]> code.delx.au - gnu-emacs/blob - src/alloc.c
; Merge from origin/emacs-25
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25 #include <signal.h> /* For SIGABRT, SIGDANGER. */
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 #include "lisp.h"
32 #include "dispextern.h"
33 #include "intervals.h"
34 #include "puresize.h"
35 #include "sheap.h"
36 #include "systime.h"
37 #include "character.h"
38 #include "buffer.h"
39 #include "window.h"
40 #include "keyboard.h"
41 #include "frame.h"
42 #include "blockinput.h"
43 #include "termhooks.h" /* For struct terminal. */
44 #ifdef HAVE_WINDOW_SYSTEM
45 #include TERM_HEADER
46 #endif /* HAVE_WINDOW_SYSTEM */
47
48 #include <verify.h>
49 #include <execinfo.h> /* For backtrace. */
50
51 #ifdef HAVE_LINUX_SYSINFO
52 #include <sys/sysinfo.h>
53 #endif
54
55 #ifdef MSDOS
56 #include "dosfns.h" /* For dos_memory_info. */
57 #endif
58
59 #ifdef HAVE_MALLOC_H
60 # include <malloc.h>
61 #endif
62
63 #if (defined ENABLE_CHECKING \
64 && defined HAVE_VALGRIND_VALGRIND_H \
65 && !defined USE_VALGRIND)
66 # define USE_VALGRIND 1
67 #endif
68
69 #if USE_VALGRIND
70 #include <valgrind/valgrind.h>
71 #include <valgrind/memcheck.h>
72 static bool valgrind_p;
73 #endif
74
75 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
76
77 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
78 memory. Can do this only if using gmalloc.c and if not checking
79 marked objects. */
80
81 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
82 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
83 #undef GC_MALLOC_CHECK
84 #endif
85
86 #include <unistd.h>
87 #include <fcntl.h>
88
89 #ifdef USE_GTK
90 # include "gtkutil.h"
91 #endif
92 #ifdef WINDOWSNT
93 #include "w32.h"
94 #include "w32heap.h" /* for sbrk */
95 #endif
96
97 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
98 /* The address where the heap starts. */
99 void *
100 my_heap_start (void)
101 {
102 static void *start;
103 if (! start)
104 start = sbrk (0);
105 return start;
106 }
107 #endif
108
109 #ifdef DOUG_LEA_MALLOC
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Restore the dumped malloc state. Because malloc can be invoked
121 even before main (e.g. by the dynamic linker), the dumped malloc
122 state must be restored as early as possible using this special hook. */
123 static void
124 malloc_initialize_hook (void)
125 {
126 static bool malloc_using_checking;
127
128 if (! initialized)
129 {
130 my_heap_start ();
131 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
132 }
133 else
134 {
135 if (!malloc_using_checking)
136 {
137 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
138 ignored if the heap to be restored was constructed without
139 malloc checking. Can't use unsetenv, since that calls malloc. */
140 char **p = environ;
141 if (p)
142 for (; *p; p++)
143 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
144 {
145 do
146 *p = p[1];
147 while (*++p);
148
149 break;
150 }
151 }
152
153 malloc_set_state (malloc_state_ptr);
154 # ifndef XMALLOC_OVERRUN_CHECK
155 alloc_unexec_post ();
156 # endif
157 }
158 }
159
160 /* Declare the malloc initialization hook, which runs before 'main' starts.
161 EXTERNALLY_VISIBLE works around Bug#22522. */
162 # ifndef __MALLOC_HOOK_VOLATILE
163 # define __MALLOC_HOOK_VOLATILE
164 # endif
165 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
166 = malloc_initialize_hook;
167
168 #endif
169
170 /* Allocator-related actions to do just before and after unexec. */
171
172 void
173 alloc_unexec_pre (void)
174 {
175 #ifdef DOUG_LEA_MALLOC
176 malloc_state_ptr = malloc_get_state ();
177 #endif
178 #ifdef HYBRID_MALLOC
179 bss_sbrk_did_unexec = true;
180 #endif
181 }
182
183 void
184 alloc_unexec_post (void)
185 {
186 #ifdef DOUG_LEA_MALLOC
187 free (malloc_state_ptr);
188 #endif
189 #ifdef HYBRID_MALLOC
190 bss_sbrk_did_unexec = false;
191 #endif
192 }
193
194 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
195 to a struct Lisp_String. */
196
197 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
198 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
199 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
200
201 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
202 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
203 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
204
205 /* Default value of gc_cons_threshold (see below). */
206
207 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
208
209 /* Global variables. */
210 struct emacs_globals globals;
211
212 /* Number of bytes of consing done since the last gc. */
213
214 EMACS_INT consing_since_gc;
215
216 /* Similar minimum, computed from Vgc_cons_percentage. */
217
218 EMACS_INT gc_relative_threshold;
219
220 /* Minimum number of bytes of consing since GC before next GC,
221 when memory is full. */
222
223 EMACS_INT memory_full_cons_threshold;
224
225 /* True during GC. */
226
227 bool gc_in_progress;
228
229 /* True means abort if try to GC.
230 This is for code which is written on the assumption that
231 no GC will happen, so as to verify that assumption. */
232
233 bool abort_on_gc;
234
235 /* Number of live and free conses etc. */
236
237 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
238 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
239 static EMACS_INT total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block, or to see
248 whether this much is available when malloc fails on a larger request. */
249
250 #define SPARE_MEMORY (1 << 14)
251
252 /* Initialize it to a nonzero value to force it into data space
253 (rather than bss space). That way unexec will remap it into text
254 space (pure), on some systems. We have not implemented the
255 remapping on more recent systems because this is less important
256 nowadays than in the days of small memories and timesharing. */
257
258 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
259 #define PUREBEG (char *) pure
260
261 /* Pointer to the pure area, and its size. */
262
263 static char *purebeg;
264 static ptrdiff_t pure_size;
265
266 /* Number of bytes of pure storage used before pure storage overflowed.
267 If this is non-zero, this implies that an overflow occurred. */
268
269 static ptrdiff_t pure_bytes_used_before_overflow;
270
271 /* Index in pure at which next pure Lisp object will be allocated.. */
272
273 static ptrdiff_t pure_bytes_used_lisp;
274
275 /* Number of bytes allocated for non-Lisp objects in pure storage. */
276
277 static ptrdiff_t pure_bytes_used_non_lisp;
278
279 /* If nonzero, this is a warning delivered by malloc and not yet
280 displayed. */
281
282 const char *pending_malloc_warning;
283
284 #if 0 /* Normally, pointer sanity only on request... */
285 #ifdef ENABLE_CHECKING
286 #define SUSPICIOUS_OBJECT_CHECKING 1
287 #endif
288 #endif
289
290 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
291 bug is unresolved. */
292 #define SUSPICIOUS_OBJECT_CHECKING 1
293
294 #ifdef SUSPICIOUS_OBJECT_CHECKING
295 struct suspicious_free_record
296 {
297 void *suspicious_object;
298 void *backtrace[128];
299 };
300 static void *suspicious_objects[32];
301 static int suspicious_object_index;
302 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
303 static int suspicious_free_history_index;
304 /* Find the first currently-monitored suspicious pointer in range
305 [begin,end) or NULL if no such pointer exists. */
306 static void *find_suspicious_object_in_range (void *begin, void *end);
307 static void detect_suspicious_free (void *ptr);
308 #else
309 # define find_suspicious_object_in_range(begin, end) NULL
310 # define detect_suspicious_free(ptr) (void)
311 #endif
312
313 /* Maximum amount of C stack to save when a GC happens. */
314
315 #ifndef MAX_SAVE_STACK
316 #define MAX_SAVE_STACK 16000
317 #endif
318
319 /* Buffer in which we save a copy of the C stack at each GC. */
320
321 #if MAX_SAVE_STACK > 0
322 static char *stack_copy;
323 static ptrdiff_t stack_copy_size;
324
325 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
326 avoiding any address sanitization. */
327
328 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
329 no_sanitize_memcpy (void *dest, void const *src, size_t size)
330 {
331 if (! ADDRESS_SANITIZER)
332 return memcpy (dest, src, size);
333 else
334 {
335 size_t i;
336 char *d = dest;
337 char const *s = src;
338 for (i = 0; i < size; i++)
339 d[i] = s[i];
340 return dest;
341 }
342 }
343
344 #endif /* MAX_SAVE_STACK > 0 */
345
346 static void mark_terminals (void);
347 static void gc_sweep (void);
348 static Lisp_Object make_pure_vector (ptrdiff_t);
349 static void mark_buffer (struct buffer *);
350
351 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
352 static void refill_memory_reserve (void);
353 #endif
354 static void compact_small_strings (void);
355 static void free_large_strings (void);
356 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
357
358 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
359 what memory allocated via lisp_malloc and lisp_align_malloc is intended
360 for what purpose. This enumeration specifies the type of memory. */
361
362 enum mem_type
363 {
364 MEM_TYPE_NON_LISP,
365 MEM_TYPE_BUFFER,
366 MEM_TYPE_CONS,
367 MEM_TYPE_STRING,
368 MEM_TYPE_MISC,
369 MEM_TYPE_SYMBOL,
370 MEM_TYPE_FLOAT,
371 /* Since all non-bool pseudovectors are small enough to be
372 allocated from vector blocks, this memory type denotes
373 large regular vectors and large bool pseudovectors. */
374 MEM_TYPE_VECTORLIKE,
375 /* Special type to denote vector blocks. */
376 MEM_TYPE_VECTOR_BLOCK,
377 /* Special type to denote reserved memory. */
378 MEM_TYPE_SPARE
379 };
380
381 /* A unique object in pure space used to make some Lisp objects
382 on free lists recognizable in O(1). */
383
384 static Lisp_Object Vdead;
385 #define DEADP(x) EQ (x, Vdead)
386
387 #ifdef GC_MALLOC_CHECK
388
389 enum mem_type allocated_mem_type;
390
391 #endif /* GC_MALLOC_CHECK */
392
393 /* A node in the red-black tree describing allocated memory containing
394 Lisp data. Each such block is recorded with its start and end
395 address when it is allocated, and removed from the tree when it
396 is freed.
397
398 A red-black tree is a balanced binary tree with the following
399 properties:
400
401 1. Every node is either red or black.
402 2. Every leaf is black.
403 3. If a node is red, then both of its children are black.
404 4. Every simple path from a node to a descendant leaf contains
405 the same number of black nodes.
406 5. The root is always black.
407
408 When nodes are inserted into the tree, or deleted from the tree,
409 the tree is "fixed" so that these properties are always true.
410
411 A red-black tree with N internal nodes has height at most 2
412 log(N+1). Searches, insertions and deletions are done in O(log N).
413 Please see a text book about data structures for a detailed
414 description of red-black trees. Any book worth its salt should
415 describe them. */
416
417 struct mem_node
418 {
419 /* Children of this node. These pointers are never NULL. When there
420 is no child, the value is MEM_NIL, which points to a dummy node. */
421 struct mem_node *left, *right;
422
423 /* The parent of this node. In the root node, this is NULL. */
424 struct mem_node *parent;
425
426 /* Start and end of allocated region. */
427 void *start, *end;
428
429 /* Node color. */
430 enum {MEM_BLACK, MEM_RED} color;
431
432 /* Memory type. */
433 enum mem_type type;
434 };
435
436 /* Base address of stack. Set in main. */
437
438 Lisp_Object *stack_base;
439
440 /* Root of the tree describing allocated Lisp memory. */
441
442 static struct mem_node *mem_root;
443
444 /* Lowest and highest known address in the heap. */
445
446 static void *min_heap_address, *max_heap_address;
447
448 /* Sentinel node of the tree. */
449
450 static struct mem_node mem_z;
451 #define MEM_NIL &mem_z
452
453 static struct mem_node *mem_insert (void *, void *, enum mem_type);
454 static void mem_insert_fixup (struct mem_node *);
455 static void mem_rotate_left (struct mem_node *);
456 static void mem_rotate_right (struct mem_node *);
457 static void mem_delete (struct mem_node *);
458 static void mem_delete_fixup (struct mem_node *);
459 static struct mem_node *mem_find (void *);
460
461 #ifndef DEADP
462 # define DEADP(x) 0
463 #endif
464
465 /* Addresses of staticpro'd variables. Initialize it to a nonzero
466 value; otherwise some compilers put it into BSS. */
467
468 enum { NSTATICS = 2048 };
469 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
470
471 /* Index of next unused slot in staticvec. */
472
473 static int staticidx;
474
475 static void *pure_alloc (size_t, int);
476
477 /* Return X rounded to the next multiple of Y. Arguments should not
478 have side effects, as they are evaluated more than once. Assume X
479 + Y - 1 does not overflow. Tune for Y being a power of 2. */
480
481 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
482 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
483 : ((x) + (y) - 1) & ~ ((y) - 1))
484
485 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
486
487 static void *
488 ALIGN (void *ptr, int alignment)
489 {
490 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
491 }
492
493 /* Extract the pointer hidden within A, if A is not a symbol.
494 If A is a symbol, extract the hidden pointer's offset from lispsym,
495 converted to void *. */
496
497 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
498 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
499
500 /* Extract the pointer hidden within A. */
501
502 #define macro_XPNTR(a) \
503 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
504 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
505
506 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
507 functions, as functions are cleaner and can be used in debuggers.
508 Also, define them as macros if being compiled with GCC without
509 optimization, for performance in that case. The macro_* names are
510 private to this section of code. */
511
512 static ATTRIBUTE_UNUSED void *
513 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
514 {
515 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
516 }
517 static ATTRIBUTE_UNUSED void *
518 XPNTR (Lisp_Object a)
519 {
520 return macro_XPNTR (a);
521 }
522
523 #if DEFINE_KEY_OPS_AS_MACROS
524 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
525 # define XPNTR(a) macro_XPNTR (a)
526 #endif
527
528 static void
529 XFLOAT_INIT (Lisp_Object f, double n)
530 {
531 XFLOAT (f)->u.data = n;
532 }
533
534 #ifdef DOUG_LEA_MALLOC
535 static bool
536 pointers_fit_in_lispobj_p (void)
537 {
538 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
539 }
540
541 static bool
542 mmap_lisp_allowed_p (void)
543 {
544 /* If we can't store all memory addresses in our lisp objects, it's
545 risky to let the heap use mmap and give us addresses from all
546 over our address space. We also can't use mmap for lisp objects
547 if we might dump: unexec doesn't preserve the contents of mmapped
548 regions. */
549 return pointers_fit_in_lispobj_p () && !might_dump;
550 }
551 #endif
552
553 /* Head of a circularly-linked list of extant finalizers. */
554 static struct Lisp_Finalizer finalizers;
555
556 /* Head of a circularly-linked list of finalizers that must be invoked
557 because we deemed them unreachable. This list must be global, and
558 not a local inside garbage_collect_1, in case we GC again while
559 running finalizers. */
560 static struct Lisp_Finalizer doomed_finalizers;
561
562 \f
563 /************************************************************************
564 Malloc
565 ************************************************************************/
566
567 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
568
569 /* Function malloc calls this if it finds we are near exhausting storage. */
570
571 void
572 malloc_warning (const char *str)
573 {
574 pending_malloc_warning = str;
575 }
576
577 #endif
578
579 /* Display an already-pending malloc warning. */
580
581 void
582 display_malloc_warning (void)
583 {
584 call3 (intern ("display-warning"),
585 intern ("alloc"),
586 build_string (pending_malloc_warning),
587 intern ("emergency"));
588 pending_malloc_warning = 0;
589 }
590 \f
591 /* Called if we can't allocate relocatable space for a buffer. */
592
593 void
594 buffer_memory_full (ptrdiff_t nbytes)
595 {
596 /* If buffers use the relocating allocator, no need to free
597 spare_memory, because we may have plenty of malloc space left
598 that we could get, and if we don't, the malloc that fails will
599 itself cause spare_memory to be freed. If buffers don't use the
600 relocating allocator, treat this like any other failing
601 malloc. */
602
603 #ifndef REL_ALLOC
604 memory_full (nbytes);
605 #else
606 /* This used to call error, but if we've run out of memory, we could
607 get infinite recursion trying to build the string. */
608 xsignal (Qnil, Vmemory_signal_data);
609 #endif
610 }
611
612 /* A common multiple of the positive integers A and B. Ideally this
613 would be the least common multiple, but there's no way to do that
614 as a constant expression in C, so do the best that we can easily do. */
615 #define COMMON_MULTIPLE(a, b) \
616 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
617
618 #ifndef XMALLOC_OVERRUN_CHECK
619 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
620 #else
621
622 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
623 around each block.
624
625 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
626 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
627 block size in little-endian order. The trailer consists of
628 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
629
630 The header is used to detect whether this block has been allocated
631 through these functions, as some low-level libc functions may
632 bypass the malloc hooks. */
633
634 #define XMALLOC_OVERRUN_CHECK_SIZE 16
635 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
636 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
637
638 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
639 hold a size_t value and (2) the header size is a multiple of the
640 alignment that Emacs needs for C types and for USE_LSB_TAG. */
641 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
642
643 #define XMALLOC_HEADER_ALIGNMENT \
644 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
645 #define XMALLOC_OVERRUN_SIZE_SIZE \
646 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
647 + XMALLOC_HEADER_ALIGNMENT - 1) \
648 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
649 - XMALLOC_OVERRUN_CHECK_SIZE)
650
651 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
652 { '\x9a', '\x9b', '\xae', '\xaf',
653 '\xbf', '\xbe', '\xce', '\xcf',
654 '\xea', '\xeb', '\xec', '\xed',
655 '\xdf', '\xde', '\x9c', '\x9d' };
656
657 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
658 { '\xaa', '\xab', '\xac', '\xad',
659 '\xba', '\xbb', '\xbc', '\xbd',
660 '\xca', '\xcb', '\xcc', '\xcd',
661 '\xda', '\xdb', '\xdc', '\xdd' };
662
663 /* Insert and extract the block size in the header. */
664
665 static void
666 xmalloc_put_size (unsigned char *ptr, size_t size)
667 {
668 int i;
669 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
670 {
671 *--ptr = size & ((1 << CHAR_BIT) - 1);
672 size >>= CHAR_BIT;
673 }
674 }
675
676 static size_t
677 xmalloc_get_size (unsigned char *ptr)
678 {
679 size_t size = 0;
680 int i;
681 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
683 {
684 size <<= CHAR_BIT;
685 size += *ptr++;
686 }
687 return size;
688 }
689
690
691 /* Like malloc, but wraps allocated block with header and trailer. */
692
693 static void *
694 overrun_check_malloc (size_t size)
695 {
696 register unsigned char *val;
697 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
698 emacs_abort ();
699
700 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 if (val)
702 {
703 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
704 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
705 xmalloc_put_size (val, size);
706 memcpy (val + size, xmalloc_overrun_check_trailer,
707 XMALLOC_OVERRUN_CHECK_SIZE);
708 }
709 return val;
710 }
711
712
713 /* Like realloc, but checks old block for overrun, and wraps new block
714 with header and trailer. */
715
716 static void *
717 overrun_check_realloc (void *block, size_t size)
718 {
719 register unsigned char *val = (unsigned char *) block;
720 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
721 emacs_abort ();
722
723 if (val
724 && memcmp (xmalloc_overrun_check_header,
725 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
726 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
727 {
728 size_t osize = xmalloc_get_size (val);
729 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
730 XMALLOC_OVERRUN_CHECK_SIZE))
731 emacs_abort ();
732 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
733 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
734 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
735 }
736
737 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
738
739 if (val)
740 {
741 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
742 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
743 xmalloc_put_size (val, size);
744 memcpy (val + size, xmalloc_overrun_check_trailer,
745 XMALLOC_OVERRUN_CHECK_SIZE);
746 }
747 return val;
748 }
749
750 /* Like free, but checks block for overrun. */
751
752 static void
753 overrun_check_free (void *block)
754 {
755 unsigned char *val = (unsigned char *) block;
756
757 if (val
758 && memcmp (xmalloc_overrun_check_header,
759 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
760 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
761 {
762 size_t osize = xmalloc_get_size (val);
763 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
764 XMALLOC_OVERRUN_CHECK_SIZE))
765 emacs_abort ();
766 #ifdef XMALLOC_CLEAR_FREE_MEMORY
767 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
768 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
769 #else
770 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
771 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
772 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
773 #endif
774 }
775
776 free (val);
777 }
778
779 #undef malloc
780 #undef realloc
781 #undef free
782 #define malloc overrun_check_malloc
783 #define realloc overrun_check_realloc
784 #define free overrun_check_free
785 #endif
786
787 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
788 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
789 If that variable is set, block input while in one of Emacs's memory
790 allocation functions. There should be no need for this debugging
791 option, since signal handlers do not allocate memory, but Emacs
792 formerly allocated memory in signal handlers and this compile-time
793 option remains as a way to help debug the issue should it rear its
794 ugly head again. */
795 #ifdef XMALLOC_BLOCK_INPUT_CHECK
796 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
797 static void
798 malloc_block_input (void)
799 {
800 if (block_input_in_memory_allocators)
801 block_input ();
802 }
803 static void
804 malloc_unblock_input (void)
805 {
806 if (block_input_in_memory_allocators)
807 unblock_input ();
808 }
809 # define MALLOC_BLOCK_INPUT malloc_block_input ()
810 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
811 #else
812 # define MALLOC_BLOCK_INPUT ((void) 0)
813 # define MALLOC_UNBLOCK_INPUT ((void) 0)
814 #endif
815
816 #define MALLOC_PROBE(size) \
817 do { \
818 if (profiler_memory_running) \
819 malloc_probe (size); \
820 } while (0)
821
822 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
823 static void *lrealloc (void *, size_t);
824
825 /* Like malloc but check for no memory and block interrupt input. */
826
827 void *
828 xmalloc (size_t size)
829 {
830 void *val;
831
832 MALLOC_BLOCK_INPUT;
833 val = lmalloc (size);
834 MALLOC_UNBLOCK_INPUT;
835
836 if (!val && size)
837 memory_full (size);
838 MALLOC_PROBE (size);
839 return val;
840 }
841
842 /* Like the above, but zeroes out the memory just allocated. */
843
844 void *
845 xzalloc (size_t size)
846 {
847 void *val;
848
849 MALLOC_BLOCK_INPUT;
850 val = lmalloc (size);
851 MALLOC_UNBLOCK_INPUT;
852
853 if (!val && size)
854 memory_full (size);
855 memset (val, 0, size);
856 MALLOC_PROBE (size);
857 return val;
858 }
859
860 /* Like realloc but check for no memory and block interrupt input.. */
861
862 void *
863 xrealloc (void *block, size_t size)
864 {
865 void *val;
866
867 MALLOC_BLOCK_INPUT;
868 /* We must call malloc explicitly when BLOCK is 0, since some
869 reallocs don't do this. */
870 if (! block)
871 val = lmalloc (size);
872 else
873 val = lrealloc (block, size);
874 MALLOC_UNBLOCK_INPUT;
875
876 if (!val && size)
877 memory_full (size);
878 MALLOC_PROBE (size);
879 return val;
880 }
881
882
883 /* Like free but block interrupt input. */
884
885 void
886 xfree (void *block)
887 {
888 if (!block)
889 return;
890 MALLOC_BLOCK_INPUT;
891 free (block);
892 MALLOC_UNBLOCK_INPUT;
893 /* We don't call refill_memory_reserve here
894 because in practice the call in r_alloc_free seems to suffice. */
895 }
896
897
898 /* Other parts of Emacs pass large int values to allocator functions
899 expecting ptrdiff_t. This is portable in practice, but check it to
900 be safe. */
901 verify (INT_MAX <= PTRDIFF_MAX);
902
903
904 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
905 Signal an error on memory exhaustion, and block interrupt input. */
906
907 void *
908 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
909 {
910 eassert (0 <= nitems && 0 < item_size);
911 ptrdiff_t nbytes;
912 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
913 memory_full (SIZE_MAX);
914 return xmalloc (nbytes);
915 }
916
917
918 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
919 Signal an error on memory exhaustion, and block interrupt input. */
920
921 void *
922 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
923 {
924 eassert (0 <= nitems && 0 < item_size);
925 ptrdiff_t nbytes;
926 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
927 memory_full (SIZE_MAX);
928 return xrealloc (pa, nbytes);
929 }
930
931
932 /* Grow PA, which points to an array of *NITEMS items, and return the
933 location of the reallocated array, updating *NITEMS to reflect its
934 new size. The new array will contain at least NITEMS_INCR_MIN more
935 items, but will not contain more than NITEMS_MAX items total.
936 ITEM_SIZE is the size of each item, in bytes.
937
938 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
939 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
940 infinity.
941
942 If PA is null, then allocate a new array instead of reallocating
943 the old one.
944
945 Block interrupt input as needed. If memory exhaustion occurs, set
946 *NITEMS to zero if PA is null, and signal an error (i.e., do not
947 return).
948
949 Thus, to grow an array A without saving its old contents, do
950 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
951 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
952 and signals an error, and later this code is reexecuted and
953 attempts to free A. */
954
955 void *
956 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
957 ptrdiff_t nitems_max, ptrdiff_t item_size)
958 {
959 ptrdiff_t n0 = *nitems;
960 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
961
962 /* The approximate size to use for initial small allocation
963 requests. This is the largest "small" request for the GNU C
964 library malloc. */
965 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
966
967 /* If the array is tiny, grow it to about (but no greater than)
968 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
969 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
970 NITEMS_MAX, and what the C language can represent safely. */
971
972 ptrdiff_t n, nbytes;
973 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
974 n = PTRDIFF_MAX;
975 if (0 <= nitems_max && nitems_max < n)
976 n = nitems_max;
977
978 ptrdiff_t adjusted_nbytes
979 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
980 ? min (PTRDIFF_MAX, SIZE_MAX)
981 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
982 if (adjusted_nbytes)
983 {
984 n = adjusted_nbytes / item_size;
985 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
986 }
987
988 if (! pa)
989 *nitems = 0;
990 if (n - n0 < nitems_incr_min
991 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
992 || (0 <= nitems_max && nitems_max < n)
993 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
994 memory_full (SIZE_MAX);
995 pa = xrealloc (pa, nbytes);
996 *nitems = n;
997 return pa;
998 }
999
1000
1001 /* Like strdup, but uses xmalloc. */
1002
1003 char *
1004 xstrdup (const char *s)
1005 {
1006 ptrdiff_t size;
1007 eassert (s);
1008 size = strlen (s) + 1;
1009 return memcpy (xmalloc (size), s, size);
1010 }
1011
1012 /* Like above, but duplicates Lisp string to C string. */
1013
1014 char *
1015 xlispstrdup (Lisp_Object string)
1016 {
1017 ptrdiff_t size = SBYTES (string) + 1;
1018 return memcpy (xmalloc (size), SSDATA (string), size);
1019 }
1020
1021 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1022 pointed to. If STRING is null, assign it without copying anything.
