]> code.delx.au - gnu-emacs/blob - doc/lispref/sequences.texi
Merge from origin/emacs-24
[gnu-emacs] / doc / lispref / sequences.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2015 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Sequences Arrays Vectors
7 @chapter Sequences, Arrays, and Vectors
8 @cindex sequence
9
10 The @dfn{sequence} type is the union of two other Lisp types: lists
11 and arrays. In other words, any list is a sequence, and any array is
12 a sequence. The common property that all sequences have is that each
13 is an ordered collection of elements.
14
15 An @dfn{array} is a fixed-length object with a slot for each of its
16 elements. All the elements are accessible in constant time. The four
17 types of arrays are strings, vectors, char-tables and bool-vectors.
18
19 A list is a sequence of elements, but it is not a single primitive
20 object; it is made of cons cells, one cell per element. Finding the
21 @var{n}th element requires looking through @var{n} cons cells, so
22 elements farther from the beginning of the list take longer to access.
23 But it is possible to add elements to the list, or remove elements.
24
25 The following diagram shows the relationship between these types:
26
27 @example
28 @group
29 _____________________________________________
30 | |
31 | Sequence |
32 | ______ ________________________________ |
33 | | | | | |
34 | | List | | Array | |
35 | | | | ________ ________ | |
36 | |______| | | | | | | |
37 | | | Vector | | String | | |
38 | | |________| |________| | |
39 | | ____________ _____________ | |
40 | | | | | | | |
41 | | | Char-table | | Bool-vector | | |
42 | | |____________| |_____________| | |
43 | |________________________________| |
44 |_____________________________________________|
45 @end group
46 @end example
47
48 @menu
49 * Sequence Functions:: Functions that accept any kind of sequence.
50 * Arrays:: Characteristics of arrays in Emacs Lisp.
51 * Array Functions:: Functions specifically for arrays.
52 * Vectors:: Special characteristics of Emacs Lisp vectors.
53 * Vector Functions:: Functions specifically for vectors.
54 * Char-Tables:: How to work with char-tables.
55 * Bool-Vectors:: How to work with bool-vectors.
56 * Rings:: Managing a fixed-size ring of objects.
57 @end menu
58
59 @node Sequence Functions
60 @section Sequences
61
62 This section describes functions that accept any kind of sequence.
63
64 @defun sequencep object
65 This function returns @code{t} if @var{object} is a list, vector,
66 string, bool-vector, or char-table, @code{nil} otherwise.
67 @end defun
68
69 @defun length sequence
70 @cindex string length
71 @cindex list length
72 @cindex vector length
73 @cindex sequence length
74 @cindex char-table length
75 This function returns the number of elements in @var{sequence}. If
76 @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
77 signaled. Circular lists may cause an infinite loop. For a
78 char-table, the value returned is always one more than the maximum
79 Emacs character code.
80
81 @xref{Definition of safe-length}, for the related function @code{safe-length}.
82
83 @example
84 @group
85 (length '(1 2 3))
86 @result{} 3
87 @end group
88 @group
89 (length ())
90 @result{} 0
91 @end group
92 @group
93 (length "foobar")
94 @result{} 6
95 @end group
96 @group
97 (length [1 2 3])
98 @result{} 3
99 @end group
100 @group
101 (length (make-bool-vector 5 nil))
102 @result{} 5
103 @end group
104 @end example
105 @end defun
106
107 @noindent
108 See also @code{string-bytes}, in @ref{Text Representations}.
109
110 If you need to compute the width of a string on display, you should use
111 @code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
112 since @code{length} only counts the number of characters, but does not
113 account for the display width of each character.
114
115 @defun elt sequence index
116 @cindex elements of sequences
117 This function returns the element of @var{sequence} indexed by
118 @var{index}. Legitimate values of @var{index} are integers ranging
119 from 0 up to one less than the length of @var{sequence}. If
120 @var{sequence} is a list, out-of-range values behave as for
121 @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
122 trigger an @code{args-out-of-range} error.
123
124 @example
125 @group
126 (elt [1 2 3 4] 2)
127 @result{} 3
128 @end group
129 @group
130 (elt '(1 2 3 4) 2)
131 @result{} 3
132 @end group
133 @group
134 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
135 (string (elt "1234" 2))
136 @result{} "3"
137 @end group
138 @group
139 (elt [1 2 3 4] 4)
140 @error{} Args out of range: [1 2 3 4], 4
141 @end group
142 @group
143 (elt [1 2 3 4] -1)
144 @error{} Args out of range: [1 2 3 4], -1
145 @end group
146 @end example
147
148 This function generalizes @code{aref} (@pxref{Array Functions}) and
149 @code{nth} (@pxref{Definition of nth}).
150 @end defun
151
152 @defun copy-sequence sequence
153 @cindex copying sequences
154 This function returns a copy of @var{sequence}. The copy is the same
155 type of object as the original sequence, and it has the same elements
156 in the same order.
157
158 Storing a new element into the copy does not affect the original
159 @var{sequence}, and vice versa. However, the elements of the new
160 sequence are not copies; they are identical (@code{eq}) to the elements
161 of the original. Therefore, changes made within these elements, as
162 found via the copied sequence, are also visible in the original
163 sequence.
164
165 If the sequence is a string with text properties, the property list in
166 the copy is itself a copy, not shared with the original's property
167 list. However, the actual values of the properties are shared.
168 @xref{Text Properties}.
169
170 This function does not work for dotted lists. Trying to copy a
171 circular list may cause an infinite loop.
172
173 See also @code{append} in @ref{Building Lists}, @code{concat} in
174 @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
175 for other ways to copy sequences.
