]> code.delx.au - gnu-emacs/blob - src/fns.c
Fix an error in Tramp for rsync
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2016 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <unistd.h>
24 #include <filevercmp.h>
25 #include <intprops.h>
26 #include <vla.h>
27 #include <errno.h>
28
29 #include "lisp.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "composite.h"
33 #include "buffer.h"
34 #include "intervals.h"
35 #include "window.h"
36
37 static void sort_vector_copy (Lisp_Object, ptrdiff_t,
38 Lisp_Object *restrict, Lisp_Object *restrict);
39 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool, Lisp_Object);
40
41 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
42 doc: /* Return the argument unchanged. */
43 attributes: const)
44 (Lisp_Object arg)
45 {
46 return arg;
47 }
48
49 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
50 doc: /* Return a pseudo-random number.
51 All integers representable in Lisp, i.e. between `most-negative-fixnum'
52 and `most-positive-fixnum', inclusive, are equally likely.
53
54 With positive integer LIMIT, return random number in interval [0,LIMIT).
55 With argument t, set the random number seed from the system's entropy
56 pool if available, otherwise from less-random volatile data such as the time.
57 With a string argument, set the seed based on the string's contents.
58 Other values of LIMIT are ignored.
59
60 See Info node `(elisp)Random Numbers' for more details. */)
61 (Lisp_Object limit)
62 {
63 EMACS_INT val;
64
65 if (EQ (limit, Qt))
66 init_random ();
67 else if (STRINGP (limit))
68 seed_random (SSDATA (limit), SBYTES (limit));
69
70 val = get_random ();
71 if (INTEGERP (limit) && 0 < XINT (limit))
72 while (true)
73 {
74 /* Return the remainder, except reject the rare case where
75 get_random returns a number so close to INTMASK that the
76 remainder isn't random. */
77 EMACS_INT remainder = val % XINT (limit);
78 if (val - remainder <= INTMASK - XINT (limit) + 1)
79 return make_number (remainder);
80 val = get_random ();
81 }
82 return make_number (val);
83 }
84 \f
85 /* Heuristic on how many iterations of a tight loop can be safely done
86 before it's time to do a QUIT. This must be a power of 2. */
87 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
88
89 /* Random data-structure functions. */
90
91 static void
92 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
93 {
94 CHECK_TYPE (NILP (x), Qlistp, y);
95 }
96
97 DEFUN ("length", Flength, Slength, 1, 1, 0,
98 doc: /* Return the length of vector, list or string SEQUENCE.
99 A byte-code function object is also allowed.
100 If the string contains multibyte characters, this is not necessarily
101 the number of bytes in the string; it is the number of characters.
102 To get the number of bytes, use `string-bytes'. */)
103 (register Lisp_Object sequence)
104 {
105 register Lisp_Object val;
106
107 if (STRINGP (sequence))
108 XSETFASTINT (val, SCHARS (sequence));
109 else if (VECTORP (sequence))
110 XSETFASTINT (val, ASIZE (sequence));
111 else if (CHAR_TABLE_P (sequence))
112 XSETFASTINT (val, MAX_CHAR);
113 else if (BOOL_VECTOR_P (sequence))
114 XSETFASTINT (val, bool_vector_size (sequence));
115 else if (COMPILEDP (sequence))
116 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
117 else if (CONSP (sequence))
118 {
119 EMACS_INT i = 0;
120
121 do
122 {
123 ++i;
124 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
125 {
126 if (MOST_POSITIVE_FIXNUM < i)
127 error ("List too long");
128 QUIT;
129 }
130 sequence = XCDR (sequence);
131 }
132 while (CONSP (sequence));
133
134 CHECK_LIST_END (sequence, sequence);
135
136 val = make_number (i);
137 }
138 else if (NILP (sequence))
139 XSETFASTINT (val, 0);
140 else
141 wrong_type_argument (Qsequencep, sequence);
142
143 return val;
144 }
145
146 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
147 doc: /* Return the length of a list, but avoid error or infinite loop.
148 This function never gets an error. If LIST is not really a list,
149 it returns 0. If LIST is circular, it returns a finite value
150 which is at least the number of distinct elements. */)
151 (Lisp_Object list)
152 {
153 Lisp_Object tail, halftail;
154 double hilen = 0;
155 uintmax_t lolen = 1;
156
157 if (! CONSP (list))
158 return make_number (0);
159
160 /* halftail is used to detect circular lists. */
161 for (tail = halftail = list; ; )
162 {
163 tail = XCDR (tail);
164 if (! CONSP (tail))
165 break;
166 if (EQ (tail, halftail))
167 break;
168 lolen++;
169 if ((lolen & 1) == 0)
170 {
171 halftail = XCDR (halftail);
172 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
173 {
174 QUIT;
175 if (lolen == 0)
176 hilen += UINTMAX_MAX + 1.0;
177 }
178 }
179 }
180
181 /* If the length does not fit into a fixnum, return a float.
182 On all known practical machines this returns an upper bound on
183 the true length. */
184 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
185 }
186
187 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
188 doc: /* Return the number of bytes in STRING.
189 If STRING is multibyte, this may be greater than the length of STRING. */)
190 (Lisp_Object string)
191 {
192 CHECK_STRING (string);
193 return make_number (SBYTES (string));
194 }
195
196 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
197 doc: /* Return t if two strings have identical contents.
198 Case is significant, but text properties are ignored.
199 Symbols are also allowed; their print names are used instead. */)
200 (register Lisp_Object s1, Lisp_Object s2)
201 {
202 if (SYMBOLP (s1))
203 s1 = SYMBOL_NAME (s1);
204 if (SYMBOLP (s2))
205 s2 = SYMBOL_NAME (s2);
206 CHECK_STRING (s1);
207 CHECK_STRING (s2);
208
209 if (SCHARS (s1) != SCHARS (s2)
210 || SBYTES (s1) != SBYTES (s2)
211 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
212 return Qnil;
213 return Qt;
214 }
215
216 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
217 doc: /* Compare the contents of two strings, converting to multibyte if needed.
218 The arguments START1, END1, START2, and END2, if non-nil, are
219 positions specifying which parts of STR1 or STR2 to compare. In
220 string STR1, compare the part between START1 (inclusive) and END1
221 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
222 the string; if END1 is nil, it defaults to the length of the string.
223 Likewise, in string STR2, compare the part between START2 and END2.
224 Like in `substring', negative values are counted from the end.
225
226 The strings are compared by the numeric values of their characters.
227 For instance, STR1 is "less than" STR2 if its first differing
228 character has a smaller numeric value. If IGNORE-CASE is non-nil,
229 characters are converted to upper-case before comparing them. Unibyte
230 strings are converted to multibyte for comparison.
231
232 The value is t if the strings (or specified portions) match.
233 If string STR1 is less, the value is a negative number N;
234 - 1 - N is the number of characters that match at the beginning.
235 If string STR1 is greater, the value is a positive number N;
236 N - 1 is the number of characters that match at the beginning. */)
237 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2,
238 Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
239 {
240 ptrdiff_t from1, to1, from2, to2, i1, i1_byte, i2, i2_byte;
241
242 CHECK_STRING (str1);
243 CHECK_STRING (str2);
244
245 /* For backward compatibility, silently bring too-large positive end
246 values into range. */
247 if (INTEGERP (end1) && SCHARS (str1) < XINT (end1))
248 end1 = make_number (SCHARS (str1));
249 if (INTEGERP (end2) && SCHARS (str2) < XINT (end2))
250 end2 = make_number (SCHARS (str2));
251
252 validate_subarray (str1, start1, end1, SCHARS (str1), &from1, &to1);
253 validate_subarray (str2, start2, end2, SCHARS (str2), &from2, &to2);
254
255 i1 = from1;
256 i2 = from2;
257
258 i1_byte = string_char_to_byte (str1, i1);
259 i2_byte = string_char_to_byte (str2, i2);
260
261 while (i1 < to1 && i2 < to2)
262 {
263 /* When we find a mismatch, we must compare the
264 characters, not just the bytes. */
265 int c1, c2;
266
267 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c1, str1, i1, i1_byte);
268 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c2, str2, i2, i2_byte);
269
270 if (c1 == c2)
271 continue;
272
273 if (! NILP (ignore_case))
274 {
275 c1 = XINT (Fupcase (make_number (c1)));
276 c2 = XINT (Fupcase (make_number (c2)));
277 }
278
279 if (c1 == c2)
280 continue;
281
282 /* Note that I1 has already been incremented
283 past the character that we are comparing;
284 hence we don't add or subtract 1 here. */
285 if (c1 < c2)
286 return make_number (- i1 + from1);
287 else
288 return make_number (i1 - from1);
289 }
290
291 if (i1 < to1)
292 return make_number (i1 - from1 + 1);
293 if (i2 < to2)
294 return make_number (- i1 + from1 - 1);
295
296 return Qt;
297 }
298
299 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
300 doc: /* Return non-nil if STRING1 is less than STRING2 in lexicographic order.
301 Case is significant.
302 Symbols are also allowed; their print names are used instead. */)
303 (register Lisp_Object string1, Lisp_Object string2)
304 {
305 register ptrdiff_t end;
306 register ptrdiff_t i1, i1_byte, i2, i2_byte;
307
308 if (SYMBOLP (string1))
309 string1 = SYMBOL_NAME (string1);
310 if (SYMBOLP (string2))
311 string2 = SYMBOL_NAME (string2);
312 CHECK_STRING (string1);
313 CHECK_STRING (string2);
314
315 i1 = i1_byte = i2 = i2_byte = 0;
316
317 end = SCHARS (string1);
318 if (end > SCHARS (string2))
319 end = SCHARS (string2);
320
321 while (i1 < end)
322 {
323 /* When we find a mismatch, we must compare the
324 characters, not just the bytes. */
325 int c1, c2;
326
327 FETCH_STRING_CHAR_ADVANCE (c1, string1, i1, i1_byte);
328 FETCH_STRING_CHAR_ADVANCE (c2, string2, i2, i2_byte);
329
330 if (c1 != c2)
331 return c1 < c2 ? Qt : Qnil;
332 }
333 return i1 < SCHARS (string2) ? Qt : Qnil;
334 }
335
336 DEFUN ("string-version-lessp", Fstring_version_lessp,
337 Sstring_version_lessp, 2, 2, 0,
338 doc: /* Return non-nil if S1 is less than S2, as version strings.
339
340 This function compares version strings S1 and S2:
341 1) By prefix lexicographically.
342 2) Then by version (similarly to version comparison of Debian's dpkg).
343 Leading zeros in version numbers are ignored.
344 3) If both prefix and version are equal, compare as ordinary strings.
345
346 For example, \"foo2.png\" compares less than \"foo12.png\".
347 Case is significant.
348 Symbols are also allowed; their print names are used instead. */)
349 (Lisp_Object string1, Lisp_Object string2)
350 {
351 if (SYMBOLP (string1))
352 string1 = SYMBOL_NAME (string1);
353 if (SYMBOLP (string2))
354 string2 = SYMBOL_NAME (string2);
355 CHECK_STRING (string1);
356 CHECK_STRING (string2);
357
358 char *p1 = SSDATA (string1);
359 char *p2 = SSDATA (string2);
360 char *lim1 = p1 + SBYTES (string1);
361 char *lim2 = p2 + SBYTES (string2);
362 int cmp;
363
364 while ((cmp = filevercmp (p1, p2)) == 0)
365 {
366 /* If the strings are identical through their first null bytes,
367 skip past identical prefixes and try again. */
368 ptrdiff_t size = strlen (p1) + 1;
369 p1 += size;
370 p2 += size;
371 if (lim1 < p1)
372 return lim2 < p2 ? Qnil : Qt;
373 if (lim2 < p2)
374 return Qnil;
375 }
376
377 return cmp < 0 ? Qt : Qnil;
378 }
379
380 DEFUN ("string-collate-lessp", Fstring_collate_lessp, Sstring_collate_lessp, 2, 4, 0,
381 doc: /* Return t if first arg string is less than second in collation order.
382 Symbols are also allowed; their print names are used instead.
383
384 This function obeys the conventions for collation order in your
385 locale settings. For example, punctuation and whitespace characters
386 might be considered less significant for sorting:
387
388 \(sort \\='("11" "12" "1 1" "1 2" "1.1" "1.2") \\='string-collate-lessp)
389 => ("11" "1 1" "1.1" "12" "1 2" "1.2")
390
391 The optional argument LOCALE, a string, overrides the setting of your
392 current locale identifier for collation. The value is system
393 dependent; a LOCALE \"en_US.UTF-8\" is applicable on POSIX systems,
394 while it would be, e.g., \"enu_USA.1252\" on MS-Windows systems.
395
396 If IGNORE-CASE is non-nil, characters are converted to lower-case
397 before comparing them.
398
399 To emulate Unicode-compliant collation on MS-Windows systems,
400 bind `w32-collate-ignore-punctuation' to a non-nil value, since
401 the codeset part of the locale cannot be \"UTF-8\" on MS-Windows.
402
403 If your system does not support a locale environment, this function
404 behaves like `string-lessp'. */)
405 (Lisp_Object s1, Lisp_Object s2, Lisp_Object locale, Lisp_Object ignore_case)
406 {
407 #if defined __STDC_ISO_10646__ || defined WINDOWSNT
408 /* Check parameters. */
409 if (SYMBOLP (s1))
410 s1 = SYMBOL_NAME (s1);
411 if (SYMBOLP (s2))
412 s2 = SYMBOL_NAME (s2);
413 CHECK_STRING (s1);
414 CHECK_STRING (s2);
415 if (!NILP (locale))
416 CHECK_STRING (locale);
417
418 return (str_collate (s1, s2, locale, ignore_case) < 0) ? Qt : Qnil;
419
420 #else /* !__STDC_ISO_10646__, !WINDOWSNT */
421 return Fstring_lessp (s1, s2);
422 #endif /* !__STDC_ISO_10646__, !WINDOWSNT */
423 }
424
425 DEFUN ("string-collate-equalp", Fstring_collate_equalp, Sstring_collate_equalp, 2, 4, 0,
426 doc: /* Return t if two strings have identical contents.
427 Symbols are also allowed; their print names are used instead.
428
429 This function obeys the conventions for collation order in your locale
430 settings. For example, characters with different coding points but
431 the same meaning might be considered as equal, like different grave
432 accent Unicode characters:
433
434 \(string-collate-equalp (string ?\\uFF40) (string ?\\u1FEF))
435 => t
436
437 The optional argument LOCALE, a string, overrides the setting of your
438 current locale identifier for collation. The value is system
439 dependent; a LOCALE \"en_US.UTF-8\" is applicable on POSIX systems,
440 while it would be \"enu_USA.1252\" on MS Windows systems.
441
442 If IGNORE-CASE is non-nil, characters are converted to lower-case
443 before comparing them.
444
445 To emulate Unicode-compliant collation on MS-Windows systems,
446 bind `w32-collate-ignore-punctuation' to a non-nil value, since
447 the codeset part of the locale cannot be \"UTF-8\" on MS-Windows.
448
449 If your system does not support a locale environment, this function
450 behaves like `string-equal'.
451
452 Do NOT use this function to compare file names for equality, only
453 for sorting them. */)
454 (Lisp_Object s1, Lisp_Object s2, Lisp_Object locale, Lisp_Object ignore_case)
455 {
456 #if defined __STDC_ISO_10646__ || defined WINDOWSNT
457 /* Check parameters. */
458 if (SYMBOLP (s1))
459 s1 = SYMBOL_NAME (s1);
460 if (SYMBOLP (s2))
461 s2 = SYMBOL_NAME (s2);
462 CHECK_STRING (s1);
463 CHECK_STRING (s2);
464 if (!NILP (locale))
465 CHECK_STRING (locale);
466
467 return (str_collate (s1, s2, locale, ignore_case) == 0) ? Qt : Qnil;
468
469 #else /* !__STDC_ISO_10646__, !WINDOWSNT */
470 return Fstring_equal (s1, s2);
471 #endif /* !__STDC_ISO_10646__, !WINDOWSNT */
472 }
473 \f
474 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
475 enum Lisp_Type target_type, bool last_special);
476
477 /* ARGSUSED */
478 Lisp_Object
479 concat2 (Lisp_Object s1, Lisp_Object s2)
480 {
481 return concat (2, ((Lisp_Object []) {s1, s2}), Lisp_String, 0);
482 }
483
484 /* ARGSUSED */
485 Lisp_Object
486 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
487 {
488 return concat (3, ((Lisp_Object []) {s1, s2, s3}), Lisp_String, 0);
489 }
490
491 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
492 doc: /* Concatenate all the arguments and make the result a list.
493 The result is a list whose elements are the elements of all the arguments.
494 Each argument may be a list, vector or string.
495 The last argument is not copied, just used as the tail of the new list.
496 usage: (append &rest SEQUENCES) */)
497 (ptrdiff_t nargs, Lisp_Object *args)
498 {
499 return concat (nargs, args, Lisp_Cons, 1);
500 }
501
502 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
503 doc: /* Concatenate all the arguments and make the result a string.
504 The result is a string whose elements are the elements of all the arguments.
505 Each argument may be a string or a list or vector of characters (integers).
506 usage: (concat &rest SEQUENCES) */)
507 (ptrdiff_t nargs, Lisp_Object *args)
508 {
509 return concat (nargs, args, Lisp_String, 0);
510 }
511
512 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
513 doc: /* Concatenate all the arguments and make the result a vector.
514 The result is a vector whose elements are the elements of all the arguments.
515 Each argument may be a list, vector or string.
516 usage: (vconcat &rest SEQUENCES) */)
517 (ptrdiff_t nargs, Lisp_Object *args)
518 {
519 return concat (nargs, args, Lisp_Vectorlike, 0);
520 }
521
522
523 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
524 doc: /* Return a copy of a list, vector, string or char-table.
525 The elements of a list or vector are not copied; they are shared
526 with the original. */)
527 (Lisp_Object arg)
528 {
529 if (NILP (arg)) return arg;
530
531 if (CHAR_TABLE_P (arg))
532 {
533 return copy_char_table (arg);
534 }
535
536 if (BOOL_VECTOR_P (arg))
537 {
538 EMACS_INT nbits = bool_vector_size (arg);
539 ptrdiff_t nbytes = bool_vector_bytes (nbits);
540 Lisp_Object val = make_uninit_bool_vector (nbits);
541 memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
542 return val;
543 }
544
545 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
546 wrong_type_argument (Qsequencep, arg);
547
548 return concat (1, &arg, XTYPE (arg), 0);
549 }
550
551 /* This structure holds information of an argument of `concat' that is
552 a string and has text properties to be copied. */
553 struct textprop_rec
554 {
555 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
556 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
557 ptrdiff_t to; /* refer to VAL (the target string) */
558 };
559
560 static Lisp_Object
561 concat (ptrdiff_t nargs, Lisp_Object *args,
562 enum Lisp_Type target_type, bool last_special)
563 {
564 Lisp_Object val;
565 Lisp_Object tail;
566 Lisp_Object this;
567 ptrdiff_t toindex;
568 ptrdiff_t toindex_byte = 0;
569 EMACS_INT result_len;
570 EMACS_INT result_len_byte;
571 ptrdiff_t argnum;
572 Lisp_Object last_tail;
573 Lisp_Object prev;
574 bool some_multibyte;
575 /* When we make a multibyte string, we can't copy text properties
576 while concatenating each string because the length of resulting
577 string can't be decided until we finish the whole concatenation.
578 So, we record strings that have text properties to be copied
579 here, and copy the text properties after the concatenation. */
580 struct textprop_rec *textprops = NULL;
581 /* Number of elements in textprops. */
582 ptrdiff_t num_textprops = 0;
583 USE_SAFE_ALLOCA;
584
585 tail = Qnil;
586
587 /* In append, the last arg isn't treated like the others */
588 if (last_special && nargs > 0)
589 {
590 nargs--;
591 last_tail = args[nargs];
592 }
593 else
594 last_tail = Qnil;
595
596 /* Check each argument. */
597 for (argnum = 0; argnum < nargs; argnum++)
598 {
599 this = args[argnum];
600 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
601 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
602 wrong_type_argument (Qsequencep, this);
603 }
604
605 /* Compute total length in chars of arguments in RESULT_LEN.
