]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge branch 'emacs-25' of git.sv.gnu.org:/srv/git/emacs into emacs-25
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "dispextern.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
49
50 #include <verify.h>
51 #include <execinfo.h> /* For backtrace. */
52
53 #ifdef HAVE_LINUX_SYSINFO
54 #include <sys/sysinfo.h>
55 #endif
56
57 #ifdef MSDOS
58 #include "dosfns.h" /* For dos_memory_info. */
59 #endif
60
61 #if (defined ENABLE_CHECKING \
62 && defined HAVE_VALGRIND_VALGRIND_H \
63 && !defined USE_VALGRIND)
64 # define USE_VALGRIND 1
65 #endif
66
67 #if USE_VALGRIND
68 #include <valgrind/valgrind.h>
69 #include <valgrind/memcheck.h>
70 static bool valgrind_p;
71 #endif
72
73 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
74
75 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
76 memory. Can do this only if using gmalloc.c and if not checking
77 marked objects. */
78
79 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
80 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
81 #undef GC_MALLOC_CHECK
82 #endif
83
84 #include <unistd.h>
85 #include <fcntl.h>
86
87 #ifdef USE_GTK
88 # include "gtkutil.h"
89 #endif
90 #ifdef WINDOWSNT
91 #include "w32.h"
92 #include "w32heap.h" /* for sbrk */
93 #endif
94
95 #ifdef DOUG_LEA_MALLOC
96
97 #include <malloc.h>
98
99 /* Specify maximum number of areas to mmap. It would be nice to use a
100 value that explicitly means "no limit". */
101
102 #define MMAP_MAX_AREAS 100000000
103
104 #endif /* not DOUG_LEA_MALLOC */
105
106 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
107 to a struct Lisp_String. */
108
109 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
110 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
111 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
112
113 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
114 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
115 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
116
117 /* Default value of gc_cons_threshold (see below). */
118
119 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
120
121 /* Global variables. */
122 struct emacs_globals globals;
123
124 /* Number of bytes of consing done since the last gc. */
125
126 EMACS_INT consing_since_gc;
127
128 /* Similar minimum, computed from Vgc_cons_percentage. */
129
130 EMACS_INT gc_relative_threshold;
131
132 /* Minimum number of bytes of consing since GC before next GC,
133 when memory is full. */
134
135 EMACS_INT memory_full_cons_threshold;
136
137 /* True during GC. */
138
139 bool gc_in_progress;
140
141 /* True means abort if try to GC.
142 This is for code which is written on the assumption that
143 no GC will happen, so as to verify that assumption. */
144
145 bool abort_on_gc;
146
147 /* Number of live and free conses etc. */
148
149 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
150 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
151 static EMACS_INT total_free_floats, total_floats;
152
153 /* Points to memory space allocated as "spare", to be freed if we run
154 out of memory. We keep one large block, four cons-blocks, and
155 two string blocks. */
156
157 static char *spare_memory[7];
158
159 /* Amount of spare memory to keep in large reserve block, or to see
160 whether this much is available when malloc fails on a larger request. */
161
162 #define SPARE_MEMORY (1 << 14)
163
164 /* Initialize it to a nonzero value to force it into data space
165 (rather than bss space). That way unexec will remap it into text
166 space (pure), on some systems. We have not implemented the
167 remapping on more recent systems because this is less important
168 nowadays than in the days of small memories and timesharing. */
169
170 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
171 #define PUREBEG (char *) pure
172
173 /* Pointer to the pure area, and its size. */
174
175 static char *purebeg;
176 static ptrdiff_t pure_size;
177
178 /* Number of bytes of pure storage used before pure storage overflowed.
179 If this is non-zero, this implies that an overflow occurred. */
180
181 static ptrdiff_t pure_bytes_used_before_overflow;
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static void mark_terminals (void);
259 static void gc_sweep (void);
260 static Lisp_Object make_pure_vector (ptrdiff_t);
261 static void mark_buffer (struct buffer *);
262
263 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
264 static void refill_memory_reserve (void);
265 #endif
266 static void compact_small_strings (void);
267 static void free_large_strings (void);
268 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
269
270 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
271 what memory allocated via lisp_malloc and lisp_align_malloc is intended
272 for what purpose. This enumeration specifies the type of memory. */
273
274 enum mem_type
275 {
276 MEM_TYPE_NON_LISP,
277 MEM_TYPE_BUFFER,
278 MEM_TYPE_CONS,
279 MEM_TYPE_STRING,
280 MEM_TYPE_MISC,
281 MEM_TYPE_SYMBOL,
282 MEM_TYPE_FLOAT,
283 /* Since all non-bool pseudovectors are small enough to be
284 allocated from vector blocks, this memory type denotes
285 large regular vectors and large bool pseudovectors. */
286 MEM_TYPE_VECTORLIKE,
287 /* Special type to denote vector blocks. */
288 MEM_TYPE_VECTOR_BLOCK,
289 /* Special type to denote reserved memory. */
290 MEM_TYPE_SPARE
291 };
292
293 /* A unique object in pure space used to make some Lisp objects
294 on free lists recognizable in O(1). */
295
296 static Lisp_Object Vdead;
297 #define DEADP(x) EQ (x, Vdead)
298
299 #ifdef GC_MALLOC_CHECK
300
301 enum mem_type allocated_mem_type;
302
303 #endif /* GC_MALLOC_CHECK */
304
305 /* A node in the red-black tree describing allocated memory containing
306 Lisp data. Each such block is recorded with its start and end
307 address when it is allocated, and removed from the tree when it
308 is freed.
309
310 A red-black tree is a balanced binary tree with the following
311 properties:
312
313 1. Every node is either red or black.
314 2. Every leaf is black.
315 3. If a node is red, then both of its children are black.
316 4. Every simple path from a node to a descendant leaf contains
317 the same number of black nodes.
318 5. The root is always black.
319
320 When nodes are inserted into the tree, or deleted from the tree,
321 the tree is "fixed" so that these properties are always true.
322
323 A red-black tree with N internal nodes has height at most 2
324 log(N+1). Searches, insertions and deletions are done in O(log N).
325 Please see a text book about data structures for a detailed
326 description of red-black trees. Any book worth its salt should
327 describe them. */
328
329 struct mem_node
330 {
331 /* Children of this node. These pointers are never NULL. When there
332 is no child, the value is MEM_NIL, which points to a dummy node. */
333 struct mem_node *left, *right;
334
335 /* The parent of this node. In the root node, this is NULL. */
336 struct mem_node *parent;
337
338 /* Start and end of allocated region. */
339 void *start, *end;
340
341 /* Node color. */
342 enum {MEM_BLACK, MEM_RED} color;
343
344 /* Memory type. */
345 enum mem_type type;
346 };
347
348 /* Base address of stack. Set in main. */
349
350 Lisp_Object *stack_base;
351
352 /* Root of the tree describing allocated Lisp memory. */
353
354 static struct mem_node *mem_root;
355
356 /* Lowest and highest known address in the heap. */
357
358 static void *min_heap_address, *max_heap_address;
359
360 /* Sentinel node of the tree. */
361
362 static struct mem_node mem_z;
363 #define MEM_NIL &mem_z
364
365 static struct mem_node *mem_insert (void *, void *, enum mem_type);
366 static void mem_insert_fixup (struct mem_node *);
367 static void mem_rotate_left (struct mem_node *);
368 static void mem_rotate_right (struct mem_node *);
369 static void mem_delete (struct mem_node *);
370 static void mem_delete_fixup (struct mem_node *);
371 static struct mem_node *mem_find (void *);
372
373 #ifndef DEADP
374 # define DEADP(x) 0
375 #endif
376
377 /* Addresses of staticpro'd variables. Initialize it to a nonzero
378 value; otherwise some compilers put it into BSS. */
379
380 enum { NSTATICS = 2048 };
381 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
382
383 /* Index of next unused slot in staticvec. */
384
385 static int staticidx;
386
387 static void *pure_alloc (size_t, int);
388
389 /* Return X rounded to the next multiple of Y. Arguments should not
390 have side effects, as they are evaluated more than once. Assume X
391 + Y - 1 does not overflow. Tune for Y being a power of 2. */
392
393 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
394 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
395 : ((x) + (y) - 1) & ~ ((y) - 1))
396
397 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
398
399 static void *
400 ALIGN (void *ptr, int alignment)
401 {
402 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
403 }
404
405 /* Extract the pointer hidden within A, if A is not a symbol.
406 If A is a symbol, extract the hidden pointer's offset from lispsym,
407 converted to void *. */
408
409 static void *
410 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
411 {
412 intptr_t i = USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK;
413 return (void *) i;
414 }
415
416 /* Extract the pointer hidden within A. */
417
418 static void *
419 XPNTR (Lisp_Object a)
420 {
421 void *p = XPNTR_OR_SYMBOL_OFFSET (a);
422 if (SYMBOLP (a))
423 p = (intptr_t) p + (char *) lispsym;
424 return p;
425 }
426
427 static void
428 XFLOAT_INIT (Lisp_Object f, double n)
429 {
430 XFLOAT (f)->u.data = n;
431 }
432
433 #ifdef DOUG_LEA_MALLOC
434 static bool
435 pointers_fit_in_lispobj_p (void)
436 {
437 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
438 }
439
440 static bool
441 mmap_lisp_allowed_p (void)
442 {
443 /* If we can't store all memory addresses in our lisp objects, it's
444 risky to let the heap use mmap and give us addresses from all
445 over our address space. We also can't use mmap for lisp objects
446 if we might dump: unexec doesn't preserve the contents of mmapped
447 regions. */
448 return pointers_fit_in_lispobj_p () && !might_dump;
449 }
450 #endif
451
452 /* Head of a circularly-linked list of extant finalizers. */
453 static struct Lisp_Finalizer finalizers;
454
455 /* Head of a circularly-linked list of finalizers that must be invoked
456 because we deemed them unreachable. This list must be global, and
457 not a local inside garbage_collect_1, in case we GC again while
458 running finalizers. */
459 static struct Lisp_Finalizer doomed_finalizers;
460
461 \f
462 /************************************************************************
463 Malloc
464 ************************************************************************/
465
466 /* Function malloc calls this if it finds we are near exhausting storage. */
467
468 void
469 malloc_warning (const char *str)
470 {
471 pending_malloc_warning = str;
472 }
473
474
475 /* Display an already-pending malloc warning. */
476
477 void
478 display_malloc_warning (void)
479 {
480 call3 (intern ("display-warning"),
481 intern ("alloc"),
482 build_string (pending_malloc_warning),
483 intern ("emergency"));
484 pending_malloc_warning = 0;
485 }
486 \f
487 /* Called if we can't allocate relocatable space for a buffer. */
488
489 void
490 buffer_memory_full (ptrdiff_t nbytes)
491 {
492 /* If buffers use the relocating allocator, no need to free
493 spare_memory, because we may have plenty of malloc space left
494 that we could get, and if we don't, the malloc that fails will
495 itself cause spare_memory to be freed. If buffers don't use the
496 relocating allocator, treat this like any other failing
497 malloc. */
498
499 #ifndef REL_ALLOC
500 memory_full (nbytes);
501 #else
502 /* This used to call error, but if we've run out of memory, we could
503 get infinite recursion trying to build the string. */
504 xsignal (Qnil, Vmemory_signal_data);
505 #endif
506 }
507
508 /* A common multiple of the positive integers A and B. Ideally this
509 would be the least common multiple, but there's no way to do that
510 as a constant expression in C, so do the best that we can easily do. */
511 #define COMMON_MULTIPLE(a, b) \
512 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
513
514 #ifndef XMALLOC_OVERRUN_CHECK
515 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
516 #else
517
518 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
519 around each block.
520
521 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
522 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
523 block size in little-endian order. The trailer consists of
524 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
525
526 The header is used to detect whether this block has been allocated
527 through these functions, as some low-level libc functions may
528 bypass the malloc hooks. */
529
530 #define XMALLOC_OVERRUN_CHECK_SIZE 16
531 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
532 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
533
534 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
535 hold a size_t value and (2) the header size is a multiple of the
536 alignment that Emacs needs for C types and for USE_LSB_TAG. */
537 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
538
539 #define XMALLOC_HEADER_ALIGNMENT \
540 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
541 #define XMALLOC_OVERRUN_SIZE_SIZE \
542 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
543 + XMALLOC_HEADER_ALIGNMENT - 1) \
544 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
545 - XMALLOC_OVERRUN_CHECK_SIZE)
546
547 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
548 { '\x9a', '\x9b', '\xae', '\xaf',
549 '\xbf', '\xbe', '\xce', '\xcf',
550 '\xea', '\xeb', '\xec', '\xed',
551 '\xdf', '\xde', '\x9c', '\x9d' };
552
553 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
554 { '\xaa', '\xab', '\xac', '\xad',
555 '\xba', '\xbb', '\xbc', '\xbd',
556 '\xca', '\xcb', '\xcc', '\xcd',
557 '\xda', '\xdb', '\xdc', '\xdd' };
558
559 /* Insert and extract the block size in the header. */
560
561 static void
562 xmalloc_put_size (unsigned char *ptr, size_t size)
563 {
564 int i;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
566 {
567 *--ptr = size & ((1 << CHAR_BIT) - 1);
568 size >>= CHAR_BIT;
569 }
570 }
571
572 static size_t
573 xmalloc_get_size (unsigned char *ptr)
574 {
575 size_t size = 0;
576 int i;
577 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
578 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
579 {
580 size <<= CHAR_BIT;
581 size += *ptr++;
582 }
583 return size;
584 }
585
586
587 /* Like malloc, but wraps allocated block with header and trailer. */
588
589 static void *
590 overrun_check_malloc (size_t size)
591 {
592 register unsigned char *val;
593 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
594 emacs_abort ();
595
596 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
597 if (val)
598 {
599 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
600 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
601 xmalloc_put_size (val, size);
602 memcpy (val + size, xmalloc_overrun_check_trailer,
603 XMALLOC_OVERRUN_CHECK_SIZE);
604 }
605 return val;
606 }
607
608
609 /* Like realloc, but checks old block for overrun, and wraps new block
610 with header and trailer. */
611
612 static void *
613 overrun_check_realloc (void *block, size_t size)
614 {
615 register unsigned char *val = (unsigned char *) block;
616 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
617 emacs_abort ();
618
619 if (val
620 && memcmp (xmalloc_overrun_check_header,
621 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
622 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
623 {
624 size_t osize = xmalloc_get_size (val);
625 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
626 XMALLOC_OVERRUN_CHECK_SIZE))
627 emacs_abort ();
628 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
629 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
630 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
631 }
632
633 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
634
635 if (val)
636 {
637 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
638 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
639 xmalloc_put_size (val, size);
640 memcpy (val + size, xmalloc_overrun_check_trailer,
641 XMALLOC_OVERRUN_CHECK_SIZE);
642 }
643 return val;
644 }
645
646 /* Like free, but checks block for overrun. */
647
648 static void
649 overrun_check_free (void *block)
650 {
651 unsigned char *val = (unsigned char *) block;
652
653 if (val
654 && memcmp (xmalloc_overrun_check_header,
655 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
656 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
657 {
658 size_t osize = xmalloc_get_size (val);
659 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
660 XMALLOC_OVERRUN_CHECK_SIZE))
661 emacs_abort ();
662 #ifdef XMALLOC_CLEAR_FREE_MEMORY
663 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
664 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
665 #else
666 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
667 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
668 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
669 #endif
670 }
671
672 free (val);
673 }
674
675 #undef malloc
676 #undef realloc
677 #undef free
678 #define malloc overrun_check_malloc
679 #define realloc overrun_check_realloc
680 #define free overrun_check_free
681 #endif
682
683 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
684 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
685 If that variable is set, block input while in one of Emacs's memory
686 allocation functions. There should be no need for this debugging
687 option, since signal handlers do not allocate memory, but Emacs
688 formerly allocated memory in signal handlers and this compile-time
689 option remains as a way to help debug the issue should it rear its
690 ugly head again. */
691 #ifdef XMALLOC_BLOCK_INPUT_CHECK
692 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
693 static void
694 malloc_block_input (void)
695 {
696 if (block_input_in_memory_allocators)
697 block_input ();
698 }
699 static void
700 malloc_unblock_input (void)
701 {
702 if (block_input_in_memory_allocators)
703 unblock_input ();
704 }
705 # define MALLOC_BLOCK_INPUT malloc_block_input ()
706 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
707 #else
708 # define MALLOC_BLOCK_INPUT ((void) 0)
709 # define MALLOC_UNBLOCK_INPUT ((void) 0)
710 #endif
711
712 #define MALLOC_PROBE(size) \
713 do { \
714 if (profiler_memory_running) \
715 malloc_probe (size); \
716 } while (0)
717
718
719 /* Like malloc but check for no memory and block interrupt input.. */
720
721 void *
722 xmalloc (size_t size)
723 {
724 void *val;
725
726 MALLOC_BLOCK_INPUT;
727 val = malloc (size);
728 MALLOC_UNBLOCK_INPUT;
729
730 if (!val && size)
731 memory_full (size);
732 MALLOC_PROBE (size);
733 return val;
734 }
735
736 /* Like the above, but zeroes out the memory just allocated. */
737
738 void *
739 xzalloc (size_t size)
740 {
741 void *val;
742
743 MALLOC_BLOCK_INPUT;
744 val = malloc (size);
745 MALLOC_UNBLOCK_INPUT;
746
747 if (!val && size)
748 memory_full (size);
749 memset (val, 0, size);
750 MALLOC_PROBE (size);
751 return val;
752 }
753
754 /* Like realloc but check for no memory and block interrupt input.. */
755
756 void *
757 xrealloc (void *block, size_t size)
758 {
759 void *val;
760
761 MALLOC_BLOCK_INPUT;
762 /* We must call malloc explicitly when BLOCK is 0, since some
763 reallocs don't do this. */
764 if (! block)
765 val = malloc (size);
766 else
767 val = realloc (block, size);
768 MALLOC_UNBLOCK_INPUT;
769
770 if (!val && size)
771 memory_full (size);
772 MALLOC_PROBE (size);
773 return val;
774 }
775
776
777 /* Like free but block interrupt input. */
778
779 void
780 xfree (void *block)
781 {
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because in practice the call in r_alloc_free seems to suffice. */
789 }
790
791
792 /* Other parts of Emacs pass large int values to allocator functions
793 expecting ptrdiff_t. This is portable in practice, but check it to
794 be safe. */
795 verify (INT_MAX <= PTRDIFF_MAX);
796
797
798 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
799 Signal an error on memory exhaustion, and block interrupt input. */
800
801 void *
802 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
803 {
804 eassert (0 <= nitems && 0 < item_size);
805 ptrdiff_t nbytes;
806 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
807 memory_full (SIZE_MAX);
808 return xmalloc (nbytes);
809 }
810
811
812 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
813 Signal an error on memory exhaustion, and block interrupt input. */
814
815 void *
816 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
817 {
818 eassert (0 <= nitems && 0 < item_size);
819 ptrdiff_t nbytes;
820 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
821 memory_full (SIZE_MAX);
822 return xrealloc (pa, nbytes);
823 }
824
825
826 /* Grow PA, which points to an array of *NITEMS items, and return the
827 location of the reallocated array, updating *NITEMS to reflect its
828 new size. The new array will contain at least NITEMS_INCR_MIN more
829 items, but will not contain more than NITEMS_MAX items total.
830 ITEM_SIZE is the size of each item, in bytes.
831
832 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
833 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
834 infinity.
835
836 If PA is null, then allocate a new array instead of reallocating
837 the old one.
838
839 Block interrupt input as needed. If memory exhaustion occurs, set
840 *NITEMS to zero if PA is null, and signal an error (i.e., do not
841 return).
842
843 Thus, to grow an array A without saving its old contents, do
844 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
845 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
846 and signals an error, and later this code is reexecuted and
847 attempts to free A. */
848
849 void *
850 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
851 ptrdiff_t nitems_max, ptrdiff_t item_size)
852 {
853 ptrdiff_t n0 = *nitems;
854 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
855
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
863 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
864 NITEMS_MAX, and what the C language can represent safely. */
865
866 ptrdiff_t n, nbytes;
867 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
868 n = PTRDIFF_MAX;
869 if (0 <= nitems_max && nitems_max < n)
870 n = nitems_max;
871
872 ptrdiff_t adjusted_nbytes
873 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
874 ? min (PTRDIFF_MAX, SIZE_MAX)
875 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
876 if (adjusted_nbytes)
877 {
878 n = adjusted_nbytes / item_size;
879 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
880 }
881
882 if (! pa)
883 *nitems = 0;
884 if (n - n0 < nitems_incr_min
885 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
886 || (0 <= nitems_max && nitems_max < n)
887 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
888 memory_full (SIZE_MAX);
889 pa = xrealloc (pa, nbytes);
890 *nitems = n;
891 return pa;
892 }
893
894
895 /* Like strdup, but uses xmalloc. */
896
897 char *
898 xstrdup (const char *s)
899 {
900 ptrdiff_t size;
901 eassert (s);
902 size = strlen (s) + 1;
903 return memcpy (xmalloc (size), s, size);
904 }
905
906 /* Like above, but duplicates Lisp string to C string. */
907
908 char *
909 xlispstrdup (Lisp_Object string)
910 {
911 ptrdiff_t size = SBYTES (string) + 1;
912 return memcpy (xmalloc (size), SSDATA (string), size);
913 }
914
915 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
916 pointed to. If STRING is null, assign it without copying anything.
917 Allocate before freeing, to avoid a dangling pointer if allocation
918 fails. */
919
920 void
921 dupstring (char **ptr, char const *string)
922 {
923 char *old = *ptr;
924 *ptr = string ? xstrdup (string) : 0;
925 xfree (old);
926 }
927
928
929 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
930 argument is a const pointer. */
931
932 void
933 xputenv (char const *string)
934 {
935 if (putenv ((char *) string) != 0)
936 memory_full (0);
937 }
938
939 /* Return a newly allocated memory block of SIZE bytes, remembering
940 to free it when unwinding. */
941 void *
942 record_xmalloc (size_t size)
943 {
944 void *p = xmalloc (size);
945 record_unwind_protect_ptr (xfree, p);
946 return p;
947 }
948
949
950 /* Like malloc but used for allocating Lisp data. NBYTES is the
951 number of bytes to allocate, TYPE describes the intended use of the
952 allocated memory block (for strings, for conses, ...). */
953
954 #if ! USE_LSB_TAG
955 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
956 #endif
957
958 static void *
959 lisp_malloc (size_t nbytes, enum mem_type type)
960 {
961 register void *val;
962
963 MALLOC_BLOCK_INPUT;
964
965 #ifdef GC_MALLOC_CHECK
966 allocated_mem_type = type;
967 #endif
968
969 val = malloc (nbytes);
970
971 #if ! USE_LSB_TAG
972 /* If the memory just allocated cannot be addressed thru a Lisp
973 object's pointer, and it needs to be,
974 that's equivalent to running out of memory. */
975 if (val && type != MEM_TYPE_NON_LISP)
976 {
977 Lisp_Object tem;
978 XSETCONS (tem, (char *) val + nbytes - 1);
979 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
980 {
981 lisp_malloc_loser = val;
982 free (val);
983 val = 0;
984 }
985 }
986 #endif
987
988 #ifndef GC_MALLOC_CHECK
989 if (val && type != MEM_TYPE_NON_LISP)
990 mem_insert (val, (char *) val + nbytes, type);
991 #endif
992
993 MALLOC_UNBLOCK_INPUT;
994 if (!val && nbytes)
995 memory_full (nbytes);
996 MALLOC_PROBE (nbytes);
997 return val;
998 }
999
1000 /* Free BLOCK. This must be called to free memory allocated with a
1001 call to lisp_malloc. */
1002
1003 static void
1004 lisp_free (void *block)
1005 {
1006 MALLOC_BLOCK_INPUT;
1007 free (block);
1008 #ifndef GC_MALLOC_CHECK
1009 mem_delete (mem_find (block));
1010 #endif
1011 MALLOC_UNBLOCK_INPUT;
1012 }
1013
1014 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1015
1016 /* The entry point is lisp_align_malloc which returns blocks of at most
1017 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1018
1019 /* Use aligned_alloc if it or a simple substitute is available.
1020 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1021 clang 3.3 anyway. */
1022
1023 #if ! ADDRESS_SANITIZER
1024 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1025 # define USE_ALIGNED_ALLOC 1
1026 /* Defined in gmalloc.c. */
1027 void *aligned_alloc (size_t, size_t);
1028 # elif defined HYBRID_MALLOC
1029 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1030 # define USE_ALIGNED_ALLOC 1
1031 # define aligned_alloc hybrid_aligned_alloc
1032 /* Defined in gmalloc.c. */
1033 void *aligned_alloc (size_t, size_t);
1034 # endif
1035 # elif defined HAVE_ALIGNED_ALLOC
1036 # define USE_ALIGNED_ALLOC 1
1037 # elif defined HAVE_POSIX_MEMALIGN
1038 # define USE_ALIGNED_ALLOC 1
1039 static void *
1040 aligned_alloc (size_t alignment, size_t size)
1041 {
1042 void *p;
1043 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1044 }
1045 # endif
1046 #endif
1047
1048 /* BLOCK_ALIGN has to be a power of 2. */
1049 #define BLOCK_ALIGN (1 << 10)
1050
1051 /* Padding to leave at the end of a malloc'd block. This is to give
1052 malloc a chance to minimize the amount of memory wasted to alignment.
1053 It should be tuned to the particular malloc library used.
1054 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1055 aligned_alloc on the other hand would ideally prefer a value of 4
1056 because otherwise, there's 1020 bytes wasted between each ablocks.