176
177 @example
178 @group
179 (setq bar '(1 2))
180 @result{} (1 2)
181 @end group
182 @group
183 (setq x (vector 'foo bar))
184 @result{} [foo (1 2)]
185 @end group
186 @group
187 (setq y (copy-sequence x))
188 @result{} [foo (1 2)]
189 @end group
190
191 @group
192 (eq x y)
193 @result{} nil
194 @end group
195 @group
196 (equal x y)
197 @result{} t
198 @end group
199 @group
200 (eq (elt x 1) (elt y 1))
201 @result{} t
202 @end group
203
204 @group
205 ;; @r{Replacing an element of one sequence.}
206 (aset x 0 'quux)
207 x @result{} [quux (1 2)]
208 y @result{} [foo (1 2)]
209 @end group
210
211 @group
212 ;; @r{Modifying the inside of a shared element.}
213 (setcar (aref x 1) 69)
214 x @result{} [quux (69 2)]
215 y @result{} [foo (69 2)]
216 @end group
217 @end example
218 @end defun
219
220 @defun reverse sequence
221 @cindex string reverse
222 @cindex list reverse
223 @cindex vector reverse
224 @cindex sequence reverse
225 This function creates a new sequence whose elements are the elements
226 of @var{sequence}, but in reverse order. The original argument @var{sequence}
227 is @emph{not} altered. Note that char-tables cannot be reversed.
228
229 @example
230 @group
231 (setq x '(1 2 3 4))
232 @result{} (1 2 3 4)
233 @end group
234 @group
235 (reverse x)
236 @result{} (4 3 2 1)
237 x
238 @result{} (1 2 3 4)
239 @end group
240 @group
241 (setq x [1 2 3 4])
242 @result{} [1 2 3 4]
243 @end group
244 @group
245 (reverse x)
246 @result{} [4 3 2 1]
247 x
248 @result{} [1 2 3 4]
249 @end group
250 @group
251 (setq x "xyzzy")
252 @result{} "xyzzy"
253 @end group
254 @group
255 (reverse x)
256 @result{} "yzzyx"
257 x
258 @result{} "xyzzy"
259 @end group
260 @end example
261 @end defun
262
263 @defun nreverse sequence
264 @cindex reversing a string
265 @cindex reversing a list
266 @cindex reversing a vector
267 This function reverses the order of the elements of @var{sequence}.
268 Unlike @code{reverse} the original @var{sequence} may be modified.
269
270 For example:
271
272 @example
273 @group
274 (setq x '(a b c))
275 @result{} (a b c)
276 @end group
277 @group
278 x
279 @result{} (a b c)
280 (nreverse x)
281 @result{} (c b a)
282 @end group
283 @group
284 ;; @r{The cons cell that was first is now last.}
285 x
286 @result{} (a)
287 @end group
288 @end example
289
290 To avoid confusion, we usually store the result of @code{nreverse}
291 back in the same variable which held the original list:
292
293 @example
294 (setq x (nreverse x))
295 @end example
296
297 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
298 presented graphically:
299
300 @smallexample
301 @group
302 @r{Original list head:} @r{Reversed list:}
303 ------------- ------------- ------------
304 | car | cdr | | car | cdr | | car | cdr |
305 | a | nil |<-- | b | o |<-- | c | o |
306 | | | | | | | | | | | | |
307 ------------- | --------- | - | -------- | -
308 | | | |
309 ------------- ------------
310 @end group
311 @end smallexample
312
313 For the vector, it is even simpler because you don't need setq:
314
315 @example
316 (setq x [1 2 3 4])
317 @result{} [1 2 3 4]
318 (nreverse x)
319 @result{} [4 3 2 1]
320 x
321 @result{} [4 3 2 1]
322 @end example
323
324 Note that unlike @code{reverse}, this function doesn't work with strings.
325 Although you can alter string data by using @code{aset}, it is strongly
326 encouraged to treat strings as immutable.
327
328 @end defun
329
330 @defun sort sequence predicate
331 @cindex stable sort
332 @cindex sorting lists
333 @cindex sorting vectors
334 This function sorts @var{sequence} stably. Note that this function doesn't work
335 for all sequences; it may be used only for lists and vectors. If @var{sequence}
336 is a list, it is modified destructively. This functions returns the sorted
337 @var{sequence} and compares elements using @var{predicate}. A stable sort is
338 one in which elements with equal sort keys maintain their relative order before
339 and after the sort. Stability is important when successive sorts are used to
340 order elements according to different criteria.
341
342 The argument @var{predicate} must be a function that accepts two
343 arguments. It is called with two elements of @var{sequence}. To get an
344 increasing order sort, the @var{predicate} should return non-@code{nil} if the
345 first element is ``less than'' the second, or @code{nil} if not.
346
347 The comparison function @var{predicate} must give reliable results for
348 any given pair of arguments, at least within a single call to
349 @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
350 less than @var{b}, @var{b} must not be less than @var{a}. It must be
351 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
352 is less than @var{c}, then @var{a} must be less than @var{c}. If you
353 use a comparison function which does not meet these requirements, the
354 result of @code{sort} is unpredictable.
355
356 The destructive aspect of @code{sort} for lists is that it rearranges the
357 cons cells forming @var{sequence} by changing @sc{cdr}s. A nondestructive
358 sort function would create new cons cells to store the elements in their
359 sorted order. If you wish to make a sorted copy without destroying the
360 original, copy it first with @code{copy-sequence} and then sort.
361
362 Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
363 the cons cell that originally contained the element @code{a} in
364 @var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
365 appears in a different position in the list due to the change of
366 @sc{cdr}s. For example:
367
368 @example
369 @group
370 (setq nums '(1 3 2 6 5 4 0))
371 @result{} (1 3 2 6 5 4 0)
372 @end group
373 @group
374 (sort nums '<)
375 @result{} (0 1 2 3 4 5 6)
376 @end group
377 @group
378 nums
379 @result{} (1 2 3 4 5 6)
380 @end group
381 @end example
382
383 @noindent
384 @strong{Warning}: Note that the list in @code{nums} no longer contains
385 0; this is the same cons cell that it was before, but it is no longer
386 the first one in the list. Don't assume a variable that formerly held
387 the argument now holds the entire sorted list! Instead, save the result
388 of @code{sort} and use that. Most often we store the result back into
389 the variable that held the original list:
390
391 @example
392 (setq nums (sort nums '<))
393 @end example
394
395 For the better understanding of what stable sort is, consider the following
396 vector example. After sorting, all items whose @code{car} is 8 are grouped
397 at the beginning of @code{vector}, but their relative order is preserved.