606 If desired output is a string, also compute length in bytes
607 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
608 whether the result should be a multibyte string. */
609 result_len_byte = 0;
610 result_len = 0;
611 some_multibyte = 0;
612 for (argnum = 0; argnum < nargs; argnum++)
613 {
614 EMACS_INT len;
615 this = args[argnum];
616 len = XFASTINT (Flength (this));
617 if (target_type == Lisp_String)
618 {
619 /* We must count the number of bytes needed in the string
620 as well as the number of characters. */
621 ptrdiff_t i;
622 Lisp_Object ch;
623 int c;
624 ptrdiff_t this_len_byte;
625
626 if (VECTORP (this) || COMPILEDP (this))
627 for (i = 0; i < len; i++)
628 {
629 ch = AREF (this, i);
630 CHECK_CHARACTER (ch);
631 c = XFASTINT (ch);
632 this_len_byte = CHAR_BYTES (c);
633 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
634 string_overflow ();
635 result_len_byte += this_len_byte;
636 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
637 some_multibyte = 1;
638 }
639 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
640 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
641 else if (CONSP (this))
642 for (; CONSP (this); this = XCDR (this))
643 {
644 ch = XCAR (this);
645 CHECK_CHARACTER (ch);
646 c = XFASTINT (ch);
647 this_len_byte = CHAR_BYTES (c);
648 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
649 string_overflow ();
650 result_len_byte += this_len_byte;
651 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
652 some_multibyte = 1;
653 }
654 else if (STRINGP (this))
655 {
656 if (STRING_MULTIBYTE (this))
657 {
658 some_multibyte = 1;
659 this_len_byte = SBYTES (this);
660 }
661 else
662 this_len_byte = count_size_as_multibyte (SDATA (this),
663 SCHARS (this));
664 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
665 string_overflow ();
666 result_len_byte += this_len_byte;
667 }
668 }
669
670 result_len += len;
671 if (MOST_POSITIVE_FIXNUM < result_len)
672 memory_full (SIZE_MAX);
673 }
674
675 if (! some_multibyte)
676 result_len_byte = result_len;
677
678 /* Create the output object. */
679 if (target_type == Lisp_Cons)
680 val = Fmake_list (make_number (result_len), Qnil);
681 else if (target_type == Lisp_Vectorlike)
682 val = Fmake_vector (make_number (result_len), Qnil);
683 else if (some_multibyte)
684 val = make_uninit_multibyte_string (result_len, result_len_byte);
685 else
686 val = make_uninit_string (result_len);
687
688 /* In `append', if all but last arg are nil, return last arg. */
689 if (target_type == Lisp_Cons && EQ (val, Qnil))
690 return last_tail;
691
692 /* Copy the contents of the args into the result. */
693 if (CONSP (val))
694 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
695 else
696 toindex = 0, toindex_byte = 0;
697
698 prev = Qnil;
699 if (STRINGP (val))
700 SAFE_NALLOCA (textprops, 1, nargs);
701
702 for (argnum = 0; argnum < nargs; argnum++)
703 {
704 Lisp_Object thislen;
705 ptrdiff_t thisleni = 0;
706 register ptrdiff_t thisindex = 0;
707 register ptrdiff_t thisindex_byte = 0;
708
709 this = args[argnum];
710 if (!CONSP (this))
711 thislen = Flength (this), thisleni = XINT (thislen);
712
713 /* Between strings of the same kind, copy fast. */
714 if (STRINGP (this) && STRINGP (val)
715 && STRING_MULTIBYTE (this) == some_multibyte)
716 {
717 ptrdiff_t thislen_byte = SBYTES (this);
718
719 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
720 if (string_intervals (this))
721 {
722 textprops[num_textprops].argnum = argnum;
723 textprops[num_textprops].from = 0;
724 textprops[num_textprops++].to = toindex;
725 }
726 toindex_byte += thislen_byte;
727 toindex += thisleni;
728 }
729 /* Copy a single-byte string to a multibyte string. */
730 else if (STRINGP (this) && STRINGP (val))
731 {
732 if (string_intervals (this))
733 {
734 textprops[num_textprops].argnum = argnum;
735 textprops[num_textprops].from = 0;
736 textprops[num_textprops++].to = toindex;
737 }
738 toindex_byte += copy_text (SDATA (this),
739 SDATA (val) + toindex_byte,
740 SCHARS (this), 0, 1);
741 toindex += thisleni;
742 }
743 else
744 /* Copy element by element. */
745 while (1)
746 {
747 register Lisp_Object elt;
748
749 /* Fetch next element of `this' arg into `elt', or break if
750 `this' is exhausted. */
751 if (NILP (this)) break;
752 if (CONSP (this))
753 elt = XCAR (this), this = XCDR (this);
754 else if (thisindex >= thisleni)
755 break;
756 else if (STRINGP (this))
757 {
758 int c;
759 if (STRING_MULTIBYTE (this))
760 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
761 thisindex,
762 thisindex_byte);
763 else
764 {
765 c = SREF (this, thisindex); thisindex++;
766 if (some_multibyte && !ASCII_CHAR_P (c))
767 c = BYTE8_TO_CHAR (c);
768 }
769 XSETFASTINT (elt, c);
770 }
771 else if (BOOL_VECTOR_P (this))
772 {
773 elt = bool_vector_ref (this, thisindex);
774 thisindex++;
775 }
776 else
777 {
778 elt = AREF (this, thisindex);
779 thisindex++;
780 }
781
782 /* Store this element into the result. */
783 if (toindex < 0)
784 {
785 XSETCAR (tail, elt);
786 prev = tail;
787 tail = XCDR (tail);
788 }
789 else if (VECTORP (val))
790 {
791 ASET (val, toindex, elt);
792 toindex++;
793 }
794 else
795 {
796 int c;
797 CHECK_CHARACTER (elt);
798 c = XFASTINT (elt);
799 if (some_multibyte)
800 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
801 else
802 SSET (val, toindex_byte++, c);
803 toindex++;
804 }
805 }
806 }
807 if (!NILP (prev))
808 XSETCDR (prev, last_tail);
809
810 if (num_textprops > 0)
811 {
812 Lisp_Object props;
813 ptrdiff_t last_to_end = -1;
814
815 for (argnum = 0; argnum < num_textprops; argnum++)
816 {
817 this = args[textprops[argnum].argnum];
818 props = text_property_list (this,
819 make_number (0),
820 make_number (SCHARS (this)),
821 Qnil);
822 /* If successive arguments have properties, be sure that the
823 value of `composition' property be the copy. */
824 if (last_to_end == textprops[argnum].to)
825 make_composition_value_copy (props);
826 add_text_properties_from_list (val, props,
827 make_number (textprops[argnum].to));
828 last_to_end = textprops[argnum].to + SCHARS (this);
829 }
830 }
831
832 SAFE_FREE ();
833 return val;
834 }
835 \f
836 static Lisp_Object string_char_byte_cache_string;
837 static ptrdiff_t string_char_byte_cache_charpos;
838 static ptrdiff_t string_char_byte_cache_bytepos;
839
840 void
841 clear_string_char_byte_cache (void)
842 {
843 string_char_byte_cache_string = Qnil;
844 }
845
846 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
847
848 ptrdiff_t
849 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
850 {
851 ptrdiff_t i_byte;
852 ptrdiff_t best_below, best_below_byte;
853 ptrdiff_t best_above, best_above_byte;
854
855 best_below = best_below_byte = 0;
856 best_above = SCHARS (string);
857 best_above_byte = SBYTES (string);
858 if (best_above == best_above_byte)
859 return char_index;
860
861 if (EQ (string, string_char_byte_cache_string))
862 {
863 if (string_char_byte_cache_charpos < char_index)
864 {
865 best_below = string_char_byte_cache_charpos;
866 best_below_byte = string_char_byte_cache_bytepos;
867 }
868 else
869 {
870 best_above = string_char_byte_cache_charpos;
871 best_above_byte = string_char_byte_cache_bytepos;
872 }
873 }
874
875 if (char_index - best_below < best_above - char_index)
876 {
877 unsigned char *p = SDATA (string) + best_below_byte;
878
879 while (best_below < char_index)
880 {
881 p += BYTES_BY_CHAR_HEAD (*p);
882 best_below++;
883 }
884 i_byte = p - SDATA (string);
885 }
886 else
887 {
888 unsigned char *p = SDATA (string) + best_above_byte;
889
890 while (best_above > char_index)
891 {
892 p--;
893 while (!CHAR_HEAD_P (*p)) p--;
894 best_above--;
895 }
896 i_byte = p - SDATA (string);
897 }
898
899 string_char_byte_cache_bytepos = i_byte;
900 string_char_byte_cache_charpos = char_index;
901 string_char_byte_cache_string = string;
902
903 return i_byte;
904 }
905 \f
906 /* Return the character index corresponding to BYTE_INDEX in STRING. */
907
908 ptrdiff_t
909 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
910 {
911 ptrdiff_t i, i_byte;
912 ptrdiff_t best_below, best_below_byte;
913 ptrdiff_t best_above, best_above_byte;
914
915 best_below = best_below_byte = 0;
916 best_above = SCHARS (string);
917 best_above_byte = SBYTES (string);
918 if (best_above == best_above_byte)
919 return byte_index;
920
921 if (EQ (string, string_char_byte_cache_string))
922 {
923 if (string_char_byte_cache_bytepos < byte_index)
924 {
925 best_below = string_char_byte_cache_charpos;
926 best_below_byte = string_char_byte_cache_bytepos;
927 }
928 else
929 {
930 best_above = string_char_byte_cache_charpos;
931 best_above_byte = string_char_byte_cache_bytepos;
932 }
933 }
934
935 if (byte_index - best_below_byte < best_above_byte - byte_index)
936 {
937 unsigned char *p = SDATA (string) + best_below_byte;
938 unsigned char *pend = SDATA (string) + byte_index;
939
940 while (p < pend)
941 {
942 p += BYTES_BY_CHAR_HEAD (*p);
943 best_below++;
944 }
945 i = best_below;
946 i_byte = p - SDATA (string);
947 }
948 else
949 {
950 unsigned char *p = SDATA (string) + best_above_byte;
951 unsigned char *pbeg = SDATA (string) + byte_index;
952
953 while (p > pbeg)
954 {
955 p--;
956 while (!CHAR_HEAD_P (*p)) p--;
957 best_above--;
958 }
959 i = best_above;
960 i_byte = p - SDATA (string);
961 }
962
963 string_char_byte_cache_bytepos = i_byte;
964 string_char_byte_cache_charpos = i;
965 string_char_byte_cache_string = string;
966
967 return i;
968 }
969 \f
970 /* Convert STRING to a multibyte string. */
971
972 static Lisp_Object
973 string_make_multibyte (Lisp_Object string)
974 {
975 unsigned char *buf;
976 ptrdiff_t nbytes;
977 Lisp_Object ret;
978 USE_SAFE_ALLOCA;
979
980 if (STRING_MULTIBYTE (string))
981 return string;
982
983 nbytes = count_size_as_multibyte (SDATA (string),
984 SCHARS (string));
985 /* If all the chars are ASCII, they won't need any more bytes
986 once converted. In that case, we can return STRING itself. */
987 if (nbytes == SBYTES (string))
988 return string;
989
990 buf = SAFE_ALLOCA (nbytes);
991 copy_text (SDATA (string), buf, SBYTES (string),
992 0, 1);
993
994 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
995 SAFE_FREE ();
996
997 return ret;
998 }
999
1000
1001 /* Convert STRING (if unibyte) to a multibyte string without changing
1002 the number of characters. Characters 0200 trough 0237 are
1003 converted to eight-bit characters. */
1004
1005 Lisp_Object
1006 string_to_multibyte (Lisp_Object string)
1007 {
1008 unsigned char *buf;
1009 ptrdiff_t nbytes;
1010 Lisp_Object ret;
1011 USE_SAFE_ALLOCA;
1012
1013 if (STRING_MULTIBYTE (string))
1014 return string;
1015
1016 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
1017 /* If all the chars are ASCII, they won't need any more bytes once
1018 converted. */
1019 if (nbytes == SBYTES (string))
1020 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
1021
1022 buf = SAFE_ALLOCA (nbytes);
1023 memcpy (buf, SDATA (string), SBYTES (string));
1024 str_to_multibyte (buf, nbytes, SBYTES (string));
1025
1026 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
1027 SAFE_FREE ();
1028
1029 return ret;
1030 }
1031
1032
1033 /* Convert STRING to a single-byte string. */
1034
1035 Lisp_Object
1036 string_make_unibyte (Lisp_Object string)
1037 {
1038 ptrdiff_t nchars;
1039 unsigned char *buf;
1040 Lisp_Object ret;
1041 USE_SAFE_ALLOCA;
1042
1043 if (! STRING_MULTIBYTE (string))
1044 return string;
1045
1046 nchars = SCHARS (string);
1047
1048 buf = SAFE_ALLOCA (nchars);
1049 copy_text (SDATA (string), buf, SBYTES (string),
1050 1, 0);
1051
1052 ret = make_unibyte_string ((char *) buf, nchars);
1053 SAFE_FREE ();
1054
1055 return ret;
1056 }
1057
1058 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1059 1, 1, 0,
1060 doc: /* Return the multibyte equivalent of STRING.
1061 If STRING is unibyte and contains non-ASCII characters, the function
1062 `unibyte-char-to-multibyte' is used to convert each unibyte character
1063 to a multibyte character. In this case, the returned string is a
1064 newly created string with no text properties. If STRING is multibyte
1065 or entirely ASCII, it is returned unchanged. In particular, when
1066 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1067 \(When the characters are all ASCII, Emacs primitives will treat the
1068 string the same way whether it is unibyte or multibyte.) */)
1069 (Lisp_Object string)
1070 {
1071 CHECK_STRING (string);
1072
1073 return string_make_multibyte (string);
1074 }
1075
1076 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1077 1, 1, 0,
1078 doc: /* Return the unibyte equivalent of STRING.
1079 Multibyte character codes are converted to unibyte according to
1080 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1081 If the lookup in the translation table fails, this function takes just
1082 the low 8 bits of each character. */)
1083 (Lisp_Object string)
1084 {
1085 CHECK_STRING (string);
1086
1087 return string_make_unibyte (string);
1088 }
1089
1090 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1091 1, 1, 0,
1092 doc: /* Return a unibyte string with the same individual bytes as STRING.
1093 If STRING is unibyte, the result is STRING itself.
1094 Otherwise it is a newly created string, with no text properties.
1095 If STRING is multibyte and contains a character of charset
1096 `eight-bit', it is converted to the corresponding single byte. */)
1097 (Lisp_Object string)
1098 {
1099 CHECK_STRING (string);
1100
1101 if (STRING_MULTIBYTE (string))
1102 {
1103 unsigned char *str = (unsigned char *) xlispstrdup (string);
1104 ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
1105
1106 string = make_unibyte_string ((char *) str, bytes);
1107 xfree (str);
1108 }
1109 return string;
1110 }
1111
1112 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1113 1, 1, 0,
1114 doc: /* Return a multibyte string with the same individual bytes as STRING.
1115 If STRING is multibyte, the result is STRING itself.
1116 Otherwise it is a newly created string, with no text properties.
1117
1118 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1119 part of a correct utf-8 sequence), it is converted to the corresponding
1120 multibyte character of charset `eight-bit'.
1121 See also `string-to-multibyte'.
1122
1123 Beware, this often doesn't really do what you think it does.
1124 It is similar to (decode-coding-string STRING \\='utf-8-emacs).
1125 If you're not sure, whether to use `string-as-multibyte' or
1126 `string-to-multibyte', use `string-to-multibyte'. */)
1127 (Lisp_Object string)
1128 {
1129 CHECK_STRING (string);
1130
1131 if (! STRING_MULTIBYTE (string))
1132 {
1133 Lisp_Object new_string;
1134 ptrdiff_t nchars, nbytes;
1135
1136 parse_str_as_multibyte (SDATA (string),
1137 SBYTES (string),
1138 &nchars, &nbytes);
1139 new_string = make_uninit_multibyte_string (nchars, nbytes);
1140 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1141 if (nbytes != SBYTES (string))
1142 str_as_multibyte (SDATA (new_string), nbytes,
1143 SBYTES (string), NULL);
1144 string = new_string;
1145 set_string_intervals (string, NULL);
1146 }
1147 return string;
1148 }
1149
1150 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1151 1, 1, 0,
1152 doc: /* Return a multibyte string with the same individual chars as STRING.
1153 If STRING is multibyte, the result is STRING itself.
1154 Otherwise it is a newly created string, with no text properties.
1155
1156 If STRING is unibyte and contains an 8-bit byte, it is converted to
1157 the corresponding multibyte character of charset `eight-bit'.
1158
1159 This differs from `string-as-multibyte' by converting each byte of a correct
1160 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1161 correct sequence. */)
1162 (Lisp_Object string)
1163 {
1164 CHECK_STRING (string);
1165
1166 return string_to_multibyte (string);
1167 }
1168
1169 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1170 1, 1, 0,
1171 doc: /* Return a unibyte string with the same individual chars as STRING.
1172 If STRING is unibyte, the result is STRING itself.
1173 Otherwise it is a newly created string, with no text properties,
1174 where each `eight-bit' character is converted to the corresponding byte.
1175 If STRING contains a non-ASCII, non-`eight-bit' character,
1176 an error is signaled. */)
1177 (Lisp_Object string)
1178 {
1179 CHECK_STRING (string);
1180
1181 if (STRING_MULTIBYTE (string))
1182 {
1183 ptrdiff_t chars = SCHARS (string);
1184 unsigned char *str = xmalloc (chars);
1185 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1186
1187 if (converted < chars)
1188 error ("Can't convert the %"pD"dth character to unibyte", converted);
1189 string = make_unibyte_string ((char *) str, chars);
1190 xfree (str);
1191 }
1192 return string;
1193 }
1194
1195 \f
1196 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1197 doc: /* Return a copy of ALIST.
1198 This is an alist which represents the same mapping from objects to objects,
1199 but does not share the alist structure with ALIST.
1200 The objects mapped (cars and cdrs of elements of the alist)
1201 are shared, however.
1202 Elements of ALIST that are not conses are also shared. */)
1203 (Lisp_Object alist)
1204 {
1205 register Lisp_Object tem;
1206
1207 CHECK_LIST (alist);
1208 if (NILP (alist))
1209 return alist;
1210 alist = concat (1, &alist, Lisp_Cons, 0);
1211 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1212 {
1213 register Lisp_Object car;
1214 car = XCAR (tem);
1215
1216 if (CONSP (car))
1217 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1218 }
1219 return alist;
1220 }
1221
1222 /* Check that ARRAY can have a valid subarray [FROM..TO),
1223 given that its size is SIZE.
1224 If FROM is nil, use 0; if TO is nil, use SIZE.
1225 Count negative values backwards from the end.
1226 Set *IFROM and *ITO to the two indexes used. */
1227
1228 void
1229 validate_subarray (Lisp_Object array, Lisp_Object from, Lisp_Object to,
1230 ptrdiff_t size, ptrdiff_t *ifrom, ptrdiff_t *ito)
1231 {
1232 EMACS_INT f, t;
1233
1234 if (INTEGERP (from))
1235 {
1236 f = XINT (from);
1237 if (f < 0)
1238 f += size;
1239 }
1240 else if (NILP (from))
1241 f = 0;
1242 else
1243 wrong_type_argument (Qintegerp, from);
1244
1245 if (INTEGERP (to))
1246 {
1247 t = XINT (to);
1248 if (t < 0)
1249 t += size;
1250 }
1251 else if (NILP (to))
1252 t = size;
1253 else
1254 wrong_type_argument (Qintegerp, to);
1255
1256 if (! (0 <= f && f <= t && t <= size))
1257 args_out_of_range_3 (array, from, to);
1258
1259 *ifrom = f;
1260 *ito = t;
1261 }
1262
1263 DEFUN ("substring", Fsubstring, Ssubstring, 1, 3, 0,
1264 doc: /* Return a new string whose contents are a substring of STRING.
1265 The returned string consists of the characters between index FROM
1266 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1267 zero-indexed: 0 means the first character of STRING. Negative values
1268 are counted from the end of STRING. If TO is nil, the substring runs
1269 to the end of STRING.
1270
1271 The STRING argument may also be a vector. In that case, the return
1272 value is a new vector that contains the elements between index FROM
1273 \(inclusive) and index TO (exclusive) of that vector argument.
1274
1275 With one argument, just copy STRING (with properties, if any). */)
1276 (Lisp_Object string, Lisp_Object from, Lisp_Object to)
1277 {
1278 Lisp_Object res;
1279 ptrdiff_t size, ifrom, ito;
1280
1281 size = CHECK_VECTOR_OR_STRING (string);
1282 validate_subarray (string, from, to, size, &ifrom, &ito);
1283
1284 if (STRINGP (string))
1285 {
1286 ptrdiff_t from_byte
1287 = !ifrom ? 0 : string_char_to_byte (string, ifrom);
1288 ptrdiff_t to_byte
1289 = ito == size ? SBYTES (string) : string_char_to_byte (string, ito);
1290 res = make_specified_string (SSDATA (string) + from_byte,
1291 ito - ifrom, to_byte - from_byte,
1292 STRING_MULTIBYTE (string));
1293 copy_text_properties (make_number (ifrom), make_number (ito),
1294 string, make_number (0), res, Qnil);
1295 }
1296 else
1297 res = Fvector (ito - ifrom, aref_addr (string, ifrom));
1298
1299 return res;
1300 }
1301
1302
1303 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1304 doc: /* Return a substring of STRING, without text properties.