1057 In Emacs, testing shows that those 1020 can most of the time be
1058 efficiently used by malloc to place other objects, so a value of 0 can
1059 still preferable unless you have a lot of aligned blocks and virtually
1060 nothing else. */
1061 #define BLOCK_PADDING 0
1062 #define BLOCK_BYTES \
1063 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1064
1065 /* Internal data structures and constants. */
1066
1067 #define ABLOCKS_SIZE 16
1068
1069 /* An aligned block of memory. */
1070 struct ablock
1071 {
1072 union
1073 {
1074 char payload[BLOCK_BYTES];
1075 struct ablock *next_free;
1076 } x;
1077 /* `abase' is the aligned base of the ablocks. */
1078 /* It is overloaded to hold the virtual `busy' field that counts
1079 the number of used ablock in the parent ablocks.
1080 The first ablock has the `busy' field, the others have the `abase'
1081 field. To tell the difference, we assume that pointers will have
1082 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1083 is used to tell whether the real base of the parent ablocks is `abase'
1084 (if not, the word before the first ablock holds a pointer to the
1085 real base). */
1086 struct ablocks *abase;
1087 /* The padding of all but the last ablock is unused. The padding of
1088 the last ablock in an ablocks is not allocated. */
1089 #if BLOCK_PADDING
1090 char padding[BLOCK_PADDING];
1091 #endif
1092 };
1093
1094 /* A bunch of consecutive aligned blocks. */
1095 struct ablocks
1096 {
1097 struct ablock blocks[ABLOCKS_SIZE];
1098 };
1099
1100 /* Size of the block requested from malloc or aligned_alloc. */
1101 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1102
1103 #define ABLOCK_ABASE(block) \
1104 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1105 ? (struct ablocks *)(block) \
1106 : (block)->abase)
1107
1108 /* Virtual `busy' field. */
1109 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1110
1111 /* Pointer to the (not necessarily aligned) malloc block. */
1112 #ifdef USE_ALIGNED_ALLOC
1113 #define ABLOCKS_BASE(abase) (abase)
1114 #else
1115 #define ABLOCKS_BASE(abase) \
1116 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1117 #endif
1118
1119 /* The list of free ablock. */
1120 static struct ablock *free_ablock;
1121
1122 /* Allocate an aligned block of nbytes.
1123 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1124 smaller or equal to BLOCK_BYTES. */
1125 static void *
1126 lisp_align_malloc (size_t nbytes, enum mem_type type)
1127 {
1128 void *base, *val;
1129 struct ablocks *abase;
1130
1131 eassert (nbytes <= BLOCK_BYTES);
1132
1133 MALLOC_BLOCK_INPUT;
1134
1135 #ifdef GC_MALLOC_CHECK
1136 allocated_mem_type = type;
1137 #endif
1138
1139 if (!free_ablock)
1140 {
1141 int i;
1142 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1143
1144 #ifdef DOUG_LEA_MALLOC
1145 if (!mmap_lisp_allowed_p ())
1146 mallopt (M_MMAP_MAX, 0);
1147 #endif
1148
1149 #ifdef USE_ALIGNED_ALLOC
1150 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1151 #else
1152 base = malloc (ABLOCKS_BYTES);
1153 abase = ALIGN (base, BLOCK_ALIGN);
1154 #endif
1155
1156 if (base == 0)
1157 {
1158 MALLOC_UNBLOCK_INPUT;
1159 memory_full (ABLOCKS_BYTES);
1160 }
1161
1162 aligned = (base == abase);
1163 if (!aligned)
1164 ((void **) abase)[-1] = base;
1165
1166 #ifdef DOUG_LEA_MALLOC
1167 if (!mmap_lisp_allowed_p ())
1168 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1169 #endif
1170
1171 #if ! USE_LSB_TAG
1172 /* If the memory just allocated cannot be addressed thru a Lisp
1173 object's pointer, and it needs to be, that's equivalent to
1174 running out of memory. */
1175 if (type != MEM_TYPE_NON_LISP)
1176 {
1177 Lisp_Object tem;
1178 char *end = (char *) base + ABLOCKS_BYTES - 1;
1179 XSETCONS (tem, end);
1180 if ((char *) XCONS (tem) != end)
1181 {
1182 lisp_malloc_loser = base;
1183 free (base);
1184 MALLOC_UNBLOCK_INPUT;
1185 memory_full (SIZE_MAX);
1186 }
1187 }
1188 #endif
1189
1190 /* Initialize the blocks and put them on the free list.
1191 If `base' was not properly aligned, we can't use the last block. */
1192 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1193 {
1194 abase->blocks[i].abase = abase;
1195 abase->blocks[i].x.next_free = free_ablock;
1196 free_ablock = &abase->blocks[i];
1197 }
1198 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1199
1200 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1201 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1202 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1203 eassert (ABLOCKS_BASE (abase) == base);
1204 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1205 }
1206
1207 abase = ABLOCK_ABASE (free_ablock);
1208 ABLOCKS_BUSY (abase)
1209 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1210 val = free_ablock;
1211 free_ablock = free_ablock->x.next_free;
1212
1213 #ifndef GC_MALLOC_CHECK
1214 if (type != MEM_TYPE_NON_LISP)
1215 mem_insert (val, (char *) val + nbytes, type);
1216 #endif
1217
1218 MALLOC_UNBLOCK_INPUT;
1219
1220 MALLOC_PROBE (nbytes);
1221
1222 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1223 return val;
1224 }
1225
1226 static void
1227 lisp_align_free (void *block)
1228 {
1229 struct ablock *ablock = block;
1230 struct ablocks *abase = ABLOCK_ABASE (ablock);
1231
1232 MALLOC_BLOCK_INPUT;
1233 #ifndef GC_MALLOC_CHECK
1234 mem_delete (mem_find (block));
1235 #endif
1236 /* Put on free list. */
1237 ablock->x.next_free = free_ablock;
1238 free_ablock = ablock;
1239 /* Update busy count. */
1240 ABLOCKS_BUSY (abase)
1241 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1242
1243 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1244 { /* All the blocks are free. */
1245 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1246 struct ablock **tem = &free_ablock;
1247 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1248
1249 while (*tem)
1250 {
1251 if (*tem >= (struct ablock *) abase && *tem < atop)
1252 {
1253 i++;
1254 *tem = (*tem)->x.next_free;
1255 }
1256 else
1257 tem = &(*tem)->x.next_free;
1258 }
1259 eassert ((aligned & 1) == aligned);
1260 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1261 #ifdef USE_POSIX_MEMALIGN
1262 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1263 #endif
1264 free (ABLOCKS_BASE (abase));
1265 }
1266 MALLOC_UNBLOCK_INPUT;
1267 }
1268
1269 \f
1270 /***********************************************************************
1271 Interval Allocation
1272 ***********************************************************************/
1273
1274 /* Number of intervals allocated in an interval_block structure.
1275 The 1020 is 1024 minus malloc overhead. */
1276
1277 #define INTERVAL_BLOCK_SIZE \
1278 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1279
1280 /* Intervals are allocated in chunks in the form of an interval_block
1281 structure. */
1282
1283 struct interval_block
1284 {
1285 /* Place `intervals' first, to preserve alignment. */
1286 struct interval intervals[INTERVAL_BLOCK_SIZE];
1287 struct interval_block *next;
1288 };
1289
1290 /* Current interval block. Its `next' pointer points to older
1291 blocks. */
1292
1293 static struct interval_block *interval_block;
1294
1295 /* Index in interval_block above of the next unused interval
1296 structure. */
1297
1298 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1299
1300 /* Number of free and live intervals. */
1301
1302 static EMACS_INT total_free_intervals, total_intervals;
1303
1304 /* List of free intervals. */
1305
1306 static INTERVAL interval_free_list;
1307
1308 /* Return a new interval. */
1309
1310 INTERVAL
1311 make_interval (void)
1312 {
1313 INTERVAL val;
1314
1315 MALLOC_BLOCK_INPUT;
1316
1317 if (interval_free_list)
1318 {
1319 val = interval_free_list;
1320 interval_free_list = INTERVAL_PARENT (interval_free_list);
1321 }
1322 else
1323 {
1324 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1325 {
1326 struct interval_block *newi
1327 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1328
1329 newi->next = interval_block;
1330 interval_block = newi;
1331 interval_block_index = 0;
1332 total_free_intervals += INTERVAL_BLOCK_SIZE;
1333 }
1334 val = &interval_block->intervals[interval_block_index++];
1335 }
1336
1337 MALLOC_UNBLOCK_INPUT;
1338
1339 consing_since_gc += sizeof (struct interval);
1340 intervals_consed++;
1341 total_free_intervals--;
1342 RESET_INTERVAL (val);
1343 val->gcmarkbit = 0;
1344 return val;
1345 }
1346
1347
1348 /* Mark Lisp objects in interval I. */
1349
1350 static void
1351 mark_interval (register INTERVAL i, Lisp_Object dummy)
1352 {
1353 /* Intervals should never be shared. So, if extra internal checking is
1354 enabled, GC aborts if it seems to have visited an interval twice. */
1355 eassert (!i->gcmarkbit);
1356 i->gcmarkbit = 1;
1357 mark_object (i->plist);
1358 }
1359
1360 /* Mark the interval tree rooted in I. */
1361
1362 #define MARK_INTERVAL_TREE(i) \
1363 do { \
1364 if (i && !i->gcmarkbit) \
1365 traverse_intervals_noorder (i, mark_interval, Qnil); \
1366 } while (0)
1367
1368 /***********************************************************************
1369 String Allocation
1370 ***********************************************************************/
1371
1372 /* Lisp_Strings are allocated in string_block structures. When a new
1373 string_block is allocated, all the Lisp_Strings it contains are
1374 added to a free-list string_free_list. When a new Lisp_String is
1375 needed, it is taken from that list. During the sweep phase of GC,
1376 string_blocks that are entirely free are freed, except two which
1377 we keep.
1378
1379 String data is allocated from sblock structures. Strings larger
1380 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1381 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1382
1383 Sblocks consist internally of sdata structures, one for each
1384 Lisp_String. The sdata structure points to the Lisp_String it
1385 belongs to. The Lisp_String points back to the `u.data' member of
1386 its sdata structure.
1387
1388 When a Lisp_String is freed during GC, it is put back on
1389 string_free_list, and its `data' member and its sdata's `string'
1390 pointer is set to null. The size of the string is recorded in the
1391 `n.nbytes' member of the sdata. So, sdata structures that are no
1392 longer used, can be easily recognized, and it's easy to compact the
1393 sblocks of small strings which we do in compact_small_strings. */
1394
1395 /* Size in bytes of an sblock structure used for small strings. This
1396 is 8192 minus malloc overhead. */
1397
1398 #define SBLOCK_SIZE 8188
1399
1400 /* Strings larger than this are considered large strings. String data
1401 for large strings is allocated from individual sblocks. */
1402
1403 #define LARGE_STRING_BYTES 1024
1404
1405 /* The SDATA typedef is a struct or union describing string memory
1406 sub-allocated from an sblock. This is where the contents of Lisp
1407 strings are stored. */
1408
1409 struct sdata
1410 {
1411 /* Back-pointer to the string this sdata belongs to. If null, this
1412 structure is free, and NBYTES (in this structure or in the union below)
1413 contains the string's byte size (the same value that STRING_BYTES
1414 would return if STRING were non-null). If non-null, STRING_BYTES
1415 (STRING) is the size of the data, and DATA contains the string's
1416 contents. */
1417 struct Lisp_String *string;
1418
1419 #ifdef GC_CHECK_STRING_BYTES
1420 ptrdiff_t nbytes;
1421 #endif
1422
1423 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1424 };
1425
1426 #ifdef GC_CHECK_STRING_BYTES
1427
1428 typedef struct sdata sdata;
1429 #define SDATA_NBYTES(S) (S)->nbytes
1430 #define SDATA_DATA(S) (S)->data
1431
1432 #else
1433
1434 typedef union
1435 {
1436 struct Lisp_String *string;
1437
1438 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1439 which has a flexible array member. However, if implemented by
1440 giving this union a member of type 'struct sdata', the union
1441 could not be the last (flexible) member of 'struct sblock',
1442 because C99 prohibits a flexible array member from having a type
1443 that is itself a flexible array. So, comment this member out here,
1444 but remember that the option's there when using this union. */
1445 #if 0
1446 struct sdata u;
1447 #endif
1448
1449 /* When STRING is null. */
1450 struct
1451 {
1452 struct Lisp_String *string;
1453 ptrdiff_t nbytes;
1454 } n;
1455 } sdata;
1456
1457 #define SDATA_NBYTES(S) (S)->n.nbytes
1458 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1459
1460 #endif /* not GC_CHECK_STRING_BYTES */
1461
1462 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1463
1464 /* Structure describing a block of memory which is sub-allocated to
1465 obtain string data memory for strings. Blocks for small strings
1466 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1467 as large as needed. */
1468
1469 struct sblock
1470 {
1471 /* Next in list. */
1472 struct sblock *next;
1473
1474 /* Pointer to the next free sdata block. This points past the end
1475 of the sblock if there isn't any space left in this block. */
1476 sdata *next_free;
1477
1478 /* String data. */
1479 sdata data[FLEXIBLE_ARRAY_MEMBER];
1480 };
1481
1482 /* Number of Lisp strings in a string_block structure. The 1020 is
1483 1024 minus malloc overhead. */
1484
1485 #define STRING_BLOCK_SIZE \
1486 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1487
1488 /* Structure describing a block from which Lisp_String structures
1489 are allocated. */
1490
1491 struct string_block
1492 {
1493 /* Place `strings' first, to preserve alignment. */
1494 struct Lisp_String strings[STRING_BLOCK_SIZE];
1495 struct string_block *next;
1496 };
1497
1498 /* Head and tail of the list of sblock structures holding Lisp string
1499 data. We always allocate from current_sblock. The NEXT pointers
1500 in the sblock structures go from oldest_sblock to current_sblock. */
1501
1502 static struct sblock *oldest_sblock, *current_sblock;
1503
1504 /* List of sblocks for large strings. */
1505
1506 static struct sblock *large_sblocks;
1507
1508 /* List of string_block structures. */
1509
1510 static struct string_block *string_blocks;
1511
1512 /* Free-list of Lisp_Strings. */
1513
1514 static struct Lisp_String *string_free_list;
1515
1516 /* Number of live and free Lisp_Strings. */
1517
1518 static EMACS_INT total_strings, total_free_strings;
1519
1520 /* Number of bytes used by live strings. */
1521
1522 static EMACS_INT total_string_bytes;
1523
1524 /* Given a pointer to a Lisp_String S which is on the free-list
1525 string_free_list, return a pointer to its successor in the
1526 free-list. */
1527
1528 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1529
1530 /* Return a pointer to the sdata structure belonging to Lisp string S.
1531 S must be live, i.e. S->data must not be null. S->data is actually
1532 a pointer to the `u.data' member of its sdata structure; the
1533 structure starts at a constant offset in front of that. */
1534
1535 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1536
1537
1538 #ifdef GC_CHECK_STRING_OVERRUN
1539
1540 /* We check for overrun in string data blocks by appending a small
1541 "cookie" after each allocated string data block, and check for the
1542 presence of this cookie during GC. */
1543
1544 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1545 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1546 { '\xde', '\xad', '\xbe', '\xef' };
1547
1548 #else
1549 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1550 #endif
1551
1552 /* Value is the size of an sdata structure large enough to hold NBYTES
1553 bytes of string data. The value returned includes a terminating
1554 NUL byte, the size of the sdata structure, and padding. */
1555
1556 #ifdef GC_CHECK_STRING_BYTES
1557
1558 #define SDATA_SIZE(NBYTES) \
1559 ((SDATA_DATA_OFFSET \
1560 + (NBYTES) + 1 \
1561 + sizeof (ptrdiff_t) - 1) \
1562 & ~(sizeof (ptrdiff_t) - 1))
1563
1564 #else /* not GC_CHECK_STRING_BYTES */
1565
1566 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1567 less than the size of that member. The 'max' is not needed when
1568 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1569 alignment code reserves enough space. */
1570
1571 #define SDATA_SIZE(NBYTES) \
1572 ((SDATA_DATA_OFFSET \
1573 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1574 ? NBYTES \
1575 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1576 + 1 \
1577 + sizeof (ptrdiff_t) - 1) \
1578 & ~(sizeof (ptrdiff_t) - 1))
1579
1580 #endif /* not GC_CHECK_STRING_BYTES */
1581
1582 /* Extra bytes to allocate for each string. */
1583
1584 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1585
1586 /* Exact bound on the number of bytes in a string, not counting the
1587 terminating null. A string cannot contain more bytes than
1588 STRING_BYTES_BOUND, nor can it be so long that the size_t
1589 arithmetic in allocate_string_data would overflow while it is
1590 calculating a value to be passed to malloc. */
1591 static ptrdiff_t const STRING_BYTES_MAX =
1592 min (STRING_BYTES_BOUND,
1593 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1594 - GC_STRING_EXTRA
1595 - offsetof (struct sblock, data)
1596 - SDATA_DATA_OFFSET)
1597 & ~(sizeof (EMACS_INT) - 1)));
1598
1599 /* Initialize string allocation. Called from init_alloc_once. */
1600
1601 static void
1602 init_strings (void)
1603 {
1604 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1605 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1606 }
1607
1608
1609 #ifdef GC_CHECK_STRING_BYTES
1610
1611 static int check_string_bytes_count;
1612
1613 /* Like STRING_BYTES, but with debugging check. Can be
1614 called during GC, so pay attention to the mark bit. */
1615
1616 ptrdiff_t
1617 string_bytes (struct Lisp_String *s)
1618 {
1619 ptrdiff_t nbytes =
1620 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1621
1622 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1623 emacs_abort ();
1624 return nbytes;
1625 }
1626
1627 /* Check validity of Lisp strings' string_bytes member in B. */
1628
1629 static void
1630 check_sblock (struct sblock *b)
1631 {
1632 sdata *from, *end, *from_end;
1633
1634 end = b->next_free;
1635
1636 for (from = b->data; from < end; from = from_end)
1637 {
1638 /* Compute the next FROM here because copying below may
1639 overwrite data we need to compute it. */
1640 ptrdiff_t nbytes;
1641
1642 /* Check that the string size recorded in the string is the
1643 same as the one recorded in the sdata structure. */
1644 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1645 : SDATA_NBYTES (from));
1646 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1647 }
1648 }
1649
1650
1651 /* Check validity of Lisp strings' string_bytes member. ALL_P
1652 means check all strings, otherwise check only most
1653 recently allocated strings. Used for hunting a bug. */
1654
1655 static void
1656 check_string_bytes (bool all_p)
1657 {
1658 if (all_p)
1659 {
1660 struct sblock *b;
1661
1662 for (b = large_sblocks; b; b = b->next)
1663 {
1664 struct Lisp_String *s = b->data[0].string;
1665 if (s)
1666 string_bytes (s);
1667 }
1668
1669 for (b = oldest_sblock; b; b = b->next)
1670 check_sblock (b);
1671 }
1672 else if (current_sblock)
1673 check_sblock (current_sblock);
1674 }
1675
1676 #else /* not GC_CHECK_STRING_BYTES */
1677
1678 #define check_string_bytes(all) ((void) 0)
1679
1680 #endif /* GC_CHECK_STRING_BYTES */
1681
1682 #ifdef GC_CHECK_STRING_FREE_LIST
1683
1684 /* Walk through the string free list looking for bogus next pointers.
1685 This may catch buffer overrun from a previous string. */
1686
1687 static void
1688 check_string_free_list (void)
1689 {
1690 struct Lisp_String *s;
1691
1692 /* Pop a Lisp_String off the free-list. */
1693 s = string_free_list;
1694 while (s != NULL)
1695 {
1696 if ((uintptr_t) s < 1024)
1697 emacs_abort ();
1698 s = NEXT_FREE_LISP_STRING (s);
1699 }
1700 }
1701 #else
1702 #define check_string_free_list()
1703 #endif
1704
1705 /* Return a new Lisp_String. */
1706
1707 static struct Lisp_String *
1708 allocate_string (void)
1709 {
1710 struct Lisp_String *s;
1711
1712 MALLOC_BLOCK_INPUT;
1713
1714 /* If the free-list is empty, allocate a new string_block, and
1715 add all the Lisp_Strings in it to the free-list. */
1716 if (string_free_list == NULL)
1717 {
1718 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1719 int i;
1720
1721 b->next = string_blocks;
1722 string_blocks = b;
1723
1724 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1725 {
1726 s = b->strings + i;
1727 /* Every string on a free list should have NULL data pointer. */
1728 s->data = NULL;
1729 NEXT_FREE_LISP_STRING (s) = string_free_list;
1730 string_free_list = s;
1731 }
1732
1733 total_free_strings += STRING_BLOCK_SIZE;
1734 }
1735
1736 check_string_free_list ();
1737
1738 /* Pop a Lisp_String off the free-list. */
1739 s = string_free_list;
1740 string_free_list = NEXT_FREE_LISP_STRING (s);
1741
1742 MALLOC_UNBLOCK_INPUT;
1743
1744 --total_free_strings;
1745 ++total_strings;
1746 ++strings_consed;
1747 consing_since_gc += sizeof *s;
1748
1749 #ifdef GC_CHECK_STRING_BYTES
1750 if (!noninteractive)
1751 {
1752 if (++check_string_bytes_count == 200)
1753 {
1754 check_string_bytes_count = 0;
1755 check_string_bytes (1);
1756 }
1757 else
1758 check_string_bytes (0);
1759 }
1760 #endif /* GC_CHECK_STRING_BYTES */
1761
1762 return s;
1763 }
1764
1765
1766 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1767 plus a NUL byte at the end. Allocate an sdata structure for S, and
1768 set S->data to its `u.data' member. Store a NUL byte at the end of
1769 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1770 S->data if it was initially non-null. */
1771
1772 void
1773 allocate_string_data (struct Lisp_String *s,
1774 EMACS_INT nchars, EMACS_INT nbytes)
1775 {
1776 sdata *data, *old_data;
1777 struct sblock *b;
1778 ptrdiff_t needed, old_nbytes;
1779
1780 if (STRING_BYTES_MAX < nbytes)
1781 string_overflow ();
1782
1783 /* Determine the number of bytes needed to store NBYTES bytes
1784 of string data. */
1785 needed = SDATA_SIZE (nbytes);
1786 if (s->data)
1787 {
1788 old_data = SDATA_OF_STRING (s);
1789 old_nbytes = STRING_BYTES (s);
1790 }
1791 else
1792 old_data = NULL;
1793
1794 MALLOC_BLOCK_INPUT;
1795
1796 if (nbytes > LARGE_STRING_BYTES)
1797 {
1798 size_t size = offsetof (struct sblock, data) + needed;
1799
1800 #ifdef DOUG_LEA_MALLOC
1801 if (!mmap_lisp_allowed_p ())
1802 mallopt (M_MMAP_MAX, 0);
1803 #endif
1804
1805 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1806
1807 #ifdef DOUG_LEA_MALLOC
1808 if (!mmap_lisp_allowed_p ())
1809 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1810 #endif
1811
1812 b->next_free = b->data;
1813 b->data[0].string = NULL;
1814 b->next = large_sblocks;
1815 large_sblocks = b;
1816 }
1817 else if (current_sblock == NULL
1818 || (((char *) current_sblock + SBLOCK_SIZE
1819 - (char *) current_sblock->next_free)
1820 < (needed + GC_STRING_EXTRA)))
1821 {
1822 /* Not enough room in the current sblock. */
1823 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1824 b->next_free = b->data;
1825 b->data[0].string = NULL;
1826 b->next = NULL;
1827
1828 if (current_sblock)
1829 current_sblock->next = b;
1830 else
1831 oldest_sblock = b;
1832 current_sblock = b;
1833 }
1834 else
1835 b = current_sblock;
1836
1837 data = b->next_free;
1838 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1839
1840 MALLOC_UNBLOCK_INPUT;
1841
1842 data->string = s;
1843 s->data = SDATA_DATA (data);
1844 #ifdef GC_CHECK_STRING_BYTES
1845 SDATA_NBYTES (data) = nbytes;
1846 #endif
1847 s->size = nchars;
1848 s->size_byte = nbytes;
1849 s->data[nbytes] = '\0';
1850 #ifdef GC_CHECK_STRING_OVERRUN
1851 memcpy ((char *) data + needed, string_overrun_cookie,
1852 GC_STRING_OVERRUN_COOKIE_SIZE);
1853 #endif
1854
1855 /* Note that Faset may call to this function when S has already data
1856 assigned. In this case, mark data as free by setting it's string
1857 back-pointer to null, and record the size of the data in it. */
1858 if (old_data)
1859 {
1860 SDATA_NBYTES (old_data) = old_nbytes;
1861 old_data->string = NULL;
1862 }
1863
1864 consing_since_gc += needed;
1865 }
1866
1867
1868 /* Sweep and compact strings. */
1869
1870 NO_INLINE /* For better stack traces */
1871 static void
1872 sweep_strings (void)
1873 {
1874 struct string_block *b, *next;
1875 struct string_block *live_blocks = NULL;
1876
1877 string_free_list = NULL;
1878 total_strings = total_free_strings = 0;
1879 total_string_bytes = 0;
1880
1881 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1882 for (b = string_blocks; b; b = next)
1883 {
1884 int i, nfree = 0;
1885 struct Lisp_String *free_list_before = string_free_list;
1886
1887 next = b->next;
1888
1889 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1890 {
1891 struct Lisp_String *s = b->strings + i;
1892
1893 if (s->data)
1894 {
1895 /* String was not on free-list before. */
1896 if (STRING_MARKED_P (s))
1897 {
1898 /* String is live; unmark it and its intervals. */
1899 UNMARK_STRING (s);
1900
1901 /* Do not use string_(set|get)_intervals here. */
1902 s->intervals = balance_intervals (s->intervals);
1903
1904 ++total_strings;
1905 total_string_bytes += STRING_BYTES (s);
1906 }
1907 else
1908 {
1909 /* String is dead. Put it on the free-list. */
1910 sdata *data = SDATA_OF_STRING (s);
1911
1912 /* Save the size of S in its sdata so that we know
1913 how large that is. Reset the sdata's string
1914 back-pointer so that we know it's free. */
1915 #ifdef GC_CHECK_STRING_BYTES
1916 if (string_bytes (s) != SDATA_NBYTES (data))
1917 emacs_abort ();
1918 #else
1919 data->n.nbytes = STRING_BYTES (s);
1920 #endif
1921 data->string = NULL;
1922
1923 /* Reset the strings's `data' member so that we
1924 know it's free. */
1925 s->data = NULL;
1926
1927 /* Put the string on the free-list. */
1928 NEXT_FREE_LISP_STRING (s) = string_free_list;
1929 string_free_list = s;
1930 ++nfree;
1931 }
1932 }
1933 else
1934 {
1935 /* S was on the free-list before. Put it there again. */
1936 NEXT_FREE_LISP_STRING (s) = string_free_list;
1937 string_free_list = s;
1938 ++nfree;
1939 }
1940 }
1941
1942 /* Free blocks that contain free Lisp_Strings only, except
1943 the first two of them. */
1944 if (nfree == STRING_BLOCK_SIZE
1945 && total_free_strings > STRING_BLOCK_SIZE)
1946 {
1947 lisp_free (b);
1948 string_free_list = free_list_before;
1949 }
1950 else
1951 {
1952 total_free_strings += nfree;
1953 b->next = live_blocks;
1954 live_blocks = b;
1955 }
1956 }
1957
1958 check_string_free_list ();
1959
1960 string_blocks = live_blocks;
1961 free_large_strings ();
1962 compact_small_strings ();
1963
1964 check_string_free_list ();
1965 }
1966
1967
1968 /* Free dead large strings. */
1969
1970 static void
1971 free_large_strings (void)
1972 {
1973 struct sblock *b, *next;
1974 struct sblock *live_blocks = NULL;
1975
1976 for (b = large_sblocks; b; b = next)
1977 {
1978 next = b->next;
1979
1980 if (b->data[0].string == NULL)
1981 lisp_free (b);
1982 else
1983 {
1984 b->next = live_blocks;
1985 live_blocks = b;
1986 }
1987 }
1988
1989 large_sblocks = live_blocks;
1990 }
1991
1992
1993 /* Compact data of small strings. Free sblocks that don't contain
1994 data of live strings after compaction. */
1995
1996 static void
1997 compact_small_strings (void)
1998 {
1999 struct sblock *b, *tb, *next;
2000 sdata *from, *to, *end, *tb_end;
2001 sdata *to_end, *from_end;
2002
2003 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2004 to, and TB_END is the end of TB. */
2005 tb = oldest_sblock;
2006 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2007 to = tb->data;
2008
2009 /* Step through the blocks from the oldest to the youngest. We
2010 expect that old blocks will stabilize over time, so that less
2011 copying will happen this way. */
2012 for (b = oldest_sblock; b; b = b->next)
2013 {
2014 end = b->next_free;
2015 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2016
2017 for (from = b->data; from < end; from = from_end)
2018 {
2019 /* Compute the next FROM here because copying below may
2020 overwrite data we need to compute it. */
2021 ptrdiff_t nbytes;
2022 struct Lisp_String *s = from->string;
2023
2024 #ifdef GC_CHECK_STRING_BYTES
2025 /* Check that the string size recorded in the string is the
2026 same as the one recorded in the sdata structure. */
2027 if (s && string_bytes (s) != SDATA_NBYTES (from))
2028 emacs_abort ();
2029 #endif /* GC_CHECK_STRING_BYTES */
2030
2031 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2032 eassert (nbytes <= LARGE_STRING_BYTES);
2033
2034 nbytes = SDATA_SIZE (nbytes);
2035 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2036
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 if (memcmp (string_overrun_cookie,
2039 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2040 GC_STRING_OVERRUN_COOKIE_SIZE))
2041 emacs_abort ();
2042 #endif
2043
2044 /* Non-NULL S means it's alive. Copy its data. */
2045 if (s)
2046 {
2047 /* If TB is full, proceed with the next sblock. */
2048 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2049 if (to_end > tb_end)
2050 {
2051 tb->next_free = to;
2052 tb = tb->next;
2053 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2054 to = tb->data;
2055 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2056 }
2057
2058 /* Copy, and update the string's `data' pointer. */
2059 if (from != to)
2060 {
2061 eassert (tb != b || to < from);
2062 memmove (to, from, nbytes + GC_STRING_EXTRA);
2063 to->string->data = SDATA_DATA (to);
2064 }
2065
2066 /* Advance past the sdata we copied to. */
2067 to = to_end;
2068 }
2069 }
2070 }
2071
2072 /* The rest of the sblocks following TB don't contain live data, so
2073 we can free them. */
2074 for (b = tb->next; b; b = next)
2075 {
2076 next = b->next;
2077 lisp_free (b);
2078 }
2079
2080 tb->next_free = to;
2081 tb->next = NULL;
2082 current_sblock = tb;
2083 }
2084
2085 void
2086 string_overflow (void)
2087 {
2088 error ("Maximum string size exceeded");
2089 }
2090
2091 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2092 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2093 LENGTH must be an integer.