398 All items whose @code{car} is 9 are grouped at the end of @code{vector},
399 but their relative order is also preserved:
400
401 @example
402 @group
403 (setq
404 vector
405 (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
406 '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
407 @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
408 (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
409 @end group
410 @group
411 (sort vector (lambda (x y) (< (car x) (car y))))
412 @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
413 (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
414 @end group
415 @end example
416
417 @xref{Sorting}, for more functions that perform sorting.
418 See @code{documentation} in @ref{Accessing Documentation}, for a
419 useful example of @code{sort}.
420 @end defun
421
422 @cindex sequence functions in seq
423 @cindex seq library
424 The @file{seq.el} library provides the following additional sequence
425 manipulation macros and functions, prefixed with @code{seq-}. To use
426 them, you must first load the @file{seq} library.
427
428 All functions defined in this library are free of side-effects;
429 i.e., they do not modify any sequence (list, vector, or string) that
430 you pass as an argument. Unless otherwise stated, the result is a
431 sequence of the same type as the input. For those functions that take
432 a predicate, this should be a function of one argument.
433
434 @defun seq-drop sequence n
435 This function returns all but the first @var{n} (an integer)
436 elements of @var{sequence}. If @var{n} is negative or zero,
437 the result is @var{sequence}.
438
439 @example
440 @group
441 (seq-drop [1 2 3 4 5 6] 3)
442 @result{} [4 5 6]
443 @end group
444 @group
445 (seq-drop "hello world" -4)
446 @result{} "hello world"
447 @end group
448 @end example
449 @end defun
450
451 @defun seq-take sequence n
452 This function returns the first @var{n} (an integer) elements of
453 @var{sequence}. If @var{n} is negative or zero, the result
454 is @code{nil}.
455
456 @example
457 @group
458 (seq-take '(1 2 3 4) 3)
459 @result{} (1 2 3)
460 @end group
461 @group
462 (seq-take [1 2 3 4] 0)
463 @result{} []
464 @end group
465 @end example
466 @end defun
467
468 @defun seq-take-while predicate sequence
469 This function returns the members of @var{sequence} in order,
470 stopping before the first one for which @var{predicate} returns @code{nil}.
471
472 @example
473 @group
474 (seq-take-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
475 @result{} (1 2 3)
476 @end group
477 @group
478 (seq-take-while (lambda (elt) (> elt 0)) [-1 4 6])
479 @result{} []
480 @end group
481 @end example
482 @end defun
483
484 @defun seq-drop-while predicate sequence
485 This function returns the members of @var{sequence} in order,
486 starting from the first one for which @var{predicate} returns @code{nil}.
487
488 @example
489 @group
490 (seq-drop-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
491 @result{} (-1 -2)
492 @end group
493 @group
494 (seq-drop-while (lambda (elt) (< elt 0)) [1 4 6])
495 @result{} [1 4 6]
496 @end group
497 @end example
498 @end defun
499
500 @defun seq-filter predicate sequence
501 @cindex filtering sequences
502 This function returns a list of all the elements in @var{sequence}
503 for which @var{predicate} returns non-@code{nil}.
504
505 @example
506 @group
507 (seq-filter (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
508 @result{} (1 3 5)
509 @end group
510 @group
511 (seq-filter (lambda (elt) (> elt 0)) '(-1 -3 -5))
512 @result{} nil
513 @end group
514 @end example
515 @end defun
516
517 @defun seq-remove predicate sequence
518 @cindex removing from sequences
519 This function returns a list of all the elements in @var{sequence}
520 for which @var{predicate} returns @code{nil}.
521
522 @example
523 @group
524 (seq-remove (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
525 @result{} (-1 -3)
526 @end group
527 @group
528 (seq-remove (lambda (elt) (< elt 0)) '(-1 -3 -5))
529 @result{} nil
530 @end group
531 @end example
532 @end defun
533
534 @defun seq-reduce function sequence initial-value
535 @cindex reducing sequences
536 This function returns the result of calling @var{function} with
537 @var{initial-value} and the first element of @var{sequence}, then calling
538 @var{function} with that result and the second element of @var{sequence},
539 then with that result and the third element of @var{sequence}, etc.
540 @var{function} should be a function of two arguments. If
541 @var{sequence} is empty, this returns @var{initial-value} without
542 calling @var{function}.
543
544 @example
545 @group
546 (seq-reduce #'+ [1 2 3 4] 0)
547 @result{} 10
548 @end group
549 @group
550 (seq-reduce #'+ '(1 2 3 4) 5)
551 @result{} 15
552 @end group
553 @group
554 (seq-reduce #'+ '() 3)
555 @result{} 3
556 @end group
557 @end example
558 @end defun
559
560 @defun seq-some-p predicate sequence
561 This function returns the first member of sequence for which @var{predicate}
562 returns non-@code{nil}.
563
564 @example
565 @group
566 (seq-some-p #'numberp ["abc" 1 nil])
567 @result{} 1
568 @end group
569 @group
570 (seq-some-p #'numberp ["abc" "def"])
571 @result{} nil
572 @end group
573 @end example
574 @end defun
575
576 @defun seq-every-p predicate sequence
577 This function returns non-@code{nil} if applying @var{predicate}
578 to every element of @var{sequence} returns non-@code{nil}.