1305 It starts at index FROM and ends before TO.
1306 TO may be nil or omitted; then the substring runs to the end of STRING.
1307 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1308 If FROM or TO is negative, it counts from the end.
1309
1310 With one argument, just copy STRING without its properties. */)
1311 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1312 {
1313 ptrdiff_t from_char, to_char, from_byte, to_byte, size;
1314
1315 CHECK_STRING (string);
1316
1317 size = SCHARS (string);
1318 validate_subarray (string, from, to, size, &from_char, &to_char);
1319
1320 from_byte = !from_char ? 0 : string_char_to_byte (string, from_char);
1321 to_byte =
1322 to_char == size ? SBYTES (string) : string_char_to_byte (string, to_char);
1323 return make_specified_string (SSDATA (string) + from_byte,
1324 to_char - from_char, to_byte - from_byte,
1325 STRING_MULTIBYTE (string));
1326 }
1327
1328 /* Extract a substring of STRING, giving start and end positions
1329 both in characters and in bytes. */
1330
1331 Lisp_Object
1332 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1333 ptrdiff_t to, ptrdiff_t to_byte)
1334 {
1335 Lisp_Object res;
1336 ptrdiff_t size = CHECK_VECTOR_OR_STRING (string);
1337
1338 if (!(0 <= from && from <= to && to <= size))
1339 args_out_of_range_3 (string, make_number (from), make_number (to));
1340
1341 if (STRINGP (string))
1342 {
1343 res = make_specified_string (SSDATA (string) + from_byte,
1344 to - from, to_byte - from_byte,
1345 STRING_MULTIBYTE (string));
1346 copy_text_properties (make_number (from), make_number (to),
1347 string, make_number (0), res, Qnil);
1348 }
1349 else
1350 res = Fvector (to - from, aref_addr (string, from));
1351
1352 return res;
1353 }
1354 \f
1355 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1356 doc: /* Take cdr N times on LIST, return the result. */)
1357 (Lisp_Object n, Lisp_Object list)
1358 {
1359 EMACS_INT i, num;
1360 CHECK_NUMBER (n);
1361 num = XINT (n);
1362 for (i = 0; i < num && !NILP (list); i++)
1363 {
1364 QUIT;
1365 CHECK_LIST_CONS (list, list);
1366 list = XCDR (list);
1367 }
1368 return list;
1369 }
1370
1371 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1372 doc: /* Return the Nth element of LIST.
1373 N counts from zero. If LIST is not that long, nil is returned. */)
1374 (Lisp_Object n, Lisp_Object list)
1375 {
1376 return Fcar (Fnthcdr (n, list));
1377 }
1378
1379 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1380 doc: /* Return element of SEQUENCE at index N. */)
1381 (register Lisp_Object sequence, Lisp_Object n)
1382 {
1383 CHECK_NUMBER (n);
1384 if (CONSP (sequence) || NILP (sequence))
1385 return Fcar (Fnthcdr (n, sequence));
1386
1387 /* Faref signals a "not array" error, so check here. */
1388 CHECK_ARRAY (sequence, Qsequencep);
1389 return Faref (sequence, n);
1390 }
1391
1392 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1393 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1394 The value is actually the tail of LIST whose car is ELT. */)
1395 (register Lisp_Object elt, Lisp_Object list)
1396 {
1397 register Lisp_Object tail;
1398 for (tail = list; !NILP (tail); tail = XCDR (tail))
1399 {
1400 register Lisp_Object tem;
1401 CHECK_LIST_CONS (tail, list);
1402 tem = XCAR (tail);
1403 if (! NILP (Fequal (elt, tem)))
1404 return tail;
1405 QUIT;
1406 }
1407 return Qnil;
1408 }
1409
1410 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1411 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1412 The value is actually the tail of LIST whose car is ELT. */)
1413 (register Lisp_Object elt, Lisp_Object list)
1414 {
1415 while (1)
1416 {
1417 if (!CONSP (list) || EQ (XCAR (list), elt))
1418 break;
1419
1420 list = XCDR (list);
1421 if (!CONSP (list) || EQ (XCAR (list), elt))
1422 break;
1423
1424 list = XCDR (list);
1425 if (!CONSP (list) || EQ (XCAR (list), elt))
1426 break;
1427
1428 list = XCDR (list);
1429 QUIT;
1430 }
1431
1432 CHECK_LIST (list);
1433 return list;
1434 }
1435
1436 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1437 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1438 The value is actually the tail of LIST whose car is ELT. */)
1439 (register Lisp_Object elt, Lisp_Object list)
1440 {
1441 register Lisp_Object tail;
1442
1443 if (!FLOATP (elt))
1444 return Fmemq (elt, list);
1445
1446 for (tail = list; !NILP (tail); tail = XCDR (tail))
1447 {
1448 register Lisp_Object tem;
1449 CHECK_LIST_CONS (tail, list);
1450 tem = XCAR (tail);
1451 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0, Qnil))
1452 return tail;
1453 QUIT;
1454 }
1455 return Qnil;
1456 }
1457
1458 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1459 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1460 The value is actually the first element of LIST whose car is KEY.
1461 Elements of LIST that are not conses are ignored. */)
1462 (Lisp_Object key, Lisp_Object list)
1463 {
1464 while (1)
1465 {
1466 if (!CONSP (list)
1467 || (CONSP (XCAR (list))
1468 && EQ (XCAR (XCAR (list)), key)))
1469 break;
1470
1471 list = XCDR (list);
1472 if (!CONSP (list)
1473 || (CONSP (XCAR (list))
1474 && EQ (XCAR (XCAR (list)), key)))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCAR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 QUIT;
1485 }
1486
1487 return CAR (list);
1488 }
1489
1490 /* Like Fassq but never report an error and do not allow quits.
1491 Use only on lists known never to be circular. */
1492
1493 Lisp_Object
1494 assq_no_quit (Lisp_Object key, Lisp_Object list)
1495 {
1496 while (CONSP (list)
1497 && (!CONSP (XCAR (list))
1498 || !EQ (XCAR (XCAR (list)), key)))
1499 list = XCDR (list);
1500
1501 return CAR_SAFE (list);
1502 }
1503
1504 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1505 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1506 The value is actually the first element of LIST whose car equals KEY. */)
1507 (Lisp_Object key, Lisp_Object list)
1508 {
1509 Lisp_Object car;
1510
1511 while (1)
1512 {
1513 if (!CONSP (list)
1514 || (CONSP (XCAR (list))
1515 && (car = XCAR (XCAR (list)),
1516 EQ (car, key) || !NILP (Fequal (car, key)))))
1517 break;
1518
1519 list = XCDR (list);
1520 if (!CONSP (list)
1521 || (CONSP (XCAR (list))
1522 && (car = XCAR (XCAR (list)),
1523 EQ (car, key) || !NILP (Fequal (car, key)))))
1524 break;
1525
1526 list = XCDR (list);
1527 if (!CONSP (list)
1528 || (CONSP (XCAR (list))
1529 && (car = XCAR (XCAR (list)),
1530 EQ (car, key) || !NILP (Fequal (car, key)))))
1531 break;
1532
1533 list = XCDR (list);
1534 QUIT;
1535 }
1536
1537 return CAR (list);
1538 }
1539
1540 /* Like Fassoc but never report an error and do not allow quits.
1541 Use only on lists known never to be circular. */
1542
1543 Lisp_Object
1544 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1545 {
1546 while (CONSP (list)
1547 && (!CONSP (XCAR (list))
1548 || (!EQ (XCAR (XCAR (list)), key)
1549 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1550 list = XCDR (list);
1551
1552 return CONSP (list) ? XCAR (list) : Qnil;
1553 }
1554
1555 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1556 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1557 The value is actually the first element of LIST whose cdr is KEY. */)
1558 (register Lisp_Object key, Lisp_Object list)
1559 {
1560 while (1)
1561 {
1562 if (!CONSP (list)
1563 || (CONSP (XCAR (list))
1564 && EQ (XCDR (XCAR (list)), key)))
1565 break;
1566
1567 list = XCDR (list);
1568 if (!CONSP (list)
1569 || (CONSP (XCAR (list))
1570 && EQ (XCDR (XCAR (list)), key)))
1571 break;
1572
1573 list = XCDR (list);
1574 if (!CONSP (list)
1575 || (CONSP (XCAR (list))
1576 && EQ (XCDR (XCAR (list)), key)))
1577 break;
1578
1579 list = XCDR (list);
1580 QUIT;
1581 }
1582
1583 return CAR (list);
1584 }
1585
1586 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1587 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1588 The value is actually the first element of LIST whose cdr equals KEY. */)
1589 (Lisp_Object key, Lisp_Object list)
1590 {
1591 Lisp_Object cdr;
1592
1593 while (1)
1594 {
1595 if (!CONSP (list)
1596 || (CONSP (XCAR (list))
1597 && (cdr = XCDR (XCAR (list)),
1598 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1599 break;
1600
1601 list = XCDR (list);
1602 if (!CONSP (list)
1603 || (CONSP (XCAR (list))
1604 && (cdr = XCDR (XCAR (list)),
1605 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1606 break;
1607
1608 list = XCDR (list);
1609 if (!CONSP (list)
1610 || (CONSP (XCAR (list))
1611 && (cdr = XCDR (XCAR (list)),
1612 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1613 break;
1614
1615 list = XCDR (list);
1616 QUIT;
1617 }
1618
1619 return CAR (list);
1620 }
1621 \f
1622 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1623 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1624 More precisely, this function skips any members `eq' to ELT at the
1625 front of LIST, then removes members `eq' to ELT from the remaining
1626 sublist by modifying its list structure, then returns the resulting
1627 list.
1628
1629 Write `(setq foo (delq element foo))' to be sure of correctly changing
1630 the value of a list `foo'. See also `remq', which does not modify the
1631 argument. */)
1632 (register Lisp_Object elt, Lisp_Object list)
1633 {
1634 Lisp_Object tail, tortoise, prev = Qnil;
1635 bool skip;
1636
1637 FOR_EACH_TAIL (tail, list, tortoise, skip)
1638 {
1639 Lisp_Object tem = XCAR (tail);
1640 if (EQ (elt, tem))
1641 {
1642 if (NILP (prev))
1643 list = XCDR (tail);
1644 else
1645 Fsetcdr (prev, XCDR (tail));
1646 }
1647 else
1648 prev = tail;
1649 }
1650 return list;
1651 }
1652
1653 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1654 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1655 SEQ must be a sequence (i.e. a list, a vector, or a string).
1656 The return value is a sequence of the same type.
1657
1658 If SEQ is a list, this behaves like `delq', except that it compares
1659 with `equal' instead of `eq'. In particular, it may remove elements
1660 by altering the list structure.
1661
1662 If SEQ is not a list, deletion is never performed destructively;
1663 instead this function creates and returns a new vector or string.
1664
1665 Write `(setq foo (delete element foo))' to be sure of correctly
1666 changing the value of a sequence `foo'. */)
1667 (Lisp_Object elt, Lisp_Object seq)
1668 {
1669 if (VECTORP (seq))
1670 {
1671 ptrdiff_t i, n;
1672
1673 for (i = n = 0; i < ASIZE (seq); ++i)
1674 if (NILP (Fequal (AREF (seq, i), elt)))
1675 ++n;
1676
1677 if (n != ASIZE (seq))
1678 {
1679 struct Lisp_Vector *p = allocate_vector (n);
1680
1681 for (i = n = 0; i < ASIZE (seq); ++i)
1682 if (NILP (Fequal (AREF (seq, i), elt)))
1683 p->contents[n++] = AREF (seq, i);
1684
1685 XSETVECTOR (seq, p);
1686 }
1687 }
1688 else if (STRINGP (seq))
1689 {
1690 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1691 int c;
1692
1693 for (i = nchars = nbytes = ibyte = 0;
1694 i < SCHARS (seq);
1695 ++i, ibyte += cbytes)
1696 {
1697 if (STRING_MULTIBYTE (seq))
1698 {
1699 c = STRING_CHAR (SDATA (seq) + ibyte);
1700 cbytes = CHAR_BYTES (c);
1701 }
1702 else
1703 {
1704 c = SREF (seq, i);
1705 cbytes = 1;
1706 }
1707
1708 if (!INTEGERP (elt) || c != XINT (elt))
1709 {
1710 ++nchars;
1711 nbytes += cbytes;
1712 }
1713 }
1714
1715 if (nchars != SCHARS (seq))
1716 {
1717 Lisp_Object tem;
1718
1719 tem = make_uninit_multibyte_string (nchars, nbytes);
1720 if (!STRING_MULTIBYTE (seq))
1721 STRING_SET_UNIBYTE (tem);
1722
1723 for (i = nchars = nbytes = ibyte = 0;
1724 i < SCHARS (seq);
1725 ++i, ibyte += cbytes)
1726 {
1727 if (STRING_MULTIBYTE (seq))
1728 {
1729 c = STRING_CHAR (SDATA (seq) + ibyte);
1730 cbytes = CHAR_BYTES (c);
1731 }
1732 else
1733 {
1734 c = SREF (seq, i);
1735 cbytes = 1;
1736 }
1737
1738 if (!INTEGERP (elt) || c != XINT (elt))
1739 {
1740 unsigned char *from = SDATA (seq) + ibyte;
1741 unsigned char *to = SDATA (tem) + nbytes;
1742 ptrdiff_t n;
1743
1744 ++nchars;
1745 nbytes += cbytes;
1746
1747 for (n = cbytes; n--; )
1748 *to++ = *from++;
1749 }
1750 }
1751
1752 seq = tem;
1753 }
1754 }
1755 else
1756 {
1757 Lisp_Object tail, prev;
1758
1759 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1760 {
1761 CHECK_LIST_CONS (tail, seq);
1762
1763 if (!NILP (Fequal (elt, XCAR (tail))))
1764 {
1765 if (NILP (prev))
1766 seq = XCDR (tail);
1767 else
1768 Fsetcdr (prev, XCDR (tail));
1769 }
1770 else
1771 prev = tail;
1772 QUIT;
1773 }
1774 }
1775
1776 return seq;
1777 }
1778
1779 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1780 doc: /* Reverse order of items in a list, vector or string SEQ.
1781 If SEQ is a list, it should be nil-terminated.
1782 This function may destructively modify SEQ to produce the value. */)
1783 (Lisp_Object seq)
1784 {
1785 if (NILP (seq))
1786 return seq;
1787 else if (STRINGP (seq))
1788 return Freverse (seq);
1789 else if (CONSP (seq))
1790 {
1791 Lisp_Object prev, tail, next;
1792
1793 for (prev = Qnil, tail = seq; !NILP (tail); tail = next)
1794 {
1795 QUIT;
1796 CHECK_LIST_CONS (tail, tail);
1797 next = XCDR (tail);
1798 Fsetcdr (tail, prev);
1799 prev = tail;
1800 }
1801 seq = prev;
1802 }
1803 else if (VECTORP (seq))
1804 {
1805 ptrdiff_t i, size = ASIZE (seq);
1806
1807 for (i = 0; i < size / 2; i++)
1808 {
1809 Lisp_Object tem = AREF (seq, i);
1810 ASET (seq, i, AREF (seq, size - i - 1));
1811 ASET (seq, size - i - 1, tem);
1812 }
1813 }
1814 else if (BOOL_VECTOR_P (seq))
1815 {
1816 ptrdiff_t i, size = bool_vector_size (seq);
1817
1818 for (i = 0; i < size / 2; i++)
1819 {
1820 bool tem = bool_vector_bitref (seq, i);
1821 bool_vector_set (seq, i, bool_vector_bitref (seq, size - i - 1));
1822 bool_vector_set (seq, size - i - 1, tem);
1823 }
1824 }
1825 else
1826 wrong_type_argument (Qarrayp, seq);
1827 return seq;
1828 }
1829
1830 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1831 doc: /* Return the reversed copy of list, vector, or string SEQ.
1832 See also the function `nreverse', which is used more often. */)
1833 (Lisp_Object seq)
1834 {
1835 Lisp_Object new;
1836
1837 if (NILP (seq))
1838 return Qnil;
1839 else if (CONSP (seq))
1840 {
1841 for (new = Qnil; CONSP (seq); seq = XCDR (seq))
1842 {
1843 QUIT;
1844 new = Fcons (XCAR (seq), new);
1845 }
1846 CHECK_LIST_END (seq, seq);
1847 }
1848 else if (VECTORP (seq))
1849 {
1850 ptrdiff_t i, size = ASIZE (seq);
1851
1852 new = make_uninit_vector (size);
1853 for (i = 0; i < size; i++)
1854 ASET (new, i, AREF (seq, size - i - 1));
1855 }
1856 else if (BOOL_VECTOR_P (seq))
1857 {
1858 ptrdiff_t i;
1859 EMACS_INT nbits = bool_vector_size (seq);
1860
1861 new = make_uninit_bool_vector (nbits);
1862 for (i = 0; i < nbits; i++)
1863 bool_vector_set (new, i, bool_vector_bitref (seq, nbits - i - 1));
1864 }
1865 else if (STRINGP (seq))
1866 {
1867 ptrdiff_t size = SCHARS (seq), bytes = SBYTES (seq);
1868
1869 if (size == bytes)
1870 {
1871 ptrdiff_t i;
1872
1873 new = make_uninit_string (size);
1874 for (i = 0; i < size; i++)
1875 SSET (new, i, SREF (seq, size - i - 1));
1876 }
1877 else
1878 {
1879 unsigned char *p, *q;
1880
1881 new = make_uninit_multibyte_string (size, bytes);
1882 p = SDATA (seq), q = SDATA (new) + bytes;
1883 while (q > SDATA (new))
1884 {
1885 int ch, len;
1886
1887 ch = STRING_CHAR_AND_LENGTH (p, len);
1888 p += len, q -= len;
1889 CHAR_STRING (ch, q);
1890 }
1891 }
1892 }
1893 else
1894 wrong_type_argument (Qsequencep, seq);
1895 return new;
1896 }
1897
1898 /* Sort LIST using PREDICATE, preserving original order of elements
1899 considered as equal. */
1900
1901 static Lisp_Object
1902 sort_list (Lisp_Object list, Lisp_Object predicate)
1903 {
1904 Lisp_Object front, back;
1905 Lisp_Object len, tem;
1906 EMACS_INT length;
1907
1908 front = list;
1909 len = Flength (list);
1910 length = XINT (len);
1911 if (length < 2)
1912 return list;
1913
1914 XSETINT (len, (length / 2) - 1);
1915 tem = Fnthcdr (len, list);
1916 back = Fcdr (tem);
1917 Fsetcdr (tem, Qnil);
1918
1919 front = Fsort (front, predicate);
1920 back = Fsort (back, predicate);
1921 return merge (front, back, predicate);
1922 }
1923
1924 /* Using PRED to compare, return whether A and B are in order.
1925 Compare stably when A appeared before B in the input. */
1926 static bool
1927 inorder (Lisp_Object pred, Lisp_Object a, Lisp_Object b)
1928 {
1929 return NILP (call2 (pred, b, a));
1930 }
1931
1932 /* Using PRED to compare, merge from ALEN-length A and BLEN-length B
1933 into DEST. Argument arrays must be nonempty and must not overlap,
1934 except that B might be the last part of DEST. */
1935 static void
1936 merge_vectors (Lisp_Object pred,
1937 ptrdiff_t alen, Lisp_Object const a[restrict VLA_ELEMS (alen)],
1938 ptrdiff_t blen, Lisp_Object const b[VLA_ELEMS (blen)],
1939 Lisp_Object dest[VLA_ELEMS (alen + blen)])
1940 {
1941 eassume (0 < alen && 0 < blen);
1942 Lisp_Object const *alim = a + alen;
1943 Lisp_Object const *blim = b + blen;
1944
1945 while (true)
1946 {
1947 if (inorder (pred, a[0], b[0]))
1948 {
1949 *dest++ = *a++;
1950 if (a == alim)
1951 {
1952 if (dest != b)
1953 memcpy (dest, b, (blim - b) * sizeof *dest);
1954 return;
1955 }
1956 }
1957 else
1958 {
1959 *dest++ = *b++;
1960 if (b == blim)
1961 {
1962 memcpy (dest, a, (alim - a) * sizeof *dest);
1963 return;
1964 }
1965 }
1966 }
1967 }
1968
1969 /* Using PRED to compare, sort LEN-length VEC in place, using TMP for
1970 temporary storage. LEN must be at least 2. */
1971 static void
1972 sort_vector_inplace (Lisp_Object pred, ptrdiff_t len,
1973 Lisp_Object vec[restrict VLA_ELEMS (len)],
1974 Lisp_Object tmp[restrict VLA_ELEMS (len >> 1)])
1975 {
1976 eassume (2 <= len);
1977 ptrdiff_t halflen = len >> 1;
1978 sort_vector_copy (pred, halflen, vec, tmp);
1979 if (1 < len - halflen)
1980 sort_vector_inplace (pred, len - halflen, vec + halflen, vec);
1981 merge_vectors (pred, halflen, tmp, len - halflen, vec + halflen, vec);
1982 }
1983
1984 /* Using PRED to compare, sort from LEN-length SRC into DST.