2094 INIT must be an integer that represents a character. */)
2095 (Lisp_Object length, Lisp_Object init)
2096 {
2097 register Lisp_Object val;
2098 int c;
2099 EMACS_INT nbytes;
2100
2101 CHECK_NATNUM (length);
2102 CHECK_CHARACTER (init);
2103
2104 c = XFASTINT (init);
2105 if (ASCII_CHAR_P (c))
2106 {
2107 nbytes = XINT (length);
2108 val = make_uninit_string (nbytes);
2109 memset (SDATA (val), c, nbytes);
2110 SDATA (val)[nbytes] = 0;
2111 }
2112 else
2113 {
2114 unsigned char str[MAX_MULTIBYTE_LENGTH];
2115 ptrdiff_t len = CHAR_STRING (c, str);
2116 EMACS_INT string_len = XINT (length);
2117 unsigned char *p, *beg, *end;
2118
2119 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2120 string_overflow ();
2121 val = make_uninit_multibyte_string (string_len, nbytes);
2122 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2123 {
2124 /* First time we just copy `str' to the data of `val'. */
2125 if (p == beg)
2126 memcpy (p, str, len);
2127 else
2128 {
2129 /* Next time we copy largest possible chunk from
2130 initialized to uninitialized part of `val'. */
2131 len = min (p - beg, end - p);
2132 memcpy (p, beg, len);
2133 }
2134 }
2135 *p = 0;
2136 }
2137
2138 return val;
2139 }
2140
2141 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2142 Return A. */
2143
2144 Lisp_Object
2145 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2146 {
2147 EMACS_INT nbits = bool_vector_size (a);
2148 if (0 < nbits)
2149 {
2150 unsigned char *data = bool_vector_uchar_data (a);
2151 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2152 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2153 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2154 memset (data, pattern, nbytes - 1);
2155 data[nbytes - 1] = pattern & last_mask;
2156 }
2157 return a;
2158 }
2159
2160 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2161
2162 Lisp_Object
2163 make_uninit_bool_vector (EMACS_INT nbits)
2164 {
2165 Lisp_Object val;
2166 EMACS_INT words = bool_vector_words (nbits);
2167 EMACS_INT word_bytes = words * sizeof (bits_word);
2168 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2169 + word_size - 1)
2170 / word_size);
2171 struct Lisp_Bool_Vector *p
2172 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2173 XSETVECTOR (val, p);
2174 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2175 p->size = nbits;
2176
2177 /* Clear padding at the end. */
2178 if (words)
2179 p->data[words - 1] = 0;
2180
2181 return val;
2182 }
2183
2184 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2185 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2186 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2187 (Lisp_Object length, Lisp_Object init)
2188 {
2189 Lisp_Object val;
2190
2191 CHECK_NATNUM (length);
2192 val = make_uninit_bool_vector (XFASTINT (length));
2193 return bool_vector_fill (val, init);
2194 }
2195
2196 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2197 doc: /* Return a new bool-vector with specified arguments as elements.
2198 Any number of arguments, even zero arguments, are allowed.
2199 usage: (bool-vector &rest OBJECTS) */)
2200 (ptrdiff_t nargs, Lisp_Object *args)
2201 {
2202 ptrdiff_t i;
2203 Lisp_Object vector;
2204
2205 vector = make_uninit_bool_vector (nargs);
2206 for (i = 0; i < nargs; i++)
2207 bool_vector_set (vector, i, !NILP (args[i]));
2208
2209 return vector;
2210 }
2211
2212 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2213 of characters from the contents. This string may be unibyte or
2214 multibyte, depending on the contents. */
2215
2216 Lisp_Object
2217 make_string (const char *contents, ptrdiff_t nbytes)
2218 {
2219 register Lisp_Object val;
2220 ptrdiff_t nchars, multibyte_nbytes;
2221
2222 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2223 &nchars, &multibyte_nbytes);
2224 if (nbytes == nchars || nbytes != multibyte_nbytes)
2225 /* CONTENTS contains no multibyte sequences or contains an invalid
2226 multibyte sequence. We must make unibyte string. */
2227 val = make_unibyte_string (contents, nbytes);
2228 else
2229 val = make_multibyte_string (contents, nchars, nbytes);
2230 return val;
2231 }
2232
2233 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2234
2235 Lisp_Object
2236 make_unibyte_string (const char *contents, ptrdiff_t length)
2237 {
2238 register Lisp_Object val;
2239 val = make_uninit_string (length);
2240 memcpy (SDATA (val), contents, length);
2241 return val;
2242 }
2243
2244
2245 /* Make a multibyte string from NCHARS characters occupying NBYTES
2246 bytes at CONTENTS. */
2247
2248 Lisp_Object
2249 make_multibyte_string (const char *contents,
2250 ptrdiff_t nchars, ptrdiff_t nbytes)
2251 {
2252 register Lisp_Object val;
2253 val = make_uninit_multibyte_string (nchars, nbytes);
2254 memcpy (SDATA (val), contents, nbytes);
2255 return val;
2256 }
2257
2258
2259 /* Make a string from NCHARS characters occupying NBYTES bytes at
2260 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2261
2262 Lisp_Object
2263 make_string_from_bytes (const char *contents,
2264 ptrdiff_t nchars, ptrdiff_t nbytes)
2265 {
2266 register Lisp_Object val;
2267 val = make_uninit_multibyte_string (nchars, nbytes);
2268 memcpy (SDATA (val), contents, nbytes);
2269 if (SBYTES (val) == SCHARS (val))
2270 STRING_SET_UNIBYTE (val);
2271 return val;
2272 }
2273
2274
2275 /* Make a string from NCHARS characters occupying NBYTES bytes at
2276 CONTENTS. The argument MULTIBYTE controls whether to label the
2277 string as multibyte. If NCHARS is negative, it counts the number of
2278 characters by itself. */
2279
2280 Lisp_Object
2281 make_specified_string (const char *contents,
2282 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2283 {
2284 Lisp_Object val;
2285
2286 if (nchars < 0)
2287 {
2288 if (multibyte)
2289 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2290 nbytes);
2291 else
2292 nchars = nbytes;
2293 }
2294 val = make_uninit_multibyte_string (nchars, nbytes);
2295 memcpy (SDATA (val), contents, nbytes);
2296 if (!multibyte)
2297 STRING_SET_UNIBYTE (val);
2298 return val;
2299 }
2300
2301
2302 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2303 occupying LENGTH bytes. */
2304
2305 Lisp_Object
2306 make_uninit_string (EMACS_INT length)
2307 {
2308 Lisp_Object val;
2309
2310 if (!length)
2311 return empty_unibyte_string;
2312 val = make_uninit_multibyte_string (length, length);
2313 STRING_SET_UNIBYTE (val);
2314 return val;
2315 }
2316
2317
2318 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2319 which occupy NBYTES bytes. */
2320
2321 Lisp_Object
2322 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2323 {
2324 Lisp_Object string;
2325 struct Lisp_String *s;
2326
2327 if (nchars < 0)
2328 emacs_abort ();
2329 if (!nbytes)
2330 return empty_multibyte_string;
2331
2332 s = allocate_string ();
2333 s->intervals = NULL;
2334 allocate_string_data (s, nchars, nbytes);
2335 XSETSTRING (string, s);
2336 string_chars_consed += nbytes;
2337 return string;
2338 }
2339
2340 /* Print arguments to BUF according to a FORMAT, then return
2341 a Lisp_String initialized with the data from BUF. */
2342
2343 Lisp_Object
2344 make_formatted_string (char *buf, const char *format, ...)
2345 {
2346 va_list ap;
2347 int length;
2348
2349 va_start (ap, format);
2350 length = vsprintf (buf, format, ap);
2351 va_end (ap);
2352 return make_string (buf, length);
2353 }
2354
2355 \f
2356 /***********************************************************************
2357 Float Allocation
2358 ***********************************************************************/
2359
2360 /* We store float cells inside of float_blocks, allocating a new
2361 float_block with malloc whenever necessary. Float cells reclaimed
2362 by GC are put on a free list to be reallocated before allocating
2363 any new float cells from the latest float_block. */
2364
2365 #define FLOAT_BLOCK_SIZE \
2366 (((BLOCK_BYTES - sizeof (struct float_block *) \
2367 /* The compiler might add padding at the end. */ \
2368 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2369 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2370
2371 #define GETMARKBIT(block,n) \
2372 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2373 >> ((n) % BITS_PER_BITS_WORD)) \
2374 & 1)
2375
2376 #define SETMARKBIT(block,n) \
2377 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2378 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2379
2380 #define UNSETMARKBIT(block,n) \
2381 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2382 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2383
2384 #define FLOAT_BLOCK(fptr) \
2385 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2386
2387 #define FLOAT_INDEX(fptr) \
2388 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2389
2390 struct float_block
2391 {
2392 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2393 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2394 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2395 struct float_block *next;
2396 };
2397
2398 #define FLOAT_MARKED_P(fptr) \
2399 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2400
2401 #define FLOAT_MARK(fptr) \
2402 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2403
2404 #define FLOAT_UNMARK(fptr) \
2405 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2406
2407 /* Current float_block. */
2408
2409 static struct float_block *float_block;
2410
2411 /* Index of first unused Lisp_Float in the current float_block. */
2412
2413 static int float_block_index = FLOAT_BLOCK_SIZE;
2414
2415 /* Free-list of Lisp_Floats. */
2416
2417 static struct Lisp_Float *float_free_list;
2418
2419 /* Return a new float object with value FLOAT_VALUE. */
2420
2421 Lisp_Object
2422 make_float (double float_value)
2423 {
2424 register Lisp_Object val;
2425
2426 MALLOC_BLOCK_INPUT;
2427
2428 if (float_free_list)
2429 {
2430 /* We use the data field for chaining the free list
2431 so that we won't use the same field that has the mark bit. */
2432 XSETFLOAT (val, float_free_list);
2433 float_free_list = float_free_list->u.chain;
2434 }
2435 else
2436 {
2437 if (float_block_index == FLOAT_BLOCK_SIZE)
2438 {
2439 struct float_block *new
2440 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2441 new->next = float_block;
2442 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2443 float_block = new;
2444 float_block_index = 0;
2445 total_free_floats += FLOAT_BLOCK_SIZE;
2446 }
2447 XSETFLOAT (val, &float_block->floats[float_block_index]);
2448 float_block_index++;
2449 }
2450
2451 MALLOC_UNBLOCK_INPUT;
2452
2453 XFLOAT_INIT (val, float_value);
2454 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2455 consing_since_gc += sizeof (struct Lisp_Float);
2456 floats_consed++;
2457 total_free_floats--;
2458 return val;
2459 }
2460
2461
2462 \f
2463 /***********************************************************************
2464 Cons Allocation
2465 ***********************************************************************/
2466
2467 /* We store cons cells inside of cons_blocks, allocating a new
2468 cons_block with malloc whenever necessary. Cons cells reclaimed by
2469 GC are put on a free list to be reallocated before allocating
2470 any new cons cells from the latest cons_block. */
2471
2472 #define CONS_BLOCK_SIZE \
2473 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2474 /* The compiler might add padding at the end. */ \
2475 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2476 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2477
2478 #define CONS_BLOCK(fptr) \
2479 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2480
2481 #define CONS_INDEX(fptr) \
2482 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2483
2484 struct cons_block
2485 {
2486 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2487 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2488 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2489 struct cons_block *next;
2490 };
2491
2492 #define CONS_MARKED_P(fptr) \
2493 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2494
2495 #define CONS_MARK(fptr) \
2496 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2497
2498 #define CONS_UNMARK(fptr) \
2499 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2500
2501 /* Current cons_block. */
2502
2503 static struct cons_block *cons_block;
2504
2505 /* Index of first unused Lisp_Cons in the current block. */
2506
2507 static int cons_block_index = CONS_BLOCK_SIZE;
2508
2509 /* Free-list of Lisp_Cons structures. */
2510
2511 static struct Lisp_Cons *cons_free_list;
2512
2513 /* Explicitly free a cons cell by putting it on the free-list. */
2514
2515 void
2516 free_cons (struct Lisp_Cons *ptr)
2517 {
2518 ptr->u.chain = cons_free_list;
2519 ptr->car = Vdead;
2520 cons_free_list = ptr;
2521 consing_since_gc -= sizeof *ptr;
2522 total_free_conses++;
2523 }
2524
2525 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2526 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2527 (Lisp_Object car, Lisp_Object cdr)
2528 {
2529 register Lisp_Object val;
2530
2531 MALLOC_BLOCK_INPUT;
2532
2533 if (cons_free_list)
2534 {
2535 /* We use the cdr for chaining the free list
2536 so that we won't use the same field that has the mark bit. */
2537 XSETCONS (val, cons_free_list);
2538 cons_free_list = cons_free_list->u.chain;
2539 }
2540 else
2541 {
2542 if (cons_block_index == CONS_BLOCK_SIZE)
2543 {
2544 struct cons_block *new
2545 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2546 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2547 new->next = cons_block;
2548 cons_block = new;
2549 cons_block_index = 0;
2550 total_free_conses += CONS_BLOCK_SIZE;
2551 }
2552 XSETCONS (val, &cons_block->conses[cons_block_index]);
2553 cons_block_index++;
2554 }
2555
2556 MALLOC_UNBLOCK_INPUT;
2557
2558 XSETCAR (val, car);
2559 XSETCDR (val, cdr);
2560 eassert (!CONS_MARKED_P (XCONS (val)));
2561 consing_since_gc += sizeof (struct Lisp_Cons);
2562 total_free_conses--;
2563 cons_cells_consed++;
2564 return val;
2565 }
2566
2567 #ifdef GC_CHECK_CONS_LIST
2568 /* Get an error now if there's any junk in the cons free list. */
2569 void
2570 check_cons_list (void)
2571 {
2572 struct Lisp_Cons *tail = cons_free_list;
2573
2574 while (tail)
2575 tail = tail->u.chain;
2576 }
2577 #endif
2578
2579 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2580
2581 Lisp_Object
2582 list1 (Lisp_Object arg1)
2583 {
2584 return Fcons (arg1, Qnil);
2585 }
2586
2587 Lisp_Object
2588 list2 (Lisp_Object arg1, Lisp_Object arg2)
2589 {
2590 return Fcons (arg1, Fcons (arg2, Qnil));
2591 }
2592
2593
2594 Lisp_Object
2595 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2596 {
2597 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2598 }
2599
2600
2601 Lisp_Object
2602 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2603 {
2604 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2605 }
2606
2607
2608 Lisp_Object
2609 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2610 {
2611 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2612 Fcons (arg5, Qnil)))));
2613 }
2614
2615 /* Make a list of COUNT Lisp_Objects, where ARG is the
2616 first one. Allocate conses from pure space if TYPE
2617 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2618
2619 Lisp_Object
2620 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2621 {
2622 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2623 switch (type)
2624 {
2625 case CONSTYPE_PURE: cons = pure_cons; break;
2626 case CONSTYPE_HEAP: cons = Fcons; break;
2627 default: emacs_abort ();
2628 }
2629
2630 eassume (0 < count);
2631 Lisp_Object val = cons (arg, Qnil);
2632 Lisp_Object tail = val;
2633
2634 va_list ap;
2635 va_start (ap, arg);
2636 for (ptrdiff_t i = 1; i < count; i++)
2637 {
2638 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2639 XSETCDR (tail, elem);
2640 tail = elem;
2641 }
2642 va_end (ap);
2643
2644 return val;
2645 }
2646
2647 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2648 doc: /* Return a newly created list with specified arguments as elements.
2649 Any number of arguments, even zero arguments, are allowed.
2650 usage: (list &rest OBJECTS) */)
2651 (ptrdiff_t nargs, Lisp_Object *args)
2652 {
2653 register Lisp_Object val;
2654 val = Qnil;
2655
2656 while (nargs > 0)
2657 {
2658 nargs--;
2659 val = Fcons (args[nargs], val);
2660 }
2661 return val;
2662 }
2663
2664
2665 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2666 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2667 (register Lisp_Object length, Lisp_Object init)
2668 {
2669 register Lisp_Object val;
2670 register EMACS_INT size;
2671
2672 CHECK_NATNUM (length);
2673 size = XFASTINT (length);
2674
2675 val = Qnil;
2676 while (size > 0)
2677 {
2678 val = Fcons (init, val);
2679 --size;
2680
2681 if (size > 0)
2682 {
2683 val = Fcons (init, val);
2684 --size;
2685
2686 if (size > 0)
2687 {
2688 val = Fcons (init, val);
2689 --size;
2690
2691 if (size > 0)
2692 {
2693 val = Fcons (init, val);
2694 --size;
2695
2696 if (size > 0)
2697 {
2698 val = Fcons (init, val);
2699 --size;
2700 }
2701 }
2702 }
2703 }
2704
2705 QUIT;
2706 }
2707
2708 return val;
2709 }
2710
2711
2712 \f
2713 /***********************************************************************
2714 Vector Allocation
2715 ***********************************************************************/
2716
2717 /* Sometimes a vector's contents are merely a pointer internally used
2718 in vector allocation code. On the rare platforms where a null
2719 pointer cannot be tagged, represent it with a Lisp 0.
2720 Usually you don't want to touch this. */
2721
2722 static struct Lisp_Vector *
2723 next_vector (struct Lisp_Vector *v)
2724 {
2725 return XUNTAG (v->contents[0], Lisp_Int0);
2726 }
2727
2728 static void
2729 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2730 {
2731 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2732 }
2733
2734 /* This value is balanced well enough to avoid too much internal overhead
2735 for the most common cases; it's not required to be a power of two, but
2736 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2737
2738 #define VECTOR_BLOCK_SIZE 4096
2739
2740 enum
2741 {
2742 /* Alignment of struct Lisp_Vector objects. */
2743 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2744 GCALIGNMENT),
2745
2746 /* Vector size requests are a multiple of this. */
2747 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2748 };
2749
2750 /* Verify assumptions described above. */
2751 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2752 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2753
2754 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2755 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2756 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2757 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2758
2759 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2760
2761 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2762
2763 /* Size of the minimal vector allocated from block. */
2764
2765 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2766
2767 /* Size of the largest vector allocated from block. */
2768
2769 #define VBLOCK_BYTES_MAX \
2770 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2771
2772 /* We maintain one free list for each possible block-allocated
2773 vector size, and this is the number of free lists we have. */
2774
2775 #define VECTOR_MAX_FREE_LIST_INDEX \
2776 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2777
2778 /* Common shortcut to advance vector pointer over a block data. */
2779
2780 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2781
2782 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2783
2784 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2785
2786 /* Common shortcut to setup vector on a free list. */
2787
2788 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2789 do { \
2790 (tmp) = ((nbytes - header_size) / word_size); \
2791 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2792 eassert ((nbytes) % roundup_size == 0); \
2793 (tmp) = VINDEX (nbytes); \
2794 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2795 set_next_vector (v, vector_free_lists[tmp]); \
2796 vector_free_lists[tmp] = (v); \
2797 total_free_vector_slots += (nbytes) / word_size; \
2798 } while (0)
2799
2800 /* This internal type is used to maintain the list of large vectors
2801 which are allocated at their own, e.g. outside of vector blocks.