579
580 @example
581 @group
582 (seq-every-p #'numberp [2 4 6])
583 @result{} t
584 @end group
585 @group
586 (seq-some-p #'numberp [2 4 "6"])
587 @result{} nil
588 @end group
589 @end example
590 @end defun
591
592 @defun seq-empty-p sequence
593 This function returns non-@code{nil} if @var{sequence} is empty.
594
595 @example
596 @group
597 (seq-empty-p "not empty")
598 @result{} nil
599 @end group
600 @group
601 (seq-empty-p "")
602 @result{} t
603 @end group
604 @end example
605 @end defun
606
607 @defun seq-count predicate sequence
608 This function returns the number of elements in @var{sequence} for which
609 @var{predicate} returns non-@code{nil}.
610
611 @example
612 (seq-count (lambda (elt) (> elt 0)) [-1 2 0 3 -2])
613 @result{} 2
614 @end example
615 @end defun
616
617 @cindex sorting sequences
618 @defun seq-sort function sequence
619 This function returns a copy of @var{sequence} that is sorted
620 according to @var{function}, a function of two arguments that returns
621 non-@code{nil} if the first argument should sort before the second.
622 @end defun
623
624 @defun seq-contains-p sequence elt &optional function
625 This function returns the first element in @var{sequence} that is equal to
626 @var{elt}. If the optional argument @var{function} is non-@code{nil},
627 it is a function of two arguments to use instead of the default @code{equal}.
628
629 @example
630 @group
631 (seq-contains-p '(symbol1 symbol2) 'symbol1)
632 @result{} symbol1
633 @end group
634 @group
635 (seq-contains-p '(symbol1 symbol2) 'symbol3)
636 @result{} nil
637 @end group
638 @end example
639
640 @end defun
641
642 @defun seq-uniq sequence &optional function
643 This function returns a list of the elements of @var{sequence} with
644 duplicates removed. If the optional argument @var{function} is non-@code{nil},
645 it is a function of two arguments to use instead of the default @code{equal}.
646
647 @example
648 @group
649 (seq-uniq '(1 2 2 1 3))
650 @result{} (1 2 3)
651 @end group
652 @group
653 (seq-uniq '(1 2 2.0 1.0) #'=)
654 @result{} [3 4]
655 @end group
656 @end example
657 @end defun
658
659 @defun seq-subseq sequence start &optional end
660 This function returns a subset of @var{sequence} from @var{start}
661 to @var{end}, both integers (@var{end} defaults to the last element).
662 If @var{start} or @var{end} is negative, it counts from the end of
663 @var{sequence}.
664
665 @example
666 @group
667 (seq-subseq '(1 2 3 4 5) 1)
668 @result{} (2 3 4 5)
669 @end group
670 @group
671 (seq-subseq '[1 2 3 4 5] 1 3)
672 @result{} [2 3]
673 @end group
674 @group
675 (seq-subseq '[1 2 3 4 5] -3 -1)
676 @result{} [3 4]
677 @end group
678 @end example
679 @end defun
680
681 @defun seq-concatenate type &rest sequences
682 This function returns a sequence of type @var{type} made of the
683 concatenation of @var{sequences}. @var{type} may be: @code{vector},
684 @code{list} or @code{string}.
685
686 @example
687 @group
688 (seq-concatenate 'list '(1 2) '(3 4) [5 6])
689 @result{} (1 2 3 5 6)
690 @end group
691 @group
692 (seq-concatenate 'string "Hello " "world")
693 @result{} "Hello world"
694 @end group
695 @end example
696 @end defun
697
698 @defun seq-mapcat function sequence &optional type
699 This function returns the result of applying @code{seq-concatenate}
700 to the result of applying @var{function} to each element of
701 @var{sequence}. The result is a sequence of type @var{type}, or a
702 list if @var{type} is @code{nil}.
703
704 @example
705 @group
706 (seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)))
707 @result{} (1 2 3 4 5 6)
708 @end group
709 @end example
710 @end defun
711
712 @defun seq-partition sequence n
713 This function returns a list of the elements of @var{sequence}
714 grouped into sub-sequences of length @var{n}. The last sequence may
715 contain less elements than @var{n}. @var{n} must be an integer. If
716 @var{n} is a negative integer or 0, nil is returned.
717
718 @example
719 @group
720 (seq-partition '(0 1 2 3 4 5 6 7) 3)
721 @result{} ((0 1 2) (3 4 5) (6 7))
722 @end group
723 @end example
724 @end defun
725
726 @defun seq-group-by function sequence
727 This function separates the elements of @var{sequence} into an alist
728 whose keys are the result of applying @var{function} to each element
729 of @var{sequence}. Keys are compared using @code{equal}.
730
731 @example
732 @group
733 (seq-group-by #'integerp '(1 2.1 3 2 3.2))
734 @result{} ((t 1 3 2) (nil 2.1 3.2))
735 @end group
736 @group
737 (seq-group-by #'car '((a 1) (b 2) (a 3) (c 4)))
738 @result{} ((b (b 2)) (a (a 1) (a 3)) (c (c 4)))
739 @end group
740 @end example
741 @end defun
742
743 @defun seq-into sequence type
744 This function converts the sequence @var{sequence} into a sequence
745 of type @var{type}. @var{type} can be one of the following symbols:
746 @code{vector}, @code{string} or @code{list}.
747
748 @example
749 @group
750 (seq-into [1 2 3] 'list)
751 @result{} (1 2 3)
752 @end group
753 @group
754 (seq-into nil 'vector)
755 @result{} []
756 @end group
757 @group
758 (seq-into "hello" 'vector)
759 @result{} [104 101 108 108 111]
760 @end group
761 @end example
762 @end defun
763
764
765 @defmac seq-doseq (var sequence [result]) body@dots{}
766 @cindex sequence iteration
767 This macro is like @code{dolist}, except that @var{sequence} can be a list,
768 vector or string (@pxref{Iteration} for more information about the
769 @code{dolist} macro). This is primarily useful for side-effects.