1985 Len must be positive. */
1986 static void
1987 sort_vector_copy (Lisp_Object pred, ptrdiff_t len,
1988 Lisp_Object src[restrict VLA_ELEMS (len)],
1989 Lisp_Object dest[restrict VLA_ELEMS (len)])
1990 {
1991 eassume (0 < len);
1992 ptrdiff_t halflen = len >> 1;
1993 if (halflen < 1)
1994 dest[0] = src[0];
1995 else
1996 {
1997 if (1 < halflen)
1998 sort_vector_inplace (pred, halflen, src, dest);
1999 if (1 < len - halflen)
2000 sort_vector_inplace (pred, len - halflen, src + halflen, dest);
2001 merge_vectors (pred, halflen, src, len - halflen, src + halflen, dest);
2002 }
2003 }
2004
2005 /* Sort VECTOR in place using PREDICATE, preserving original order of
2006 elements considered as equal. */
2007
2008 static void
2009 sort_vector (Lisp_Object vector, Lisp_Object predicate)
2010 {
2011 ptrdiff_t len = ASIZE (vector);
2012 if (len < 2)
2013 return;
2014 ptrdiff_t halflen = len >> 1;
2015 Lisp_Object *tmp;
2016 USE_SAFE_ALLOCA;
2017 SAFE_ALLOCA_LISP (tmp, halflen);
2018 for (ptrdiff_t i = 0; i < halflen; i++)
2019 tmp[i] = make_number (0);
2020 sort_vector_inplace (predicate, len, XVECTOR (vector)->contents, tmp);
2021 SAFE_FREE ();
2022 }
2023
2024 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
2025 doc: /* Sort SEQ, stably, comparing elements using PREDICATE.
2026 Returns the sorted sequence. SEQ should be a list or vector. SEQ is
2027 modified by side effects. PREDICATE is called with two elements of
2028 SEQ, and should return non-nil if the first element should sort before
2029 the second. */)
2030 (Lisp_Object seq, Lisp_Object predicate)
2031 {
2032 if (CONSP (seq))
2033 seq = sort_list (seq, predicate);
2034 else if (VECTORP (seq))
2035 sort_vector (seq, predicate);
2036 else if (!NILP (seq))
2037 wrong_type_argument (Qsequencep, seq);
2038 return seq;
2039 }
2040
2041 Lisp_Object
2042 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
2043 {
2044 Lisp_Object l1 = org_l1;
2045 Lisp_Object l2 = org_l2;
2046 Lisp_Object tail = Qnil;
2047 Lisp_Object value = Qnil;
2048
2049 while (1)
2050 {
2051 if (NILP (l1))
2052 {
2053 if (NILP (tail))
2054 return l2;
2055 Fsetcdr (tail, l2);
2056 return value;
2057 }
2058 if (NILP (l2))
2059 {
2060 if (NILP (tail))
2061 return l1;
2062 Fsetcdr (tail, l1);
2063 return value;
2064 }
2065
2066 Lisp_Object tem;
2067 if (inorder (pred, Fcar (l1), Fcar (l2)))
2068 {
2069 tem = l1;
2070 l1 = Fcdr (l1);
2071 org_l1 = l1;
2072 }
2073 else
2074 {
2075 tem = l2;
2076 l2 = Fcdr (l2);
2077 org_l2 = l2;
2078 }
2079 if (NILP (tail))
2080 value = tem;
2081 else
2082 Fsetcdr (tail, tem);
2083 tail = tem;
2084 }
2085 }
2086
2087 \f
2088 /* This does not check for quits. That is safe since it must terminate. */
2089
2090 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
2091 doc: /* Extract a value from a property list.
2092 PLIST is a property list, which is a list of the form
2093 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2094 corresponding to the given PROP, or nil if PROP is not one of the
2095 properties on the list. This function never signals an error. */)
2096 (Lisp_Object plist, Lisp_Object prop)
2097 {
2098 Lisp_Object tail, halftail;
2099
2100 /* halftail is used to detect circular lists. */
2101 tail = halftail = plist;
2102 while (CONSP (tail) && CONSP (XCDR (tail)))
2103 {
2104 if (EQ (prop, XCAR (tail)))
2105 return XCAR (XCDR (tail));
2106
2107 tail = XCDR (XCDR (tail));
2108 halftail = XCDR (halftail);
2109 if (EQ (tail, halftail))
2110 break;
2111 }
2112
2113 return Qnil;
2114 }
2115
2116 DEFUN ("get", Fget, Sget, 2, 2, 0,
2117 doc: /* Return the value of SYMBOL's PROPNAME property.
2118 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2119 (Lisp_Object symbol, Lisp_Object propname)
2120 {
2121 CHECK_SYMBOL (symbol);
2122 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2123 }
2124
2125 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2126 doc: /* Change value in PLIST of PROP to VAL.
2127 PLIST is a property list, which is a list of the form
2128 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2129 If PROP is already a property on the list, its value is set to VAL,
2130 otherwise the new PROP VAL pair is added. The new plist is returned;
2131 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2132 The PLIST is modified by side effects. */)
2133 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
2134 {
2135 register Lisp_Object tail, prev;
2136 Lisp_Object newcell;
2137 prev = Qnil;
2138 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2139 tail = XCDR (XCDR (tail)))
2140 {
2141 if (EQ (prop, XCAR (tail)))
2142 {
2143 Fsetcar (XCDR (tail), val);
2144 return plist;
2145 }
2146
2147 prev = tail;
2148 QUIT;
2149 }
2150 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2151 if (NILP (prev))
2152 return newcell;
2153 else
2154 Fsetcdr (XCDR (prev), newcell);
2155 return plist;
2156 }
2157
2158 DEFUN ("put", Fput, Sput, 3, 3, 0,
2159 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2160 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2161 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
2162 {
2163 CHECK_SYMBOL (symbol);
2164 set_symbol_plist
2165 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
2166 return value;
2167 }
2168 \f
2169 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2170 doc: /* Extract a value from a property list, comparing with `equal'.
2171 PLIST is a property list, which is a list of the form
2172 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2173 corresponding to the given PROP, or nil if PROP is not
2174 one of the properties on the list. */)
2175 (Lisp_Object plist, Lisp_Object prop)
2176 {
2177 Lisp_Object tail;
2178
2179 for (tail = plist;
2180 CONSP (tail) && CONSP (XCDR (tail));
2181 tail = XCDR (XCDR (tail)))
2182 {
2183 if (! NILP (Fequal (prop, XCAR (tail))))
2184 return XCAR (XCDR (tail));
2185
2186 QUIT;
2187 }
2188
2189 CHECK_LIST_END (tail, prop);
2190
2191 return Qnil;
2192 }
2193
2194 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2195 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2196 PLIST is a property list, which is a list of the form
2197 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2198 If PROP is already a property on the list, its value is set to VAL,
2199 otherwise the new PROP VAL pair is added. The new plist is returned;
2200 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2201 The PLIST is modified by side effects. */)
2202 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
2203 {
2204 register Lisp_Object tail, prev;
2205 Lisp_Object newcell;
2206 prev = Qnil;
2207 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2208 tail = XCDR (XCDR (tail)))
2209 {
2210 if (! NILP (Fequal (prop, XCAR (tail))))
2211 {
2212 Fsetcar (XCDR (tail), val);
2213 return plist;
2214 }
2215
2216 prev = tail;
2217 QUIT;
2218 }
2219 newcell = list2 (prop, val);
2220 if (NILP (prev))
2221 return newcell;
2222 else
2223 Fsetcdr (XCDR (prev), newcell);
2224 return plist;
2225 }
2226 \f
2227 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2228 doc: /* Return t if the two args are the same Lisp object.
2229 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2230 (Lisp_Object obj1, Lisp_Object obj2)
2231 {
2232 if (FLOATP (obj1))
2233 return internal_equal (obj1, obj2, 0, 0, Qnil) ? Qt : Qnil;
2234 else
2235 return EQ (obj1, obj2) ? Qt : Qnil;
2236 }
2237
2238 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2239 doc: /* Return t if two Lisp objects have similar structure and contents.
2240 They must have the same data type.
2241 Conses are compared by comparing the cars and the cdrs.
2242 Vectors and strings are compared element by element.
2243 Numbers are compared by value, but integers cannot equal floats.
2244 (Use `=' if you want integers and floats to be able to be equal.)
2245 Symbols must match exactly. */)
2246 (register Lisp_Object o1, Lisp_Object o2)
2247 {
2248 return internal_equal (o1, o2, 0, 0, Qnil) ? Qt : Qnil;
2249 }
2250
2251 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2252 doc: /* Return t if two Lisp objects have similar structure and contents.
2253 This is like `equal' except that it compares the text properties
2254 of strings. (`equal' ignores text properties.) */)
2255 (register Lisp_Object o1, Lisp_Object o2)
2256 {
2257 return internal_equal (o1, o2, 0, 1, Qnil) ? Qt : Qnil;
2258 }
2259
2260 /* DEPTH is current depth of recursion. Signal an error if it
2261 gets too deep.
2262 PROPS means compare string text properties too. */
2263
2264 static bool
2265 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props,
2266 Lisp_Object ht)
2267 {
2268 if (depth > 10)
2269 {
2270 if (depth > 200)
2271 error ("Stack overflow in equal");
2272 if (NILP (ht))
2273 ht = CALLN (Fmake_hash_table, QCtest, Qeq);
2274 switch (XTYPE (o1))
2275 {
2276 case Lisp_Cons: case Lisp_Misc: case Lisp_Vectorlike:
2277 {
2278 struct Lisp_Hash_Table *h = XHASH_TABLE (ht);
2279 EMACS_UINT hash;
2280 ptrdiff_t i = hash_lookup (h, o1, &hash);
2281 if (i >= 0)
2282 { /* `o1' was seen already. */
2283 Lisp_Object o2s = HASH_VALUE (h, i);
2284 if (!NILP (Fmemq (o2, o2s)))
2285 return 1;
2286 else
2287 set_hash_value_slot (h, i, Fcons (o2, o2s));
2288 }
2289 else
2290 hash_put (h, o1, Fcons (o2, Qnil), hash);
2291 }
2292 default: ;
2293 }
2294 }
2295
2296 tail_recurse:
2297 QUIT;
2298 if (EQ (o1, o2))
2299 return 1;
2300 if (XTYPE (o1) != XTYPE (o2))
2301 return 0;
2302
2303 switch (XTYPE (o1))
2304 {
2305 case Lisp_Float:
2306 {
2307 double d1, d2;
2308
2309 d1 = extract_float (o1);
2310 d2 = extract_float (o2);
2311 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2312 though they are not =. */
2313 return d1 == d2 || (d1 != d1 && d2 != d2);
2314 }
2315
2316 case Lisp_Cons:
2317 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props, ht))
2318 return 0;
2319 o1 = XCDR (o1);
2320 o2 = XCDR (o2);
2321 /* FIXME: This inf-loops in a circular list! */
2322 goto tail_recurse;
2323
2324 case Lisp_Misc:
2325 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2326 return 0;
2327 if (OVERLAYP (o1))
2328 {
2329 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2330 depth + 1, props, ht)
2331 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2332 depth + 1, props, ht))
2333 return 0;
2334 o1 = XOVERLAY (o1)->plist;
2335 o2 = XOVERLAY (o2)->plist;
2336 goto tail_recurse;
2337 }
2338 if (MARKERP (o1))
2339 {
2340 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2341 && (XMARKER (o1)->buffer == 0
2342 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2343 }
2344 break;
2345
2346 case Lisp_Vectorlike:
2347 {
2348 register int i;
2349 ptrdiff_t size = ASIZE (o1);
2350 /* Pseudovectors have the type encoded in the size field, so this test
2351 actually checks that the objects have the same type as well as the
2352 same size. */
2353 if (ASIZE (o2) != size)
2354 return 0;
2355 /* Boolvectors are compared much like strings. */
2356 if (BOOL_VECTOR_P (o1))
2357 {
2358 EMACS_INT size = bool_vector_size (o1);
2359 if (size != bool_vector_size (o2))
2360 return 0;
2361 if (memcmp (bool_vector_data (o1), bool_vector_data (o2),
2362 bool_vector_bytes (size)))
2363 return 0;
2364 return 1;
2365 }
2366 if (WINDOW_CONFIGURATIONP (o1))
2367 return compare_window_configurations (o1, o2, 0);
2368
2369 /* Aside from them, only true vectors, char-tables, compiled
2370 functions, and fonts (font-spec, font-entity, font-object)
2371 are sensible to compare, so eliminate the others now. */
2372 if (size & PSEUDOVECTOR_FLAG)
2373 {
2374 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2375 < PVEC_COMPILED)
2376 return 0;
2377 size &= PSEUDOVECTOR_SIZE_MASK;
2378 }
2379 for (i = 0; i < size; i++)
2380 {
2381 Lisp_Object v1, v2;
2382 v1 = AREF (o1, i);
2383 v2 = AREF (o2, i);
2384 if (!internal_equal (v1, v2, depth + 1, props, ht))
2385 return 0;
2386 }
2387 return 1;
2388 }
2389 break;
2390
2391 case Lisp_String:
2392 if (SCHARS (o1) != SCHARS (o2))
2393 return 0;
2394 if (SBYTES (o1) != SBYTES (o2))
2395 return 0;
2396 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2397 return 0;
2398 if (props && !compare_string_intervals (o1, o2))
2399 return 0;
2400 return 1;
2401
2402 default:
2403 break;
2404 }
2405
2406 return 0;
2407 }
2408 \f
2409
2410 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2411 doc: /* Store each element of ARRAY with ITEM.
2412 ARRAY is a vector, string, char-table, or bool-vector. */)
2413 (Lisp_Object array, Lisp_Object item)
2414 {
2415 register ptrdiff_t size, idx;
2416
2417 if (VECTORP (array))
2418 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2419 ASET (array, idx, item);
2420 else if (CHAR_TABLE_P (array))
2421 {
2422 int i;
2423
2424 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2425 set_char_table_contents (array, i, item);
2426 set_char_table_defalt (array, item);
2427 }
2428 else if (STRINGP (array))
2429 {
2430 register unsigned char *p = SDATA (array);
2431 int charval;
2432 CHECK_CHARACTER (item);
2433 charval = XFASTINT (item);
2434 size = SCHARS (array);
2435 if (STRING_MULTIBYTE (array))
2436 {
2437 unsigned char str[MAX_MULTIBYTE_LENGTH];
2438 int len = CHAR_STRING (charval, str);
2439 ptrdiff_t size_byte = SBYTES (array);
2440 ptrdiff_t product;
2441
2442 if (INT_MULTIPLY_WRAPV (size, len, &product) || product != size_byte)
2443 error ("Attempt to change byte length of a string");
2444 for (idx = 0; idx < size_byte; idx++)
2445 *p++ = str[idx % len];
2446 }
2447 else
2448 for (idx = 0; idx < size; idx++)
2449 p[idx] = charval;
2450 }
2451 else if (BOOL_VECTOR_P (array))
2452 return bool_vector_fill (array, item);
2453 else
2454 wrong_type_argument (Qarrayp, array);
2455 return array;
2456 }
2457
2458 DEFUN ("clear-string", Fclear_string, Sclear_string,
2459 1, 1, 0,
2460 doc: /* Clear the contents of STRING.
2461 This makes STRING unibyte and may change its length. */)
2462 (Lisp_Object string)
2463 {
2464 ptrdiff_t len;
2465 CHECK_STRING (string);
2466 len = SBYTES (string);
2467 memset (SDATA (string), 0, len);
2468 STRING_SET_CHARS (string, len);
2469 STRING_SET_UNIBYTE (string);
2470 return Qnil;
2471 }
2472 \f
2473 /* ARGSUSED */
2474 Lisp_Object
2475 nconc2 (Lisp_Object s1, Lisp_Object s2)
2476 {
2477 return CALLN (Fnconc, s1, s2);
2478 }
2479
2480 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2481 doc: /* Concatenate any number of lists by altering them.
2482 Only the last argument is not altered, and need not be a list.
2483 usage: (nconc &rest LISTS) */)
2484 (ptrdiff_t nargs, Lisp_Object *args)
2485 {
2486 ptrdiff_t argnum;
2487 register Lisp_Object tail, tem, val;
2488
2489 val = tail = Qnil;
2490
2491 for (argnum = 0; argnum < nargs; argnum++)
2492 {
2493 tem = args[argnum];
2494 if (NILP (tem)) continue;
2495
2496 if (NILP (val))
2497 val = tem;
2498
2499 if (argnum + 1 == nargs) break;
2500
2501 CHECK_LIST_CONS (tem, tem);
2502
2503 while (CONSP (tem))
2504 {
2505 tail = tem;
2506 tem = XCDR (tail);
2507 QUIT;
2508 }
2509
2510 tem = args[argnum + 1];
2511 Fsetcdr (tail, tem);
2512 if (NILP (tem))
2513 args[argnum + 1] = tail;
2514 }
2515
2516 return val;
2517 }
2518 \f
2519 /* This is the guts of all mapping functions.
2520 Apply FN to each element of SEQ, one by one,
2521 storing the results into elements of VALS, a C vector of Lisp_Objects.
2522 LENI is the length of VALS, which should also be the length of SEQ. */
2523
2524 static void
2525 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2526 {
2527 Lisp_Object tail, dummy;
2528 EMACS_INT i;
2529
2530 if (VECTORP (seq) || COMPILEDP (seq))
2531 {
2532 for (i = 0; i < leni; i++)
2533 {
2534 dummy = call1 (fn, AREF (seq, i));
2535 if (vals)
2536 vals[i] = dummy;
2537 }
2538 }
2539 else if (BOOL_VECTOR_P (seq))
2540 {
2541 for (i = 0; i < leni; i++)
2542 {
2543 dummy = call1 (fn, bool_vector_ref (seq, i));
2544 if (vals)
2545 vals[i] = dummy;
2546 }
2547 }
2548 else if (STRINGP (seq))
2549 {
2550 ptrdiff_t i_byte;
2551
2552 for (i = 0, i_byte = 0; i < leni;)
2553 {
2554 int c;
2555 ptrdiff_t i_before = i;
2556
2557 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2558 XSETFASTINT (dummy, c);
2559 dummy = call1 (fn, dummy);
2560 if (vals)
2561 vals[i_before] = dummy;
2562 }
2563 }
2564 else /* Must be a list, since Flength did not get an error */
2565 {
2566 tail = seq;
2567 for (i = 0; i < leni && CONSP (tail); i++)
2568 {
2569 dummy = call1 (fn, XCAR (tail));
2570 if (vals)
2571 vals[i] = dummy;
2572 tail = XCDR (tail);
2573 }
2574 }
2575 }
2576
2577 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2578 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2579 In between each pair of results, stick in SEPARATOR. Thus, " " as
2580 SEPARATOR results in spaces between the values returned by FUNCTION.
2581 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2582 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2583 {
2584 Lisp_Object len;
2585 EMACS_INT leni;
2586 EMACS_INT nargs;
2587 ptrdiff_t i;
2588 Lisp_Object *args;
2589 Lisp_Object ret;
2590 USE_SAFE_ALLOCA;
2591
2592 len = Flength (sequence);
2593 if (CHAR_TABLE_P (sequence))
2594 wrong_type_argument (Qlistp, sequence);
2595 leni = XINT (len);
2596 nargs = leni + leni - 1;
2597 if (nargs < 0) return empty_unibyte_string;
2598
2599 SAFE_ALLOCA_LISP (args, nargs);
2600
2601 mapcar1 (leni, args, function, sequence);
2602
2603 for (i = leni - 1; i > 0; i--)
2604 args[i + i] = args[i];
2605
2606 for (i = 1; i < nargs; i += 2)
2607 args[i] = separator;
2608
2609 ret = Fconcat (nargs, args);
2610 SAFE_FREE ();
2611
2612 return ret;
2613 }
2614
2615 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2616 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2617 The result is a list just as long as SEQUENCE.
