]> code.delx.au - gnu-emacs/blob - src/lisp.h
Add catch-all & no-signal version of PUSH_HANDLER
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
305
306 without worrying about the implementations diverging, since
307 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
308 are intended to be private to this include file, and should not be
309 used elsewhere.
310
311 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
312 functions, once most developers have access to GCC 4.8 or later and
313 can use "gcc -Og" to debug. Maybe in the year 2016. See
314 Bug#11935.
315
316 Commentary for these macros can be found near their corresponding
317 functions, below. */
318
319 #if CHECK_LISP_OBJECT_TYPE
320 # define lisp_h_XLI(o) ((o).i)
321 # define lisp_h_XIL(i) ((Lisp_Object) { i })
322 #else
323 # define lisp_h_XLI(o) (o)
324 # define lisp_h_XIL(i) (i)
325 #endif
326 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
327 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
328 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
329 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
330 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
331 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
332 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
333 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
334 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
335 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
336 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
337 #define lisp_h_NILP(x) EQ (x, Qnil)
338 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
339 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
340 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
341 #define lisp_h_SYMBOL_VAL(sym) \
342 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
343 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
344 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
345 #define lisp_h_XCAR(c) XCONS (c)->car
346 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
347 #define lisp_h_XCONS(a) \
348 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
349 #define lisp_h_XHASH(a) XUINT (a)
350 #ifndef GC_CHECK_CONS_LIST
351 # define lisp_h_check_cons_list() ((void) 0)
352 #endif
353 #if USE_LSB_TAG
354 # define lisp_h_make_number(n) \
355 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
356 # define lisp_h_XFASTINT(a) XINT (a)
357 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
358 # define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), \
360 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
361 + (char *) lispsym))
362 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
363 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
364 #endif
365
366 /* When compiling via gcc -O0, define the key operations as macros, as
367 Emacs is too slow otherwise. To disable this optimization, compile
368 with -DINLINING=false. */
369 #if (defined __NO_INLINE__ \
370 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
371 && ! (defined INLINING && ! INLINING))
372 # define XLI(o) lisp_h_XLI (o)
373 # define XIL(i) lisp_h_XIL (i)
374 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
375 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
376 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
377 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
378 # define CONSP(x) lisp_h_CONSP (x)
379 # define EQ(x, y) lisp_h_EQ (x, y)
380 # define FLOATP(x) lisp_h_FLOATP (x)
381 # define INTEGERP(x) lisp_h_INTEGERP (x)
382 # define MARKERP(x) lisp_h_MARKERP (x)
383 # define MISCP(x) lisp_h_MISCP (x)
384 # define NILP(x) lisp_h_NILP (x)
385 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
386 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
387 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
388 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
389 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
390 # define XCAR(c) lisp_h_XCAR (c)
391 # define XCDR(c) lisp_h_XCDR (c)
392 # define XCONS(a) lisp_h_XCONS (a)
393 # define XHASH(a) lisp_h_XHASH (a)
394 # ifndef GC_CHECK_CONS_LIST
395 # define check_cons_list() lisp_h_check_cons_list ()
396 # endif
397 # if USE_LSB_TAG
398 # define make_number(n) lisp_h_make_number (n)
399 # define XFASTINT(a) lisp_h_XFASTINT (a)
400 # define XINT(a) lisp_h_XINT (a)
401 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
402 # define XTYPE(a) lisp_h_XTYPE (a)
403 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
404 # endif
405 #endif
406
407
408 /* Define the fundamental Lisp data structures. */
409
410 /* This is the set of Lisp data types. If you want to define a new
411 data type, read the comments after Lisp_Fwd_Type definition
412 below. */
413
414 /* Lisp integers use 2 tags, to give them one extra bit, thus
415 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
416 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
417 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
418
419 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
420 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
421 vociferously about them. */
422 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
423 || (defined __SUNPRO_C && __STDC__))
424 #define ENUM_BF(TYPE) unsigned int
425 #else
426 #define ENUM_BF(TYPE) enum TYPE
427 #endif
428
429
430 enum Lisp_Type
431 {
432 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
433 Lisp_Symbol = 0,
434
435 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
436 whose first member indicates the subtype. */
437 Lisp_Misc = 1,
438
439 /* Integer. XINT (obj) is the integer value. */
440 Lisp_Int0 = 2,
441 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
442
443 /* String. XSTRING (object) points to a struct Lisp_String.
444 The length of the string, and its contents, are stored therein. */
445 Lisp_String = 4,
446
447 /* Vector of Lisp objects, or something resembling it.
448 XVECTOR (object) points to a struct Lisp_Vector, which contains
449 the size and contents. The size field also contains the type
450 information, if it's not a real vector object. */
451 Lisp_Vectorlike = 5,
452
453 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
454 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
455
456 Lisp_Float = 7
457 };
458
459 /* This is the set of data types that share a common structure.
460 The first member of the structure is a type code from this set.
461 The enum values are arbitrary, but we'll use large numbers to make it
462 more likely that we'll spot the error if a random word in memory is
463 mistakenly interpreted as a Lisp_Misc. */
464 enum Lisp_Misc_Type
465 {
466 Lisp_Misc_Free = 0x5eab,
467 Lisp_Misc_Marker,
468 Lisp_Misc_Overlay,
469 Lisp_Misc_Save_Value,
470 Lisp_Misc_Finalizer,
471 /* Currently floats are not a misc type,
472 but let's define this in case we want to change that. */
473 Lisp_Misc_Float,
474 /* This is not a type code. It is for range checking. */
475 Lisp_Misc_Limit
476 };
477
478 /* These are the types of forwarding objects used in the value slot
479 of symbols for special built-in variables whose value is stored in
480 C variables. */
481 enum Lisp_Fwd_Type
482 {
483 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
484 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
485 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
486 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
487 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
488 };
489
490 /* If you want to define a new Lisp data type, here are some
491 instructions. See the thread at
492 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
493 for more info.
494
495 First, there are already a couple of Lisp types that can be used if
496 your new type does not need to be exposed to Lisp programs nor
497 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
498 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
499 is suitable for temporarily stashing away pointers and integers in
500 a Lisp object. The latter is useful for vector-like Lisp objects
501 that need to be used as part of other objects, but which are never
502 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
503 an example).
504
505 These two types don't look pretty when printed, so they are
506 unsuitable for Lisp objects that can be exposed to users.
507
508 To define a new data type, add one more Lisp_Misc subtype or one
509 more pseudovector subtype. Pseudovectors are more suitable for
510 objects with several slots that need to support fast random access,
511 while Lisp_Misc types are for everything else. A pseudovector object
512 provides one or more slots for Lisp objects, followed by struct
513 members that are accessible only from C. A Lisp_Misc object is a
514 wrapper for a C struct that can contain anything you like.
515
516 Explicit freeing is discouraged for Lisp objects in general. But if
517 you really need to exploit this, use Lisp_Misc (check free_misc in
518 alloc.c to see why). There is no way to free a vectorlike object.
519
520 To add a new pseudovector type, extend the pvec_type enumeration;
521 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
522
523 For a Lisp_Misc, you will also need to add your entry to union
524 Lisp_Misc (but make sure the first word has the same structure as
525 the others, starting with a 16-bit member of the Lisp_Misc_Type
526 enumeration and a 1-bit GC markbit) and make sure the overall size
527 of the union is not increased by your addition.
528
529 For a new pseudovector, it's highly desirable to limit the size
530 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
531 Otherwise you will need to change sweep_vectors (also in alloc.c).
532
533 Then you will need to add switch branches in print.c (in
534 print_object, to print your object, and possibly also in
535 print_preprocess) and to alloc.c, to mark your object (in
536 mark_object) and to free it (in gc_sweep). The latter is also the
537 right place to call any code specific to your data type that needs
538 to run when the object is recycled -- e.g., free any additional
539 resources allocated for it that are not Lisp objects. You can even
540 make a pointer to the function that frees the resources a slot in
541 your object -- this way, the same object could be used to represent
542 several disparate C structures. */
543
544 #ifdef CHECK_LISP_OBJECT_TYPE
545
546 typedef struct { EMACS_INT i; } Lisp_Object;
547
548 #define LISP_INITIALLY(i) {i}
549
550 #undef CHECK_LISP_OBJECT_TYPE
551 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
552 #else /* CHECK_LISP_OBJECT_TYPE */
553
554 /* If a struct type is not wanted, define Lisp_Object as just a number. */
555
556 typedef EMACS_INT Lisp_Object;
557 #define LISP_INITIALLY(i) (i)
558 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
559 #endif /* CHECK_LISP_OBJECT_TYPE */
560
561 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
562 \f
563 /* Forward declarations. */
564
565 /* Defined in this file. */
566 union Lisp_Fwd;
567 INLINE bool BOOL_VECTOR_P (Lisp_Object);
568 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
569 INLINE bool BUFFERP (Lisp_Object);
570 INLINE bool CHAR_TABLE_P (Lisp_Object);
571 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
572 INLINE bool (CONSP) (Lisp_Object);
573 INLINE bool (FLOATP) (Lisp_Object);
574 INLINE bool functionp (Lisp_Object);
575 INLINE bool (INTEGERP) (Lisp_Object);
576 INLINE bool (MARKERP) (Lisp_Object);
577 INLINE bool (MISCP) (Lisp_Object);
578 INLINE bool (NILP) (Lisp_Object);
579 INLINE bool OVERLAYP (Lisp_Object);
580 INLINE bool PROCESSP (Lisp_Object);
581 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
582 INLINE bool SAVE_VALUEP (Lisp_Object);
583 INLINE bool FINALIZERP (Lisp_Object);
584 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
585 Lisp_Object);
586 INLINE bool STRINGP (Lisp_Object);
587 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
588 INLINE bool SUBRP (Lisp_Object);
589 INLINE bool (SYMBOLP) (Lisp_Object);
590 INLINE bool (VECTORLIKEP) (Lisp_Object);
591 INLINE bool WINDOWP (Lisp_Object);
592 INLINE bool TERMINALP (Lisp_Object);
593 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
594 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
595 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
596 INLINE void *(XUNTAG) (Lisp_Object, int);
597
598 /* Defined in chartab.c. */
599 extern Lisp_Object char_table_ref (Lisp_Object, int);
600 extern void char_table_set (Lisp_Object, int, Lisp_Object);
601
602 /* Defined in data.c. */
603 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
604 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
605
606 /* Defined in emacs.c. */
607 extern bool might_dump;
608 /* True means Emacs has already been initialized.
609 Used during startup to detect startup of dumped Emacs. */
610 extern bool initialized;
611
612 /* Defined in floatfns.c. */
613 extern double extract_float (Lisp_Object);
614
615 \f
616 /* Interned state of a symbol. */
617
618 enum symbol_interned
619 {
620 SYMBOL_UNINTERNED = 0,
621 SYMBOL_INTERNED = 1,
622 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
623 };
624
625 enum symbol_redirect
626 {
627 SYMBOL_PLAINVAL = 4,
628 SYMBOL_VARALIAS = 1,
629 SYMBOL_LOCALIZED = 2,
630 SYMBOL_FORWARDED = 3
631 };
632
633 struct Lisp_Symbol
634 {
635 bool_bf gcmarkbit : 1;
636
637 /* Indicates where the value can be found:
638 0 : it's a plain var, the value is in the `value' field.
639 1 : it's a varalias, the value is really in the `alias' symbol.
640 2 : it's a localized var, the value is in the `blv' object.
641 3 : it's a forwarding variable, the value is in `forward'. */
642 ENUM_BF (symbol_redirect) redirect : 3;
643
644 /* Non-zero means symbol is constant, i.e. changing its value
645 should signal an error. If the value is 3, then the var
646 can be changed, but only by `defconst'. */
647 unsigned constant : 2;
648
649 /* Interned state of the symbol. This is an enumerator from
650 enum symbol_interned. */
651 unsigned interned : 2;
652
653 /* True means that this variable has been explicitly declared
654 special (with `defvar' etc), and shouldn't be lexically bound. */
655 bool_bf declared_special : 1;
656
657 /* True if pointed to from purespace and hence can't be GC'd. */
658 bool_bf pinned : 1;
659
660 /* The symbol's name, as a Lisp string. */
661 Lisp_Object name;
662
663 /* Value of the symbol or Qunbound if unbound. Which alternative of the
664 union is used depends on the `redirect' field above. */
665 union {
666 Lisp_Object value;
667 struct Lisp_Symbol *alias;
668 struct Lisp_Buffer_Local_Value *blv;
669 union Lisp_Fwd *fwd;
670 } val;
671
672 /* Function value of the symbol or Qnil if not fboundp. */
673 Lisp_Object function;
674
675 /* The symbol's property list. */
676 Lisp_Object plist;
677
678 /* Next symbol in obarray bucket, if the symbol is interned. */
679 struct Lisp_Symbol *next;
680 };
681
682 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
683 meaning as in the DEFUN macro, and is used to construct a prototype. */
684 /* We can use the same trick as in the DEFUN macro to generate the
685 appropriate prototype. */
686 #define EXFUN(fnname, maxargs) \
687 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
688
689 /* Note that the weird token-substitution semantics of ANSI C makes
690 this work for MANY and UNEVALLED. */
691 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
692 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
693 #define DEFUN_ARGS_0 (void)
694 #define DEFUN_ARGS_1 (Lisp_Object)
695 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
696 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
697 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
698 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
699 Lisp_Object)
700 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
701 Lisp_Object, Lisp_Object)
702 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
703 Lisp_Object, Lisp_Object, Lisp_Object)
704 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
705 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
706
707 /* Yield an integer that contains TAG along with PTR. */
708 #define TAG_PTR(tag, ptr) \
709 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
710
711 /* Yield an integer that contains a symbol tag along with OFFSET.
712 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
713 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
714
715 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
716 XLI (builtin_lisp_symbol (Qwhatever)),
717 except the former expands to an integer constant expression. */
718 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
719
720 /* Declare extern constants for Lisp symbols. These can be helpful
721 when using a debugger like GDB, on older platforms where the debug
722 format does not represent C macros. */
723 #define DEFINE_LISP_SYMBOL(name) \
724 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
725 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
726
727 /* By default, define macros for Qt, etc., as this leads to a bit
728 better performance in the core Emacs interpreter. A plugin can
729 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
730 other Emacs instances that assign different values to Qt, etc. */
731 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
732 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
733 #endif
734
735 #include "globals.h"
736
737 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
738 At the machine level, these operations are no-ops. */
739
740 INLINE EMACS_INT
741 (XLI) (Lisp_Object o)
742 {
743 return lisp_h_XLI (o);
744 }
745
746 INLINE Lisp_Object
747 (XIL) (EMACS_INT i)
748 {
749 return lisp_h_XIL (i);
750 }
751
752 /* In the size word of a vector, this bit means the vector has been marked. */
753
754 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
755 # define ARRAY_MARK_FLAG PTRDIFF_MIN
756 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
757
758 /* In the size word of a struct Lisp_Vector, this bit means it's really
759 some other vector-like object. */
760 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
761 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
762 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
763
764 /* In a pseudovector, the size field actually contains a word with one
765 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
766 with PVEC_TYPE_MASK to indicate the actual type. */
767 enum pvec_type
768 {
769 PVEC_NORMAL_VECTOR,
770 PVEC_FREE,
771 PVEC_PROCESS,
772 PVEC_FRAME,
773 PVEC_WINDOW,
774 PVEC_BOOL_VECTOR,
775 PVEC_BUFFER,
776 PVEC_HASH_TABLE,
777 PVEC_TERMINAL,
778 PVEC_WINDOW_CONFIGURATION,
779 PVEC_SUBR,
780 PVEC_OTHER,
781 /* These should be last, check internal_equal to see why. */
782 PVEC_COMPILED,
783 PVEC_CHAR_TABLE,
784 PVEC_SUB_CHAR_TABLE,
785 PVEC_FONT /* Should be last because it's used for range checking. */
786 };
787
788 enum More_Lisp_Bits
789 {
790 /* For convenience, we also store the number of elements in these bits.
791 Note that this size is not necessarily the memory-footprint size, but
792 only the number of Lisp_Object fields (that need to be traced by GC).
793 The distinction is used, e.g., by Lisp_Process, which places extra
794 non-Lisp_Object fields at the end of the structure. */
795 PSEUDOVECTOR_SIZE_BITS = 12,
796 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
797
798 /* To calculate the memory footprint of the pseudovector, it's useful
799 to store the size of non-Lisp area in word_size units here. */
800 PSEUDOVECTOR_REST_BITS = 12,
801 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
802 << PSEUDOVECTOR_SIZE_BITS),
803
804 /* Used to extract pseudovector subtype information. */
805 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
806 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
807 };
808 \f
809 /* These functions extract various sorts of values from a Lisp_Object.