1023 Allocate before freeing, to avoid a dangling pointer if allocation
1024 fails. */
1025
1026 void
1027 dupstring (char **ptr, char const *string)
1028 {
1029 char *old = *ptr;
1030 *ptr = string ? xstrdup (string) : 0;
1031 xfree (old);
1032 }
1033
1034
1035 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1036 argument is a const pointer. */
1037
1038 void
1039 xputenv (char const *string)
1040 {
1041 if (putenv ((char *) string) != 0)
1042 memory_full (0);
1043 }
1044
1045 /* Return a newly allocated memory block of SIZE bytes, remembering
1046 to free it when unwinding. */
1047 void *
1048 record_xmalloc (size_t size)
1049 {
1050 void *p = xmalloc (size);
1051 record_unwind_protect_ptr (xfree, p);
1052 return p;
1053 }
1054
1055
1056 /* Like malloc but used for allocating Lisp data. NBYTES is the
1057 number of bytes to allocate, TYPE describes the intended use of the
1058 allocated memory block (for strings, for conses, ...). */
1059
1060 #if ! USE_LSB_TAG
1061 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1062 #endif
1063
1064 static void *
1065 lisp_malloc (size_t nbytes, enum mem_type type)
1066 {
1067 register void *val;
1068
1069 MALLOC_BLOCK_INPUT;
1070
1071 #ifdef GC_MALLOC_CHECK
1072 allocated_mem_type = type;
1073 #endif
1074
1075 val = lmalloc (nbytes);
1076
1077 #if ! USE_LSB_TAG
1078 /* If the memory just allocated cannot be addressed thru a Lisp
1079 object's pointer, and it needs to be,
1080 that's equivalent to running out of memory. */
1081 if (val && type != MEM_TYPE_NON_LISP)
1082 {
1083 Lisp_Object tem;
1084 XSETCONS (tem, (char *) val + nbytes - 1);
1085 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1086 {
1087 lisp_malloc_loser = val;
1088 free (val);
1089 val = 0;
1090 }
1091 }
1092 #endif
1093
1094 #ifndef GC_MALLOC_CHECK
1095 if (val && type != MEM_TYPE_NON_LISP)
1096 mem_insert (val, (char *) val + nbytes, type);
1097 #endif
1098
1099 MALLOC_UNBLOCK_INPUT;
1100 if (!val && nbytes)
1101 memory_full (nbytes);
1102 MALLOC_PROBE (nbytes);
1103 return val;
1104 }
1105
1106 /* Free BLOCK. This must be called to free memory allocated with a
1107 call to lisp_malloc. */
1108
1109 static void
1110 lisp_free (void *block)
1111 {
1112 MALLOC_BLOCK_INPUT;
1113 free (block);
1114 #ifndef GC_MALLOC_CHECK
1115 mem_delete (mem_find (block));
1116 #endif
1117 MALLOC_UNBLOCK_INPUT;
1118 }
1119
1120 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1121
1122 /* The entry point is lisp_align_malloc which returns blocks of at most
1123 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1124
1125 /* Use aligned_alloc if it or a simple substitute is available.
1126 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1127 clang 3.3 anyway. Aligned allocation is incompatible with
1128 unexmacosx.c, so don't use it on Darwin. */
1129
1130 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1131 # if (defined HAVE_ALIGNED_ALLOC \
1132 || (defined HYBRID_MALLOC \
1133 ? defined HAVE_POSIX_MEMALIGN \
1134 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1135 # define USE_ALIGNED_ALLOC 1
1136 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1137 # define USE_ALIGNED_ALLOC 1
1138 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1139 static void *
1140 aligned_alloc (size_t alignment, size_t size)
1141 {
1142 void *p;
1143 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1144 }
1145 # endif
1146 #endif
1147
1148 /* BLOCK_ALIGN has to be a power of 2. */
1149 #define BLOCK_ALIGN (1 << 10)
1150
1151 /* Padding to leave at the end of a malloc'd block. This is to give
1152 malloc a chance to minimize the amount of memory wasted to alignment.
1153 It should be tuned to the particular malloc library used.
1154 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1155 aligned_alloc on the other hand would ideally prefer a value of 4
1156 because otherwise, there's 1020 bytes wasted between each ablocks.
1157 In Emacs, testing shows that those 1020 can most of the time be
1158 efficiently used by malloc to place other objects, so a value of 0 can
1159 still preferable unless you have a lot of aligned blocks and virtually
1160 nothing else. */
1161 #define BLOCK_PADDING 0
1162 #define BLOCK_BYTES \
1163 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1164
1165 /* Internal data structures and constants. */
1166
1167 #define ABLOCKS_SIZE 16
1168
1169 /* An aligned block of memory. */
1170 struct ablock
1171 {
1172 union
1173 {
1174 char payload[BLOCK_BYTES];
1175 struct ablock *next_free;
1176 } x;
1177 /* `abase' is the aligned base of the ablocks. */
1178 /* It is overloaded to hold the virtual `busy' field that counts
1179 the number of used ablock in the parent ablocks.
1180 The first ablock has the `busy' field, the others have the `abase'
1181 field. To tell the difference, we assume that pointers will have
1182 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1183 is used to tell whether the real base of the parent ablocks is `abase'
1184 (if not, the word before the first ablock holds a pointer to the
1185 real base). */
1186 struct ablocks *abase;
1187 /* The padding of all but the last ablock is unused. The padding of
1188 the last ablock in an ablocks is not allocated. */
1189 #if BLOCK_PADDING
1190 char padding[BLOCK_PADDING];
1191 #endif
1192 };
1193
1194 /* A bunch of consecutive aligned blocks. */
1195 struct ablocks
1196 {
1197 struct ablock blocks[ABLOCKS_SIZE];
1198 };
1199
1200 /* Size of the block requested from malloc or aligned_alloc. */
1201 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1202
1203 #define ABLOCK_ABASE(block) \
1204 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1205 ? (struct ablocks *)(block) \
1206 : (block)->abase)
1207
1208 /* Virtual `busy' field. */
1209 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1210
1211 /* Pointer to the (not necessarily aligned) malloc block. */
1212 #ifdef USE_ALIGNED_ALLOC
1213 #define ABLOCKS_BASE(abase) (abase)
1214 #else
1215 #define ABLOCKS_BASE(abase) \
1216 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1217 #endif
1218
1219 /* The list of free ablock. */
1220 static struct ablock *free_ablock;
1221
1222 /* Allocate an aligned block of nbytes.
1223 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1224 smaller or equal to BLOCK_BYTES. */
1225 static void *
1226 lisp_align_malloc (size_t nbytes, enum mem_type type)
1227 {
1228 void *base, *val;
1229 struct ablocks *abase;
1230
1231 eassert (nbytes <= BLOCK_BYTES);
1232
1233 MALLOC_BLOCK_INPUT;
1234
1235 #ifdef GC_MALLOC_CHECK
1236 allocated_mem_type = type;
1237 #endif
1238
1239 if (!free_ablock)
1240 {
1241 int i;
1242 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1243
1244 #ifdef DOUG_LEA_MALLOC
1245 if (!mmap_lisp_allowed_p ())
1246 mallopt (M_MMAP_MAX, 0);
1247 #endif
1248
1249 #ifdef USE_ALIGNED_ALLOC
1250 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1251 #else
1252 base = malloc (ABLOCKS_BYTES);
1253 abase = ALIGN (base, BLOCK_ALIGN);
1254 #endif
1255
1256 if (base == 0)
1257 {
1258 MALLOC_UNBLOCK_INPUT;
1259 memory_full (ABLOCKS_BYTES);
1260 }
1261
1262 aligned = (base == abase);
1263 if (!aligned)
1264 ((void **) abase)[-1] = base;
1265
1266 #ifdef DOUG_LEA_MALLOC
1267 if (!mmap_lisp_allowed_p ())
1268 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1269 #endif
1270
1271 #if ! USE_LSB_TAG
1272 /* If the memory just allocated cannot be addressed thru a Lisp
1273 object's pointer, and it needs to be, that's equivalent to
1274 running out of memory. */
1275 if (type != MEM_TYPE_NON_LISP)
1276 {
1277 Lisp_Object tem;
1278 char *end = (char *) base + ABLOCKS_BYTES - 1;
1279 XSETCONS (tem, end);
1280 if ((char *) XCONS (tem) != end)
1281 {
1282 lisp_malloc_loser = base;
1283 free (base);
1284 MALLOC_UNBLOCK_INPUT;
1285 memory_full (SIZE_MAX);
1286 }
1287 }
1288 #endif
1289
1290 /* Initialize the blocks and put them on the free list.
1291 If `base' was not properly aligned, we can't use the last block. */
1292 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1293 {
1294 abase->blocks[i].abase = abase;
1295 abase->blocks[i].x.next_free = free_ablock;
1296 free_ablock = &abase->blocks[i];
1297 }
1298 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1299
1300 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1301 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1302 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1303 eassert (ABLOCKS_BASE (abase) == base);
1304 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1305 }
1306
1307 abase = ABLOCK_ABASE (free_ablock);
1308 ABLOCKS_BUSY (abase)
1309 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1310 val = free_ablock;
1311 free_ablock = free_ablock->x.next_free;
1312
1313 #ifndef GC_MALLOC_CHECK
1314 if (type != MEM_TYPE_NON_LISP)
1315 mem_insert (val, (char *) val + nbytes, type);
1316 #endif
1317
1318 MALLOC_UNBLOCK_INPUT;
1319
1320 MALLOC_PROBE (nbytes);
1321
1322 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1323 return val;
1324 }
1325
1326 static void
1327 lisp_align_free (void *block)
1328 {
1329 struct ablock *ablock = block;
1330 struct ablocks *abase = ABLOCK_ABASE (ablock);
1331
1332 MALLOC_BLOCK_INPUT;
1333 #ifndef GC_MALLOC_CHECK
1334 mem_delete (mem_find (block));
1335 #endif
1336 /* Put on free list. */
1337 ablock->x.next_free = free_ablock;
1338 free_ablock = ablock;
1339 /* Update busy count. */
1340 ABLOCKS_BUSY (abase)
1341 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1342
1343 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1344 { /* All the blocks are free. */
1345 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1346 struct ablock **tem = &free_ablock;
1347 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1348
1349 while (*tem)
1350 {
1351 if (*tem >= (struct ablock *) abase && *tem < atop)
1352 {
1353 i++;
1354 *tem = (*tem)->x.next_free;
1355 }
1356 else
1357 tem = &(*tem)->x.next_free;
1358 }
1359 eassert ((aligned & 1) == aligned);
1360 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1361 #ifdef USE_POSIX_MEMALIGN
1362 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1363 #endif
1364 free (ABLOCKS_BASE (abase));
1365 }
1366 MALLOC_UNBLOCK_INPUT;
1367 }
1368
1369 #if !defined __GNUC__ && !defined __alignof__
1370 # define __alignof__(type) alignof (type)
1371 #endif
1372
1373 /* True if malloc returns a multiple of GCALIGNMENT. In practice this
1374 holds if __alignof__ (max_align_t) is a multiple. Use __alignof__
1375 if available, as otherwise this check would fail with GCC x86.
1376 This is a macro, not an enum constant, for portability to HP-UX
1377 10.20 cc and AIX 3.2.5 xlc. */
1378 #define MALLOC_IS_GC_ALIGNED (__alignof__ (max_align_t) % GCALIGNMENT == 0)
1379
1380 /* True if P is suitably aligned for SIZE, where Lisp alignment may be
1381 needed if SIZE is Lisp-aligned. */
1382
1383 static bool
1384 laligned (void *p, size_t size)
1385 {
1386 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1387 || size % GCALIGNMENT != 0);
1388 }
1389
1390 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1391 sure the result is too, if necessary by reallocating (typically
1392 with larger and larger sizes) until the allocator returns a
1393 Lisp-aligned pointer. Code that needs to allocate C heap memory
1394 for a Lisp object should use one of these functions to obtain a
1395 pointer P; that way, if T is an enum Lisp_Type value and L ==
1396 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1397
1398 On typical modern platforms these functions' loops do not iterate.
1399 On now-rare (and perhaps nonexistent) platforms, the loops in
1400 theory could repeat forever. If an infinite loop is possible on a
1401 platform, a build would surely loop and the builder can then send
1402 us a bug report. Adding a counter to try to detect any such loop
1403 would complicate the code (and possibly introduce bugs, in code
1404 that's never really exercised) for little benefit. */
1405
1406 static void *
1407 lmalloc (size_t size)
1408 {
1409 #if USE_ALIGNED_ALLOC
1410 if (! MALLOC_IS_GC_ALIGNED)
1411 return aligned_alloc (GCALIGNMENT, size);
1412 #endif
1413
1414 void *p;
1415 while (true)
1416 {
1417 p = malloc (size);
1418 if (laligned (p, size))
1419 break;
1420 free (p);
1421 size_t bigger;
1422 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1423 size = bigger;
1424 }
1425
1426 eassert ((intptr_t) p % GCALIGNMENT == 0);
1427 return p;
1428 }
1429
1430 static void *
1431 lrealloc (void *p, size_t size)
1432 {
1433 while (true)
1434 {
1435 p = realloc (p, size);
1436 if (laligned (p, size))
1437 break;
1438 size_t bigger;
1439 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1440 size = bigger;
1441 }
1442
1443 eassert ((intptr_t) p % GCALIGNMENT == 0);
1444 return p;
1445 }
1446
1447 \f
1448 /***********************************************************************
1449 Interval Allocation
1450 ***********************************************************************/
1451
1452 /* Number of intervals allocated in an interval_block structure.
1453 The 1020 is 1024 minus malloc overhead. */
1454
1455 #define INTERVAL_BLOCK_SIZE \
1456 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1457
1458 /* Intervals are allocated in chunks in the form of an interval_block
1459 structure. */
1460
1461 struct interval_block
1462 {
1463 /* Place `intervals' first, to preserve alignment. */
1464 struct interval intervals[INTERVAL_BLOCK_SIZE];
1465 struct interval_block *next;
1466 };
1467
1468 /* Current interval block. Its `next' pointer points to older
1469 blocks. */
1470
1471 static struct interval_block *interval_block;
1472
1473 /* Index in interval_block above of the next unused interval
1474 structure. */
1475
1476 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1477
1478 /* Number of free and live intervals. */
1479
1480 static EMACS_INT total_free_intervals, total_intervals;
1481
1482 /* List of free intervals. */
1483
1484 static INTERVAL interval_free_list;
1485
1486 /* Return a new interval. */
1487
1488 INTERVAL
1489 make_interval (void)
1490 {
1491 INTERVAL val;
1492
1493 MALLOC_BLOCK_INPUT;
1494
1495 if (interval_free_list)
1496 {
1497 val = interval_free_list;
1498 interval_free_list = INTERVAL_PARENT (interval_free_list);
1499 }
1500 else
1501 {
1502 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1503 {
1504 struct interval_block *newi
1505 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1506
1507 newi->next = interval_block;
1508 interval_block = newi;
1509 interval_block_index = 0;
1510 total_free_intervals += INTERVAL_BLOCK_SIZE;
1511 }
1512 val = &interval_block->intervals[interval_block_index++];
1513 }
1514
1515 MALLOC_UNBLOCK_INPUT;
1516
1517 consing_since_gc += sizeof (struct interval);
1518 intervals_consed++;
1519 total_free_intervals--;
1520 RESET_INTERVAL (val);
1521 val->gcmarkbit = 0;
1522 return val;
1523 }
1524
1525
1526 /* Mark Lisp objects in interval I. */
1527
1528 static void
1529 mark_interval (register INTERVAL i, Lisp_Object dummy)
1530 {
1531 /* Intervals should never be shared. So, if extra internal checking is
1532 enabled, GC aborts if it seems to have visited an interval twice. */
1533 eassert (!i->gcmarkbit);
1534 i->gcmarkbit = 1;
1535 mark_object (i->plist);
1536 }
1537
1538 /* Mark the interval tree rooted in I. */
1539
1540 #define MARK_INTERVAL_TREE(i) \
1541 do { \
1542 if (i && !i->gcmarkbit) \
1543 traverse_intervals_noorder (i, mark_interval, Qnil); \
1544 } while (0)
1545
1546 /***********************************************************************
1547 String Allocation
1548 ***********************************************************************/
1549
1550 /* Lisp_Strings are allocated in string_block structures. When a new
1551 string_block is allocated, all the Lisp_Strings it contains are
1552 added to a free-list string_free_list. When a new Lisp_String is
1553 needed, it is taken from that list. During the sweep phase of GC,
1554 string_blocks that are entirely free are freed, except two which
1555 we keep.
1556
1557 String data is allocated from sblock structures. Strings larger
1558 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1559 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1560
1561 Sblocks consist internally of sdata structures, one for each
1562 Lisp_String. The sdata structure points to the Lisp_String it
1563 belongs to. The Lisp_String points back to the `u.data' member of
1564 its sdata structure.
1565
1566 When a Lisp_String is freed during GC, it is put back on
1567 string_free_list, and its `data' member and its sdata's `string'
1568 pointer is set to null. The size of the string is recorded in the
1569 `n.nbytes' member of the sdata. So, sdata structures that are no
1570 longer used, can be easily recognized, and it's easy to compact the
1571 sblocks of small strings which we do in compact_small_strings. */
1572
1573 /* Size in bytes of an sblock structure used for small strings. This
1574 is 8192 minus malloc overhead. */
1575
1576 #define SBLOCK_SIZE 8188
1577
1578 /* Strings larger than this are considered large strings. String data
1579 for large strings is allocated from individual sblocks. */
1580
1581 #define LARGE_STRING_BYTES 1024
1582
1583 /* The SDATA typedef is a struct or union describing string memory
1584 sub-allocated from an sblock. This is where the contents of Lisp
1585 strings are stored. */
1586
1587 struct sdata
1588 {
1589 /* Back-pointer to the string this sdata belongs to. If null, this
1590 structure is free, and NBYTES (in this structure or in the union below)
1591 contains the string's byte size (the same value that STRING_BYTES
1592 would return if STRING were non-null). If non-null, STRING_BYTES
1593 (STRING) is the size of the data, and DATA contains the string's
1594 contents. */
1595 struct Lisp_String *string;
1596
1597 #ifdef GC_CHECK_STRING_BYTES
1598 ptrdiff_t nbytes;
1599 #endif
1600
1601 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1602 };
1603
1604 #ifdef GC_CHECK_STRING_BYTES
1605
1606 typedef struct sdata sdata;
1607 #define SDATA_NBYTES(S) (S)->nbytes
1608 #define SDATA_DATA(S) (S)->data
1609
1610 #else
1611
1612 typedef union
1613 {
1614 struct Lisp_String *string;
1615
1616 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1617 which has a flexible array member. However, if implemented by
1618 giving this union a member of type 'struct sdata', the union
1619 could not be the last (flexible) member of 'struct sblock',
1620 because C99 prohibits a flexible array member from having a type
1621 that is itself a flexible array. So, comment this member out here,
1622 but remember that the option's there when using this union. */
1623 #if 0
1624 struct sdata u;
1625 #endif
1626
1627 /* When STRING is null. */
1628 struct
1629 {
1630 struct Lisp_String *string;
1631 ptrdiff_t nbytes;
1632 } n;
1633 } sdata;
1634
1635 #define SDATA_NBYTES(S) (S)->n.nbytes
1636 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1637
1638 #endif /* not GC_CHECK_STRING_BYTES */
1639
1640 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1641
1642 /* Structure describing a block of memory which is sub-allocated to
1643 obtain string data memory for strings. Blocks for small strings
1644 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1645 as large as needed. */
1646
1647 struct sblock
1648 {
1649 /* Next in list. */
1650 struct sblock *next;
1651
1652 /* Pointer to the next free sdata block. This points past the end
1653 of the sblock if there isn't any space left in this block. */
1654 sdata *next_free;
1655
1656 /* String data. */
1657 sdata data[FLEXIBLE_ARRAY_MEMBER];
1658 };
1659
1660 /* Number of Lisp strings in a string_block structure. The 1020 is
1661 1024 minus malloc overhead. */
1662
1663 #define STRING_BLOCK_SIZE \
1664 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1665
1666 /* Structure describing a block from which Lisp_String structures
1667 are allocated. */
1668
1669 struct string_block
1670 {
1671 /* Place `strings' first, to preserve alignment. */
1672 struct Lisp_String strings[STRING_BLOCK_SIZE];
1673 struct string_block *next;
1674 };
1675
1676 /* Head and tail of the list of sblock structures holding Lisp string
1677 data. We always allocate from current_sblock. The NEXT pointers
1678 in the sblock structures go from oldest_sblock to current_sblock. */
1679
1680 static struct sblock *oldest_sblock, *current_sblock;
1681
1682 /* List of sblocks for large strings. */
1683
1684 static struct sblock *large_sblocks;
1685
1686 /* List of string_block structures. */
1687
1688 static struct string_block *string_blocks;
1689
1690 /* Free-list of Lisp_Strings. */
1691
1692 static struct Lisp_String *string_free_list;
1693
1694 /* Number of live and free Lisp_Strings. */
1695
1696 static EMACS_INT total_strings, total_free_strings;
1697
1698 /* Number of bytes used by live strings. */
1699
1700 static EMACS_INT total_string_bytes;
1701
1702 /* Given a pointer to a Lisp_String S which is on the free-list
1703 string_free_list, return a pointer to its successor in the
1704 free-list. */
1705
1706 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1707
1708 /* Return a pointer to the sdata structure belonging to Lisp string S.
1709 S must be live, i.e. S->data must not be null. S->data is actually
1710 a pointer to the `u.data' member of its sdata structure; the
1711 structure starts at a constant offset in front of that. */
1712
1713 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1714
1715
1716 #ifdef GC_CHECK_STRING_OVERRUN
1717
1718 /* We check for overrun in string data blocks by appending a small
1719 "cookie" after each allocated string data block, and check for the
1720 presence of this cookie during GC. */
1721
1722 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1723 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1724 { '\xde', '\xad', '\xbe', '\xef' };
1725
1726 #else
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1728 #endif
1729
1730 /* Value is the size of an sdata structure large enough to hold NBYTES
1731 bytes of string data. The value returned includes a terminating
1732 NUL byte, the size of the sdata structure, and padding. */
1733
1734 #ifdef GC_CHECK_STRING_BYTES
1735
1736 #define SDATA_SIZE(NBYTES) \
1737 ((SDATA_DATA_OFFSET \
1738 + (NBYTES) + 1 \
1739 + sizeof (ptrdiff_t) - 1) \
1740 & ~(sizeof (ptrdiff_t) - 1))
1741
1742 #else /* not GC_CHECK_STRING_BYTES */
1743
1744 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1745 less than the size of that member. The 'max' is not needed when
1746 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1747 alignment code reserves enough space. */
1748
1749 #define SDATA_SIZE(NBYTES) \
1750 ((SDATA_DATA_OFFSET \
1751 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1752 ? NBYTES \
1753 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1754 + 1 \
1755 + sizeof (ptrdiff_t) - 1) \
1756 & ~(sizeof (ptrdiff_t) - 1))
1757
1758 #endif /* not GC_CHECK_STRING_BYTES */
1759
1760 /* Extra bytes to allocate for each string. */
1761
1762 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1763
1764 /* Exact bound on the number of bytes in a string, not counting the
1765 terminating null. A string cannot contain more bytes than
1766 STRING_BYTES_BOUND, nor can it be so long that the size_t
1767 arithmetic in allocate_string_data would overflow while it is
1768 calculating a value to be passed to malloc. */
1769 static ptrdiff_t const STRING_BYTES_MAX =
1770 min (STRING_BYTES_BOUND,
1771 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1772 - GC_STRING_EXTRA
1773 - offsetof (struct sblock, data)
1774 - SDATA_DATA_OFFSET)
1775 & ~(sizeof (EMACS_INT) - 1)));
1776
1777 /* Initialize string allocation. Called from init_alloc_once. */
1778
1779 static void
1780 init_strings (void)
1781 {
1782 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1783 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1784 }
1785
1786
1787 #ifdef GC_CHECK_STRING_BYTES
1788
1789 static int check_string_bytes_count;
1790
1791 /* Like STRING_BYTES, but with debugging check. Can be
1792 called during GC, so pay attention to the mark bit. */
1793
1794 ptrdiff_t
1795 string_bytes (struct Lisp_String *s)
1796 {
1797 ptrdiff_t nbytes =
1798 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1799
1800 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1801 emacs_abort ();
1802 return nbytes;
1803 }
1804
1805 /* Check validity of Lisp strings' string_bytes member in B. */
1806
1807 static void
1808 check_sblock (struct sblock *b)
1809 {
1810 sdata *from, *end, *from_end;
1811
1812 end = b->next_free;
1813
1814 for (from = b->data; from < end; from = from_end)
1815 {
1816 /* Compute the next FROM here because copying below may
1817 overwrite data we need to compute it. */
1818 ptrdiff_t nbytes;
1819
1820 /* Check that the string size recorded in the string is the
1821 same as the one recorded in the sdata structure. */
1822 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1823 : SDATA_NBYTES (from));
1824 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1825 }
1826 }
1827
1828
1829 /* Check validity of Lisp strings' string_bytes member. ALL_P
1830 means check all strings, otherwise check only most
1831 recently allocated strings. Used for hunting a bug. */
1832
1833 static void
1834 check_string_bytes (bool all_p)
1835 {
1836 if (all_p)
1837 {
1838 struct sblock *b;
1839
1840 for (b = large_sblocks; b; b = b->next)
1841 {
1842 struct Lisp_String *s = b->data[0].string;
1843 if (s)
1844 string_bytes (s);
1845 }
1846
1847 for (b = oldest_sblock; b; b = b->next)
1848 check_sblock (b);
1849 }
1850 else if (current_sblock)
1851 check_sblock (current_sblock);
1852 }
1853
1854 #else /* not GC_CHECK_STRING_BYTES */
1855
1856 #define check_string_bytes(all) ((void) 0)
1857
1858 #endif /* GC_CHECK_STRING_BYTES */
1859
1860 #ifdef GC_CHECK_STRING_FREE_LIST
1861
1862 /* Walk through the string free list looking for bogus next pointers.