770 @end defmac
771
772 @node Arrays
773 @section Arrays
774 @cindex array
775
776 An @dfn{array} object has slots that hold a number of other Lisp
777 objects, called the elements of the array. Any element of an array
778 may be accessed in constant time. In contrast, the time to access an
779 element of a list is proportional to the position of that element in
780 the list.
781
782 Emacs defines four types of array, all one-dimensional:
783 @dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
784 Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
785 @dfn{char-tables} (@pxref{Char-Table Type}). Vectors and char-tables
786 can hold elements of any type, but strings can only hold characters,
787 and bool-vectors can only hold @code{t} and @code{nil}.
788
789 All four kinds of array share these characteristics:
790
791 @itemize @bullet
792 @item
793 The first element of an array has index zero, the second element has
794 index 1, and so on. This is called @dfn{zero-origin} indexing. For
795 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
796
797 @item
798 The length of the array is fixed once you create it; you cannot
799 change the length of an existing array.
800
801 @item
802 For purposes of evaluation, the array is a constant---i.e.,
803 it evaluates to itself.
804
805 @item
806 The elements of an array may be referenced or changed with the functions
807 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
808 @end itemize
809
810 When you create an array, other than a char-table, you must specify
811 its length. You cannot specify the length of a char-table, because that
812 is determined by the range of character codes.
813
814 In principle, if you want an array of text characters, you could use
815 either a string or a vector. In practice, we always choose strings for
816 such applications, for four reasons:
817
818 @itemize @bullet
819 @item
820 They occupy one-fourth the space of a vector of the same elements.
821
822 @item
823 Strings are printed in a way that shows the contents more clearly
824 as text.
825
826 @item
827 Strings can hold text properties. @xref{Text Properties}.
828
829 @item
830 Many of the specialized editing and I/O facilities of Emacs accept only
831 strings. For example, you cannot insert a vector of characters into a
832 buffer the way you can insert a string. @xref{Strings and Characters}.
833 @end itemize
834
835 By contrast, for an array of keyboard input characters (such as a key
836 sequence), a vector may be necessary, because many keyboard input
837 characters are outside the range that will fit in a string. @xref{Key
838 Sequence Input}.
839
840 @node Array Functions
841 @section Functions that Operate on Arrays
842
843 In this section, we describe the functions that accept all types of
844 arrays.
845
846 @defun arrayp object
847 This function returns @code{t} if @var{object} is an array (i.e., a
848 vector, a string, a bool-vector or a char-table).
849
850 @example
851 @group
852 (arrayp [a])
853 @result{} t
854 (arrayp "asdf")
855 @result{} t
856 (arrayp (syntax-table)) ;; @r{A char-table.}
857 @result{} t
858 @end group
859 @end example
860 @end defun
861
862 @defun aref array index
863 @cindex array elements
864 This function returns the @var{index}th element of @var{array}. The
865 first element is at index zero.
866
867 @example
868 @group
869 (setq primes [2 3 5 7 11 13])
870 @result{} [2 3 5 7 11 13]
871 (aref primes 4)
872 @result{} 11
873 @end group
874 @group
875 (aref "abcdefg" 1)
876 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
877 @end group
878 @end example
879
880 See also the function @code{elt}, in @ref{Sequence Functions}.
881 @end defun
882
883 @defun aset array index object
884 This function sets the @var{index}th element of @var{array} to be
885 @var{object}. It returns @var{object}.
886
887 @example
888 @group
889 (setq w [foo bar baz])
890 @result{} [foo bar baz]
891 (aset w 0 'fu)
892 @result{} fu
893 w
894 @result{} [fu bar baz]
895 @end group
896
897 @group
898 (setq x "asdfasfd")
899 @result{} "asdfasfd"
900 (aset x 3 ?Z)
901 @result{} 90
902 x
903 @result{} "asdZasfd"
904 @end group
905 @end example
906
907 If @var{array} is a string and @var{object} is not a character, a
908 @code{wrong-type-argument} error results. The function converts a
909 unibyte string to multibyte if necessary to insert a character.
910 @end defun
911
912 @defun fillarray array object
913 This function fills the array @var{array} with @var{object}, so that
914 each element of @var{array} is @var{object}. It returns @var{array}.
915
916 @example
917 @group
918 (setq a [a b c d e f g])
919 @result{} [a b c d e f g]
920 (fillarray a 0)
921 @result{} [0 0 0 0 0 0 0]
922 a
923 @result{} [0 0 0 0 0 0 0]
924 @end group
925 @group
926 (setq s "When in the course")
927 @result{} "When in the course"
928 (fillarray s ?-)
929 @result{} "------------------"
930 @end group
931 @end example
932
933 If @var{array} is a string and @var{object} is not a character, a
934 @code{wrong-type-argument} error results.
935 @end defun
936
937 The general sequence functions @code{copy-sequence} and @code{length}
938 are often useful for objects known to be arrays. @xref{Sequence Functions}.
939
940 @node Vectors
941 @section Vectors
942 @cindex vector (type)
943
944 A @dfn{vector} is a general-purpose array whose elements can be any
945 Lisp objects. (By contrast, the elements of a string can only be
946 characters. @xref{Strings and Characters}.) Vectors are used in
947 Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
948 symbol-lookup tables (@pxref{Creating Symbols}), as part of the
949 representation of a byte-compiled function (@pxref{Byte Compilation}),
950 and more.
951
952 Like other arrays, vectors use zero-origin indexing: the first
953 element has index 0.
954
955 Vectors are printed with square brackets surrounding the elements.
956 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
957 @code{a} is printed as @code{[a b a]}. You can write vectors in the
958 same way in Lisp input.