810 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
811 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
812 that cons. */
813
814 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
815 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
816 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
817 DEFINE_GDB_SYMBOL_END (VALMASK)
818
819 /* Largest and smallest representable fixnum values. These are the C
820 values. They are macros for use in static initializers. */
821 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
822 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
823
824 #if USE_LSB_TAG
825
826 INLINE Lisp_Object
827 (make_number) (EMACS_INT n)
828 {
829 return lisp_h_make_number (n);
830 }
831
832 INLINE EMACS_INT
833 (XINT) (Lisp_Object a)
834 {
835 return lisp_h_XINT (a);
836 }
837
838 INLINE EMACS_INT
839 (XFASTINT) (Lisp_Object a)
840 {
841 return lisp_h_XFASTINT (a);
842 }
843
844 INLINE struct Lisp_Symbol *
845 (XSYMBOL) (Lisp_Object a)
846 {
847 return lisp_h_XSYMBOL (a);
848 }
849
850 INLINE enum Lisp_Type
851 (XTYPE) (Lisp_Object a)
852 {
853 return lisp_h_XTYPE (a);
854 }
855
856 INLINE void *
857 (XUNTAG) (Lisp_Object a, int type)
858 {
859 return lisp_h_XUNTAG (a, type);
860 }
861
862 #else /* ! USE_LSB_TAG */
863
864 /* Although compiled only if ! USE_LSB_TAG, the following functions
865 also work when USE_LSB_TAG; this is to aid future maintenance when
866 the lisp_h_* macros are eventually removed. */
867
868 /* Make a Lisp integer representing the value of the low order
869 bits of N. */
870 INLINE Lisp_Object
871 make_number (EMACS_INT n)
872 {
873 EMACS_INT int0 = Lisp_Int0;
874 if (USE_LSB_TAG)
875 {
876 EMACS_UINT u = n;
877 n = u << INTTYPEBITS;
878 n += int0;
879 }
880 else
881 {
882 n &= INTMASK;
883 n += (int0 << VALBITS);
884 }
885 return XIL (n);
886 }
887
888 /* Extract A's value as a signed integer. */
889 INLINE EMACS_INT
890 XINT (Lisp_Object a)
891 {
892 EMACS_INT i = XLI (a);
893 if (! USE_LSB_TAG)
894 {
895 EMACS_UINT u = i;
896 i = u << INTTYPEBITS;
897 }
898 return i >> INTTYPEBITS;
899 }
900
901 /* Like XINT (A), but may be faster. A must be nonnegative.
902 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
903 integers have zero-bits in their tags. */
904 INLINE EMACS_INT
905 XFASTINT (Lisp_Object a)
906 {
907 EMACS_INT int0 = Lisp_Int0;
908 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
909 eassert (0 <= n);
910 return n;
911 }
912
913 /* Extract A's value as a symbol. */
914 INLINE struct Lisp_Symbol *
915 XSYMBOL (Lisp_Object a)
916 {
917 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
918 void *p = (char *) lispsym + i;
919 return p;
920 }
921
922 /* Extract A's type. */
923 INLINE enum Lisp_Type
924 XTYPE (Lisp_Object a)
925 {
926 EMACS_UINT i = XLI (a);
927 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
928 }
929
930 /* Extract A's pointer value, assuming A's type is TYPE. */
931 INLINE void *
932 XUNTAG (Lisp_Object a, int type)
933 {
934 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
935 return (void *) i;
936 }
937
938 #endif /* ! USE_LSB_TAG */
939
940 /* Extract A's value as an unsigned integer. */
941 INLINE EMACS_UINT
942 XUINT (Lisp_Object a)
943 {
944 EMACS_UINT i = XLI (a);
945 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
946 }
947
948 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
949 right now, but XUINT should only be applied to objects we know are
950 integers. */
951
952 INLINE EMACS_INT
953 (XHASH) (Lisp_Object a)
954 {
955 return lisp_h_XHASH (a);
956 }
957
958 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
959 INLINE Lisp_Object
960 make_natnum (EMACS_INT n)
961 {
962 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
963 EMACS_INT int0 = Lisp_Int0;
964 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
965 }
966
967 /* Return true if X and Y are the same object. */
968
969 INLINE bool
970 (EQ) (Lisp_Object x, Lisp_Object y)
971 {
972 return lisp_h_EQ (x, y);
973 }
974
975 /* Value is true if I doesn't fit into a Lisp fixnum. It is
976 written this way so that it also works if I is of unsigned
977 type or if I is a NaN. */
978
979 #define FIXNUM_OVERFLOW_P(i) \
980 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
981
982 INLINE ptrdiff_t
983 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
984 {
985 return num < lower ? lower : num <= upper ? num : upper;
986 }
987 \f
988
989 /* Extract a value or address from a Lisp_Object. */
990
991 INLINE struct Lisp_Cons *
992 (XCONS) (Lisp_Object a)
993 {
994 return lisp_h_XCONS (a);
995 }
996
997 INLINE struct Lisp_Vector *
998 XVECTOR (Lisp_Object a)
999 {
1000 eassert (VECTORLIKEP (a));
1001 return XUNTAG (a, Lisp_Vectorlike);
1002 }
1003
1004 INLINE struct Lisp_String *
1005 XSTRING (Lisp_Object a)
1006 {
1007 eassert (STRINGP (a));
1008 return XUNTAG (a, Lisp_String);
1009 }
1010
1011 /* The index of the C-defined Lisp symbol SYM.
1012 This can be used in a static initializer. */
1013 #define SYMBOL_INDEX(sym) i##sym
1014
1015 INLINE struct Lisp_Float *
1016 XFLOAT (Lisp_Object a)
1017 {
1018 eassert (FLOATP (a));
1019 return XUNTAG (a, Lisp_Float);
1020 }
1021
1022 /* Pseudovector types. */
1023
1024 INLINE struct Lisp_Process *
1025 XPROCESS (Lisp_Object a)
1026 {
1027 eassert (PROCESSP (a));
1028 return XUNTAG (a, Lisp_Vectorlike);
1029 }
1030
1031 INLINE struct window *
1032 XWINDOW (Lisp_Object a)
1033 {
1034 eassert (WINDOWP (a));
1035 return XUNTAG (a, Lisp_Vectorlike);
1036 }
1037
1038 INLINE struct terminal *
1039 XTERMINAL (Lisp_Object a)
1040 {
1041 eassert (TERMINALP (a));
1042 return XUNTAG (a, Lisp_Vectorlike);
1043 }
1044
1045 INLINE struct Lisp_Subr *
1046 XSUBR (Lisp_Object a)
1047 {
1048 eassert (SUBRP (a));
1049 return XUNTAG (a, Lisp_Vectorlike);
1050 }
1051
1052 INLINE struct buffer *
1053 XBUFFER (Lisp_Object a)
1054 {
1055 eassert (BUFFERP (a));
1056 return XUNTAG (a, Lisp_Vectorlike);
1057 }
1058
1059 INLINE struct Lisp_Char_Table *
1060 XCHAR_TABLE (Lisp_Object a)
1061 {
1062 eassert (CHAR_TABLE_P (a));
1063 return XUNTAG (a, Lisp_Vectorlike);
1064 }
1065
1066 INLINE struct Lisp_Sub_Char_Table *
1067 XSUB_CHAR_TABLE (Lisp_Object a)
1068 {
1069 eassert (SUB_CHAR_TABLE_P (a));
1070 return XUNTAG (a, Lisp_Vectorlike);
1071 }
1072
1073 INLINE struct Lisp_Bool_Vector *
1074 XBOOL_VECTOR (Lisp_Object a)
1075 {
1076 eassert (BOOL_VECTOR_P (a));
1077 return XUNTAG (a, Lisp_Vectorlike);
1078 }
1079
1080 /* Construct a Lisp_Object from a value or address. */
1081
1082 INLINE Lisp_Object
1083 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1084 {
1085 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1086 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1087 return a;
1088 }
1089
1090 INLINE Lisp_Object
1091 make_lisp_symbol (struct Lisp_Symbol *sym)
1092 {
1093 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1094 eassert (XSYMBOL (a) == sym);
1095 return a;
1096 }
1097
1098 INLINE Lisp_Object
1099 builtin_lisp_symbol (int index)
1100 {
1101 return make_lisp_symbol (lispsym + index);
1102 }
1103
1104 #define XSETINT(a, b) ((a) = make_number (b))
1105 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1106 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1107 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1108 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1109 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1110 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1111 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1112
1113 /* Pseudovector types. */
1114
1115 #define XSETPVECTYPE(v, code) \
1116 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1117 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1118 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1119 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1120 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1121 | (lispsize)))
1122
1123 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1124 #define XSETPSEUDOVECTOR(a, b, code) \
1125 XSETTYPED_PSEUDOVECTOR (a, b, \
1126 (((struct vectorlike_header *) \
1127 XUNTAG (a, Lisp_Vectorlike)) \
1128 ->size), \
1129 code)
1130 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1131 (XSETVECTOR (a, b), \
1132 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1133 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1134
1135 #define XSETWINDOW_CONFIGURATION(a, b) \
1136 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1137 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1138 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1139 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1140 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1141 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1142 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1143 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1144 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1145 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1146
1147 /* Efficiently convert a pointer to a Lisp object and back. The
1148 pointer is represented as a Lisp integer, so the garbage collector
1149 does not know about it. The pointer should not have both Lisp_Int1
1150 bits set, which makes this conversion inherently unportable. */
1151
1152 INLINE void *
1153 XINTPTR (Lisp_Object a)
1154 {
1155 return XUNTAG (a, Lisp_Int0);
1156 }
1157
1158 INLINE Lisp_Object
1159 make_pointer_integer (void *p)
1160 {
1161 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1162 eassert (INTEGERP (a) && XINTPTR (a) == p);
1163 return a;
1164 }
1165
1166 /* Type checking. */
1167
1168 INLINE void
1169 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1170 {
1171 lisp_h_CHECK_TYPE (ok, predicate, x);
1172 }
1173
1174 /* See the macros in intervals.h. */
1175
1176 typedef struct interval *INTERVAL;
1177
1178 struct GCALIGNED Lisp_Cons
1179 {
1180 /* Car of this cons cell. */
1181 Lisp_Object car;
1182
1183 union
1184 {
1185 /* Cdr of this cons cell. */
1186 Lisp_Object cdr;
1187
1188 /* Used to chain conses on a free list. */
1189 struct Lisp_Cons *chain;
1190 } u;
1191 };
1192
1193 /* Take the car or cdr of something known to be a cons cell. */
1194 /* The _addr functions shouldn't be used outside of the minimal set
1195 of code that has to know what a cons cell looks like. Other code not
1196 part of the basic lisp implementation should assume that the car and cdr
1197 fields are not accessible. (What if we want to switch to
1198 a copying collector someday? Cached cons cell field addresses may be
1199 invalidated at arbitrary points.) */
1200 INLINE Lisp_Object *
1201 xcar_addr (Lisp_Object c)
1202 {
1203 return &XCONS (c)->car;
1204 }
1205 INLINE Lisp_Object *
1206 xcdr_addr (Lisp_Object c)
1207 {
1208 return &XCONS (c)->u.cdr;
1209 }
1210
1211 /* Use these from normal code. */
1212
1213 INLINE Lisp_Object
1214 (XCAR) (Lisp_Object c)
1215 {
1216 return lisp_h_XCAR (c);
1217 }
1218
1219 INLINE Lisp_Object
1220 (XCDR) (Lisp_Object c)
1221 {
1222 return lisp_h_XCDR (c);
1223 }
1224
1225 /* Use these to set the fields of a cons cell.
1226
1227 Note that both arguments may refer to the same object, so 'n'
1228 should not be read after 'c' is first modified. */
1229 INLINE void
1230 XSETCAR (Lisp_Object c, Lisp_Object n)
1231 {
1232 *xcar_addr (c) = n;
1233 }
1234 INLINE void
1235 XSETCDR (Lisp_Object c, Lisp_Object n)
1236 {
1237 *xcdr_addr (c) = n;
1238 }
1239
1240 /* Take the car or cdr of something whose type is not known. */
1241 INLINE Lisp_Object
1242 CAR (Lisp_Object c)
1243 {
1244 return (CONSP (c) ? XCAR (c)
1245 : NILP (c) ? Qnil
1246 : wrong_type_argument (Qlistp, c));
1247 }
1248 INLINE Lisp_Object
1249 CDR (Lisp_Object c)
1250 {
1251 return (CONSP (c) ? XCDR (c)
1252 : NILP (c) ? Qnil
1253 : wrong_type_argument (Qlistp, c));
1254 }
1255
1256 /* Take the car or cdr of something whose type is not known. */
1257 INLINE Lisp_Object
1258 CAR_SAFE (Lisp_Object c)
1259 {
1260 return CONSP (c) ? XCAR (c) : Qnil;
1261 }
1262 INLINE Lisp_Object
1263 CDR_SAFE (Lisp_Object c)
1264 {
1265 return CONSP (c) ? XCDR (c) : Qnil;
1266 }
1267
1268 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1269
1270 struct GCALIGNED Lisp_String
1271 {
1272 ptrdiff_t size;
1273 ptrdiff_t size_byte;
1274 INTERVAL intervals; /* Text properties in this string. */
1275 unsigned char *data;
1276 };
1277
1278 /* True if STR is a multibyte string. */
1279 INLINE bool
1280 STRING_MULTIBYTE (Lisp_Object str)
1281 {
1282 return 0 <= XSTRING (str)->size_byte;
1283 }
1284
1285 /* An upper bound on the number of bytes in a Lisp string, not
1286 counting the terminating null. This a tight enough bound to
1287 prevent integer overflow errors that would otherwise occur during
1288 string size calculations. A string cannot contain more bytes than
1289 a fixnum can represent, nor can it be so long that C pointer
1290 arithmetic stops working on the string plus its terminating null.
1291 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1292 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1293 would expose alloc.c internal details that we'd rather keep
1294 private.
1295
1296 This is a macro for use in static initializers. The cast to
1297 ptrdiff_t ensures that the macro is signed. */
1298 #define STRING_BYTES_BOUND \
1299 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1300
1301 /* Mark STR as a unibyte string. */
1302 #define STRING_SET_UNIBYTE(STR) \
1303 do { \
1304 if (EQ (STR, empty_multibyte_string)) \
1305 (STR) = empty_unibyte_string; \
1306 else \
1307 XSTRING (STR)->size_byte = -1; \
1308 } while (false)
1309
1310 /* Mark STR as a multibyte string. Assure that STR contains only
1311 ASCII characters in advance. */
1312 #define STRING_SET_MULTIBYTE(STR) \
1313 do { \
1314 if (EQ (STR, empty_unibyte_string)) \
1315 (STR) = empty_multibyte_string; \
1316 else \
1317 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1318 } while (false)
1319
1320 /* Convenience functions for dealing with Lisp strings. */
1321
1322 INLINE unsigned char *
1323 SDATA (Lisp_Object string)
1324 {
1325 return XSTRING (string)->data;
1326 }
1327 INLINE char *
1328 SSDATA (Lisp_Object string)
1329 {
1330 /* Avoid "differ in sign" warnings. */
1331 return (char *) SDATA (string);
1332 }
1333 INLINE unsigned char
1334 SREF (Lisp_Object string, ptrdiff_t index)
1335 {
1336 return SDATA (string)[index];
1337 }
1338 INLINE void
1339 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1340 {
1341 SDATA (string)[index] = new;
1342 }
1343 INLINE ptrdiff_t
1344 SCHARS (Lisp_Object string)
1345 {
1346 return XSTRING (string)->size;
1347 }
1348
1349 #ifdef GC_CHECK_STRING_BYTES
1350 extern ptrdiff_t string_bytes (struct Lisp_String *);
1351 #endif
1352 INLINE ptrdiff_t
1353 STRING_BYTES (struct Lisp_String *s)
1354 {
1355 #ifdef GC_CHECK_STRING_BYTES
1356 return string_bytes (s);
1357 #else
1358 return s->size_byte < 0 ? s->size : s->size_byte;
1359 #endif
1360 }
1361
1362 INLINE ptrdiff_t
1363 SBYTES (Lisp_Object string)
1364 {
1365 return STRING_BYTES (XSTRING (string));
1366 }
1367 INLINE void
1368 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1369 {
1370 XSTRING (string)->size = newsize;
1371 }
1372
1373 /* Header of vector-like objects. This documents the layout constraints on
1374 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1375 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1376 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1377 because when two such pointers potentially alias, a compiler won't
1378 incorrectly reorder loads and stores to their size fields. See
1379 Bug#8546. */
1380 struct vectorlike_header
1381 {
1382 /* The only field contains various pieces of information:
1383 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1384 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1385 vector (0) or a pseudovector (1).