1863 This may catch buffer overrun from a previous string. */
1864
1865 static void
1866 check_string_free_list (void)
1867 {
1868 struct Lisp_String *s;
1869
1870 /* Pop a Lisp_String off the free-list. */
1871 s = string_free_list;
1872 while (s != NULL)
1873 {
1874 if ((uintptr_t) s < 1024)
1875 emacs_abort ();
1876 s = NEXT_FREE_LISP_STRING (s);
1877 }
1878 }
1879 #else
1880 #define check_string_free_list()
1881 #endif
1882
1883 /* Return a new Lisp_String. */
1884
1885 static struct Lisp_String *
1886 allocate_string (void)
1887 {
1888 struct Lisp_String *s;
1889
1890 MALLOC_BLOCK_INPUT;
1891
1892 /* If the free-list is empty, allocate a new string_block, and
1893 add all the Lisp_Strings in it to the free-list. */
1894 if (string_free_list == NULL)
1895 {
1896 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1897 int i;
1898
1899 b->next = string_blocks;
1900 string_blocks = b;
1901
1902 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1903 {
1904 s = b->strings + i;
1905 /* Every string on a free list should have NULL data pointer. */
1906 s->data = NULL;
1907 NEXT_FREE_LISP_STRING (s) = string_free_list;
1908 string_free_list = s;
1909 }
1910
1911 total_free_strings += STRING_BLOCK_SIZE;
1912 }
1913
1914 check_string_free_list ();
1915
1916 /* Pop a Lisp_String off the free-list. */
1917 s = string_free_list;
1918 string_free_list = NEXT_FREE_LISP_STRING (s);
1919
1920 MALLOC_UNBLOCK_INPUT;
1921
1922 --total_free_strings;
1923 ++total_strings;
1924 ++strings_consed;
1925 consing_since_gc += sizeof *s;
1926
1927 #ifdef GC_CHECK_STRING_BYTES
1928 if (!noninteractive)
1929 {
1930 if (++check_string_bytes_count == 200)
1931 {
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1934 }
1935 else
1936 check_string_bytes (0);
1937 }
1938 #endif /* GC_CHECK_STRING_BYTES */
1939
1940 return s;
1941 }
1942
1943
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1949
1950 void
1951 allocate_string_data (struct Lisp_String *s,
1952 EMACS_INT nchars, EMACS_INT nbytes)
1953 {
1954 sdata *data, *old_data;
1955 struct sblock *b;
1956 ptrdiff_t needed, old_nbytes;
1957
1958 if (STRING_BYTES_MAX < nbytes)
1959 string_overflow ();
1960
1961 /* Determine the number of bytes needed to store NBYTES bytes
1962 of string data. */
1963 needed = SDATA_SIZE (nbytes);
1964 if (s->data)
1965 {
1966 old_data = SDATA_OF_STRING (s);
1967 old_nbytes = STRING_BYTES (s);
1968 }
1969 else
1970 old_data = NULL;
1971
1972 MALLOC_BLOCK_INPUT;
1973
1974 if (nbytes > LARGE_STRING_BYTES)
1975 {
1976 size_t size = offsetof (struct sblock, data) + needed;
1977
1978 #ifdef DOUG_LEA_MALLOC
1979 if (!mmap_lisp_allowed_p ())
1980 mallopt (M_MMAP_MAX, 0);
1981 #endif
1982
1983 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1984
1985 #ifdef DOUG_LEA_MALLOC
1986 if (!mmap_lisp_allowed_p ())
1987 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1988 #endif
1989
1990 b->next_free = b->data;
1991 b->data[0].string = NULL;
1992 b->next = large_sblocks;
1993 large_sblocks = b;
1994 }
1995 else if (current_sblock == NULL
1996 || (((char *) current_sblock + SBLOCK_SIZE
1997 - (char *) current_sblock->next_free)
1998 < (needed + GC_STRING_EXTRA)))
1999 {
2000 /* Not enough room in the current sblock. */
2001 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2002 b->next_free = b->data;
2003 b->data[0].string = NULL;
2004 b->next = NULL;
2005
2006 if (current_sblock)
2007 current_sblock->next = b;
2008 else
2009 oldest_sblock = b;
2010 current_sblock = b;
2011 }
2012 else
2013 b = current_sblock;
2014
2015 data = b->next_free;
2016 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2017
2018 MALLOC_UNBLOCK_INPUT;
2019
2020 data->string = s;
2021 s->data = SDATA_DATA (data);
2022 #ifdef GC_CHECK_STRING_BYTES
2023 SDATA_NBYTES (data) = nbytes;
2024 #endif
2025 s->size = nchars;
2026 s->size_byte = nbytes;
2027 s->data[nbytes] = '\0';
2028 #ifdef GC_CHECK_STRING_OVERRUN
2029 memcpy ((char *) data + needed, string_overrun_cookie,
2030 GC_STRING_OVERRUN_COOKIE_SIZE);
2031 #endif
2032
2033 /* Note that Faset may call to this function when S has already data
2034 assigned. In this case, mark data as free by setting it's string
2035 back-pointer to null, and record the size of the data in it. */
2036 if (old_data)
2037 {
2038 SDATA_NBYTES (old_data) = old_nbytes;
2039 old_data->string = NULL;
2040 }
2041
2042 consing_since_gc += needed;
2043 }
2044
2045
2046 /* Sweep and compact strings. */
2047
2048 NO_INLINE /* For better stack traces */
2049 static void
2050 sweep_strings (void)
2051 {
2052 struct string_block *b, *next;
2053 struct string_block *live_blocks = NULL;
2054
2055 string_free_list = NULL;
2056 total_strings = total_free_strings = 0;
2057 total_string_bytes = 0;
2058
2059 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2060 for (b = string_blocks; b; b = next)
2061 {
2062 int i, nfree = 0;
2063 struct Lisp_String *free_list_before = string_free_list;
2064
2065 next = b->next;
2066
2067 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2068 {
2069 struct Lisp_String *s = b->strings + i;
2070
2071 if (s->data)
2072 {
2073 /* String was not on free-list before. */
2074 if (STRING_MARKED_P (s))
2075 {
2076 /* String is live; unmark it and its intervals. */
2077 UNMARK_STRING (s);
2078
2079 /* Do not use string_(set|get)_intervals here. */
2080 s->intervals = balance_intervals (s->intervals);
2081
2082 ++total_strings;
2083 total_string_bytes += STRING_BYTES (s);
2084 }
2085 else
2086 {
2087 /* String is dead. Put it on the free-list. */
2088 sdata *data = SDATA_OF_STRING (s);
2089
2090 /* Save the size of S in its sdata so that we know
2091 how large that is. Reset the sdata's string
2092 back-pointer so that we know it's free. */
2093 #ifdef GC_CHECK_STRING_BYTES
2094 if (string_bytes (s) != SDATA_NBYTES (data))
2095 emacs_abort ();
2096 #else
2097 data->n.nbytes = STRING_BYTES (s);
2098 #endif
2099 data->string = NULL;
2100
2101 /* Reset the strings's `data' member so that we
2102 know it's free. */
2103 s->data = NULL;
2104
2105 /* Put the string on the free-list. */
2106 NEXT_FREE_LISP_STRING (s) = string_free_list;
2107 string_free_list = s;
2108 ++nfree;
2109 }
2110 }
2111 else
2112 {
2113 /* S was on the free-list before. Put it there again. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2117 }
2118 }
2119
2120 /* Free blocks that contain free Lisp_Strings only, except
2121 the first two of them. */
2122 if (nfree == STRING_BLOCK_SIZE
2123 && total_free_strings > STRING_BLOCK_SIZE)
2124 {
2125 lisp_free (b);
2126 string_free_list = free_list_before;
2127 }
2128 else
2129 {
2130 total_free_strings += nfree;
2131 b->next = live_blocks;
2132 live_blocks = b;
2133 }
2134 }
2135
2136 check_string_free_list ();
2137
2138 string_blocks = live_blocks;
2139 free_large_strings ();
2140 compact_small_strings ();
2141
2142 check_string_free_list ();
2143 }
2144
2145
2146 /* Free dead large strings. */
2147
2148 static void
2149 free_large_strings (void)
2150 {
2151 struct sblock *b, *next;
2152 struct sblock *live_blocks = NULL;
2153
2154 for (b = large_sblocks; b; b = next)
2155 {
2156 next = b->next;
2157
2158 if (b->data[0].string == NULL)
2159 lisp_free (b);
2160 else
2161 {
2162 b->next = live_blocks;
2163 live_blocks = b;
2164 }
2165 }
2166
2167 large_sblocks = live_blocks;
2168 }
2169
2170
2171 /* Compact data of small strings. Free sblocks that don't contain
2172 data of live strings after compaction. */
2173
2174 static void
2175 compact_small_strings (void)
2176 {
2177 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2178 to, and TB_END is the end of TB. */
2179 struct sblock *tb = oldest_sblock;
2180 if (tb)
2181 {
2182 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2183 sdata *to = tb->data;
2184
2185 /* Step through the blocks from the oldest to the youngest. We
2186 expect that old blocks will stabilize over time, so that less
2187 copying will happen this way. */
2188 struct sblock *b = tb;
2189 do
2190 {
2191 sdata *end = b->next_free;
2192 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2193
2194 for (sdata *from = b->data; from < end; )
2195 {
2196 /* Compute the next FROM here because copying below may
2197 overwrite data we need to compute it. */
2198 ptrdiff_t nbytes;
2199 struct Lisp_String *s = from->string;
2200
2201 #ifdef GC_CHECK_STRING_BYTES
2202 /* Check that the string size recorded in the string is the
2203 same as the one recorded in the sdata structure. */
2204 if (s && string_bytes (s) != SDATA_NBYTES (from))
2205 emacs_abort ();
2206 #endif /* GC_CHECK_STRING_BYTES */
2207
2208 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2209 eassert (nbytes <= LARGE_STRING_BYTES);
2210
2211 nbytes = SDATA_SIZE (nbytes);
2212 sdata *from_end = (sdata *) ((char *) from
2213 + nbytes + GC_STRING_EXTRA);
2214
2215 #ifdef GC_CHECK_STRING_OVERRUN
2216 if (memcmp (string_overrun_cookie,
2217 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2218 GC_STRING_OVERRUN_COOKIE_SIZE))
2219 emacs_abort ();
2220 #endif
2221
2222 /* Non-NULL S means it's alive. Copy its data. */
2223 if (s)
2224 {
2225 /* If TB is full, proceed with the next sblock. */
2226 sdata *to_end = (sdata *) ((char *) to
2227 + nbytes + GC_STRING_EXTRA);
2228 if (to_end > tb_end)
2229 {
2230 tb->next_free = to;
2231 tb = tb->next;
2232 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2233 to = tb->data;
2234 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2235 }
2236
2237 /* Copy, and update the string's `data' pointer. */
2238 if (from != to)
2239 {
2240 eassert (tb != b || to < from);
2241 memmove (to, from, nbytes + GC_STRING_EXTRA);
2242 to->string->data = SDATA_DATA (to);
2243 }
2244
2245 /* Advance past the sdata we copied to. */
2246 to = to_end;
2247 }
2248 from = from_end;
2249 }
2250 b = b->next;
2251 }
2252 while (b);
2253
2254 /* The rest of the sblocks following TB don't contain live data, so
2255 we can free them. */
2256 for (b = tb->next; b; )
2257 {
2258 struct sblock *next = b->next;
2259 lisp_free (b);
2260 b = next;
2261 }
2262
2263 tb->next_free = to;
2264 tb->next = NULL;
2265 }
2266
2267 current_sblock = tb;
2268 }
2269
2270 void
2271 string_overflow (void)
2272 {
2273 error ("Maximum string size exceeded");
2274 }
2275
2276 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2277 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2278 LENGTH must be an integer.
2279 INIT must be an integer that represents a character. */)
2280 (Lisp_Object length, Lisp_Object init)
2281 {
2282 register Lisp_Object val;
2283 int c;
2284 EMACS_INT nbytes;
2285
2286 CHECK_NATNUM (length);
2287 CHECK_CHARACTER (init);
2288
2289 c = XFASTINT (init);
2290 if (ASCII_CHAR_P (c))
2291 {
2292 nbytes = XINT (length);
2293 val = make_uninit_string (nbytes);
2294 if (nbytes)
2295 {
2296 memset (SDATA (val), c, nbytes);
2297 SDATA (val)[nbytes] = 0;
2298 }
2299 }
2300 else
2301 {
2302 unsigned char str[MAX_MULTIBYTE_LENGTH];
2303 ptrdiff_t len = CHAR_STRING (c, str);
2304 EMACS_INT string_len = XINT (length);
2305 unsigned char *p, *beg, *end;
2306
2307 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2308 string_overflow ();
2309 val = make_uninit_multibyte_string (string_len, nbytes);
2310 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2311 {
2312 /* First time we just copy `str' to the data of `val'. */
2313 if (p == beg)
2314 memcpy (p, str, len);
2315 else
2316 {
2317 /* Next time we copy largest possible chunk from
2318 initialized to uninitialized part of `val'. */
2319 len = min (p - beg, end - p);
2320 memcpy (p, beg, len);
2321 }
2322 }
2323 if (nbytes)
2324 *p = 0;
2325 }
2326
2327 return val;
2328 }
2329
2330 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2331 Return A. */
2332
2333 Lisp_Object
2334 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2335 {
2336 EMACS_INT nbits = bool_vector_size (a);
2337 if (0 < nbits)
2338 {
2339 unsigned char *data = bool_vector_uchar_data (a);
2340 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2341 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2342 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2343 memset (data, pattern, nbytes - 1);
2344 data[nbytes - 1] = pattern & last_mask;
2345 }
2346 return a;
2347 }
2348
2349 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2350
2351 Lisp_Object
2352 make_uninit_bool_vector (EMACS_INT nbits)
2353 {
2354 Lisp_Object val;
2355 EMACS_INT words = bool_vector_words (nbits);
2356 EMACS_INT word_bytes = words * sizeof (bits_word);
2357 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2358 + word_size - 1)
2359 / word_size);
2360 struct Lisp_Bool_Vector *p
2361 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2362 XSETVECTOR (val, p);
2363 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2364 p->size = nbits;
2365
2366 /* Clear padding at the end. */
2367 if (words)
2368 p->data[words - 1] = 0;
2369
2370 return val;
2371 }
2372
2373 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2374 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2375 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2376 (Lisp_Object length, Lisp_Object init)
2377 {
2378 Lisp_Object val;
2379
2380 CHECK_NATNUM (length);
2381 val = make_uninit_bool_vector (XFASTINT (length));
2382 return bool_vector_fill (val, init);
2383 }
2384
2385 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2386 doc: /* Return a new bool-vector with specified arguments as elements.
2387 Any number of arguments, even zero arguments, are allowed.
2388 usage: (bool-vector &rest OBJECTS) */)
2389 (ptrdiff_t nargs, Lisp_Object *args)
2390 {
2391 ptrdiff_t i;
2392 Lisp_Object vector;
2393
2394 vector = make_uninit_bool_vector (nargs);
2395 for (i = 0; i < nargs; i++)
2396 bool_vector_set (vector, i, !NILP (args[i]));
2397
2398 return vector;
2399 }
2400
2401 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2402 of characters from the contents. This string may be unibyte or
2403 multibyte, depending on the contents. */
2404
2405 Lisp_Object
2406 make_string (const char *contents, ptrdiff_t nbytes)
2407 {
2408 register Lisp_Object val;
2409 ptrdiff_t nchars, multibyte_nbytes;
2410
2411 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2412 &nchars, &multibyte_nbytes);
2413 if (nbytes == nchars || nbytes != multibyte_nbytes)
2414 /* CONTENTS contains no multibyte sequences or contains an invalid
2415 multibyte sequence. We must make unibyte string. */
2416 val = make_unibyte_string (contents, nbytes);
2417 else
2418 val = make_multibyte_string (contents, nchars, nbytes);
2419 return val;
2420 }
2421
2422 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2423
2424 Lisp_Object
2425 make_unibyte_string (const char *contents, ptrdiff_t length)
2426 {
2427 register Lisp_Object val;
2428 val = make_uninit_string (length);
2429 memcpy (SDATA (val), contents, length);
2430 return val;
2431 }
2432
2433
2434 /* Make a multibyte string from NCHARS characters occupying NBYTES
2435 bytes at CONTENTS. */
2436
2437 Lisp_Object
2438 make_multibyte_string (const char *contents,
2439 ptrdiff_t nchars, ptrdiff_t nbytes)
2440 {
2441 register Lisp_Object val;
2442 val = make_uninit_multibyte_string (nchars, nbytes);
2443 memcpy (SDATA (val), contents, nbytes);
2444 return val;
2445 }
2446
2447
2448 /* Make a string from NCHARS characters occupying NBYTES bytes at
2449 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2450
2451 Lisp_Object
2452 make_string_from_bytes (const char *contents,
2453 ptrdiff_t nchars, ptrdiff_t nbytes)
2454 {
2455 register Lisp_Object val;
2456 val = make_uninit_multibyte_string (nchars, nbytes);
2457 memcpy (SDATA (val), contents, nbytes);
2458 if (SBYTES (val) == SCHARS (val))
2459 STRING_SET_UNIBYTE (val);
2460 return val;
2461 }
2462
2463
2464 /* Make a string from NCHARS characters occupying NBYTES bytes at
2465 CONTENTS. The argument MULTIBYTE controls whether to label the
2466 string as multibyte. If NCHARS is negative, it counts the number of
2467 characters by itself. */
2468
2469 Lisp_Object
2470 make_specified_string (const char *contents,
2471 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2472 {
2473 Lisp_Object val;
2474
2475 if (nchars < 0)
2476 {
2477 if (multibyte)
2478 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2479 nbytes);
2480 else
2481 nchars = nbytes;
2482 }
2483 val = make_uninit_multibyte_string (nchars, nbytes);
2484 memcpy (SDATA (val), contents, nbytes);
2485 if (!multibyte)
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2488 }
2489
2490
2491 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2492 occupying LENGTH bytes. */
2493
2494 Lisp_Object
2495 make_uninit_string (EMACS_INT length)
2496 {
2497 Lisp_Object val;
2498
2499 if (!length)
2500 return empty_unibyte_string;
2501 val = make_uninit_multibyte_string (length, length);
2502 STRING_SET_UNIBYTE (val);
2503 return val;
2504 }
2505
2506
2507 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2508 which occupy NBYTES bytes. */
2509
2510 Lisp_Object
2511 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2512 {
2513 Lisp_Object string;
2514 struct Lisp_String *s;
2515
2516 if (nchars < 0)
2517 emacs_abort ();
2518 if (!nbytes)
2519 return empty_multibyte_string;
2520
2521 s = allocate_string ();
2522 s->intervals = NULL;
2523 allocate_string_data (s, nchars, nbytes);
2524 XSETSTRING (string, s);
2525 string_chars_consed += nbytes;
2526 return string;
2527 }
2528
2529 /* Print arguments to BUF according to a FORMAT, then return
2530 a Lisp_String initialized with the data from BUF. */
2531
2532 Lisp_Object
2533 make_formatted_string (char *buf, const char *format, ...)
2534 {
2535 va_list ap;
2536 int length;
2537
2538 va_start (ap, format);
2539 length = vsprintf (buf, format, ap);
2540 va_end (ap);
2541 return make_string (buf, length);
2542 }
2543
2544 \f
2545 /***********************************************************************
2546 Float Allocation
2547 ***********************************************************************/
2548
2549 /* We store float cells inside of float_blocks, allocating a new
2550 float_block with malloc whenever necessary. Float cells reclaimed
2551 by GC are put on a free list to be reallocated before allocating
2552 any new float cells from the latest float_block. */
2553
2554 #define FLOAT_BLOCK_SIZE \
2555 (((BLOCK_BYTES - sizeof (struct float_block *) \
2556 /* The compiler might add padding at the end. */ \
2557 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2558 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2559
2560 #define GETMARKBIT(block,n) \
2561 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2562 >> ((n) % BITS_PER_BITS_WORD)) \
2563 & 1)
2564
2565 #define SETMARKBIT(block,n) \
2566 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2567 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2568
2569 #define UNSETMARKBIT(block,n) \
2570 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2571 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2572
2573 #define FLOAT_BLOCK(fptr) \
2574 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2575
2576 #define FLOAT_INDEX(fptr) \
2577 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2578
2579 struct float_block
2580 {
2581 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2582 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2583 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2584 struct float_block *next;
2585 };
2586
2587 #define FLOAT_MARKED_P(fptr) \
2588 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2589
2590 #define FLOAT_MARK(fptr) \
2591 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2592
2593 #define FLOAT_UNMARK(fptr) \
2594 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2595
2596 /* Current float_block. */
2597
2598 static struct float_block *float_block;
2599
2600 /* Index of first unused Lisp_Float in the current float_block. */
2601
2602 static int float_block_index = FLOAT_BLOCK_SIZE;
2603
2604 /* Free-list of Lisp_Floats. */
2605
2606 static struct Lisp_Float *float_free_list;
2607
2608 /* Return a new float object with value FLOAT_VALUE. */
2609
2610 Lisp_Object
2611 make_float (double float_value)
2612 {
2613 register Lisp_Object val;
2614
2615 MALLOC_BLOCK_INPUT;
2616
2617 if (float_free_list)
2618 {
2619 /* We use the data field for chaining the free list
2620 so that we won't use the same field that has the mark bit. */
2621 XSETFLOAT (val, float_free_list);
2622 float_free_list = float_free_list->u.chain;
2623 }
2624 else
2625 {
2626 if (float_block_index == FLOAT_BLOCK_SIZE)
2627 {
2628 struct float_block *new
2629 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2630 new->next = float_block;
2631 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2632 float_block = new;
2633 float_block_index = 0;
2634 total_free_floats += FLOAT_BLOCK_SIZE;
2635 }
2636 XSETFLOAT (val, &float_block->floats[float_block_index]);
2637 float_block_index++;
2638 }
2639
2640 MALLOC_UNBLOCK_INPUT;
2641
2642 XFLOAT_INIT (val, float_value);
2643 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2644 consing_since_gc += sizeof (struct Lisp_Float);
2645 floats_consed++;
2646 total_free_floats--;
2647 return val;
2648 }
2649
2650
2651 \f
2652 /***********************************************************************
2653 Cons Allocation
2654 ***********************************************************************/
2655
2656 /* We store cons cells inside of cons_blocks, allocating a new
2657 cons_block with malloc whenever necessary. Cons cells reclaimed by
2658 GC are put on a free list to be reallocated before allocating
2659 any new cons cells from the latest cons_block. */
2660
2661 #define CONS_BLOCK_SIZE \
2662 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2663 /* The compiler might add padding at the end. */ \
2664 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666
2667 #define CONS_BLOCK(fptr) \
2668 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2669
2670 #define CONS_INDEX(fptr) \
2671 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672
2673 struct cons_block
2674 {
2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2676 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2677 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2678 struct cons_block *next;
2679 };
2680
2681 #define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 #define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 #define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 /* Current cons_block. */
2691
2692 static struct cons_block *cons_block;
2693
2694 /* Index of first unused Lisp_Cons in the current block. */
2695
2696 static int cons_block_index = CONS_BLOCK_SIZE;
2697
2698 /* Free-list of Lisp_Cons structures. */
2699
2700 static struct Lisp_Cons *cons_free_list;
2701
2702 /* Explicitly free a cons cell by putting it on the free-list. */
2703
2704 void
2705 free_cons (struct Lisp_Cons *ptr)
2706 {
2707 ptr->u.chain = cons_free_list;
2708 ptr->car = Vdead;
2709 cons_free_list = ptr;
2710 consing_since_gc -= sizeof *ptr;
2711 total_free_conses++;
2712 }
2713
2714 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2715 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2716 (Lisp_Object car, Lisp_Object cdr)
2717 {
2718 register Lisp_Object val;
2719
2720 MALLOC_BLOCK_INPUT;
2721
2722 if (cons_free_list)
2723 {
2724 /* We use the cdr for chaining the free list
2725 so that we won't use the same field that has the mark bit. */
2726 XSETCONS (val, cons_free_list);
2727 cons_free_list = cons_free_list->u.chain;
2728 }
2729 else
2730 {
2731 if (cons_block_index == CONS_BLOCK_SIZE)
2732 {
2733 struct cons_block *new
2734 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2735 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2736 new->next = cons_block;
2737 cons_block = new;
2738 cons_block_index = 0;
2739 total_free_conses += CONS_BLOCK_SIZE;
2740 }
2741 XSETCONS (val, &cons_block->conses[cons_block_index]);
2742 cons_block_index++;
2743 }
2744
2745 MALLOC_UNBLOCK_INPUT;
2746
2747 XSETCAR (val, car);
2748 XSETCDR (val, cdr);
2749 eassert (!CONS_MARKED_P (XCONS (val)));
2750 consing_since_gc += sizeof (struct Lisp_Cons);
2751 total_free_conses--;
2752 cons_cells_consed++;
2753 return val;
2754 }
2755
2756 #ifdef GC_CHECK_CONS_LIST
2757 /* Get an error now if there's any junk in the cons free list. */
2758 void
2759 check_cons_list (void)
2760 {
2761 struct Lisp_Cons *tail = cons_free_list;
2762
2763 while (tail)
2764 tail = tail->u.chain;
2765 }
2766 #endif
2767
2768 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2769
2770 Lisp_Object
2771 list1 (Lisp_Object arg1)
2772 {
2773 return Fcons (arg1, Qnil);
2774 }
2775
2776 Lisp_Object
2777 list2 (Lisp_Object arg1, Lisp_Object arg2)
2778 {
2779 return Fcons (arg1, Fcons (arg2, Qnil));
2780 }
2781
2782
2783 Lisp_Object
2784 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2785 {
2786 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2787 }
2788
2789
2790 Lisp_Object
2791 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2792 {
2793 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2794 }
2795
2796
2797 Lisp_Object
2798 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2799 {
2800 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2801 Fcons (arg5, Qnil)))));
2802 }
2803
2804 /* Make a list of COUNT Lisp_Objects, where ARG is the
2805 first one. Allocate conses from pure space if TYPE
2806 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2807
2808 Lisp_Object
2809 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2810 {
2811 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2812 switch (type)
2813 {
2814 case CONSTYPE_PURE: cons = pure_cons; break;
2815 case CONSTYPE_HEAP: cons = Fcons; break;
2816 default: emacs_abort ();
2817 }
2818
2819 eassume (0 < count);
2820 Lisp_Object val = cons (arg, Qnil);
2821 Lisp_Object tail = val;
2822
2823 va_list ap;
2824 va_start (ap, arg);
2825 for (ptrdiff_t i = 1; i < count; i++)
2826 {
2827 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2828 XSETCDR (tail, elem);
2829 tail = elem;
2830 }
2831 va_end (ap);
2832
2833 return val;
2834 }
2835
2836 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2837 doc: /* Return a newly created list with specified arguments as elements.