959
960 A vector, like a string or a number, is considered a constant for
961 evaluation: the result of evaluating it is the same vector. This does
962 not evaluate or even examine the elements of the vector.
963 @xref{Self-Evaluating Forms}.
964
965 Here are examples illustrating these principles:
966
967 @example
968 @group
969 (setq avector [1 two '(three) "four" [five]])
970 @result{} [1 two (quote (three)) "four" [five]]
971 (eval avector)
972 @result{} [1 two (quote (three)) "four" [five]]
973 (eq avector (eval avector))
974 @result{} t
975 @end group
976 @end example
977
978 @node Vector Functions
979 @section Functions for Vectors
980
981 Here are some functions that relate to vectors:
982
983 @defun vectorp object
984 This function returns @code{t} if @var{object} is a vector.
985
986 @example
987 @group
988 (vectorp [a])
989 @result{} t
990 (vectorp "asdf")
991 @result{} nil
992 @end group
993 @end example
994 @end defun
995
996 @defun vector &rest objects
997 This function creates and returns a vector whose elements are the
998 arguments, @var{objects}.
999
1000 @example
1001 @group
1002 (vector 'foo 23 [bar baz] "rats")
1003 @result{} [foo 23 [bar baz] "rats"]
1004 (vector)
1005 @result{} []
1006 @end group
1007 @end example
1008 @end defun
1009
1010 @defun make-vector length object
1011 This function returns a new vector consisting of @var{length} elements,
1012 each initialized to @var{object}.
1013
1014 @example
1015 @group
1016 (setq sleepy (make-vector 9 'Z))
1017 @result{} [Z Z Z Z Z Z Z Z Z]
1018 @end group
1019 @end example
1020 @end defun
1021
1022 @defun vconcat &rest sequences
1023 @cindex copying vectors
1024 This function returns a new vector containing all the elements of
1025 @var{sequences}. The arguments @var{sequences} may be true lists,
1026 vectors, strings or bool-vectors. If no @var{sequences} are given,
1027 the empty vector is returned.
1028
1029 The value is either the empty vector, or is a newly constructed
1030 nonempty vector that is not @code{eq} to any existing vector.
1031
1032 @example
1033 @group
1034 (setq a (vconcat '(A B C) '(D E F)))
1035 @result{} [A B C D E F]
1036 (eq a (vconcat a))
1037 @result{} nil
1038 @end group
1039 @group
1040 (vconcat)
1041 @result{} []
1042 (vconcat [A B C] "aa" '(foo (6 7)))
1043 @result{} [A B C 97 97 foo (6 7)]
1044 @end group
1045 @end example
1046
1047 The @code{vconcat} function also allows byte-code function objects as
1048 arguments. This is a special feature to make it easy to access the entire
1049 contents of a byte-code function object. @xref{Byte-Code Objects}.
1050
1051 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
1052 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
1053 in @ref{Building Lists}.
1054 @end defun
1055
1056 The @code{append} function also provides a way to convert a vector into a
1057 list with the same elements:
1058
1059 @example
1060 @group
1061 (setq avector [1 two (quote (three)) "four" [five]])
1062 @result{} [1 two (quote (three)) "four" [five]]
1063 (append avector nil)
1064 @result{} (1 two (quote (three)) "four" [five])
1065 @end group
1066 @end example
1067
1068 @node Char-Tables
1069 @section Char-Tables
1070 @cindex char-tables
1071 @cindex extra slots of char-table
1072
1073 A char-table is much like a vector, except that it is indexed by
1074 character codes. Any valid character code, without modifiers, can be
1075 used as an index in a char-table. You can access a char-table's
1076 elements with @code{aref} and @code{aset}, as with any array. In
1077 addition, a char-table can have @dfn{extra slots} to hold additional
1078 data not associated with particular character codes. Like vectors,
1079 char-tables are constants when evaluated, and can hold elements of any
1080 type.
1081
1082 @cindex subtype of char-table
1083 Each char-table has a @dfn{subtype}, a symbol, which serves two
1084 purposes:
1085
1086 @itemize @bullet
1087 @item
1088 The subtype provides an easy way to tell what the char-table is for.
1089 For instance, display tables are char-tables with @code{display-table}
1090 as the subtype, and syntax tables are char-tables with
1091 @code{syntax-table} as the subtype. The subtype can be queried using
1092 the function @code{char-table-subtype}, described below.
1093
1094 @item
1095 The subtype controls the number of @dfn{extra slots} in the
1096 char-table. This number is specified by the subtype's
1097 @code{char-table-extra-slots} symbol property (@pxref{Symbol
1098 Properties}), whose value should be an integer between 0 and 10. If
1099 the subtype has no such symbol property, the char-table has no extra
1100 slots.
1101 @end itemize
1102
1103 @cindex parent of char-table
1104 A char-table can have a @dfn{parent}, which is another char-table. If
1105 it does, then whenever the char-table specifies @code{nil} for a
1106 particular character @var{c}, it inherits the value specified in the
1107 parent. In other words, @code{(aref @var{char-table} @var{c})} returns
1108 the value from the parent of @var{char-table} if @var{char-table} itself
1109 specifies @code{nil}.
1110
1111 @cindex default value of char-table
1112 A char-table can also have a @dfn{default value}. If so, then
1113 @code{(aref @var{char-table} @var{c})} returns the default value
1114 whenever the char-table does not specify any other non-@code{nil} value.
1115
1116 @defun make-char-table subtype &optional init
1117 Return a newly-created char-table, with subtype @var{subtype} (a
1118 symbol). Each element is initialized to @var{init}, which defaults to
1119 @code{nil}. You cannot alter the subtype of a char-table after the
1120 char-table is created.
1121
1122 There is no argument to specify the length of the char-table, because
1123 all char-tables have room for any valid character code as an index.
1124
1125 If @var{subtype} has the @code{char-table-extra-slots} symbol
1126 property, that specifies the number of extra slots in the char-table.