2802
2803 struct large_vector itself cannot contain a struct Lisp_Vector, as
2804 the latter contains a flexible array member and C99 does not allow
2805 such structs to be nested. Instead, each struct large_vector
2806 object LV is followed by a struct Lisp_Vector, which is at offset
2807 large_vector_offset from LV, and whose address is therefore
2808 large_vector_vec (&LV). */
2809
2810 struct large_vector
2811 {
2812 struct large_vector *next;
2813 };
2814
2815 enum
2816 {
2817 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2818 };
2819
2820 static struct Lisp_Vector *
2821 large_vector_vec (struct large_vector *p)
2822 {
2823 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2824 }
2825
2826 /* This internal type is used to maintain an underlying storage
2827 for small vectors. */
2828
2829 struct vector_block
2830 {
2831 char data[VECTOR_BLOCK_BYTES];
2832 struct vector_block *next;
2833 };
2834
2835 /* Chain of vector blocks. */
2836
2837 static struct vector_block *vector_blocks;
2838
2839 /* Vector free lists, where NTH item points to a chain of free
2840 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2841
2842 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2843
2844 /* Singly-linked list of large vectors. */
2845
2846 static struct large_vector *large_vectors;
2847
2848 /* The only vector with 0 slots, allocated from pure space. */
2849
2850 Lisp_Object zero_vector;
2851
2852 /* Number of live vectors. */
2853
2854 static EMACS_INT total_vectors;
2855
2856 /* Total size of live and free vectors, in Lisp_Object units. */
2857
2858 static EMACS_INT total_vector_slots, total_free_vector_slots;
2859
2860 /* Get a new vector block. */
2861
2862 static struct vector_block *
2863 allocate_vector_block (void)
2864 {
2865 struct vector_block *block = xmalloc (sizeof *block);
2866
2867 #ifndef GC_MALLOC_CHECK
2868 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2869 MEM_TYPE_VECTOR_BLOCK);
2870 #endif
2871
2872 block->next = vector_blocks;
2873 vector_blocks = block;
2874 return block;
2875 }
2876
2877 /* Called once to initialize vector allocation. */
2878
2879 static void
2880 init_vectors (void)
2881 {
2882 zero_vector = make_pure_vector (0);
2883 }
2884
2885 /* Allocate vector from a vector block. */
2886
2887 static struct Lisp_Vector *
2888 allocate_vector_from_block (size_t nbytes)
2889 {
2890 struct Lisp_Vector *vector;
2891 struct vector_block *block;
2892 size_t index, restbytes;
2893
2894 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2895 eassert (nbytes % roundup_size == 0);
2896
2897 /* First, try to allocate from a free list
2898 containing vectors of the requested size. */
2899 index = VINDEX (nbytes);
2900 if (vector_free_lists[index])
2901 {
2902 vector = vector_free_lists[index];
2903 vector_free_lists[index] = next_vector (vector);
2904 total_free_vector_slots -= nbytes / word_size;
2905 return vector;
2906 }
2907
2908 /* Next, check free lists containing larger vectors. Since
2909 we will split the result, we should have remaining space
2910 large enough to use for one-slot vector at least. */
2911 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2912 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2913 if (vector_free_lists[index])
2914 {
2915 /* This vector is larger than requested. */
2916 vector = vector_free_lists[index];
2917 vector_free_lists[index] = next_vector (vector);
2918 total_free_vector_slots -= nbytes / word_size;
2919
2920 /* Excess bytes are used for the smaller vector,
2921 which should be set on an appropriate free list. */
2922 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2923 eassert (restbytes % roundup_size == 0);
2924 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2925 return vector;
2926 }
2927
2928 /* Finally, need a new vector block. */
2929 block = allocate_vector_block ();
2930
2931 /* New vector will be at the beginning of this block. */
2932 vector = (struct Lisp_Vector *) block->data;
2933
2934 /* If the rest of space from this block is large enough
2935 for one-slot vector at least, set up it on a free list. */
2936 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2937 if (restbytes >= VBLOCK_BYTES_MIN)
2938 {
2939 eassert (restbytes % roundup_size == 0);
2940 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2941 }
2942 return vector;
2943 }
2944
2945 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2946
2947 #define VECTOR_IN_BLOCK(vector, block) \
2948 ((char *) (vector) <= (block)->data \
2949 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2950
2951 /* Return the memory footprint of V in bytes. */
2952
2953 static ptrdiff_t
2954 vector_nbytes (struct Lisp_Vector *v)
2955 {
2956 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2957 ptrdiff_t nwords;
2958
2959 if (size & PSEUDOVECTOR_FLAG)
2960 {
2961 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2962 {
2963 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2964 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2965 * sizeof (bits_word));
2966 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2967 verify (header_size <= bool_header_size);
2968 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2969 }
2970 else
2971 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2972 + ((size & PSEUDOVECTOR_REST_MASK)
2973 >> PSEUDOVECTOR_SIZE_BITS));
2974 }
2975 else
2976 nwords = size;
2977 return vroundup (header_size + word_size * nwords);
2978 }
2979
2980 /* Release extra resources still in use by VECTOR, which may be any
2981 vector-like object. For now, this is used just to free data in
2982 font objects. */
2983
2984 static void
2985 cleanup_vector (struct Lisp_Vector *vector)
2986 {
2987 detect_suspicious_free (vector);
2988 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2989 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2990 == FONT_OBJECT_MAX))
2991 {
2992 struct font_driver *drv = ((struct font *) vector)->driver;
2993
2994 /* The font driver might sometimes be NULL, e.g. if Emacs was
2995 interrupted before it had time to set it up. */
2996 if (drv)
2997 {
2998 /* Attempt to catch subtle bugs like Bug#16140. */
2999 eassert (valid_font_driver (drv));
3000 drv->close ((struct font *) vector);
3001 }
3002 }
3003 }
3004
3005 /* Reclaim space used by unmarked vectors. */
3006
3007 NO_INLINE /* For better stack traces */
3008 static void
3009 sweep_vectors (void)
3010 {
3011 struct vector_block *block, **bprev = &vector_blocks;
3012 struct large_vector *lv, **lvprev = &large_vectors;
3013 struct Lisp_Vector *vector, *next;
3014
3015 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3016 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3017
3018 /* Looking through vector blocks. */
3019
3020 for (block = vector_blocks; block; block = *bprev)
3021 {
3022 bool free_this_block = 0;
3023 ptrdiff_t nbytes;
3024
3025 for (vector = (struct Lisp_Vector *) block->data;
3026 VECTOR_IN_BLOCK (vector, block); vector = next)
3027 {
3028 if (VECTOR_MARKED_P (vector))
3029 {
3030 VECTOR_UNMARK (vector);
3031 total_vectors++;
3032 nbytes = vector_nbytes (vector);
3033 total_vector_slots += nbytes / word_size;
3034 next = ADVANCE (vector, nbytes);
3035 }
3036 else
3037 {
3038 ptrdiff_t total_bytes;
3039
3040 cleanup_vector (vector);
3041 nbytes = vector_nbytes (vector);
3042 total_bytes = nbytes;
3043 next = ADVANCE (vector, nbytes);
3044
3045 /* While NEXT is not marked, try to coalesce with VECTOR,
3046 thus making VECTOR of the largest possible size. */
3047
3048 while (VECTOR_IN_BLOCK (next, block))
3049 {
3050 if (VECTOR_MARKED_P (next))
3051 break;
3052 cleanup_vector (next);
3053 nbytes = vector_nbytes (next);
3054 total_bytes += nbytes;
3055 next = ADVANCE (next, nbytes);
3056 }
3057
3058 eassert (total_bytes % roundup_size == 0);
3059
3060 if (vector == (struct Lisp_Vector *) block->data
3061 && !VECTOR_IN_BLOCK (next, block))
3062 /* This block should be freed because all of its
3063 space was coalesced into the only free vector. */
3064 free_this_block = 1;
3065 else
3066 {
3067 size_t tmp;
3068 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3069 }
3070 }
3071 }
3072
3073 if (free_this_block)
3074 {
3075 *bprev = block->next;
3076 #ifndef GC_MALLOC_CHECK
3077 mem_delete (mem_find (block->data));
3078 #endif
3079 xfree (block);
3080 }
3081 else
3082 bprev = &block->next;
3083 }
3084
3085 /* Sweep large vectors. */
3086
3087 for (lv = large_vectors; lv; lv = *lvprev)
3088 {
3089 vector = large_vector_vec (lv);
3090 if (VECTOR_MARKED_P (vector))
3091 {
3092 VECTOR_UNMARK (vector);
3093 total_vectors++;
3094 if (vector->header.size & PSEUDOVECTOR_FLAG)
3095 {
3096 /* All non-bool pseudovectors are small enough to be allocated
3097 from vector blocks. This code should be redesigned if some
3098 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3099 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3100 total_vector_slots += vector_nbytes (vector) / word_size;
3101 }
3102 else
3103 total_vector_slots
3104 += header_size / word_size + vector->header.size;
3105 lvprev = &lv->next;
3106 }
3107 else
3108 {
3109 *lvprev = lv->next;
3110 lisp_free (lv);
3111 }
3112 }
3113 }
3114
3115 /* Value is a pointer to a newly allocated Lisp_Vector structure
3116 with room for LEN Lisp_Objects. */
3117
3118 static struct Lisp_Vector *
3119 allocate_vectorlike (ptrdiff_t len)
3120 {
3121 struct Lisp_Vector *p;
3122
3123 MALLOC_BLOCK_INPUT;
3124
3125 if (len == 0)
3126 p = XVECTOR (zero_vector);
3127 else
3128 {
3129 size_t nbytes = header_size + len * word_size;
3130
3131 #ifdef DOUG_LEA_MALLOC
3132 if (!mmap_lisp_allowed_p ())
3133 mallopt (M_MMAP_MAX, 0);
3134 #endif
3135
3136 if (nbytes <= VBLOCK_BYTES_MAX)
3137 p = allocate_vector_from_block (vroundup (nbytes));
3138 else
3139 {
3140 struct large_vector *lv
3141 = lisp_malloc ((large_vector_offset + header_size
3142 + len * word_size),
3143 MEM_TYPE_VECTORLIKE);
3144 lv->next = large_vectors;
3145 large_vectors = lv;
3146 p = large_vector_vec (lv);
3147 }
3148
3149 #ifdef DOUG_LEA_MALLOC
3150 if (!mmap_lisp_allowed_p ())
3151 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3152 #endif
3153
3154 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3155 emacs_abort ();
3156
3157 consing_since_gc += nbytes;
3158 vector_cells_consed += len;
3159 }
3160
3161 MALLOC_UNBLOCK_INPUT;
3162
3163 return p;
3164 }
3165
3166
3167 /* Allocate a vector with LEN slots. */
3168
3169 struct Lisp_Vector *
3170 allocate_vector (EMACS_INT len)
3171 {
3172 struct Lisp_Vector *v;
3173 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3174
3175 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3176 memory_full (SIZE_MAX);
3177 v = allocate_vectorlike (len);
3178 v->header.size = len;
3179 return v;
3180 }
3181
3182
3183 /* Allocate other vector-like structures. */
3184
3185 struct Lisp_Vector *
3186 allocate_pseudovector (int memlen, int lisplen,
3187 int zerolen, enum pvec_type tag)
3188 {
3189 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3190
3191 /* Catch bogus values. */
3192 eassert (0 <= tag && tag <= PVEC_FONT);
3193 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3194 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3195 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3196
3197 /* Only the first LISPLEN slots will be traced normally by the GC. */
3198 memclear (v->contents, zerolen * word_size);
3199 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3200 return v;
3201 }
3202
3203 struct buffer *
3204 allocate_buffer (void)
3205 {
3206 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3207
3208 BUFFER_PVEC_INIT (b);
3209 /* Put B on the chain of all buffers including killed ones. */
3210 b->next = all_buffers;
3211 all_buffers = b;
3212 /* Note that the rest fields of B are not initialized. */
3213 return b;
3214 }
3215
3216 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3217 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3218 See also the function `vector'. */)
3219 (register Lisp_Object length, Lisp_Object init)
3220 {
3221 Lisp_Object vector;
3222 register ptrdiff_t sizei;
3223 register ptrdiff_t i;
3224 register struct Lisp_Vector *p;
3225
3226 CHECK_NATNUM (length);
3227
3228 p = allocate_vector (XFASTINT (length));
3229 sizei = XFASTINT (length);
3230 for (i = 0; i < sizei; i++)
3231 p->contents[i] = init;
3232
3233 XSETVECTOR (vector, p);
3234 return vector;
3235 }
3236
3237 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3238 doc: /* Return a newly created vector with specified arguments as elements.
3239 Any number of arguments, even zero arguments, are allowed.
3240 usage: (vector &rest OBJECTS) */)
3241 (ptrdiff_t nargs, Lisp_Object *args)
3242 {
3243 ptrdiff_t i;
3244 register Lisp_Object val = make_uninit_vector (nargs);
3245 register struct Lisp_Vector *p = XVECTOR (val);
3246
3247 for (i = 0; i < nargs; i++)
3248 p->contents[i] = args[i];
3249 return val;
3250 }
3251
3252 void
3253 make_byte_code (struct Lisp_Vector *v)
3254 {
3255 /* Don't allow the global zero_vector to become a byte code object. */
3256 eassert (0 < v->header.size);
3257
3258 if (v->header.size > 1 && STRINGP (v->contents[1])
3259 && STRING_MULTIBYTE (v->contents[1]))
3260 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3261 earlier because they produced a raw 8-bit string for byte-code
3262 and now such a byte-code string is loaded as multibyte while
3263 raw 8-bit characters converted to multibyte form. Thus, now we
3264 must convert them back to the original unibyte form. */
3265 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3266 XSETPVECTYPE (v, PVEC_COMPILED);
3267 }
3268
3269 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3270 doc: /* Create a byte-code object with specified arguments as elements.
3271 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3272 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3273 and (optional) INTERACTIVE-SPEC.
3274 The first four arguments are required; at most six have any
3275 significance.
3276 The ARGLIST can be either like the one of `lambda', in which case the arguments
3277 will be dynamically bound before executing the byte code, or it can be an
3278 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3279 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3280 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3281 argument to catch the left-over arguments. If such an integer is used, the
3282 arguments will not be dynamically bound but will be instead pushed on the
3283 stack before executing the byte-code.
3284 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3285 (ptrdiff_t nargs, Lisp_Object *args)
3286 {
3287 ptrdiff_t i;
3288 register Lisp_Object val = make_uninit_vector (nargs);
3289 register struct Lisp_Vector *p = XVECTOR (val);
3290
3291 /* We used to purecopy everything here, if purify-flag was set. This worked
3292 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3293 dangerous, since make-byte-code is used during execution to build
3294 closures, so any closure built during the preload phase would end up
3295 copied into pure space, including its free variables, which is sometimes
3296 just wasteful and other times plainly wrong (e.g. those free vars may want
3297 to be setcar'd). */
3298
3299 for (i = 0; i < nargs; i++)
3300 p->contents[i] = args[i];
3301 make_byte_code (p);
3302 XSETCOMPILED (val, p);
3303 return val;
3304 }
3305
3306
3307 \f
3308 /***********************************************************************
3309 Symbol Allocation
3310 ***********************************************************************/
3311
3312 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3313 of the required alignment. */
3314
3315 union aligned_Lisp_Symbol
3316 {
3317 struct Lisp_Symbol s;
3318 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3319 & -GCALIGNMENT];
3320 };
3321
3322 /* Each symbol_block is just under 1020 bytes long, since malloc
3323 really allocates in units of powers of two and uses 4 bytes for its
3324 own overhead. */
3325
3326 #define SYMBOL_BLOCK_SIZE \
3327 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3328
3329 struct symbol_block
3330 {
3331 /* Place `symbols' first, to preserve alignment. */
3332 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3333 struct symbol_block *next;
3334 };
3335
3336 /* Current symbol block and index of first unused Lisp_Symbol
3337 structure in it. */
3338
3339 static struct symbol_block *symbol_block;
3340 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3341 /* Pointer to the first symbol_block that contains pinned symbols.
3342 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3343 10K of which are pinned (and all but 250 of them are interned in obarray),
3344 whereas a "typical session" has in the order of 30K symbols.
3345 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3346 than 30K to find the 10K symbols we need to mark. */
3347 static struct symbol_block *symbol_block_pinned;
3348
3349 /* List of free symbols. */
3350
3351 static struct Lisp_Symbol *symbol_free_list;
3352
3353 static void
3354 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3355 {
3356 XSYMBOL (sym)->name = name;
3357 }
3358
3359 void
3360 init_symbol (Lisp_Object val, Lisp_Object name)
3361 {
3362 struct Lisp_Symbol *p = XSYMBOL (val);
3363 set_symbol_name (val, name);
3364 set_symbol_plist (val, Qnil);
3365 p->redirect = SYMBOL_PLAINVAL;
3366 SET_SYMBOL_VAL (p, Qunbound);
3367 set_symbol_function (val, Qnil);
3368 set_symbol_next (val, NULL);
3369 p->gcmarkbit = false;
3370 p->interned = SYMBOL_UNINTERNED;
3371 p->constant = 0;
3372 p->declared_special = false;
3373 p->pinned = false;
3374 }
3375
3376 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3377 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3378 Its value is void, and its function definition and property list are nil. */)
3379 (Lisp_Object name)
3380 {
3381 Lisp_Object val;
3382
3383 CHECK_STRING (name);
3384
3385 MALLOC_BLOCK_INPUT;
3386
3387 if (symbol_free_list)
3388 {
3389 XSETSYMBOL (val, symbol_free_list);
3390 symbol_free_list = symbol_free_list->next;
3391 }
3392 else
3393 {
3394 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3395 {
3396 struct symbol_block *new
3397 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3398 new->next = symbol_block;
3399 symbol_block = new;
3400 symbol_block_index = 0;
3401 total_free_symbols += SYMBOL_BLOCK_SIZE;
3402 }
3403 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3404 symbol_block_index++;
3405 }
3406
3407 MALLOC_UNBLOCK_INPUT;
3408
3409 init_symbol (val, name);
3410 consing_since_gc += sizeof (struct Lisp_Symbol);
3411 symbols_consed++;
3412 total_free_symbols--;
3413 return val;
3414 }
3415
3416
3417 \f
3418 /***********************************************************************
3419 Marker (Misc) Allocation
3420 ***********************************************************************/
3421
3422 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3423 the required alignment. */
3424
3425 union aligned_Lisp_Misc
3426 {
3427 union Lisp_Misc m;
3428 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3429 & -GCALIGNMENT];
3430 };
3431
3432 /* Allocation of markers and other objects that share that structure.
3433 Works like allocation of conses. */
3434
3435 #define MARKER_BLOCK_SIZE \
3436 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3437
3438 struct marker_block
3439 {
3440 /* Place `markers' first, to preserve alignment. */
3441 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3442 struct marker_block *next;
3443 };
3444
3445 static struct marker_block *marker_block;
3446 static int marker_block_index = MARKER_BLOCK_SIZE;
3447
3448 static union Lisp_Misc *marker_free_list;
3449
3450 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3451
3452 static Lisp_Object
3453 allocate_misc (enum Lisp_Misc_Type type)
3454 {
3455 Lisp_Object val;
3456
3457 MALLOC_BLOCK_INPUT;
3458
3459 if (marker_free_list)
3460 {
3461 XSETMISC (val, marker_free_list);
3462 marker_free_list = marker_free_list->u_free.chain;
3463 }
3464 else
3465 {
3466 if (marker_block_index == MARKER_BLOCK_SIZE)
3467 {
3468 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3469 new->next = marker_block;
3470 marker_block = new;
3471 marker_block_index = 0;
3472 total_free_markers += MARKER_BLOCK_SIZE;
3473 }
3474 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3475 marker_block_index++;
3476 }
3477
3478 MALLOC_UNBLOCK_INPUT;
3479
3480 --total_free_markers;
3481 consing_since_gc += sizeof (union Lisp_Misc);
3482 misc_objects_consed++;
3483 XMISCANY (val)->type = type;
3484 XMISCANY (val)->gcmarkbit = 0;
3485 return val;
3486 }
3487
3488 /* Free a Lisp_Misc object. */
3489
3490 void
3491 free_misc (Lisp_Object misc)
3492 {
3493 XMISCANY (misc)->type = Lisp_Misc_Free;
3494 XMISC (misc)->u_free.chain = marker_free_list;
3495 marker_free_list = XMISC (misc);
3496 consing_since_gc -= sizeof (union Lisp_Misc);
3497 total_free_markers++;
3498 }
3499
3500 /* Verify properties of Lisp_Save_Value's representation
3501 that are assumed here and elsewhere. */
3502
3503 verify (SAVE_UNUSED == 0);
3504 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3505 >> SAVE_SLOT_BITS)
3506 == 0);
3507
3508 /* Return Lisp_Save_Value objects for the various combinations
3509 that callers need. */
3510
3511 Lisp_Object
3512 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3513 {
3514 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3515 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3516 p->save_type = SAVE_TYPE_INT_INT_INT;
3517 p->data[0].integer = a;
3518 p->data[1].integer = b;
3519 p->data[2].integer = c;
3520 return val;
3521 }
3522
3523 Lisp_Object
3524 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3525 Lisp_Object d)
3526 {
3527 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3528 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3529 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3530 p->data[0].object = a;
3531 p->data[1].object = b;
3532 p->data[2].object = c;
3533 p->data[3].object = d;
3534 return val;
3535 }
3536
3537 Lisp_Object
3538 make_save_ptr (void *a)
3539 {
3540 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3541 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3542 p->save_type = SAVE_POINTER;
3543 p->data[0].pointer = a;
3544 return val;
3545 }
3546
3547 Lisp_Object
3548 make_save_ptr_int (void *a, ptrdiff_t b)
3549 {
3550 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3551 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3552 p->save_type = SAVE_TYPE_PTR_INT;
3553 p->data[0].pointer = a;
3554 p->data[1].integer = b;
3555 return val;
3556 }
3557
3558 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3559 Lisp_Object
3560 make_save_ptr_ptr (void *a, void *b)
3561 {
3562 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3563 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3564 p->save_type = SAVE_TYPE_PTR_PTR;
3565 p->data[0].pointer = a;
3566 p->data[1].pointer = b;
3567 return val;
3568 }
3569 #endif
3570
3571 Lisp_Object
3572 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3573 {
3574 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3575 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3576 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3577 p->data[0].funcpointer = a;
3578 p->data[1].pointer = b;
3579 p->data[2].object = c;
3580 return val;
3581 }
3582
3583 /* Return a Lisp_Save_Value object that represents an array A
3584 of N Lisp objects. */
3585
3586 Lisp_Object
3587 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3588 {
3589 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3590 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3591 p->save_type = SAVE_TYPE_MEMORY;
3592 p->data[0].pointer = a;
3593 p->data[1].integer = n;
3594 return val;
3595 }
3596
3597 /* Free a Lisp_Save_Value object. Do not use this function
3598 if SAVE contains pointer other than returned by xmalloc. */
3599
3600 void
3601 free_save_value (Lisp_Object save)
3602 {
3603 xfree (XSAVE_POINTER (save, 0));
3604 free_misc (save);
3605 }
3606
3607 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3608
3609 Lisp_Object
3610 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3611 {
3612 register Lisp_Object overlay;
3613
3614 overlay = allocate_misc (Lisp_Misc_Overlay);
3615 OVERLAY_START (overlay) = start;
3616 OVERLAY_END (overlay) = end;
3617 set_overlay_plist (overlay, plist);
3618 XOVERLAY (overlay)->next = NULL;
3619 return overlay;
3620 }
3621
3622 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3623 doc: /* Return a newly allocated marker which does not point at any place. */)
3624 (void)
3625 {
3626 register Lisp_Object val;
3627 register struct Lisp_Marker *p;
3628
3629 val = allocate_misc (Lisp_Misc_Marker);
3630 p = XMARKER (val);
3631 p->buffer = 0;
3632 p->bytepos = 0;
3633 p->charpos = 0;
3634 p->next = NULL;
3635 p->insertion_type = 0;
3636 p->need_adjustment = 0;
3637 return val;
3638 }
3639
3640 /* Return a newly allocated marker which points into BUF
3641 at character position CHARPOS and byte position BYTEPOS. */
3642
3643 Lisp_Object
3644 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3645 {
3646 Lisp_Object obj;
3647 struct Lisp_Marker *m;
3648
3649 /* No dead buffers here. */
3650 eassert (BUFFER_LIVE_P (buf));
3651
3652 /* Every character is at least one byte. */
3653 eassert (charpos <= bytepos);
3654
3655 obj = allocate_misc (Lisp_Misc_Marker);
3656 m = XMARKER (obj);
3657 m->buffer = buf;
3658 m->charpos = charpos;
3659 m->bytepos = bytepos;
3660 m->insertion_type = 0;
3661 m->need_adjustment = 0;
3662 m->next = BUF_MARKERS (buf);
3663 BUF_MARKERS (buf) = m;
3664 return obj;
3665 }
3666
3667 /* Put MARKER back on the free list after using it temporarily. */
3668
3669 void
3670 free_marker (Lisp_Object marker)
3671 {
3672 unchain_marker (XMARKER (marker));
3673 free_misc (marker);
3674 }
3675
3676 \f
3677 /* Return a newly created vector or string with specified arguments as
3678 elements. If all the arguments are characters that can fit
3679 in a string of events, make a string; otherwise, make a vector.
3680
3681 Any number of arguments, even zero arguments, are allowed. */
3682
3683 Lisp_Object
3684 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3685 {
3686 ptrdiff_t i;
3687
3688 for (i = 0; i < nargs; i++)
3689 /* The things that fit in a string
3690 are characters that are in 0...127,
3691 after discarding the meta bit and all the bits above it. */
3692 if (!INTEGERP (args[i])
3693 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3694 return Fvector (nargs, args);
3695
3696 /* Since the loop exited, we know that all the things in it are
3697 characters, so we can make a string. */
3698 {
3699 Lisp_Object result;
3700
3701 result = Fmake_string (make_number (nargs), make_number (0));
3702 for (i = 0; i < nargs; i++)
3703 {
3704 SSET (result, i, XINT (args[i]));
3705 /* Move the meta bit to the right place for a string char. */
3706 if (XINT (args[i]) & CHAR_META)
3707 SSET (result, i, SREF (result, i) | 0x80);
3708 }
3709
3710 return result;
3711 }
3712 }
3713
3714 #ifdef HAVE_MODULES
3715 /* Create a new module user ptr object. */
3716 Lisp_Object
3717 make_user_ptr (void (*finalizer) (void*), void *p)
3718 {
3719 Lisp_Object obj;
3720 struct Lisp_User_Ptr *uptr;
3721
3722 obj = allocate_misc (Lisp_Misc_User_Ptr);
3723 uptr = XUSER_PTR (obj);
3724 uptr->finalizer = finalizer;
3725 uptr->p = p;
3726 return obj;
3727 }
3728
3729 #endif
3730
3731 static void
3732 init_finalizer_list (struct Lisp_Finalizer *head)
3733 {
3734 head->prev = head->next = head;
3735 }
3736
3737 /* Insert FINALIZER before ELEMENT. */
3738
3739 static void
3740 finalizer_insert (struct Lisp_Finalizer *element,
3741 struct Lisp_Finalizer *finalizer)
3742 {
3743 eassert (finalizer->prev == NULL);
3744 eassert (finalizer->next == NULL);
3745 finalizer->next = element;
3746 finalizer->prev = element->prev;
3747 finalizer->prev->next = finalizer;
3748 element->prev = finalizer;
3749 }
3750
3751 static void
3752 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3753 {
3754 if (finalizer->prev != NULL)
3755 {
3756 eassert (finalizer->next != NULL);
3757 finalizer->prev->next = finalizer->next;
3758 finalizer->next->prev = finalizer->prev;
3759 finalizer->prev = finalizer->next = NULL;
3760 }
3761 }
3762
3763 static void
3764 mark_finalizer_list (struct Lisp_Finalizer *head)
3765 {
3766 for (struct Lisp_Finalizer *finalizer = head->next;
3767 finalizer != head;
3768 finalizer = finalizer->next)
3769 {
3770 finalizer->base.gcmarkbit = true;
3771 mark_object (finalizer->function);
3772 }
3773 }
3774
3775 /* Move doomed finalizers to list DEST from list SRC. A doomed
3776 finalizer is one that is not GC-reachable and whose
3777 finalizer->function is non-nil. */
3778
3779 static void
3780 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3781 struct Lisp_Finalizer *src)
3782 {
3783 struct Lisp_Finalizer *finalizer = src->next;
3784 while (finalizer != src)
3785 {
3786 struct Lisp_Finalizer *next = finalizer->next;
3787 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3788 {
3789 unchain_finalizer (finalizer);
3790 finalizer_insert (dest, finalizer);
3791 }
3792
3793 finalizer = next;
3794 }
3795 }
3796
3797 static Lisp_Object
3798 run_finalizer_handler (Lisp_Object args)
3799 {
3800 add_to_log ("finalizer failed: %S", args);
3801 return Qnil;
3802 }
3803
3804 static void
3805 run_finalizer_function (Lisp_Object function)
3806 {
3807 ptrdiff_t count = SPECPDL_INDEX ();
3808
3809 specbind (Qinhibit_quit, Qt);
3810 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3811 unbind_to (count, Qnil);
3812 }
3813
3814 static void
3815 run_finalizers (struct Lisp_Finalizer *finalizers)
3816 {
3817 struct Lisp_Finalizer *finalizer;
3818 Lisp_Object function;
3819
3820 while (finalizers->next != finalizers)
3821 {
3822 finalizer = finalizers->next;
3823 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3824 unchain_finalizer (finalizer);
3825 function = finalizer->function;
3826 if (!NILP (function))
3827 {
3828 finalizer->function = Qnil;
3829 run_finalizer_function (function);
3830 }
3831 }
3832 }
3833
3834 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3835 doc: /* Make a finalizer that will run FUNCTION.