2618 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2619 (Lisp_Object function, Lisp_Object sequence)
2620 {
2621 register Lisp_Object len;
2622 register EMACS_INT leni;
2623 register Lisp_Object *args;
2624 Lisp_Object ret;
2625 USE_SAFE_ALLOCA;
2626
2627 len = Flength (sequence);
2628 if (CHAR_TABLE_P (sequence))
2629 wrong_type_argument (Qlistp, sequence);
2630 leni = XFASTINT (len);
2631
2632 SAFE_ALLOCA_LISP (args, leni);
2633
2634 mapcar1 (leni, args, function, sequence);
2635
2636 ret = Flist (leni, args);
2637 SAFE_FREE ();
2638
2639 return ret;
2640 }
2641
2642 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2643 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2644 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2645 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2646 (Lisp_Object function, Lisp_Object sequence)
2647 {
2648 register EMACS_INT leni;
2649
2650 leni = XFASTINT (Flength (sequence));
2651 if (CHAR_TABLE_P (sequence))
2652 wrong_type_argument (Qlistp, sequence);
2653 mapcar1 (leni, 0, function, sequence);
2654
2655 return sequence;
2656 }
2657 \f
2658 /* This is how C code calls `yes-or-no-p' and allows the user
2659 to redefine it. */
2660
2661 Lisp_Object
2662 do_yes_or_no_p (Lisp_Object prompt)
2663 {
2664 return call1 (intern ("yes-or-no-p"), prompt);
2665 }
2666
2667 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2668 doc: /* Ask user a yes-or-no question.
2669 Return t if answer is yes, and nil if the answer is no.
2670 PROMPT is the string to display to ask the question. It should end in
2671 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2672
2673 The user must confirm the answer with RET, and can edit it until it
2674 has been confirmed.
2675
2676 If dialog boxes are supported, a dialog box will be used
2677 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2678 (Lisp_Object prompt)
2679 {
2680 Lisp_Object ans;
2681
2682 CHECK_STRING (prompt);
2683
2684 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2685 && use_dialog_box && ! NILP (last_input_event))
2686 {
2687 Lisp_Object pane, menu, obj;
2688 redisplay_preserve_echo_area (4);
2689 pane = list2 (Fcons (build_string ("Yes"), Qt),
2690 Fcons (build_string ("No"), Qnil));
2691 menu = Fcons (prompt, pane);
2692 obj = Fx_popup_dialog (Qt, menu, Qnil);
2693 return obj;
2694 }
2695
2696 AUTO_STRING (yes_or_no, "(yes or no) ");
2697 prompt = CALLN (Fconcat, prompt, yes_or_no);
2698
2699 while (1)
2700 {
2701 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2702 Qyes_or_no_p_history, Qnil,
2703 Qnil));
2704 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2705 return Qt;
2706 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2707 return Qnil;
2708
2709 Fding (Qnil);
2710 Fdiscard_input ();
2711 message1 ("Please answer yes or no.");
2712 Fsleep_for (make_number (2), Qnil);
2713 }
2714 }
2715 \f
2716 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2717 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2718
2719 Each of the three load averages is multiplied by 100, then converted
2720 to integer.
2721
2722 When USE-FLOATS is non-nil, floats will be used instead of integers.
2723 These floats are not multiplied by 100.
2724
2725 If the 5-minute or 15-minute load averages are not available, return a
2726 shortened list, containing only those averages which are available.
2727
2728 An error is thrown if the load average can't be obtained. In some
2729 cases making it work would require Emacs being installed setuid or
2730 setgid so that it can read kernel information, and that usually isn't
2731 advisable. */)
2732 (Lisp_Object use_floats)
2733 {
2734 double load_ave[3];
2735 int loads = getloadavg (load_ave, 3);
2736 Lisp_Object ret = Qnil;
2737
2738 if (loads < 0)
2739 error ("load-average not implemented for this operating system");
2740
2741 while (loads-- > 0)
2742 {
2743 Lisp_Object load = (NILP (use_floats)
2744 ? make_number (100.0 * load_ave[loads])
2745 : make_float (load_ave[loads]));
2746 ret = Fcons (load, ret);
2747 }
2748
2749 return ret;
2750 }
2751 \f
2752 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2753 doc: /* Return t if FEATURE is present in this Emacs.
2754
2755 Use this to conditionalize execution of lisp code based on the
2756 presence or absence of Emacs or environment extensions.
2757 Use `provide' to declare that a feature is available. This function
2758 looks at the value of the variable `features'. The optional argument
2759 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2760 (Lisp_Object feature, Lisp_Object subfeature)
2761 {
2762 register Lisp_Object tem;
2763 CHECK_SYMBOL (feature);
2764 tem = Fmemq (feature, Vfeatures);
2765 if (!NILP (tem) && !NILP (subfeature))
2766 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2767 return (NILP (tem)) ? Qnil : Qt;
2768 }
2769
2770 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2771 doc: /* Announce that FEATURE is a feature of the current Emacs.
2772 The optional argument SUBFEATURES should be a list of symbols listing
2773 particular subfeatures supported in this version of FEATURE. */)
2774 (Lisp_Object feature, Lisp_Object subfeatures)
2775 {
2776 register Lisp_Object tem;
2777 CHECK_SYMBOL (feature);
2778 CHECK_LIST (subfeatures);
2779 if (!NILP (Vautoload_queue))
2780 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2781 Vautoload_queue);
2782 tem = Fmemq (feature, Vfeatures);
2783 if (NILP (tem))
2784 Vfeatures = Fcons (feature, Vfeatures);
2785 if (!NILP (subfeatures))
2786 Fput (feature, Qsubfeatures, subfeatures);
2787 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2788
2789 /* Run any load-hooks for this file. */
2790 tem = Fassq (feature, Vafter_load_alist);
2791 if (CONSP (tem))
2792 Fmapc (Qfuncall, XCDR (tem));
2793
2794 return feature;
2795 }
2796 \f
2797 /* `require' and its subroutines. */
2798
2799 /* List of features currently being require'd, innermost first. */
2800
2801 static Lisp_Object require_nesting_list;
2802
2803 static void
2804 require_unwind (Lisp_Object old_value)
2805 {
2806 require_nesting_list = old_value;
2807 }
2808
2809 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2810 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2811 If FEATURE is not a member of the list `features', then the feature is
2812 not loaded; so load the file FILENAME.
2813
2814 If FILENAME is omitted, the printname of FEATURE is used as the file
2815 name, and `load' will try to load this name appended with the suffix
2816 `.elc', `.el', or the system-dependent suffix for dynamic module
2817 files, in that order. The name without appended suffix will not be
2818 used. See `get-load-suffixes' for the complete list of suffixes.
2819
2820 The directories in `load-path' are searched when trying to find the
2821 file name.
2822
2823 If the optional third argument NOERROR is non-nil, then return nil if
2824 the file is not found instead of signaling an error. Normally the
2825 return value is FEATURE.
2826
2827 The normal messages at start and end of loading FILENAME are
2828 suppressed. */)
2829 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2830 {
2831 Lisp_Object tem;
2832 bool from_file = load_in_progress;
2833
2834 CHECK_SYMBOL (feature);
2835
2836 /* Record the presence of `require' in this file
2837 even if the feature specified is already loaded.
2838 But not more than once in any file,
2839 and not when we aren't loading or reading from a file. */
2840 if (!from_file)
2841 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2842 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2843 from_file = 1;
2844
2845 if (from_file)
2846 {
2847 tem = Fcons (Qrequire, feature);
2848 if (NILP (Fmember (tem, Vcurrent_load_list)))
2849 LOADHIST_ATTACH (tem);
2850 }
2851 tem = Fmemq (feature, Vfeatures);
2852
2853 if (NILP (tem))
2854 {
2855 ptrdiff_t count = SPECPDL_INDEX ();
2856 int nesting = 0;
2857
2858 /* This is to make sure that loadup.el gives a clear picture
2859 of what files are preloaded and when. */
2860 if (! NILP (Vpurify_flag))
2861 error ("(require %s) while preparing to dump",
2862 SDATA (SYMBOL_NAME (feature)));
2863
2864 /* A certain amount of recursive `require' is legitimate,
2865 but if we require the same feature recursively 3 times,
2866 signal an error. */
2867 tem = require_nesting_list;
2868 while (! NILP (tem))
2869 {
2870 if (! NILP (Fequal (feature, XCAR (tem))))
2871 nesting++;
2872 tem = XCDR (tem);
2873 }
2874 if (nesting > 3)
2875 error ("Recursive `require' for feature `%s'",
2876 SDATA (SYMBOL_NAME (feature)));
2877
2878 /* Update the list for any nested `require's that occur. */
2879 record_unwind_protect (require_unwind, require_nesting_list);
2880 require_nesting_list = Fcons (feature, require_nesting_list);
2881
2882 /* Value saved here is to be restored into Vautoload_queue */
2883 record_unwind_protect (un_autoload, Vautoload_queue);
2884 Vautoload_queue = Qt;
2885
2886 /* Load the file. */
2887 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2888 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2889
2890 /* If load failed entirely, return nil. */
2891 if (NILP (tem))
2892 return unbind_to (count, Qnil);
2893
2894 tem = Fmemq (feature, Vfeatures);
2895 if (NILP (tem))
2896 error ("Required feature `%s' was not provided",
2897 SDATA (SYMBOL_NAME (feature)));
2898
2899 /* Once loading finishes, don't undo it. */
2900 Vautoload_queue = Qt;
2901 feature = unbind_to (count, feature);
2902 }
2903
2904 return feature;
2905 }
2906 \f
2907 /* Primitives for work of the "widget" library.
2908 In an ideal world, this section would not have been necessary.
2909 However, lisp function calls being as slow as they are, it turns
2910 out that some functions in the widget library (wid-edit.el) are the
2911 bottleneck of Widget operation. Here is their translation to C,
2912 for the sole reason of efficiency. */
2913
2914 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2915 doc: /* Return non-nil if PLIST has the property PROP.
2916 PLIST is a property list, which is a list of the form
2917 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol.
2918 Unlike `plist-get', this allows you to distinguish between a missing
2919 property and a property with the value nil.
2920 The value is actually the tail of PLIST whose car is PROP. */)
2921 (Lisp_Object plist, Lisp_Object prop)
2922 {
2923 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2924 {
2925 plist = XCDR (plist);
2926 plist = CDR (plist);
2927 QUIT;
2928 }
2929 return plist;
2930 }
2931
2932 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2933 doc: /* In WIDGET, set PROPERTY to VALUE.
2934 The value can later be retrieved with `widget-get'. */)
2935 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2936 {
2937 CHECK_CONS (widget);
2938 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2939 return value;
2940 }
2941
2942 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2943 doc: /* In WIDGET, get the value of PROPERTY.
2944 The value could either be specified when the widget was created, or
2945 later with `widget-put'. */)
2946 (Lisp_Object widget, Lisp_Object property)
2947 {
2948 Lisp_Object tmp;
2949
2950 while (1)
2951 {
2952 if (NILP (widget))
2953 return Qnil;
2954 CHECK_CONS (widget);
2955 tmp = Fplist_member (XCDR (widget), property);
2956 if (CONSP (tmp))
2957 {
2958 tmp = XCDR (tmp);
2959 return CAR (tmp);
2960 }
2961 tmp = XCAR (widget);
2962 if (NILP (tmp))
2963 return Qnil;
2964 widget = Fget (tmp, Qwidget_type);
2965 }
2966 }
2967
2968 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2969 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2970 ARGS are passed as extra arguments to the function.
2971 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2972 (ptrdiff_t nargs, Lisp_Object *args)
2973 {
2974 Lisp_Object widget = args[0];
2975 Lisp_Object property = args[1];
2976 Lisp_Object propval = Fwidget_get (widget, property);
2977 Lisp_Object trailing_args = Flist (nargs - 2, args + 2);
2978 Lisp_Object result = CALLN (Fapply, propval, widget, trailing_args);
2979 return result;
2980 }
2981
2982 #ifdef HAVE_LANGINFO_CODESET
2983 #include <langinfo.h>
2984 #endif
2985
2986 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2987 doc: /* Access locale data ITEM for the current C locale, if available.
2988 ITEM should be one of the following:
2989
2990 `codeset', returning the character set as a string (locale item CODESET);
2991
2992 `days', returning a 7-element vector of day names (locale items DAY_n);
2993
2994 `months', returning a 12-element vector of month names (locale items MON_n);
2995
2996 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2997 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2998
2999 If the system can't provide such information through a call to
3000 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3001
3002 See also Info node `(libc)Locales'.
3003
3004 The data read from the system are decoded using `locale-coding-system'. */)
3005 (Lisp_Object item)
3006 {
3007 char *str = NULL;
3008 #ifdef HAVE_LANGINFO_CODESET
3009 if (EQ (item, Qcodeset))
3010 {
3011 str = nl_langinfo (CODESET);
3012 return build_string (str);
3013 }
3014 #ifdef DAY_1
3015 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3016 {
3017 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3018 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3019 int i;
3020 synchronize_system_time_locale ();
3021 for (i = 0; i < 7; i++)
3022 {
3023 str = nl_langinfo (days[i]);
3024 AUTO_STRING (val, str);
3025 /* Fixme: Is this coding system necessarily right, even if
3026 it is consistent with CODESET? If not, what to do? */
3027 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
3028 0));
3029 }
3030 return v;
3031 }
3032 #endif /* DAY_1 */
3033 #ifdef MON_1
3034 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3035 {
3036 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
3037 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3038 MON_8, MON_9, MON_10, MON_11, MON_12};
3039 int i;
3040 synchronize_system_time_locale ();
3041 for (i = 0; i < 12; i++)
3042 {
3043 str = nl_langinfo (months[i]);
3044 AUTO_STRING (val, str);
3045 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
3046 0));
3047 }
3048 return v;
3049 }
3050 #endif /* MON_1 */
3051 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3052 but is in the locale files. This could be used by ps-print. */
3053 #ifdef PAPER_WIDTH
3054 else if (EQ (item, Qpaper))
3055 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
3056 #endif /* PAPER_WIDTH */
3057 #endif /* HAVE_LANGINFO_CODESET*/
3058 return Qnil;
3059 }
3060 \f
3061 /* base64 encode/decode functions (RFC 2045).
3062 Based on code from GNU recode. */
3063
3064 #define MIME_LINE_LENGTH 76
3065
3066 #define IS_ASCII(Character) \
3067 ((Character) < 128)
3068 #define IS_BASE64(Character) \
3069 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3070 #define IS_BASE64_IGNORABLE(Character) \
3071 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3072 || (Character) == '\f' || (Character) == '\r')
3073
3074 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3075 character or return retval if there are no characters left to
3076 process. */
3077 #define READ_QUADRUPLET_BYTE(retval) \
3078 do \
3079 { \
3080 if (i == length) \
3081 { \
3082 if (nchars_return) \
3083 *nchars_return = nchars; \
3084 return (retval); \
3085 } \
3086 c = from[i++]; \
3087 } \
3088 while (IS_BASE64_IGNORABLE (c))
3089
3090 /* Table of characters coding the 64 values. */
3091 static const char base64_value_to_char[64] =
3092 {
3093 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3094 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3095 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3096 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3097 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3098 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3099 '8', '9', '+', '/' /* 60-63 */
3100 };
3101
3102 /* Table of base64 values for first 128 characters. */
3103 static const short base64_char_to_value[128] =
3104 {
3105 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3106 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3107 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3108 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3109 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3110 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3111 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3112 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3113 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3114 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3115 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3116 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3117 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3118 };
3119
3120 /* The following diagram shows the logical steps by which three octets
3121 get transformed into four base64 characters.
3122
3123 .--------. .--------. .--------.
3124 |aaaaaabb| |bbbbcccc| |ccdddddd|
3125 `--------' `--------' `--------'
3126 6 2 4 4 2 6
3127 .--------+--------+--------+--------.
3128 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3129 `--------+--------+--------+--------'
3130
3131 .--------+--------+--------+--------.
3132 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3133 `--------+--------+--------+--------'
3134
3135 The octets are divided into 6 bit chunks, which are then encoded into
3136 base64 characters. */
3137
3138
3139 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
3140 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
3141 ptrdiff_t *);
3142
3143 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3144 2, 3, "r",
3145 doc: /* Base64-encode the region between BEG and END.
3146 Return the length of the encoded text.
3147 Optional third argument NO-LINE-BREAK means do not break long lines
3148 into shorter lines. */)
3149 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
3150 {
3151 char *encoded;
3152 ptrdiff_t allength, length;
3153 ptrdiff_t ibeg, iend, encoded_length;
3154 ptrdiff_t old_pos = PT;
3155 USE_SAFE_ALLOCA;
3156
3157 validate_region (&beg, &end);
3158
3159 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3160 iend = CHAR_TO_BYTE (XFASTINT (end));
3161 move_gap_both (XFASTINT (beg), ibeg);
3162
3163 /* We need to allocate enough room for encoding the text.
3164 We need 33 1/3% more space, plus a newline every 76
3165 characters, and then we round up. */
3166 length = iend - ibeg;
3167 allength = length + length/3 + 1;
3168 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3169
3170 encoded = SAFE_ALLOCA (allength);
3171 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
3172 encoded, length, NILP (no_line_break),
3173 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
3174 if (encoded_length > allength)
3175 emacs_abort ();
3176
3177 if (encoded_length < 0)
3178 {
3179 /* The encoding wasn't possible. */
3180 SAFE_FREE ();
3181 error ("Multibyte character in data for base64 encoding");
3182 }
3183
3184 /* Now we have encoded the region, so we insert the new contents
3185 and delete the old. (Insert first in order to preserve markers.) */
3186 SET_PT_BOTH (XFASTINT (beg), ibeg);
3187 insert (encoded, encoded_length);
3188 SAFE_FREE ();
3189 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3190
3191 /* If point was outside of the region, restore it exactly; else just
3192 move to the beginning of the region. */
3193 if (old_pos >= XFASTINT (end))
3194 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3195 else if (old_pos > XFASTINT (beg))
3196 old_pos = XFASTINT (beg);
3197 SET_PT (old_pos);
3198
3199 /* We return the length of the encoded text. */
3200 return make_number (encoded_length);
3201 }
3202
3203 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3204 1, 2, 0,
3205 doc: /* Base64-encode STRING and return the result.
3206 Optional second argument NO-LINE-BREAK means do not break long lines
3207 into shorter lines. */)
3208 (Lisp_Object string, Lisp_Object no_line_break)
3209 {
3210 ptrdiff_t allength, length, encoded_length;
3211 char *encoded;
3212 Lisp_Object encoded_string;
3213 USE_SAFE_ALLOCA;
3214
3215 CHECK_STRING (string);
3216
3217 /* We need to allocate enough room for encoding the text.