1386 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1387 of slots) of the vector.
1388 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1389 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1390 - b) number of Lisp_Objects slots at the beginning of the object
1391 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1392 traced by the GC;
1393 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1394 measured in word_size units. Rest fields may also include
1395 Lisp_Objects, but these objects usually needs some special treatment
1396 during GC.
1397 There are some exceptions. For PVEC_FREE, b) is always zero. For
1398 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1399 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1400 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1401 ptrdiff_t size;
1402 };
1403
1404 /* A regular vector is just a header plus an array of Lisp_Objects. */
1405
1406 struct Lisp_Vector
1407 {
1408 struct vectorlike_header header;
1409 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1410 };
1411
1412 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1413 enum
1414 {
1415 ALIGNOF_STRUCT_LISP_VECTOR
1416 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1417 };
1418
1419 /* A boolvector is a kind of vectorlike, with contents like a string. */
1420
1421 struct Lisp_Bool_Vector
1422 {
1423 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1424 just the subtype information. */
1425 struct vectorlike_header header;
1426 /* This is the size in bits. */
1427 EMACS_INT size;
1428 /* The actual bits, packed into bytes.
1429 Zeros fill out the last word if needed.
1430 The bits are in little-endian order in the bytes, and
1431 the bytes are in little-endian order in the words. */
1432 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1433 };
1434
1435 INLINE EMACS_INT
1436 bool_vector_size (Lisp_Object a)
1437 {
1438 EMACS_INT size = XBOOL_VECTOR (a)->size;
1439 eassume (0 <= size);
1440 return size;
1441 }
1442
1443 INLINE bits_word *
1444 bool_vector_data (Lisp_Object a)
1445 {
1446 return XBOOL_VECTOR (a)->data;
1447 }
1448
1449 INLINE unsigned char *
1450 bool_vector_uchar_data (Lisp_Object a)
1451 {
1452 return (unsigned char *) bool_vector_data (a);
1453 }
1454
1455 /* The number of data words and bytes in a bool vector with SIZE bits. */
1456
1457 INLINE EMACS_INT
1458 bool_vector_words (EMACS_INT size)
1459 {
1460 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1461 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1462 }
1463
1464 INLINE EMACS_INT
1465 bool_vector_bytes (EMACS_INT size)
1466 {
1467 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1468 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1469 }
1470
1471 /* True if A's Ith bit is set. */
1472
1473 INLINE bool
1474 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1475 {
1476 eassume (0 <= i && i < bool_vector_size (a));
1477 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1478 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1479 }
1480
1481 INLINE Lisp_Object
1482 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1483 {
1484 return bool_vector_bitref (a, i) ? Qt : Qnil;
1485 }
1486
1487 /* Set A's Ith bit to B. */
1488
1489 INLINE void
1490 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1491 {
1492 unsigned char *addr;
1493
1494 eassume (0 <= i && i < bool_vector_size (a));
1495 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1496
1497 if (b)
1498 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1499 else
1500 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1501 }
1502
1503 /* Some handy constants for calculating sizes
1504 and offsets, mostly of vectorlike objects. */
1505
1506 enum
1507 {
1508 header_size = offsetof (struct Lisp_Vector, contents),
1509 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1510 word_size = sizeof (Lisp_Object)
1511 };
1512
1513 /* Conveniences for dealing with Lisp arrays. */
1514
1515 INLINE Lisp_Object
1516 AREF (Lisp_Object array, ptrdiff_t idx)
1517 {
1518 return XVECTOR (array)->contents[idx];
1519 }
1520
1521 INLINE Lisp_Object *
1522 aref_addr (Lisp_Object array, ptrdiff_t idx)
1523 {
1524 return & XVECTOR (array)->contents[idx];
1525 }
1526
1527 INLINE ptrdiff_t
1528 ASIZE (Lisp_Object array)
1529 {
1530 return XVECTOR (array)->header.size;
1531 }
1532
1533 INLINE void
1534 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1535 {
1536 eassert (0 <= idx && idx < ASIZE (array));
1537 XVECTOR (array)->contents[idx] = val;
1538 }
1539
1540 INLINE void
1541 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1542 {
1543 /* Like ASET, but also can be used in the garbage collector:
1544 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1545 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1546 XVECTOR (array)->contents[idx] = val;
1547 }
1548
1549 /* True, since Qnil's representation is zero. Every place in the code
1550 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1551 to find such assumptions later if we change Qnil to be nonzero. */
1552 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1553
1554 /* Clear the object addressed by P, with size NBYTES, so that all its
1555 bytes are zero and all its Lisp values are nil. */
1556 INLINE void
1557 memclear (void *p, ptrdiff_t nbytes)
1558 {
1559 eassert (0 <= nbytes);
1560 verify (NIL_IS_ZERO);
1561 /* Since Qnil is zero, memset suffices. */
1562 memset (p, 0, nbytes);
1563 }
1564
1565 /* If a struct is made to look like a vector, this macro returns the length
1566 of the shortest vector that would hold that struct. */
1567
1568 #define VECSIZE(type) \
1569 ((sizeof (type) - header_size + word_size - 1) / word_size)
1570
1571 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1572 at the end and we need to compute the number of Lisp_Object fields (the
1573 ones that the GC needs to trace). */
1574
1575 #define PSEUDOVECSIZE(type, nonlispfield) \
1576 ((offsetof (type, nonlispfield) - header_size) / word_size)
1577
1578 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1579 should be integer expressions. This is not the same as
1580 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1581 returns true. For efficiency, prefer plain unsigned comparison if A
1582 and B's sizes both fit (after integer promotion). */
1583 #define UNSIGNED_CMP(a, op, b) \
1584 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1585 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1586 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1587
1588 /* True iff C is an ASCII character. */
1589 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1590
1591 /* A char-table is a kind of vectorlike, with contents are like a
1592 vector but with a few other slots. For some purposes, it makes
1593 sense to handle a char-table with type struct Lisp_Vector. An
1594 element of a char table can be any Lisp objects, but if it is a sub
1595 char-table, we treat it a table that contains information of a
1596 specific range of characters. A sub char-table is like a vector but
1597 with two integer fields between the header and Lisp data, which means
1598 that it has to be marked with some precautions (see mark_char_table
1599 in alloc.c). A sub char-table appears only in an element of a char-table,
1600 and there's no way to access it directly from Emacs Lisp program. */
1601
1602 enum CHARTAB_SIZE_BITS
1603 {
1604 CHARTAB_SIZE_BITS_0 = 6,
1605 CHARTAB_SIZE_BITS_1 = 4,
1606 CHARTAB_SIZE_BITS_2 = 5,
1607 CHARTAB_SIZE_BITS_3 = 7
1608 };
1609
1610 extern const int chartab_size[4];
1611
1612 struct Lisp_Char_Table
1613 {
1614 /* HEADER.SIZE is the vector's size field, which also holds the
1615 pseudovector type information. It holds the size, too.
1616 The size counts the defalt, parent, purpose, ascii,
1617 contents, and extras slots. */
1618 struct vectorlike_header header;
1619
1620 /* This holds a default value,
1621 which is used whenever the value for a specific character is nil. */
1622 Lisp_Object defalt;
1623
1624 /* This points to another char table, which we inherit from when the
1625 value for a specific character is nil. The `defalt' slot takes
1626 precedence over this. */
1627 Lisp_Object parent;
1628
1629 /* This is a symbol which says what kind of use this char-table is
1630 meant for. */
1631 Lisp_Object purpose;
1632
1633 /* The bottom sub char-table for characters of the range 0..127. It
1634 is nil if none of ASCII character has a specific value. */
1635 Lisp_Object ascii;
1636
1637 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1638
1639 /* These hold additional data. It is a vector. */
1640 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1641 };
1642
1643 struct Lisp_Sub_Char_Table
1644 {
1645 /* HEADER.SIZE is the vector's size field, which also holds the
1646 pseudovector type information. It holds the size, too. */
1647 struct vectorlike_header header;
1648
1649 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1650 char-table of depth 1 contains 16 elements, and each element
1651 covers 4096 (128*32) characters. A sub char-table of depth 2
1652 contains 32 elements, and each element covers 128 characters. A
1653 sub char-table of depth 3 contains 128 elements, and each element
1654 is for one character. */
1655 int depth;
1656
1657 /* Minimum character covered by the sub char-table. */
1658 int min_char;
1659
1660 /* Use set_sub_char_table_contents to set this. */
1661 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1662 };
1663
1664 INLINE Lisp_Object
1665 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1666 {
1667 struct Lisp_Char_Table *tbl = NULL;
1668 Lisp_Object val;
1669 do
1670 {
1671 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1672 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1673 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1674 if (NILP (val))
1675 val = tbl->defalt;
1676 }
1677 while (NILP (val) && ! NILP (tbl->parent));
1678
1679 return val;
1680 }
1681
1682 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1683 characters. Do not check validity of CT. */
1684 INLINE Lisp_Object
1685 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1686 {
1687 return (ASCII_CHAR_P (idx)
1688 ? CHAR_TABLE_REF_ASCII (ct, idx)
1689 : char_table_ref (ct, idx));
1690 }
1691
1692 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1693 8-bit European characters. Do not check validity of CT. */
1694 INLINE void
1695 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1696 {
1697 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1698 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1699 else
1700 char_table_set (ct, idx, val);
1701 }
1702
1703 /* This structure describes a built-in function.
1704 It is generated by the DEFUN macro only.
1705 defsubr makes it into a Lisp object. */
1706
1707 struct Lisp_Subr
1708 {
1709 struct vectorlike_header header;
1710 union {
1711 Lisp_Object (*a0) (void);
1712 Lisp_Object (*a1) (Lisp_Object);
1713 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1714 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1715 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1716 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1717 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1718 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1719 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1720 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1721 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1722 } function;
1723 short min_args, max_args;
1724 const char *symbol_name;
1725 const char *intspec;
1726 const char *doc;
1727 };
1728
1729 enum char_table_specials
1730 {
1731 /* This is the number of slots that every char table must have. This
1732 counts the ordinary slots and the top, defalt, parent, and purpose
1733 slots. */
1734 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1735
1736 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1737 when the latter is treated as an ordinary Lisp_Vector. */
1738 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1739 };
1740
1741 /* Return the number of "extra" slots in the char table CT. */
1742
1743 INLINE int
1744 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1745 {
1746 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1747 - CHAR_TABLE_STANDARD_SLOTS);
1748 }
1749
1750 /* Make sure that sub char-table contents slot is where we think it is. */
1751 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1752 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1753
1754 /***********************************************************************
1755 Symbols
1756 ***********************************************************************/
1757
1758 /* Value is name of symbol. */
1759
1760 INLINE Lisp_Object
1761 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1762 {
1763 return lisp_h_SYMBOL_VAL (sym);
1764 }
1765
1766 INLINE struct Lisp_Symbol *
1767 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1768 {
1769 eassert (sym->redirect == SYMBOL_VARALIAS);
1770 return sym->val.alias;
1771 }
1772 INLINE struct Lisp_Buffer_Local_Value *
1773 SYMBOL_BLV (struct Lisp_Symbol *sym)
1774 {
1775 eassert (sym->redirect == SYMBOL_LOCALIZED);
1776 return sym->val.blv;
1777 }
1778 INLINE union Lisp_Fwd *
1779 SYMBOL_FWD (struct Lisp_Symbol *sym)
1780 {
1781 eassert (sym->redirect == SYMBOL_FORWARDED);
1782 return sym->val.fwd;
1783 }
1784
1785 INLINE void
1786 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1787 {
1788 lisp_h_SET_SYMBOL_VAL (sym, v);
1789 }
1790
1791 INLINE void
1792 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1793 {
1794 eassert (sym->redirect == SYMBOL_VARALIAS);
1795 sym->val.alias = v;
1796 }
1797 INLINE void
1798 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1799 {
1800 eassert (sym->redirect == SYMBOL_LOCALIZED);
1801 sym->val.blv = v;
1802 }
1803 INLINE void
1804 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1805 {
1806 eassert (sym->redirect == SYMBOL_FORWARDED);
1807 sym->val.fwd = v;
1808 }
1809
1810 INLINE Lisp_Object
1811 SYMBOL_NAME (Lisp_Object sym)
1812 {
1813 return XSYMBOL (sym)->name;
1814 }
1815
1816 /* Value is true if SYM is an interned symbol. */
1817
1818 INLINE bool
1819 SYMBOL_INTERNED_P (Lisp_Object sym)
1820 {
1821 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1822 }
1823
1824 /* Value is true if SYM is interned in initial_obarray. */
1825
1826 INLINE bool
1827 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1828 {
1829 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1830 }
1831
1832 /* Value is non-zero if symbol is considered a constant, i.e. its
1833 value cannot be changed (there is an exception for keyword symbols,
1834 whose value can be set to the keyword symbol itself). */
1835
1836 INLINE int
1837 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1838 {
1839 return lisp_h_SYMBOL_CONSTANT_P (sym);
1840 }
1841
1842 /* Placeholder for make-docfile to process. The actual symbol
1843 definition is done by lread.c's defsym. */
1844 #define DEFSYM(sym, name) /* empty */
1845
1846 \f
1847 /***********************************************************************
1848 Hash Tables
1849 ***********************************************************************/
1850
1851 /* The structure of a Lisp hash table. */
1852
1853 struct hash_table_test
1854 {
1855 /* Name of the function used to compare keys. */
1856 Lisp_Object name;
1857
1858 /* User-supplied hash function, or nil. */
1859 Lisp_Object user_hash_function;
1860
1861 /* User-supplied key comparison function, or nil. */
1862 Lisp_Object user_cmp_function;
1863
1864 /* C function to compare two keys. */
1865 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1866
1867 /* C function to compute hash code. */
1868 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1869 };
1870
1871 struct Lisp_Hash_Table
1872 {
1873 /* This is for Lisp; the hash table code does not refer to it. */
1874 struct vectorlike_header header;
1875
1876 /* Nil if table is non-weak. Otherwise a symbol describing the
1877 weakness of the table. */
1878 Lisp_Object weak;
1879
1880 /* When the table is resized, and this is an integer, compute the
1881 new size by adding this to the old size. If a float, compute the
1882 new size by multiplying the old size with this factor. */
1883 Lisp_Object rehash_size;
1884
1885 /* Resize hash table when number of entries/ table size is >= this
1886 ratio, a float. */
1887 Lisp_Object rehash_threshold;
1888
1889 /* Vector of hash codes. If hash[I] is nil, this means that the
1890 I-th entry is unused. */
1891 Lisp_Object hash;
1892
1893 /* Vector used to chain entries. If entry I is free, next[I] is the
1894 entry number of the next free item. If entry I is non-free,
1895 next[I] is the index of the next entry in the collision chain. */
1896 Lisp_Object next;
1897
1898 /* Index of first free entry in free list. */
1899 Lisp_Object next_free;
1900
1901 /* Bucket vector. A non-nil entry is the index of the first item in
1902 a collision chain. This vector's size can be larger than the
1903 hash table size to reduce collisions. */
1904 Lisp_Object index;
1905
1906 /* Only the fields above are traced normally by the GC. The ones below
1907 `count' are special and are either ignored by the GC or traced in
1908 a special way (e.g. because of weakness). */
1909
1910 /* Number of key/value entries in the table. */
1911 ptrdiff_t count;
1912
1913 /* Vector of keys and values. The key of item I is found at index
1914 2 * I, the value is found at index 2 * I + 1.