3836 FUNCTION will be called after garbage collection when the returned
3837 finalizer object becomes unreachable. If the finalizer object is
3838 reachable only through references from finalizer objects, it does not
3839 count as reachable for the purpose of deciding whether to run
3840 FUNCTION. FUNCTION will be run once per finalizer object. */)
3841 (Lisp_Object function)
3842 {
3843 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3844 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3845 finalizer->function = function;
3846 finalizer->prev = finalizer->next = NULL;
3847 finalizer_insert (&finalizers, finalizer);
3848 return val;
3849 }
3850
3851 \f
3852 /************************************************************************
3853 Memory Full Handling
3854 ************************************************************************/
3855
3856
3857 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3858 there may have been size_t overflow so that malloc was never
3859 called, or perhaps malloc was invoked successfully but the
3860 resulting pointer had problems fitting into a tagged EMACS_INT. In
3861 either case this counts as memory being full even though malloc did
3862 not fail. */
3863
3864 void
3865 memory_full (size_t nbytes)
3866 {
3867 /* Do not go into hysterics merely because a large request failed. */
3868 bool enough_free_memory = 0;
3869 if (SPARE_MEMORY < nbytes)
3870 {
3871 void *p;
3872
3873 MALLOC_BLOCK_INPUT;
3874 p = malloc (SPARE_MEMORY);
3875 if (p)
3876 {
3877 free (p);
3878 enough_free_memory = 1;
3879 }
3880 MALLOC_UNBLOCK_INPUT;
3881 }
3882
3883 if (! enough_free_memory)
3884 {
3885 int i;
3886
3887 Vmemory_full = Qt;
3888
3889 memory_full_cons_threshold = sizeof (struct cons_block);
3890
3891 /* The first time we get here, free the spare memory. */
3892 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3893 if (spare_memory[i])
3894 {
3895 if (i == 0)
3896 free (spare_memory[i]);
3897 else if (i >= 1 && i <= 4)
3898 lisp_align_free (spare_memory[i]);
3899 else
3900 lisp_free (spare_memory[i]);
3901 spare_memory[i] = 0;
3902 }
3903 }
3904
3905 /* This used to call error, but if we've run out of memory, we could
3906 get infinite recursion trying to build the string. */
3907 xsignal (Qnil, Vmemory_signal_data);
3908 }
3909
3910 /* If we released our reserve (due to running out of memory),
3911 and we have a fair amount free once again,
3912 try to set aside another reserve in case we run out once more.
3913
3914 This is called when a relocatable block is freed in ralloc.c,
3915 and also directly from this file, in case we're not using ralloc.c. */
3916
3917 void
3918 refill_memory_reserve (void)
3919 {
3920 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3921 if (spare_memory[0] == 0)
3922 spare_memory[0] = malloc (SPARE_MEMORY);
3923 if (spare_memory[1] == 0)
3924 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3925 MEM_TYPE_SPARE);
3926 if (spare_memory[2] == 0)
3927 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3928 MEM_TYPE_SPARE);
3929 if (spare_memory[3] == 0)
3930 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3931 MEM_TYPE_SPARE);
3932 if (spare_memory[4] == 0)
3933 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3934 MEM_TYPE_SPARE);
3935 if (spare_memory[5] == 0)
3936 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3937 MEM_TYPE_SPARE);
3938 if (spare_memory[6] == 0)
3939 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3940 MEM_TYPE_SPARE);
3941 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3942 Vmemory_full = Qnil;
3943 #endif
3944 }
3945 \f
3946 /************************************************************************
3947 C Stack Marking
3948 ************************************************************************/
3949
3950 /* Conservative C stack marking requires a method to identify possibly
3951 live Lisp objects given a pointer value. We do this by keeping
3952 track of blocks of Lisp data that are allocated in a red-black tree
3953 (see also the comment of mem_node which is the type of nodes in
3954 that tree). Function lisp_malloc adds information for an allocated
3955 block to the red-black tree with calls to mem_insert, and function
3956 lisp_free removes it with mem_delete. Functions live_string_p etc
3957 call mem_find to lookup information about a given pointer in the
3958 tree, and use that to determine if the pointer points to a Lisp
3959 object or not. */
3960
3961 /* Initialize this part of alloc.c. */
3962
3963 static void
3964 mem_init (void)
3965 {
3966 mem_z.left = mem_z.right = MEM_NIL;
3967 mem_z.parent = NULL;
3968 mem_z.color = MEM_BLACK;
3969 mem_z.start = mem_z.end = NULL;
3970 mem_root = MEM_NIL;
3971 }
3972
3973
3974 /* Value is a pointer to the mem_node containing START. Value is
3975 MEM_NIL if there is no node in the tree containing START. */
3976
3977 static struct mem_node *
3978 mem_find (void *start)
3979 {
3980 struct mem_node *p;
3981
3982 if (start < min_heap_address || start > max_heap_address)
3983 return MEM_NIL;
3984
3985 /* Make the search always successful to speed up the loop below. */
3986 mem_z.start = start;
3987 mem_z.end = (char *) start + 1;
3988
3989 p = mem_root;
3990 while (start < p->start || start >= p->end)
3991 p = start < p->start ? p->left : p->right;
3992 return p;
3993 }
3994
3995
3996 /* Insert a new node into the tree for a block of memory with start
3997 address START, end address END, and type TYPE. Value is a
3998 pointer to the node that was inserted. */
3999
4000 static struct mem_node *
4001 mem_insert (void *start, void *end, enum mem_type type)
4002 {
4003 struct mem_node *c, *parent, *x;
4004
4005 if (min_heap_address == NULL || start < min_heap_address)
4006 min_heap_address = start;
4007 if (max_heap_address == NULL || end > max_heap_address)
4008 max_heap_address = end;
4009
4010 /* See where in the tree a node for START belongs. In this
4011 particular application, it shouldn't happen that a node is already
4012 present. For debugging purposes, let's check that. */
4013 c = mem_root;
4014 parent = NULL;
4015
4016 while (c != MEM_NIL)
4017 {
4018 parent = c;
4019 c = start < c->start ? c->left : c->right;
4020 }
4021
4022 /* Create a new node. */
4023 #ifdef GC_MALLOC_CHECK
4024 x = malloc (sizeof *x);
4025 if (x == NULL)
4026 emacs_abort ();
4027 #else
4028 x = xmalloc (sizeof *x);
4029 #endif
4030 x->start = start;
4031 x->end = end;
4032 x->type = type;
4033 x->parent = parent;
4034 x->left = x->right = MEM_NIL;
4035 x->color = MEM_RED;
4036
4037 /* Insert it as child of PARENT or install it as root. */
4038 if (parent)
4039 {
4040 if (start < parent->start)
4041 parent->left = x;
4042 else
4043 parent->right = x;
4044 }
4045 else
4046 mem_root = x;
4047
4048 /* Re-establish red-black tree properties. */
4049 mem_insert_fixup (x);
4050
4051 return x;
4052 }
4053
4054
4055 /* Re-establish the red-black properties of the tree, and thereby
4056 balance the tree, after node X has been inserted; X is always red. */
4057
4058 static void
4059 mem_insert_fixup (struct mem_node *x)
4060 {
4061 while (x != mem_root && x->parent->color == MEM_RED)
4062 {
4063 /* X is red and its parent is red. This is a violation of
4064 red-black tree property #3. */
4065
4066 if (x->parent == x->parent->parent->left)
4067 {
4068 /* We're on the left side of our grandparent, and Y is our
4069 "uncle". */
4070 struct mem_node *y = x->parent->parent->right;
4071
4072 if (y->color == MEM_RED)
4073 {
4074 /* Uncle and parent are red but should be black because
4075 X is red. Change the colors accordingly and proceed
4076 with the grandparent. */
4077 x->parent->color = MEM_BLACK;
4078 y->color = MEM_BLACK;
4079 x->parent->parent->color = MEM_RED;
4080 x = x->parent->parent;
4081 }
4082 else
4083 {
4084 /* Parent and uncle have different colors; parent is
4085 red, uncle is black. */
4086 if (x == x->parent->right)
4087 {
4088 x = x->parent;
4089 mem_rotate_left (x);
4090 }
4091
4092 x->parent->color = MEM_BLACK;
4093 x->parent->parent->color = MEM_RED;
4094 mem_rotate_right (x->parent->parent);
4095 }
4096 }
4097 else
4098 {
4099 /* This is the symmetrical case of above. */
4100 struct mem_node *y = x->parent->parent->left;
4101
4102 if (y->color == MEM_RED)
4103 {
4104 x->parent->color = MEM_BLACK;
4105 y->color = MEM_BLACK;
4106 x->parent->parent->color = MEM_RED;
4107 x = x->parent->parent;
4108 }
4109 else
4110 {
4111 if (x == x->parent->left)
4112 {
4113 x = x->parent;
4114 mem_rotate_right (x);
4115 }
4116
4117 x->parent->color = MEM_BLACK;
4118 x->parent->parent->color = MEM_RED;
4119 mem_rotate_left (x->parent->parent);
4120 }
4121 }
4122 }
4123
4124 /* The root may have been changed to red due to the algorithm. Set
4125 it to black so that property #5 is satisfied. */
4126 mem_root->color = MEM_BLACK;
4127 }
4128
4129
4130 /* (x) (y)
4131 / \ / \
4132 a (y) ===> (x) c
4133 / \ / \
4134 b c a b */
4135
4136 static void
4137 mem_rotate_left (struct mem_node *x)
4138 {
4139 struct mem_node *y;
4140
4141 /* Turn y's left sub-tree into x's right sub-tree. */
4142 y = x->right;
4143 x->right = y->left;
4144 if (y->left != MEM_NIL)
4145 y->left->parent = x;
4146
4147 /* Y's parent was x's parent. */
4148 if (y != MEM_NIL)
4149 y->parent = x->parent;
4150
4151 /* Get the parent to point to y instead of x. */
4152 if (x->parent)
4153 {
4154 if (x == x->parent->left)
4155 x->parent->left = y;
4156 else
4157 x->parent->right = y;
4158 }
4159 else
4160 mem_root = y;
4161
4162 /* Put x on y's left. */
4163 y->left = x;
4164 if (x != MEM_NIL)
4165 x->parent = y;
4166 }
4167
4168
4169 /* (x) (Y)
4170 / \ / \
4171 (y) c ===> a (x)
4172 / \ / \
4173 a b b c */
4174
4175 static void
4176 mem_rotate_right (struct mem_node *x)
4177 {
4178 struct mem_node *y = x->left;
4179
4180 x->left = y->right;
4181 if (y->right != MEM_NIL)
4182 y->right->parent = x;
4183
4184 if (y != MEM_NIL)
4185 y->parent = x->parent;
4186 if (x->parent)
4187 {
4188 if (x == x->parent->right)
4189 x->parent->right = y;
4190 else
4191 x->parent->left = y;
4192 }
4193 else
4194 mem_root = y;
4195
4196 y->right = x;
4197 if (x != MEM_NIL)
4198 x->parent = y;
4199 }
4200
4201
4202 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4203
4204 static void
4205 mem_delete (struct mem_node *z)
4206 {
4207 struct mem_node *x, *y;
4208
4209 if (!z || z == MEM_NIL)
4210 return;
4211
4212 if (z->left == MEM_NIL || z->right == MEM_NIL)
4213 y = z;
4214 else
4215 {
4216 y = z->right;
4217 while (y->left != MEM_NIL)
4218 y = y->left;
4219 }
4220
4221 if (y->left != MEM_NIL)
4222 x = y->left;
4223 else
4224 x = y->right;
4225
4226 x->parent = y->parent;
4227 if (y->parent)
4228 {
4229 if (y == y->parent->left)
4230 y->parent->left = x;
4231 else
4232 y->parent->right = x;
4233 }
4234 else
4235 mem_root = x;
4236
4237 if (y != z)
4238 {
4239 z->start = y->start;
4240 z->end = y->end;
4241 z->type = y->type;
4242 }
4243
4244 if (y->color == MEM_BLACK)
4245 mem_delete_fixup (x);
4246
4247 #ifdef GC_MALLOC_CHECK
4248 free (y);
4249 #else
4250 xfree (y);
4251 #endif
4252 }
4253
4254
4255 /* Re-establish the red-black properties of the tree, after a
4256 deletion. */
4257
4258 static void
4259 mem_delete_fixup (struct mem_node *x)
4260 {
4261 while (x != mem_root && x->color == MEM_BLACK)
4262 {
4263 if (x == x->parent->left)
4264 {
4265 struct mem_node *w = x->parent->right;
4266
4267 if (w->color == MEM_RED)
4268 {
4269 w->color = MEM_BLACK;
4270 x->parent->color = MEM_RED;
4271 mem_rotate_left (x->parent);
4272 w = x->parent->right;
4273 }
4274
4275 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4276 {
4277 w->color = MEM_RED;
4278 x = x->parent;
4279 }
4280 else
4281 {
4282 if (w->right->color == MEM_BLACK)
4283 {
4284 w->left->color = MEM_BLACK;
4285 w->color = MEM_RED;
4286 mem_rotate_right (w);
4287 w = x->parent->right;
4288 }
4289 w->color = x->parent->color;
4290 x->parent->color = MEM_BLACK;
4291 w->right->color = MEM_BLACK;
4292 mem_rotate_left (x->parent);
4293 x = mem_root;
4294 }
4295 }
4296 else
4297 {
4298 struct mem_node *w = x->parent->left;
4299
4300 if (w->color == MEM_RED)
4301 {
4302 w->color = MEM_BLACK;
4303 x->parent->color = MEM_RED;
4304 mem_rotate_right (x->parent);
4305 w = x->parent->left;
4306 }
4307
4308 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4309 {
4310 w->color = MEM_RED;
4311 x = x->parent;
4312 }
4313 else
4314 {
4315 if (w->left->color == MEM_BLACK)
4316 {
4317 w->right->color = MEM_BLACK;
4318 w->color = MEM_RED;
4319 mem_rotate_left (w);
4320 w = x->parent->left;
4321 }
4322
4323 w->color = x->parent->color;
4324 x->parent->color = MEM_BLACK;
4325 w->left->color = MEM_BLACK;
4326 mem_rotate_right (x->parent);
4327 x = mem_root;
4328 }
4329 }
4330 }
4331
4332 x->color = MEM_BLACK;
4333 }
4334
4335
4336 /* Value is non-zero if P is a pointer to a live Lisp string on
4337 the heap. M is a pointer to the mem_block for P. */
4338
4339 static bool
4340 live_string_p (struct mem_node *m, void *p)
4341 {
4342 if (m->type == MEM_TYPE_STRING)
4343 {
4344 struct string_block *b = m->start;
4345 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4346
4347 /* P must point to the start of a Lisp_String structure, and it
4348 must not be on the free-list. */
4349 return (offset >= 0
4350 && offset % sizeof b->strings[0] == 0
4351 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4352 && ((struct Lisp_String *) p)->data != NULL);
4353 }
4354 else
4355 return 0;
4356 }
4357
4358
4359 /* Value is non-zero if P is a pointer to a live Lisp cons on
4360 the heap. M is a pointer to the mem_block for P. */
4361
4362 static bool
4363 live_cons_p (struct mem_node *m, void *p)
4364 {
4365 if (m->type == MEM_TYPE_CONS)
4366 {
4367 struct cons_block *b = m->start;
4368 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4369
4370 /* P must point to the start of a Lisp_Cons, not be
4371 one of the unused cells in the current cons block,
4372 and not be on the free-list. */
4373 return (offset >= 0
4374 && offset % sizeof b->conses[0] == 0
4375 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4376 && (b != cons_block
4377 || offset / sizeof b->conses[0] < cons_block_index)
4378 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4379 }
4380 else
4381 return 0;
4382 }
4383
4384
4385 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4386 the heap. M is a pointer to the mem_block for P. */
4387
4388 static bool
4389 live_symbol_p (struct mem_node *m, void *p)
4390 {
4391 if (m->type == MEM_TYPE_SYMBOL)
4392 {
4393 struct symbol_block *b = m->start;
4394 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4395
4396 /* P must point to the start of a Lisp_Symbol, not be
4397 one of the unused cells in the current symbol block,
4398 and not be on the free-list. */
4399 return (offset >= 0
4400 && offset % sizeof b->symbols[0] == 0
4401 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4402 && (b != symbol_block
4403 || offset / sizeof b->symbols[0] < symbol_block_index)
4404 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4405 }
4406 else
4407 return 0;
4408 }
4409
4410
4411 /* Value is non-zero if P is a pointer to a live Lisp float on
4412 the heap. M is a pointer to the mem_block for P. */
4413
4414 static bool
4415 live_float_p (struct mem_node *m, void *p)
4416 {
4417 if (m->type == MEM_TYPE_FLOAT)
4418 {
4419 struct float_block *b = m->start;
4420 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4421
4422 /* P must point to the start of a Lisp_Float and not be
4423 one of the unused cells in the current float block. */
4424 return (offset >= 0
4425 && offset % sizeof b->floats[0] == 0
4426 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4427 && (b != float_block
4428 || offset / sizeof b->floats[0] < float_block_index));
4429 }
4430 else
4431 return 0;
4432 }
4433
4434
4435 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4436 the heap. M is a pointer to the mem_block for P. */
4437
4438 static bool
4439 live_misc_p (struct mem_node *m, void *p)
4440 {
4441 if (m->type == MEM_TYPE_MISC)
4442 {
4443 struct marker_block *b = m->start;
4444 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4445
4446 /* P must point to the start of a Lisp_Misc, not be
4447 one of the unused cells in the current misc block,
4448 and not be on the free-list. */
4449 return (offset >= 0
4450 && offset % sizeof b->markers[0] == 0
4451 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4452 && (b != marker_block
4453 || offset / sizeof b->markers[0] < marker_block_index)
4454 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4455 }
4456 else
4457 return 0;
4458 }
4459
4460
4461 /* Value is non-zero if P is a pointer to a live vector-like object.
4462 M is a pointer to the mem_block for P. */
4463
4464 static bool
4465 live_vector_p (struct mem_node *m, void *p)
4466 {
4467 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4468 {
4469 /* This memory node corresponds to a vector block. */
4470 struct vector_block *block = m->start;
4471 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4472
4473 /* P is in the block's allocation range. Scan the block
4474 up to P and see whether P points to the start of some
4475 vector which is not on a free list. FIXME: check whether
4476 some allocation patterns (probably a lot of short vectors)
4477 may cause a substantial overhead of this loop. */
4478 while (VECTOR_IN_BLOCK (vector, block)
4479 && vector <= (struct Lisp_Vector *) p)
4480 {
4481 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4482 return 1;
4483 else
4484 vector = ADVANCE (vector, vector_nbytes (vector));
4485 }
4486 }
4487 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4488 /* This memory node corresponds to a large vector. */
4489 return 1;
4490 return 0;
4491 }
4492
4493
4494 /* Value is non-zero if P is a pointer to a live buffer. M is a
4495 pointer to the mem_block for P. */
4496
4497 static bool
4498 live_buffer_p (struct mem_node *m, void *p)
4499 {
4500 /* P must point to the start of the block, and the buffer
4501 must not have been killed. */
4502 return (m->type == MEM_TYPE_BUFFER
4503 && p == m->start
4504 && !NILP (((struct buffer *) p)->name_));
4505 }
4506
4507 /* Mark OBJ if we can prove it's a Lisp_Object. */
4508
4509 static void
4510 mark_maybe_object (Lisp_Object obj)
4511 {
4512 #if USE_VALGRIND
4513 if (valgrind_p)
4514 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4515 #endif
4516
4517 if (INTEGERP (obj))
4518 return;
4519
4520 void *po = XPNTR (obj);
4521 struct mem_node *m = mem_find (po);
4522
4523 if (m != MEM_NIL)
4524 {
4525 bool mark_p = false;
4526
4527 switch (XTYPE (obj))
4528 {
4529 case Lisp_String:
4530 mark_p = (live_string_p (m, po)
4531 && !STRING_MARKED_P ((struct Lisp_String *) po));
4532 break;
4533
4534 case Lisp_Cons:
4535 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4536 break;
4537
4538 case Lisp_Symbol:
4539 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4540 break;
4541
4542 case Lisp_Float:
4543 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4544 break;
4545
4546 case Lisp_Vectorlike:
4547 /* Note: can't check BUFFERP before we know it's a
4548 buffer because checking that dereferences the pointer
4549 PO which might point anywhere. */
4550 if (live_vector_p (m, po))
4551 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4552 else if (live_buffer_p (m, po))
4553 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4554 break;
4555
4556 case Lisp_Misc:
4557 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4558 break;
4559
4560 default:
4561 break;
4562 }
4563
4564 if (mark_p)
4565 mark_object (obj);
4566 }
4567 }
4568
4569 /* Return true if P can point to Lisp data, and false otherwise.
4570 Symbols are implemented via offsets not pointers, but the offsets
4571 are also multiples of GCALIGNMENT. */
4572
4573 static bool
4574 maybe_lisp_pointer (void *p)
4575 {
4576 return (uintptr_t) p % GCALIGNMENT == 0;
4577 }
4578
4579 /* If P points to Lisp data, mark that as live if it isn't already
4580 marked. */
4581
4582 static void
4583 mark_maybe_pointer (void *p)
4584 {
4585 struct mem_node *m;
4586
4587 #if USE_VALGRIND
4588 if (valgrind_p)
4589 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4590 #endif
4591
4592 if (!maybe_lisp_pointer (p))
4593 return;
4594
4595 m = mem_find (p);
4596 if (m != MEM_NIL)
4597 {
4598 Lisp_Object obj = Qnil;
4599
4600 switch (m->type)
4601 {
4602 case MEM_TYPE_NON_LISP:
4603 case MEM_TYPE_SPARE:
4604 /* Nothing to do; not a pointer to Lisp memory. */
4605 break;
4606
4607 case MEM_TYPE_BUFFER:
4608 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4609 XSETVECTOR (obj, p);
4610 break;
4611
4612 case MEM_TYPE_CONS:
4613 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4614 XSETCONS (obj, p);
4615 break;
4616
4617 case MEM_TYPE_STRING:
4618 if (live_string_p (m, p)
4619 && !STRING_MARKED_P ((struct Lisp_String *) p))
4620 XSETSTRING (obj, p);
4621 break;
4622
4623 case MEM_TYPE_MISC:
4624 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4625 XSETMISC (obj, p);
4626 break;
4627
4628 case MEM_TYPE_SYMBOL:
4629 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4630 XSETSYMBOL (obj, p);
4631 break;
4632
4633 case MEM_TYPE_FLOAT:
4634 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4635 XSETFLOAT (obj, p);
4636 break;
4637
4638 case MEM_TYPE_VECTORLIKE:
4639 case MEM_TYPE_VECTOR_BLOCK:
4640 if (live_vector_p (m, p))
4641 {
4642 Lisp_Object tem;
4643 XSETVECTOR (tem, p);
4644 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4645 obj = tem;
4646 }
4647 break;
4648
4649 default:
4650 emacs_abort ();
4651 }
4652
4653 if (!NILP (obj))
4654 mark_object (obj);
4655 }
4656 }
4657
4658
4659 /* Alignment of pointer values. Use alignof, as it sometimes returns
4660 a smaller alignment than GCC's __alignof__ and mark_memory might
4661 miss objects if __alignof__ were used. */
4662 #define GC_POINTER_ALIGNMENT alignof (void *)
4663
4664 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4665 or END+OFFSET..START. */
4666
4667 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4668 mark_memory (void *start, void *end)
4669 {
4670 void **pp;
4671 int i;
4672
4673 /* Make START the pointer to the start of the memory region,
4674 if it isn't already. */
4675 if (end < start)
4676 {
4677 void *tem = start;
4678 start = end;
4679 end = tem;
4680 }
4681
4682 /* Mark Lisp data pointed to. This is necessary because, in some
4683 situations, the C compiler optimizes Lisp objects away, so that
4684 only a pointer to them remains. Example:
4685
4686 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4687 ()
4688 {
4689 Lisp_Object obj = build_string ("test");
4690 struct Lisp_String *s = XSTRING (obj);
4691 Fgarbage_collect ();
4692 fprintf (stderr, "test '%s'\n", s->data);
4693 return Qnil;
4694 }
4695
4696 Here, `obj' isn't really used, and the compiler optimizes it
4697 away. The only reference to the life string is through the
4698 pointer `s'. */
4699
4700 for (pp = start; (void *) pp < end; pp++)
4701 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4702 {
4703 void *p = *(void **) ((char *) pp + i);
4704 mark_maybe_pointer (p);
4705 mark_maybe_object (XIL ((intptr_t) p));
4706 }
4707 }
4708
4709 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4710
4711 static bool setjmp_tested_p;
4712 static int longjmps_done;
4713
4714 #define SETJMP_WILL_LIKELY_WORK "\
4715 \n\
4716 Emacs garbage collector has been changed to use conservative stack\n\
4717 marking. Emacs has determined that the method it uses to do the\n\
4718 marking will likely work on your system, but this isn't sure.\n\
4719 \n\
4720 If you are a system-programmer, or can get the help of a local wizard\n\
4721 who is, please take a look at the function mark_stack in alloc.c, and\n\
4722 verify that the methods used are appropriate for your system.\n\
4723 \n\
4724 Please mail the result to <emacs-devel@gnu.org>.\n\
4725 "
4726
4727 #define SETJMP_WILL_NOT_WORK "\
4728 \n\
4729 Emacs garbage collector has been changed to use conservative stack\n\
4730 marking. Emacs has determined that the default method it uses to do the\n\
4731 marking will not work on your system. We will need a system-dependent\n\
4732 solution for your system.\n\
4733 \n\
4734 Please take a look at the function mark_stack in alloc.c, and\n\
4735 try to find a way to make it work on your system.\n\
4736 \n\
4737 Note that you may get false negatives, depending on the compiler.\n\
4738 In particular, you need to use -O with GCC for this test.\n\
4739 \n\
4740 Please mail the result to <emacs-devel@gnu.org>.\n\
4741 "
4742
4743
4744 /* Perform a quick check if it looks like setjmp saves registers in a
4745 jmp_buf. Print a message to stderr saying so. When this test
4746 succeeds, this is _not_ a proof that setjmp is sufficient for
4747 conservative stack marking. Only the sources or a disassembly
4748 can prove that. */
4749
4750 static void
4751 test_setjmp (void)
4752 {
4753 char buf[10];
4754 register int x;
4755 sys_jmp_buf jbuf;
4756
4757 /* Arrange for X to be put in a register. */
4758 sprintf (buf, "1");
4759 x = strlen (buf);
4760 x = 2 * x - 1;
4761
4762 sys_setjmp (jbuf);
4763 if (longjmps_done == 1)
4764 {
4765 /* Came here after the longjmp at the end of the function.