2838 Any number of arguments, even zero arguments, are allowed.
2839 usage: (list &rest OBJECTS) */)
2840 (ptrdiff_t nargs, Lisp_Object *args)
2841 {
2842 register Lisp_Object val;
2843 val = Qnil;
2844
2845 while (nargs > 0)
2846 {
2847 nargs--;
2848 val = Fcons (args[nargs], val);
2849 }
2850 return val;
2851 }
2852
2853
2854 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2855 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2856 (register Lisp_Object length, Lisp_Object init)
2857 {
2858 register Lisp_Object val;
2859 register EMACS_INT size;
2860
2861 CHECK_NATNUM (length);
2862 size = XFASTINT (length);
2863
2864 val = Qnil;
2865 while (size > 0)
2866 {
2867 val = Fcons (init, val);
2868 --size;
2869
2870 if (size > 0)
2871 {
2872 val = Fcons (init, val);
2873 --size;
2874
2875 if (size > 0)
2876 {
2877 val = Fcons (init, val);
2878 --size;
2879
2880 if (size > 0)
2881 {
2882 val = Fcons (init, val);
2883 --size;
2884
2885 if (size > 0)
2886 {
2887 val = Fcons (init, val);
2888 --size;
2889 }
2890 }
2891 }
2892 }
2893
2894 QUIT;
2895 }
2896
2897 return val;
2898 }
2899
2900
2901 \f
2902 /***********************************************************************
2903 Vector Allocation
2904 ***********************************************************************/
2905
2906 /* Sometimes a vector's contents are merely a pointer internally used
2907 in vector allocation code. On the rare platforms where a null
2908 pointer cannot be tagged, represent it with a Lisp 0.
2909 Usually you don't want to touch this. */
2910
2911 static struct Lisp_Vector *
2912 next_vector (struct Lisp_Vector *v)
2913 {
2914 return XUNTAG (v->contents[0], Lisp_Int0);
2915 }
2916
2917 static void
2918 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2919 {
2920 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2921 }
2922
2923 /* This value is balanced well enough to avoid too much internal overhead
2924 for the most common cases; it's not required to be a power of two, but
2925 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2926
2927 #define VECTOR_BLOCK_SIZE 4096
2928
2929 enum
2930 {
2931 /* Alignment of struct Lisp_Vector objects. */
2932 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2933 GCALIGNMENT),
2934
2935 /* Vector size requests are a multiple of this. */
2936 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2937 };
2938
2939 /* Verify assumptions described above. */
2940 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2941 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2942
2943 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2944 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2945 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2946 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2947
2948 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2949
2950 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2951
2952 /* Size of the minimal vector allocated from block. */
2953
2954 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2955
2956 /* Size of the largest vector allocated from block. */
2957
2958 #define VBLOCK_BYTES_MAX \
2959 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2960
2961 /* We maintain one free list for each possible block-allocated
2962 vector size, and this is the number of free lists we have. */
2963
2964 #define VECTOR_MAX_FREE_LIST_INDEX \
2965 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2966
2967 /* Common shortcut to advance vector pointer over a block data. */
2968
2969 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2970
2971 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2972
2973 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2974
2975 /* Common shortcut to setup vector on a free list. */
2976
2977 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2978 do { \
2979 (tmp) = ((nbytes - header_size) / word_size); \
2980 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2981 eassert ((nbytes) % roundup_size == 0); \
2982 (tmp) = VINDEX (nbytes); \
2983 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2984 set_next_vector (v, vector_free_lists[tmp]); \
2985 vector_free_lists[tmp] = (v); \
2986 total_free_vector_slots += (nbytes) / word_size; \
2987 } while (0)
2988
2989 /* This internal type is used to maintain the list of large vectors
2990 which are allocated at their own, e.g. outside of vector blocks.
2991
2992 struct large_vector itself cannot contain a struct Lisp_Vector, as
2993 the latter contains a flexible array member and C99 does not allow
2994 such structs to be nested. Instead, each struct large_vector
2995 object LV is followed by a struct Lisp_Vector, which is at offset
2996 large_vector_offset from LV, and whose address is therefore
2997 large_vector_vec (&LV). */
2998
2999 struct large_vector
3000 {
3001 struct large_vector *next;
3002 };
3003
3004 enum
3005 {
3006 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
3007 };
3008
3009 static struct Lisp_Vector *
3010 large_vector_vec (struct large_vector *p)
3011 {
3012 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3013 }
3014
3015 /* This internal type is used to maintain an underlying storage
3016 for small vectors. */
3017
3018 struct vector_block
3019 {
3020 char data[VECTOR_BLOCK_BYTES];
3021 struct vector_block *next;
3022 };
3023
3024 /* Chain of vector blocks. */
3025
3026 static struct vector_block *vector_blocks;
3027
3028 /* Vector free lists, where NTH item points to a chain of free
3029 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3030
3031 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3032
3033 /* Singly-linked list of large vectors. */
3034
3035 static struct large_vector *large_vectors;
3036
3037 /* The only vector with 0 slots, allocated from pure space. */
3038
3039 Lisp_Object zero_vector;
3040
3041 /* Number of live vectors. */
3042
3043 static EMACS_INT total_vectors;
3044
3045 /* Total size of live and free vectors, in Lisp_Object units. */
3046
3047 static EMACS_INT total_vector_slots, total_free_vector_slots;
3048
3049 /* Get a new vector block. */
3050
3051 static struct vector_block *
3052 allocate_vector_block (void)
3053 {
3054 struct vector_block *block = xmalloc (sizeof *block);
3055
3056 #ifndef GC_MALLOC_CHECK
3057 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3058 MEM_TYPE_VECTOR_BLOCK);
3059 #endif
3060
3061 block->next = vector_blocks;
3062 vector_blocks = block;
3063 return block;
3064 }
3065
3066 /* Called once to initialize vector allocation. */
3067
3068 static void
3069 init_vectors (void)
3070 {
3071 zero_vector = make_pure_vector (0);
3072 }
3073
3074 /* Allocate vector from a vector block. */
3075
3076 static struct Lisp_Vector *
3077 allocate_vector_from_block (size_t nbytes)
3078 {
3079 struct Lisp_Vector *vector;
3080 struct vector_block *block;
3081 size_t index, restbytes;
3082
3083 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3084 eassert (nbytes % roundup_size == 0);
3085
3086 /* First, try to allocate from a free list
3087 containing vectors of the requested size. */
3088 index = VINDEX (nbytes);
3089 if (vector_free_lists[index])
3090 {
3091 vector = vector_free_lists[index];
3092 vector_free_lists[index] = next_vector (vector);
3093 total_free_vector_slots -= nbytes / word_size;
3094 return vector;
3095 }
3096
3097 /* Next, check free lists containing larger vectors. Since
3098 we will split the result, we should have remaining space
3099 large enough to use for one-slot vector at least. */
3100 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3101 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3102 if (vector_free_lists[index])
3103 {
3104 /* This vector is larger than requested. */
3105 vector = vector_free_lists[index];
3106 vector_free_lists[index] = next_vector (vector);
3107 total_free_vector_slots -= nbytes / word_size;
3108
3109 /* Excess bytes are used for the smaller vector,
3110 which should be set on an appropriate free list. */
3111 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3112 eassert (restbytes % roundup_size == 0);
3113 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3114 return vector;
3115 }
3116
3117 /* Finally, need a new vector block. */
3118 block = allocate_vector_block ();
3119
3120 /* New vector will be at the beginning of this block. */
3121 vector = (struct Lisp_Vector *) block->data;
3122
3123 /* If the rest of space from this block is large enough
3124 for one-slot vector at least, set up it on a free list. */
3125 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3126 if (restbytes >= VBLOCK_BYTES_MIN)
3127 {
3128 eassert (restbytes % roundup_size == 0);
3129 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3130 }
3131 return vector;
3132 }
3133
3134 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3135
3136 #define VECTOR_IN_BLOCK(vector, block) \
3137 ((char *) (vector) <= (block)->data \
3138 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3139
3140 /* Return the memory footprint of V in bytes. */
3141
3142 static ptrdiff_t
3143 vector_nbytes (struct Lisp_Vector *v)
3144 {
3145 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3146 ptrdiff_t nwords;
3147
3148 if (size & PSEUDOVECTOR_FLAG)
3149 {
3150 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3151 {
3152 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3153 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3154 * sizeof (bits_word));
3155 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3156 verify (header_size <= bool_header_size);
3157 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3158 }
3159 else
3160 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3161 + ((size & PSEUDOVECTOR_REST_MASK)
3162 >> PSEUDOVECTOR_SIZE_BITS));
3163 }
3164 else
3165 nwords = size;
3166 return vroundup (header_size + word_size * nwords);
3167 }
3168
3169 /* Release extra resources still in use by VECTOR, which may be any
3170 vector-like object. For now, this is used just to free data in
3171 font objects. */
3172
3173 static void
3174 cleanup_vector (struct Lisp_Vector *vector)
3175 {
3176 detect_suspicious_free (vector);
3177 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3178 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3179 == FONT_OBJECT_MAX))
3180 {
3181 struct font_driver *drv = ((struct font *) vector)->driver;
3182
3183 /* The font driver might sometimes be NULL, e.g. if Emacs was
3184 interrupted before it had time to set it up. */
3185 if (drv)
3186 {
3187 /* Attempt to catch subtle bugs like Bug#16140. */
3188 eassert (valid_font_driver (drv));
3189 drv->close ((struct font *) vector);
3190 }
3191 }
3192 }
3193
3194 /* Reclaim space used by unmarked vectors. */
3195
3196 NO_INLINE /* For better stack traces */
3197 static void
3198 sweep_vectors (void)
3199 {
3200 struct vector_block *block, **bprev = &vector_blocks;
3201 struct large_vector *lv, **lvprev = &large_vectors;
3202 struct Lisp_Vector *vector, *next;
3203
3204 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3205 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3206
3207 /* Looking through vector blocks. */
3208
3209 for (block = vector_blocks; block; block = *bprev)
3210 {
3211 bool free_this_block = 0;
3212 ptrdiff_t nbytes;
3213
3214 for (vector = (struct Lisp_Vector *) block->data;
3215 VECTOR_IN_BLOCK (vector, block); vector = next)
3216 {
3217 if (VECTOR_MARKED_P (vector))
3218 {
3219 VECTOR_UNMARK (vector);
3220 total_vectors++;
3221 nbytes = vector_nbytes (vector);
3222 total_vector_slots += nbytes / word_size;
3223 next = ADVANCE (vector, nbytes);
3224 }
3225 else
3226 {
3227 ptrdiff_t total_bytes;
3228
3229 cleanup_vector (vector);
3230 nbytes = vector_nbytes (vector);
3231 total_bytes = nbytes;
3232 next = ADVANCE (vector, nbytes);
3233
3234 /* While NEXT is not marked, try to coalesce with VECTOR,
3235 thus making VECTOR of the largest possible size. */
3236
3237 while (VECTOR_IN_BLOCK (next, block))
3238 {
3239 if (VECTOR_MARKED_P (next))
3240 break;
3241 cleanup_vector (next);
3242 nbytes = vector_nbytes (next);
3243 total_bytes += nbytes;
3244 next = ADVANCE (next, nbytes);
3245 }
3246
3247 eassert (total_bytes % roundup_size == 0);
3248
3249 if (vector == (struct Lisp_Vector *) block->data
3250 && !VECTOR_IN_BLOCK (next, block))
3251 /* This block should be freed because all of its
3252 space was coalesced into the only free vector. */
3253 free_this_block = 1;
3254 else
3255 {
3256 size_t tmp;
3257 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3258 }
3259 }
3260 }
3261
3262 if (free_this_block)
3263 {
3264 *bprev = block->next;
3265 #ifndef GC_MALLOC_CHECK
3266 mem_delete (mem_find (block->data));
3267 #endif
3268 xfree (block);
3269 }
3270 else
3271 bprev = &block->next;
3272 }
3273
3274 /* Sweep large vectors. */
3275
3276 for (lv = large_vectors; lv; lv = *lvprev)
3277 {
3278 vector = large_vector_vec (lv);
3279 if (VECTOR_MARKED_P (vector))
3280 {
3281 VECTOR_UNMARK (vector);
3282 total_vectors++;
3283 if (vector->header.size & PSEUDOVECTOR_FLAG)
3284 {
3285 /* All non-bool pseudovectors are small enough to be allocated
3286 from vector blocks. This code should be redesigned if some
3287 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3288 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3289 total_vector_slots += vector_nbytes (vector) / word_size;
3290 }
3291 else
3292 total_vector_slots
3293 += header_size / word_size + vector->header.size;
3294 lvprev = &lv->next;
3295 }
3296 else
3297 {
3298 *lvprev = lv->next;
3299 lisp_free (lv);
3300 }
3301 }
3302 }
3303
3304 /* Value is a pointer to a newly allocated Lisp_Vector structure
3305 with room for LEN Lisp_Objects. */
3306
3307 static struct Lisp_Vector *
3308 allocate_vectorlike (ptrdiff_t len)
3309 {
3310 struct Lisp_Vector *p;
3311
3312 MALLOC_BLOCK_INPUT;
3313
3314 if (len == 0)
3315 p = XVECTOR (zero_vector);
3316 else
3317 {
3318 size_t nbytes = header_size + len * word_size;
3319
3320 #ifdef DOUG_LEA_MALLOC
3321 if (!mmap_lisp_allowed_p ())
3322 mallopt (M_MMAP_MAX, 0);
3323 #endif
3324
3325 if (nbytes <= VBLOCK_BYTES_MAX)
3326 p = allocate_vector_from_block (vroundup (nbytes));
3327 else
3328 {
3329 struct large_vector *lv
3330 = lisp_malloc ((large_vector_offset + header_size
3331 + len * word_size),
3332 MEM_TYPE_VECTORLIKE);
3333 lv->next = large_vectors;
3334 large_vectors = lv;
3335 p = large_vector_vec (lv);
3336 }
3337
3338 #ifdef DOUG_LEA_MALLOC
3339 if (!mmap_lisp_allowed_p ())
3340 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3341 #endif
3342
3343 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3344 emacs_abort ();
3345
3346 consing_since_gc += nbytes;
3347 vector_cells_consed += len;
3348 }
3349
3350 MALLOC_UNBLOCK_INPUT;
3351
3352 return p;
3353 }
3354
3355
3356 /* Allocate a vector with LEN slots. */
3357
3358 struct Lisp_Vector *
3359 allocate_vector (EMACS_INT len)
3360 {
3361 struct Lisp_Vector *v;
3362 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3363
3364 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3365 memory_full (SIZE_MAX);
3366 v = allocate_vectorlike (len);
3367 if (len)
3368 v->header.size = len;
3369 return v;
3370 }
3371
3372
3373 /* Allocate other vector-like structures. */
3374
3375 struct Lisp_Vector *
3376 allocate_pseudovector (int memlen, int lisplen,
3377 int zerolen, enum pvec_type tag)
3378 {
3379 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3380
3381 /* Catch bogus values. */
3382 eassert (0 <= tag && tag <= PVEC_FONT);
3383 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3384 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3385 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3386
3387 /* Only the first LISPLEN slots will be traced normally by the GC. */
3388 memclear (v->contents, zerolen * word_size);
3389 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3390 return v;
3391 }
3392
3393 struct buffer *
3394 allocate_buffer (void)
3395 {
3396 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3397
3398 BUFFER_PVEC_INIT (b);
3399 /* Put B on the chain of all buffers including killed ones. */
3400 b->next = all_buffers;
3401 all_buffers = b;
3402 /* Note that the rest fields of B are not initialized. */
3403 return b;
3404 }
3405
3406 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3407 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3408 See also the function `vector'. */)
3409 (Lisp_Object length, Lisp_Object init)
3410 {
3411 CHECK_NATNUM (length);
3412 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3413 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3414 p->contents[i] = init;
3415 return make_lisp_ptr (p, Lisp_Vectorlike);
3416 }
3417
3418 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3419 doc: /* Return a newly created vector with specified arguments as elements.
3420 Any number of arguments, even zero arguments, are allowed.
3421 usage: (vector &rest OBJECTS) */)
3422 (ptrdiff_t nargs, Lisp_Object *args)
3423 {
3424 Lisp_Object val = make_uninit_vector (nargs);
3425 struct Lisp_Vector *p = XVECTOR (val);
3426 memcpy (p->contents, args, nargs * sizeof *args);
3427 return val;
3428 }
3429
3430 void
3431 make_byte_code (struct Lisp_Vector *v)
3432 {
3433 /* Don't allow the global zero_vector to become a byte code object. */
3434 eassert (0 < v->header.size);
3435
3436 if (v->header.size > 1 && STRINGP (v->contents[1])
3437 && STRING_MULTIBYTE (v->contents[1]))
3438 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3439 earlier because they produced a raw 8-bit string for byte-code
3440 and now such a byte-code string is loaded as multibyte while
3441 raw 8-bit characters converted to multibyte form. Thus, now we
3442 must convert them back to the original unibyte form. */
3443 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3444 XSETPVECTYPE (v, PVEC_COMPILED);
3445 }
3446
3447 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3448 doc: /* Create a byte-code object with specified arguments as elements.
3449 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3450 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3451 and (optional) INTERACTIVE-SPEC.
3452 The first four arguments are required; at most six have any
3453 significance.
3454 The ARGLIST can be either like the one of `lambda', in which case the arguments
3455 will be dynamically bound before executing the byte code, or it can be an
3456 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3457 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3458 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3459 argument to catch the left-over arguments. If such an integer is used, the
3460 arguments will not be dynamically bound but will be instead pushed on the
3461 stack before executing the byte-code.
3462 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3463 (ptrdiff_t nargs, Lisp_Object *args)
3464 {
3465 Lisp_Object val = make_uninit_vector (nargs);
3466 struct Lisp_Vector *p = XVECTOR (val);
3467
3468 /* We used to purecopy everything here, if purify-flag was set. This worked
3469 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3470 dangerous, since make-byte-code is used during execution to build
3471 closures, so any closure built during the preload phase would end up
3472 copied into pure space, including its free variables, which is sometimes
3473 just wasteful and other times plainly wrong (e.g. those free vars may want
3474 to be setcar'd). */
3475
3476 memcpy (p->contents, args, nargs * sizeof *args);
3477 make_byte_code (p);
3478 XSETCOMPILED (val, p);
3479 return val;
3480 }
3481
3482
3483 \f
3484 /***********************************************************************
3485 Symbol Allocation
3486 ***********************************************************************/
3487
3488 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3489 of the required alignment. */
3490
3491 union aligned_Lisp_Symbol
3492 {
3493 struct Lisp_Symbol s;
3494 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3495 & -GCALIGNMENT];
3496 };
3497
3498 /* Each symbol_block is just under 1020 bytes long, since malloc
3499 really allocates in units of powers of two and uses 4 bytes for its
3500 own overhead. */
3501
3502 #define SYMBOL_BLOCK_SIZE \
3503 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3504
3505 struct symbol_block
3506 {
3507 /* Place `symbols' first, to preserve alignment. */
3508 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3509 struct symbol_block *next;
3510 };
3511
3512 /* Current symbol block and index of first unused Lisp_Symbol
3513 structure in it. */
3514
3515 static struct symbol_block *symbol_block;
3516 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3517 /* Pointer to the first symbol_block that contains pinned symbols.
3518 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3519 10K of which are pinned (and all but 250 of them are interned in obarray),
3520 whereas a "typical session" has in the order of 30K symbols.
3521 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3522 than 30K to find the 10K symbols we need to mark. */
3523 static struct symbol_block *symbol_block_pinned;
3524
3525 /* List of free symbols. */
3526
3527 static struct Lisp_Symbol *symbol_free_list;
3528
3529 static void
3530 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3531 {
3532 XSYMBOL (sym)->name = name;
3533 }
3534
3535 void
3536 init_symbol (Lisp_Object val, Lisp_Object name)
3537 {
3538 struct Lisp_Symbol *p = XSYMBOL (val);
3539 set_symbol_name (val, name);
3540 set_symbol_plist (val, Qnil);
3541 p->redirect = SYMBOL_PLAINVAL;
3542 SET_SYMBOL_VAL (p, Qunbound);
3543 set_symbol_function (val, Qnil);
3544 set_symbol_next (val, NULL);
3545 p->gcmarkbit = false;
3546 p->interned = SYMBOL_UNINTERNED;
3547 p->constant = 0;
3548 p->declared_special = false;
3549 p->pinned = false;
3550 }
3551
3552 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3553 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3554 Its value is void, and its function definition and property list are nil. */)
3555 (Lisp_Object name)
3556 {
3557 Lisp_Object val;
3558
3559 CHECK_STRING (name);
3560
3561 MALLOC_BLOCK_INPUT;
3562
3563 if (symbol_free_list)
3564 {
3565 XSETSYMBOL (val, symbol_free_list);
3566 symbol_free_list = symbol_free_list->next;
3567 }
3568 else
3569 {
3570 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3571 {
3572 struct symbol_block *new
3573 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3574 new->next = symbol_block;
3575 symbol_block = new;
3576 symbol_block_index = 0;
3577 total_free_symbols += SYMBOL_BLOCK_SIZE;
3578 }
3579 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3580 symbol_block_index++;
3581 }
3582
3583 MALLOC_UNBLOCK_INPUT;
3584
3585 init_symbol (val, name);
3586 consing_since_gc += sizeof (struct Lisp_Symbol);
3587 symbols_consed++;
3588 total_free_symbols--;
3589 return val;
3590 }
3591
3592
3593 \f
3594 /***********************************************************************
3595 Marker (Misc) Allocation
3596 ***********************************************************************/
3597
3598 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3599 the required alignment. */
3600
3601 union aligned_Lisp_Misc
3602 {
3603 union Lisp_Misc m;
3604 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3605 & -GCALIGNMENT];
3606 };
3607
3608 /* Allocation of markers and other objects that share that structure.
3609 Works like allocation of conses. */
3610
3611 #define MARKER_BLOCK_SIZE \
3612 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3613
3614 struct marker_block
3615 {
3616 /* Place `markers' first, to preserve alignment. */
3617 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3618 struct marker_block *next;
3619 };
3620
3621 static struct marker_block *marker_block;
3622 static int marker_block_index = MARKER_BLOCK_SIZE;
3623
3624 static union Lisp_Misc *marker_free_list;
3625
3626 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3627
3628 static Lisp_Object
3629 allocate_misc (enum Lisp_Misc_Type type)
3630 {
3631 Lisp_Object val;
3632
3633 MALLOC_BLOCK_INPUT;
3634
3635 if (marker_free_list)
3636 {
3637 XSETMISC (val, marker_free_list);
3638 marker_free_list = marker_free_list->u_free.chain;
3639 }
3640 else
3641 {
3642 if (marker_block_index == MARKER_BLOCK_SIZE)
3643 {
3644 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3645 new->next = marker_block;
3646 marker_block = new;
3647 marker_block_index = 0;
3648 total_free_markers += MARKER_BLOCK_SIZE;
3649 }
3650 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3651 marker_block_index++;
3652 }
3653
3654 MALLOC_UNBLOCK_INPUT;
3655
3656 --total_free_markers;
3657 consing_since_gc += sizeof (union Lisp_Misc);
3658 misc_objects_consed++;
3659 XMISCANY (val)->type = type;
3660 XMISCANY (val)->gcmarkbit = 0;
3661 return val;
3662 }
3663
3664 /* Free a Lisp_Misc object. */
3665
3666 void
3667 free_misc (Lisp_Object misc)
3668 {
3669 XMISCANY (misc)->type = Lisp_Misc_Free;
3670 XMISC (misc)->u_free.chain = marker_free_list;
3671 marker_free_list = XMISC (misc);
3672 consing_since_gc -= sizeof (union Lisp_Misc);
3673 total_free_markers++;
3674 }
3675
3676 /* Verify properties of Lisp_Save_Value's representation
3677 that are assumed here and elsewhere. */
3678
3679 verify (SAVE_UNUSED == 0);
3680 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3681 >> SAVE_SLOT_BITS)
3682 == 0);
3683
3684 /* Return Lisp_Save_Value objects for the various combinations
3685 that callers need. */
3686
3687 Lisp_Object
3688 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3689 {
3690 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3691 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3692 p->save_type = SAVE_TYPE_INT_INT_INT;
3693 p->data[0].integer = a;
3694 p->data[1].integer = b;
3695 p->data[2].integer = c;
3696 return val;
3697 }
3698
3699 Lisp_Object
3700 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3701 Lisp_Object d)
3702 {
3703 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3704 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3705 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3706 p->data[0].object = a;
3707 p->data[1].object = b;
3708 p->data[2].object = c;
3709 p->data[3].object = d;
3710 return val;
3711 }
3712
3713 Lisp_Object
3714 make_save_ptr (void *a)
3715 {
3716 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3717 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3718 p->save_type = SAVE_POINTER;
3719 p->data[0].pointer = a;
3720 return val;
3721 }
3722
3723 Lisp_Object
3724 make_save_ptr_int (void *a, ptrdiff_t b)
3725 {
3726 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3727 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3728 p->save_type = SAVE_TYPE_PTR_INT;
3729 p->data[0].pointer = a;
3730 p->data[1].integer = b;
3731 return val;
3732 }
3733
3734 Lisp_Object
3735 make_save_ptr_ptr (void *a, void *b)
3736 {
3737 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3738 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3739 p->save_type = SAVE_TYPE_PTR_PTR;
3740 p->data[0].pointer = a;
3741 p->data[1].pointer = b;
3742 return val;
3743 }
3744
3745 Lisp_Object
3746 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3747 {
3748 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3749 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3750 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3751 p->data[0].funcpointer = a;
3752 p->data[1].pointer = b;
3753 p->data[2].object = c;
3754 return val;
3755 }
3756
3757 /* Return a Lisp_Save_Value object that represents an array A
3758 of N Lisp objects. */
3759
3760 Lisp_Object
3761 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3762 {
3763 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3764 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3765 p->save_type = SAVE_TYPE_MEMORY;
3766 p->data[0].pointer = a;
3767 p->data[1].integer = n;
3768 return val;
3769 }
3770
3771 /* Free a Lisp_Save_Value object. Do not use this function
3772 if SAVE contains pointer other than returned by xmalloc. */
3773
3774 void
3775 free_save_value (Lisp_Object save)
3776 {
3777 xfree (XSAVE_POINTER (save, 0));
3778 free_misc (save);
3779 }
3780
3781 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3782
3783 Lisp_Object
3784 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3785 {
3786 register Lisp_Object overlay;
3787
3788 overlay = allocate_misc (Lisp_Misc_Overlay);
3789 OVERLAY_START (overlay) = start;
3790 OVERLAY_END (overlay) = end;
3791 set_overlay_plist (overlay, plist);
3792 XOVERLAY (overlay)->next = NULL;
3793 return overlay;
3794 }
3795
3796 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3797 doc: /* Return a newly allocated marker which does not point at any place. */)
3798 (void)
3799 {
3800 register Lisp_Object val;
3801 register struct Lisp_Marker *p;
3802
3803 val = allocate_misc (Lisp_Misc_Marker);
3804 p = XMARKER (val);
3805 p->buffer = 0;
3806 p->bytepos = 0;
3807 p->charpos = 0;
3808 p->next = NULL;
3809 p->insertion_type = 0;
3810 p->need_adjustment = 0;
3811 return val;
3812 }
3813
3814 /* Return a newly allocated marker which points into BUF
3815 at character position CHARPOS and byte position BYTEPOS. */
3816
3817 Lisp_Object
3818 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3819 {
3820 Lisp_Object obj;
3821 struct Lisp_Marker *m;
3822
3823 /* No dead buffers here. */
3824 eassert (BUFFER_LIVE_P (buf));
3825
3826 /* Every character is at least one byte. */
3827 eassert (charpos <= bytepos);
3828
3829 obj = allocate_misc (Lisp_Misc_Marker);
3830 m = XMARKER (obj);
3831 m->buffer = buf;
3832 m->charpos = charpos;
3833 m->bytepos = bytepos;
3834 m->insertion_type = 0;
3835 m->need_adjustment = 0;
3836 m->next = BUF_MARKERS (buf);
3837 BUF_MARKERS (buf) = m;
3838 return obj;
3839 }
3840
3841 /* Put MARKER back on the free list after using it temporarily. */
3842
3843 void
3844 free_marker (Lisp_Object marker)
3845 {
3846 unchain_marker (XMARKER (marker));
3847 free_misc (marker);
3848 }
3849
3850 \f
3851 /* Return a newly created vector or string with specified arguments as
3852 elements. If all the arguments are characters that can fit
3853 in a string of events, make a string; otherwise, make a vector.