1915 This is gc_marked specially if the table is weak. */
1916 Lisp_Object key_and_value;
1917
1918 /* The comparison and hash functions. */
1919 struct hash_table_test test;
1920
1921 /* Next weak hash table if this is a weak hash table. The head
1922 of the list is in weak_hash_tables. */
1923 struct Lisp_Hash_Table *next_weak;
1924 };
1925
1926
1927 INLINE struct Lisp_Hash_Table *
1928 XHASH_TABLE (Lisp_Object a)
1929 {
1930 return XUNTAG (a, Lisp_Vectorlike);
1931 }
1932
1933 #define XSET_HASH_TABLE(VAR, PTR) \
1934 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1935
1936 INLINE bool
1937 HASH_TABLE_P (Lisp_Object a)
1938 {
1939 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1940 }
1941
1942 /* Value is the key part of entry IDX in hash table H. */
1943 INLINE Lisp_Object
1944 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1945 {
1946 return AREF (h->key_and_value, 2 * idx);
1947 }
1948
1949 /* Value is the value part of entry IDX in hash table H. */
1950 INLINE Lisp_Object
1951 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1952 {
1953 return AREF (h->key_and_value, 2 * idx + 1);
1954 }
1955
1956 /* Value is the index of the next entry following the one at IDX
1957 in hash table H. */
1958 INLINE Lisp_Object
1959 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1960 {
1961 return AREF (h->next, idx);
1962 }
1963
1964 /* Value is the hash code computed for entry IDX in hash table H. */
1965 INLINE Lisp_Object
1966 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1967 {
1968 return AREF (h->hash, idx);
1969 }
1970
1971 /* Value is the index of the element in hash table H that is the
1972 start of the collision list at index IDX in the index vector of H. */
1973 INLINE Lisp_Object
1974 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1975 {
1976 return AREF (h->index, idx);
1977 }
1978
1979 /* Value is the size of hash table H. */
1980 INLINE ptrdiff_t
1981 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1982 {
1983 return ASIZE (h->next);
1984 }
1985
1986 /* Default size for hash tables if not specified. */
1987
1988 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1989
1990 /* Default threshold specifying when to resize a hash table. The
1991 value gives the ratio of current entries in the hash table and the
1992 size of the hash table. */
1993
1994 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1995
1996 /* Default factor by which to increase the size of a hash table. */
1997
1998 static double const DEFAULT_REHASH_SIZE = 1.5;
1999
2000 /* Combine two integers X and Y for hashing. The result might not fit
2001 into a Lisp integer. */
2002
2003 INLINE EMACS_UINT
2004 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2005 {
2006 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2007 }
2008
2009 /* Hash X, returning a value that fits into a fixnum. */
2010
2011 INLINE EMACS_UINT
2012 SXHASH_REDUCE (EMACS_UINT x)
2013 {
2014 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2015 }
2016
2017 /* These structures are used for various misc types. */
2018
2019 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2020 {
2021 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2022 bool_bf gcmarkbit : 1;
2023 unsigned spacer : 15;
2024 };
2025
2026 struct Lisp_Marker
2027 {
2028 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2029 bool_bf gcmarkbit : 1;
2030 unsigned spacer : 13;
2031 /* This flag is temporarily used in the functions
2032 decode/encode_coding_object to record that the marker position
2033 must be adjusted after the conversion. */
2034 bool_bf need_adjustment : 1;
2035 /* True means normal insertion at the marker's position
2036 leaves the marker after the inserted text. */
2037 bool_bf insertion_type : 1;
2038 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2039 Note: a chain of markers can contain markers pointing into different
2040 buffers (the chain is per buffer_text rather than per buffer, so it's
2041 shared between indirect buffers). */
2042 /* This is used for (other than NULL-checking):
2043 - Fmarker_buffer
2044 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2045 - unchain_marker: to find the list from which to unchain.
2046 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2047 */
2048 struct buffer *buffer;
2049
2050 /* The remaining fields are meaningless in a marker that
2051 does not point anywhere. */
2052
2053 /* For markers that point somewhere,
2054 this is used to chain of all the markers in a given buffer. */
2055 /* We could remove it and use an array in buffer_text instead.
2056 That would also allow to preserve it ordered. */
2057 struct Lisp_Marker *next;
2058 /* This is the char position where the marker points. */
2059 ptrdiff_t charpos;
2060 /* This is the byte position.
2061 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2062 used to implement the functionality of markers, but rather to (ab)use
2063 markers as a cache for char<->byte mappings). */
2064 ptrdiff_t bytepos;
2065 };
2066
2067 /* START and END are markers in the overlay's buffer, and
2068 PLIST is the overlay's property list. */
2069 struct Lisp_Overlay
2070 /* An overlay's real data content is:
2071 - plist
2072 - buffer (really there are two buffer pointers, one per marker,
2073 and both points to the same buffer)
2074 - insertion type of both ends (per-marker fields)
2075 - start & start byte (of start marker)
2076 - end & end byte (of end marker)
2077 - next (singly linked list of overlays)
2078 - next fields of start and end markers (singly linked list of markers).
2079 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2080 */
2081 {
2082 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2083 bool_bf gcmarkbit : 1;
2084 unsigned spacer : 15;
2085 struct Lisp_Overlay *next;
2086 Lisp_Object start;
2087 Lisp_Object end;
2088 Lisp_Object plist;
2089 };
2090
2091 /* Types of data which may be saved in a Lisp_Save_Value. */
2092
2093 enum
2094 {
2095 SAVE_UNUSED,
2096 SAVE_INTEGER,
2097 SAVE_FUNCPOINTER,
2098 SAVE_POINTER,
2099 SAVE_OBJECT
2100 };
2101
2102 /* Number of bits needed to store one of the above values. */
2103 enum { SAVE_SLOT_BITS = 3 };
2104
2105 /* Number of slots in a save value where save_type is nonzero. */
2106 enum { SAVE_VALUE_SLOTS = 4 };
2107
2108 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2109
2110 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2111
2112 enum Lisp_Save_Type
2113 {
2114 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2115 SAVE_TYPE_INT_INT_INT
2116 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2117 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2118 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2119 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2120 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2121 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2122 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2123 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2124 SAVE_TYPE_FUNCPTR_PTR_OBJ
2125 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2126
2127 /* This has an extra bit indicating it's raw memory. */
2128 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2129 };
2130
2131 /* Special object used to hold a different values for later use.
2132
2133 This is mostly used to package C integers and pointers to call
2134 record_unwind_protect when two or more values need to be saved.
2135 For example:
2136
2137 ...
2138 struct my_data *md = get_my_data ();
2139 ptrdiff_t mi = get_my_integer ();
2140 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2141 ...
2142
2143 Lisp_Object my_unwind (Lisp_Object arg)
2144 {
2145 struct my_data *md = XSAVE_POINTER (arg, 0);
2146 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2147 ...
2148 }
2149
2150 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2151 saved objects and raise eassert if type of the saved object doesn't match
2152 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2153 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2154 slot 0 is a pointer. */
2155
2156 typedef void (*voidfuncptr) (void);
2157
2158 struct Lisp_Save_Value
2159 {
2160 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2161 bool_bf gcmarkbit : 1;
2162 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2163
2164 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2165 V's data entries are determined by V->save_type. E.g., if
2166 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2167 V->data[1] is an integer, and V's other data entries are unused.
2168
2169 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2170 a memory area containing V->data[1].integer potential Lisp_Objects. */
2171 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2172 union {
2173 void *pointer;
2174 voidfuncptr funcpointer;
2175 ptrdiff_t integer;
2176 Lisp_Object object;
2177 } data[SAVE_VALUE_SLOTS];
2178 };
2179
2180 /* Return the type of V's Nth saved value. */
2181 INLINE int
2182 save_type (struct Lisp_Save_Value *v, int n)
2183 {
2184 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2185 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2186 }
2187
2188 /* Get and set the Nth saved pointer. */
2189
2190 INLINE void *
2191 XSAVE_POINTER (Lisp_Object obj, int n)
2192 {
2193 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2194 return XSAVE_VALUE (obj)->data[n].pointer;
2195 }
2196 INLINE void
2197 set_save_pointer (Lisp_Object obj, int n, void *val)
2198 {
2199 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2200 XSAVE_VALUE (obj)->data[n].pointer = val;
2201 }
2202 INLINE voidfuncptr
2203 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2204 {
2205 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2206 return XSAVE_VALUE (obj)->data[n].funcpointer;
2207 }
2208
2209 /* Likewise for the saved integer. */
2210
2211 INLINE ptrdiff_t
2212 XSAVE_INTEGER (Lisp_Object obj, int n)
2213 {
2214 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2215 return XSAVE_VALUE (obj)->data[n].integer;
2216 }
2217 INLINE void
2218 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2219 {
2220 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2221 XSAVE_VALUE (obj)->data[n].integer = val;
2222 }
2223
2224 /* Extract Nth saved object. */
2225
2226 INLINE Lisp_Object
2227 XSAVE_OBJECT (Lisp_Object obj, int n)
2228 {
2229 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2230 return XSAVE_VALUE (obj)->data[n].object;
2231 }
2232
2233 /* A finalizer sentinel. */
2234 struct Lisp_Finalizer
2235 {
2236 struct Lisp_Misc_Any base;
2237
2238 /* Circular list of all active weak references. */
2239 struct Lisp_Finalizer *prev;
2240 struct Lisp_Finalizer *next;
2241
2242 /* Call FUNCTION when the finalizer becomes unreachable, even if
2243 FUNCTION contains a reference to the finalizer; i.e., call
2244 FUNCTION when it is reachable _only_ through finalizers. */
2245 Lisp_Object function;
2246 };
2247
2248 /* A miscellaneous object, when it's on the free list. */
2249 struct Lisp_Free
2250 {
2251 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2252 bool_bf gcmarkbit : 1;
2253 unsigned spacer : 15;
2254 union Lisp_Misc *chain;
2255 };
2256
2257 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2258 It uses one of these struct subtypes to get the type field. */
2259
2260 union Lisp_Misc
2261 {
2262 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2263 struct Lisp_Free u_free;
2264 struct Lisp_Marker u_marker;
2265 struct Lisp_Overlay u_overlay;
2266 struct Lisp_Save_Value u_save_value;
2267 struct Lisp_Finalizer u_finalizer;
2268 };
2269
2270 INLINE union Lisp_Misc *
2271 XMISC (Lisp_Object a)
2272 {
2273 return XUNTAG (a, Lisp_Misc);
2274 }
2275
2276 INLINE struct Lisp_Misc_Any *
2277 XMISCANY (Lisp_Object a)
2278 {
2279 eassert (MISCP (a));
2280 return & XMISC (a)->u_any;
2281 }
2282
2283 INLINE enum Lisp_Misc_Type
2284 XMISCTYPE (Lisp_Object a)
2285 {
2286 return XMISCANY (a)->type;
2287 }
2288
2289 INLINE struct Lisp_Marker *
2290 XMARKER (Lisp_Object a)
2291 {
2292 eassert (MARKERP (a));
2293 return & XMISC (a)->u_marker;
2294 }
2295
2296 INLINE struct Lisp_Overlay *
2297 XOVERLAY (Lisp_Object a)
2298 {
2299 eassert (OVERLAYP (a));
2300 return & XMISC (a)->u_overlay;
2301 }
2302
2303 INLINE struct Lisp_Save_Value *
2304 XSAVE_VALUE (Lisp_Object a)
2305 {
2306 eassert (SAVE_VALUEP (a));
2307 return & XMISC (a)->u_save_value;
2308 }
2309
2310 INLINE struct Lisp_Finalizer *
2311 XFINALIZER (Lisp_Object a)
2312 {
2313 eassert (FINALIZERP (a));
2314 return & XMISC (a)->u_finalizer;
2315 }
2316
2317 \f
2318 /* Forwarding pointer to an int variable.
2319 This is allowed only in the value cell of a symbol,
2320 and it means that the symbol's value really lives in the
2321 specified int variable. */
2322 struct Lisp_Intfwd
2323 {
2324 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2325 EMACS_INT *intvar;
2326 };
2327
2328 /* Boolean forwarding pointer to an int variable.
2329 This is like Lisp_Intfwd except that the ostensible
2330 "value" of the symbol is t if the bool variable is true,
2331 nil if it is false. */
2332 struct Lisp_Boolfwd
2333 {
2334 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2335 bool *boolvar;
2336 };
2337
2338 /* Forwarding pointer to a Lisp_Object variable.
2339 This is allowed only in the value cell of a symbol,
2340 and it means that the symbol's value really lives in the
2341 specified variable. */
2342 struct Lisp_Objfwd
2343 {
2344 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2345 Lisp_Object *objvar;
2346 };
2347
2348 /* Like Lisp_Objfwd except that value lives in a slot in the
2349 current buffer. Value is byte index of slot within buffer. */
2350 struct Lisp_Buffer_Objfwd
2351 {
2352 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2353 int offset;
2354 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2355 Lisp_Object predicate;
2356 };
2357
2358 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2359 the symbol has buffer-local or frame-local bindings. (Exception:
2360 some buffer-local variables are built-in, with their values stored
2361 in the buffer structure itself. They are handled differently,
2362 using struct Lisp_Buffer_Objfwd.)
2363
2364 The `realvalue' slot holds the variable's current value, or a
2365 forwarding pointer to where that value is kept. This value is the
2366 one that corresponds to the loaded binding. To read or set the
2367 variable, you must first make sure the right binding is loaded;
2368 then you can access the value in (or through) `realvalue'.
2369
2370 `buffer' and `frame' are the buffer and frame for which the loaded
2371 binding was found. If those have changed, to make sure the right
2372 binding is loaded it is necessary to find which binding goes with
2373 the current buffer and selected frame, then load it. To load it,
2374 first unload the previous binding, then copy the value of the new
2375 binding into `realvalue' (or through it). Also update
2376 LOADED-BINDING to point to the newly loaded binding.
2377
2378 `local_if_set' indicates that merely setting the variable creates a
2379 local binding for the current buffer. Otherwise the latter, setting
2380 the variable does not do that; only make-local-variable does that. */
2381
2382 struct Lisp_Buffer_Local_Value
2383 {
2384 /* True means that merely setting the variable creates a local
2385 binding for the current buffer. */
2386 bool_bf local_if_set : 1;
2387 /* True means this variable can have frame-local bindings, otherwise, it is
2388 can have buffer-local bindings. The two cannot be combined. */
2389 bool_bf frame_local : 1;
2390 /* True means that the binding now loaded was found.
2391 Presumably equivalent to (defcell!=valcell). */
2392 bool_bf found : 1;
2393 /* If non-NULL, a forwarding to the C var where it should also be set. */
2394 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2395 /* The buffer or frame for which the loaded binding was found. */
2396 Lisp_Object where;
2397 /* A cons cell that holds the default value. It has the form
2398 (SYMBOL . DEFAULT-VALUE). */
2399 Lisp_Object defcell;
2400 /* The cons cell from `where's parameter alist.
2401 It always has the form (SYMBOL . VALUE)
2402 Note that if `forward' is non-nil, VALUE may be out of date.
2403 Also if the currently loaded binding is the default binding, then
2404 this is `eq'ual to defcell. */
2405 Lisp_Object valcell;
2406 };
2407
2408 /* Like Lisp_Objfwd except that value lives in a slot in the
2409 current kboard. */
2410 struct Lisp_Kboard_Objfwd
2411 {
2412 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2413 int offset;
2414 };
2415
2416 union Lisp_Fwd
2417 {
2418 struct Lisp_Intfwd u_intfwd;
2419 struct Lisp_Boolfwd u_boolfwd;
2420 struct Lisp_Objfwd u_objfwd;
2421 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2422 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2423 };
2424
2425 INLINE enum Lisp_Fwd_Type
2426 XFWDTYPE (union Lisp_Fwd *a)
2427 {
2428 return a->u_intfwd.type;
2429 }
2430
2431 INLINE struct Lisp_Buffer_Objfwd *
2432 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2433 {
2434 eassert (BUFFER_OBJFWDP (a));
2435 return &a->u_buffer_objfwd;
2436 }
2437 \f
2438 /* Lisp floating point type. */
2439 struct Lisp_Float
2440 {
2441 union
2442 {
2443 double data;
2444 struct Lisp_Float *chain;
2445 } u;
2446 };
2447
2448 INLINE double
2449 XFLOAT_DATA (Lisp_Object f)
2450 {
2451 return XFLOAT (f)->u.data;
2452 }
2453
2454 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2455 representations, have infinities and NaNs, and do not trap on
2456 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2457 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2458 wanted here, but is not quite right because Emacs does not require
2459 all the features of C11 Annex F (and does not require C11 at all,
2460 for that matter). */
2461 enum
2462 {
2463 IEEE_FLOATING_POINT
2464 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2465 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2466 };
2467
2468 /* A character, declared with the following typedef, is a member
2469 of some character set associated with the current buffer. */
2470 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2471 #define _UCHAR_T
2472 typedef unsigned char UCHAR;
2473 #endif
2474
2475 /* Meanings of slots in a Lisp_Compiled: */
2476
2477 enum Lisp_Compiled
2478 {
2479 COMPILED_ARGLIST = 0,
2480 COMPILED_BYTECODE = 1,
2481 COMPILED_CONSTANTS = 2,
2482 COMPILED_STACK_DEPTH = 3,
2483 COMPILED_DOC_STRING = 4,
2484 COMPILED_INTERACTIVE = 5
2485 };
2486
2487 /* Flag bits in a character. These also get used in termhooks.h.
