]> code.delx.au - gnu-emacs/blob - src/editfns.c
(overlays_around): Use new type for overlays_(before|after).
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985,86,87,89,93,94,95,96,97,98, 1999, 2000, 2001, 02, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <sys/types.h>
25
26 #ifdef VMS
27 #include "vms-pwd.h"
28 #else
29 #include <pwd.h>
30 #endif
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 /* Without this, sprintf on Mac OS Classic will produce wrong
37 result. */
38 #ifdef MAC_OS8
39 #include <stdio.h>
40 #endif
41
42 #include <ctype.h>
43
44 #include "lisp.h"
45 #include "intervals.h"
46 #include "buffer.h"
47 #include "charset.h"
48 #include "coding.h"
49 #include "frame.h"
50 #include "window.h"
51
52 #include "systime.h"
53
54 #ifdef STDC_HEADERS
55 #include <float.h>
56 #define MAX_10_EXP DBL_MAX_10_EXP
57 #else
58 #define MAX_10_EXP 310
59 #endif
60
61 #ifndef NULL
62 #define NULL 0
63 #endif
64
65 #ifndef USE_CRT_DLL
66 extern char **environ;
67 #endif
68
69 extern Lisp_Object make_time P_ ((time_t));
70 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
71 const struct tm *, int));
72 static int tm_diff P_ ((struct tm *, struct tm *));
73 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
74 static void update_buffer_properties P_ ((int, int));
75 static Lisp_Object region_limit P_ ((int));
76 static int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
77 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
78 size_t, const struct tm *, int));
79 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
80 void (*) (Lisp_Object, int, int, int,
81 int, int),
82 int, int, Lisp_Object *));
83 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
84 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
85 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
86
87 #ifdef HAVE_INDEX
88 extern char *index P_ ((const char *, int));
89 #endif
90
91 Lisp_Object Vbuffer_access_fontify_functions;
92 Lisp_Object Qbuffer_access_fontify_functions;
93 Lisp_Object Vbuffer_access_fontified_property;
94
95 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
96
97 /* Non-nil means don't stop at field boundary in text motion commands. */
98
99 Lisp_Object Vinhibit_field_text_motion;
100
101 /* Some static data, and a function to initialize it for each run */
102
103 Lisp_Object Vsystem_name;
104 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
105 Lisp_Object Vuser_full_name; /* full name of current user */
106 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
107
108 /* Symbol for the text property used to mark fields. */
109
110 Lisp_Object Qfield;
111
112 /* A special value for Qfield properties. */
113
114 Lisp_Object Qboundary;
115
116
117 void
118 init_editfns ()
119 {
120 char *user_name;
121 register unsigned char *p;
122 struct passwd *pw; /* password entry for the current user */
123 Lisp_Object tem;
124
125 /* Set up system_name even when dumping. */
126 init_system_name ();
127
128 #ifndef CANNOT_DUMP
129 /* Don't bother with this on initial start when just dumping out */
130 if (!initialized)
131 return;
132 #endif /* not CANNOT_DUMP */
133
134 pw = (struct passwd *) getpwuid (getuid ());
135 #ifdef MSDOS
136 /* We let the real user name default to "root" because that's quite
137 accurate on MSDOG and because it lets Emacs find the init file.
138 (The DVX libraries override the Djgpp libraries here.) */
139 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
140 #else
141 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
142 #endif
143
144 /* Get the effective user name, by consulting environment variables,
145 or the effective uid if those are unset. */
146 user_name = (char *) getenv ("LOGNAME");
147 if (!user_name)
148 #ifdef WINDOWSNT
149 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
150 #else /* WINDOWSNT */
151 user_name = (char *) getenv ("USER");
152 #endif /* WINDOWSNT */
153 if (!user_name)
154 {
155 pw = (struct passwd *) getpwuid (geteuid ());
156 user_name = (char *) (pw ? pw->pw_name : "unknown");
157 }
158 Vuser_login_name = build_string (user_name);
159
160 /* If the user name claimed in the environment vars differs from
161 the real uid, use the claimed name to find the full name. */
162 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
163 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
164 : Vuser_login_name);
165
166 p = (unsigned char *) getenv ("NAME");
167 if (p)
168 Vuser_full_name = build_string (p);
169 else if (NILP (Vuser_full_name))
170 Vuser_full_name = build_string ("unknown");
171 }
172 \f
173 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
174 doc: /* Convert arg CHAR to a string containing that character.
175 usage: (char-to-string CHAR) */)
176 (character)
177 Lisp_Object character;
178 {
179 int len;
180 unsigned char str[MAX_MULTIBYTE_LENGTH];
181
182 CHECK_NUMBER (character);
183
184 len = (SINGLE_BYTE_CHAR_P (XFASTINT (character))
185 ? (*str = (unsigned char)(XFASTINT (character)), 1)
186 : char_to_string (XFASTINT (character), str));
187 return make_string_from_bytes (str, 1, len);
188 }
189
190 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
191 doc: /* Convert arg STRING to a character, the first character of that string.