4766
4767 If x == 1, the longjmp has restored the register to its
4768 value before the setjmp, and we can hope that setjmp
4769 saves all such registers in the jmp_buf, although that
4770 isn't sure.
4771
4772 For other values of X, either something really strange is
4773 taking place, or the setjmp just didn't save the register. */
4774
4775 if (x == 1)
4776 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4777 else
4778 {
4779 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4780 exit (1);
4781 }
4782 }
4783
4784 ++longjmps_done;
4785 x = 2;
4786 if (longjmps_done == 1)
4787 sys_longjmp (jbuf, 1);
4788 }
4789
4790 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4791
4792
4793 /* Mark live Lisp objects on the C stack.
4794
4795 There are several system-dependent problems to consider when
4796 porting this to new architectures:
4797
4798 Processor Registers
4799
4800 We have to mark Lisp objects in CPU registers that can hold local
4801 variables or are used to pass parameters.
4802
4803 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4804 something that either saves relevant registers on the stack, or
4805 calls mark_maybe_object passing it each register's contents.
4806
4807 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4808 implementation assumes that calling setjmp saves registers we need
4809 to see in a jmp_buf which itself lies on the stack. This doesn't
4810 have to be true! It must be verified for each system, possibly
4811 by taking a look at the source code of setjmp.
4812
4813 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4814 can use it as a machine independent method to store all registers
4815 to the stack. In this case the macros described in the previous
4816 two paragraphs are not used.
4817
4818 Stack Layout
4819
4820 Architectures differ in the way their processor stack is organized.
4821 For example, the stack might look like this
4822
4823 +----------------+
4824 | Lisp_Object | size = 4
4825 +----------------+
4826 | something else | size = 2
4827 +----------------+
4828 | Lisp_Object | size = 4
4829 +----------------+
4830 | ... |
4831
4832 In such a case, not every Lisp_Object will be aligned equally. To
4833 find all Lisp_Object on the stack it won't be sufficient to walk
4834 the stack in steps of 4 bytes. Instead, two passes will be
4835 necessary, one starting at the start of the stack, and a second
4836 pass starting at the start of the stack + 2. Likewise, if the
4837 minimal alignment of Lisp_Objects on the stack is 1, four passes
4838 would be necessary, each one starting with one byte more offset
4839 from the stack start. */
4840
4841 static void
4842 mark_stack (void *end)
4843 {
4844
4845 /* This assumes that the stack is a contiguous region in memory. If
4846 that's not the case, something has to be done here to iterate
4847 over the stack segments. */
4848 mark_memory (stack_base, end);
4849
4850 /* Allow for marking a secondary stack, like the register stack on the
4851 ia64. */
4852 #ifdef GC_MARK_SECONDARY_STACK
4853 GC_MARK_SECONDARY_STACK ();
4854 #endif
4855 }
4856
4857 static bool
4858 c_symbol_p (struct Lisp_Symbol *sym)
4859 {
4860 char *lispsym_ptr = (char *) lispsym;
4861 char *sym_ptr = (char *) sym;
4862 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4863 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4864 }
4865
4866 /* Determine whether it is safe to access memory at address P. */
4867 static int
4868 valid_pointer_p (void *p)
4869 {
4870 #ifdef WINDOWSNT
4871 return w32_valid_pointer_p (p, 16);
4872 #else
4873
4874 if (ADDRESS_SANITIZER)
4875 return p ? -1 : 0;
4876
4877 int fd[2];
4878
4879 /* Obviously, we cannot just access it (we would SEGV trying), so we
4880 trick the o/s to tell us whether p is a valid pointer.
4881 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4882 not validate p in that case. */
4883
4884 if (emacs_pipe (fd) == 0)
4885 {
4886 bool valid = emacs_write (fd[1], p, 16) == 16;
4887 emacs_close (fd[1]);
4888 emacs_close (fd[0]);
4889 return valid;
4890 }
4891
4892 return -1;
4893 #endif
4894 }
4895
4896 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4897 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4898 cannot validate OBJ. This function can be quite slow, so its primary
4899 use is the manual debugging. The only exception is print_object, where
4900 we use it to check whether the memory referenced by the pointer of
4901 Lisp_Save_Value object contains valid objects. */
4902
4903 int
4904 valid_lisp_object_p (Lisp_Object obj)
4905 {
4906 if (INTEGERP (obj))
4907 return 1;
4908
4909 void *p = XPNTR (obj);
4910 if (PURE_P (p))
4911 return 1;
4912
4913 if (SYMBOLP (obj) && c_symbol_p (p))
4914 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
4915
4916 if (p == &buffer_defaults || p == &buffer_local_symbols)
4917 return 2;
4918
4919 struct mem_node *m = mem_find (p);
4920
4921 if (m == MEM_NIL)
4922 {
4923 int valid = valid_pointer_p (p);
4924 if (valid <= 0)
4925 return valid;
4926
4927 if (SUBRP (obj))
4928 return 1;
4929
4930 return 0;
4931 }
4932
4933 switch (m->type)
4934 {
4935 case MEM_TYPE_NON_LISP:
4936 case MEM_TYPE_SPARE:
4937 return 0;
4938
4939 case MEM_TYPE_BUFFER:
4940 return live_buffer_p (m, p) ? 1 : 2;
4941
4942 case MEM_TYPE_CONS:
4943 return live_cons_p (m, p);
4944
4945 case MEM_TYPE_STRING:
4946 return live_string_p (m, p);
4947
4948 case MEM_TYPE_MISC:
4949 return live_misc_p (m, p);
4950
4951 case MEM_TYPE_SYMBOL:
4952 return live_symbol_p (m, p);
4953
4954 case MEM_TYPE_FLOAT:
4955 return live_float_p (m, p);
4956
4957 case MEM_TYPE_VECTORLIKE:
4958 case MEM_TYPE_VECTOR_BLOCK:
4959 return live_vector_p (m, p);
4960
4961 default:
4962 break;
4963 }
4964
4965 return 0;
4966 }
4967
4968 /***********************************************************************
4969 Pure Storage Management
4970 ***********************************************************************/
4971
4972 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4973 pointer to it. TYPE is the Lisp type for which the memory is
4974 allocated. TYPE < 0 means it's not used for a Lisp object. */
4975
4976 static void *
4977 pure_alloc (size_t size, int type)
4978 {
4979 void *result;
4980
4981 again:
4982 if (type >= 0)
4983 {
4984 /* Allocate space for a Lisp object from the beginning of the free
4985 space with taking account of alignment. */
4986 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
4987 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4988 }
4989 else
4990 {
4991 /* Allocate space for a non-Lisp object from the end of the free
4992 space. */
4993 pure_bytes_used_non_lisp += size;
4994 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4995 }
4996 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4997
4998 if (pure_bytes_used <= pure_size)
4999 return result;
5000
5001 /* Don't allocate a large amount here,
5002 because it might get mmap'd and then its address
5003 might not be usable. */
5004 purebeg = xmalloc (10000);
5005 pure_size = 10000;
5006 pure_bytes_used_before_overflow += pure_bytes_used - size;
5007 pure_bytes_used = 0;
5008 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5009 goto again;
5010 }
5011
5012
5013 /* Print a warning if PURESIZE is too small. */
5014
5015 void
5016 check_pure_size (void)
5017 {
5018 if (pure_bytes_used_before_overflow)
5019 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5020 " bytes needed)"),
5021 pure_bytes_used + pure_bytes_used_before_overflow);
5022 }
5023
5024
5025 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5026 the non-Lisp data pool of the pure storage, and return its start
5027 address. Return NULL if not found. */
5028
5029 static char *
5030 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5031 {
5032 int i;
5033 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5034 const unsigned char *p;
5035 char *non_lisp_beg;
5036
5037 if (pure_bytes_used_non_lisp <= nbytes)
5038 return NULL;
5039
5040 /* Set up the Boyer-Moore table. */
5041 skip = nbytes + 1;
5042 for (i = 0; i < 256; i++)
5043 bm_skip[i] = skip;
5044
5045 p = (const unsigned char *) data;
5046 while (--skip > 0)
5047 bm_skip[*p++] = skip;
5048
5049 last_char_skip = bm_skip['\0'];
5050
5051 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5052 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5053
5054 /* See the comments in the function `boyer_moore' (search.c) for the
5055 use of `infinity'. */
5056 infinity = pure_bytes_used_non_lisp + 1;
5057 bm_skip['\0'] = infinity;
5058
5059 p = (const unsigned char *) non_lisp_beg + nbytes;
5060 start = 0;
5061 do
5062 {
5063 /* Check the last character (== '\0'). */
5064 do
5065 {
5066 start += bm_skip[*(p + start)];
5067 }
5068 while (start <= start_max);
5069
5070 if (start < infinity)
5071 /* Couldn't find the last character. */
5072 return NULL;
5073
5074 /* No less than `infinity' means we could find the last
5075 character at `p[start - infinity]'. */
5076 start -= infinity;
5077
5078 /* Check the remaining characters. */
5079 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5080 /* Found. */
5081 return non_lisp_beg + start;
5082
5083 start += last_char_skip;
5084 }
5085 while (start <= start_max);
5086
5087 return NULL;
5088 }
5089
5090
5091 /* Return a string allocated in pure space. DATA is a buffer holding
5092 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5093 means make the result string multibyte.
5094
5095 Must get an error if pure storage is full, since if it cannot hold
5096 a large string it may be able to hold conses that point to that
5097 string; then the string is not protected from gc. */
5098
5099 Lisp_Object
5100 make_pure_string (const char *data,
5101 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5102 {
5103 Lisp_Object string;
5104 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5105 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5106 if (s->data == NULL)
5107 {
5108 s->data = pure_alloc (nbytes + 1, -1);
5109 memcpy (s->data, data, nbytes);
5110 s->data[nbytes] = '\0';
5111 }
5112 s->size = nchars;
5113 s->size_byte = multibyte ? nbytes : -1;
5114 s->intervals = NULL;
5115 XSETSTRING (string, s);
5116 return string;
5117 }
5118
5119 /* Return a string allocated in pure space. Do not
5120 allocate the string data, just point to DATA. */
5121
5122 Lisp_Object
5123 make_pure_c_string (const char *data, ptrdiff_t nchars)
5124 {
5125 Lisp_Object string;
5126 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5127 s->size = nchars;
5128 s->size_byte = -1;
5129 s->data = (unsigned char *) data;
5130 s->intervals = NULL;
5131 XSETSTRING (string, s);
5132 return string;
5133 }
5134
5135 static Lisp_Object purecopy (Lisp_Object obj);
5136
5137 /* Return a cons allocated from pure space. Give it pure copies
5138 of CAR as car and CDR as cdr. */
5139
5140 Lisp_Object
5141 pure_cons (Lisp_Object car, Lisp_Object cdr)
5142 {
5143 Lisp_Object new;
5144 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5145 XSETCONS (new, p);
5146 XSETCAR (new, purecopy (car));
5147 XSETCDR (new, purecopy (cdr));
5148 return new;
5149 }
5150
5151
5152 /* Value is a float object with value NUM allocated from pure space. */
5153
5154 static Lisp_Object
5155 make_pure_float (double num)
5156 {
5157 Lisp_Object new;
5158 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5159 XSETFLOAT (new, p);
5160 XFLOAT_INIT (new, num);
5161 return new;
5162 }
5163
5164
5165 /* Return a vector with room for LEN Lisp_Objects allocated from
5166 pure space. */
5167
5168 static Lisp_Object
5169 make_pure_vector (ptrdiff_t len)
5170 {
5171 Lisp_Object new;
5172 size_t size = header_size + len * word_size;
5173 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5174 XSETVECTOR (new, p);
5175 XVECTOR (new)->header.size = len;
5176 return new;
5177 }
5178
5179 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5180 doc: /* Make a copy of object OBJ in pure storage.
5181 Recursively copies contents of vectors and cons cells.
5182 Does not copy symbols. Copies strings without text properties. */)
5183 (register Lisp_Object obj)
5184 {
5185 if (NILP (Vpurify_flag))
5186 return obj;
5187 else if (MARKERP (obj) || OVERLAYP (obj)
5188 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5189 /* Can't purify those. */
5190 return obj;
5191 else
5192 return purecopy (obj);
5193 }
5194
5195 static Lisp_Object
5196 purecopy (Lisp_Object obj)
5197 {
5198 if (INTEGERP (obj)
5199 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5200 || SUBRP (obj))
5201 return obj; /* Already pure. */
5202
5203 if (STRINGP (obj) && XSTRING (obj)->intervals)
5204 message_with_string ("Dropping text-properties while making string `%s' pure",
5205 obj, true);
5206
5207 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5208 {
5209 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5210 if (!NILP (tmp))
5211 return tmp;
5212 }
5213
5214 if (CONSP (obj))
5215 obj = pure_cons (XCAR (obj), XCDR (obj));
5216 else if (FLOATP (obj))
5217 obj = make_pure_float (XFLOAT_DATA (obj));
5218 else if (STRINGP (obj))
5219 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5220 SBYTES (obj),
5221 STRING_MULTIBYTE (obj));
5222 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5223 {
5224 struct Lisp_Vector *objp = XVECTOR (obj);
5225 ptrdiff_t nbytes = vector_nbytes (objp);
5226 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5227 register ptrdiff_t i;
5228 ptrdiff_t size = ASIZE (obj);
5229 if (size & PSEUDOVECTOR_FLAG)
5230 size &= PSEUDOVECTOR_SIZE_MASK;
5231 memcpy (vec, objp, nbytes);
5232 for (i = 0; i < size; i++)
5233 vec->contents[i] = purecopy (vec->contents[i]);
5234 XSETVECTOR (obj, vec);
5235 }
5236 else if (SYMBOLP (obj))
5237 {
5238 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5239 { /* We can't purify them, but they appear in many pure objects.
5240 Mark them as `pinned' so we know to mark them at every GC cycle. */
5241 XSYMBOL (obj)->pinned = true;
5242 symbol_block_pinned = symbol_block;
5243 }
5244 /* Don't hash-cons it. */
5245 return obj;
5246 }
5247 else
5248 {
5249 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5250 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5251 }
5252
5253 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5254 Fputhash (obj, obj, Vpurify_flag);
5255
5256 return obj;
5257 }
5258
5259
5260 \f
5261 /***********************************************************************
5262 Protection from GC
5263 ***********************************************************************/
5264
5265 /* Put an entry in staticvec, pointing at the variable with address
5266 VARADDRESS. */
5267
5268 void
5269 staticpro (Lisp_Object *varaddress)
5270 {
5271 if (staticidx >= NSTATICS)
5272 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5273 staticvec[staticidx++] = varaddress;
5274 }
5275
5276 \f
5277 /***********************************************************************
5278 Protection from GC
5279 ***********************************************************************/
5280
5281 /* Temporarily prevent garbage collection. */
5282
5283 ptrdiff_t
5284 inhibit_garbage_collection (void)
5285 {
5286 ptrdiff_t count = SPECPDL_INDEX ();
5287
5288 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5289 return count;
5290 }
5291
5292 /* Used to avoid possible overflows when
5293 converting from C to Lisp integers. */
5294
5295 static Lisp_Object
5296 bounded_number (EMACS_INT number)
5297 {
5298 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5299 }
5300
5301 /* Calculate total bytes of live objects. */
5302
5303 static size_t
5304 total_bytes_of_live_objects (void)
5305 {
5306 size_t tot = 0;
5307 tot += total_conses * sizeof (struct Lisp_Cons);
5308 tot += total_symbols * sizeof (struct Lisp_Symbol);
5309 tot += total_markers * sizeof (union Lisp_Misc);
5310 tot += total_string_bytes;
5311 tot += total_vector_slots * word_size;
5312 tot += total_floats * sizeof (struct Lisp_Float);
5313 tot += total_intervals * sizeof (struct interval);
5314 tot += total_strings * sizeof (struct Lisp_String);
5315 return tot;
5316 }
5317
5318 #ifdef HAVE_WINDOW_SYSTEM
5319
5320 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5321 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5322
5323 static Lisp_Object
5324 compact_font_cache_entry (Lisp_Object entry)
5325 {
5326 Lisp_Object tail, *prev = &entry;
5327
5328 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5329 {
5330 bool drop = 0;
5331 Lisp_Object obj = XCAR (tail);
5332
5333 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5334 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5335 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5336 && VECTORP (XCDR (obj)))
5337 {
5338 ptrdiff_t i, size = gc_asize (XCDR (obj));
5339 Lisp_Object obj_cdr = XCDR (obj);
5340
5341 /* If font-spec is not marked, most likely all font-entities
5342 are not marked too. But we must be sure that nothing is
5343 marked within OBJ before we really drop it. */
5344 for (i = 0; i < size; i++)
5345 {
5346 Lisp_Object objlist;
5347
5348 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5349 break;
5350
5351 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5352 for (; CONSP (objlist); objlist = XCDR (objlist))
5353 {
5354 Lisp_Object val = XCAR (objlist);
5355 struct font *font = GC_XFONT_OBJECT (val);
5356
5357 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5358 && VECTOR_MARKED_P(font))
5359 break;
5360 }
5361 if (CONSP (objlist))
5362 {
5363 /* Found a marked font, bail out. */
5364 break;
5365 }
5366 }
5367
5368 if (i == size)
5369 {
5370 /* No marked fonts were found, so this entire font
5371 entity can be dropped. */
5372 drop = 1;
5373 }
5374 }
5375 if (drop)
5376 *prev = XCDR (tail);
5377 else
5378 prev = xcdr_addr (tail);
5379 }
5380 return entry;
5381 }
5382
5383 /* Compact font caches on all terminals and mark
5384 everything which is still here after compaction. */
5385
5386 static void
5387 compact_font_caches (void)
5388 {
5389 struct terminal *t;
5390
5391 for (t = terminal_list; t; t = t->next_terminal)
5392 {
5393 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5394 if (CONSP (cache))
5395 {
5396 Lisp_Object entry;
5397
5398 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5399 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5400 }
5401 mark_object (cache);
5402 }
5403 }
5404
5405 #else /* not HAVE_WINDOW_SYSTEM */
5406
5407 #define compact_font_caches() (void)(0)
5408
5409 #endif /* HAVE_WINDOW_SYSTEM */
5410
5411 /* Remove (MARKER . DATA) entries with unmarked MARKER
5412 from buffer undo LIST and return changed list. */
5413
5414 static Lisp_Object
5415 compact_undo_list (Lisp_Object list)
5416 {
5417 Lisp_Object tail, *prev = &list;
5418
5419 for (tail = list; CONSP (tail); tail = XCDR (tail))
5420 {
5421 if (CONSP (XCAR (tail))
5422 && MARKERP (XCAR (XCAR (tail)))
5423 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5424 *prev = XCDR (tail);
5425 else
5426 prev = xcdr_addr (tail);
5427 }
5428 return list;
5429 }
5430
5431 static void
5432 mark_pinned_symbols (void)
5433 {
5434 struct symbol_block *sblk;
5435 int lim = (symbol_block_pinned == symbol_block
5436 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5437
5438 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5439 {
5440 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5441 for (; sym < end; ++sym)
5442 if (sym->s.pinned)
5443 mark_object (make_lisp_symbol (&sym->s));
5444
5445 lim = SYMBOL_BLOCK_SIZE;
5446 }
5447 }
5448
5449 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5450 separate function so that we could limit mark_stack in searching
5451 the stack frames below this function, thus avoiding the rare cases
5452 where mark_stack finds values that look like live Lisp objects on
5453 portions of stack that couldn't possibly contain such live objects.
5454 For more details of this, see the discussion at
5455 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5456 static Lisp_Object
5457 garbage_collect_1 (void *end)
5458 {
5459 struct buffer *nextb;
5460 char stack_top_variable;
5461 ptrdiff_t i;
5462 bool message_p;
5463 ptrdiff_t count = SPECPDL_INDEX ();
5464 struct timespec start;
5465 Lisp_Object retval = Qnil;
5466 size_t tot_before = 0;
5467
5468 if (abort_on_gc)
5469 emacs_abort ();
5470
5471 /* Can't GC if pure storage overflowed because we can't determine
5472 if something is a pure object or not. */
5473 if (pure_bytes_used_before_overflow)
5474 return Qnil;
5475
5476 /* Record this function, so it appears on the profiler's backtraces. */
5477 record_in_backtrace (Qautomatic_gc, 0, 0);
5478
5479 check_cons_list ();
5480
5481 /* Don't keep undo information around forever.