2488 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2489 (MUlti-Lingual Emacs) might need 22 bits for the character value
2490 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2491 enum char_bits
2492 {
2493 CHAR_ALT = 0x0400000,
2494 CHAR_SUPER = 0x0800000,
2495 CHAR_HYPER = 0x1000000,
2496 CHAR_SHIFT = 0x2000000,
2497 CHAR_CTL = 0x4000000,
2498 CHAR_META = 0x8000000,
2499
2500 CHAR_MODIFIER_MASK =
2501 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2502
2503 /* Actually, the current Emacs uses 22 bits for the character value
2504 itself. */
2505 CHARACTERBITS = 22
2506 };
2507 \f
2508 /* Data type checking. */
2509
2510 INLINE bool
2511 (NILP) (Lisp_Object x)
2512 {
2513 return lisp_h_NILP (x);
2514 }
2515
2516 INLINE bool
2517 NUMBERP (Lisp_Object x)
2518 {
2519 return INTEGERP (x) || FLOATP (x);
2520 }
2521 INLINE bool
2522 NATNUMP (Lisp_Object x)
2523 {
2524 return INTEGERP (x) && 0 <= XINT (x);
2525 }
2526
2527 INLINE bool
2528 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2529 {
2530 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2531 }
2532
2533 #define TYPE_RANGED_INTEGERP(type, x) \
2534 (INTEGERP (x) \
2535 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2536 && XINT (x) <= TYPE_MAXIMUM (type))
2537
2538 INLINE bool
2539 (CONSP) (Lisp_Object x)
2540 {
2541 return lisp_h_CONSP (x);
2542 }
2543 INLINE bool
2544 (FLOATP) (Lisp_Object x)
2545 {
2546 return lisp_h_FLOATP (x);
2547 }
2548 INLINE bool
2549 (MISCP) (Lisp_Object x)
2550 {
2551 return lisp_h_MISCP (x);
2552 }
2553 INLINE bool
2554 (SYMBOLP) (Lisp_Object x)
2555 {
2556 return lisp_h_SYMBOLP (x);
2557 }
2558 INLINE bool
2559 (INTEGERP) (Lisp_Object x)
2560 {
2561 return lisp_h_INTEGERP (x);
2562 }
2563 INLINE bool
2564 (VECTORLIKEP) (Lisp_Object x)
2565 {
2566 return lisp_h_VECTORLIKEP (x);
2567 }
2568 INLINE bool
2569 (MARKERP) (Lisp_Object x)
2570 {
2571 return lisp_h_MARKERP (x);
2572 }
2573
2574 INLINE bool
2575 STRINGP (Lisp_Object x)
2576 {
2577 return XTYPE (x) == Lisp_String;
2578 }
2579 INLINE bool
2580 VECTORP (Lisp_Object x)
2581 {
2582 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2583 }
2584 INLINE bool
2585 OVERLAYP (Lisp_Object x)
2586 {
2587 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2588 }
2589 INLINE bool
2590 SAVE_VALUEP (Lisp_Object x)
2591 {
2592 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2593 }
2594
2595 INLINE bool
2596 FINALIZERP (Lisp_Object x)
2597 {
2598 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2599 }
2600
2601 INLINE bool
2602 AUTOLOADP (Lisp_Object x)
2603 {
2604 return CONSP (x) && EQ (Qautoload, XCAR (x));
2605 }
2606
2607 INLINE bool
2608 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2609 {
2610 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2611 }
2612
2613 INLINE bool
2614 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2615 {
2616 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2617 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2618 }
2619
2620 /* True if A is a pseudovector whose code is CODE. */
2621 INLINE bool
2622 PSEUDOVECTORP (Lisp_Object a, int code)
2623 {
2624 if (! VECTORLIKEP (a))
2625 return false;
2626 else
2627 {
2628 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2629 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2630 return PSEUDOVECTOR_TYPEP (h, code);
2631 }
2632 }
2633
2634
2635 /* Test for specific pseudovector types. */
2636
2637 INLINE bool
2638 WINDOW_CONFIGURATIONP (Lisp_Object a)
2639 {
2640 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2641 }
2642
2643 INLINE bool
2644 PROCESSP (Lisp_Object a)
2645 {
2646 return PSEUDOVECTORP (a, PVEC_PROCESS);
2647 }
2648
2649 INLINE bool
2650 WINDOWP (Lisp_Object a)
2651 {
2652 return PSEUDOVECTORP (a, PVEC_WINDOW);
2653 }
2654
2655 INLINE bool
2656 TERMINALP (Lisp_Object a)
2657 {
2658 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2659 }
2660
2661 INLINE bool
2662 SUBRP (Lisp_Object a)
2663 {
2664 return PSEUDOVECTORP (a, PVEC_SUBR);
2665 }
2666
2667 INLINE bool
2668 COMPILEDP (Lisp_Object a)
2669 {
2670 return PSEUDOVECTORP (a, PVEC_COMPILED);
2671 }
2672
2673 INLINE bool
2674 BUFFERP (Lisp_Object a)
2675 {
2676 return PSEUDOVECTORP (a, PVEC_BUFFER);
2677 }
2678
2679 INLINE bool
2680 CHAR_TABLE_P (Lisp_Object a)
2681 {
2682 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2683 }
2684
2685 INLINE bool
2686 SUB_CHAR_TABLE_P (Lisp_Object a)
2687 {
2688 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2689 }
2690
2691 INLINE bool
2692 BOOL_VECTOR_P (Lisp_Object a)
2693 {
2694 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2695 }
2696
2697 INLINE bool
2698 FRAMEP (Lisp_Object a)
2699 {
2700 return PSEUDOVECTORP (a, PVEC_FRAME);
2701 }
2702
2703 /* Test for image (image . spec) */
2704 INLINE bool
2705 IMAGEP (Lisp_Object x)
2706 {
2707 return CONSP (x) && EQ (XCAR (x), Qimage);
2708 }
2709
2710 /* Array types. */
2711 INLINE bool
2712 ARRAYP (Lisp_Object x)
2713 {
2714 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2715 }
2716 \f
2717 INLINE void
2718 CHECK_LIST (Lisp_Object x)
2719 {
2720 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2721 }
2722
2723 INLINE void
2724 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2725 {
2726 lisp_h_CHECK_LIST_CONS (x, y);
2727 }
2728
2729 INLINE void
2730 (CHECK_SYMBOL) (Lisp_Object x)
2731 {
2732 lisp_h_CHECK_SYMBOL (x);
2733 }
2734
2735 INLINE void
2736 (CHECK_NUMBER) (Lisp_Object x)
2737 {
2738 lisp_h_CHECK_NUMBER (x);
2739 }
2740
2741 INLINE void
2742 CHECK_STRING (Lisp_Object x)
2743 {
2744 CHECK_TYPE (STRINGP (x), Qstringp, x);
2745 }
2746 INLINE void
2747 CHECK_STRING_CAR (Lisp_Object x)
2748 {
2749 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2750 }
2751 INLINE void
2752 CHECK_CONS (Lisp_Object x)
2753 {
2754 CHECK_TYPE (CONSP (x), Qconsp, x);
2755 }
2756 INLINE void
2757 CHECK_VECTOR (Lisp_Object x)
2758 {
2759 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2760 }
2761 INLINE void
2762 CHECK_BOOL_VECTOR (Lisp_Object x)
2763 {
2764 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2765 }
2766 /* This is a bit special because we always need size afterwards. */
2767 INLINE ptrdiff_t
2768 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2769 {
2770 if (VECTORP (x))
2771 return ASIZE (x);
2772 if (STRINGP (x))
2773 return SCHARS (x);
2774 wrong_type_argument (Qarrayp, x);
2775 }
2776 INLINE void
2777 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2778 {
2779 CHECK_TYPE (ARRAYP (x), predicate, x);
2780 }
2781 INLINE void
2782 CHECK_BUFFER (Lisp_Object x)
2783 {
2784 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2785 }
2786 INLINE void
2787 CHECK_WINDOW (Lisp_Object x)
2788 {
2789 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2790 }
2791 #ifdef subprocesses
2792 INLINE void
2793 CHECK_PROCESS (Lisp_Object x)
2794 {
2795 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2796 }
2797 #endif
2798 INLINE void
2799 CHECK_NATNUM (Lisp_Object x)
2800 {
2801 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2802 }
2803
2804 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2805 do { \
2806 CHECK_NUMBER (x); \
2807 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2808 args_out_of_range_3 \
2809 (x, \
2810 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2811 ? MOST_NEGATIVE_FIXNUM \
2812 : (lo)), \
2813 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2814 } while (false)
2815 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2816 do { \
2817 if (TYPE_SIGNED (type)) \
2818 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2819 else \
2820 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2821 } while (false)
2822
2823 #define CHECK_NUMBER_COERCE_MARKER(x) \
2824 do { \
2825 if (MARKERP ((x))) \
2826 XSETFASTINT (x, marker_position (x)); \
2827 else \
2828 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2829 } while (false)
2830
2831 INLINE double
2832 XFLOATINT (Lisp_Object n)
2833 {
2834 return extract_float (n);
2835 }
2836
2837 INLINE void
2838 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2839 {
2840 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2841 }
2842
2843 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2844 do { \
2845 if (MARKERP (x)) \
2846 XSETFASTINT (x, marker_position (x)); \
2847 else \
2848 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2849 } while (false)
2850
2851 /* Since we can't assign directly to the CAR or CDR fields of a cons
2852 cell, use these when checking that those fields contain numbers. */
2853 INLINE void
2854 CHECK_NUMBER_CAR (Lisp_Object x)
2855 {
2856 Lisp_Object tmp = XCAR (x);
2857 CHECK_NUMBER (tmp);
2858 XSETCAR (x, tmp);
2859 }
2860
2861 INLINE void
2862 CHECK_NUMBER_CDR (Lisp_Object x)
2863 {
2864 Lisp_Object tmp = XCDR (x);
2865 CHECK_NUMBER (tmp);
2866 XSETCDR (x, tmp);
2867 }
2868 \f
2869 /* Define a built-in function for calling from Lisp.
2870 `lname' should be the name to give the function in Lisp,
2871 as a null-terminated C string.
2872 `fnname' should be the name of the function in C.
2873 By convention, it starts with F.
2874 `sname' should be the name for the C constant structure
2875 that records information on this function for internal use.
2876 By convention, it should be the same as `fnname' but with S instead of F.
2877 It's too bad that C macros can't compute this from `fnname'.
2878 `minargs' should be a number, the minimum number of arguments allowed.
2879 `maxargs' should be a number, the maximum number of arguments allowed,
2880 or else MANY or UNEVALLED.
2881 MANY means pass a vector of evaluated arguments,
2882 in the form of an integer number-of-arguments
2883 followed by the address of a vector of Lisp_Objects
2884 which contains the argument values.
2885 UNEVALLED means pass the list of unevaluated arguments
2886 `intspec' says how interactive arguments are to be fetched.
2887 If the string starts with a `(', `intspec' is evaluated and the resulting
2888 list is the list of arguments.
2889 If it's a string that doesn't start with `(', the value should follow
2890 the one of the doc string for `interactive'.
2891 A null string means call interactively with no arguments.
2892 `doc' is documentation for the user. */
2893
2894 /* This version of DEFUN declares a function prototype with the right
2895 arguments, so we can catch errors with maxargs at compile-time. */
2896 #ifdef _MSC_VER
2897 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2898 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2899 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2900 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2901 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2902 { (Lisp_Object (__cdecl *)(void))fnname }, \
2903 minargs, maxargs, lname, intspec, 0}; \
2904 Lisp_Object fnname
2905 #else /* not _MSC_VER */
2906 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2907 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2908 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2909 { .a ## maxargs = fnname }, \
2910 minargs, maxargs, lname, intspec, 0}; \
2911 Lisp_Object fnname
2912 #endif
2913
2914 /* True if OBJ is a Lisp function. */
2915 INLINE bool
2916 FUNCTIONP (Lisp_Object obj)
2917 {
2918 return functionp (obj);
2919 }
2920
2921 /* defsubr (Sname);
2922 is how we define the symbol for function `name' at start-up time. */
2923 extern void defsubr (struct Lisp_Subr *);
2924
2925 enum maxargs
2926 {
2927 MANY = -2,
2928 UNEVALLED = -1
2929 };
2930
2931 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2932 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2933
2934 /* Call a function F that accepts many args, passing it the remaining args,
2935 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2936 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2937 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2938 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2939
2940 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2941 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2942 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2943 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2944 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2945
2946 /* Macros we use to define forwarded Lisp variables.
2947 These are used in the syms_of_FILENAME functions.
2948
2949 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2950 lisp variable is actually a field in `struct emacs_globals'. The
2951 field's name begins with "f_", which is a convention enforced by
2952 these macros. Each such global has a corresponding #define in
2953 globals.h; the plain name should be used in the code.
2954
2955 E.g., the global "cons_cells_consed" is declared as "int
2956 f_cons_cells_consed" in globals.h, but there is a define:
2957
2958 #define cons_cells_consed globals.f_cons_cells_consed
2959
2960 All C code uses the `cons_cells_consed' name. This is all done
2961 this way to support indirection for multi-threaded Emacs. */
2962
2963 #define DEFVAR_LISP(lname, vname, doc) \
2964 do { \
2965 static struct Lisp_Objfwd o_fwd; \
2966 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2967 } while (false)
2968 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2969 do { \
2970 static struct Lisp_Objfwd o_fwd; \
2971 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2972 } while (false)
2973 #define DEFVAR_BOOL(lname, vname, doc) \
2974 do { \
2975 static struct Lisp_Boolfwd b_fwd; \
2976 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2977 } while (false)
2978 #define DEFVAR_INT(lname, vname, doc) \
2979 do { \
2980 static struct Lisp_Intfwd i_fwd; \
2981 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2982 } while (false)
2983
2984 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2985 do { \
2986 static struct Lisp_Objfwd o_fwd; \
2987 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2988 } while (false)
2989
2990 #define DEFVAR_KBOARD(lname, vname, doc) \
2991 do { \
2992 static struct Lisp_Kboard_Objfwd ko_fwd; \
2993 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2994 } while (false)
2995 \f
2996 /* Save and restore the instruction and environment pointers,
2997 without affecting the signal mask. */
2998
2999 #ifdef HAVE__SETJMP
3000 typedef jmp_buf sys_jmp_buf;
3001 # define sys_setjmp(j) _setjmp (j)
3002 # define sys_longjmp(j, v) _longjmp (j, v)
3003 #elif defined HAVE_SIGSETJMP
3004 typedef sigjmp_buf sys_jmp_buf;
3005 # define sys_setjmp(j) sigsetjmp (j, 0)
3006 # define sys_longjmp(j, v) siglongjmp (j, v)
3007 #else
3008 /* A platform that uses neither _longjmp nor siglongjmp; assume
3009 longjmp does not affect the sigmask. */
3010 typedef jmp_buf sys_jmp_buf;
3011 # define sys_setjmp(j) setjmp (j)
3012 # define sys_longjmp(j, v) longjmp (j, v)
3013 #endif
3014
3015 \f
3016 /* Elisp uses several stacks:
3017 - the C stack.
3018 - the bytecode stack: used internally by the bytecode interpreter.
3019 Allocated from the C stack.
3020 - The specpdl stack: keeps track of active unwind-protect and
3021 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3022 managed stack.
3023 - The handler stack: keeps track of active catch tags and condition-case
3024 handlers. Allocated in a manually managed stack implemented by a
3025 doubly-linked list allocated via xmalloc and never freed. */
3026
3027 /* Structure for recording Lisp call stack for backtrace purposes. */
3028
3029 /* The special binding stack holds the outer values of variables while
3030 they are bound by a function application or a let form, stores the
3031 code to be executed for unwind-protect forms.
3032
3033 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3034 used all over the place, needs to be fast, and needs to know the size of
3035 union specbinding. But only eval.c should access it. */
3036
3037 enum specbind_tag {
3038 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3039 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3040 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3041 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3042 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3043 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3044 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3045 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3046 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3047 };
3048
3049 union specbinding
3050 {
3051 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3052 struct {
3053 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3054 void (*func) (Lisp_Object);
3055 Lisp_Object arg;
3056 } unwind;
3057 struct {
3058 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3059 void (*func) (void *);
3060 void *arg;
3061 } unwind_ptr;
3062 struct {
3063 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3064 void (*func) (int);
3065 int arg;
3066 } unwind_int;
3067 struct {
3068 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3069 void (*func) (void);
3070 } unwind_void;
3071 struct {
3072 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3073 /* `where' is not used in the case of SPECPDL_LET. */
3074 Lisp_Object symbol, old_value, where;
3075 } let;
3076 struct {
3077 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3078 bool_bf debug_on_exit : 1;
3079 Lisp_Object function;
3080 Lisp_Object *args;
3081 ptrdiff_t nargs;
3082 } bt;
3083 };
3084
3085 extern union specbinding *specpdl;
3086 extern union specbinding *specpdl_ptr;
3087 extern ptrdiff_t specpdl_size;
3088
3089 INLINE ptrdiff_t
3090 SPECPDL_INDEX (void)
3091 {
3092 return specpdl_ptr - specpdl;
3093 }
3094
3095 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3096 control structures. A struct handler contains all the information needed to
3097 restore the state of the interpreter after a non-local jump.