1127 This should be an integer between 0 and 10; otherwise,
1128 @code{make-char-table} raises an error. If @var{subtype} has no
1129 @code{char-table-extra-slots} symbol property (@pxref{Property
1130 Lists}), the char-table has no extra slots.
1131 @end defun
1132
1133 @defun char-table-p object
1134 This function returns @code{t} if @var{object} is a char-table, and
1135 @code{nil} otherwise.
1136 @end defun
1137
1138 @defun char-table-subtype char-table
1139 This function returns the subtype symbol of @var{char-table}.
1140 @end defun
1141
1142 There is no special function to access default values in a char-table.
1143 To do that, use @code{char-table-range} (see below).
1144
1145 @defun char-table-parent char-table
1146 This function returns the parent of @var{char-table}. The parent is
1147 always either @code{nil} or another char-table.
1148 @end defun
1149
1150 @defun set-char-table-parent char-table new-parent
1151 This function sets the parent of @var{char-table} to @var{new-parent}.
1152 @end defun
1153
1154 @defun char-table-extra-slot char-table n
1155 This function returns the contents of extra slot @var{n} of
1156 @var{char-table}. The number of extra slots in a char-table is
1157 determined by its subtype.
1158 @end defun
1159
1160 @defun set-char-table-extra-slot char-table n value
1161 This function stores @var{value} in extra slot @var{n} of
1162 @var{char-table}.
1163 @end defun
1164
1165 A char-table can specify an element value for a single character code;
1166 it can also specify a value for an entire character set.
1167
1168 @defun char-table-range char-table range
1169 This returns the value specified in @var{char-table} for a range of
1170 characters @var{range}. Here are the possibilities for @var{range}:
1171
1172 @table @asis
1173 @item @code{nil}
1174 Refers to the default value.
1175
1176 @item @var{char}
1177 Refers to the element for character @var{char}
1178 (supposing @var{char} is a valid character code).
1179
1180 @item @code{(@var{from} . @var{to})}
1181 A cons cell refers to all the characters in the inclusive range
1182 @samp{[@var{from}..@var{to}]}.
1183 @end table
1184 @end defun
1185
1186 @defun set-char-table-range char-table range value
1187 This function sets the value in @var{char-table} for a range of
1188 characters @var{range}. Here are the possibilities for @var{range}:
1189
1190 @table @asis
1191 @item @code{nil}
1192 Refers to the default value.
1193
1194 @item @code{t}
1195 Refers to the whole range of character codes.
1196
1197 @item @var{char}
1198 Refers to the element for character @var{char}
1199 (supposing @var{char} is a valid character code).
1200
1201 @item @code{(@var{from} . @var{to})}
1202 A cons cell refers to all the characters in the inclusive range
1203 @samp{[@var{from}..@var{to}]}.
1204 @end table
1205 @end defun
1206
1207 @defun map-char-table function char-table
1208 This function calls its argument @var{function} for each element of
1209 @var{char-table} that has a non-@code{nil} value. The call to
1210 @var{function} is with two arguments, a key and a value. The key
1211 is a possible @var{range} argument for @code{char-table-range}---either
1212 a valid character or a cons cell @code{(@var{from} . @var{to})},
1213 specifying a range of characters that share the same value. The value is
1214 what @code{(char-table-range @var{char-table} @var{key})} returns.
1215
1216 Overall, the key-value pairs passed to @var{function} describe all the
1217 values stored in @var{char-table}.
1218
1219 The return value is always @code{nil}; to make calls to
1220 @code{map-char-table} useful, @var{function} should have side effects.
1221 For example, here is how to examine the elements of the syntax table:
1222
1223 @example
1224 (let (accumulator)
1225 (map-char-table
1226 #'(lambda (key value)
1227 (setq accumulator
1228 (cons (list
1229 (if (consp key)
1230 (list (car key) (cdr key))
1231 key)
1232 value)
1233 accumulator)))
1234 (syntax-table))
1235 accumulator)
1236 @result{}
1237 (((2597602 4194303) (2)) ((2597523 2597601) (3))
1238 ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
1239 ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
1240 @end example
1241 @end defun
1242
1243 @node Bool-Vectors
1244 @section Bool-vectors
1245 @cindex Bool-vectors
1246
1247 A bool-vector is much like a vector, except that it stores only the
1248 values @code{t} and @code{nil}. If you try to store any non-@code{nil}
1249 value into an element of the bool-vector, the effect is to store
1250 @code{t} there. As with all arrays, bool-vector indices start from 0,
1251 and the length cannot be changed once the bool-vector is created.
1252 Bool-vectors are constants when evaluated.
1253
1254 Several functions work specifically with bool-vectors; aside
1255 from that, you manipulate them with same functions used for other kinds
1256 of arrays.
1257
1258 @defun make-bool-vector length initial
1259 Return a new bool-vector of @var{length} elements,
1260 each one initialized to @var{initial}.
1261 @end defun
1262
1263 @defun bool-vector &rest objects
1264 This function creates and returns a bool-vector whose elements are the
1265 arguments, @var{objects}.
1266 @end defun
1267
1268 @defun bool-vector-p object
1269 This returns @code{t} if @var{object} is a bool-vector,
1270 and @code{nil} otherwise.
1271 @end defun
1272
1273 There are also some bool-vector set operation functions, described below:
1274
1275 @defun bool-vector-exclusive-or a b &optional c
1276 Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
1277 If optional argument @var{c} is given, the result of this operation is
1278 stored into @var{c}. All arguments should be bool vectors of the same length.
1279 @end defun
1280
1281 @defun bool-vector-union a b &optional c
1282 Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}. If
1283 optional argument @var{c} is given, the result of this operation is
1284 stored into @var{c}. All arguments should be bool vectors of the same length.