3854
3855 Any number of arguments, even zero arguments, are allowed. */
3856
3857 Lisp_Object
3858 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3859 {
3860 ptrdiff_t i;
3861
3862 for (i = 0; i < nargs; i++)
3863 /* The things that fit in a string
3864 are characters that are in 0...127,
3865 after discarding the meta bit and all the bits above it. */
3866 if (!INTEGERP (args[i])
3867 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3868 return Fvector (nargs, args);
3869
3870 /* Since the loop exited, we know that all the things in it are
3871 characters, so we can make a string. */
3872 {
3873 Lisp_Object result;
3874
3875 result = Fmake_string (make_number (nargs), make_number (0));
3876 for (i = 0; i < nargs; i++)
3877 {
3878 SSET (result, i, XINT (args[i]));
3879 /* Move the meta bit to the right place for a string char. */
3880 if (XINT (args[i]) & CHAR_META)
3881 SSET (result, i, SREF (result, i) | 0x80);
3882 }
3883
3884 return result;
3885 }
3886 }
3887
3888 #ifdef HAVE_MODULES
3889 /* Create a new module user ptr object. */
3890 Lisp_Object
3891 make_user_ptr (void (*finalizer) (void *), void *p)
3892 {
3893 Lisp_Object obj;
3894 struct Lisp_User_Ptr *uptr;
3895
3896 obj = allocate_misc (Lisp_Misc_User_Ptr);
3897 uptr = XUSER_PTR (obj);
3898 uptr->finalizer = finalizer;
3899 uptr->p = p;
3900 return obj;
3901 }
3902
3903 #endif
3904
3905 static void
3906 init_finalizer_list (struct Lisp_Finalizer *head)
3907 {
3908 head->prev = head->next = head;
3909 }
3910
3911 /* Insert FINALIZER before ELEMENT. */
3912
3913 static void
3914 finalizer_insert (struct Lisp_Finalizer *element,
3915 struct Lisp_Finalizer *finalizer)
3916 {
3917 eassert (finalizer->prev == NULL);
3918 eassert (finalizer->next == NULL);
3919 finalizer->next = element;
3920 finalizer->prev = element->prev;
3921 finalizer->prev->next = finalizer;
3922 element->prev = finalizer;
3923 }
3924
3925 static void
3926 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3927 {
3928 if (finalizer->prev != NULL)
3929 {
3930 eassert (finalizer->next != NULL);
3931 finalizer->prev->next = finalizer->next;
3932 finalizer->next->prev = finalizer->prev;
3933 finalizer->prev = finalizer->next = NULL;
3934 }
3935 }
3936
3937 static void
3938 mark_finalizer_list (struct Lisp_Finalizer *head)
3939 {
3940 for (struct Lisp_Finalizer *finalizer = head->next;
3941 finalizer != head;
3942 finalizer = finalizer->next)
3943 {
3944 finalizer->base.gcmarkbit = true;
3945 mark_object (finalizer->function);
3946 }
3947 }
3948
3949 /* Move doomed finalizers to list DEST from list SRC. A doomed
3950 finalizer is one that is not GC-reachable and whose
3951 finalizer->function is non-nil. */
3952
3953 static void
3954 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3955 struct Lisp_Finalizer *src)
3956 {
3957 struct Lisp_Finalizer *finalizer = src->next;
3958 while (finalizer != src)
3959 {
3960 struct Lisp_Finalizer *next = finalizer->next;
3961 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3962 {
3963 unchain_finalizer (finalizer);
3964 finalizer_insert (dest, finalizer);
3965 }
3966
3967 finalizer = next;
3968 }
3969 }
3970
3971 static Lisp_Object
3972 run_finalizer_handler (Lisp_Object args)
3973 {
3974 add_to_log ("finalizer failed: %S", args);
3975 return Qnil;
3976 }
3977
3978 static void
3979 run_finalizer_function (Lisp_Object function)
3980 {
3981 ptrdiff_t count = SPECPDL_INDEX ();
3982
3983 specbind (Qinhibit_quit, Qt);
3984 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3985 unbind_to (count, Qnil);
3986 }
3987
3988 static void
3989 run_finalizers (struct Lisp_Finalizer *finalizers)
3990 {
3991 struct Lisp_Finalizer *finalizer;
3992 Lisp_Object function;
3993
3994 while (finalizers->next != finalizers)
3995 {
3996 finalizer = finalizers->next;
3997 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3998 unchain_finalizer (finalizer);
3999 function = finalizer->function;
4000 if (!NILP (function))
4001 {
4002 finalizer->function = Qnil;
4003 run_finalizer_function (function);
4004 }
4005 }
4006 }
4007
4008 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4009 doc: /* Make a finalizer that will run FUNCTION.
4010 FUNCTION will be called after garbage collection when the returned
4011 finalizer object becomes unreachable. If the finalizer object is
4012 reachable only through references from finalizer objects, it does not
4013 count as reachable for the purpose of deciding whether to run
4014 FUNCTION. FUNCTION will be run once per finalizer object. */)
4015 (Lisp_Object function)
4016 {
4017 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4018 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4019 finalizer->function = function;
4020 finalizer->prev = finalizer->next = NULL;
4021 finalizer_insert (&finalizers, finalizer);
4022 return val;
4023 }
4024
4025 \f
4026 /************************************************************************
4027 Memory Full Handling
4028 ************************************************************************/
4029
4030
4031 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4032 there may have been size_t overflow so that malloc was never
4033 called, or perhaps malloc was invoked successfully but the
4034 resulting pointer had problems fitting into a tagged EMACS_INT. In
4035 either case this counts as memory being full even though malloc did
4036 not fail. */
4037
4038 void
4039 memory_full (size_t nbytes)
4040 {
4041 /* Do not go into hysterics merely because a large request failed. */
4042 bool enough_free_memory = 0;
4043 if (SPARE_MEMORY < nbytes)
4044 {
4045 void *p;
4046
4047 MALLOC_BLOCK_INPUT;
4048 p = malloc (SPARE_MEMORY);
4049 if (p)
4050 {
4051 free (p);
4052 enough_free_memory = 1;
4053 }
4054 MALLOC_UNBLOCK_INPUT;
4055 }
4056
4057 if (! enough_free_memory)
4058 {
4059 int i;
4060
4061 Vmemory_full = Qt;
4062
4063 memory_full_cons_threshold = sizeof (struct cons_block);
4064
4065 /* The first time we get here, free the spare memory. */
4066 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4067 if (spare_memory[i])
4068 {
4069 if (i == 0)
4070 free (spare_memory[i]);
4071 else if (i >= 1 && i <= 4)
4072 lisp_align_free (spare_memory[i]);
4073 else
4074 lisp_free (spare_memory[i]);
4075 spare_memory[i] = 0;
4076 }
4077 }
4078
4079 /* This used to call error, but if we've run out of memory, we could
4080 get infinite recursion trying to build the string. */
4081 xsignal (Qnil, Vmemory_signal_data);
4082 }
4083
4084 /* If we released our reserve (due to running out of memory),
4085 and we have a fair amount free once again,
4086 try to set aside another reserve in case we run out once more.
4087
4088 This is called when a relocatable block is freed in ralloc.c,
4089 and also directly from this file, in case we're not using ralloc.c. */
4090
4091 void
4092 refill_memory_reserve (void)
4093 {
4094 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4095 if (spare_memory[0] == 0)
4096 spare_memory[0] = malloc (SPARE_MEMORY);
4097 if (spare_memory[1] == 0)
4098 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4099 MEM_TYPE_SPARE);
4100 if (spare_memory[2] == 0)
4101 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4102 MEM_TYPE_SPARE);
4103 if (spare_memory[3] == 0)
4104 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4105 MEM_TYPE_SPARE);
4106 if (spare_memory[4] == 0)
4107 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4108 MEM_TYPE_SPARE);
4109 if (spare_memory[5] == 0)
4110 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4111 MEM_TYPE_SPARE);
4112 if (spare_memory[6] == 0)
4113 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4114 MEM_TYPE_SPARE);
4115 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4116 Vmemory_full = Qnil;
4117 #endif
4118 }
4119 \f
4120 /************************************************************************
4121 C Stack Marking
4122 ************************************************************************/
4123
4124 /* Conservative C stack marking requires a method to identify possibly
4125 live Lisp objects given a pointer value. We do this by keeping
4126 track of blocks of Lisp data that are allocated in a red-black tree
4127 (see also the comment of mem_node which is the type of nodes in
4128 that tree). Function lisp_malloc adds information for an allocated
4129 block to the red-black tree with calls to mem_insert, and function
4130 lisp_free removes it with mem_delete. Functions live_string_p etc
4131 call mem_find to lookup information about a given pointer in the
4132 tree, and use that to determine if the pointer points to a Lisp
4133 object or not. */
4134
4135 /* Initialize this part of alloc.c. */
4136
4137 static void
4138 mem_init (void)
4139 {
4140 mem_z.left = mem_z.right = MEM_NIL;
4141 mem_z.parent = NULL;
4142 mem_z.color = MEM_BLACK;
4143 mem_z.start = mem_z.end = NULL;
4144 mem_root = MEM_NIL;
4145 }
4146
4147
4148 /* Value is a pointer to the mem_node containing START. Value is
4149 MEM_NIL if there is no node in the tree containing START. */
4150
4151 static struct mem_node *
4152 mem_find (void *start)
4153 {
4154 struct mem_node *p;
4155
4156 if (start < min_heap_address || start > max_heap_address)
4157 return MEM_NIL;
4158
4159 /* Make the search always successful to speed up the loop below. */
4160 mem_z.start = start;
4161 mem_z.end = (char *) start + 1;
4162
4163 p = mem_root;
4164 while (start < p->start || start >= p->end)
4165 p = start < p->start ? p->left : p->right;
4166 return p;
4167 }
4168
4169
4170 /* Insert a new node into the tree for a block of memory with start
4171 address START, end address END, and type TYPE. Value is a
4172 pointer to the node that was inserted. */
4173
4174 static struct mem_node *
4175 mem_insert (void *start, void *end, enum mem_type type)
4176 {
4177 struct mem_node *c, *parent, *x;
4178
4179 if (min_heap_address == NULL || start < min_heap_address)
4180 min_heap_address = start;
4181 if (max_heap_address == NULL || end > max_heap_address)
4182 max_heap_address = end;
4183
4184 /* See where in the tree a node for START belongs. In this
4185 particular application, it shouldn't happen that a node is already
4186 present. For debugging purposes, let's check that. */
4187 c = mem_root;
4188 parent = NULL;
4189
4190 while (c != MEM_NIL)
4191 {
4192 parent = c;
4193 c = start < c->start ? c->left : c->right;
4194 }
4195
4196 /* Create a new node. */
4197 #ifdef GC_MALLOC_CHECK
4198 x = malloc (sizeof *x);
4199 if (x == NULL)
4200 emacs_abort ();
4201 #else
4202 x = xmalloc (sizeof *x);
4203 #endif
4204 x->start = start;
4205 x->end = end;
4206 x->type = type;
4207 x->parent = parent;
4208 x->left = x->right = MEM_NIL;
4209 x->color = MEM_RED;
4210
4211 /* Insert it as child of PARENT or install it as root. */
4212 if (parent)
4213 {
4214 if (start < parent->start)
4215 parent->left = x;
4216 else
4217 parent->right = x;
4218 }
4219 else
4220 mem_root = x;
4221
4222 /* Re-establish red-black tree properties. */
4223 mem_insert_fixup (x);
4224
4225 return x;
4226 }
4227
4228
4229 /* Re-establish the red-black properties of the tree, and thereby
4230 balance the tree, after node X has been inserted; X is always red. */
4231
4232 static void
4233 mem_insert_fixup (struct mem_node *x)
4234 {
4235 while (x != mem_root && x->parent->color == MEM_RED)
4236 {
4237 /* X is red and its parent is red. This is a violation of
4238 red-black tree property #3. */
4239
4240 if (x->parent == x->parent->parent->left)
4241 {
4242 /* We're on the left side of our grandparent, and Y is our
4243 "uncle". */
4244 struct mem_node *y = x->parent->parent->right;
4245
4246 if (y->color == MEM_RED)
4247 {
4248 /* Uncle and parent are red but should be black because
4249 X is red. Change the colors accordingly and proceed
4250 with the grandparent. */
4251 x->parent->color = MEM_BLACK;
4252 y->color = MEM_BLACK;
4253 x->parent->parent->color = MEM_RED;
4254 x = x->parent->parent;
4255 }
4256 else
4257 {
4258 /* Parent and uncle have different colors; parent is
4259 red, uncle is black. */
4260 if (x == x->parent->right)
4261 {
4262 x = x->parent;
4263 mem_rotate_left (x);
4264 }
4265
4266 x->parent->color = MEM_BLACK;
4267 x->parent->parent->color = MEM_RED;
4268 mem_rotate_right (x->parent->parent);
4269 }
4270 }
4271 else
4272 {
4273 /* This is the symmetrical case of above. */
4274 struct mem_node *y = x->parent->parent->left;
4275
4276 if (y->color == MEM_RED)
4277 {
4278 x->parent->color = MEM_BLACK;
4279 y->color = MEM_BLACK;
4280 x->parent->parent->color = MEM_RED;
4281 x = x->parent->parent;
4282 }
4283 else
4284 {
4285 if (x == x->parent->left)
4286 {
4287 x = x->parent;
4288 mem_rotate_right (x);
4289 }
4290
4291 x->parent->color = MEM_BLACK;
4292 x->parent->parent->color = MEM_RED;
4293 mem_rotate_left (x->parent->parent);
4294 }
4295 }
4296 }
4297
4298 /* The root may have been changed to red due to the algorithm. Set
4299 it to black so that property #5 is satisfied. */
4300 mem_root->color = MEM_BLACK;
4301 }
4302
4303
4304 /* (x) (y)
4305 / \ / \
4306 a (y) ===> (x) c
4307 / \ / \
4308 b c a b */
4309
4310 static void
4311 mem_rotate_left (struct mem_node *x)
4312 {
4313 struct mem_node *y;
4314
4315 /* Turn y's left sub-tree into x's right sub-tree. */
4316 y = x->right;
4317 x->right = y->left;
4318 if (y->left != MEM_NIL)
4319 y->left->parent = x;
4320
4321 /* Y's parent was x's parent. */
4322 if (y != MEM_NIL)
4323 y->parent = x->parent;
4324
4325 /* Get the parent to point to y instead of x. */
4326 if (x->parent)
4327 {
4328 if (x == x->parent->left)
4329 x->parent->left = y;
4330 else
4331 x->parent->right = y;
4332 }
4333 else
4334 mem_root = y;
4335
4336 /* Put x on y's left. */
4337 y->left = x;
4338 if (x != MEM_NIL)
4339 x->parent = y;
4340 }
4341
4342
4343 /* (x) (Y)
4344 / \ / \
4345 (y) c ===> a (x)
4346 / \ / \
4347 a b b c */
4348
4349 static void
4350 mem_rotate_right (struct mem_node *x)
4351 {
4352 struct mem_node *y = x->left;
4353
4354 x->left = y->right;
4355 if (y->right != MEM_NIL)
4356 y->right->parent = x;
4357
4358 if (y != MEM_NIL)
4359 y->parent = x->parent;
4360 if (x->parent)
4361 {
4362 if (x == x->parent->right)
4363 x->parent->right = y;
4364 else
4365 x->parent->left = y;
4366 }
4367 else
4368 mem_root = y;
4369
4370 y->right = x;
4371 if (x != MEM_NIL)
4372 x->parent = y;
4373 }
4374
4375
4376 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4377
4378 static void
4379 mem_delete (struct mem_node *z)
4380 {
4381 struct mem_node *x, *y;
4382
4383 if (!z || z == MEM_NIL)
4384 return;
4385
4386 if (z->left == MEM_NIL || z->right == MEM_NIL)
4387 y = z;
4388 else
4389 {
4390 y = z->right;
4391 while (y->left != MEM_NIL)
4392 y = y->left;
4393 }
4394
4395 if (y->left != MEM_NIL)
4396 x = y->left;
4397 else
4398 x = y->right;
4399
4400 x->parent = y->parent;
4401 if (y->parent)
4402 {
4403 if (y == y->parent->left)
4404 y->parent->left = x;
4405 else
4406 y->parent->right = x;
4407 }
4408 else
4409 mem_root = x;
4410
4411 if (y != z)
4412 {
4413 z->start = y->start;
4414 z->end = y->end;
4415 z->type = y->type;
4416 }
4417
4418 if (y->color == MEM_BLACK)
4419 mem_delete_fixup (x);
4420
4421 #ifdef GC_MALLOC_CHECK
4422 free (y);
4423 #else
4424 xfree (y);
4425 #endif
4426 }
4427
4428
4429 /* Re-establish the red-black properties of the tree, after a
4430 deletion. */
4431
4432 static void
4433 mem_delete_fixup (struct mem_node *x)
4434 {
4435 while (x != mem_root && x->color == MEM_BLACK)
4436 {
4437 if (x == x->parent->left)
4438 {
4439 struct mem_node *w = x->parent->right;
4440
4441 if (w->color == MEM_RED)
4442 {
4443 w->color = MEM_BLACK;
4444 x->parent->color = MEM_RED;
4445 mem_rotate_left (x->parent);
4446 w = x->parent->right;
4447 }
4448
4449 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4450 {
4451 w->color = MEM_RED;
4452 x = x->parent;
4453 }
4454 else
4455 {
4456 if (w->right->color == MEM_BLACK)
4457 {
4458 w->left->color = MEM_BLACK;
4459 w->color = MEM_RED;
4460 mem_rotate_right (w);
4461 w = x->parent->right;
4462 }
4463 w->color = x->parent->color;
4464 x->parent->color = MEM_BLACK;
4465 w->right->color = MEM_BLACK;
4466 mem_rotate_left (x->parent);
4467 x = mem_root;
4468 }
4469 }
4470 else
4471 {
4472 struct mem_node *w = x->parent->left;
4473
4474 if (w->color == MEM_RED)
4475 {
4476 w->color = MEM_BLACK;
4477 x->parent->color = MEM_RED;
4478 mem_rotate_right (x->parent);
4479 w = x->parent->left;
4480 }
4481
4482 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4483 {
4484 w->color = MEM_RED;
4485 x = x->parent;
4486 }
4487 else
4488 {
4489 if (w->left->color == MEM_BLACK)
4490 {
4491 w->right->color = MEM_BLACK;
4492 w->color = MEM_RED;
4493 mem_rotate_left (w);
4494 w = x->parent->left;
4495 }
4496
4497 w->color = x->parent->color;
4498 x->parent->color = MEM_BLACK;
4499 w->left->color = MEM_BLACK;
4500 mem_rotate_right (x->parent);
4501 x = mem_root;
4502 }
4503 }
4504 }
4505
4506 x->color = MEM_BLACK;
4507 }
4508
4509
4510 /* Value is non-zero if P is a pointer to a live Lisp string on
4511 the heap. M is a pointer to the mem_block for P. */
4512
4513 static bool
4514 live_string_p (struct mem_node *m, void *p)
4515 {
4516 if (m->type == MEM_TYPE_STRING)
4517 {
4518 struct string_block *b = m->start;
4519 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4520
4521 /* P must point to the start of a Lisp_String structure, and it
4522 must not be on the free-list. */
4523 return (offset >= 0
4524 && offset % sizeof b->strings[0] == 0
4525 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4526 && ((struct Lisp_String *) p)->data != NULL);
4527 }
4528 else
4529 return 0;
4530 }
4531
4532
4533 /* Value is non-zero if P is a pointer to a live Lisp cons on
4534 the heap. M is a pointer to the mem_block for P. */
4535
4536 static bool
4537 live_cons_p (struct mem_node *m, void *p)
4538 {
4539 if (m->type == MEM_TYPE_CONS)
4540 {
4541 struct cons_block *b = m->start;
4542 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4543
4544 /* P must point to the start of a Lisp_Cons, not be
4545 one of the unused cells in the current cons block,
4546 and not be on the free-list. */
4547 return (offset >= 0
4548 && offset % sizeof b->conses[0] == 0
4549 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4550 && (b != cons_block
4551 || offset / sizeof b->conses[0] < cons_block_index)
4552 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4553 }
4554 else
4555 return 0;
4556 }
4557
4558
4559 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4560 the heap. M is a pointer to the mem_block for P. */
4561
4562 static bool
4563 live_symbol_p (struct mem_node *m, void *p)
4564 {
4565 if (m->type == MEM_TYPE_SYMBOL)
4566 {
4567 struct symbol_block *b = m->start;
4568 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4569
4570 /* P must point to the start of a Lisp_Symbol, not be
4571 one of the unused cells in the current symbol block,
4572 and not be on the free-list. */
4573 return (offset >= 0
4574 && offset % sizeof b->symbols[0] == 0
4575 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4576 && (b != symbol_block
4577 || offset / sizeof b->symbols[0] < symbol_block_index)
4578 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4579 }
4580 else
4581 return 0;
4582 }
4583
4584
4585 /* Value is non-zero if P is a pointer to a live Lisp float on
4586 the heap. M is a pointer to the mem_block for P. */
4587
4588 static bool
4589 live_float_p (struct mem_node *m, void *p)
4590 {
4591 if (m->type == MEM_TYPE_FLOAT)
4592 {
4593 struct float_block *b = m->start;
4594 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4595
4596 /* P must point to the start of a Lisp_Float and not be
4597 one of the unused cells in the current float block. */
4598 return (offset >= 0
4599 && offset % sizeof b->floats[0] == 0
4600 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4601 && (b != float_block
4602 || offset / sizeof b->floats[0] < float_block_index));
4603 }
4604 else
4605 return 0;
4606 }
4607
4608
4609 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4610 the heap. M is a pointer to the mem_block for P. */
4611
4612 static bool
4613 live_misc_p (struct mem_node *m, void *p)
4614 {
4615 if (m->type == MEM_TYPE_MISC)
4616 {
4617 struct marker_block *b = m->start;
4618 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4619
4620 /* P must point to the start of a Lisp_Misc, not be
4621 one of the unused cells in the current misc block,
4622 and not be on the free-list. */
4623 return (offset >= 0
4624 && offset % sizeof b->markers[0] == 0
4625 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4626 && (b != marker_block
4627 || offset / sizeof b->markers[0] < marker_block_index)
4628 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4629 }
4630 else
4631 return 0;
4632 }
4633
4634
4635 /* Value is non-zero if P is a pointer to a live vector-like object.
4636 M is a pointer to the mem_block for P. */
4637
4638 static bool
4639 live_vector_p (struct mem_node *m, void *p)
4640 {
4641 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4642 {
4643 /* This memory node corresponds to a vector block. */
4644 struct vector_block *block = m->start;
4645 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4646
4647 /* P is in the block's allocation range. Scan the block
4648 up to P and see whether P points to the start of some
4649 vector which is not on a free list. FIXME: check whether
4650 some allocation patterns (probably a lot of short vectors)
4651 may cause a substantial overhead of this loop. */
4652 while (VECTOR_IN_BLOCK (vector, block)
4653 && vector <= (struct Lisp_Vector *) p)
4654 {
4655 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4656 return 1;
4657 else
4658 vector = ADVANCE (vector, vector_nbytes (vector));
4659 }
4660 }
4661 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4662 /* This memory node corresponds to a large vector. */
4663 return 1;
4664 return 0;
4665 }
4666
4667
4668 /* Value is non-zero if P is a pointer to a live buffer. M is a
4669 pointer to the mem_block for P. */
4670
4671 static bool
4672 live_buffer_p (struct mem_node *m, void *p)
4673 {
4674 /* P must point to the start of the block, and the buffer
4675 must not have been killed. */
4676 return (m->type == MEM_TYPE_BUFFER
4677 && p == m->start
4678 && !NILP (((struct buffer *) p)->name_));
4679 }
4680
4681 /* Mark OBJ if we can prove it's a Lisp_Object. */
4682
4683 static void
4684 mark_maybe_object (Lisp_Object obj)
4685 {
4686 #if USE_VALGRIND
4687 if (valgrind_p)
4688 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4689 #endif
4690
4691 if (INTEGERP (obj))
4692 return;
4693
4694 void *po = XPNTR (obj);
4695 struct mem_node *m = mem_find (po);
4696
4697 if (m != MEM_NIL)
4698 {
4699 bool mark_p = false;
4700
4701 switch (XTYPE (obj))
4702 {
4703 case Lisp_String:
4704 mark_p = (live_string_p (m, po)
4705 && !STRING_MARKED_P ((struct Lisp_String *) po));
4706 break;
4707
4708 case Lisp_Cons:
4709 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4710 break;
4711
4712 case Lisp_Symbol:
4713 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4714 break;
4715
4716 case Lisp_Float:
4717 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4718 break;
4719
4720 case Lisp_Vectorlike:
4721 /* Note: can't check BUFFERP before we know it's a
4722 buffer because checking that dereferences the pointer
4723 PO which might point anywhere. */
4724 if (live_vector_p (m, po))
4725 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4726 else if (live_buffer_p (m, po))
4727 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4728 break;
4729
4730 case Lisp_Misc:
4731 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4732 break;
4733
4734 default:
4735 break;
4736 }
4737
4738 if (mark_p)
4739 mark_object (obj);
4740 }
4741 }
4742
4743 /* Return true if P can point to Lisp data, and false otherwise.