3098
3099 handler structures are chained together in a doubly linked list; the `next'
3100 member points to the next outer catchtag and the `nextfree' member points in
3101 the other direction to the next inner element (which is typically the next
3102 free element since we mostly use it on the deepest handler).
3103
3104 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3105 member is TAG, and then unbinds to it. The `val' member is used to
3106 hold VAL while the stack is unwound; `val' is returned as the value
3107 of the catch form. If there is a handler of type CATCHER_ALL, it will
3108 be treated as a handler for all invocations of `throw'; in this case
3109 `val' will be set to (TAG . VAL).
3110
3111 All the other members are concerned with restoring the interpreter
3112 state.
3113
3114 Members are volatile if their values need to survive _longjmp when
3115 a 'struct handler' is a local variable. */
3116
3117 enum handlertype { CATCHER, CONDITION_CASE, CATCHER_ALL };
3118
3119 struct handler
3120 {
3121 enum handlertype type;
3122 Lisp_Object tag_or_ch;
3123 Lisp_Object val;
3124 struct handler *next;
3125 struct handler *nextfree;
3126
3127 /* The bytecode interpreter can have several handlers active at the same
3128 time, so when we longjmp to one of them, it needs to know which handler
3129 this was and what was the corresponding internal state. This is stored
3130 here, and when we longjmp we make sure that handlerlist points to the
3131 proper handler. */
3132 Lisp_Object *bytecode_top;
3133 int bytecode_dest;
3134
3135 /* Most global vars are reset to their value via the specpdl mechanism,
3136 but a few others are handled by storing their value here. */
3137 sys_jmp_buf jmp;
3138 EMACS_INT lisp_eval_depth;
3139 ptrdiff_t pdlcount;
3140 int poll_suppress_count;
3141 int interrupt_input_blocked;
3142 struct byte_stack *byte_stack;
3143 };
3144
3145 /* Fill in the components of c, and put it on the list. */
3146 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3147 push_handler(&(c), (tag_ch_val), (handlertype))
3148
3149 extern void push_handler (struct handler **c, Lisp_Object tag_ch_val,
3150 enum handlertype handlertype);
3151
3152 /* Like push_handler, but don't signal if the handler could not be
3153 allocated. Instead return false in that case. */
3154 extern bool push_handler_nosignal (struct handler **c, Lisp_Object tag_ch_val,
3155 enum handlertype handlertype);
3156
3157 extern Lisp_Object memory_signal_data;
3158
3159 /* An address near the bottom of the stack.
3160 Tells GC how to save a copy of the stack. */
3161 extern char *stack_bottom;
3162
3163 /* Check quit-flag and quit if it is non-nil.
3164 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3165 So the program needs to do QUIT at times when it is safe to quit.
3166 Every loop that might run for a long time or might not exit
3167 ought to do QUIT at least once, at a safe place.
3168 Unless that is impossible, of course.
3169 But it is very desirable to avoid creating loops where QUIT is impossible.
3170
3171 Exception: if you set immediate_quit to true,
3172 then the handler that responds to the C-g does the quit itself.
3173 This is a good thing to do around a loop that has no side effects
3174 and (in particular) cannot call arbitrary Lisp code.
3175
3176 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3177 a request to exit Emacs when it is safe to do. */
3178
3179 extern void process_pending_signals (void);
3180 extern bool volatile pending_signals;
3181
3182 extern void process_quit_flag (void);
3183 #define QUIT \
3184 do { \
3185 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3186 process_quit_flag (); \
3187 else if (pending_signals) \
3188 process_pending_signals (); \
3189 } while (false)
3190
3191
3192 /* True if ought to quit now. */
3193
3194 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3195 \f
3196 extern Lisp_Object Vascii_downcase_table;
3197 extern Lisp_Object Vascii_canon_table;
3198 \f
3199 /* Call staticpro (&var) to protect static variable `var'. */
3200
3201 void staticpro (Lisp_Object *);
3202 \f
3203 /* Forward declarations for prototypes. */
3204 struct window;
3205 struct frame;
3206
3207 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3208
3209 INLINE void
3210 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3211 {
3212 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3213 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3214 }
3215
3216 /* Functions to modify hash tables. */
3217
3218 INLINE void
3219 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3220 {
3221 gc_aset (h->key_and_value, 2 * idx, val);
3222 }
3223
3224 INLINE void
3225 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3226 {
3227 gc_aset (h->key_and_value, 2 * idx + 1, val);
3228 }
3229
3230 /* Use these functions to set Lisp_Object
3231 or pointer slots of struct Lisp_Symbol. */
3232
3233 INLINE void
3234 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3235 {
3236 XSYMBOL (sym)->function = function;
3237 }
3238
3239 INLINE void
3240 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3241 {
3242 XSYMBOL (sym)->plist = plist;
3243 }
3244
3245 INLINE void
3246 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3247 {
3248 XSYMBOL (sym)->next = next;
3249 }
3250
3251 /* Buffer-local (also frame-local) variable access functions. */
3252
3253 INLINE int
3254 blv_found (struct Lisp_Buffer_Local_Value *blv)
3255 {
3256 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3257 return blv->found;
3258 }
3259
3260 /* Set overlay's property list. */
3261
3262 INLINE void
3263 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3264 {
3265 XOVERLAY (overlay)->plist = plist;
3266 }
3267
3268 /* Get text properties of S. */
3269
3270 INLINE INTERVAL
3271 string_intervals (Lisp_Object s)
3272 {
3273 return XSTRING (s)->intervals;
3274 }
3275
3276 /* Set text properties of S to I. */
3277
3278 INLINE void
3279 set_string_intervals (Lisp_Object s, INTERVAL i)
3280 {
3281 XSTRING (s)->intervals = i;
3282 }
3283
3284 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3285 of setting slots directly. */
3286
3287 INLINE void
3288 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3289 {
3290 XCHAR_TABLE (table)->defalt = val;
3291 }
3292 INLINE void
3293 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3294 {
3295 XCHAR_TABLE (table)->purpose = val;
3296 }
3297
3298 /* Set different slots in (sub)character tables. */
3299
3300 INLINE void
3301 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3302 {
3303 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3304 XCHAR_TABLE (table)->extras[idx] = val;
3305 }
3306
3307 INLINE void
3308 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3309 {
3310 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3311 XCHAR_TABLE (table)->contents[idx] = val;
3312 }
3313
3314 INLINE void
3315 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3316 {
3317 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3318 }
3319
3320 /* Defined in data.c. */
3321 extern Lisp_Object indirect_function (Lisp_Object);
3322 extern Lisp_Object find_symbol_value (Lisp_Object);
3323 enum Arith_Comparison {
3324 ARITH_EQUAL,
3325 ARITH_NOTEQUAL,
3326 ARITH_LESS,
3327 ARITH_GRTR,
3328 ARITH_LESS_OR_EQUAL,
3329 ARITH_GRTR_OR_EQUAL
3330 };
3331 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3332 enum Arith_Comparison comparison);
3333
3334 /* Convert the integer I to an Emacs representation, either the integer
3335 itself, or a cons of two or three integers, or if all else fails a float.
3336 I should not have side effects. */
3337 #define INTEGER_TO_CONS(i) \
3338 (! FIXNUM_OVERFLOW_P (i) \
3339 ? make_number (i) \
3340 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3341 extern Lisp_Object intbig_to_lisp (intmax_t);
3342 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3343
3344 /* Convert the Emacs representation CONS back to an integer of type
3345 TYPE, storing the result the variable VAR. Signal an error if CONS
3346 is not a valid representation or is out of range for TYPE. */
3347 #define CONS_TO_INTEGER(cons, type, var) \
3348 (TYPE_SIGNED (type) \
3349 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3350 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3351 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3352 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3353
3354 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3355 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3356 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3357 Lisp_Object);
3358 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3359 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3360 extern void syms_of_data (void);
3361 extern void swap_in_global_binding (struct Lisp_Symbol *);
3362
3363 /* Defined in cmds.c */
3364 extern void syms_of_cmds (void);
3365 extern void keys_of_cmds (void);
3366
3367 /* Defined in coding.c. */
3368 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3369 ptrdiff_t, bool, bool, Lisp_Object);
3370 extern void init_coding (void);
3371 extern void init_coding_once (void);
3372 extern void syms_of_coding (void);
3373
3374 /* Defined in character.c. */
3375 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3376 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3377 extern void syms_of_character (void);
3378
3379 /* Defined in charset.c. */
3380 extern void init_charset (void);
3381 extern void init_charset_once (void);
3382 extern void syms_of_charset (void);
3383 /* Structure forward declarations. */
3384 struct charset;
3385
3386 /* Defined in syntax.c. */
3387 extern void init_syntax_once (void);
3388 extern void syms_of_syntax (void);
3389
3390 /* Defined in fns.c. */
3391 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3392 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3393 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3394 extern void sweep_weak_hash_tables (void);
3395 EMACS_UINT hash_string (char const *, ptrdiff_t);
3396 EMACS_UINT sxhash (Lisp_Object, int);
3397 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3398 Lisp_Object, Lisp_Object);
3399 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3400 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3401 EMACS_UINT);
3402 void hash_remove_from_table (struct Lisp_Hash_Table *, Lisp_Object);
3403 extern struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3404 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3405 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3406 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3407 ptrdiff_t, ptrdiff_t);
3408 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3409 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3410 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3411 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3412 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3413 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3414 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3415 extern void clear_string_char_byte_cache (void);
3416 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3417 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3418 extern Lisp_Object string_to_multibyte (Lisp_Object);
3419 extern Lisp_Object string_make_unibyte (Lisp_Object);
3420 extern void syms_of_fns (void);
3421
3422 /* Defined in floatfns.c. */
3423 extern void syms_of_floatfns (void);
3424 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3425
3426 /* Defined in fringe.c. */
3427 extern void syms_of_fringe (void);
3428 extern void init_fringe (void);
3429 #ifdef HAVE_WINDOW_SYSTEM
3430 extern void mark_fringe_data (void);
3431 extern void init_fringe_once (void);
3432 #endif /* HAVE_WINDOW_SYSTEM */
3433
3434 /* Defined in image.c. */
3435 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3436 extern void reset_image_types (void);
3437 extern void syms_of_image (void);
3438
3439 /* Defined in insdel.c. */
3440 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3441 extern _Noreturn void buffer_overflow (void);
3442 extern void make_gap (ptrdiff_t);
3443 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3444 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3445 ptrdiff_t, bool, bool);
3446 extern int count_combining_before (const unsigned char *,
3447 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3448 extern int count_combining_after (const unsigned char *,
3449 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3450 extern void insert (const char *, ptrdiff_t);
3451 extern void insert_and_inherit (const char *, ptrdiff_t);
3452 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3453 bool, bool, bool);
3454 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3455 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3456 ptrdiff_t, ptrdiff_t, bool);
3457 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3458 extern void insert_char (int);
3459 extern void insert_string (const char *);
3460 extern void insert_before_markers (const char *, ptrdiff_t);
3461 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3462 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3463 ptrdiff_t, ptrdiff_t,
3464 ptrdiff_t, bool);
3465 extern void del_range (ptrdiff_t, ptrdiff_t);
3466 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3467 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3468 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3469 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3470 ptrdiff_t, ptrdiff_t, bool);
3471 extern void modify_text (ptrdiff_t, ptrdiff_t);
3472 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3473 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3474 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3475 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3476 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3477 ptrdiff_t, ptrdiff_t);
3478 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3479 ptrdiff_t, ptrdiff_t);
3480 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3481 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3482 const char *, ptrdiff_t, ptrdiff_t, bool);
3483 extern void syms_of_insdel (void);
3484
3485 /* Defined in dispnew.c. */
3486 #if (defined PROFILING \
3487 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3488 _Noreturn void __executable_start (void);
3489 #endif
3490 extern Lisp_Object Vwindow_system;
3491 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3492
3493 /* Defined in xdisp.c. */
3494 extern bool noninteractive_need_newline;
3495 extern Lisp_Object echo_area_buffer[2];
3496 extern void add_to_log (char const *, ...);
3497 extern void vadd_to_log (char const *, va_list);
3498 extern void check_message_stack (void);
3499 extern void setup_echo_area_for_printing (bool);
3500 extern bool push_message (void);
3501 extern void pop_message_unwind (void);
3502 extern Lisp_Object restore_message_unwind (Lisp_Object);
3503 extern void restore_message (void);
3504 extern Lisp_Object current_message (void);
3505 extern void clear_message (bool, bool);
3506 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3507 extern void message1 (const char *);
3508 extern void message1_nolog (const char *);
3509 extern void message3 (Lisp_Object);
3510 extern void message3_nolog (Lisp_Object);
3511 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3512 extern void message_with_string (const char *, Lisp_Object, bool);
3513 extern void message_log_maybe_newline (void);
3514 extern void update_echo_area (void);
3515 extern void truncate_echo_area (ptrdiff_t);
3516 extern void redisplay (void);
3517
3518 void set_frame_cursor_types (struct frame *, Lisp_Object);
3519 extern void syms_of_xdisp (void);
3520 extern void init_xdisp (void);
3521 extern Lisp_Object safe_eval (Lisp_Object);
3522 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3523 int *, int *, int *, int *, int *);
3524
3525 /* Defined in xsettings.c. */
3526 extern void syms_of_xsettings (void);
3527
3528 /* Defined in vm-limit.c. */
3529 extern void memory_warnings (void *, void (*warnfun) (const char *));
3530
3531 /* Defined in character.c. */
3532 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3533 ptrdiff_t *, ptrdiff_t *);
3534
3535 /* Defined in alloc.c. */
3536 extern void check_pure_size (void);
3537 extern void free_misc (Lisp_Object);
3538 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3539 extern void malloc_warning (const char *);
3540 extern _Noreturn void memory_full (size_t);
3541 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3542 extern bool survives_gc_p (Lisp_Object);
3543 extern void mark_object (Lisp_Object);
3544 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3545 extern void refill_memory_reserve (void);
3546 #endif
3547 extern const char *pending_malloc_warning;
3548 extern Lisp_Object zero_vector;
3549 extern Lisp_Object *stack_base;
3550 extern EMACS_INT consing_since_gc;
3551 extern EMACS_INT gc_relative_threshold;
3552 extern EMACS_INT memory_full_cons_threshold;
3553 extern Lisp_Object list1 (Lisp_Object);
3554 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3555 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3556 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3557 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3558 Lisp_Object);
3559 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3560 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3561
3562 /* Build a frequently used 2/3/4-integer lists. */
3563
3564 INLINE Lisp_Object
3565 list2i (EMACS_INT x, EMACS_INT y)
3566 {
3567 return list2 (make_number (x), make_number (y));
3568 }
3569
3570 INLINE Lisp_Object
3571 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3572 {
3573 return list3 (make_number (x), make_number (y), make_number (w));
3574 }
3575
3576 INLINE Lisp_Object
3577 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3578 {
3579 return list4 (make_number (x), make_number (y),
3580 make_number (w), make_number (h));
3581 }
3582
3583 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3584 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3585 extern _Noreturn void string_overflow (void);
3586 extern Lisp_Object make_string (const char *, ptrdiff_t);
3587 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3588 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3589 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3590
3591 /* Make unibyte string from C string when the length isn't known. */
3592
3593 INLINE Lisp_Object
3594 build_unibyte_string (const char *str)
3595 {
3596 return make_unibyte_string (str, strlen (str));
3597 }
3598
3599 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3600 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3601 extern Lisp_Object make_uninit_string (EMACS_INT);
3602 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3603 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3604 extern Lisp_Object make_specified_string (const char *,
3605 ptrdiff_t, ptrdiff_t, bool);
3606 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3607 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3608
3609 /* Make a string allocated in pure space, use STR as string data. */
3610
3611 INLINE Lisp_Object
3612 build_pure_c_string (const char *str)
3613 {
3614 return make_pure_c_string (str, strlen (str));
3615 }
3616
3617 /* Make a string from the data at STR, treating it as multibyte if the
3618 data warrants. */
3619
3620 INLINE Lisp_Object
3621 build_string (const char *str)
3622 {
3623 return make_string (str, strlen (str));
3624 }
3625
3626 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3627 extern void make_byte_code (struct Lisp_Vector *);
3628 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3629
3630 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3631 be sure that GC cannot happen until the vector is completely
3632 initialized. E.g. the following code is likely to crash:
3633
3634 v = make_uninit_vector (3);
3635 ASET (v, 0, obj0);
3636 ASET (v, 1, Ffunction_can_gc ());
3637 ASET (v, 2, obj1); */
3638
3639 INLINE Lisp_Object
3640 make_uninit_vector (ptrdiff_t size)
3641 {
3642 Lisp_Object v;
3643 struct Lisp_Vector *p;
3644
3645 p = allocate_vector (size);
3646 XSETVECTOR (v, p);
3647 return v;
3648 }
3649
3650 /* Like above, but special for sub char-tables. */
3651
3652 INLINE Lisp_Object
3653 make_uninit_sub_char_table (int depth, int min_char)
3654 {
3655 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3656 Lisp_Object v = make_uninit_vector (slots);
3657
3658 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3659 XSUB_CHAR_TABLE (v)->depth = depth;
3660 XSUB_CHAR_TABLE (v)->min_char = min_char;
3661 return v;
3662 }
3663
3664 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3665 enum pvec_type);
3666
3667 /* Allocate partially initialized pseudovector where all Lisp_Object
3668 slots are set to Qnil but the rest (if any) is left uninitialized. */
3669
3670 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3671 ((type *) allocate_pseudovector (VECSIZE (type), \
3672 PSEUDOVECSIZE (type, field), \
3673 PSEUDOVECSIZE (type, field), tag))
3674
3675 /* Allocate fully initialized pseudovector where all Lisp_Object
3676 slots are set to Qnil and the rest (if any) is zeroed. */
3677
3678 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3679 ((type *) allocate_pseudovector (VECSIZE (type), \
3680 PSEUDOVECSIZE (type, field), \
3681 VECSIZE (type), tag))
3682
3683 extern bool gc_in_progress;
3684 extern bool abort_on_gc;
3685 extern Lisp_Object make_float (double);
3686 extern void display_malloc_warning (void);
3687 extern ptrdiff_t inhibit_garbage_collection (void);
3688 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3689 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3690 Lisp_Object, Lisp_Object);
3691 extern Lisp_Object make_save_ptr (void *);
3692 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3693 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3694 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3695 Lisp_Object);
3696 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3697 extern void free_save_value (Lisp_Object);
3698 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3699 extern void free_marker (Lisp_Object);
3700 extern void free_cons (struct Lisp_Cons *);
3701 extern void init_alloc_once (void);
3702 extern void init_alloc (void);
3703 extern void syms_of_alloc (void);
3704 extern struct buffer * allocate_buffer (void);
3705 extern int valid_lisp_object_p (Lisp_Object);
3706 #ifdef GC_CHECK_CONS_LIST
3707 extern void check_cons_list (void);
3708 #else
3709 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3710 #endif
3711
3712 #ifdef REL_ALLOC
3713 /* Defined in ralloc.c. */
3714 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3715 extern void r_alloc_free (void **);
3716 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3717 extern void r_alloc_reset_variable (void **, void **);
3718 extern void r_alloc_inhibit_buffer_relocation (int);
3719 #endif
3720
3721 /* Defined in chartab.c. */
3722 extern Lisp_Object copy_char_table (Lisp_Object);
3723 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3724 int *, int *);
3725 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3726 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3727 Lisp_Object),
3728 Lisp_Object, Lisp_Object, Lisp_Object);
3729 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3730 Lisp_Object, Lisp_Object,
3731 Lisp_Object, struct charset *,
3732 unsigned, unsigned);
3733 extern Lisp_Object uniprop_table (Lisp_Object);
3734 extern void syms_of_chartab (void);
3735
3736 /* Defined in print.c. */
3737 extern Lisp_Object Vprin1_to_string_buffer;
3738 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3739 extern void temp_output_buffer_setup (const char *);
3740 extern int print_level;
3741 extern void write_string (const char *);
3742 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3743 Lisp_Object);
3744 extern Lisp_Object internal_with_output_to_temp_buffer
3745 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3746 #define FLOAT_TO_STRING_BUFSIZE 350
3747 extern int float_to_string (char *, double);
3748 extern void init_print_once (void);
3749 extern void syms_of_print (void);
3750
3751 /* Defined in doprnt.c. */
3752 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3753 va_list);
3754 extern ptrdiff_t esprintf (char *, char const *, ...)