1285 @end defun
1286
1287 @defun bool-vector-intersection a b &optional c
1288 Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}. If
1289 optional argument @var{c} is given, the result of this operation is
1290 stored into @var{c}. All arguments should be bool vectors of the same length.
1291 @end defun
1292
1293 @defun bool-vector-set-difference a b &optional c
1294 Return @dfn{set difference} of bool vectors @var{a} and @var{b}. If
1295 optional argument @var{c} is given, the result of this operation is
1296 stored into @var{c}. All arguments should be bool vectors of the same length.
1297 @end defun
1298
1299 @defun bool-vector-not a &optional b
1300 Return @dfn{set complement} of bool vector @var{a}. If optional
1301 argument @var{b} is given, the result of this operation is stored into
1302 @var{b}. All arguments should be bool vectors of the same length.
1303 @end defun
1304
1305 @defun bool-vector-subsetp a b
1306 Return @code{t} if every @code{t} value in @var{a} is also t in
1307 @var{b}, @code{nil} otherwise. All arguments should be bool vectors of the
1308 same length.
1309 @end defun
1310
1311 @defun bool-vector-count-consecutive a b i
1312 Return the number of consecutive elements in @var{a} equal @var{b}
1313 starting at @var{i}. @code{a} is a bool vector, @var{b} is @code{t}
1314 or @code{nil}, and @var{i} is an index into @code{a}.
1315 @end defun
1316
1317 @defun bool-vector-count-population a
1318 Return the number of elements that are @code{t} in bool vector @var{a}.
1319 @end defun
1320
1321 The printed form represents up to 8 boolean values as a single
1322 character:
1323
1324 @example
1325 @group
1326 (bool-vector t nil t nil)
1327 @result{} #&4"^E"
1328 (bool-vector)
1329 @result{} #&0""
1330 @end group
1331 @end example
1332
1333 You can use @code{vconcat} to print a bool-vector like other vectors:
1334
1335 @example
1336 @group
1337 (vconcat (bool-vector nil t nil t))
1338 @result{} [nil t nil t]
1339 @end group
1340 @end example
1341
1342 Here is another example of creating, examining, and updating a
1343 bool-vector:
1344
1345 @example
1346 (setq bv (make-bool-vector 5 t))
1347 @result{} #&5"^_"
1348 (aref bv 1)
1349 @result{} t
1350 (aset bv 3 nil)
1351 @result{} nil
1352 bv
1353 @result{} #&5"^W"
1354 @end example
1355
1356 @noindent
1357 These results make sense because the binary codes for control-_ and
1358 control-W are 11111 and 10111, respectively.
1359
1360 @node Rings
1361 @section Managing a Fixed-Size Ring of Objects
1362
1363 @cindex ring data structure
1364 A @dfn{ring} is a fixed-size data structure that supports insertion,
1365 deletion, rotation, and modulo-indexed reference and traversal. An
1366 efficient ring data structure is implemented by the @code{ring}
1367 package. It provides the functions listed in this section.
1368
1369 Note that several ``rings'' in Emacs, like the kill ring and the
1370 mark ring, are actually implemented as simple lists, @emph{not} using
1371 the @code{ring} package; thus the following functions won't work on
1372 them.
1373
1374 @defun make-ring size
1375 This returns a new ring capable of holding @var{size} objects.
1376 @var{size} should be an integer.
1377 @end defun
1378
1379 @defun ring-p object
1380 This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1381 @end defun
1382
1383 @defun ring-size ring
1384 This returns the maximum capacity of the @var{ring}.
1385 @end defun
1386
1387 @defun ring-length ring
1388 This returns the number of objects that @var{ring} currently contains.
1389 The value will never exceed that returned by @code{ring-size}.
1390 @end defun
1391
1392 @defun ring-elements ring
1393 This returns a list of the objects in @var{ring}, in order, newest first.
1394 @end defun
1395
1396 @defun ring-copy ring
1397 This returns a new ring which is a copy of @var{ring}.
1398 The new ring contains the same (@code{eq}) objects as @var{ring}.
1399 @end defun
1400
1401 @defun ring-empty-p ring
1402 This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1403 @end defun
1404
1405 The newest element in the ring always has index 0. Higher indices
1406 correspond to older elements. Indices are computed modulo the ring
1407 length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1408 to the next-oldest, and so forth.
1409
1410 @defun ring-ref ring index
1411 This returns the object in @var{ring} found at index @var{index}.
1412 @var{index} may be negative or greater than the ring length. If
1413 @var{ring} is empty, @code{ring-ref} signals an error.
1414 @end defun
1415
1416 @defun ring-insert ring object
1417 This inserts @var{object} into @var{ring}, making it the newest
1418 element, and returns @var{object}.
1419
1420 If the ring is full, insertion removes the oldest element to
1421 make room for the new element.
1422 @end defun
1423
1424 @defun ring-remove ring &optional index
1425 Remove an object from @var{ring}, and return that object. The
1426 argument @var{index} specifies which item to remove; if it is
1427 @code{nil}, that means to remove the oldest item. If @var{ring} is
1428 empty, @code{ring-remove} signals an error.
1429 @end defun
1430
1431 @defun ring-insert-at-beginning ring object
1432 This inserts @var{object} into @var{ring}, treating it as the oldest
1433 element. The return value is not significant.
1434
1435 If the ring is full, this function removes the newest element to make
1436 room for the inserted element.
1437 @end defun
1438
1439 @cindex fifo data structure
1440 If you are careful not to exceed the ring size, you can
1441 use the ring as a first-in-first-out queue. For example:
1442
1443 @lisp
1444 (let ((fifo (make-ring 5)))
1445 (mapc (lambda (obj) (ring-insert fifo obj))
1446 '(0 one "two"))
1447 (list (ring-remove fifo) t
1448 (ring-remove fifo) t
1449 (ring-remove fifo)))
1450 @result{} (0 t one t "two")
1451 @end lisp