new);
2279
2280 t = new;
2281 prevlen = got;
2282 while (got < length)
2283 {
2284 i = next_interval (i);
2285 t = split_interval_right (t, prevlen);
2286 copy_properties (i, t);
2287 prevlen = LENGTH (i);
2288 got += prevlen;
2289 }
2290
2291 return balance_an_interval (new);
2292 }
2293
2294 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2295
2296 void
2297 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2298 ptrdiff_t position, ptrdiff_t length)
2299 {
2300 INTERVAL interval_copy = copy_intervals (buffer_intervals (buffer),
2301 position, length);
2302 if (!interval_copy)
2303 return;
2304
2305 set_interval_object (interval_copy, string);
2306 set_string_intervals (string, interval_copy);
2307 }
2308 \f
2309 /* Return true if strings S1 and S2 have identical properties.
2310 Assume they have identical characters. */
2311
2312 bool
2313 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2314 {
2315 INTERVAL i1, i2;
2316 ptrdiff_t pos = 0;
2317 ptrdiff_t end = SCHARS (s1);
2318
2319 i1 = find_interval (string_intervals (s1), 0);
2320 i2 = find_interval (string_intervals (s2), 0);
2321
2322 while (pos < end)
2323 {
2324 /* Determine how far we can go before we reach the end of I1 or I2. */
2325 ptrdiff_t len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2326 ptrdiff_t len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2327 ptrdiff_t distance = min (len1, len2);
2328
2329 /* If we ever find a mismatch between the strings,
2330 they differ. */
2331 if (! intervals_equal (i1, i2))
2332 return 0;
2333
2334 /* Advance POS till the end of the shorter interval,
2335 and advance one or both interval pointers for the new position. */
2336 pos += distance;
2337 if (len1 == distance)
2338 i1 = next_interval (i1);
2339 if (len2 == distance)
2340 i2 = next_interval (i2);
2341 }
2342 return 1;
2343 }
2344 \f
2345 /* Recursively adjust interval I in the current buffer
2346 for setting enable_multibyte_characters to MULTI_FLAG.
2347 The range of interval I is START ... END in characters,
2348 START_BYTE ... END_BYTE in bytes. */
2349
2350 static void
2351 set_intervals_multibyte_1 (INTERVAL i, bool multi_flag,
2352 ptrdiff_t start, ptrdiff_t start_byte,
2353 ptrdiff_t end, ptrdiff_t end_byte)
2354 {
2355 /* Fix the length of this interval. */
2356 if (multi_flag)
2357 i->total_length = end - start;
2358 else
2359 i->total_length = end_byte - start_byte;
2360 eassert (TOTAL_LENGTH (i) >= 0);
2361
2362 if (TOTAL_LENGTH (i) == 0)
2363 {
2364 delete_interval (i);
2365 return;
2366 }
2367
2368 /* Recursively fix the length of the subintervals. */
2369 if (i->left)
2370 {
2371 ptrdiff_t left_end, left_end_byte;
2372
2373 if (multi_flag)
2374 {
2375 ptrdiff_t temp;
2376 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2377 left_end = BYTE_TO_CHAR (left_end_byte);
2378
2379 temp = CHAR_TO_BYTE (left_end);
2380
2381 /* If LEFT_END_BYTE is in the middle of a character,
2382 adjust it and LEFT_END to a char boundary. */
2383 if (left_end_byte > temp)
2384 {
2385 left_end_byte = temp;
2386 }
2387 if (left_end_byte < temp)
2388 {
2389 left_end--;
2390 left_end_byte = CHAR_TO_BYTE (left_end);
2391 }
2392 }
2393 else
2394 {
2395 left_end = start + LEFT_TOTAL_LENGTH (i);
2396 left_end_byte = CHAR_TO_BYTE (left_end);
2397 }
2398
2399 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2400 left_end, left_end_byte);
2401 }
2402 if (i->right)
2403 {
2404 ptrdiff_t right_start_byte, right_start;
2405
2406 if (multi_flag)
2407 {
2408 ptrdiff_t temp;
2409
2410 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2411 right_start = BYTE_TO_CHAR (right_start_byte);
2412
2413 /* If RIGHT_START_BYTE is in the middle of a character,
2414 adjust it and RIGHT_START to a char boundary. */
2415 temp = CHAR_TO_BYTE (right_start);
2416
2417 if (right_start_byte < temp)
2418 {
2419 right_start_byte = temp;
2420 }
2421 if (right_start_byte > temp)
2422 {
2423 right_start++;
2424 right_start_byte = CHAR_TO_BYTE (right_start);
2425 }
2426 }
2427 else
2428 {
2429 right_start = end - RIGHT_TOTAL_LENGTH (i);
2430 right_start_byte = CHAR_TO_BYTE (right_start);
2431 }
2432
2433 set_intervals_multibyte_1 (i->right, multi_flag,
2434 right_start, right_start_byte,
2435 end, end_byte);
2436 }
2437
2438 /* Rounding to char boundaries can theoretically make this interval
2439 spurious. If so, delete one child, and copy its property list
2440 to this interval. */
2441 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2442 {
2443 if ((i)->left)
2444 {
2445 set_interval_plist (i, i->left->plist);
2446 (i)->left->total_length = 0;
2447 delete_interval ((i)->left);
2448 }
2449 else
2450 {
2451 set_interval_plist (i, i->right->plist);
2452 (i)->right->total_length = 0;
2453 delete_interval ((i)->right);
2454 }
2455 }
2456 }
2457
2458 /* Update the intervals of the current buffer
2459 to fit the contents as multibyte (if MULTI_FLAG)
2460 or to fit them as non-multibyte (if not MULTI_FLAG). */
2461
2462 void
2463 set_intervals_multibyte (bool multi_flag)
2464 {
2465 INTERVAL i = buffer_intervals (current_buffer);
2466
2467 if (i)
2468 set_intervals_multibyte_1 (i, multi_flag, BEG, BEG_BYTE, Z, Z_BYTE);
2469 }