3755 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3756 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3757 char const *, ...)
3758 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3759 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3760 char const *, va_list)
3761 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3762
3763 /* Defined in lread.c. */
3764 extern Lisp_Object check_obarray (Lisp_Object);
3765 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3766 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3767 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3768 extern void init_symbol (Lisp_Object, Lisp_Object);
3769 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3770 INLINE void
3771 LOADHIST_ATTACH (Lisp_Object x)
3772 {
3773 if (initialized)
3774 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3775 }
3776 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3777 Lisp_Object *, Lisp_Object, bool);
3778 extern Lisp_Object string_to_number (char const *, int, bool);
3779 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3780 Lisp_Object);
3781 extern void dir_warning (const char *, Lisp_Object);
3782 extern void init_obarray (void);
3783 extern void init_lread (void);
3784 extern void syms_of_lread (void);
3785
3786 INLINE Lisp_Object
3787 intern (const char *str)
3788 {
3789 return intern_1 (str, strlen (str));
3790 }
3791
3792 INLINE Lisp_Object
3793 intern_c_string (const char *str)
3794 {
3795 return intern_c_string_1 (str, strlen (str));
3796 }
3797
3798 /* Defined in eval.c. */
3799 extern EMACS_INT lisp_eval_depth;
3800 extern Lisp_Object Vautoload_queue;
3801 extern Lisp_Object Vrun_hooks;
3802 extern Lisp_Object Vsignaling_function;
3803 extern Lisp_Object inhibit_lisp_code;
3804 extern struct handler *handlerlist;
3805
3806 /* To run a normal hook, use the appropriate function from the list below.
3807 The calling convention:
3808
3809 if (!NILP (Vrun_hooks))
3810 call1 (Vrun_hooks, Qmy_funny_hook);
3811
3812 should no longer be used. */
3813 extern void run_hook (Lisp_Object);
3814 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3815 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3816 Lisp_Object (*funcall)
3817 (ptrdiff_t nargs, Lisp_Object *args));
3818 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3819 extern _Noreturn void xsignal0 (Lisp_Object);
3820 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3821 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3822 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3823 Lisp_Object);
3824 extern _Noreturn void signal_error (const char *, Lisp_Object);
3825 extern Lisp_Object eval_sub (Lisp_Object form);
3826 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3827 extern Lisp_Object call0 (Lisp_Object);
3828 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3829 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3830 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3831 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3832 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3833 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3834 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3835 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3836 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3837 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3838 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3839 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3840 extern Lisp_Object internal_condition_case_n
3841 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3842 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3843 extern void specbind (Lisp_Object, Lisp_Object);
3844 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3845 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3846 extern void record_unwind_protect_int (void (*) (int), int);
3847 extern void record_unwind_protect_void (void (*) (void));
3848 extern void record_unwind_protect_nothing (void);
3849 extern void clear_unwind_protect (ptrdiff_t);
3850 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3851 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3852 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3853 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3854 extern _Noreturn void verror (const char *, va_list)
3855 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3856 extern void un_autoload (Lisp_Object);
3857 extern Lisp_Object call_debugger (Lisp_Object arg);
3858 extern void *near_C_stack_top (void);
3859 extern void init_eval_once (void);
3860 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3861 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3862 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3863 extern void init_eval (void);
3864 extern void syms_of_eval (void);
3865 extern void unwind_body (Lisp_Object);
3866 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3867 extern void mark_specpdl (void);
3868 extern void get_backtrace (Lisp_Object array);
3869 Lisp_Object backtrace_top_function (void);
3870 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3871 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3872
3873
3874 /* Defined in editfns.c. */
3875 extern void insert1 (Lisp_Object);
3876 extern Lisp_Object save_excursion_save (void);
3877 extern Lisp_Object save_restriction_save (void);
3878 extern void save_excursion_restore (Lisp_Object);
3879 extern void save_restriction_restore (Lisp_Object);
3880 extern _Noreturn void time_overflow (void);
3881 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3882 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3883 ptrdiff_t, bool);
3884 extern void init_editfns (bool);
3885 extern void syms_of_editfns (void);
3886
3887 /* Defined in buffer.c. */
3888 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3889 extern _Noreturn void nsberror (Lisp_Object);
3890 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3891 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3892 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3893 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3894 Lisp_Object, Lisp_Object, Lisp_Object);
3895 extern bool overlay_touches_p (ptrdiff_t);
3896 extern Lisp_Object other_buffer_safely (Lisp_Object);
3897 extern Lisp_Object get_truename_buffer (Lisp_Object);
3898 extern void init_buffer_once (void);
3899 extern void init_buffer (int);
3900 extern void syms_of_buffer (void);
3901 extern void keys_of_buffer (void);
3902
3903 /* Defined in marker.c. */
3904
3905 extern ptrdiff_t marker_position (Lisp_Object);
3906 extern ptrdiff_t marker_byte_position (Lisp_Object);
3907 extern void clear_charpos_cache (struct buffer *);
3908 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3909 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3910 extern void unchain_marker (struct Lisp_Marker *marker);
3911 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3912 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3913 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3914 ptrdiff_t, ptrdiff_t);
3915 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3916 extern void syms_of_marker (void);
3917
3918 /* Defined in fileio.c. */
3919
3920 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3921 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3922 Lisp_Object, Lisp_Object, Lisp_Object,
3923 Lisp_Object, int);
3924 extern void close_file_unwind (int);
3925 extern void fclose_unwind (void *);
3926 extern void restore_point_unwind (Lisp_Object);
3927 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3928 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3929 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
3930 extern bool internal_delete_file (Lisp_Object);
3931 extern Lisp_Object emacs_readlinkat (int, const char *);
3932 extern bool file_directory_p (const char *);
3933 extern bool file_accessible_directory_p (Lisp_Object);
3934 extern void init_fileio (void);
3935 extern void syms_of_fileio (void);
3936 extern Lisp_Object make_temp_name (Lisp_Object, bool);
3937
3938 /* Defined in search.c. */
3939 extern void shrink_regexp_cache (void);
3940 extern void restore_search_regs (void);
3941 extern void record_unwind_save_match_data (void);
3942 struct re_registers;
3943 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
3944 struct re_registers *,
3945 Lisp_Object, bool, bool);
3946 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
3947 Lisp_Object);
3948
3949 INLINE ptrdiff_t
3950 fast_string_match (Lisp_Object regexp, Lisp_Object string)
3951 {
3952 return fast_string_match_internal (regexp, string, Qnil);
3953 }
3954
3955 INLINE ptrdiff_t
3956 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
3957 {
3958 return fast_string_match_internal (regexp, string, Vascii_canon_table);
3959 }
3960
3961 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
3962 ptrdiff_t);
3963 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
3964 ptrdiff_t, ptrdiff_t, Lisp_Object);
3965 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3966 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
3967 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3968 ptrdiff_t, bool);
3969 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3970 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
3971 ptrdiff_t, ptrdiff_t *);
3972 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
3973 ptrdiff_t, ptrdiff_t *);
3974 extern void syms_of_search (void);
3975 extern void clear_regexp_cache (void);
3976
3977 /* Defined in minibuf.c. */
3978
3979 extern Lisp_Object Vminibuffer_list;
3980 extern Lisp_Object last_minibuf_string;
3981 extern Lisp_Object get_minibuffer (EMACS_INT);
3982 extern void init_minibuf_once (void);
3983 extern void syms_of_minibuf (void);
3984
3985 /* Defined in callint.c. */
3986
3987 extern void syms_of_callint (void);
3988
3989 /* Defined in casefiddle.c. */
3990
3991 extern void syms_of_casefiddle (void);
3992 extern void keys_of_casefiddle (void);
3993
3994 /* Defined in casetab.c. */
3995
3996 extern void init_casetab_once (void);
3997 extern void syms_of_casetab (void);
3998
3999 /* Defined in keyboard.c. */
4000
4001 extern Lisp_Object echo_message_buffer;
4002 extern struct kboard *echo_kboard;
4003 extern void cancel_echoing (void);
4004 extern bool input_pending;
4005 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4006 extern sigjmp_buf return_to_command_loop;
4007 #endif
4008 extern Lisp_Object menu_bar_items (Lisp_Object);
4009 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4010 extern void discard_mouse_events (void);
4011 #ifdef USABLE_SIGIO
4012 void handle_input_available_signal (int);
4013 #endif
4014 extern Lisp_Object pending_funcalls;
4015 extern bool detect_input_pending (void);
4016 extern bool detect_input_pending_ignore_squeezables (void);
4017 extern bool detect_input_pending_run_timers (bool);
4018 extern void safe_run_hooks (Lisp_Object);
4019 extern void cmd_error_internal (Lisp_Object, const char *);
4020 extern Lisp_Object command_loop_1 (void);
4021 extern Lisp_Object read_menu_command (void);
4022 extern Lisp_Object recursive_edit_1 (void);
4023 extern void record_auto_save (void);
4024 extern void force_auto_save_soon (void);
4025 extern void init_keyboard (void);
4026 extern void syms_of_keyboard (void);
4027 extern void keys_of_keyboard (void);
4028
4029 /* Defined in indent.c. */
4030 extern ptrdiff_t current_column (void);
4031 extern void invalidate_current_column (void);
4032 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4033 extern void syms_of_indent (void);
4034
4035 /* Defined in frame.c. */
4036 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4037 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4038 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4039 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4040 extern void frames_discard_buffer (Lisp_Object);
4041 extern void syms_of_frame (void);
4042
4043 /* Defined in emacs.c. */
4044 extern char **initial_argv;
4045 extern int initial_argc;
4046 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4047 extern bool display_arg;
4048 #endif
4049 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4050 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4051 extern _Noreturn void terminate_due_to_signal (int, int);
4052 #ifdef WINDOWSNT
4053 extern Lisp_Object Vlibrary_cache;
4054 #endif
4055 #if HAVE_SETLOCALE
4056 void fixup_locale (void);
4057 void synchronize_system_messages_locale (void);
4058 void synchronize_system_time_locale (void);
4059 #else
4060 INLINE void fixup_locale (void) {}
4061 INLINE void synchronize_system_messages_locale (void) {}
4062 INLINE void synchronize_system_time_locale (void) {}
4063 #endif
4064 extern void shut_down_emacs (int, Lisp_Object);
4065
4066 /* True means don't do interactive redisplay and don't change tty modes. */
4067 extern bool noninteractive;
4068
4069 /* True means remove site-lisp directories from load-path. */
4070 extern bool no_site_lisp;
4071
4072 /* Pipe used to send exit notification to the daemon parent at
4073 startup. On Windows, we use a kernel event instead. */
4074 #ifndef WINDOWSNT
4075 extern int daemon_pipe[2];
4076 #define IS_DAEMON (daemon_pipe[1] != 0)
4077 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4078 #else /* WINDOWSNT */
4079 extern void *w32_daemon_event;
4080 #define IS_DAEMON (w32_daemon_event != NULL)
4081 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4082 #endif
4083
4084 /* True if handling a fatal error already. */
4085 extern bool fatal_error_in_progress;
4086
4087 /* True means don't do use window-system-specific display code. */
4088 extern bool inhibit_window_system;
4089 /* True means that a filter or a sentinel is running. */
4090 extern bool running_asynch_code;
4091
4092 /* Defined in process.c. */
4093 extern void kill_buffer_processes (Lisp_Object);
4094 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4095 struct Lisp_Process *, int);
4096 /* Max value for the first argument of wait_reading_process_output. */
4097 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4098 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4099 The bug merely causes a bogus warning, but the warning is annoying. */
4100 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4101 #else
4102 # define WAIT_READING_MAX INTMAX_MAX
4103 #endif
4104 #ifdef HAVE_TIMERFD
4105 extern void add_timer_wait_descriptor (int);
4106 #endif
4107 extern void add_keyboard_wait_descriptor (int);
4108 extern void delete_keyboard_wait_descriptor (int);
4109 #ifdef HAVE_GPM
4110 extern void add_gpm_wait_descriptor (int);
4111 extern void delete_gpm_wait_descriptor (int);
4112 #endif
4113 extern void init_process_emacs (void);
4114 extern void syms_of_process (void);
4115 extern void setup_process_coding_systems (Lisp_Object);
4116
4117 /* Defined in callproc.c. */
4118 #ifndef DOS_NT
4119 _Noreturn
4120 #endif
4121 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4122 extern void init_callproc_1 (void);
4123 extern void init_callproc (void);
4124 extern void set_initial_environment (void);
4125 extern void syms_of_callproc (void);
4126
4127 /* Defined in doc.c. */
4128 enum text_quoting_style
4129 {
4130 /* Use curved single quotes ‘like this’. */
4131 CURVE_QUOTING_STYLE,
4132
4133 /* Use grave accent and apostrophe `like this'. */
4134 GRAVE_QUOTING_STYLE,
4135
4136 /* Use apostrophes 'like this'. */
4137 STRAIGHT_QUOTING_STYLE
4138 };
4139 extern enum text_quoting_style text_quoting_style (void);
4140 extern Lisp_Object read_doc_string (Lisp_Object);
4141 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4142 extern void syms_of_doc (void);
4143 extern int read_bytecode_char (bool);
4144
4145 /* Defined in bytecode.c. */
4146 extern void syms_of_bytecode (void);
4147 extern struct byte_stack *byte_stack_list;
4148 extern void relocate_byte_stack (void);
4149 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4150 Lisp_Object, ptrdiff_t, Lisp_Object *);
4151
4152 /* Defined in macros.c. */
4153 extern void init_macros (void);
4154 extern void syms_of_macros (void);
4155
4156 /* Defined in undo.c. */
4157 extern void truncate_undo_list (struct buffer *);
4158 extern void record_insert (ptrdiff_t, ptrdiff_t);
4159 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4160 extern void record_first_change (void);
4161 extern void record_change (ptrdiff_t, ptrdiff_t);
4162 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4163 Lisp_Object, Lisp_Object,
4164 Lisp_Object);
4165 extern void syms_of_undo (void);
4166
4167 /* Defined in textprop.c. */
4168 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4169
4170 /* Defined in menu.c. */
4171 extern void syms_of_menu (void);
4172
4173 /* Defined in xmenu.c. */
4174 extern void syms_of_xmenu (void);
4175
4176 /* Defined in termchar.h. */
4177 struct tty_display_info;
4178
4179 /* Defined in termhooks.h. */
4180 struct terminal;
4181
4182 /* Defined in sysdep.c. */
4183 #ifndef HAVE_GET_CURRENT_DIR_NAME
4184 extern char *get_current_dir_name (void);
4185 #endif
4186 extern void stuff_char (char c);
4187 extern void init_foreground_group (void);
4188 extern void sys_subshell (void);
4189 extern void sys_suspend (void);
4190 extern void discard_tty_input (void);
4191 extern void init_sys_modes (struct tty_display_info *);
4192 extern void reset_sys_modes (struct tty_display_info *);
4193 extern void init_all_sys_modes (void);
4194 extern void reset_all_sys_modes (void);
4195 extern void child_setup_tty (int);
4196 extern void setup_pty (int);
4197 extern int set_window_size (int, int, int);
4198 extern EMACS_INT get_random (void);
4199 extern void seed_random (void *, ptrdiff_t);
4200 extern void init_random (void);
4201 extern void emacs_backtrace (int);
4202 extern _Noreturn void emacs_abort (void) NO_INLINE;
4203 extern int emacs_open (const char *, int, int);
4204 extern int emacs_pipe (int[2]);
4205 extern int emacs_close (int);
4206 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4207 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4208 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4209 extern void emacs_perror (char const *);
4210
4211 extern void unlock_all_files (void);
4212 extern void lock_file (Lisp_Object);
4213 extern void unlock_file (Lisp_Object);
4214 extern void unlock_buffer (struct buffer *);
4215 extern void syms_of_filelock (void);
4216 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4217
4218 /* Defined in sound.c. */
4219 extern void syms_of_sound (void);
4220
4221 /* Defined in category.c. */
4222 extern void init_category_once (void);
4223 extern Lisp_Object char_category_set (int);
4224 extern void syms_of_category (void);
4225
4226 /* Defined in ccl.c. */
4227 extern void syms_of_ccl (void);
4228
4229 /* Defined in dired.c. */
4230 extern void syms_of_dired (void);
4231 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4232 Lisp_Object, Lisp_Object,
4233 bool, Lisp_Object);
4234
4235 /* Defined in term.c. */
4236 extern int *char_ins_del_vector;
4237 extern void syms_of_term (void);
4238 extern _Noreturn void fatal (const char *msgid, ...)