4744 Symbols are implemented via offsets not pointers, but the offsets
4745 are also multiples of GCALIGNMENT. */
4746
4747 static bool
4748 maybe_lisp_pointer (void *p)
4749 {
4750 return (uintptr_t) p % GCALIGNMENT == 0;
4751 }
4752
4753 #ifndef HAVE_MODULES
4754 enum { HAVE_MODULES = false };
4755 #endif
4756
4757 /* If P points to Lisp data, mark that as live if it isn't already
4758 marked. */
4759
4760 static void
4761 mark_maybe_pointer (void *p)
4762 {
4763 struct mem_node *m;
4764
4765 #if USE_VALGRIND
4766 if (valgrind_p)
4767 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4768 #endif
4769
4770 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4771 {
4772 if (!maybe_lisp_pointer (p))
4773 return;
4774 }
4775 else
4776 {
4777 /* For the wide-int case, also mark emacs_value tagged pointers,
4778 which can be generated by emacs-module.c's value_to_lisp. */
4779 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4780 }
4781
4782 m = mem_find (p);
4783 if (m != MEM_NIL)
4784 {
4785 Lisp_Object obj = Qnil;
4786
4787 switch (m->type)
4788 {
4789 case MEM_TYPE_NON_LISP:
4790 case MEM_TYPE_SPARE:
4791 /* Nothing to do; not a pointer to Lisp memory. */
4792 break;
4793
4794 case MEM_TYPE_BUFFER:
4795 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4796 XSETVECTOR (obj, p);
4797 break;
4798
4799 case MEM_TYPE_CONS:
4800 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4801 XSETCONS (obj, p);
4802 break;
4803
4804 case MEM_TYPE_STRING:
4805 if (live_string_p (m, p)
4806 && !STRING_MARKED_P ((struct Lisp_String *) p))
4807 XSETSTRING (obj, p);
4808 break;
4809
4810 case MEM_TYPE_MISC:
4811 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4812 XSETMISC (obj, p);
4813 break;
4814
4815 case MEM_TYPE_SYMBOL:
4816 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4817 XSETSYMBOL (obj, p);
4818 break;
4819
4820 case MEM_TYPE_FLOAT:
4821 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4822 XSETFLOAT (obj, p);
4823 break;
4824
4825 case MEM_TYPE_VECTORLIKE:
4826 case MEM_TYPE_VECTOR_BLOCK:
4827 if (live_vector_p (m, p))
4828 {
4829 Lisp_Object tem;
4830 XSETVECTOR (tem, p);
4831 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4832 obj = tem;
4833 }
4834 break;
4835
4836 default:
4837 emacs_abort ();
4838 }
4839
4840 if (!NILP (obj))
4841 mark_object (obj);
4842 }
4843 }
4844
4845
4846 /* Alignment of pointer values. Use alignof, as it sometimes returns
4847 a smaller alignment than GCC's __alignof__ and mark_memory might
4848 miss objects if __alignof__ were used. */
4849 #define GC_POINTER_ALIGNMENT alignof (void *)
4850
4851 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4852 or END+OFFSET..START. */
4853
4854 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4855 mark_memory (void *start, void *end)
4856 {
4857 char *pp;
4858
4859 /* Make START the pointer to the start of the memory region,
4860 if it isn't already. */
4861 if (end < start)
4862 {
4863 void *tem = start;
4864 start = end;
4865 end = tem;
4866 }
4867
4868 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4869
4870 /* Mark Lisp data pointed to. This is necessary because, in some
4871 situations, the C compiler optimizes Lisp objects away, so that
4872 only a pointer to them remains. Example:
4873
4874 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4875 ()
4876 {
4877 Lisp_Object obj = build_string ("test");
4878 struct Lisp_String *s = XSTRING (obj);
4879 Fgarbage_collect ();
4880 fprintf (stderr, "test '%s'\n", s->data);
4881 return Qnil;
4882 }
4883
4884 Here, `obj' isn't really used, and the compiler optimizes it
4885 away. The only reference to the life string is through the
4886 pointer `s'. */
4887
4888 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4889 {
4890 mark_maybe_pointer (*(void **) pp);
4891 mark_maybe_object (*(Lisp_Object *) pp);
4892 }
4893 }
4894
4895 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4896
4897 static bool setjmp_tested_p;
4898 static int longjmps_done;
4899
4900 #define SETJMP_WILL_LIKELY_WORK "\
4901 \n\
4902 Emacs garbage collector has been changed to use conservative stack\n\
4903 marking. Emacs has determined that the method it uses to do the\n\
4904 marking will likely work on your system, but this isn't sure.\n\
4905 \n\
4906 If you are a system-programmer, or can get the help of a local wizard\n\
4907 who is, please take a look at the function mark_stack in alloc.c, and\n\
4908 verify that the methods used are appropriate for your system.\n\
4909 \n\
4910 Please mail the result to <emacs-devel@gnu.org>.\n\
4911 "
4912
4913 #define SETJMP_WILL_NOT_WORK "\
4914 \n\
4915 Emacs garbage collector has been changed to use conservative stack\n\
4916 marking. Emacs has determined that the default method it uses to do the\n\
4917 marking will not work on your system. We will need a system-dependent\n\
4918 solution for your system.\n\
4919 \n\
4920 Please take a look at the function mark_stack in alloc.c, and\n\
4921 try to find a way to make it work on your system.\n\
4922 \n\
4923 Note that you may get false negatives, depending on the compiler.\n\
4924 In particular, you need to use -O with GCC for this test.\n\
4925 \n\
4926 Please mail the result to <emacs-devel@gnu.org>.\n\
4927 "
4928
4929
4930 /* Perform a quick check if it looks like setjmp saves registers in a
4931 jmp_buf. Print a message to stderr saying so. When this test
4932 succeeds, this is _not_ a proof that setjmp is sufficient for
4933 conservative stack marking. Only the sources or a disassembly
4934 can prove that. */
4935
4936 static void
4937 test_setjmp (void)
4938 {
4939 char buf[10];
4940 register int x;
4941 sys_jmp_buf jbuf;
4942
4943 /* Arrange for X to be put in a register. */
4944 sprintf (buf, "1");
4945 x = strlen (buf);
4946 x = 2 * x - 1;
4947
4948 sys_setjmp (jbuf);
4949 if (longjmps_done == 1)
4950 {
4951 /* Came here after the longjmp at the end of the function.
4952
4953 If x == 1, the longjmp has restored the register to its
4954 value before the setjmp, and we can hope that setjmp
4955 saves all such registers in the jmp_buf, although that
4956 isn't sure.
4957
4958 For other values of X, either something really strange is
4959 taking place, or the setjmp just didn't save the register. */
4960
4961 if (x == 1)
4962 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4963 else
4964 {
4965 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4966 exit (1);
4967 }
4968 }
4969
4970 ++longjmps_done;
4971 x = 2;
4972 if (longjmps_done == 1)
4973 sys_longjmp (jbuf, 1);
4974 }
4975
4976 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4977
4978
4979 /* Mark live Lisp objects on the C stack.
4980
4981 There are several system-dependent problems to consider when
4982 porting this to new architectures:
4983
4984 Processor Registers
4985
4986 We have to mark Lisp objects in CPU registers that can hold local
4987 variables or are used to pass parameters.
4988
4989 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4990 something that either saves relevant registers on the stack, or
4991 calls mark_maybe_object passing it each register's contents.
4992
4993 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4994 implementation assumes that calling setjmp saves registers we need
4995 to see in a jmp_buf which itself lies on the stack. This doesn't
4996 have to be true! It must be verified for each system, possibly
4997 by taking a look at the source code of setjmp.
4998
4999 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5000 can use it as a machine independent method to store all registers
5001 to the stack. In this case the macros described in the previous
5002 two paragraphs are not used.
5003
5004 Stack Layout
5005
5006 Architectures differ in the way their processor stack is organized.
5007 For example, the stack might look like this
5008
5009 +----------------+
5010 | Lisp_Object | size = 4
5011 +----------------+
5012 | something else | size = 2
5013 +----------------+
5014 | Lisp_Object | size = 4
5015 +----------------+
5016 | ... |
5017
5018 In such a case, not every Lisp_Object will be aligned equally. To
5019 find all Lisp_Object on the stack it won't be sufficient to walk
5020 the stack in steps of 4 bytes. Instead, two passes will be
5021 necessary, one starting at the start of the stack, and a second
5022 pass starting at the start of the stack + 2. Likewise, if the
5023 minimal alignment of Lisp_Objects on the stack is 1, four passes
5024 would be necessary, each one starting with one byte more offset
5025 from the stack start. */
5026
5027 static void
5028 mark_stack (void *end)
5029 {
5030
5031 /* This assumes that the stack is a contiguous region in memory. If
5032 that's not the case, something has to be done here to iterate
5033 over the stack segments. */
5034 mark_memory (stack_base, end);
5035
5036 /* Allow for marking a secondary stack, like the register stack on the
5037 ia64. */
5038 #ifdef GC_MARK_SECONDARY_STACK
5039 GC_MARK_SECONDARY_STACK ();
5040 #endif
5041 }
5042
5043 static bool
5044 c_symbol_p (struct Lisp_Symbol *sym)
5045 {
5046 char *lispsym_ptr = (char *) lispsym;
5047 char *sym_ptr = (char *) sym;
5048 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5049 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5050 }
5051
5052 /* Determine whether it is safe to access memory at address P. */
5053 static int
5054 valid_pointer_p (void *p)
5055 {
5056 #ifdef WINDOWSNT
5057 return w32_valid_pointer_p (p, 16);
5058 #else
5059
5060 if (ADDRESS_SANITIZER)
5061 return p ? -1 : 0;
5062
5063 int fd[2];
5064
5065 /* Obviously, we cannot just access it (we would SEGV trying), so we
5066 trick the o/s to tell us whether p is a valid pointer.
5067 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5068 not validate p in that case. */
5069
5070 if (emacs_pipe (fd) == 0)
5071 {
5072 bool valid = emacs_write (fd[1], p, 16) == 16;
5073 emacs_close (fd[1]);
5074 emacs_close (fd[0]);
5075 return valid;
5076 }
5077
5078 return -1;
5079 #endif
5080 }
5081
5082 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5083 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5084 cannot validate OBJ. This function can be quite slow, so its primary
5085 use is the manual debugging. The only exception is print_object, where
5086 we use it to check whether the memory referenced by the pointer of
5087 Lisp_Save_Value object contains valid objects. */
5088
5089 int
5090 valid_lisp_object_p (Lisp_Object obj)
5091 {
5092 if (INTEGERP (obj))
5093 return 1;
5094
5095 void *p = XPNTR (obj);
5096 if (PURE_P (p))
5097 return 1;
5098
5099 if (SYMBOLP (obj) && c_symbol_p (p))
5100 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5101
5102 if (p == &buffer_defaults || p == &buffer_local_symbols)
5103 return 2;
5104
5105 struct mem_node *m = mem_find (p);
5106
5107 if (m == MEM_NIL)
5108 {
5109 int valid = valid_pointer_p (p);
5110 if (valid <= 0)
5111 return valid;
5112
5113 if (SUBRP (obj))
5114 return 1;
5115
5116 return 0;
5117 }
5118
5119 switch (m->type)
5120 {
5121 case MEM_TYPE_NON_LISP:
5122 case MEM_TYPE_SPARE:
5123 return 0;
5124
5125 case MEM_TYPE_BUFFER:
5126 return live_buffer_p (m, p) ? 1 : 2;
5127
5128 case MEM_TYPE_CONS:
5129 return live_cons_p (m, p);
5130
5131 case MEM_TYPE_STRING:
5132 return live_string_p (m, p);
5133
5134 case MEM_TYPE_MISC:
5135 return live_misc_p (m, p);
5136
5137 case MEM_TYPE_SYMBOL:
5138 return live_symbol_p (m, p);
5139
5140 case MEM_TYPE_FLOAT:
5141 return live_float_p (m, p);
5142
5143 case MEM_TYPE_VECTORLIKE:
5144 case MEM_TYPE_VECTOR_BLOCK:
5145 return live_vector_p (m, p);
5146
5147 default:
5148 break;
5149 }
5150
5151 return 0;
5152 }
5153
5154 /***********************************************************************
5155 Pure Storage Management
5156 ***********************************************************************/
5157
5158 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5159 pointer to it. TYPE is the Lisp type for which the memory is
5160 allocated. TYPE < 0 means it's not used for a Lisp object. */
5161
5162 static void *
5163 pure_alloc (size_t size, int type)
5164 {
5165 void *result;
5166
5167 again:
5168 if (type >= 0)
5169 {
5170 /* Allocate space for a Lisp object from the beginning of the free
5171 space with taking account of alignment. */
5172 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5173 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5174 }
5175 else
5176 {
5177 /* Allocate space for a non-Lisp object from the end of the free
5178 space. */
5179 pure_bytes_used_non_lisp += size;
5180 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5181 }
5182 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5183
5184 if (pure_bytes_used <= pure_size)
5185 return result;
5186
5187 /* Don't allocate a large amount here,
5188 because it might get mmap'd and then its address
5189 might not be usable. */
5190 purebeg = xmalloc (10000);
5191 pure_size = 10000;
5192 pure_bytes_used_before_overflow += pure_bytes_used - size;
5193 pure_bytes_used = 0;
5194 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5195 goto again;
5196 }
5197
5198
5199 /* Print a warning if PURESIZE is too small. */
5200
5201 void
5202 check_pure_size (void)
5203 {
5204 if (pure_bytes_used_before_overflow)
5205 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5206 " bytes needed)"),
5207 pure_bytes_used + pure_bytes_used_before_overflow);
5208 }
5209
5210
5211 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5212 the non-Lisp data pool of the pure storage, and return its start
5213 address. Return NULL if not found. */
5214
5215 static char *
5216 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5217 {
5218 int i;
5219 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5220 const unsigned char *p;
5221 char *non_lisp_beg;
5222
5223 if (pure_bytes_used_non_lisp <= nbytes)
5224 return NULL;
5225
5226 /* Set up the Boyer-Moore table. */
5227 skip = nbytes + 1;
5228 for (i = 0; i < 256; i++)
5229 bm_skip[i] = skip;
5230
5231 p = (const unsigned char *) data;
5232 while (--skip > 0)
5233 bm_skip[*p++] = skip;
5234
5235 last_char_skip = bm_skip['\0'];
5236
5237 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5238 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5239
5240 /* See the comments in the function `boyer_moore' (search.c) for the
5241 use of `infinity'. */
5242 infinity = pure_bytes_used_non_lisp + 1;
5243 bm_skip['\0'] = infinity;
5244
5245 p = (const unsigned char *) non_lisp_beg + nbytes;
5246 start = 0;
5247 do
5248 {
5249 /* Check the last character (== '\0'). */
5250 do
5251 {
5252 start += bm_skip[*(p + start)];
5253 }
5254 while (start <= start_max);
5255
5256 if (start < infinity)
5257 /* Couldn't find the last character. */
5258 return NULL;
5259
5260 /* No less than `infinity' means we could find the last
5261 character at `p[start - infinity]'. */
5262 start -= infinity;
5263
5264 /* Check the remaining characters. */
5265 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5266 /* Found. */
5267 return non_lisp_beg + start;
5268
5269 start += last_char_skip;
5270 }
5271 while (start <= start_max);
5272
5273 return NULL;
5274 }
5275
5276
5277 /* Return a string allocated in pure space. DATA is a buffer holding
5278 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5279 means make the result string multibyte.
5280
5281 Must get an error if pure storage is full, since if it cannot hold
5282 a large string it may be able to hold conses that point to that
5283 string; then the string is not protected from gc. */
5284
5285 Lisp_Object
5286 make_pure_string (const char *data,
5287 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5288 {
5289 Lisp_Object string;
5290 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5291 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5292 if (s->data == NULL)
5293 {
5294 s->data = pure_alloc (nbytes + 1, -1);
5295 memcpy (s->data, data, nbytes);
5296 s->data[nbytes] = '\0';
5297 }
5298 s->size = nchars;
5299 s->size_byte = multibyte ? nbytes : -1;
5300 s->intervals = NULL;
5301 XSETSTRING (string, s);
5302 return string;
5303 }
5304
5305 /* Return a string allocated in pure space. Do not
5306 allocate the string data, just point to DATA. */
5307
5308 Lisp_Object
5309 make_pure_c_string (const char *data, ptrdiff_t nchars)
5310 {
5311 Lisp_Object string;
5312 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5313 s->size = nchars;
5314 s->size_byte = -1;
5315 s->data = (unsigned char *) data;
5316 s->intervals = NULL;
5317 XSETSTRING (string, s);
5318 return string;
5319 }
5320
5321 static Lisp_Object purecopy (Lisp_Object obj);
5322
5323 /* Return a cons allocated from pure space. Give it pure copies
5324 of CAR as car and CDR as cdr. */
5325
5326 Lisp_Object
5327 pure_cons (Lisp_Object car, Lisp_Object cdr)
5328 {
5329 Lisp_Object new;
5330 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5331 XSETCONS (new, p);
5332 XSETCAR (new, purecopy (car));
5333 XSETCDR (new, purecopy (cdr));
5334 return new;
5335 }
5336
5337
5338 /* Value is a float object with value NUM allocated from pure space. */
5339
5340 static Lisp_Object
5341 make_pure_float (double num)
5342 {
5343 Lisp_Object new;
5344 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5345 XSETFLOAT (new, p);
5346 XFLOAT_INIT (new, num);
5347 return new;
5348 }
5349
5350
5351 /* Return a vector with room for LEN Lisp_Objects allocated from
5352 pure space. */
5353
5354 static Lisp_Object
5355 make_pure_vector (ptrdiff_t len)
5356 {
5357 Lisp_Object new;
5358 size_t size = header_size + len * word_size;
5359 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5360 XSETVECTOR (new, p);
5361 XVECTOR (new)->header.size = len;
5362 return new;
5363 }
5364
5365 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5366 doc: /* Make a copy of object OBJ in pure storage.
5367 Recursively copies contents of vectors and cons cells.
5368 Does not copy symbols. Copies strings without text properties. */)
5369 (register Lisp_Object obj)
5370 {
5371 if (NILP (Vpurify_flag))
5372 return obj;
5373 else if (MARKERP (obj) || OVERLAYP (obj)
5374 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5375 /* Can't purify those. */
5376 return obj;
5377 else
5378 return purecopy (obj);
5379 }
5380
5381 static Lisp_Object
5382 purecopy (Lisp_Object obj)
5383 {
5384 if (INTEGERP (obj)
5385 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5386 || SUBRP (obj))
5387 return obj; /* Already pure. */
5388
5389 if (STRINGP (obj) && XSTRING (obj)->intervals)
5390 message_with_string ("Dropping text-properties while making string `%s' pure",
5391 obj, true);
5392
5393 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5394 {
5395 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5396 if (!NILP (tmp))
5397 return tmp;
5398 }
5399
5400 if (CONSP (obj))
5401 obj = pure_cons (XCAR (obj), XCDR (obj));
5402 else if (FLOATP (obj))
5403 obj = make_pure_float (XFLOAT_DATA (obj));
5404 else if (STRINGP (obj))
5405 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5406 SBYTES (obj),
5407 STRING_MULTIBYTE (obj));
5408 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5409 {
5410 struct Lisp_Vector *objp = XVECTOR (obj);
5411 ptrdiff_t nbytes = vector_nbytes (objp);
5412 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5413 register ptrdiff_t i;
5414 ptrdiff_t size = ASIZE (obj);
5415 if (size & PSEUDOVECTOR_FLAG)
5416 size &= PSEUDOVECTOR_SIZE_MASK;
5417 memcpy (vec, objp, nbytes);
5418 for (i = 0; i < size; i++)
5419 vec->contents[i] = purecopy (vec->contents[i]);
5420 XSETVECTOR (obj, vec);
5421 }
5422 else if (SYMBOLP (obj))
5423 {
5424 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5425 { /* We can't purify them, but they appear in many pure objects.
5426 Mark them as `pinned' so we know to mark them at every GC cycle. */
5427 XSYMBOL (obj)->pinned = true;
5428 symbol_block_pinned = symbol_block;
5429 }
5430 /* Don't hash-cons it. */
5431 return obj;
5432 }
5433 else
5434 {
5435 AUTO_STRING (fmt, "Don't know how to purify: %S");
5436 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5437 }
5438
5439 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5440 Fputhash (obj, obj, Vpurify_flag);
5441
5442 return obj;
5443 }
5444
5445
5446 \f
5447 /***********************************************************************
5448 Protection from GC
5449 ***********************************************************************/
5450
5451 /* Put an entry in staticvec, pointing at the variable with address
5452 VARADDRESS. */
5453
5454 void
5455 staticpro (Lisp_Object *varaddress)
5456 {
5457 if (staticidx >= NSTATICS)
5458 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5459 staticvec[staticidx++] = varaddress;
5460 }
5461
5462 \f
5463 /***********************************************************************
5464 Protection from GC
5465 ***********************************************************************/
5466
5467 /* Temporarily prevent garbage collection. */
5468
5469 ptrdiff_t
5470 inhibit_garbage_collection (void)
5471 {
5472 ptrdiff_t count = SPECPDL_INDEX ();
5473
5474 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5475 return count;
5476 }
5477
5478 /* Used to avoid possible overflows when
5479 converting from C to Lisp integers. */
5480
5481 static Lisp_Object
5482 bounded_number (EMACS_INT number)
5483 {
5484 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5485 }
5486
5487 /* Calculate total bytes of live objects. */
5488
5489 static size_t
5490 total_bytes_of_live_objects (void)
5491 {
5492 size_t tot = 0;
5493 tot += total_conses * sizeof (struct Lisp_Cons);
5494 tot += total_symbols * sizeof (struct Lisp_Symbol);
5495 tot += total_markers * sizeof (union Lisp_Misc);
5496 tot += total_string_bytes;
5497 tot += total_vector_slots * word_size;
5498 tot += total_floats * sizeof (struct Lisp_Float);
5499 tot += total_intervals * sizeof (struct interval);
5500 tot += total_strings * sizeof (struct Lisp_String);
5501 return tot;
5502 }
5503
5504 #ifdef HAVE_WINDOW_SYSTEM
5505
5506 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5507 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5508
5509 static Lisp_Object
5510 compact_font_cache_entry (Lisp_Object entry)
5511 {
5512 Lisp_Object tail, *prev = &entry;
5513
5514 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5515 {
5516 bool drop = 0;
5517 Lisp_Object obj = XCAR (tail);
5518
5519 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5520 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5521 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5522 /* Don't use VECTORP here, as that calls ASIZE, which could
5523 hit assertion violation during GC. */
5524 && (VECTORLIKEP (XCDR (obj))
5525 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5526 {
5527 ptrdiff_t i, size = gc_asize (XCDR (obj));
5528 Lisp_Object obj_cdr = XCDR (obj);
5529
5530 /* If font-spec is not marked, most likely all font-entities
5531 are not marked too. But we must be sure that nothing is
5532 marked within OBJ before we really drop it. */
5533 for (i = 0; i < size; i++)
5534 {
5535 Lisp_Object objlist;
5536
5537 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5538 break;
5539
5540 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5541 for (; CONSP (objlist); objlist = XCDR (objlist))
5542 {
5543 Lisp_Object val = XCAR (objlist);
5544 struct font *font = GC_XFONT_OBJECT (val);
5545
5546 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5547 && VECTOR_MARKED_P(font))
5548 break;
5549 }
5550 if (CONSP (objlist))
5551 {
5552 /* Found a marked font, bail out. */
5553 break;
5554 }
5555 }
5556
5557 if (i == size)
5558 {
5559 /* No marked fonts were found, so this entire font
5560 entity can be dropped. */
5561 drop = 1;
5562 }
5563 }
5564 if (drop)
5565 *prev = XCDR (tail);
5566 else
5567 prev = xcdr_addr (tail);
5568 }
5569 return entry;
5570 }
5571
5572 /* Compact font caches on all terminals and mark
5573 everything which is still here after compaction. */
5574
5575 static void
5576 compact_font_caches (void)
5577 {
5578 struct terminal *t;
5579
5580 for (t = terminal_list; t; t = t->next_terminal)
5581 {
5582 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5583 if (CONSP (cache))
5584 {
5585 Lisp_Object entry;
5586
5587 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5588 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5589 }
5590 mark_object (cache);
5591 }
5592 }
5593
5594 #else /* not HAVE_WINDOW_SYSTEM */
5595
5596 #define compact_font_caches() (void)(0)
5597
5598 #endif /* HAVE_WINDOW_SYSTEM */
5599
5600 /* Remove (MARKER . DATA) entries with unmarked MARKER
5601 from buffer undo LIST and return changed list. */
5602
5603 static Lisp_Object
5604 compact_undo_list (Lisp_Object list)
5605 {
5606 Lisp_Object tail, *prev = &list;
5607
5608 for (tail = list; CONSP (tail); tail = XCDR (tail))
5609 {
5610 if (CONSP (XCAR (tail))
5611 && MARKERP (XCAR (XCAR (tail)))
5612 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5613 *prev = XCDR (tail);
5614 else
5615 prev = xcdr_addr (tail);
5616 }
5617 return list;
5618 }
5619
5620 static void
5621 mark_pinned_symbols (void)
5622 {
5623 struct symbol_block *sblk;
5624 int lim = (symbol_block_pinned == symbol_block
5625 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5626
5627 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5628 {
5629 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5630 for (; sym < end; ++sym)
5631 if (sym->s.pinned)
5632 mark_object (make_lisp_symbol (&sym->s));
5633
5634 lim = SYMBOL_BLOCK_SIZE;
5635 }
5636 }
5637
5638 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5639 separate function so that we could limit mark_stack in searching
5640 the stack frames below this function, thus avoiding the rare cases
5641 where mark_stack finds values that look like live Lisp objects on
5642 portions of stack that couldn't possibly contain such live objects.
5643 For more details of this, see the discussion at
5644 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5645 static Lisp_Object
5646 garbage_collect_1 (void *end)
5647 {
5648 struct buffer *nextb;
5649 char stack_top_variable;
5650 ptrdiff_t i;
5651 bool message_p;
5652 ptrdiff_t count = SPECPDL_INDEX ();
5653 struct timespec start;
5654 Lisp_Object retval = Qnil;
5655 size_t tot_before = 0;
5656
5657 if (abort_on_gc)
5658 emacs_abort ();
5659
5660 /* Can't GC if pure storage overflowed because we can't determine
5661 if something is a pure object or not. */
5662 if (pure_bytes_used_before_overflow)
5663 return Qnil;
5664
5665 /* Record this function, so it appears on the profiler's backtraces. */
5666 record_in_backtrace (QAutomatic_GC, 0, 0);
5667
5668 check_cons_list ();
5669
5670 /* Don't keep undo information around forever.