3218 We need 33 1/3% more space, plus a newline every 76
3219 characters, and then we round up. */
3220 length = SBYTES (string);
3221 allength = length + length/3 + 1;
3222 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3223
3224 /* We need to allocate enough room for decoding the text. */
3225 encoded = SAFE_ALLOCA (allength);
3226
3227 encoded_length = base64_encode_1 (SSDATA (string),
3228 encoded, length, NILP (no_line_break),
3229 STRING_MULTIBYTE (string));
3230 if (encoded_length > allength)
3231 emacs_abort ();
3232
3233 if (encoded_length < 0)
3234 {
3235 /* The encoding wasn't possible. */
3236 error ("Multibyte character in data for base64 encoding");
3237 }
3238
3239 encoded_string = make_unibyte_string (encoded, encoded_length);
3240 SAFE_FREE ();
3241
3242 return encoded_string;
3243 }
3244
3245 static ptrdiff_t
3246 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3247 bool line_break, bool multibyte)
3248 {
3249 int counter = 0;
3250 ptrdiff_t i = 0;
3251 char *e = to;
3252 int c;
3253 unsigned int value;
3254 int bytes;
3255
3256 while (i < length)
3257 {
3258 if (multibyte)
3259 {
3260 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3261 if (CHAR_BYTE8_P (c))
3262 c = CHAR_TO_BYTE8 (c);
3263 else if (c >= 256)
3264 return -1;
3265 i += bytes;
3266 }
3267 else
3268 c = from[i++];
3269
3270 /* Wrap line every 76 characters. */
3271
3272 if (line_break)
3273 {
3274 if (counter < MIME_LINE_LENGTH / 4)
3275 counter++;
3276 else
3277 {
3278 *e++ = '\n';
3279 counter = 1;
3280 }
3281 }
3282
3283 /* Process first byte of a triplet. */
3284
3285 *e++ = base64_value_to_char[0x3f & c >> 2];
3286 value = (0x03 & c) << 4;
3287
3288 /* Process second byte of a triplet. */
3289
3290 if (i == length)
3291 {
3292 *e++ = base64_value_to_char[value];
3293 *e++ = '=';
3294 *e++ = '=';
3295 break;
3296 }
3297
3298 if (multibyte)
3299 {
3300 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3301 if (CHAR_BYTE8_P (c))
3302 c = CHAR_TO_BYTE8 (c);
3303 else if (c >= 256)
3304 return -1;
3305 i += bytes;
3306 }
3307 else
3308 c = from[i++];
3309
3310 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3311 value = (0x0f & c) << 2;
3312
3313 /* Process third byte of a triplet. */
3314
3315 if (i == length)
3316 {
3317 *e++ = base64_value_to_char[value];
3318 *e++ = '=';
3319 break;
3320 }
3321
3322 if (multibyte)
3323 {
3324 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3325 if (CHAR_BYTE8_P (c))
3326 c = CHAR_TO_BYTE8 (c);
3327 else if (c >= 256)
3328 return -1;
3329 i += bytes;
3330 }
3331 else
3332 c = from[i++];
3333
3334 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3335 *e++ = base64_value_to_char[0x3f & c];
3336 }
3337
3338 return e - to;
3339 }
3340
3341
3342 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3343 2, 2, "r",
3344 doc: /* Base64-decode the region between BEG and END.
3345 Return the length of the decoded text.
3346 If the region can't be decoded, signal an error and don't modify the buffer. */)
3347 (Lisp_Object beg, Lisp_Object end)
3348 {
3349 ptrdiff_t ibeg, iend, length, allength;
3350 char *decoded;
3351 ptrdiff_t old_pos = PT;
3352 ptrdiff_t decoded_length;
3353 ptrdiff_t inserted_chars;
3354 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3355 USE_SAFE_ALLOCA;
3356
3357 validate_region (&beg, &end);
3358
3359 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3360 iend = CHAR_TO_BYTE (XFASTINT (end));
3361
3362 length = iend - ibeg;
3363
3364 /* We need to allocate enough room for decoding the text. If we are
3365 working on a multibyte buffer, each decoded code may occupy at
3366 most two bytes. */
3367 allength = multibyte ? length * 2 : length;
3368 decoded = SAFE_ALLOCA (allength);
3369
3370 move_gap_both (XFASTINT (beg), ibeg);
3371 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3372 decoded, length,
3373 multibyte, &inserted_chars);
3374 if (decoded_length > allength)
3375 emacs_abort ();
3376
3377 if (decoded_length < 0)
3378 {
3379 /* The decoding wasn't possible. */
3380 error ("Invalid base64 data");
3381 }
3382
3383 /* Now we have decoded the region, so we insert the new contents
3384 and delete the old. (Insert first in order to preserve markers.) */
3385 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3386 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3387 SAFE_FREE ();
3388
3389 /* Delete the original text. */
3390 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3391 iend + decoded_length, 1);
3392
3393 /* If point was outside of the region, restore it exactly; else just
3394 move to the beginning of the region. */
3395 if (old_pos >= XFASTINT (end))
3396 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3397 else if (old_pos > XFASTINT (beg))
3398 old_pos = XFASTINT (beg);
3399 SET_PT (old_pos > ZV ? ZV : old_pos);
3400
3401 return make_number (inserted_chars);
3402 }
3403
3404 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3405 1, 1, 0,
3406 doc: /* Base64-decode STRING and return the result. */)
3407 (Lisp_Object string)
3408 {
3409 char *decoded;
3410 ptrdiff_t length, decoded_length;
3411 Lisp_Object decoded_string;
3412 USE_SAFE_ALLOCA;
3413
3414 CHECK_STRING (string);
3415
3416 length = SBYTES (string);
3417 /* We need to allocate enough room for decoding the text. */
3418 decoded = SAFE_ALLOCA (length);
3419
3420 /* The decoded result should be unibyte. */
3421 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3422 0, NULL);
3423 if (decoded_length > length)
3424 emacs_abort ();
3425 else if (decoded_length >= 0)
3426 decoded_string = make_unibyte_string (decoded, decoded_length);
3427 else
3428 decoded_string = Qnil;
3429
3430 SAFE_FREE ();
3431 if (!STRINGP (decoded_string))
3432 error ("Invalid base64 data");
3433
3434 return decoded_string;
3435 }
3436
3437 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3438 MULTIBYTE, the decoded result should be in multibyte
3439 form. If NCHARS_RETURN is not NULL, store the number of produced
3440 characters in *NCHARS_RETURN. */
3441
3442 static ptrdiff_t
3443 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3444 bool multibyte, ptrdiff_t *nchars_return)
3445 {
3446 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3447 char *e = to;
3448 unsigned char c;
3449 unsigned long value;
3450 ptrdiff_t nchars = 0;
3451
3452 while (1)
3453 {
3454 /* Process first byte of a quadruplet. */
3455
3456 READ_QUADRUPLET_BYTE (e-to);
3457
3458 if (!IS_BASE64 (c))
3459 return -1;
3460 value = base64_char_to_value[c] << 18;
3461
3462 /* Process second byte of a quadruplet. */
3463
3464 READ_QUADRUPLET_BYTE (-1);
3465
3466 if (!IS_BASE64 (c))
3467 return -1;
3468 value |= base64_char_to_value[c] << 12;
3469
3470 c = (unsigned char) (value >> 16);
3471 if (multibyte && c >= 128)
3472 e += BYTE8_STRING (c, e);
3473 else
3474 *e++ = c;
3475 nchars++;
3476
3477 /* Process third byte of a quadruplet. */
3478
3479 READ_QUADRUPLET_BYTE (-1);
3480
3481 if (c == '=')
3482 {
3483 READ_QUADRUPLET_BYTE (-1);
3484
3485 if (c != '=')
3486 return -1;
3487 continue;
3488 }
3489
3490 if (!IS_BASE64 (c))
3491 return -1;
3492 value |= base64_char_to_value[c] << 6;
3493
3494 c = (unsigned char) (0xff & value >> 8);
3495 if (multibyte && c >= 128)
3496 e += BYTE8_STRING (c, e);
3497 else
3498 *e++ = c;
3499 nchars++;
3500
3501 /* Process fourth byte of a quadruplet. */
3502
3503 READ_QUADRUPLET_BYTE (-1);
3504
3505 if (c == '=')
3506 continue;
3507
3508 if (!IS_BASE64 (c))
3509 return -1;
3510 value |= base64_char_to_value[c];
3511
3512 c = (unsigned char) (0xff & value);
3513 if (multibyte && c >= 128)
3514 e += BYTE8_STRING (c, e);
3515 else
3516 *e++ = c;
3517 nchars++;
3518 }
3519 }
3520
3521
3522 \f
3523 /***********************************************************************
3524 ***** *****
3525 ***** Hash Tables *****
3526 ***** *****
3527 ***********************************************************************/
3528
3529 /* Implemented by gerd@gnu.org. This hash table implementation was
3530 inspired by CMUCL hash tables. */
3531
3532 /* Ideas:
3533
3534 1. For small tables, association lists are probably faster than
3535 hash tables because they have lower overhead.
3536
3537 For uses of hash tables where the O(1) behavior of table
3538 operations is not a requirement, it might therefore be a good idea
3539 not to hash. Instead, we could just do a linear search in the
3540 key_and_value vector of the hash table. This could be done
3541 if a `:linear-search t' argument is given to make-hash-table. */
3542
3543
3544 /* The list of all weak hash tables. Don't staticpro this one. */
3545
3546 static struct Lisp_Hash_Table *weak_hash_tables;
3547
3548 \f
3549 /***********************************************************************
3550 Utilities
3551 ***********************************************************************/
3552
3553 static void
3554 CHECK_HASH_TABLE (Lisp_Object x)
3555 {
3556 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3557 }
3558
3559 static void
3560 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3561 {
3562 h->key_and_value = key_and_value;
3563 }
3564 static void
3565 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3566 {
3567 h->next = next;
3568 }
3569 static void
3570 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3571 {
3572 gc_aset (h->next, idx, val);
3573 }
3574 static void
3575 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3576 {
3577 h->hash = hash;
3578 }
3579 static void
3580 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3581 {
3582 gc_aset (h->hash, idx, val);
3583 }
3584 static void
3585 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3586 {
3587 h->index = index;
3588 }
3589 static void
3590 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3591 {
3592 gc_aset (h->index, idx, val);
3593 }
3594
3595 /* If OBJ is a Lisp hash table, return a pointer to its struct
3596 Lisp_Hash_Table. Otherwise, signal an error. */
3597
3598 static struct Lisp_Hash_Table *
3599 check_hash_table (Lisp_Object obj)
3600 {
3601 CHECK_HASH_TABLE (obj);
3602 return XHASH_TABLE (obj);
3603 }
3604
3605
3606 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3607 number. A number is "almost" a prime number if it is not divisible
3608 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3609
3610 EMACS_INT
3611 next_almost_prime (EMACS_INT n)
3612 {
3613 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3614 for (n |= 1; ; n += 2)
3615 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3616 return n;
3617 }
3618
3619
3620 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3621 which USED[I] is non-zero. If found at index I in ARGS, set
3622 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3623 0. This function is used to extract a keyword/argument pair from
3624 a DEFUN parameter list. */
3625
3626 static ptrdiff_t
3627 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3628 {
3629 ptrdiff_t i;
3630
3631 for (i = 1; i < nargs; i++)
3632 if (!used[i - 1] && EQ (args[i - 1], key))
3633 {
3634 used[i - 1] = 1;
3635 used[i] = 1;
3636 return i;
3637 }
3638
3639 return 0;
3640 }
3641
3642
3643 /* Return a Lisp vector which has the same contents as VEC but has
3644 at least INCR_MIN more entries, where INCR_MIN is positive.
3645 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3646 than NITEMS_MAX. Entries in the resulting
3647 vector that are not copied from VEC are set to nil. */
3648
3649 Lisp_Object
3650 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3651 {
3652 struct Lisp_Vector *v;
3653 ptrdiff_t incr, incr_max, old_size, new_size;
3654 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3655 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3656 ? nitems_max : C_language_max);
3657 eassert (VECTORP (vec));
3658 eassert (0 < incr_min && -1 <= nitems_max);
3659 old_size = ASIZE (vec);
3660 incr_max = n_max - old_size;
3661 incr = max (incr_min, min (old_size >> 1, incr_max));
3662 if (incr_max < incr)
3663 memory_full (SIZE_MAX);
3664 new_size = old_size + incr;
3665 v = allocate_vector (new_size);
3666 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3667 memclear (v->contents + old_size, incr * word_size);
3668 XSETVECTOR (vec, v);
3669 return vec;
3670 }
3671
3672
3673 /***********************************************************************
3674 Low-level Functions
3675 ***********************************************************************/
3676
3677 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3678 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3679 KEY2 are the same. */
3680
3681 static bool
3682 cmpfn_eql (struct hash_table_test *ht,
3683 Lisp_Object key1,
3684 Lisp_Object key2)
3685 {
3686 return (FLOATP (key1)
3687 && FLOATP (key2)
3688 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3689 }
3690
3691
3692 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3693 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3694 KEY2 are the same. */
3695
3696 static bool
3697 cmpfn_equal (struct hash_table_test *ht,
3698 Lisp_Object key1,
3699 Lisp_Object key2)
3700 {
3701 return !NILP (Fequal (key1, key2));
3702 }
3703
3704
3705 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3706 HASH2 in hash table H using H->user_cmp_function. Value is true
3707 if KEY1 and KEY2 are the same. */
3708
3709 static bool
3710 cmpfn_user_defined (struct hash_table_test *ht,
3711 Lisp_Object key1,
3712 Lisp_Object key2)
3713 {
3714 return !NILP (call2 (ht->user_cmp_function, key1, key2));
3715 }
3716
3717 /* Value is a hash code for KEY for use in hash table H which uses
3718 `eq' to compare keys. The hash code returned is guaranteed to fit
3719 in a Lisp integer. */
3720
3721 static EMACS_UINT
3722 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3723 {
3724 return XHASH (key) ^ XTYPE (key);
3725 }
3726
3727 /* Value is a hash code for KEY for use in hash table H which uses
3728 `equal' to compare keys. The hash code returned is guaranteed to fit
3729 in a Lisp integer. */
3730
3731 static EMACS_UINT
3732 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3733 {
3734 return sxhash (key, 0);
3735 }
3736
3737 /* Value is a hash code for KEY for use in hash table H which uses
3738 `eql' to compare keys. The hash code returned is guaranteed to fit
3739 in a Lisp integer. */
3740
3741 static EMACS_UINT
3742 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3743 {
3744 return FLOATP (key) ? hashfn_equal (ht, key) : hashfn_eq (ht, key);
3745 }
3746
3747 /* Value is a hash code for KEY for use in hash table H which uses as
3748 user-defined function to compare keys. The hash code returned is
3749 guaranteed to fit in a Lisp integer. */
3750
3751 static EMACS_UINT
3752 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3753 {
3754 Lisp_Object hash = call1 (ht->user_hash_function, key);
3755 return hashfn_eq (ht, hash);
3756 }
3757
3758 struct hash_table_test const
3759 hashtest_eq = { LISPSYM_INITIALLY (Qeq), LISPSYM_INITIALLY (Qnil),
3760 LISPSYM_INITIALLY (Qnil), 0, hashfn_eq },
3761 hashtest_eql = { LISPSYM_INITIALLY (Qeql), LISPSYM_INITIALLY (Qnil),
3762 LISPSYM_INITIALLY (Qnil), cmpfn_eql, hashfn_eql },
3763 hashtest_equal = { LISPSYM_INITIALLY (Qequal), LISPSYM_INITIALLY (Qnil),
3764 LISPSYM_INITIALLY (Qnil), cmpfn_equal, hashfn_equal };
3765
3766 /* Allocate basically initialized hash table. */
3767
3768 static struct Lisp_Hash_Table *
3769 allocate_hash_table (void)
3770 {
3771 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table,
3772 count, PVEC_HASH_TABLE);
3773 }
3774
3775 /* An upper bound on the size of a hash table index. It must fit in
3776 ptrdiff_t and be a valid Emacs fixnum. */
3777 #define INDEX_SIZE_BOUND \
3778 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3779
3780 /* Create and initialize a new hash table.
3781
3782 TEST specifies the test the hash table will use to compare keys.
3783 It must be either one of the predefined tests `eq', `eql' or
3784 `equal' or a symbol denoting a user-defined test named TEST with
3785 test and hash functions USER_TEST and USER_HASH.
3786
3787 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3788
3789 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3790 new size when it becomes full is computed by adding REHASH_SIZE to
3791 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3792 table's new size is computed by multiplying its old size with
3793 REHASH_SIZE.
3794
3795 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3796 be resized when the ratio of (number of entries in the table) /
3797 (table size) is >= REHASH_THRESHOLD.
3798
3799 WEAK specifies the weakness of the table. If non-nil, it must be
3800 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3801
3802 Lisp_Object
3803 make_hash_table (struct hash_table_test test,
3804 Lisp_Object size, Lisp_Object rehash_size,
3805 Lisp_Object rehash_threshold, Lisp_Object weak)
3806 {
3807 struct Lisp_Hash_Table *h;
3808 Lisp_Object table;
3809 EMACS_INT index_size, sz;
3810 ptrdiff_t i;
3811 double index_float;
3812
3813 /* Preconditions. */
3814 eassert (SYMBOLP (test.name));
3815 eassert (INTEGERP (size) && XINT (size) >= 0);
3816 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3817 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3818 eassert (FLOATP (rehash_threshold)
3819 && 0 < XFLOAT_DATA (rehash_threshold)
3820 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3821
3822 if (XFASTINT (size) == 0)
3823 size = make_number (1);
3824
3825 sz = XFASTINT (size);
3826 index_float = sz / XFLOAT_DATA (rehash_threshold);
3827 index_size = (index_float < INDEX_SIZE_BOUND + 1
3828 ? next_almost_prime (index_float)
3829 : INDEX_SIZE_BOUND + 1);
3830 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3831 error ("Hash table too large");
3832
3833 /* Allocate a table and initialize it. */
3834 h = allocate_hash_table ();
3835
3836 /* Initialize hash table slots. */
3837 h->test = test;
3838 h->weak = weak;
3839 h->rehash_threshold = rehash_threshold;
3840 h->rehash_size = rehash_size;
3841 h->count = 0;
3842 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3843 h->hash = Fmake_vector (size, Qnil);
3844 h->next = Fmake_vector (size, Qnil);
3845 h->index = Fmake_vector (make_number (index_size), Qnil);
3846
3847 /* Set up the free list. */
3848 for (i = 0; i < sz - 1; ++i)
3849 set_hash_next_slot (h, i, make_number (i + 1));
3850 h->next_free = make_number (0);
3851
3852 XSET_HASH_TABLE (table, h);
3853 eassert (HASH_TABLE_P (table));
3854 eassert (XHASH_TABLE (table) == h);
3855
3856 /* Maybe add this hash table to the list of all weak hash tables. */
3857 if (NILP (h->weak))
3858 h->next_weak = NULL;
3859 else
3860 {
3861 h->next_weak = weak_hash_tables;
3862 weak_hash_tables = h;
3863 }
3864
3865 return table;
3866 }
3867
3868
3869 /* Return a copy of hash table H1. Keys and values are not copied,
3870 only the table itself is. */
3871
3872 static Lisp_Object
3873 copy_hash_table (struct Lisp_Hash_Table *h1)
3874 {
3875 Lisp_Object table;
3876 struct Lisp_Hash_Table *h2;
3877
3878 h2 = allocate_hash_table ();
3879 *h2 = *h1;
3880 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3881 h2->hash = Fcopy_sequence (h1->hash);
3882 h2->next = Fcopy_sequence (h1->next);
3883 h2->index = Fcopy_sequence (h1->index);
3884 XSET_HASH_TABLE (table, h2);
3885
3886 /* Maybe add this hash table to the list of all weak hash tables. */
3887 if (!NILP (h2->weak))
3888 {
3889 h2->next_weak = weak_hash_tables;
3890 weak_hash_tables = h2;
3891 }
3892
3893 return table;
3894 }
3895
3896
3897 /* Resize hash table H if it's too full. If H cannot be resized
3898 because it's already too large, throw an error. */
3899
3900 static void
3901 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3902 {
3903 if (NILP (h->next_free))
3904 {
3905 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3906 EMACS_INT new_size, index_size, nsize;
3907 ptrdiff_t i;
3908 double index_float;
3909
3910 if (INTEGERP (h->rehash_size))
3911 new_size = old_size + XFASTINT (h->rehash_size);
3912 else
3913 {
3914 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3915 if (float_new_size < INDEX_SIZE_BOUND + 1)
3916 {
3917 new_size = float_new_size;
3918 if (new_size <= old_size)
3919 new_size = old_size + 1;
3920 }
3921 else
3922 new_size = INDEX_SIZE_BOUND + 1;
3923 }
3924 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3925 index_size = (index_float < INDEX_SIZE_BOUND + 1
3926 ? next_almost_prime (index_float)
3927 : INDEX_SIZE_BOUND + 1);
3928 nsize = max (index_size, 2 * new_size);
3929 if (INDEX_SIZE_BOUND < nsize)
3930 error ("Hash table too large to resize");
3931
3932 #ifdef ENABLE_CHECKING
3933 if (HASH_TABLE_P (Vpurify_flag)
3934 && XHASH_TABLE (Vpurify_flag) == h)
3935 message ("Growing hash table to: %"pI"d", new_size);
3936 #endif
3937
3938 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3939 2 * (new_size - old_size), -1));
3940 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3941 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3942 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3943
3944 /* Update the free list. Do it so that new entries are added at
3945 the end of the free list. This makes some operations like
3946 maphash faster. */
3947 for (i = old_size; i < new_size - 1; ++i)
3948 set_hash_next_slot (h, i, make_number (i + 1));
3949
3950 if (!NILP (h->next_free))
3951 {
3952 Lisp_Object last, next;
3953
3954 last = h->next_free;
3955 while (next = HASH_NEXT (h, XFASTINT (last)),
3956 !NILP (next))
3957 last = next;
3958
3959 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3960 }
3961 else
3962 XSETFASTINT (h->next_free, old_size);
3963
3964 /* Rehash. */
3965 for (i = 0; i < old_size; ++i)
3966 if (!NILP (HASH_HASH (h, i)))
3967 {
3968 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3969 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3970 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3971 set_hash_index_slot (h, start_of_bucket, make_number (i));
3972 }
3973 }
3974 }
3975
3976
3977 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3978 the hash code of KEY. Value is the index of the entry in H
3979 matching KEY, or -1 if not found. */
3980
3981 ptrdiff_t
3982 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3983 {
3984 EMACS_UINT hash_code;
3985 ptrdiff_t start_of_bucket;
3986 Lisp_Object idx;
3987
3988 hash_code = h->test.hashfn (&h->test, key);
3989 eassert ((hash_code & ~INTMASK) == 0);
3990 if (hash)
3991 *hash = hash_code;
3992
3993 start_of_bucket = hash_code % ASIZE (h->index);
3994 idx = HASH_INDEX (h, start_of_bucket);
3995
3996 while (!NILP (idx))
3997 {
3998 ptrdiff_t i = XFASTINT (idx);
3999 if (EQ (key, HASH_KEY (h, i))
4000 || (h->test.cmpfn
4001 && hash_code == XUINT (HASH_HASH (h, i))
4002 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
4003 break;
4004 idx = HASH_NEXT (h, i);
4005 }
4006
4007 return NILP (idx) ? -1 : XFASTINT (idx);
4008 }
4009
4010
4011 /* Put an entry into hash table H that associates KEY with VALUE.