5482 Do this early on, so it is no problem if the user quits. */
5483 FOR_EACH_BUFFER (nextb)
5484 compact_buffer (nextb);
5485
5486 if (profiler_memory_running)
5487 tot_before = total_bytes_of_live_objects ();
5488
5489 start = current_timespec ();
5490
5491 /* In case user calls debug_print during GC,
5492 don't let that cause a recursive GC. */
5493 consing_since_gc = 0;
5494
5495 /* Save what's currently displayed in the echo area. */
5496 message_p = push_message ();
5497 record_unwind_protect_void (pop_message_unwind);
5498
5499 /* Save a copy of the contents of the stack, for debugging. */
5500 #if MAX_SAVE_STACK > 0
5501 if (NILP (Vpurify_flag))
5502 {
5503 char *stack;
5504 ptrdiff_t stack_size;
5505 if (&stack_top_variable < stack_bottom)
5506 {
5507 stack = &stack_top_variable;
5508 stack_size = stack_bottom - &stack_top_variable;
5509 }
5510 else
5511 {
5512 stack = stack_bottom;
5513 stack_size = &stack_top_variable - stack_bottom;
5514 }
5515 if (stack_size <= MAX_SAVE_STACK)
5516 {
5517 if (stack_copy_size < stack_size)
5518 {
5519 stack_copy = xrealloc (stack_copy, stack_size);
5520 stack_copy_size = stack_size;
5521 }
5522 no_sanitize_memcpy (stack_copy, stack, stack_size);
5523 }
5524 }
5525 #endif /* MAX_SAVE_STACK > 0 */
5526
5527 if (garbage_collection_messages)
5528 message1_nolog ("Garbage collecting...");
5529
5530 block_input ();
5531
5532 shrink_regexp_cache ();
5533
5534 gc_in_progress = 1;
5535
5536 /* Mark all the special slots that serve as the roots of accessibility. */
5537
5538 mark_buffer (&buffer_defaults);
5539 mark_buffer (&buffer_local_symbols);
5540
5541 for (i = 0; i < ARRAYELTS (lispsym); i++)
5542 mark_object (builtin_lisp_symbol (i));
5543
5544 for (i = 0; i < staticidx; i++)
5545 mark_object (*staticvec[i]);
5546
5547 mark_pinned_symbols ();
5548 mark_specpdl ();
5549 mark_terminals ();
5550 mark_kboards ();
5551
5552 #ifdef USE_GTK
5553 xg_mark_data ();
5554 #endif
5555
5556 mark_stack (end);
5557
5558 {
5559 struct handler *handler;
5560 for (handler = handlerlist; handler; handler = handler->next)
5561 {
5562 mark_object (handler->tag_or_ch);
5563 mark_object (handler->val);
5564 }
5565 }
5566 #ifdef HAVE_WINDOW_SYSTEM
5567 mark_fringe_data ();
5568 #endif
5569
5570 #ifdef HAVE_MODULES
5571 mark_modules ();
5572 #endif
5573
5574 /* Everything is now marked, except for the data in font caches,
5575 undo lists, and finalizers. The first two are compacted by
5576 removing an items which aren't reachable otherwise. */
5577
5578 compact_font_caches ();
5579
5580 FOR_EACH_BUFFER (nextb)
5581 {
5582 if (!EQ (BVAR (nextb, undo_list), Qt))
5583 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5584 /* Now that we have stripped the elements that need not be
5585 in the undo_list any more, we can finally mark the list. */
5586 mark_object (BVAR (nextb, undo_list));
5587 }
5588
5589 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5590 to doomed_finalizers so we can run their associated functions
5591 after GC. It's important to scan finalizers at this stage so
5592 that we can be sure that unmarked finalizers are really
5593 unreachable except for references from their associated functions
5594 and from other finalizers. */
5595
5596 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5597 mark_finalizer_list (&doomed_finalizers);
5598
5599 gc_sweep ();
5600
5601 relocate_byte_stack ();
5602
5603 /* Clear the mark bits that we set in certain root slots. */
5604 VECTOR_UNMARK (&buffer_defaults);
5605 VECTOR_UNMARK (&buffer_local_symbols);
5606
5607 check_cons_list ();
5608
5609 gc_in_progress = 0;
5610
5611 unblock_input ();
5612
5613 consing_since_gc = 0;
5614 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5615 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5616
5617 gc_relative_threshold = 0;
5618 if (FLOATP (Vgc_cons_percentage))
5619 { /* Set gc_cons_combined_threshold. */
5620 double tot = total_bytes_of_live_objects ();
5621
5622 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5623 if (0 < tot)
5624 {
5625 if (tot < TYPE_MAXIMUM (EMACS_INT))
5626 gc_relative_threshold = tot;
5627 else
5628 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5629 }
5630 }
5631
5632 if (garbage_collection_messages)
5633 {
5634 if (message_p || minibuf_level > 0)
5635 restore_message ();
5636 else
5637 message1_nolog ("Garbage collecting...done");
5638 }
5639
5640 unbind_to (count, Qnil);
5641
5642 Lisp_Object total[] = {
5643 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5644 bounded_number (total_conses),
5645 bounded_number (total_free_conses)),
5646 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5647 bounded_number (total_symbols),
5648 bounded_number (total_free_symbols)),
5649 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5650 bounded_number (total_markers),
5651 bounded_number (total_free_markers)),
5652 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5653 bounded_number (total_strings),
5654 bounded_number (total_free_strings)),
5655 list3 (Qstring_bytes, make_number (1),
5656 bounded_number (total_string_bytes)),
5657 list3 (Qvectors,
5658 make_number (header_size + sizeof (Lisp_Object)),
5659 bounded_number (total_vectors)),
5660 list4 (Qvector_slots, make_number (word_size),
5661 bounded_number (total_vector_slots),
5662 bounded_number (total_free_vector_slots)),
5663 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5664 bounded_number (total_floats),
5665 bounded_number (total_free_floats)),
5666 list4 (Qintervals, make_number (sizeof (struct interval)),
5667 bounded_number (total_intervals),
5668 bounded_number (total_free_intervals)),
5669 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5670 bounded_number (total_buffers)),
5671
5672 #ifdef DOUG_LEA_MALLOC
5673 list4 (Qheap, make_number (1024),
5674 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5675 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5676 #endif
5677 };
5678 retval = CALLMANY (Flist, total);
5679
5680 /* GC is complete: now we can run our finalizer callbacks. */
5681 run_finalizers (&doomed_finalizers);
5682
5683 if (!NILP (Vpost_gc_hook))
5684 {
5685 ptrdiff_t gc_count = inhibit_garbage_collection ();
5686 safe_run_hooks (Qpost_gc_hook);
5687 unbind_to (gc_count, Qnil);
5688 }
5689
5690 /* Accumulate statistics. */
5691 if (FLOATP (Vgc_elapsed))
5692 {
5693 struct timespec since_start = timespec_sub (current_timespec (), start);
5694 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5695 + timespectod (since_start));
5696 }
5697
5698 gcs_done++;
5699
5700 /* Collect profiling data. */
5701 if (profiler_memory_running)
5702 {
5703 size_t swept = 0;
5704 size_t tot_after = total_bytes_of_live_objects ();
5705 if (tot_before > tot_after)
5706 swept = tot_before - tot_after;
5707 malloc_probe (swept);
5708 }
5709
5710 return retval;
5711 }
5712
5713 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5714 doc: /* Reclaim storage for Lisp objects no longer needed.
5715 Garbage collection happens automatically if you cons more than
5716 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5717 `garbage-collect' normally returns a list with info on amount of space in use,
5718 where each entry has the form (NAME SIZE USED FREE), where:
5719 - NAME is a symbol describing the kind of objects this entry represents,
5720 - SIZE is the number of bytes used by each one,
5721 - USED is the number of those objects that were found live in the heap,
5722 - FREE is the number of those objects that are not live but that Emacs
5723 keeps around for future allocations (maybe because it does not know how
5724 to return them to the OS).
5725 However, if there was overflow in pure space, `garbage-collect'
5726 returns nil, because real GC can't be done.
5727 See Info node `(elisp)Garbage Collection'. */)
5728 (void)
5729 {
5730 void *end;
5731
5732 #ifdef HAVE___BUILTIN_UNWIND_INIT
5733 /* Force callee-saved registers and register windows onto the stack.
5734 This is the preferred method if available, obviating the need for
5735 machine dependent methods. */
5736 __builtin_unwind_init ();
5737 end = &end;
5738 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5739 #ifndef GC_SAVE_REGISTERS_ON_STACK
5740 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5741 union aligned_jmpbuf {
5742 Lisp_Object o;
5743 sys_jmp_buf j;
5744 } j;
5745 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5746 #endif
5747 /* This trick flushes the register windows so that all the state of
5748 the process is contained in the stack. */
5749 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5750 needed on ia64 too. See mach_dep.c, where it also says inline
5751 assembler doesn't work with relevant proprietary compilers. */
5752 #ifdef __sparc__
5753 #if defined (__sparc64__) && defined (__FreeBSD__)
5754 /* FreeBSD does not have a ta 3 handler. */
5755 asm ("flushw");
5756 #else
5757 asm ("ta 3");
5758 #endif
5759 #endif
5760
5761 /* Save registers that we need to see on the stack. We need to see
5762 registers used to hold register variables and registers used to
5763 pass parameters. */
5764 #ifdef GC_SAVE_REGISTERS_ON_STACK
5765 GC_SAVE_REGISTERS_ON_STACK (end);
5766 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5767
5768 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5769 setjmp will definitely work, test it
5770 and print a message with the result
5771 of the test. */
5772 if (!setjmp_tested_p)
5773 {
5774 setjmp_tested_p = 1;
5775 test_setjmp ();
5776 }
5777 #endif /* GC_SETJMP_WORKS */
5778
5779 sys_setjmp (j.j);
5780 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5781 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5782 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5783 return garbage_collect_1 (end);
5784 }
5785
5786 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5787 only interesting objects referenced from glyphs are strings. */
5788
5789 static void
5790 mark_glyph_matrix (struct glyph_matrix *matrix)
5791 {
5792 struct glyph_row *row = matrix->rows;
5793 struct glyph_row *end = row + matrix->nrows;
5794
5795 for (; row < end; ++row)
5796 if (row->enabled_p)
5797 {
5798 int area;
5799 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5800 {
5801 struct glyph *glyph = row->glyphs[area];
5802 struct glyph *end_glyph = glyph + row->used[area];
5803
5804 for (; glyph < end_glyph; ++glyph)
5805 if (STRINGP (glyph->object)
5806 && !STRING_MARKED_P (XSTRING (glyph->object)))
5807 mark_object (glyph->object);
5808 }
5809 }
5810 }
5811
5812 /* Mark reference to a Lisp_Object.
5813 If the object referred to has not been seen yet, recursively mark
5814 all the references contained in it. */
5815
5816 #define LAST_MARKED_SIZE 500
5817 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5818 static int last_marked_index;
5819
5820 /* For debugging--call abort when we cdr down this many
5821 links of a list, in mark_object. In debugging,
5822 the call to abort will hit a breakpoint.
5823 Normally this is zero and the check never goes off. */
5824 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5825
5826 static void
5827 mark_vectorlike (struct Lisp_Vector *ptr)
5828 {
5829 ptrdiff_t size = ptr->header.size;
5830 ptrdiff_t i;
5831
5832 eassert (!VECTOR_MARKED_P (ptr));
5833 VECTOR_MARK (ptr); /* Else mark it. */
5834 if (size & PSEUDOVECTOR_FLAG)
5835 size &= PSEUDOVECTOR_SIZE_MASK;
5836
5837 /* Note that this size is not the memory-footprint size, but only
5838 the number of Lisp_Object fields that we should trace.
5839 The distinction is used e.g. by Lisp_Process which places extra
5840 non-Lisp_Object fields at the end of the structure... */
5841 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5842 mark_object (ptr->contents[i]);
5843 }
5844
5845 /* Like mark_vectorlike but optimized for char-tables (and
5846 sub-char-tables) assuming that the contents are mostly integers or
5847 symbols. */
5848
5849 static void
5850 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5851 {
5852 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5853 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5854 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5855
5856 eassert (!VECTOR_MARKED_P (ptr));
5857 VECTOR_MARK (ptr);
5858 for (i = idx; i < size; i++)
5859 {
5860 Lisp_Object val = ptr->contents[i];
5861
5862 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5863 continue;
5864 if (SUB_CHAR_TABLE_P (val))
5865 {
5866 if (! VECTOR_MARKED_P (XVECTOR (val)))
5867 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5868 }
5869 else
5870 mark_object (val);
5871 }
5872 }
5873
5874 NO_INLINE /* To reduce stack depth in mark_object. */
5875 static Lisp_Object
5876 mark_compiled (struct Lisp_Vector *ptr)
5877 {
5878 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5879
5880 VECTOR_MARK (ptr);
5881 for (i = 0; i < size; i++)
5882 if (i != COMPILED_CONSTANTS)
5883 mark_object (ptr->contents[i]);
5884 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5885 }
5886
5887 /* Mark the chain of overlays starting at PTR. */
5888
5889 static void
5890 mark_overlay (struct Lisp_Overlay *ptr)
5891 {
5892 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5893 {
5894 ptr->gcmarkbit = 1;
5895 /* These two are always markers and can be marked fast. */
5896 XMARKER (ptr->start)->gcmarkbit = 1;
5897 XMARKER (ptr->end)->gcmarkbit = 1;
5898 mark_object (ptr->plist);
5899 }
5900 }
5901
5902 /* Mark Lisp_Objects and special pointers in BUFFER. */
5903
5904 static void
5905 mark_buffer (struct buffer *buffer)
5906 {
5907 /* This is handled much like other pseudovectors... */
5908 mark_vectorlike ((struct Lisp_Vector *) buffer);
5909
5910 /* ...but there are some buffer-specific things. */
5911
5912 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5913
5914 /* For now, we just don't mark the undo_list. It's done later in
5915 a special way just before the sweep phase, and after stripping
5916 some of its elements that are not needed any more. */
5917
5918 mark_overlay (buffer->overlays_before);
5919 mark_overlay (buffer->overlays_after);
5920
5921 /* If this is an indirect buffer, mark its base buffer. */
5922 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5923 mark_buffer (buffer->base_buffer);
5924 }
5925
5926 /* Mark Lisp faces in the face cache C. */
5927
5928 NO_INLINE /* To reduce stack depth in mark_object. */
5929 static void
5930 mark_face_cache (struct face_cache *c)
5931 {
5932 if (c)
5933 {
5934 int i, j;
5935 for (i = 0; i < c->used; ++i)
5936 {
5937 struct face *face = FACE_FROM_ID (c->f, i);
5938
5939 if (face)
5940 {
5941 if (face->font && !VECTOR_MARKED_P (face->font))
5942 mark_vectorlike ((struct Lisp_Vector *) face->font);
5943
5944 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5945 mark_object (face->lface[j]);
5946 }
5947 }
5948 }
5949 }
5950
5951 NO_INLINE /* To reduce stack depth in mark_object. */
5952 static void
5953 mark_localized_symbol (struct Lisp_Symbol *ptr)
5954 {
5955 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5956 Lisp_Object where = blv->where;
5957 /* If the value is set up for a killed buffer or deleted
5958 frame, restore its global binding. If the value is
5959 forwarded to a C variable, either it's not a Lisp_Object
5960 var, or it's staticpro'd already. */
5961 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5962 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5963 swap_in_global_binding (ptr);
5964 mark_object (blv->where);
5965 mark_object (blv->valcell);
5966 mark_object (blv->defcell);
5967 }
5968
5969 NO_INLINE /* To reduce stack depth in mark_object. */
5970 static void
5971 mark_save_value (struct Lisp_Save_Value *ptr)
5972 {
5973 /* If `save_type' is zero, `data[0].pointer' is the address
5974 of a memory area containing `data[1].integer' potential
5975 Lisp_Objects. */
5976 if (ptr->save_type == SAVE_TYPE_MEMORY)
5977 {
5978 Lisp_Object *p = ptr->data[0].pointer;
5979 ptrdiff_t nelt;
5980 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5981 mark_maybe_object (*p);
5982 }
5983 else
5984 {
5985 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5986 int i;
5987 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
5988 if (save_type (ptr, i) == SAVE_OBJECT)
5989 mark_object (ptr->data[i].object);
5990 }
5991 }
5992
5993 /* Remove killed buffers or items whose car is a killed buffer from
5994 LIST, and mark other items. Return changed LIST, which is marked. */
5995
5996 static Lisp_Object
5997 mark_discard_killed_buffers (Lisp_Object list)
5998 {
5999 Lisp_Object tail, *prev = &list;
6000
6001 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6002 tail = XCDR (tail))
6003 {
6004 Lisp_Object tem = XCAR (tail);
6005 if (CONSP (tem))
6006 tem = XCAR (tem);
6007 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6008 *prev = XCDR (tail);
6009 else
6010 {
6011 CONS_MARK (XCONS (tail));
6012 mark_object (XCAR (tail));
6013 prev = xcdr_addr (tail);
6014 }
6015 }
6016 mark_object (tail);
6017 return list;
6018 }
6019
6020 /* Determine type of generic Lisp_Object and mark it accordingly.
6021
6022 This function implements a straightforward depth-first marking
6023 algorithm and so the recursion depth may be very high (a few
6024 tens of thousands is not uncommon). To minimize stack usage,
6025 a few cold paths are moved out to NO_INLINE functions above.
6026 In general, inlining them doesn't help you to gain more speed. */
6027
6028 void
6029 mark_object (Lisp_Object arg)
6030 {
6031 register Lisp_Object obj;
6032 void *po;
6033 #ifdef GC_CHECK_MARKED_OBJECTS
6034 struct mem_node *m;
6035 #endif
6036 ptrdiff_t cdr_count = 0;
6037
6038 obj = arg;
6039 loop:
6040
6041 po = XPNTR (obj);
6042 if (PURE_P (po))
6043 return;
6044
6045 last_marked[last_marked_index++] = obj;
6046 if (last_marked_index == LAST_MARKED_SIZE)
6047 last_marked_index = 0;
6048
6049 /* Perform some sanity checks on the objects marked here. Abort if
6050 we encounter an object we know is bogus. This increases GC time
6051 by ~80%. */
6052 #ifdef GC_CHECK_MARKED_OBJECTS
6053
6054 /* Check that the object pointed to by PO is known to be a Lisp
6055 structure allocated from the heap. */
6056 #define CHECK_ALLOCATED() \
6057 do { \
6058 m = mem_find (po); \
6059 if (m == MEM_NIL) \
6060 emacs_abort (); \
6061 } while (0)
6062
6063 /* Check that the object pointed to by PO is live, using predicate
6064 function LIVEP. */
6065 #define CHECK_LIVE(LIVEP) \
6066 do { \
6067 if (!LIVEP (m, po)) \
6068 emacs_abort (); \
6069 } while (0)
6070
6071 /* Check both of the above conditions, for non-symbols. */
6072 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6073 do { \
6074 CHECK_ALLOCATED (); \
6075 CHECK_LIVE (LIVEP); \
6076 } while (0) \
6077
6078 /* Check both of the above conditions, for symbols. */
6079 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6080 do { \
6081 if (!c_symbol_p (ptr)) \
6082 { \
6083 CHECK_ALLOCATED (); \
6084 CHECK_LIVE (live_symbol_p); \
6085 } \
6086 } while (0) \
6087
6088 #else /* not GC_CHECK_MARKED_OBJECTS */
6089
6090 #define CHECK_LIVE(LIVEP) ((void) 0)
6091 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6092 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6093
6094 #endif /* not GC_CHECK_MARKED_OBJECTS */
6095
6096 switch (XTYPE (obj))
6097 {
6098 case Lisp_String:
6099 {
6100 register struct Lisp_String *ptr = XSTRING (obj);
6101 if (STRING_MARKED_P (ptr))
6102 break;
6103 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6104 MARK_STRING (ptr);
6105 MARK_INTERVAL_TREE (ptr->intervals);
6106 #ifdef GC_CHECK_STRING_BYTES
6107 /* Check that the string size recorded in the string is the
6108 same as the one recorded in the sdata structure. */
6109 string_bytes (ptr);
6110 #endif /* GC_CHECK_STRING_BYTES */
6111 }
6112 break;
6113
6114 case Lisp_Vectorlike:
6115 {
6116 register struct Lisp_Vector *ptr = XVECTOR (obj);
6117 register ptrdiff_t pvectype;
6118
6119 if (VECTOR_MARKED_P (ptr))
6120 break;
6121
6122 #ifdef GC_CHECK_MARKED_OBJECTS
6123 m = mem_find (po);
6124 if (m == MEM_NIL && !SUBRP (obj))
6125 emacs_abort ();
6126 #endif /* GC_CHECK_MARKED_OBJECTS */
6127
6128 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6129 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6130 >> PSEUDOVECTOR_AREA_BITS);
6131 else
6132 pvectype = PVEC_NORMAL_VECTOR;
6133
6134 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6135 CHECK_LIVE (live_vector_p);
6136
6137 switch (pvectype)
6138 {
6139 case PVEC_BUFFER:
6140 #ifdef GC_CHECK_MARKED_OBJECTS
6141 {
6142 struct buffer *b;
6143 FOR_EACH_BUFFER (b)
6144 if (b == po)
6145 break;
6146 if (b == NULL)
6147 emacs_abort ();
6148 }
6149 #endif /* GC_CHECK_MARKED_OBJECTS */
6150 mark_buffer ((struct buffer *) ptr);
6151 break;
6152
6153 case PVEC_COMPILED:
6154 /* Although we could treat this just like a vector, mark_compiled
6155 returns the COMPILED_CONSTANTS element, which is marked at the
6156 next iteration of goto-loop here. This is done to avoid a few
6157 recursive calls to mark_object. */
6158 obj = mark_compiled (ptr);
6159 if (!NILP (obj))
6160 goto loop;
6161 break;
6162
6163 case PVEC_FRAME:
6164 {
6165 struct frame *f = (struct frame *) ptr;
6166
6167 mark_vectorlike (ptr);
6168 mark_face_cache (f->face_cache);
6169 #ifdef HAVE_WINDOW_SYSTEM
6170 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6171 {
6172 struct font *font = FRAME_FONT (f);
6173
6174 if (font && !VECTOR_MARKED_P (font))
6175 mark_vectorlike ((struct Lisp_Vector *) font);
6176 }
6177 #endif
6178 }
6179 break;
6180
6181 case PVEC_WINDOW:
6182 {
6183 struct window *w = (struct window *) ptr;
6184
6185 mark_vectorlike (ptr);
6186
6187 /* Mark glyph matrices, if any. Marking window
6188 matrices is sufficient because frame matrices
6189 use the same glyph memory. */
6190 if (w->current_matrix)
6191 {
6192 mark_glyph_matrix (w->current_matrix);
6193 mark_glyph_matrix (w->desired_matrix);
6194 }
6195
6196 /* Filter out killed buffers from both buffer lists
6197 in attempt to help GC to reclaim killed buffers faster.
6198 We can do it elsewhere for live windows, but this is the
6199 best place to do it for dead windows. */
6200 wset_prev_buffers
6201 (w, mark_discard_killed_buffers (w->prev_buffers));
6202 wset_next_buffers
6203 (w, mark_discard_killed_buffers (w->next_buffers));
6204 }
6205 break;
6206
6207 case PVEC_HASH_TABLE:
6208 {
6209 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6210
6211 mark_vectorlike (ptr);
6212 mark_object (h->test.name);
6213 mark_object (h->test.user_hash_function);
6214 mark_object (h->test.user_cmp_function);
6215 /* If hash table is not weak, mark all keys and values.
6216 For weak tables, mark only the vector. */
6217 if (NILP (h->weak))
6218 mark_object (h->key_and_value);
6219 else
6220 VECTOR_MARK (XVECTOR (h->key_and_value));
6221 }
6222 break;
6223
6224 case PVEC_CHAR_TABLE:
6225 case PVEC_SUB_CHAR_TABLE:
6226 mark_char_table (ptr, (enum pvec_type) pvectype);
6227 break;
6228
6229 case PVEC_BOOL_VECTOR:
6230 /* No Lisp_Objects to mark in a bool vector. */
6231 VECTOR_MARK (ptr);
6232 break;
6233
6234 case PVEC_SUBR:
6235 break;
6236
6237 case PVEC_FREE:
6238 emacs_abort ();
6239
6240 default:
6241 mark_vectorlike (ptr);
6242 }
6243 }
6244 break;
6245
6246 case Lisp_Symbol:
6247 {
6248 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6249 nextsym:
6250 if (ptr->gcmarkbit)
6251 break;
6252 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6253 ptr->gcmarkbit = 1;
6254 /* Attempt to catch bogus objects. */
6255 eassert (valid_lisp_object_p (ptr->function));
6256 mark_object (ptr->function);
6257 mark_object (ptr->plist);
6258 switch (ptr->redirect)
6259 {
6260 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6261 case SYMBOL_VARALIAS:
6262 {
6263 Lisp_Object tem;
6264 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6265 mark_object (tem);
6266 break;
6267 }
6268 case SYMBOL_LOCALIZED:
6269 mark_localized_symbol (ptr);
6270 break;
6271 case SYMBOL_FORWARDED:
6272 /* If the value is forwarded to a buffer or keyboard field,
6273 these are marked when we see the corresponding object.
6274 And if it's forwarded to a C variable, either it's not
6275 a Lisp_Object var, or it's staticpro'd already. */
6276 break;
6277 default: emacs_abort ();
6278 }
6279 if (!PURE_P (XSTRING (ptr->name)))
6280 MARK_STRING (XSTRING (ptr->name));
6281 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6282 /* Inner loop to mark next symbol in this bucket, if any. */
6283 po = ptr = ptr->next;
6284 if (ptr)
6285 goto nextsym;
6286 }
6287 break;
6288
6289 case Lisp_Misc:
6290 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6291
6292 if (XMISCANY (obj)->gcmarkbit)
6293 break;
6294
6295 switch (XMISCTYPE (obj))
6296 {
6297 case Lisp_Misc_Marker:
6298 /* DO NOT mark thru the marker's chain.
6299 The buffer's markers chain does not preserve markers from gc;
6300 instead, markers are removed from the chain when freed by gc. */
6301 XMISCANY (obj)->gcmarkbit = 1;
6302 break;
6303
6304 case Lisp_Misc_Save_Value:
6305 XMISCANY (obj)->gcmarkbit = 1;
6306 mark_save_value (XSAVE_VALUE (obj));
6307 break;
6308
6309 case Lisp_Misc_Overlay:
6310 mark_overlay (XOVERLAY (obj));
6311 break;
6312
6313 case Lisp_Misc_Finalizer:
6314 XMISCANY (obj)->gcmarkbit = true;
6315 mark_object (XFINALIZER (obj)->function);
6316 break;
6317
6318 #ifdef HAVE_MODULES
6319 case Lisp_Misc_User_Ptr:
6320 XMISCANY (obj)->gcmarkbit = true;
6321 break;
6322 #endif
6323
6324 default:
6325 emacs_abort ();
6326 }
6327 break;
6328
6329 case Lisp_Cons:
6330 {
6331 register struct Lisp_Cons *ptr = XCONS (obj);
6332 if (CONS_MARKED_P (ptr))
6333 break;
6334 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6335 CONS_MARK (ptr);
6336 /* If the cdr is nil, avoid recursion for the car. */
6337 if (EQ (ptr->u.cdr, Qnil))
6338 {
6339 obj = ptr->car;
6340 cdr_count = 0;
6341 goto loop;
6342 }
6343 mark_object (ptr->car);
6344 obj = ptr->u.cdr;
6345 cdr_count++;
6346 if (cdr_count == mark_object_loop_halt)
6347 emacs_abort ();
6348 goto loop;
6349 }
6350
6351 case Lisp_Float:
6352 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6353 FLOAT_MARK (XFLOAT (obj));
6354 break;
6355
6356 case_Lisp_Int:
6357 break;
6358
6359 default:
6360 emacs_abort ();
6361 }
6362
6363 #undef CHECK_LIVE
6364 #undef CHECK_ALLOCATED
6365 #undef CHECK_ALLOCATED_AND_LIVE
6366 }
6367 /* Mark the Lisp pointers in the terminal objects.