5671 Do this early on, so it is no problem if the user quits. */
5672 FOR_EACH_BUFFER (nextb)
5673 compact_buffer (nextb);
5674
5675 if (profiler_memory_running)
5676 tot_before = total_bytes_of_live_objects ();
5677
5678 start = current_timespec ();
5679
5680 /* In case user calls debug_print during GC,
5681 don't let that cause a recursive GC. */
5682 consing_since_gc = 0;
5683
5684 /* Save what's currently displayed in the echo area. Don't do that
5685 if we are GC'ing because we've run out of memory, since
5686 push_message will cons, and we might have no memory for that. */
5687 if (NILP (Vmemory_full))
5688 {
5689 message_p = push_message ();
5690 record_unwind_protect_void (pop_message_unwind);
5691 }
5692 else
5693 message_p = false;
5694
5695 /* Save a copy of the contents of the stack, for debugging. */
5696 #if MAX_SAVE_STACK > 0
5697 if (NILP (Vpurify_flag))
5698 {
5699 char *stack;
5700 ptrdiff_t stack_size;
5701 if (&stack_top_variable < stack_bottom)
5702 {
5703 stack = &stack_top_variable;
5704 stack_size = stack_bottom - &stack_top_variable;
5705 }
5706 else
5707 {
5708 stack = stack_bottom;
5709 stack_size = &stack_top_variable - stack_bottom;
5710 }
5711 if (stack_size <= MAX_SAVE_STACK)
5712 {
5713 if (stack_copy_size < stack_size)
5714 {
5715 stack_copy = xrealloc (stack_copy, stack_size);
5716 stack_copy_size = stack_size;
5717 }
5718 no_sanitize_memcpy (stack_copy, stack, stack_size);
5719 }
5720 }
5721 #endif /* MAX_SAVE_STACK > 0 */
5722
5723 if (garbage_collection_messages)
5724 message1_nolog ("Garbage collecting...");
5725
5726 block_input ();
5727
5728 shrink_regexp_cache ();
5729
5730 gc_in_progress = 1;
5731
5732 /* Mark all the special slots that serve as the roots of accessibility. */
5733
5734 mark_buffer (&buffer_defaults);
5735 mark_buffer (&buffer_local_symbols);
5736
5737 for (i = 0; i < ARRAYELTS (lispsym); i++)
5738 mark_object (builtin_lisp_symbol (i));
5739
5740 for (i = 0; i < staticidx; i++)
5741 mark_object (*staticvec[i]);
5742
5743 mark_pinned_symbols ();
5744 mark_specpdl ();
5745 mark_terminals ();
5746 mark_kboards ();
5747
5748 #ifdef USE_GTK
5749 xg_mark_data ();
5750 #endif
5751
5752 mark_stack (end);
5753
5754 {
5755 struct handler *handler;
5756 for (handler = handlerlist; handler; handler = handler->next)
5757 {
5758 mark_object (handler->tag_or_ch);
5759 mark_object (handler->val);
5760 }
5761 }
5762 #ifdef HAVE_WINDOW_SYSTEM
5763 mark_fringe_data ();
5764 #endif
5765
5766 /* Everything is now marked, except for the data in font caches,
5767 undo lists, and finalizers. The first two are compacted by
5768 removing an items which aren't reachable otherwise. */
5769
5770 compact_font_caches ();
5771
5772 FOR_EACH_BUFFER (nextb)
5773 {
5774 if (!EQ (BVAR (nextb, undo_list), Qt))
5775 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5776 /* Now that we have stripped the elements that need not be
5777 in the undo_list any more, we can finally mark the list. */
5778 mark_object (BVAR (nextb, undo_list));
5779 }
5780
5781 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5782 to doomed_finalizers so we can run their associated functions
5783 after GC. It's important to scan finalizers at this stage so
5784 that we can be sure that unmarked finalizers are really
5785 unreachable except for references from their associated functions
5786 and from other finalizers. */
5787
5788 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5789 mark_finalizer_list (&doomed_finalizers);
5790
5791 gc_sweep ();
5792
5793 relocate_byte_stack ();
5794
5795 /* Clear the mark bits that we set in certain root slots. */
5796 VECTOR_UNMARK (&buffer_defaults);
5797 VECTOR_UNMARK (&buffer_local_symbols);
5798
5799 check_cons_list ();
5800
5801 gc_in_progress = 0;
5802
5803 unblock_input ();
5804
5805 consing_since_gc = 0;
5806 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5807 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5808
5809 gc_relative_threshold = 0;
5810 if (FLOATP (Vgc_cons_percentage))
5811 { /* Set gc_cons_combined_threshold. */
5812 double tot = total_bytes_of_live_objects ();
5813
5814 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5815 if (0 < tot)
5816 {
5817 if (tot < TYPE_MAXIMUM (EMACS_INT))
5818 gc_relative_threshold = tot;
5819 else
5820 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5821 }
5822 }
5823
5824 if (garbage_collection_messages && NILP (Vmemory_full))
5825 {
5826 if (message_p || minibuf_level > 0)
5827 restore_message ();
5828 else
5829 message1_nolog ("Garbage collecting...done");
5830 }
5831
5832 unbind_to (count, Qnil);
5833
5834 Lisp_Object total[] = {
5835 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5836 bounded_number (total_conses),
5837 bounded_number (total_free_conses)),
5838 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5839 bounded_number (total_symbols),
5840 bounded_number (total_free_symbols)),
5841 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5842 bounded_number (total_markers),
5843 bounded_number (total_free_markers)),
5844 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5845 bounded_number (total_strings),
5846 bounded_number (total_free_strings)),
5847 list3 (Qstring_bytes, make_number (1),
5848 bounded_number (total_string_bytes)),
5849 list3 (Qvectors,
5850 make_number (header_size + sizeof (Lisp_Object)),
5851 bounded_number (total_vectors)),
5852 list4 (Qvector_slots, make_number (word_size),
5853 bounded_number (total_vector_slots),
5854 bounded_number (total_free_vector_slots)),
5855 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5856 bounded_number (total_floats),
5857 bounded_number (total_free_floats)),
5858 list4 (Qintervals, make_number (sizeof (struct interval)),
5859 bounded_number (total_intervals),
5860 bounded_number (total_free_intervals)),
5861 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5862 bounded_number (total_buffers)),
5863
5864 #ifdef DOUG_LEA_MALLOC
5865 list4 (Qheap, make_number (1024),
5866 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5867 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5868 #endif
5869 };
5870 retval = CALLMANY (Flist, total);
5871
5872 /* GC is complete: now we can run our finalizer callbacks. */
5873 run_finalizers (&doomed_finalizers);
5874
5875 if (!NILP (Vpost_gc_hook))
5876 {
5877 ptrdiff_t gc_count = inhibit_garbage_collection ();
5878 safe_run_hooks (Qpost_gc_hook);
5879 unbind_to (gc_count, Qnil);
5880 }
5881
5882 /* Accumulate statistics. */
5883 if (FLOATP (Vgc_elapsed))
5884 {
5885 struct timespec since_start = timespec_sub (current_timespec (), start);
5886 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5887 + timespectod (since_start));
5888 }
5889
5890 gcs_done++;
5891
5892 /* Collect profiling data. */
5893 if (profiler_memory_running)
5894 {
5895 size_t swept = 0;
5896 size_t tot_after = total_bytes_of_live_objects ();
5897 if (tot_before > tot_after)
5898 swept = tot_before - tot_after;
5899 malloc_probe (swept);
5900 }
5901
5902 return retval;
5903 }
5904
5905 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5906 doc: /* Reclaim storage for Lisp objects no longer needed.
5907 Garbage collection happens automatically if you cons more than
5908 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5909 `garbage-collect' normally returns a list with info on amount of space in use,
5910 where each entry has the form (NAME SIZE USED FREE), where:
5911 - NAME is a symbol describing the kind of objects this entry represents,
5912 - SIZE is the number of bytes used by each one,
5913 - USED is the number of those objects that were found live in the heap,
5914 - FREE is the number of those objects that are not live but that Emacs
5915 keeps around for future allocations (maybe because it does not know how
5916 to return them to the OS).
5917 However, if there was overflow in pure space, `garbage-collect'
5918 returns nil, because real GC can't be done.
5919 See Info node `(elisp)Garbage Collection'. */)
5920 (void)
5921 {
5922 void *end;
5923
5924 #ifdef HAVE___BUILTIN_UNWIND_INIT
5925 /* Force callee-saved registers and register windows onto the stack.
5926 This is the preferred method if available, obviating the need for
5927 machine dependent methods. */
5928 __builtin_unwind_init ();
5929 end = &end;
5930 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5931 #ifndef GC_SAVE_REGISTERS_ON_STACK
5932 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5933 union aligned_jmpbuf {
5934 Lisp_Object o;
5935 sys_jmp_buf j;
5936 } j;
5937 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5938 #endif
5939 /* This trick flushes the register windows so that all the state of
5940 the process is contained in the stack. */
5941 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5942 needed on ia64 too. See mach_dep.c, where it also says inline
5943 assembler doesn't work with relevant proprietary compilers. */
5944 #ifdef __sparc__
5945 #if defined (__sparc64__) && defined (__FreeBSD__)
5946 /* FreeBSD does not have a ta 3 handler. */
5947 asm ("flushw");
5948 #else
5949 asm ("ta 3");
5950 #endif
5951 #endif
5952
5953 /* Save registers that we need to see on the stack. We need to see
5954 registers used to hold register variables and registers used to
5955 pass parameters. */
5956 #ifdef GC_SAVE_REGISTERS_ON_STACK
5957 GC_SAVE_REGISTERS_ON_STACK (end);
5958 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5959
5960 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5961 setjmp will definitely work, test it
5962 and print a message with the result
5963 of the test. */
5964 if (!setjmp_tested_p)
5965 {
5966 setjmp_tested_p = 1;
5967 test_setjmp ();
5968 }
5969 #endif /* GC_SETJMP_WORKS */
5970
5971 sys_setjmp (j.j);
5972 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5973 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5974 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5975 return garbage_collect_1 (end);
5976 }
5977
5978 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5979 only interesting objects referenced from glyphs are strings. */
5980
5981 static void
5982 mark_glyph_matrix (struct glyph_matrix *matrix)
5983 {
5984 struct glyph_row *row = matrix->rows;
5985 struct glyph_row *end = row + matrix->nrows;
5986
5987 for (; row < end; ++row)
5988 if (row->enabled_p)
5989 {
5990 int area;
5991 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5992 {
5993 struct glyph *glyph = row->glyphs[area];
5994 struct glyph *end_glyph = glyph + row->used[area];
5995
5996 for (; glyph < end_glyph; ++glyph)
5997 if (STRINGP (glyph->object)
5998 && !STRING_MARKED_P (XSTRING (glyph->object)))
5999 mark_object (glyph->object);
6000 }
6001 }
6002 }
6003
6004 /* Mark reference to a Lisp_Object.
6005 If the object referred to has not been seen yet, recursively mark
6006 all the references contained in it. */
6007
6008 #define LAST_MARKED_SIZE 500
6009 static Lisp_Object last_marked[LAST_MARKED_SIZE];
6010 static int last_marked_index;
6011
6012 /* For debugging--call abort when we cdr down this many
6013 links of a list, in mark_object. In debugging,
6014 the call to abort will hit a breakpoint.
6015 Normally this is zero and the check never goes off. */
6016 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6017
6018 static void
6019 mark_vectorlike (struct Lisp_Vector *ptr)
6020 {
6021 ptrdiff_t size = ptr->header.size;
6022 ptrdiff_t i;
6023
6024 eassert (!VECTOR_MARKED_P (ptr));
6025 VECTOR_MARK (ptr); /* Else mark it. */
6026 if (size & PSEUDOVECTOR_FLAG)
6027 size &= PSEUDOVECTOR_SIZE_MASK;
6028
6029 /* Note that this size is not the memory-footprint size, but only
6030 the number of Lisp_Object fields that we should trace.
6031 The distinction is used e.g. by Lisp_Process which places extra
6032 non-Lisp_Object fields at the end of the structure... */
6033 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6034 mark_object (ptr->contents[i]);
6035 }
6036
6037 /* Like mark_vectorlike but optimized for char-tables (and
6038 sub-char-tables) assuming that the contents are mostly integers or
6039 symbols. */
6040
6041 static void
6042 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6043 {
6044 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6045 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6046 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6047
6048 eassert (!VECTOR_MARKED_P (ptr));
6049 VECTOR_MARK (ptr);
6050 for (i = idx; i < size; i++)
6051 {
6052 Lisp_Object val = ptr->contents[i];
6053
6054 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6055 continue;
6056 if (SUB_CHAR_TABLE_P (val))
6057 {
6058 if (! VECTOR_MARKED_P (XVECTOR (val)))
6059 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6060 }
6061 else
6062 mark_object (val);
6063 }
6064 }
6065
6066 NO_INLINE /* To reduce stack depth in mark_object. */
6067 static Lisp_Object
6068 mark_compiled (struct Lisp_Vector *ptr)
6069 {
6070 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6071
6072 VECTOR_MARK (ptr);
6073 for (i = 0; i < size; i++)
6074 if (i != COMPILED_CONSTANTS)
6075 mark_object (ptr->contents[i]);
6076 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6077 }
6078
6079 /* Mark the chain of overlays starting at PTR. */
6080
6081 static void
6082 mark_overlay (struct Lisp_Overlay *ptr)
6083 {
6084 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6085 {
6086 ptr->gcmarkbit = 1;
6087 /* These two are always markers and can be marked fast. */
6088 XMARKER (ptr->start)->gcmarkbit = 1;
6089 XMARKER (ptr->end)->gcmarkbit = 1;
6090 mark_object (ptr->plist);
6091 }
6092 }
6093
6094 /* Mark Lisp_Objects and special pointers in BUFFER. */
6095
6096 static void
6097 mark_buffer (struct buffer *buffer)
6098 {
6099 /* This is handled much like other pseudovectors... */
6100 mark_vectorlike ((struct Lisp_Vector *) buffer);
6101
6102 /* ...but there are some buffer-specific things. */
6103
6104 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6105
6106 /* For now, we just don't mark the undo_list. It's done later in
6107 a special way just before the sweep phase, and after stripping
6108 some of its elements that are not needed any more. */
6109
6110 mark_overlay (buffer->overlays_before);
6111 mark_overlay (buffer->overlays_after);
6112
6113 /* If this is an indirect buffer, mark its base buffer. */
6114 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6115 mark_buffer (buffer->base_buffer);
6116 }
6117
6118 /* Mark Lisp faces in the face cache C. */
6119
6120 NO_INLINE /* To reduce stack depth in mark_object. */
6121 static void
6122 mark_face_cache (struct face_cache *c)
6123 {
6124 if (c)
6125 {
6126 int i, j;
6127 for (i = 0; i < c->used; ++i)
6128 {
6129 struct face *face = FACE_OPT_FROM_ID (c->f, i);
6130
6131 if (face)
6132 {
6133 if (face->font && !VECTOR_MARKED_P (face->font))
6134 mark_vectorlike ((struct Lisp_Vector *) face->font);
6135
6136 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6137 mark_object (face->lface[j]);
6138 }
6139 }
6140 }
6141 }
6142
6143 NO_INLINE /* To reduce stack depth in mark_object. */
6144 static void
6145 mark_localized_symbol (struct Lisp_Symbol *ptr)
6146 {
6147 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6148 Lisp_Object where = blv->where;
6149 /* If the value is set up for a killed buffer or deleted
6150 frame, restore its global binding. If the value is
6151 forwarded to a C variable, either it's not a Lisp_Object
6152 var, or it's staticpro'd already. */
6153 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6154 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6155 swap_in_global_binding (ptr);
6156 mark_object (blv->where);
6157 mark_object (blv->valcell);
6158 mark_object (blv->defcell);
6159 }
6160
6161 NO_INLINE /* To reduce stack depth in mark_object. */
6162 static void
6163 mark_save_value (struct Lisp_Save_Value *ptr)
6164 {
6165 /* If `save_type' is zero, `data[0].pointer' is the address
6166 of a memory area containing `data[1].integer' potential
6167 Lisp_Objects. */
6168 if (ptr->save_type == SAVE_TYPE_MEMORY)
6169 {
6170 Lisp_Object *p = ptr->data[0].pointer;
6171 ptrdiff_t nelt;
6172 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6173 mark_maybe_object (*p);
6174 }
6175 else
6176 {
6177 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6178 int i;
6179 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6180 if (save_type (ptr, i) == SAVE_OBJECT)
6181 mark_object (ptr->data[i].object);
6182 }
6183 }
6184
6185 /* Remove killed buffers or items whose car is a killed buffer from
6186 LIST, and mark other items. Return changed LIST, which is marked. */
6187
6188 static Lisp_Object
6189 mark_discard_killed_buffers (Lisp_Object list)
6190 {
6191 Lisp_Object tail, *prev = &list;
6192
6193 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6194 tail = XCDR (tail))
6195 {
6196 Lisp_Object tem = XCAR (tail);
6197 if (CONSP (tem))
6198 tem = XCAR (tem);
6199 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6200 *prev = XCDR (tail);
6201 else
6202 {
6203 CONS_MARK (XCONS (tail));
6204 mark_object (XCAR (tail));
6205 prev = xcdr_addr (tail);
6206 }
6207 }
6208 mark_object (tail);
6209 return list;
6210 }
6211
6212 /* Determine type of generic Lisp_Object and mark it accordingly.
6213
6214 This function implements a straightforward depth-first marking
6215 algorithm and so the recursion depth may be very high (a few
6216 tens of thousands is not uncommon). To minimize stack usage,
6217 a few cold paths are moved out to NO_INLINE functions above.
6218 In general, inlining them doesn't help you to gain more speed. */
6219
6220 void
6221 mark_object (Lisp_Object arg)
6222 {
6223 register Lisp_Object obj;
6224 void *po;
6225 #ifdef GC_CHECK_MARKED_OBJECTS
6226 struct mem_node *m;
6227 #endif
6228 ptrdiff_t cdr_count = 0;
6229
6230 obj = arg;
6231 loop:
6232
6233 po = XPNTR (obj);
6234 if (PURE_P (po))
6235 return;
6236
6237 last_marked[last_marked_index++] = obj;
6238 if (last_marked_index == LAST_MARKED_SIZE)
6239 last_marked_index = 0;
6240
6241 /* Perform some sanity checks on the objects marked here. Abort if
6242 we encounter an object we know is bogus. This increases GC time
6243 by ~80%. */
6244 #ifdef GC_CHECK_MARKED_OBJECTS
6245
6246 /* Check that the object pointed to by PO is known to be a Lisp
6247 structure allocated from the heap. */
6248 #define CHECK_ALLOCATED() \
6249 do { \
6250 m = mem_find (po); \
6251 if (m == MEM_NIL) \
6252 emacs_abort (); \
6253 } while (0)
6254
6255 /* Check that the object pointed to by PO is live, using predicate
6256 function LIVEP. */
6257 #define CHECK_LIVE(LIVEP) \
6258 do { \
6259 if (!LIVEP (m, po)) \
6260 emacs_abort (); \
6261 } while (0)
6262
6263 /* Check both of the above conditions, for non-symbols. */
6264 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6265 do { \
6266 CHECK_ALLOCATED (); \
6267 CHECK_LIVE (LIVEP); \
6268 } while (0) \
6269
6270 /* Check both of the above conditions, for symbols. */
6271 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6272 do { \
6273 if (!c_symbol_p (ptr)) \
6274 { \
6275 CHECK_ALLOCATED (); \
6276 CHECK_LIVE (live_symbol_p); \
6277 } \
6278 } while (0) \
6279
6280 #else /* not GC_CHECK_MARKED_OBJECTS */
6281
6282 #define CHECK_LIVE(LIVEP) ((void) 0)
6283 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6284 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6285
6286 #endif /* not GC_CHECK_MARKED_OBJECTS */
6287
6288 switch (XTYPE (obj))
6289 {
6290 case Lisp_String:
6291 {
6292 register struct Lisp_String *ptr = XSTRING (obj);
6293 if (STRING_MARKED_P (ptr))
6294 break;
6295 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6296 MARK_STRING (ptr);
6297 MARK_INTERVAL_TREE (ptr->intervals);
6298 #ifdef GC_CHECK_STRING_BYTES
6299 /* Check that the string size recorded in the string is the
6300 same as the one recorded in the sdata structure. */
6301 string_bytes (ptr);
6302 #endif /* GC_CHECK_STRING_BYTES */
6303 }
6304 break;
6305
6306 case Lisp_Vectorlike:
6307 {
6308 register struct Lisp_Vector *ptr = XVECTOR (obj);
6309 register ptrdiff_t pvectype;
6310
6311 if (VECTOR_MARKED_P (ptr))
6312 break;
6313
6314 #ifdef GC_CHECK_MARKED_OBJECTS
6315 m = mem_find (po);
6316 if (m == MEM_NIL && !SUBRP (obj))
6317 emacs_abort ();
6318 #endif /* GC_CHECK_MARKED_OBJECTS */
6319
6320 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6321 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6322 >> PSEUDOVECTOR_AREA_BITS);
6323 else
6324 pvectype = PVEC_NORMAL_VECTOR;
6325
6326 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6327 CHECK_LIVE (live_vector_p);
6328
6329 switch (pvectype)
6330 {
6331 case PVEC_BUFFER:
6332 #ifdef GC_CHECK_MARKED_OBJECTS
6333 {
6334 struct buffer *b;
6335 FOR_EACH_BUFFER (b)
6336 if (b == po)
6337 break;
6338 if (b == NULL)
6339 emacs_abort ();
6340 }
6341 #endif /* GC_CHECK_MARKED_OBJECTS */
6342 mark_buffer ((struct buffer *) ptr);
6343 break;
6344
6345 case PVEC_COMPILED:
6346 /* Although we could treat this just like a vector, mark_compiled
6347 returns the COMPILED_CONSTANTS element, which is marked at the
6348 next iteration of goto-loop here. This is done to avoid a few
6349 recursive calls to mark_object. */
6350 obj = mark_compiled (ptr);
6351 if (!NILP (obj))
6352 goto loop;
6353 break;
6354
6355 case PVEC_FRAME:
6356 {
6357 struct frame *f = (struct frame *) ptr;
6358
6359 mark_vectorlike (ptr);
6360 mark_face_cache (f->face_cache);
6361 #ifdef HAVE_WINDOW_SYSTEM
6362 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6363 {
6364 struct font *font = FRAME_FONT (f);
6365
6366 if (font && !VECTOR_MARKED_P (font))
6367 mark_vectorlike ((struct Lisp_Vector *) font);
6368 }
6369 #endif
6370 }
6371 break;
6372
6373 case PVEC_WINDOW:
6374 {
6375 struct window *w = (struct window *) ptr;
6376
6377 mark_vectorlike (ptr);
6378
6379 /* Mark glyph matrices, if any. Marking window
6380 matrices is sufficient because frame matrices
6381 use the same glyph memory. */
6382 if (w->current_matrix)
6383 {
6384 mark_glyph_matrix (w->current_matrix);
6385 mark_glyph_matrix (w->desired_matrix);
6386 }
6387
6388 /* Filter out killed buffers from both buffer lists
6389 in attempt to help GC to reclaim killed buffers faster.
6390 We can do it elsewhere for live windows, but this is the
6391 best place to do it for dead windows. */
6392 wset_prev_buffers
6393 (w, mark_discard_killed_buffers (w->prev_buffers));
6394 wset_next_buffers
6395 (w, mark_discard_killed_buffers (w->next_buffers));
6396 }
6397 break;
6398
6399 case PVEC_HASH_TABLE:
6400 {
6401 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6402
6403 mark_vectorlike (ptr);
6404 mark_object (h->test.name);
6405 mark_object (h->test.user_hash_function);
6406 mark_object (h->test.user_cmp_function);
6407 /* If hash table is not weak, mark all keys and values.
6408 For weak tables, mark only the vector. */
6409 if (NILP (h->weak))
6410 mark_object (h->key_and_value);
6411 else
6412 VECTOR_MARK (XVECTOR (h->key_and_value));
6413 }
6414 break;
6415
6416 case PVEC_CHAR_TABLE:
6417 case PVEC_SUB_CHAR_TABLE:
6418 mark_char_table (ptr, (enum pvec_type) pvectype);
6419 break;
6420
6421 case PVEC_BOOL_VECTOR:
6422 /* No Lisp_Objects to mark in a bool vector. */
6423 VECTOR_MARK (ptr);
6424 break;
6425
6426 case PVEC_SUBR:
6427 break;
6428
6429 case PVEC_FREE:
6430 emacs_abort ();
6431
6432 default:
6433 mark_vectorlike (ptr);
6434 }
6435 }
6436 break;
6437
6438 case Lisp_Symbol:
6439 {
6440 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6441 nextsym:
6442 if (ptr->gcmarkbit)
6443 break;
6444 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6445 ptr->gcmarkbit = 1;
6446 /* Attempt to catch bogus objects. */
6447 eassert (valid_lisp_object_p (ptr->function));
6448 mark_object (ptr->function);
6449 mark_object (ptr->plist);
6450 switch (ptr->redirect)
6451 {
6452 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6453 case SYMBOL_VARALIAS:
6454 {
6455 Lisp_Object tem;
6456 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6457 mark_object (tem);
6458 break;
6459 }
6460 case SYMBOL_LOCALIZED:
6461 mark_localized_symbol (ptr);
6462 break;
6463 case SYMBOL_FORWARDED:
6464 /* If the value is forwarded to a buffer or keyboard field,
6465 these are marked when we see the corresponding object.
6466 And if it's forwarded to a C variable, either it's not
6467 a Lisp_Object var, or it's staticpro'd already. */
6468 break;
6469 default: emacs_abort ();
6470 }
6471 if (!PURE_P (XSTRING (ptr->name)))
6472 MARK_STRING (XSTRING (ptr->name));
6473 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6474 /* Inner loop to mark next symbol in this bucket, if any. */
6475 po = ptr = ptr->next;
6476 if (ptr)
6477 goto nextsym;
6478 }
6479 break;
6480
6481 case Lisp_Misc:
6482 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6483
6484 if (XMISCANY (obj)->gcmarkbit)
6485 break;
6486
6487 switch (XMISCTYPE (obj))
6488 {
6489 case Lisp_Misc_Marker:
6490 /* DO NOT mark thru the marker's chain.
6491 The buffer's markers chain does not preserve markers from gc;
6492 instead, markers are removed from the chain when freed by gc. */
6493 XMISCANY (obj)->gcmarkbit = 1;
6494 break;
6495
6496 case Lisp_Misc_Save_Value:
6497 XMISCANY (obj)->gcmarkbit = 1;
6498 mark_save_value (XSAVE_VALUE (obj));
6499 break;
6500
6501 case Lisp_Misc_Overlay:
6502 mark_overlay (XOVERLAY (obj));
6503 break;
6504
6505 case Lisp_Misc_Finalizer:
6506 XMISCANY (obj)->gcmarkbit = true;
6507 mark_object (XFINALIZER (obj)->function);
6508 break;
6509
6510 #ifdef HAVE_MODULES
6511 case Lisp_Misc_User_Ptr:
6512 XMISCANY (obj)->gcmarkbit = true;
6513 break;
6514 #endif
6515
6516 default:
6517 emacs_abort ();
6518 }
6519 break;
6520
6521 case Lisp_Cons:
6522 {
6523 register struct Lisp_Cons *ptr = XCONS (obj);
6524 if (CONS_MARKED_P (ptr))
6525 break;
6526 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6527 CONS_MARK (ptr);
6528 /* If the cdr is nil, avoid recursion for the car. */
6529 if (EQ (ptr->u.cdr, Qnil))
6530 {
6531 obj = ptr->car;
6532 cdr_count = 0;
6533 goto loop;
6534 }
6535 mark_object (ptr->car);
6536 obj = ptr->u.cdr;
6537 cdr_count++;
6538 if (cdr_count == mark_object_loop_halt)
6539 emacs_abort ();
6540 goto loop;
6541 }
6542
6543 case Lisp_Float:
6544 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6545 FLOAT_MARK (XFLOAT (obj));
6546 break;
6547
6548 case_Lisp_Int:
6549 break;
6550
6551 default:
6552 emacs_abort ();
6553 }
6554
6555 #undef CHECK_LIVE
6556 #undef CHECK_ALLOCATED
6557 #undef CHECK_ALLOCATED_AND_LIVE
6558 }
6559 /* Mark the Lisp pointers in the terminal objects.