4012 HASH is a previously computed hash code of KEY.
4013 Value is the index of the entry in H matching KEY. */
4014
4015 ptrdiff_t
4016 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
4017 EMACS_UINT hash)
4018 {
4019 ptrdiff_t start_of_bucket, i;
4020
4021 eassert ((hash & ~INTMASK) == 0);
4022
4023 /* Increment count after resizing because resizing may fail. */
4024 maybe_resize_hash_table (h);
4025 h->count++;
4026
4027 /* Store key/value in the key_and_value vector. */
4028 i = XFASTINT (h->next_free);
4029 h->next_free = HASH_NEXT (h, i);
4030 set_hash_key_slot (h, i, key);
4031 set_hash_value_slot (h, i, value);
4032
4033 /* Remember its hash code. */
4034 set_hash_hash_slot (h, i, make_number (hash));
4035
4036 /* Add new entry to its collision chain. */
4037 start_of_bucket = hash % ASIZE (h->index);
4038 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
4039 set_hash_index_slot (h, start_of_bucket, make_number (i));
4040 return i;
4041 }
4042
4043
4044 /* Remove the entry matching KEY from hash table H, if there is one. */
4045
4046 void
4047 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
4048 {
4049 EMACS_UINT hash_code;
4050 ptrdiff_t start_of_bucket;
4051 Lisp_Object idx, prev;
4052
4053 hash_code = h->test.hashfn (&h->test, key);
4054 eassert ((hash_code & ~INTMASK) == 0);
4055 start_of_bucket = hash_code % ASIZE (h->index);
4056 idx = HASH_INDEX (h, start_of_bucket);
4057 prev = Qnil;
4058
4059 while (!NILP (idx))
4060 {
4061 ptrdiff_t i = XFASTINT (idx);
4062
4063 if (EQ (key, HASH_KEY (h, i))
4064 || (h->test.cmpfn
4065 && hash_code == XUINT (HASH_HASH (h, i))
4066 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
4067 {
4068 /* Take entry out of collision chain. */
4069 if (NILP (prev))
4070 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
4071 else
4072 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
4073
4074 /* Clear slots in key_and_value and add the slots to
4075 the free list. */
4076 set_hash_key_slot (h, i, Qnil);
4077 set_hash_value_slot (h, i, Qnil);
4078 set_hash_hash_slot (h, i, Qnil);
4079 set_hash_next_slot (h, i, h->next_free);
4080 h->next_free = make_number (i);
4081 h->count--;
4082 eassert (h->count >= 0);
4083 break;
4084 }
4085 else
4086 {
4087 prev = idx;
4088 idx = HASH_NEXT (h, i);
4089 }
4090 }
4091 }
4092
4093
4094 /* Clear hash table H. */
4095
4096 static void
4097 hash_clear (struct Lisp_Hash_Table *h)
4098 {
4099 if (h->count > 0)
4100 {
4101 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
4102
4103 for (i = 0; i < size; ++i)
4104 {
4105 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
4106 set_hash_key_slot (h, i, Qnil);
4107 set_hash_value_slot (h, i, Qnil);
4108 set_hash_hash_slot (h, i, Qnil);
4109 }
4110
4111 for (i = 0; i < ASIZE (h->index); ++i)
4112 ASET (h->index, i, Qnil);
4113
4114 h->next_free = make_number (0);
4115 h->count = 0;
4116 }
4117 }
4118
4119
4120 \f
4121 /************************************************************************
4122 Weak Hash Tables
4123 ************************************************************************/
4124
4125 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
4126 entries from the table that don't survive the current GC.
4127 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
4128 true if anything was marked. */
4129
4130 static bool
4131 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
4132 {
4133 ptrdiff_t n = gc_asize (h->index);
4134 bool marked = false;
4135
4136 for (ptrdiff_t bucket = 0; bucket < n; ++bucket)
4137 {
4138 Lisp_Object idx, next, prev;
4139
4140 /* Follow collision chain, removing entries that
4141 don't survive this garbage collection. */
4142 prev = Qnil;
4143 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4144 {
4145 ptrdiff_t i = XFASTINT (idx);
4146 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4147 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4148 bool remove_p;
4149
4150 if (EQ (h->weak, Qkey))
4151 remove_p = !key_known_to_survive_p;
4152 else if (EQ (h->weak, Qvalue))
4153 remove_p = !value_known_to_survive_p;
4154 else if (EQ (h->weak, Qkey_or_value))
4155 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4156 else if (EQ (h->weak, Qkey_and_value))
4157 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4158 else
4159 emacs_abort ();
4160
4161 next = HASH_NEXT (h, i);
4162
4163 if (remove_entries_p)
4164 {
4165 if (remove_p)
4166 {
4167 /* Take out of collision chain. */
4168 if (NILP (prev))
4169 set_hash_index_slot (h, bucket, next);
4170 else
4171 set_hash_next_slot (h, XFASTINT (prev), next);
4172
4173 /* Add to free list. */
4174 set_hash_next_slot (h, i, h->next_free);
4175 h->next_free = idx;
4176
4177 /* Clear key, value, and hash. */
4178 set_hash_key_slot (h, i, Qnil);
4179 set_hash_value_slot (h, i, Qnil);
4180 set_hash_hash_slot (h, i, Qnil);
4181
4182 h->count--;
4183 }
4184 else
4185 {
4186 prev = idx;
4187 }
4188 }
4189 else
4190 {
4191 if (!remove_p)
4192 {
4193 /* Make sure key and value survive. */
4194 if (!key_known_to_survive_p)
4195 {
4196 mark_object (HASH_KEY (h, i));
4197 marked = 1;
4198 }
4199
4200 if (!value_known_to_survive_p)
4201 {
4202 mark_object (HASH_VALUE (h, i));
4203 marked = 1;
4204 }
4205 }
4206 }
4207 }
4208 }
4209
4210 return marked;
4211 }
4212
4213 /* Remove elements from weak hash tables that don't survive the
4214 current garbage collection. Remove weak tables that don't survive
4215 from Vweak_hash_tables. Called from gc_sweep. */
4216
4217 NO_INLINE /* For better stack traces */
4218 void
4219 sweep_weak_hash_tables (void)
4220 {
4221 struct Lisp_Hash_Table *h, *used, *next;
4222 bool marked;
4223
4224 /* Mark all keys and values that are in use. Keep on marking until
4225 there is no more change. This is necessary for cases like
4226 value-weak table A containing an entry X -> Y, where Y is used in a
4227 key-weak table B, Z -> Y. If B comes after A in the list of weak
4228 tables, X -> Y might be removed from A, although when looking at B
4229 one finds that it shouldn't. */
4230 do
4231 {
4232 marked = 0;
4233 for (h = weak_hash_tables; h; h = h->next_weak)
4234 {
4235 if (h->header.size & ARRAY_MARK_FLAG)
4236 marked |= sweep_weak_table (h, 0);
4237 }
4238 }
4239 while (marked);
4240
4241 /* Remove tables and entries that aren't used. */
4242 for (h = weak_hash_tables, used = NULL; h; h = next)
4243 {
4244 next = h->next_weak;
4245
4246 if (h->header.size & ARRAY_MARK_FLAG)
4247 {
4248 /* TABLE is marked as used. Sweep its contents. */
4249 if (h->count > 0)
4250 sweep_weak_table (h, 1);
4251
4252 /* Add table to the list of used weak hash tables. */
4253 h->next_weak = used;
4254 used = h;
4255 }
4256 }
4257
4258 weak_hash_tables = used;
4259 }
4260
4261
4262 \f
4263 /***********************************************************************
4264 Hash Code Computation
4265 ***********************************************************************/
4266
4267 /* Maximum depth up to which to dive into Lisp structures. */
4268
4269 #define SXHASH_MAX_DEPTH 3
4270
4271 /* Maximum length up to which to take list and vector elements into
4272 account. */
4273
4274 #define SXHASH_MAX_LEN 7
4275
4276 /* Return a hash for string PTR which has length LEN. The hash value
4277 can be any EMACS_UINT value. */
4278
4279 EMACS_UINT
4280 hash_string (char const *ptr, ptrdiff_t len)
4281 {
4282 char const *p = ptr;
4283 char const *end = p + len;
4284 unsigned char c;
4285 EMACS_UINT hash = 0;
4286
4287 while (p != end)
4288 {
4289 c = *p++;
4290 hash = sxhash_combine (hash, c);
4291 }
4292
4293 return hash;
4294 }
4295
4296 /* Return a hash for string PTR which has length LEN. The hash
4297 code returned is guaranteed to fit in a Lisp integer. */
4298
4299 static EMACS_UINT
4300 sxhash_string (char const *ptr, ptrdiff_t len)
4301 {
4302 EMACS_UINT hash = hash_string (ptr, len);
4303 return SXHASH_REDUCE (hash);
4304 }
4305
4306 /* Return a hash for the floating point value VAL. */
4307
4308 static EMACS_UINT
4309 sxhash_float (double val)
4310 {
4311 EMACS_UINT hash = 0;
4312 enum {
4313 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4314 + (sizeof val % sizeof hash != 0))
4315 };
4316 union {
4317 double val;
4318 EMACS_UINT word[WORDS_PER_DOUBLE];
4319 } u;
4320 int i;
4321 u.val = val;
4322 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4323 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4324 hash = sxhash_combine (hash, u.word[i]);
4325 return SXHASH_REDUCE (hash);
4326 }
4327
4328 /* Return a hash for list LIST. DEPTH is the current depth in the
4329 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4330
4331 static EMACS_UINT
4332 sxhash_list (Lisp_Object list, int depth)
4333 {
4334 EMACS_UINT hash = 0;
4335 int i;
4336
4337 if (depth < SXHASH_MAX_DEPTH)
4338 for (i = 0;
4339 CONSP (list) && i < SXHASH_MAX_LEN;
4340 list = XCDR (list), ++i)
4341 {
4342 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4343 hash = sxhash_combine (hash, hash2);
4344 }
4345
4346 if (!NILP (list))
4347 {
4348 EMACS_UINT hash2 = sxhash (list, depth + 1);
4349 hash = sxhash_combine (hash, hash2);
4350 }
4351
4352 return SXHASH_REDUCE (hash);
4353 }
4354
4355
4356 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4357 the Lisp structure. */
4358
4359 static EMACS_UINT
4360 sxhash_vector (Lisp_Object vec, int depth)
4361 {
4362 EMACS_UINT hash = ASIZE (vec);
4363 int i, n;
4364
4365 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4366 for (i = 0; i < n; ++i)
4367 {
4368 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4369 hash = sxhash_combine (hash, hash2);
4370 }
4371
4372 return SXHASH_REDUCE (hash);
4373 }
4374
4375 /* Return a hash for bool-vector VECTOR. */
4376
4377 static EMACS_UINT
4378 sxhash_bool_vector (Lisp_Object vec)
4379 {
4380 EMACS_INT size = bool_vector_size (vec);
4381 EMACS_UINT hash = size;
4382 int i, n;
4383
4384 n = min (SXHASH_MAX_LEN, bool_vector_words (size));
4385 for (i = 0; i < n; ++i)
4386 hash = sxhash_combine (hash, bool_vector_data (vec)[i]);
4387
4388 return SXHASH_REDUCE (hash);
4389 }
4390
4391
4392 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4393 structure. Value is an unsigned integer clipped to INTMASK. */
4394
4395 EMACS_UINT
4396 sxhash (Lisp_Object obj, int depth)
4397 {
4398 EMACS_UINT hash;
4399
4400 if (depth > SXHASH_MAX_DEPTH)
4401 return 0;
4402
4403 switch (XTYPE (obj))
4404 {
4405 case_Lisp_Int:
4406 hash = XUINT (obj);
4407 break;
4408
4409 case Lisp_Misc:
4410 case Lisp_Symbol:
4411 hash = XHASH (obj);
4412 break;
4413
4414 case Lisp_String:
4415 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4416 break;
4417
4418 /* This can be everything from a vector to an overlay. */
4419 case Lisp_Vectorlike:
4420 if (VECTORP (obj))
4421 /* According to the CL HyperSpec, two arrays are equal only if
4422 they are `eq', except for strings and bit-vectors. In
4423 Emacs, this works differently. We have to compare element
4424 by element. */
4425 hash = sxhash_vector (obj, depth);
4426 else if (BOOL_VECTOR_P (obj))
4427 hash = sxhash_bool_vector (obj);
4428 else
4429 /* Others are `equal' if they are `eq', so let's take their
4430 address as hash. */
4431 hash = XHASH (obj);
4432 break;
4433
4434 case Lisp_Cons:
4435 hash = sxhash_list (obj, depth);
4436 break;
4437
4438 case Lisp_Float:
4439 hash = sxhash_float (XFLOAT_DATA (obj));
4440 break;
4441
4442 default:
4443 emacs_abort ();
4444 }
4445
4446 return hash;
4447 }
4448
4449
4450 \f
4451 /***********************************************************************
4452 Lisp Interface
4453 ***********************************************************************/
4454
4455 DEFUN ("sxhash-eq", Fsxhash_eq, Ssxhash_eq, 1, 1, 0,
4456 doc: /* Return an integer hash code for OBJ suitable for `eq'.
4457 If (eq A B), then (= (sxhash-eq A) (sxhash-eq B)). */)
4458 (Lisp_Object obj)
4459 {
4460 return make_number (hashfn_eq (NULL, obj));
4461 }
4462
4463 DEFUN ("sxhash-eql", Fsxhash_eql, Ssxhash_eql, 1, 1, 0,
4464 doc: /* Return an integer hash code for OBJ suitable for `eql'.
4465 If (eql A B), then (= (sxhash-eql A) (sxhash-eql B)). */)
4466 (Lisp_Object obj)
4467 {
4468 return make_number (hashfn_eql (NULL, obj));
4469 }
4470
4471 DEFUN ("sxhash-equal", Fsxhash_equal, Ssxhash_equal, 1, 1, 0,
4472 doc: /* Return an integer hash code for OBJ suitable for `equal'.
4473 If (equal A B), then (= (sxhash-equal A) (sxhash-equal B)). */)
4474 (Lisp_Object obj)
4475 {
4476 return make_number (hashfn_equal (NULL, obj));
4477 }
4478
4479 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4480 doc: /* Create and return a new hash table.
4481
4482 Arguments are specified as keyword/argument pairs. The following
4483 arguments are defined:
4484
4485 :test TEST -- TEST must be a symbol that specifies how to compare
4486 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4487 `equal'. User-supplied test and hash functions can be specified via
4488 `define-hash-table-test'.
4489
4490 :size SIZE -- A hint as to how many elements will be put in the table.
4491 Default is 65.
4492
4493 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4494 fills up. If REHASH-SIZE is an integer, increase the size by that
4495 amount. If it is a float, it must be > 1.0, and the new size is the
4496 old size multiplied by that factor. Default is 1.5.
4497
4498 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4499 Resize the hash table when the ratio (number of entries / table size)
4500 is greater than or equal to THRESHOLD. Default is 0.8.
4501
4502 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4503 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4504 returned is a weak table. Key/value pairs are removed from a weak
4505 hash table when there are no non-weak references pointing to their
4506 key, value, one of key or value, or both key and value, depending on
4507 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4508 is nil.
4509
4510 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4511 (ptrdiff_t nargs, Lisp_Object *args)
4512 {
4513 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4514 struct hash_table_test testdesc;
4515 ptrdiff_t i;
4516 USE_SAFE_ALLOCA;
4517
4518 /* The vector `used' is used to keep track of arguments that
4519 have been consumed. */
4520 char *used = SAFE_ALLOCA (nargs * sizeof *used);
4521 memset (used, 0, nargs * sizeof *used);
4522
4523 /* See if there's a `:test TEST' among the arguments. */
4524 i = get_key_arg (QCtest, nargs, args, used);
4525 test = i ? args[i] : Qeql;
4526 if (EQ (test, Qeq))
4527 testdesc = hashtest_eq;
4528 else if (EQ (test, Qeql))
4529 testdesc = hashtest_eql;
4530 else if (EQ (test, Qequal))
4531 testdesc = hashtest_equal;
4532 else
4533 {
4534 /* See if it is a user-defined test. */
4535 Lisp_Object prop;
4536
4537 prop = Fget (test, Qhash_table_test);
4538 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4539 signal_error ("Invalid hash table test", test);
4540 testdesc.name = test;
4541 testdesc.user_cmp_function = XCAR (prop);
4542 testdesc.user_hash_function = XCAR (XCDR (prop));
4543 testdesc.hashfn = hashfn_user_defined;
4544 testdesc.cmpfn = cmpfn_user_defined;
4545 }
4546
4547 /* See if there's a `:size SIZE' argument. */
4548 i = get_key_arg (QCsize, nargs, args, used);
4549 size = i ? args[i] : Qnil;
4550 if (NILP (size))
4551 size = make_number (DEFAULT_HASH_SIZE);
4552 else if (!INTEGERP (size) || XINT (size) < 0)
4553 signal_error ("Invalid hash table size", size);
4554
4555 /* Look for `:rehash-size SIZE'. */
4556 i = get_key_arg (QCrehash_size, nargs, args, used);
4557 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4558 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4559 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4560 signal_error ("Invalid hash table rehash size", rehash_size);
4561
4562 /* Look for `:rehash-threshold THRESHOLD'. */
4563 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4564 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4565 if (! (FLOATP (rehash_threshold)
4566 && 0 < XFLOAT_DATA (rehash_threshold)
4567 && XFLOAT_DATA (rehash_threshold) <= 1))
4568 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4569
4570 /* Look for `:weakness WEAK'. */
4571 i = get_key_arg (QCweakness, nargs, args, used);
4572 weak = i ? args[i] : Qnil;
4573 if (EQ (weak, Qt))
4574 weak = Qkey_and_value;
4575 if (!NILP (weak)
4576 && !EQ (weak, Qkey)
4577 && !EQ (weak, Qvalue)
4578 && !EQ (weak, Qkey_or_value)
4579 && !EQ (weak, Qkey_and_value))
4580 signal_error ("Invalid hash table weakness", weak);
4581
4582 /* Now, all args should have been used up, or there's a problem. */
4583 for (i = 0; i < nargs; ++i)
4584 if (!used[i])
4585 signal_error ("Invalid argument list", args[i]);
4586
4587 SAFE_FREE ();
4588 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4589 }
4590
4591
4592 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4593 doc: /* Return a copy of hash table TABLE. */)
4594 (Lisp_Object table)
4595 {
4596 return copy_hash_table (check_hash_table (table));
4597 }
4598
4599
4600 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4601 doc: /* Return the number of elements in TABLE. */)
4602 (Lisp_Object table)
4603 {
4604 return make_number (check_hash_table (table)->count);
4605 }
4606
4607
4608 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4609 Shash_table_rehash_size, 1, 1, 0,
4610 doc: /* Return the current rehash size of TABLE. */)
4611 (Lisp_Object table)
4612 {
4613 return check_hash_table (table)->rehash_size;
4614 }
4615
4616
4617 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4618 Shash_table_rehash_threshold, 1, 1, 0,
4619 doc: /* Return the current rehash threshold of TABLE. */)
4620 (Lisp_Object table)
4621 {
4622 return check_hash_table (table)->rehash_threshold;
4623 }
4624
4625
4626 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4627 doc: /* Return the size of TABLE.