6368 Called by Fgarbage_collect. */
6369
6370 static void
6371 mark_terminals (void)
6372 {
6373 struct terminal *t;
6374 for (t = terminal_list; t; t = t->next_terminal)
6375 {
6376 eassert (t->name != NULL);
6377 #ifdef HAVE_WINDOW_SYSTEM
6378 /* If a terminal object is reachable from a stacpro'ed object,
6379 it might have been marked already. Make sure the image cache
6380 gets marked. */
6381 mark_image_cache (t->image_cache);
6382 #endif /* HAVE_WINDOW_SYSTEM */
6383 if (!VECTOR_MARKED_P (t))
6384 mark_vectorlike ((struct Lisp_Vector *)t);
6385 }
6386 }
6387
6388
6389
6390 /* Value is non-zero if OBJ will survive the current GC because it's
6391 either marked or does not need to be marked to survive. */
6392
6393 bool
6394 survives_gc_p (Lisp_Object obj)
6395 {
6396 bool survives_p;
6397
6398 switch (XTYPE (obj))
6399 {
6400 case_Lisp_Int:
6401 survives_p = 1;
6402 break;
6403
6404 case Lisp_Symbol:
6405 survives_p = XSYMBOL (obj)->gcmarkbit;
6406 break;
6407
6408 case Lisp_Misc:
6409 survives_p = XMISCANY (obj)->gcmarkbit;
6410 break;
6411
6412 case Lisp_String:
6413 survives_p = STRING_MARKED_P (XSTRING (obj));
6414 break;
6415
6416 case Lisp_Vectorlike:
6417 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6418 break;
6419
6420 case Lisp_Cons:
6421 survives_p = CONS_MARKED_P (XCONS (obj));
6422 break;
6423
6424 case Lisp_Float:
6425 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6426 break;
6427
6428 default:
6429 emacs_abort ();
6430 }
6431
6432 return survives_p || PURE_P (XPNTR (obj));
6433 }
6434
6435
6436 \f
6437
6438 NO_INLINE /* For better stack traces */
6439 static void
6440 sweep_conses (void)
6441 {
6442 struct cons_block *cblk;
6443 struct cons_block **cprev = &cons_block;
6444 int lim = cons_block_index;
6445 EMACS_INT num_free = 0, num_used = 0;
6446
6447 cons_free_list = 0;
6448
6449 for (cblk = cons_block; cblk; cblk = *cprev)
6450 {
6451 int i = 0;
6452 int this_free = 0;
6453 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6454
6455 /* Scan the mark bits an int at a time. */
6456 for (i = 0; i < ilim; i++)
6457 {
6458 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6459 {
6460 /* Fast path - all cons cells for this int are marked. */
6461 cblk->gcmarkbits[i] = 0;
6462 num_used += BITS_PER_BITS_WORD;
6463 }
6464 else
6465 {
6466 /* Some cons cells for this int are not marked.
6467 Find which ones, and free them. */
6468 int start, pos, stop;
6469
6470 start = i * BITS_PER_BITS_WORD;
6471 stop = lim - start;
6472 if (stop > BITS_PER_BITS_WORD)
6473 stop = BITS_PER_BITS_WORD;
6474 stop += start;
6475
6476 for (pos = start; pos < stop; pos++)
6477 {
6478 if (!CONS_MARKED_P (&cblk->conses[pos]))
6479 {
6480 this_free++;
6481 cblk->conses[pos].u.chain = cons_free_list;
6482 cons_free_list = &cblk->conses[pos];
6483 cons_free_list->car = Vdead;
6484 }
6485 else
6486 {
6487 num_used++;
6488 CONS_UNMARK (&cblk->conses[pos]);
6489 }
6490 }
6491 }
6492 }
6493
6494 lim = CONS_BLOCK_SIZE;
6495 /* If this block contains only free conses and we have already
6496 seen more than two blocks worth of free conses then deallocate
6497 this block. */
6498 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6499 {
6500 *cprev = cblk->next;
6501 /* Unhook from the free list. */
6502 cons_free_list = cblk->conses[0].u.chain;
6503 lisp_align_free (cblk);
6504 }
6505 else
6506 {
6507 num_free += this_free;
6508 cprev = &cblk->next;
6509 }
6510 }
6511 total_conses = num_used;
6512 total_free_conses = num_free;
6513 }
6514
6515 NO_INLINE /* For better stack traces */
6516 static void
6517 sweep_floats (void)
6518 {
6519 register struct float_block *fblk;
6520 struct float_block **fprev = &float_block;
6521 register int lim = float_block_index;
6522 EMACS_INT num_free = 0, num_used = 0;
6523
6524 float_free_list = 0;
6525
6526 for (fblk = float_block; fblk; fblk = *fprev)
6527 {
6528 register int i;
6529 int this_free = 0;
6530 for (i = 0; i < lim; i++)
6531 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6532 {
6533 this_free++;
6534 fblk->floats[i].u.chain = float_free_list;
6535 float_free_list = &fblk->floats[i];
6536 }
6537 else
6538 {
6539 num_used++;
6540 FLOAT_UNMARK (&fblk->floats[i]);
6541 }
6542 lim = FLOAT_BLOCK_SIZE;
6543 /* If this block contains only free floats and we have already
6544 seen more than two blocks worth of free floats then deallocate
6545 this block. */
6546 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6547 {
6548 *fprev = fblk->next;
6549 /* Unhook from the free list. */
6550 float_free_list = fblk->floats[0].u.chain;
6551 lisp_align_free (fblk);
6552 }
6553 else
6554 {
6555 num_free += this_free;
6556 fprev = &fblk->next;
6557 }
6558 }
6559 total_floats = num_used;
6560 total_free_floats = num_free;
6561 }
6562
6563 NO_INLINE /* For better stack traces */
6564 static void
6565 sweep_intervals (void)
6566 {
6567 register struct interval_block *iblk;
6568 struct interval_block **iprev = &interval_block;
6569 register int lim = interval_block_index;
6570 EMACS_INT num_free = 0, num_used = 0;
6571
6572 interval_free_list = 0;
6573
6574 for (iblk = interval_block; iblk; iblk = *iprev)
6575 {
6576 register int i;
6577 int this_free = 0;
6578
6579 for (i = 0; i < lim; i++)
6580 {
6581 if (!iblk->intervals[i].gcmarkbit)
6582 {
6583 set_interval_parent (&iblk->intervals[i], interval_free_list);
6584 interval_free_list = &iblk->intervals[i];
6585 this_free++;
6586 }
6587 else
6588 {
6589 num_used++;
6590 iblk->intervals[i].gcmarkbit = 0;
6591 }
6592 }
6593 lim = INTERVAL_BLOCK_SIZE;
6594 /* If this block contains only free intervals and we have already
6595 seen more than two blocks worth of free intervals then
6596 deallocate this block. */
6597 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6598 {
6599 *iprev = iblk->next;
6600 /* Unhook from the free list. */
6601 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6602 lisp_free (iblk);
6603 }
6604 else
6605 {
6606 num_free += this_free;
6607 iprev = &iblk->next;
6608 }
6609 }
6610 total_intervals = num_used;
6611 total_free_intervals = num_free;
6612 }
6613
6614 NO_INLINE /* For better stack traces */
6615 static void
6616 sweep_symbols (void)
6617 {
6618 struct symbol_block *sblk;
6619 struct symbol_block **sprev = &symbol_block;
6620 int lim = symbol_block_index;
6621 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6622
6623 symbol_free_list = NULL;
6624
6625 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6626 lispsym[i].gcmarkbit = 0;
6627
6628 for (sblk = symbol_block; sblk; sblk = *sprev)
6629 {
6630 int this_free = 0;
6631 union aligned_Lisp_Symbol *sym = sblk->symbols;
6632 union aligned_Lisp_Symbol *end = sym + lim;
6633
6634 for (; sym < end; ++sym)
6635 {
6636 if (!sym->s.gcmarkbit)
6637 {
6638 if (sym->s.redirect == SYMBOL_LOCALIZED)
6639 xfree (SYMBOL_BLV (&sym->s));
6640 sym->s.next = symbol_free_list;
6641 symbol_free_list = &sym->s;
6642 symbol_free_list->function = Vdead;
6643 ++this_free;
6644 }
6645 else
6646 {
6647 ++num_used;
6648 sym->s.gcmarkbit = 0;
6649 /* Attempt to catch bogus objects. */
6650 eassert (valid_lisp_object_p (sym->s.function));
6651 }
6652 }
6653
6654 lim = SYMBOL_BLOCK_SIZE;
6655 /* If this block contains only free symbols and we have already
6656 seen more than two blocks worth of free symbols then deallocate
6657 this block. */
6658 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6659 {
6660 *sprev = sblk->next;
6661 /* Unhook from the free list. */
6662 symbol_free_list = sblk->symbols[0].s.next;
6663 lisp_free (sblk);
6664 }
6665 else
6666 {
6667 num_free += this_free;
6668 sprev = &sblk->next;
6669 }
6670 }
6671 total_symbols = num_used;
6672 total_free_symbols = num_free;
6673 }
6674
6675 NO_INLINE /* For better stack traces. */
6676 static void
6677 sweep_misc (void)
6678 {
6679 register struct marker_block *mblk;
6680 struct marker_block **mprev = &marker_block;
6681 register int lim = marker_block_index;
6682 EMACS_INT num_free = 0, num_used = 0;
6683
6684 /* Put all unmarked misc's on free list. For a marker, first
6685 unchain it from the buffer it points into. */
6686
6687 marker_free_list = 0;
6688
6689 for (mblk = marker_block; mblk; mblk = *mprev)
6690 {
6691 register int i;
6692 int this_free = 0;
6693
6694 for (i = 0; i < lim; i++)
6695 {
6696 if (!mblk->markers[i].m.u_any.gcmarkbit)
6697 {
6698 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6699 unchain_marker (&mblk->markers[i].m.u_marker);
6700 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6701 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6702 #ifdef HAVE_MODULES
6703 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6704 {
6705 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6706 uptr->finalizer (uptr->p);
6707 }
6708 #endif
6709 /* Set the type of the freed object to Lisp_Misc_Free.
6710 We could leave the type alone, since nobody checks it,
6711 but this might catch bugs faster. */
6712 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6713 mblk->markers[i].m.u_free.chain = marker_free_list;
6714 marker_free_list = &mblk->markers[i].m;
6715 this_free++;
6716 }
6717 else
6718 {
6719 num_used++;
6720 mblk->markers[i].m.u_any.gcmarkbit = 0;
6721 }
6722 }
6723 lim = MARKER_BLOCK_SIZE;
6724 /* If this block contains only free markers and we have already
6725 seen more than two blocks worth of free markers then deallocate
6726 this block. */
6727 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6728 {
6729 *mprev = mblk->next;
6730 /* Unhook from the free list. */
6731 marker_free_list = mblk->markers[0].m.u_free.chain;
6732 lisp_free (mblk);
6733 }
6734 else
6735 {
6736 num_free += this_free;
6737 mprev = &mblk->next;
6738 }
6739 }
6740
6741 total_markers = num_used;
6742 total_free_markers = num_free;
6743 }
6744
6745 NO_INLINE /* For better stack traces */
6746 static void
6747 sweep_buffers (void)
6748 {
6749 register struct buffer *buffer, **bprev = &all_buffers;
6750
6751 total_buffers = 0;
6752 for (buffer = all_buffers; buffer; buffer = *bprev)
6753 if (!VECTOR_MARKED_P (buffer))
6754 {
6755 *bprev = buffer->next;
6756 lisp_free (buffer);
6757 }
6758 else
6759 {
6760 VECTOR_UNMARK (buffer);
6761 /* Do not use buffer_(set|get)_intervals here. */
6762 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6763 total_buffers++;
6764 bprev = &buffer->next;
6765 }
6766 }
6767
6768 /* Sweep: find all structures not marked, and free them. */
6769 static void
6770 gc_sweep (void)
6771 {
6772 /* Remove or mark entries in weak hash tables.
6773 This must be done before any object is unmarked. */
6774 sweep_weak_hash_tables ();
6775
6776 sweep_strings ();
6777 check_string_bytes (!noninteractive);
6778 sweep_conses ();
6779 sweep_floats ();
6780 sweep_intervals ();
6781 sweep_symbols ();
6782 sweep_misc ();
6783 sweep_buffers ();
6784 sweep_vectors ();
6785 check_string_bytes (!noninteractive);
6786 }
6787
6788 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6789 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6790 All values are in Kbytes. If there is no swap space,
6791 last two values are zero. If the system is not supported
6792 or memory information can't be obtained, return nil. */)
6793 (void)
6794 {
6795 #if defined HAVE_LINUX_SYSINFO
6796 struct sysinfo si;
6797 uintmax_t units;
6798
6799 if (sysinfo (&si))
6800 return Qnil;
6801 #ifdef LINUX_SYSINFO_UNIT
6802 units = si.mem_unit;
6803 #else
6804 units = 1;
6805 #endif
6806 return list4i ((uintmax_t) si.totalram * units / 1024,
6807 (uintmax_t) si.freeram * units / 1024,
6808 (uintmax_t) si.totalswap * units / 1024,
6809 (uintmax_t) si.freeswap * units / 1024);
6810 #elif defined WINDOWSNT
6811 unsigned long long totalram, freeram, totalswap, freeswap;
6812
6813 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6814 return list4i ((uintmax_t) totalram / 1024,
6815 (uintmax_t) freeram / 1024,
6816 (uintmax_t) totalswap / 1024,
6817 (uintmax_t) freeswap / 1024);
6818 else
6819 return Qnil;
6820 #elif defined MSDOS
6821 unsigned long totalram, freeram, totalswap, freeswap;
6822
6823 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6824 return list4i ((uintmax_t) totalram / 1024,
6825 (uintmax_t) freeram / 1024,
6826 (uintmax_t) totalswap / 1024,
6827 (uintmax_t) freeswap / 1024);
6828 else
6829 return Qnil;
6830 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6831 /* FIXME: add more systems. */
6832 return Qnil;
6833 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6834 }
6835
6836 /* Debugging aids. */
6837
6838 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6839 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6840 This may be helpful in debugging Emacs's memory usage.
6841 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6842 (void)
6843 {
6844 Lisp_Object end;
6845
6846 #ifdef HAVE_NS
6847 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6848 XSETINT (end, 0);
6849 #else
6850 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6851 #endif
6852
6853 return end;
6854 }
6855
6856 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6857 doc: /* Return a list of counters that measure how much consing there has been.
6858 Each of these counters increments for a certain kind of object.
6859 The counters wrap around from the largest positive integer to zero.
6860 Garbage collection does not decrease them.
6861 The elements of the value are as follows:
6862 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6863 All are in units of 1 = one object consed
6864 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6865 objects consed.
6866 MISCS include overlays, markers, and some internal types.
6867 Frames, windows, buffers, and subprocesses count as vectors
6868 (but the contents of a buffer's text do not count here). */)
6869 (void)
6870 {
6871 return listn (CONSTYPE_HEAP, 8,
6872 bounded_number (cons_cells_consed),
6873 bounded_number (floats_consed),
6874 bounded_number (vector_cells_consed),
6875 bounded_number (symbols_consed),
6876 bounded_number (string_chars_consed),
6877 bounded_number (misc_objects_consed),
6878 bounded_number (intervals_consed),
6879 bounded_number (strings_consed));
6880 }
6881
6882 static bool
6883 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6884 {
6885 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6886 Lisp_Object val = find_symbol_value (symbol);
6887 return (EQ (val, obj)
6888 || EQ (sym->function, obj)
6889 || (!NILP (sym->function)
6890 && COMPILEDP (sym->function)
6891 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6892 || (!NILP (val)
6893 && COMPILEDP (val)
6894 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
6895 }
6896
6897 /* Find at most FIND_MAX symbols which have OBJ as their value or
6898 function. This is used in gdbinit's `xwhichsymbols' command. */
6899
6900 Lisp_Object
6901 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6902 {
6903 struct symbol_block *sblk;
6904 ptrdiff_t gc_count = inhibit_garbage_collection ();
6905 Lisp_Object found = Qnil;
6906
6907 if (! DEADP (obj))
6908 {
6909 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6910 {
6911 Lisp_Object sym = builtin_lisp_symbol (i);
6912 if (symbol_uses_obj (sym, obj))
6913 {
6914 found = Fcons (sym, found);
6915 if (--find_max == 0)
6916 goto out;
6917 }
6918 }
6919
6920 for (sblk = symbol_block; sblk; sblk = sblk->next)
6921 {
6922 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6923 int bn;
6924
6925 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6926 {
6927 if (sblk == symbol_block && bn >= symbol_block_index)
6928 break;
6929
6930 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
6931 if (symbol_uses_obj (sym, obj))
6932 {
6933 found = Fcons (sym, found);
6934 if (--find_max == 0)
6935 goto out;
6936 }
6937 }
6938 }
6939 }
6940
6941 out:
6942 unbind_to (gc_count, Qnil);
6943 return found;
6944 }
6945
6946 #ifdef SUSPICIOUS_OBJECT_CHECKING
6947
6948 static void *
6949 find_suspicious_object_in_range (void *begin, void *end)
6950 {
6951 char *begin_a = begin;
6952 char *end_a = end;
6953 int i;
6954
6955 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6956 {
6957 char *suspicious_object = suspicious_objects[i];
6958 if (begin_a <= suspicious_object && suspicious_object < end_a)
6959 return suspicious_object;
6960 }
6961
6962 return NULL;
6963 }
6964
6965 static void
6966 note_suspicious_free (void* ptr)
6967 {
6968 struct suspicious_free_record* rec;
6969
6970 rec = &suspicious_free_history[suspicious_free_history_index++];
6971 if (suspicious_free_history_index ==
6972 ARRAYELTS (suspicious_free_history))
6973 {
6974 suspicious_free_history_index = 0;
6975 }
6976
6977 memset (rec, 0, sizeof (*rec));
6978 rec->suspicious_object = ptr;
6979 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6980 }
6981
6982 static void
6983 detect_suspicious_free (void* ptr)
6984 {
6985 int i;
6986
6987 eassert (ptr != NULL);
6988
6989 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6990 if (suspicious_objects[i] == ptr)
6991 {
6992 note_suspicious_free (ptr);
6993 suspicious_objects[i] = NULL;
6994 }
6995 }
6996
6997 #endif /* SUSPICIOUS_OBJECT_CHECKING */
6998
6999 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7000 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7001 If Emacs is compiled with suspicious object checking, capture
7002 a stack trace when OBJ is freed in order to help track down
7003 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7004 (Lisp_Object obj)
7005 {
7006 #ifdef SUSPICIOUS_OBJECT_CHECKING
7007 /* Right now, we care only about vectors. */
7008 if (VECTORLIKEP (obj))
7009 {
7010 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7011 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7012 suspicious_object_index = 0;
7013 }
7014 #endif
7015 return obj;
7016 }
7017
7018 #ifdef ENABLE_CHECKING
7019
7020 bool suppress_checking;
7021
7022 void
7023 die (const char *msg, const char *file, int line)
7024 {
7025 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7026 file, line, msg);
7027 terminate_due_to_signal (SIGABRT, INT_MAX);
7028 }
7029
7030 #endif /* ENABLE_CHECKING */
7031
7032 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7033
7034 /* Debugging check whether STR is ASCII-only. */
7035
7036 const char *
7037 verify_ascii (const char *str)
7038 {
7039 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7040 while (ptr < end)
7041 {
7042 int c = STRING_CHAR_ADVANCE (ptr);
7043 if (!ASCII_CHAR_P (c))
7044 emacs_abort ();
7045 }
7046 return str;
7047 }
7048
7049 /* Stress alloca with inconveniently sized requests and check
7050 whether all allocated areas may be used for Lisp_Object. */
7051
7052 NO_INLINE static void
7053 verify_alloca (void)
7054 {
7055 int i;
7056 enum { ALLOCA_CHECK_MAX = 256 };
7057 /* Start from size of the smallest Lisp object. */
7058 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7059 {
7060 void *ptr = alloca (i);
7061 make_lisp_ptr (ptr, Lisp_Cons);
7062 }
7063 }
7064
7065 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7066
7067 #define verify_alloca() ((void) 0)
7068
7069 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7070
7071 /* Initialization. */
7072
7073 void
7074 init_alloc_once (void)
7075 {
7076 /* Even though Qt's contents are not set up, its address is known. */
7077 Vpurify_flag = Qt;
7078
7079 purebeg = PUREBEG;
7080 pure_size = PURESIZE;
7081
7082 verify_alloca ();
7083 init_finalizer_list (&finalizers);
7084 init_finalizer_list (&doomed_finalizers);
7085
7086 mem_init ();
7087 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7088
7089 #ifdef DOUG_LEA_MALLOC
7090 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7091 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7092 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7093 #endif
7094 init_strings ();
7095 init_vectors ();
7096
7097 refill_memory_reserve ();
7098 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7099 }
7100
7101 void
7102 init_alloc (void)
7103 {
7104 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7105 setjmp_tested_p = longjmps_done = 0;
7106 #endif
7107 Vgc_elapsed = make_float (0.0);
7108 gcs_done = 0;
7109
7110 #if USE_VALGRIND
7111 valgrind_p = RUNNING_ON_VALGRIND != 0;
7112 #endif
7113 }
7114
7115 void
7116 syms_of_alloc (void)
7117 {
7118 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7119 doc: /* Number of bytes of consing between garbage collections.
7120 Garbage collection can happen automatically once this many bytes have been
7121 allocated since the last garbage collection. All data types count.
7122
7123 Garbage collection happens automatically only when `eval' is called.
7124
7125 By binding this temporarily to a large number, you can effectively
7126 prevent garbage collection during a part of the program.
7127 See also `gc-cons-percentage'. */);
7128
7129 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7130 doc: /* Portion of the heap used for allocation.
7131 Garbage collection can happen automatically once this portion of the heap
7132 has been allocated since the last garbage collection.
7133 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7134 Vgc_cons_percentage = make_float (0.1);
7135
7136 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7137 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7138
7139 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7140 doc: /* Number of cons cells that have been consed so far. */);
7141
7142 DEFVAR_INT ("floats-consed", floats_consed,
7143 doc: /* Number of floats that have been consed so far. */);
7144
7145 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7146 doc: /* Number of vector cells that have been consed so far. */);
7147
7148 DEFVAR_INT ("symbols-consed", symbols_consed,
7149 doc: /* Number of symbols that have been consed so far. */);
7150 symbols_consed += ARRAYELTS (lispsym);
7151
7152 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7153 doc: /* Number of string characters that have been consed so far. */);
7154
7155 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7156 doc: /* Number of miscellaneous objects that have been consed so far.
7157 These include markers and overlays, plus certain objects not visible
7158 to users. */);
7159
7160 DEFVAR_INT ("intervals-consed", intervals_consed,
7161 doc: /* Number of intervals that have been consed so far. */);
7162
7163 DEFVAR_INT ("strings-consed", strings_consed,
7164 doc: /* Number of strings that have been consed so far. */);
7165
7166 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7167 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7168 This means that certain objects should be allocated in shared (pure) space.
7169 It can also be set to a hash-table, in which case this table is used to
7170 do hash-consing of the objects allocated to pure space. */);
7171
7172 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7173 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7174 garbage_collection_messages = 0;
7175
7176 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7177 doc: /* Hook run after garbage collection has finished. */);
7178 Vpost_gc_hook = Qnil;
7179 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7180
7181 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7182 doc: /* Precomputed `signal' argument for memory-full error. */);
7183 /* We build this in advance because if we wait until we need it, we might
7184 not be able to allocate the memory to hold it. */
7185 Vmemory_signal_data
7186 = listn (CONSTYPE_PURE, 2, Qerror,
7187 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7188
7189 DEFVAR_LISP ("memory-full", Vmemory_full,
7190 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7191 Vmemory_full = Qnil;
7192
7193 DEFSYM (Qconses, "conses");
7194 DEFSYM (Qsymbols, "symbols");
7195 DEFSYM (Qmiscs, "miscs");
7196 DEFSYM (Qstrings, "strings");
7197 DEFSYM (Qvectors, "vectors");
7198 DEFSYM (Qfloats, "floats");
7199 DEFSYM (Qintervals, "intervals");
7200 DEFSYM (Qbuffers, "buffers");
7201 DEFSYM (Qstring_bytes, "string-bytes");
7202 DEFSYM (Qvector_slots, "vector-slots");
7203 DEFSYM (Qheap, "heap");
7204 DEFSYM (Qautomatic_gc, "Automatic GC");
7205
7206 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7207 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7208
7209 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7210 doc: /* Accumulated time elapsed in garbage collections.
7211 The time is in seconds as a floating point value. */);
7212 DEFVAR_INT ("gcs-done", gcs_done,
7213 doc: /* Accumulated number of garbage collections done. */);
7214
7215 defsubr (&Scons);
7216 defsubr (&Slist);
7217 defsubr (&Svector);
7218 defsubr (&Sbool_vector);
7219 defsubr (&Smake_byte_code);
7220 defsubr (&Smake_list);
7221 defsubr (&Smake_vector);
7222 defsubr (&Smake_string);
7223 defsubr (&Smake_bool_vector);
7224 defsubr (&Smake_symbol);
7225 defsubr (&Smake_marker);
7226 defsubr (&Smake_finalizer);
7227 defsubr (&Spurecopy);
7228 defsubr (&Sgarbage_collect);
7229 defsubr (&Smemory_limit);
7230 defsubr (&Smemory_info);
7231 defsubr (&Smemory_use_counts);
7232 defsubr (&Ssuspicious_object);
7233 }
7234
7235 /* When compiled with GCC, GDB might say "No enum type named
7236 pvec_type" if we don't have at least one symbol with that type, and
7237 then xbacktrace could fail. Similarly for the other enums and
7238 their values. Some non-GCC compilers don't like these constructs. */
7239 #ifdef __GNUC__
7240 union
7241 {
7242 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7243 enum char_table_specials char_table_specials;
7244 enum char_bits char_bits;
7245 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7246 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7247 enum Lisp_Bits Lisp_Bits;
7248 enum Lisp_Compiled Lisp_Compiled;
7249 enum maxargs maxargs;
7250 enum MAX_ALLOCA MAX_ALLOCA;
7251 enum More_Lisp_Bits More_Lisp_Bits;
7252 enum pvec_type pvec_type;
7253 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7254 #endif /* __GNUC__ */