4239 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4240
4241 /* Defined in terminal.c. */
4242 extern void syms_of_terminal (void);
4243
4244 /* Defined in font.c. */
4245 extern void syms_of_font (void);
4246 extern void init_font (void);
4247
4248 #ifdef HAVE_WINDOW_SYSTEM
4249 /* Defined in fontset.c. */
4250 extern void syms_of_fontset (void);
4251 #endif
4252
4253 /* Defined in gfilenotify.c */
4254 #ifdef HAVE_GFILENOTIFY
4255 extern void globals_of_gfilenotify (void);
4256 extern void syms_of_gfilenotify (void);
4257 #endif
4258
4259 /* Defined in inotify.c */
4260 #ifdef HAVE_INOTIFY
4261 extern void syms_of_inotify (void);
4262 #endif
4263
4264 #ifdef HAVE_W32NOTIFY
4265 /* Defined on w32notify.c. */
4266 extern void syms_of_w32notify (void);
4267 #endif
4268
4269 /* Defined in xfaces.c. */
4270 extern Lisp_Object Vface_alternative_font_family_alist;
4271 extern Lisp_Object Vface_alternative_font_registry_alist;
4272 extern void syms_of_xfaces (void);
4273
4274 #ifdef HAVE_X_WINDOWS
4275 /* Defined in xfns.c. */
4276 extern void syms_of_xfns (void);
4277
4278 /* Defined in xsmfns.c. */
4279 extern void syms_of_xsmfns (void);
4280
4281 /* Defined in xselect.c. */
4282 extern void syms_of_xselect (void);
4283
4284 /* Defined in xterm.c. */
4285 extern void init_xterm (void);
4286 extern void syms_of_xterm (void);
4287 #endif /* HAVE_X_WINDOWS */
4288
4289 #ifdef HAVE_WINDOW_SYSTEM
4290 /* Defined in xterm.c, nsterm.m, w32term.c. */
4291 extern char *x_get_keysym_name (int);
4292 #endif /* HAVE_WINDOW_SYSTEM */
4293
4294 #ifdef HAVE_LIBXML2
4295 /* Defined in xml.c. */
4296 extern void syms_of_xml (void);
4297 extern void xml_cleanup_parser (void);
4298 #endif
4299
4300 #ifdef HAVE_ZLIB
4301 /* Defined in decompress.c. */
4302 extern void syms_of_decompress (void);
4303 #endif
4304
4305 #ifdef HAVE_DBUS
4306 /* Defined in dbusbind.c. */
4307 void init_dbusbind (void);
4308 void syms_of_dbusbind (void);
4309 #endif
4310
4311
4312 /* Defined in profiler.c. */
4313 extern bool profiler_memory_running;
4314 extern void malloc_probe (size_t);
4315 extern void syms_of_profiler (void);
4316
4317
4318 #ifdef DOS_NT
4319 /* Defined in msdos.c, w32.c. */
4320 extern char *emacs_root_dir (void);
4321 #endif /* DOS_NT */
4322
4323 /* Defined in lastfile.c. */
4324 extern char my_edata[];
4325 extern char my_endbss[];
4326 extern char *my_endbss_static;
4327
4328 /* True means ^G can quit instantly. */
4329 extern bool immediate_quit;
4330
4331 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4332 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4333 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4334 extern void xfree (void *);
4335 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4336 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4337 ATTRIBUTE_ALLOC_SIZE ((2,3));
4338 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4339
4340 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4341 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4342 extern void dupstring (char **, char const *);
4343
4344 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4345 null byte. This is like stpcpy, except the source is a Lisp string. */
4346
4347 INLINE char *
4348 lispstpcpy (char *dest, Lisp_Object string)
4349 {
4350 ptrdiff_t len = SBYTES (string);
4351 memcpy (dest, SDATA (string), len + 1);
4352 return dest + len;
4353 }
4354
4355 extern void xputenv (const char *);
4356
4357 extern char *egetenv_internal (const char *, ptrdiff_t);
4358
4359 INLINE char *
4360 egetenv (const char *var)
4361 {
4362 /* When VAR is a string literal, strlen can be optimized away. */
4363 return egetenv_internal (var, strlen (var));
4364 }
4365
4366 /* Set up the name of the machine we're running on. */
4367 extern void init_system_name (void);
4368
4369 /* Return the absolute value of X. X should be a signed integer
4370 expression without side effects, and X's absolute value should not
4371 exceed the maximum for its promoted type. This is called 'eabs'
4372 because 'abs' is reserved by the C standard. */
4373 #define eabs(x) ((x) < 0 ? -(x) : (x))
4374
4375 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4376 fixnum. */
4377
4378 #define make_fixnum_or_float(val) \
4379 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4380
4381 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4382 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4383
4384 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4385
4386 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4387
4388 #define USE_SAFE_ALLOCA \
4389 ptrdiff_t sa_avail = MAX_ALLOCA; \
4390 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4391
4392 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4393
4394 /* SAFE_ALLOCA allocates a simple buffer. */
4395
4396 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4397 ? AVAIL_ALLOCA (size) \
4398 : (sa_must_free = true, record_xmalloc (size)))
4399
4400 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4401 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4402 positive. The code is tuned for MULTIPLIER being a constant. */
4403
4404 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4405 do { \
4406 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4407 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4408 else \
4409 { \
4410 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4411 sa_must_free = true; \
4412 record_unwind_protect_ptr (xfree, buf); \
4413 } \
4414 } while (false)
4415
4416 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4417
4418 #define SAFE_ALLOCA_STRING(ptr, string) \
4419 do { \
4420 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4421 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4422 } while (false)
4423
4424 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4425
4426 #define SAFE_FREE() \
4427 do { \
4428 if (sa_must_free) { \
4429 sa_must_free = false; \
4430 unbind_to (sa_count, Qnil); \
4431 } \
4432 } while (false)
4433
4434 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4435
4436 #define SAFE_ALLOCA_LISP(buf, nelt) \
4437 do { \
4438 ptrdiff_t alloca_nbytes; \
4439 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4440 || SIZE_MAX < alloca_nbytes) \
4441 memory_full (SIZE_MAX); \
4442 else if (alloca_nbytes <= sa_avail) \
4443 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4444 else \
4445 { \
4446 Lisp_Object arg_; \
4447 (buf) = xmalloc (alloca_nbytes); \
4448 arg_ = make_save_memory (buf, nelt); \
4449 sa_must_free = true; \
4450 record_unwind_protect (free_save_value, arg_); \
4451 } \
4452 } while (false)
4453
4454
4455 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4456 block-scoped conses and strings. These objects are not
4457 managed by the garbage collector, so they are dangerous: passing them
4458 out of their scope (e.g., to user code) results in undefined behavior.
4459 Conversely, they have better performance because GC is not involved.
4460
4461 This feature is experimental and requires careful debugging.
4462 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4463
4464 #ifndef USE_STACK_LISP_OBJECTS
4465 # define USE_STACK_LISP_OBJECTS true
4466 #endif
4467
4468 #ifdef GC_CHECK_STRING_BYTES
4469 enum { defined_GC_CHECK_STRING_BYTES = true };
4470 #else
4471 enum { defined_GC_CHECK_STRING_BYTES = false };
4472 #endif
4473
4474 /* Struct inside unions that are typically no larger and aligned enough. */
4475
4476 union Aligned_Cons
4477 {
4478 struct Lisp_Cons s;
4479 double d; intmax_t i; void *p;
4480 };
4481
4482 union Aligned_String
4483 {
4484 struct Lisp_String s;
4485 double d; intmax_t i; void *p;
4486 };
4487
4488 /* True for stack-based cons and string implementations, respectively.
4489 Use stack-based strings only if stack-based cons also works.
4490 Otherwise, STACK_CONS would create heap-based cons cells that
4491 could point to stack-based strings, which is a no-no. */
4492
4493 enum
4494 {
4495 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4496 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4497 USE_STACK_STRING = (USE_STACK_CONS
4498 && !defined_GC_CHECK_STRING_BYTES
4499 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4500 };
4501
4502 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4503 use these only in macros like AUTO_CONS that declare a local
4504 variable whose lifetime will be clear to the programmer. */
4505 #define STACK_CONS(a, b) \
4506 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4507 #define AUTO_CONS_EXPR(a, b) \
4508 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4509
4510 /* Declare NAME as an auto Lisp cons or short list if possible, a
4511 GC-based one otherwise. This is in the sense of the C keyword
4512 'auto'; i.e., the object has the lifetime of the containing block.
4513 The resulting object should not be made visible to user Lisp code. */
4514
4515 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4516 #define AUTO_LIST1(name, a) \
4517 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4518 #define AUTO_LIST2(name, a, b) \
4519 Lisp_Object name = (USE_STACK_CONS \
4520 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4521 : list2 (a, b))
4522 #define AUTO_LIST3(name, a, b, c) \
4523 Lisp_Object name = (USE_STACK_CONS \
4524 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4525 : list3 (a, b, c))
4526 #define AUTO_LIST4(name, a, b, c, d) \
4527 Lisp_Object name \
4528 = (USE_STACK_CONS \
4529 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4530 STACK_CONS (d, Qnil)))) \
4531 : list4 (a, b, c, d))
4532
4533 /* Check whether stack-allocated strings are ASCII-only. */
4534
4535 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4536 extern const char *verify_ascii (const char *);
4537 #else
4538 # define verify_ascii(str) (str)
4539 #endif
4540
4541 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4542 Take its value from STR. STR is not necessarily copied and should
4543 contain only ASCII characters. The resulting Lisp string should
4544 not be modified or made visible to user code. */
4545
4546 #define AUTO_STRING(name, str) \
4547 Lisp_Object name = \
4548 (USE_STACK_STRING \
4549 ? (make_lisp_ptr \
4550 ((&(union Aligned_String) \
4551 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4552 Lisp_String)) \
4553 : build_string (verify_ascii (str)))
4554
4555 /* Loop over all tails of a list, checking for cycles.
4556 FIXME: Make tortoise and n internal declarations.
4557 FIXME: Unroll the loop body so we don't need `n'. */
4558 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4559 for ((tortoise) = (hare) = (list), (n) = true; \
4560 CONSP (hare); \
4561 (hare = XCDR (hare), (n) = !(n), \
4562 ((n) \
4563 ? (EQ (hare, tortoise) \
4564 ? xsignal1 (Qcircular_list, list) \
4565 : (void) 0) \
4566 /* Move tortoise before the next iteration, in case */ \
4567 /* the next iteration does an Fsetcdr. */ \
4568 : (void) ((tortoise) = XCDR (tortoise)))))
4569
4570 /* Do a `for' loop over alist values. */
4571
4572 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4573 for ((list_var) = (head_var); \
4574 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4575 (list_var) = XCDR (list_var))
4576
4577 /* Check whether it's time for GC, and run it if so. */
4578
4579 INLINE void
4580 maybe_gc (void)
4581 {
4582 if ((consing_since_gc > gc_cons_threshold
4583 && consing_since_gc > gc_relative_threshold)
4584 || (!NILP (Vmemory_full)
4585 && consing_since_gc > memory_full_cons_threshold))
4586 Fgarbage_collect ();
4587 }
4588
4589 INLINE bool
4590 functionp (Lisp_Object object)
4591 {
4592 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4593 {
4594 object = Findirect_function (object, Qt);
4595
4596 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4597 {
4598 /* Autoloaded symbols are functions, except if they load
4599 macros or keymaps. */
4600 int i;
4601 for (i = 0; i < 4 && CONSP (object); i++)
4602 object = XCDR (object);
4603
4604 return ! (CONSP (object) && !NILP (XCAR (object)));
4605 }
4606 }
4607
4608 if (SUBRP (object))
4609 return XSUBR (object)->max_args != UNEVALLED;
4610 else if (COMPILEDP (object))
4611 return true;
4612 else if (CONSP (object))
4613 {
4614 Lisp_Object car = XCAR (object);
4615 return EQ (car, Qlambda) || EQ (car, Qclosure);
4616 }
4617 else
4618 return false;
4619 }
4620
4621 INLINE_HEADER_END
4622
4623 #endif /* EMACS_LISP_H */