4628 The size can be used as an argument to `make-hash-table' to create
4629 a hash table than can hold as many elements as TABLE holds
4630 without need for resizing. */)
4631 (Lisp_Object table)
4632 {
4633 struct Lisp_Hash_Table *h = check_hash_table (table);
4634 return make_number (HASH_TABLE_SIZE (h));
4635 }
4636
4637
4638 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4639 doc: /* Return the test TABLE uses. */)
4640 (Lisp_Object table)
4641 {
4642 return check_hash_table (table)->test.name;
4643 }
4644
4645
4646 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4647 1, 1, 0,
4648 doc: /* Return the weakness of TABLE. */)
4649 (Lisp_Object table)
4650 {
4651 return check_hash_table (table)->weak;
4652 }
4653
4654
4655 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4656 doc: /* Return t if OBJ is a Lisp hash table object. */)
4657 (Lisp_Object obj)
4658 {
4659 return HASH_TABLE_P (obj) ? Qt : Qnil;
4660 }
4661
4662
4663 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4664 doc: /* Clear hash table TABLE and return it. */)
4665 (Lisp_Object table)
4666 {
4667 hash_clear (check_hash_table (table));
4668 /* Be compatible with XEmacs. */
4669 return table;
4670 }
4671
4672
4673 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4674 doc: /* Look up KEY in TABLE and return its associated value.
4675 If KEY is not found, return DFLT which defaults to nil. */)
4676 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4677 {
4678 struct Lisp_Hash_Table *h = check_hash_table (table);
4679 ptrdiff_t i = hash_lookup (h, key, NULL);
4680 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4681 }
4682
4683
4684 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4685 doc: /* Associate KEY with VALUE in hash table TABLE.
4686 If KEY is already present in table, replace its current value with
4687 VALUE. In any case, return VALUE. */)
4688 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4689 {
4690 struct Lisp_Hash_Table *h = check_hash_table (table);
4691 ptrdiff_t i;
4692 EMACS_UINT hash;
4693
4694 i = hash_lookup (h, key, &hash);
4695 if (i >= 0)
4696 set_hash_value_slot (h, i, value);
4697 else
4698 hash_put (h, key, value, hash);
4699
4700 return value;
4701 }
4702
4703
4704 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4705 doc: /* Remove KEY from TABLE. */)
4706 (Lisp_Object key, Lisp_Object table)
4707 {
4708 struct Lisp_Hash_Table *h = check_hash_table (table);
4709 hash_remove_from_table (h, key);
4710 return Qnil;
4711 }
4712
4713
4714 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4715 doc: /* Call FUNCTION for all entries in hash table TABLE.
4716 FUNCTION is called with two arguments, KEY and VALUE.
4717 `maphash' always returns nil. */)
4718 (Lisp_Object function, Lisp_Object table)
4719 {
4720 struct Lisp_Hash_Table *h = check_hash_table (table);
4721
4722 for (ptrdiff_t i = 0; i < HASH_TABLE_SIZE (h); ++i)
4723 if (!NILP (HASH_HASH (h, i)))
4724 call2 (function, HASH_KEY (h, i), HASH_VALUE (h, i));
4725
4726 return Qnil;
4727 }
4728
4729
4730 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4731 Sdefine_hash_table_test, 3, 3, 0,
4732 doc: /* Define a new hash table test with name NAME, a symbol.
4733
4734 In hash tables created with NAME specified as test, use TEST to
4735 compare keys, and HASH for computing hash codes of keys.
4736
4737 TEST must be a function taking two arguments and returning non-nil if
4738 both arguments are the same. HASH must be a function taking one
4739 argument and returning an object that is the hash code of the argument.
4740 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4741 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4742 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4743 {
4744 return Fput (name, Qhash_table_test, list2 (test, hash));
4745 }
4746
4747
4748 \f
4749 /************************************************************************
4750 MD5, SHA-1, and SHA-2
4751 ************************************************************************/
4752
4753 #include "md5.h"
4754 #include "sha1.h"
4755 #include "sha256.h"
4756 #include "sha512.h"
4757
4758 static Lisp_Object
4759 make_digest_string (Lisp_Object digest, int digest_size)
4760 {
4761 unsigned char *p = SDATA (digest);
4762
4763 for (int i = digest_size - 1; i >= 0; i--)
4764 {
4765 static char const hexdigit[16] = "0123456789abcdef";
4766 int p_i = p[i];
4767 p[2 * i] = hexdigit[p_i >> 4];
4768 p[2 * i + 1] = hexdigit[p_i & 0xf];
4769 }
4770 return digest;
4771 }
4772
4773 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4774
4775 static Lisp_Object
4776 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start,
4777 Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror,
4778 Lisp_Object binary)
4779 {
4780 ptrdiff_t size, start_char = 0, start_byte, end_char = 0, end_byte;
4781 register EMACS_INT b, e;
4782 register struct buffer *bp;
4783 EMACS_INT temp;
4784 int digest_size;
4785 void *(*hash_func) (const char *, size_t, void *);
4786 Lisp_Object digest;
4787
4788 CHECK_SYMBOL (algorithm);
4789
4790 if (STRINGP (object))
4791 {
4792 if (NILP (coding_system))
4793 {
4794 /* Decide the coding-system to encode the data with. */
4795
4796 if (STRING_MULTIBYTE (object))
4797 /* use default, we can't guess correct value */
4798 coding_system = preferred_coding_system ();
4799 else
4800 coding_system = Qraw_text;
4801 }
4802
4803 if (NILP (Fcoding_system_p (coding_system)))
4804 {
4805 /* Invalid coding system. */
4806
4807 if (!NILP (noerror))
4808 coding_system = Qraw_text;
4809 else
4810 xsignal1 (Qcoding_system_error, coding_system);
4811 }
4812
4813 if (STRING_MULTIBYTE (object))
4814 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4815
4816 size = SCHARS (object);
4817 validate_subarray (object, start, end, size, &start_char, &end_char);
4818
4819 start_byte = !start_char ? 0 : string_char_to_byte (object, start_char);
4820 end_byte = (end_char == size
4821 ? SBYTES (object)
4822 : string_char_to_byte (object, end_char));
4823 }
4824 else
4825 {
4826 struct buffer *prev = current_buffer;
4827
4828 record_unwind_current_buffer ();
4829
4830 CHECK_BUFFER (object);
4831
4832 bp = XBUFFER (object);
4833 set_buffer_internal (bp);
4834
4835 if (NILP (start))
4836 b = BEGV;
4837 else
4838 {
4839 CHECK_NUMBER_COERCE_MARKER (start);
4840 b = XINT (start);
4841 }
4842
4843 if (NILP (end))
4844 e = ZV;
4845 else
4846 {
4847 CHECK_NUMBER_COERCE_MARKER (end);
4848 e = XINT (end);
4849 }
4850
4851 if (b > e)
4852 temp = b, b = e, e = temp;
4853
4854 if (!(BEGV <= b && e <= ZV))
4855 args_out_of_range (start, end);
4856
4857 if (NILP (coding_system))
4858 {
4859 /* Decide the coding-system to encode the data with.
4860 See fileio.c:Fwrite-region */
4861
4862 if (!NILP (Vcoding_system_for_write))
4863 coding_system = Vcoding_system_for_write;
4864 else
4865 {
4866 bool force_raw_text = 0;
4867
4868 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4869 if (NILP (coding_system)
4870 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4871 {
4872 coding_system = Qnil;
4873 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4874 force_raw_text = 1;
4875 }
4876
4877 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4878 {
4879 /* Check file-coding-system-alist. */
4880 Lisp_Object val = CALLN (Ffind_operation_coding_system,
4881 Qwrite_region, start, end,
4882 Fbuffer_file_name (object));
4883 if (CONSP (val) && !NILP (XCDR (val)))
4884 coding_system = XCDR (val);
4885 }
4886
4887 if (NILP (coding_system)
4888 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4889 {
4890 /* If we still have not decided a coding system, use the
4891 default value of buffer-file-coding-system. */
4892 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4893 }
4894
4895 if (!force_raw_text
4896 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4897 /* Confirm that VAL can surely encode the current region. */
4898 coding_system = call4 (Vselect_safe_coding_system_function,
4899 make_number (b), make_number (e),
4900 coding_system, Qnil);
4901
4902 if (force_raw_text)
4903 coding_system = Qraw_text;
4904 }
4905
4906 if (NILP (Fcoding_system_p (coding_system)))
4907 {
4908 /* Invalid coding system. */
4909
4910 if (!NILP (noerror))
4911 coding_system = Qraw_text;
4912 else
4913 xsignal1 (Qcoding_system_error, coding_system);
4914 }
4915 }
4916
4917 object = make_buffer_string (b, e, 0);
4918 set_buffer_internal (prev);
4919 /* Discard the unwind protect for recovering the current
4920 buffer. */
4921 specpdl_ptr--;
4922
4923 if (STRING_MULTIBYTE (object))
4924 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4925 start_byte = 0;
4926 end_byte = SBYTES (object);
4927 }
4928
4929 if (EQ (algorithm, Qmd5))
4930 {
4931 digest_size = MD5_DIGEST_SIZE;
4932 hash_func = md5_buffer;
4933 }
4934 else if (EQ (algorithm, Qsha1))
4935 {
4936 digest_size = SHA1_DIGEST_SIZE;
4937 hash_func = sha1_buffer;
4938 }
4939 else if (EQ (algorithm, Qsha224))
4940 {
4941 digest_size = SHA224_DIGEST_SIZE;
4942 hash_func = sha224_buffer;
4943 }
4944 else if (EQ (algorithm, Qsha256))
4945 {
4946 digest_size = SHA256_DIGEST_SIZE;
4947 hash_func = sha256_buffer;
4948 }
4949 else if (EQ (algorithm, Qsha384))
4950 {
4951 digest_size = SHA384_DIGEST_SIZE;
4952 hash_func = sha384_buffer;
4953 }
4954 else if (EQ (algorithm, Qsha512))
4955 {
4956 digest_size = SHA512_DIGEST_SIZE;
4957 hash_func = sha512_buffer;
4958 }
4959 else
4960 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4961
4962 /* allocate 2 x digest_size so that it can be re-used to hold the
4963 hexified value */
4964 digest = make_uninit_string (digest_size * 2);
4965
4966 hash_func (SSDATA (object) + start_byte,
4967 end_byte - start_byte,
4968 SSDATA (digest));
4969
4970 if (NILP (binary))
4971 return make_digest_string (digest, digest_size);
4972 else
4973 return make_unibyte_string (SSDATA (digest), digest_size);
4974 }
4975
4976 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4977 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4978
4979 A message digest is a cryptographic checksum of a document, and the
4980 algorithm to calculate it is defined in RFC 1321.
4981
4982 The two optional arguments START and END are character positions
4983 specifying for which part of OBJECT the message digest should be
4984 computed. If nil or omitted, the digest is computed for the whole
4985 OBJECT.
4986
4987 The MD5 message digest is computed from the result of encoding the
4988 text in a coding system, not directly from the internal Emacs form of
4989 the text. The optional fourth argument CODING-SYSTEM specifies which
4990 coding system to encode the text with. It should be the same coding
4991 system that you used or will use when actually writing the text into a
4992 file.
4993
4994 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4995 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4996 system would be chosen by default for writing this text into a file.
4997
4998 If OBJECT is a string, the most preferred coding system (see the
4999 command `prefer-coding-system') is used.
5000
5001 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5002 guesswork fails. Normally, an error is signaled in such case. */)
5003 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
5004 {
5005 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
5006 }
5007
5008 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
5009 doc: /* Return the secure hash of OBJECT, a buffer or string.
5010 ALGORITHM is a symbol specifying the hash to use:
5011 md5, sha1, sha224, sha256, sha384 or sha512.
5012
5013 The two optional arguments START and END are positions specifying for
5014 which part of OBJECT to compute the hash. If nil or omitted, uses the
5015 whole OBJECT.
5016
5017 If BINARY is non-nil, returns a string in binary form. */)
5018 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
5019 {
5020 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
5021 }
5022
5023 DEFUN ("buffer-hash", Fbuffer_hash, Sbuffer_hash, 0, 1, 0,
5024 doc: /* Return a hash of the contents of BUFFER-OR-NAME.
5025 This hash is performed on the raw internal format of the buffer,
5026 disregarding any coding systems.
5027 If nil, use the current buffer." */ )
5028 (Lisp_Object buffer_or_name)
5029 {
5030 Lisp_Object buffer;
5031 struct buffer *b;
5032 struct sha1_ctx ctx;
5033
5034 if (NILP (buffer_or_name))
5035 buffer = Fcurrent_buffer ();
5036 else
5037 buffer = Fget_buffer (buffer_or_name);
5038 if (NILP (buffer))
5039 nsberror (buffer_or_name);
5040
5041 b = XBUFFER (buffer);
5042 sha1_init_ctx (&ctx);
5043
5044 /* Process the first part of the buffer. */
5045 sha1_process_bytes (BUF_BEG_ADDR (b),
5046 BUF_GPT_BYTE (b) - BUF_BEG_BYTE (b),
5047 &ctx);
5048
5049 /* If the gap is before the end of the buffer, process the last half
5050 of the buffer. */
5051 if (BUF_GPT_BYTE (b) < BUF_Z_BYTE (b))
5052 sha1_process_bytes (BUF_GAP_END_ADDR (b),
5053 BUF_Z_ADDR (b) - BUF_GAP_END_ADDR (b),
5054 &ctx);
5055
5056 Lisp_Object digest = make_uninit_string (SHA1_DIGEST_SIZE * 2);
5057 sha1_finish_ctx (&ctx, SSDATA (digest));
5058 return make_digest_string (digest, SHA1_DIGEST_SIZE);
5059 }
5060
5061 \f
5062 void
5063 syms_of_fns (void)
5064 {
5065 DEFSYM (Qmd5, "md5");
5066 DEFSYM (Qsha1, "sha1");
5067 DEFSYM (Qsha224, "sha224");
5068 DEFSYM (Qsha256, "sha256");
5069 DEFSYM (Qsha384, "sha384");
5070 DEFSYM (Qsha512, "sha512");
5071
5072 /* Hash table stuff. */
5073 DEFSYM (Qhash_table_p, "hash-table-p");
5074 DEFSYM (Qeq, "eq");
5075 DEFSYM (Qeql, "eql");
5076 DEFSYM (Qequal, "equal");
5077 DEFSYM (QCtest, ":test");
5078 DEFSYM (QCsize, ":size");
5079 DEFSYM (QCrehash_size, ":rehash-size");
5080 DEFSYM (QCrehash_threshold, ":rehash-threshold");
5081 DEFSYM (QCweakness, ":weakness");
5082 DEFSYM (Qkey, "key");
5083 DEFSYM (Qvalue, "value");
5084 DEFSYM (Qhash_table_test, "hash-table-test");
5085 DEFSYM (Qkey_or_value, "key-or-value");
5086 DEFSYM (Qkey_and_value, "key-and-value");
5087
5088 defsubr (&Ssxhash_eq);
5089 defsubr (&Ssxhash_eql);
5090 defsubr (&Ssxhash_equal);
5091 defsubr (&Smake_hash_table);
5092 defsubr (&Scopy_hash_table);
5093 defsubr (&Shash_table_count);
5094 defsubr (&Shash_table_rehash_size);
5095 defsubr (&Shash_table_rehash_threshold);
5096 defsubr (&Shash_table_size);
5097 defsubr (&Shash_table_test);
5098 defsubr (&Shash_table_weakness);
5099 defsubr (&Shash_table_p);
5100 defsubr (&Sclrhash);
5101 defsubr (&Sgethash);
5102 defsubr (&Sputhash);
5103 defsubr (&Sremhash);
5104 defsubr (&Smaphash);
5105 defsubr (&Sdefine_hash_table_test);
5106
5107 DEFSYM (Qstring_lessp, "string-lessp");
5108 DEFSYM (Qprovide, "provide");
5109 DEFSYM (Qrequire, "require");
5110 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
5111 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
5112 DEFSYM (Qwidget_type, "widget-type");
5113
5114 staticpro (&string_char_byte_cache_string);
5115 string_char_byte_cache_string = Qnil;
5116
5117 require_nesting_list = Qnil;
5118 staticpro (&require_nesting_list);
5119
5120 Fset (Qyes_or_no_p_history, Qnil);
5121
5122 DEFVAR_LISP ("features", Vfeatures,
5123 doc: /* A list of symbols which are the features of the executing Emacs.
5124 Used by `featurep' and `require', and altered by `provide'. */);
5125 Vfeatures = list1 (Qemacs);
5126 DEFSYM (Qsubfeatures, "subfeatures");
5127 DEFSYM (Qfuncall, "funcall");
5128
5129 #ifdef HAVE_LANGINFO_CODESET
5130 DEFSYM (Qcodeset, "codeset");
5131 DEFSYM (Qdays, "days");
5132 DEFSYM (Qmonths, "months");
5133 DEFSYM (Qpaper, "paper");
5134 #endif /* HAVE_LANGINFO_CODESET */
5135
5136 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
5137 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
5138 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5139 invoked by mouse clicks and mouse menu items.
5140
5141 On some platforms, file selection dialogs are also enabled if this is
5142 non-nil. */);
5143 use_dialog_box = 1;
5144
5145 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
5146 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
5147 This applies to commands from menus and tool bar buttons even when
5148 they are initiated from the keyboard. If `use-dialog-box' is nil,
5149 that disables the use of a file dialog, regardless of the value of
5150 this variable. */);
5151 use_file_dialog = 1;
5152
5153 defsubr (&Sidentity);
5154 defsubr (&Srandom);
5155 defsubr (&Slength);
5156 defsubr (&Ssafe_length);
5157 defsubr (&Sstring_bytes);
5158 defsubr (&Sstring_equal);
5159 defsubr (&Scompare_strings);
5160 defsubr (&Sstring_lessp);
5161 defsubr (&Sstring_version_lessp);
5162 defsubr (&Sstring_collate_lessp);
5163 defsubr (&Sstring_collate_equalp);
5164 defsubr (&Sappend);
5165 defsubr (&Sconcat);
5166 defsubr (&Svconcat);
5167 defsubr (&Scopy_sequence);
5168 defsubr (&Sstring_make_multibyte);
5169 defsubr (&Sstring_make_unibyte);
5170 defsubr (&Sstring_as_multibyte);
5171 defsubr (&Sstring_as_unibyte);
5172 defsubr (&Sstring_to_multibyte);
5173 defsubr (&Sstring_to_unibyte);
5174 defsubr (&Scopy_alist);
5175 defsubr (&Ssubstring);
5176 defsubr (&Ssubstring_no_properties);
5177 defsubr (&Snthcdr);
5178 defsubr (&Snth);
5179 defsubr (&Selt);
5180 defsubr (&Smember);
5181 defsubr (&Smemq);
5182 defsubr (&Smemql);
5183 defsubr (&Sassq);
5184 defsubr (&Sassoc);
5185 defsubr (&Srassq);
5186 defsubr (&Srassoc);
5187 defsubr (&Sdelq);
5188 defsubr (&Sdelete);
5189 defsubr (&Snreverse);
5190 defsubr (&Sreverse);
5191 defsubr (&Ssort);
5192 defsubr (&Splist_get);
5193 defsubr (&Sget);
5194 defsubr (&Splist_put);
5195 defsubr (&Sput);
5196 defsubr (&Slax_plist_get);
5197 defsubr (&Slax_plist_put);
5198 defsubr (&Seql);
5199 defsubr (&Sequal);
5200 defsubr (&Sequal_including_properties);
5201 defsubr (&Sfillarray);
5202 defsubr (&Sclear_string);
5203 defsubr (&Snconc);
5204 defsubr (&Smapcar);
5205 defsubr (&Smapc);
5206 defsubr (&Smapconcat);
5207 defsubr (&Syes_or_no_p);
5208 defsubr (&Sload_average);
5209 defsubr (&Sfeaturep);
5210 defsubr (&Srequire);
5211 defsubr (&Sprovide);
5212 defsubr (&Splist_member);
5213 defsubr (&Swidget_put);
5214 defsubr (&Swidget_get);
5215 defsubr (&Swidget_apply);
5216 defsubr (&Sbase64_encode_region);
5217 defsubr (&Sbase64_decode_region);
5218 defsubr (&Sbase64_encode_string);
5219 defsubr (&Sbase64_decode_string);
5220 defsubr (&Smd5);
5221 defsubr (&Ssecure_hash);
5222 defsubr (&Sbuffer_hash);
5223 defsubr (&Slocale_info);
5224 }