6560 Called by Fgarbage_collect. */
6561
6562 static void
6563 mark_terminals (void)
6564 {
6565 struct terminal *t;
6566 for (t = terminal_list; t; t = t->next_terminal)
6567 {
6568 eassert (t->name != NULL);
6569 #ifdef HAVE_WINDOW_SYSTEM
6570 /* If a terminal object is reachable from a stacpro'ed object,
6571 it might have been marked already. Make sure the image cache
6572 gets marked. */
6573 mark_image_cache (t->image_cache);
6574 #endif /* HAVE_WINDOW_SYSTEM */
6575 if (!VECTOR_MARKED_P (t))
6576 mark_vectorlike ((struct Lisp_Vector *)t);
6577 }
6578 }
6579
6580
6581
6582 /* Value is non-zero if OBJ will survive the current GC because it's
6583 either marked or does not need to be marked to survive. */
6584
6585 bool
6586 survives_gc_p (Lisp_Object obj)
6587 {
6588 bool survives_p;
6589
6590 switch (XTYPE (obj))
6591 {
6592 case_Lisp_Int:
6593 survives_p = 1;
6594 break;
6595
6596 case Lisp_Symbol:
6597 survives_p = XSYMBOL (obj)->gcmarkbit;
6598 break;
6599
6600 case Lisp_Misc:
6601 survives_p = XMISCANY (obj)->gcmarkbit;
6602 break;
6603
6604 case Lisp_String:
6605 survives_p = STRING_MARKED_P (XSTRING (obj));
6606 break;
6607
6608 case Lisp_Vectorlike:
6609 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6610 break;
6611
6612 case Lisp_Cons:
6613 survives_p = CONS_MARKED_P (XCONS (obj));
6614 break;
6615
6616 case Lisp_Float:
6617 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6618 break;
6619
6620 default:
6621 emacs_abort ();
6622 }
6623
6624 return survives_p || PURE_P (XPNTR (obj));
6625 }
6626
6627
6628 \f
6629
6630 NO_INLINE /* For better stack traces */
6631 static void
6632 sweep_conses (void)
6633 {
6634 struct cons_block *cblk;
6635 struct cons_block **cprev = &cons_block;
6636 int lim = cons_block_index;
6637 EMACS_INT num_free = 0, num_used = 0;
6638
6639 cons_free_list = 0;
6640
6641 for (cblk = cons_block; cblk; cblk = *cprev)
6642 {
6643 int i = 0;
6644 int this_free = 0;
6645 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6646
6647 /* Scan the mark bits an int at a time. */
6648 for (i = 0; i < ilim; i++)
6649 {
6650 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6651 {
6652 /* Fast path - all cons cells for this int are marked. */
6653 cblk->gcmarkbits[i] = 0;
6654 num_used += BITS_PER_BITS_WORD;
6655 }
6656 else
6657 {
6658 /* Some cons cells for this int are not marked.
6659 Find which ones, and free them. */
6660 int start, pos, stop;
6661
6662 start = i * BITS_PER_BITS_WORD;
6663 stop = lim - start;
6664 if (stop > BITS_PER_BITS_WORD)
6665 stop = BITS_PER_BITS_WORD;
6666 stop += start;
6667
6668 for (pos = start; pos < stop; pos++)
6669 {
6670 if (!CONS_MARKED_P (&cblk->conses[pos]))
6671 {
6672 this_free++;
6673 cblk->conses[pos].u.chain = cons_free_list;
6674 cons_free_list = &cblk->conses[pos];
6675 cons_free_list->car = Vdead;
6676 }
6677 else
6678 {
6679 num_used++;
6680 CONS_UNMARK (&cblk->conses[pos]);
6681 }
6682 }
6683 }
6684 }
6685
6686 lim = CONS_BLOCK_SIZE;
6687 /* If this block contains only free conses and we have already
6688 seen more than two blocks worth of free conses then deallocate
6689 this block. */
6690 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6691 {
6692 *cprev = cblk->next;
6693 /* Unhook from the free list. */
6694 cons_free_list = cblk->conses[0].u.chain;
6695 lisp_align_free (cblk);
6696 }
6697 else
6698 {
6699 num_free += this_free;
6700 cprev = &cblk->next;
6701 }
6702 }
6703 total_conses = num_used;
6704 total_free_conses = num_free;
6705 }
6706
6707 NO_INLINE /* For better stack traces */
6708 static void
6709 sweep_floats (void)
6710 {
6711 register struct float_block *fblk;
6712 struct float_block **fprev = &float_block;
6713 register int lim = float_block_index;
6714 EMACS_INT num_free = 0, num_used = 0;
6715
6716 float_free_list = 0;
6717
6718 for (fblk = float_block; fblk; fblk = *fprev)
6719 {
6720 register int i;
6721 int this_free = 0;
6722 for (i = 0; i < lim; i++)
6723 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6724 {
6725 this_free++;
6726 fblk->floats[i].u.chain = float_free_list;
6727 float_free_list = &fblk->floats[i];
6728 }
6729 else
6730 {
6731 num_used++;
6732 FLOAT_UNMARK (&fblk->floats[i]);
6733 }
6734 lim = FLOAT_BLOCK_SIZE;
6735 /* If this block contains only free floats and we have already
6736 seen more than two blocks worth of free floats then deallocate
6737 this block. */
6738 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6739 {
6740 *fprev = fblk->next;
6741 /* Unhook from the free list. */
6742 float_free_list = fblk->floats[0].u.chain;
6743 lisp_align_free (fblk);
6744 }
6745 else
6746 {
6747 num_free += this_free;
6748 fprev = &fblk->next;
6749 }
6750 }
6751 total_floats = num_used;
6752 total_free_floats = num_free;
6753 }
6754
6755 NO_INLINE /* For better stack traces */
6756 static void
6757 sweep_intervals (void)
6758 {
6759 register struct interval_block *iblk;
6760 struct interval_block **iprev = &interval_block;
6761 register int lim = interval_block_index;
6762 EMACS_INT num_free = 0, num_used = 0;
6763
6764 interval_free_list = 0;
6765
6766 for (iblk = interval_block; iblk; iblk = *iprev)
6767 {
6768 register int i;
6769 int this_free = 0;
6770
6771 for (i = 0; i < lim; i++)
6772 {
6773 if (!iblk->intervals[i].gcmarkbit)
6774 {
6775 set_interval_parent (&iblk->intervals[i], interval_free_list);
6776 interval_free_list = &iblk->intervals[i];
6777 this_free++;
6778 }
6779 else
6780 {
6781 num_used++;
6782 iblk->intervals[i].gcmarkbit = 0;
6783 }
6784 }
6785 lim = INTERVAL_BLOCK_SIZE;
6786 /* If this block contains only free intervals and we have already
6787 seen more than two blocks worth of free intervals then
6788 deallocate this block. */
6789 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6790 {
6791 *iprev = iblk->next;
6792 /* Unhook from the free list. */
6793 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6794 lisp_free (iblk);
6795 }
6796 else
6797 {
6798 num_free += this_free;
6799 iprev = &iblk->next;
6800 }
6801 }
6802 total_intervals = num_used;
6803 total_free_intervals = num_free;
6804 }
6805
6806 NO_INLINE /* For better stack traces */
6807 static void
6808 sweep_symbols (void)
6809 {
6810 struct symbol_block *sblk;
6811 struct symbol_block **sprev = &symbol_block;
6812 int lim = symbol_block_index;
6813 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6814
6815 symbol_free_list = NULL;
6816
6817 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6818 lispsym[i].gcmarkbit = 0;
6819
6820 for (sblk = symbol_block; sblk; sblk = *sprev)
6821 {
6822 int this_free = 0;
6823 union aligned_Lisp_Symbol *sym = sblk->symbols;
6824 union aligned_Lisp_Symbol *end = sym + lim;
6825
6826 for (; sym < end; ++sym)
6827 {
6828 if (!sym->s.gcmarkbit)
6829 {
6830 if (sym->s.redirect == SYMBOL_LOCALIZED)
6831 xfree (SYMBOL_BLV (&sym->s));
6832 sym->s.next = symbol_free_list;
6833 symbol_free_list = &sym->s;
6834 symbol_free_list->function = Vdead;
6835 ++this_free;
6836 }
6837 else
6838 {
6839 ++num_used;
6840 sym->s.gcmarkbit = 0;
6841 /* Attempt to catch bogus objects. */
6842 eassert (valid_lisp_object_p (sym->s.function));
6843 }
6844 }
6845
6846 lim = SYMBOL_BLOCK_SIZE;
6847 /* If this block contains only free symbols and we have already
6848 seen more than two blocks worth of free symbols then deallocate
6849 this block. */
6850 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6851 {
6852 *sprev = sblk->next;
6853 /* Unhook from the free list. */
6854 symbol_free_list = sblk->symbols[0].s.next;
6855 lisp_free (sblk);
6856 }
6857 else
6858 {
6859 num_free += this_free;
6860 sprev = &sblk->next;
6861 }
6862 }
6863 total_symbols = num_used;
6864 total_free_symbols = num_free;
6865 }
6866
6867 NO_INLINE /* For better stack traces. */
6868 static void
6869 sweep_misc (void)
6870 {
6871 register struct marker_block *mblk;
6872 struct marker_block **mprev = &marker_block;
6873 register int lim = marker_block_index;
6874 EMACS_INT num_free = 0, num_used = 0;
6875
6876 /* Put all unmarked misc's on free list. For a marker, first
6877 unchain it from the buffer it points into. */
6878
6879 marker_free_list = 0;
6880
6881 for (mblk = marker_block; mblk; mblk = *mprev)
6882 {
6883 register int i;
6884 int this_free = 0;
6885
6886 for (i = 0; i < lim; i++)
6887 {
6888 if (!mblk->markers[i].m.u_any.gcmarkbit)
6889 {
6890 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6891 unchain_marker (&mblk->markers[i].m.u_marker);
6892 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6893 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6894 #ifdef HAVE_MODULES
6895 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6896 {
6897 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6898 uptr->finalizer (uptr->p);
6899 }
6900 #endif
6901 /* Set the type of the freed object to Lisp_Misc_Free.
6902 We could leave the type alone, since nobody checks it,
6903 but this might catch bugs faster. */
6904 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6905 mblk->markers[i].m.u_free.chain = marker_free_list;
6906 marker_free_list = &mblk->markers[i].m;
6907 this_free++;
6908 }
6909 else
6910 {
6911 num_used++;
6912 mblk->markers[i].m.u_any.gcmarkbit = 0;
6913 }
6914 }
6915 lim = MARKER_BLOCK_SIZE;
6916 /* If this block contains only free markers and we have already
6917 seen more than two blocks worth of free markers then deallocate
6918 this block. */
6919 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6920 {
6921 *mprev = mblk->next;
6922 /* Unhook from the free list. */
6923 marker_free_list = mblk->markers[0].m.u_free.chain;
6924 lisp_free (mblk);
6925 }
6926 else
6927 {
6928 num_free += this_free;
6929 mprev = &mblk->next;
6930 }
6931 }
6932
6933 total_markers = num_used;
6934 total_free_markers = num_free;
6935 }
6936
6937 NO_INLINE /* For better stack traces */
6938 static void
6939 sweep_buffers (void)
6940 {
6941 register struct buffer *buffer, **bprev = &all_buffers;
6942
6943 total_buffers = 0;
6944 for (buffer = all_buffers; buffer; buffer = *bprev)
6945 if (!VECTOR_MARKED_P (buffer))
6946 {
6947 *bprev = buffer->next;
6948 lisp_free (buffer);
6949 }
6950 else
6951 {
6952 VECTOR_UNMARK (buffer);
6953 /* Do not use buffer_(set|get)_intervals here. */
6954 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6955 total_buffers++;
6956 bprev = &buffer->next;
6957 }
6958 }
6959
6960 /* Sweep: find all structures not marked, and free them. */
6961 static void
6962 gc_sweep (void)
6963 {
6964 /* Remove or mark entries in weak hash tables.
6965 This must be done before any object is unmarked. */
6966 sweep_weak_hash_tables ();
6967
6968 sweep_strings ();
6969 check_string_bytes (!noninteractive);
6970 sweep_conses ();
6971 sweep_floats ();
6972 sweep_intervals ();
6973 sweep_symbols ();
6974 sweep_misc ();
6975 sweep_buffers ();
6976 sweep_vectors ();
6977 check_string_bytes (!noninteractive);
6978 }
6979
6980 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6981 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6982 All values are in Kbytes. If there is no swap space,
6983 last two values are zero. If the system is not supported
6984 or memory information can't be obtained, return nil. */)
6985 (void)
6986 {
6987 #if defined HAVE_LINUX_SYSINFO
6988 struct sysinfo si;
6989 uintmax_t units;
6990
6991 if (sysinfo (&si))
6992 return Qnil;
6993 #ifdef LINUX_SYSINFO_UNIT
6994 units = si.mem_unit;
6995 #else
6996 units = 1;
6997 #endif
6998 return list4i ((uintmax_t) si.totalram * units / 1024,
6999 (uintmax_t) si.freeram * units / 1024,
7000 (uintmax_t) si.totalswap * units / 1024,
7001 (uintmax_t) si.freeswap * units / 1024);
7002 #elif defined WINDOWSNT
7003 unsigned long long totalram, freeram, totalswap, freeswap;
7004
7005 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7006 return list4i ((uintmax_t) totalram / 1024,
7007 (uintmax_t) freeram / 1024,
7008 (uintmax_t) totalswap / 1024,
7009 (uintmax_t) freeswap / 1024);
7010 else
7011 return Qnil;
7012 #elif defined MSDOS
7013 unsigned long totalram, freeram, totalswap, freeswap;
7014
7015 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7016 return list4i ((uintmax_t) totalram / 1024,
7017 (uintmax_t) freeram / 1024,
7018 (uintmax_t) totalswap / 1024,
7019 (uintmax_t) freeswap / 1024);
7020 else
7021 return Qnil;
7022 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7023 /* FIXME: add more systems. */
7024 return Qnil;
7025 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7026 }
7027
7028 /* Debugging aids. */
7029
7030 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7031 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7032 This may be helpful in debugging Emacs's memory usage.
7033 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7034 (void)
7035 {
7036 Lisp_Object end;
7037
7038 #ifdef HAVE_NS
7039 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7040 XSETINT (end, 0);
7041 #else
7042 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7043 #endif
7044
7045 return end;
7046 }
7047
7048 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7049 doc: /* Return a list of counters that measure how much consing there has been.
7050 Each of these counters increments for a certain kind of object.
7051 The counters wrap around from the largest positive integer to zero.
7052 Garbage collection does not decrease them.
7053 The elements of the value are as follows:
7054 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7055 All are in units of 1 = one object consed
7056 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7057 objects consed.
7058 MISCS include overlays, markers, and some internal types.
7059 Frames, windows, buffers, and subprocesses count as vectors
7060 (but the contents of a buffer's text do not count here). */)
7061 (void)
7062 {
7063 return listn (CONSTYPE_HEAP, 8,
7064 bounded_number (cons_cells_consed),
7065 bounded_number (floats_consed),
7066 bounded_number (vector_cells_consed),
7067 bounded_number (symbols_consed),
7068 bounded_number (string_chars_consed),
7069 bounded_number (misc_objects_consed),
7070 bounded_number (intervals_consed),
7071 bounded_number (strings_consed));
7072 }
7073
7074 static bool
7075 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7076 {
7077 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7078 Lisp_Object val = find_symbol_value (symbol);
7079 return (EQ (val, obj)
7080 || EQ (sym->function, obj)
7081 || (!NILP (sym->function)
7082 && COMPILEDP (sym->function)
7083 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7084 || (!NILP (val)
7085 && COMPILEDP (val)
7086 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7087 }
7088
7089 /* Find at most FIND_MAX symbols which have OBJ as their value or
7090 function. This is used in gdbinit's `xwhichsymbols' command. */
7091
7092 Lisp_Object
7093 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7094 {
7095 struct symbol_block *sblk;
7096 ptrdiff_t gc_count = inhibit_garbage_collection ();
7097 Lisp_Object found = Qnil;
7098
7099 if (! DEADP (obj))
7100 {
7101 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7102 {
7103 Lisp_Object sym = builtin_lisp_symbol (i);
7104 if (symbol_uses_obj (sym, obj))
7105 {
7106 found = Fcons (sym, found);
7107 if (--find_max == 0)
7108 goto out;
7109 }
7110 }
7111
7112 for (sblk = symbol_block; sblk; sblk = sblk->next)
7113 {
7114 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7115 int bn;
7116
7117 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7118 {
7119 if (sblk == symbol_block && bn >= symbol_block_index)
7120 break;
7121
7122 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7123 if (symbol_uses_obj (sym, obj))
7124 {
7125 found = Fcons (sym, found);
7126 if (--find_max == 0)
7127 goto out;
7128 }
7129 }
7130 }
7131 }
7132
7133 out:
7134 unbind_to (gc_count, Qnil);
7135 return found;
7136 }
7137
7138 #ifdef SUSPICIOUS_OBJECT_CHECKING
7139
7140 static void *
7141 find_suspicious_object_in_range (void *begin, void *end)
7142 {
7143 char *begin_a = begin;
7144 char *end_a = end;
7145 int i;
7146
7147 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7148 {
7149 char *suspicious_object = suspicious_objects[i];
7150 if (begin_a <= suspicious_object && suspicious_object < end_a)
7151 return suspicious_object;
7152 }
7153
7154 return NULL;
7155 }
7156
7157 static void
7158 note_suspicious_free (void* ptr)
7159 {
7160 struct suspicious_free_record* rec;
7161
7162 rec = &suspicious_free_history[suspicious_free_history_index++];
7163 if (suspicious_free_history_index ==
7164 ARRAYELTS (suspicious_free_history))
7165 {
7166 suspicious_free_history_index = 0;
7167 }
7168
7169 memset (rec, 0, sizeof (*rec));
7170 rec->suspicious_object = ptr;
7171 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7172 }
7173
7174 static void
7175 detect_suspicious_free (void* ptr)
7176 {
7177 int i;
7178
7179 eassert (ptr != NULL);
7180
7181 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7182 if (suspicious_objects[i] == ptr)
7183 {
7184 note_suspicious_free (ptr);
7185 suspicious_objects[i] = NULL;
7186 }
7187 }
7188
7189 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7190
7191 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7192 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7193 If Emacs is compiled with suspicious object checking, capture
7194 a stack trace when OBJ is freed in order to help track down
7195 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7196 (Lisp_Object obj)
7197 {
7198 #ifdef SUSPICIOUS_OBJECT_CHECKING
7199 /* Right now, we care only about vectors. */
7200 if (VECTORLIKEP (obj))
7201 {
7202 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7203 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7204 suspicious_object_index = 0;
7205 }
7206 #endif
7207 return obj;
7208 }
7209
7210 #ifdef ENABLE_CHECKING
7211
7212 bool suppress_checking;
7213
7214 void
7215 die (const char *msg, const char *file, int line)
7216 {
7217 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7218 file, line, msg);
7219 terminate_due_to_signal (SIGABRT, INT_MAX);
7220 }
7221
7222 #endif /* ENABLE_CHECKING */
7223
7224 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7225
7226 /* Stress alloca with inconveniently sized requests and check
7227 whether all allocated areas may be used for Lisp_Object. */
7228
7229 NO_INLINE static void
7230 verify_alloca (void)
7231 {
7232 int i;
7233 enum { ALLOCA_CHECK_MAX = 256 };
7234 /* Start from size of the smallest Lisp object. */
7235 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7236 {
7237 void *ptr = alloca (i);
7238 make_lisp_ptr (ptr, Lisp_Cons);
7239 }
7240 }
7241
7242 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7243
7244 #define verify_alloca() ((void) 0)
7245
7246 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7247
7248 /* Initialization. */
7249
7250 void
7251 init_alloc_once (void)
7252 {
7253 /* Even though Qt's contents are not set up, its address is known. */
7254 Vpurify_flag = Qt;
7255
7256 purebeg = PUREBEG;
7257 pure_size = PURESIZE;
7258
7259 verify_alloca ();
7260 init_finalizer_list (&finalizers);
7261 init_finalizer_list (&doomed_finalizers);
7262
7263 mem_init ();
7264 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7265
7266 #ifdef DOUG_LEA_MALLOC
7267 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7268 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7269 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7270 #endif
7271 init_strings ();
7272 init_vectors ();
7273
7274 refill_memory_reserve ();
7275 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7276 }
7277
7278 void
7279 init_alloc (void)
7280 {
7281 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7282 setjmp_tested_p = longjmps_done = 0;
7283 #endif
7284 Vgc_elapsed = make_float (0.0);
7285 gcs_done = 0;
7286
7287 #if USE_VALGRIND
7288 valgrind_p = RUNNING_ON_VALGRIND != 0;
7289 #endif
7290 }
7291
7292 void
7293 syms_of_alloc (void)
7294 {
7295 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7296 doc: /* Number of bytes of consing between garbage collections.
7297 Garbage collection can happen automatically once this many bytes have been
7298 allocated since the last garbage collection. All data types count.
7299
7300 Garbage collection happens automatically only when `eval' is called.
7301
7302 By binding this temporarily to a large number, you can effectively
7303 prevent garbage collection during a part of the program.
7304 See also `gc-cons-percentage'. */);
7305
7306 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7307 doc: /* Portion of the heap used for allocation.
7308 Garbage collection can happen automatically once this portion of the heap
7309 has been allocated since the last garbage collection.
7310 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7311 Vgc_cons_percentage = make_float (0.1);
7312
7313 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7314 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7315
7316 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7317 doc: /* Number of cons cells that have been consed so far. */);
7318
7319 DEFVAR_INT ("floats-consed", floats_consed,
7320 doc: /* Number of floats that have been consed so far. */);
7321
7322 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7323 doc: /* Number of vector cells that have been consed so far. */);
7324
7325 DEFVAR_INT ("symbols-consed", symbols_consed,
7326 doc: /* Number of symbols that have been consed so far. */);
7327 symbols_consed += ARRAYELTS (lispsym);
7328
7329 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7330 doc: /* Number of string characters that have been consed so far. */);
7331
7332 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7333 doc: /* Number of miscellaneous objects that have been consed so far.
7334 These include markers and overlays, plus certain objects not visible
7335 to users. */);
7336
7337 DEFVAR_INT ("intervals-consed", intervals_consed,
7338 doc: /* Number of intervals that have been consed so far. */);
7339
7340 DEFVAR_INT ("strings-consed", strings_consed,
7341 doc: /* Number of strings that have been consed so far. */);
7342
7343 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7344 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7345 This means that certain objects should be allocated in shared (pure) space.
7346 It can also be set to a hash-table, in which case this table is used to
7347 do hash-consing of the objects allocated to pure space. */);
7348
7349 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7350 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7351 garbage_collection_messages = 0;
7352
7353 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7354 doc: /* Hook run after garbage collection has finished. */);
7355 Vpost_gc_hook = Qnil;
7356 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7357
7358 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7359 doc: /* Precomputed `signal' argument for memory-full error. */);
7360 /* We build this in advance because if we wait until we need it, we might
7361 not be able to allocate the memory to hold it. */
7362 Vmemory_signal_data
7363 = listn (CONSTYPE_PURE, 2, Qerror,
7364 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7365
7366 DEFVAR_LISP ("memory-full", Vmemory_full,
7367 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7368 Vmemory_full = Qnil;
7369
7370 DEFSYM (Qconses, "conses");
7371 DEFSYM (Qsymbols, "symbols");
7372 DEFSYM (Qmiscs, "miscs");
7373 DEFSYM (Qstrings, "strings");
7374 DEFSYM (Qvectors, "vectors");
7375 DEFSYM (Qfloats, "floats");
7376 DEFSYM (Qintervals, "intervals");
7377 DEFSYM (Qbuffers, "buffers");
7378 DEFSYM (Qstring_bytes, "string-bytes");
7379 DEFSYM (Qvector_slots, "vector-slots");
7380 DEFSYM (Qheap, "heap");
7381 DEFSYM (QAutomatic_GC, "Automatic GC");
7382
7383 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7384 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7385
7386 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7387 doc: /* Accumulated time elapsed in garbage collections.
7388 The time is in seconds as a floating point value. */);
7389 DEFVAR_INT ("gcs-done", gcs_done,
7390 doc: /* Accumulated number of garbage collections done. */);
7391
7392 defsubr (&Scons);
7393 defsubr (&Slist);
7394 defsubr (&Svector);
7395 defsubr (&Sbool_vector);
7396 defsubr (&Smake_byte_code);
7397 defsubr (&Smake_list);
7398 defsubr (&Smake_vector);
7399 defsubr (&Smake_string);
7400 defsubr (&Smake_bool_vector);
7401 defsubr (&Smake_symbol);
7402 defsubr (&Smake_marker);
7403 defsubr (&Smake_finalizer);
7404 defsubr (&Spurecopy);
7405 defsubr (&Sgarbage_collect);
7406 defsubr (&Smemory_limit);
7407 defsubr (&Smemory_info);
7408 defsubr (&Smemory_use_counts);
7409 defsubr (&Ssuspicious_object);
7410 }
7411
7412 /* When compiled with GCC, GDB might say "No enum type named
7413 pvec_type" if we don't have at least one symbol with that type, and
7414 then xbacktrace could fail. Similarly for the other enums and
7415 their values. Some non-GCC compilers don't like these constructs. */
7416 #ifdef __GNUC__
7417 union
7418 {
7419 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7420 enum char_table_specials char_table_specials;
7421 enum char_bits char_bits;
7422 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7423 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7424 enum Lisp_Bits Lisp_Bits;
7425 enum Lisp_Compiled Lisp_Compiled;
7426 enum maxargs maxargs;
7427 enum MAX_ALLOCA MAX_ALLOCA;
7428 enum More_Lisp_Bits More_Lisp_Bits;
7429 enum pvec_type pvec_type;
7430 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7431 #endif /* __GNUC__ */