192 A multibyte character is handled correctly. */)
193 (string)
194 register Lisp_Object string;
195 {
196 register Lisp_Object val;
197 CHECK_STRING (string);
198 if (SCHARS (string))
199 {
200 if (STRING_MULTIBYTE (string))
201 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
202 else
203 XSETFASTINT (val, SREF (string, 0));
204 }
205 else
206 XSETFASTINT (val, 0);
207 return val;
208 }
209 \f
210 static Lisp_Object
211 buildmark (charpos, bytepos)
212 int charpos, bytepos;
213 {
214 register Lisp_Object mark;
215 mark = Fmake_marker ();
216 set_marker_both (mark, Qnil, charpos, bytepos);
217 return mark;
218 }
219
220 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
221 doc: /* Return value of point, as an integer.
222 Beginning of buffer is position (point-min). */)
223 ()
224 {
225 Lisp_Object temp;
226 XSETFASTINT (temp, PT);
227 return temp;
228 }
229
230 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
231 doc: /* Return value of point, as a marker object. */)
232 ()
233 {
234 return buildmark (PT, PT_BYTE);
235 }
236
237 int
238 clip_to_bounds (lower, num, upper)
239 int lower, num, upper;
240 {
241 if (num < lower)
242 return lower;
243 else if (num > upper)
244 return upper;
245 else
246 return num;
247 }
248
249 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
250 doc: /* Set point to POSITION, a number or marker.
251 Beginning of buffer is position (point-min), end is (point-max).
252 If the position is in the middle of a multibyte form,
253 the actual point is set at the head of the multibyte form
254 except in the case that `enable-multibyte-characters' is nil. */)
255 (position)
256 register Lisp_Object position;
257 {
258 int pos;
259
260 if (MARKERP (position)
261 && current_buffer == XMARKER (position)->buffer)
262 {
263 pos = marker_position (position);
264 if (pos < BEGV)
265 SET_PT_BOTH (BEGV, BEGV_BYTE);
266 else if (pos > ZV)
267 SET_PT_BOTH (ZV, ZV_BYTE);
268 else
269 SET_PT_BOTH (pos, marker_byte_position (position));
270
271 return position;
272 }
273
274 CHECK_NUMBER_COERCE_MARKER (position);
275
276 pos = clip_to_bounds (BEGV, XINT (position), ZV);
277 SET_PT (pos);
278 return position;
279 }
280
281
282 /* Return the start or end position of the region.
283 BEGINNINGP non-zero means return the start.
284 If there is no region active, signal an error. */
285
286 static Lisp_Object
287 region_limit (beginningp)
288 int beginningp;
289 {
290 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
291 Lisp_Object m;
292
293 if (!NILP (Vtransient_mark_mode)
294 && NILP (Vmark_even_if_inactive)
295 && NILP (current_buffer->mark_active))
296 Fsignal (Qmark_inactive, Qnil);
297
298 m = Fmarker_position (current_buffer->mark);
299 if (NILP (m))
300 error ("The mark is not set now, so there is no region");
301
302 if ((PT < XFASTINT (m)) == beginningp)
303 m = make_number (PT);
304 return m;
305 }
306
307 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
308 doc: /* Return position of beginning of region, as an integer. */)
309 ()
310 {
311 return region_limit (1);
312 }
313
314 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
315 doc: /* Return position of end of region, as an integer. */)
316 ()
317 {
318 return region_limit (0);
319 }
320
321 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
322 doc: /* Return this buffer's mark, as a marker object.
323 Watch out! Moving this marker changes the mark position.
324 If you set the marker not to point anywhere, the buffer will have no mark. */)
325 ()
326 {
327 return current_buffer->mark;
328 }
329
330 \f
331 /* Find all the overlays in the current buffer that touch position POS.
332 Return the number found, and store them in a vector in VEC
333 of length LEN. */
334
335 static int
336 overlays_around (pos, vec, len)
337 int pos;
338 Lisp_Object *vec;
339 int len;
340 {
341 Lisp_Object overlay, start, end;
342 struct Lisp_Overlay *tail;
343 int startpos, endpos;
344 int idx = 0;
345
346 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
347 {
348 XSETMISC (overlay, tail);
349
350 end = OVERLAY_END (overlay);
351 endpos = OVERLAY_POSITION (end);
352 if (endpos < pos)
353 break;
354 start = OVERLAY_START (overlay);
355 startpos = OVERLAY_POSITION (start);
356 if (startpos <= pos)
357 {
358 if (idx < len)
359 vec[idx] = overlay;
360 /* Keep counting overlays even if we can't return them all. */
361 idx++;
362 }
363 }
364
365 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
366 {
367 XSETMISC (overlay, tail);
368
369 start = OVERLAY_START (overlay);
370 startpos = OVERLAY_POSITION (start);
371 if (pos < startpos)
372 break;
373 end = OVERLAY_END (overlay);
374 endpos = OVERLAY_POSITION (end);
375 if (pos <= endpos)
376 {
377 if (idx < len)
378 vec[idx] = overlay;
379 idx++;
380 }
381 }
382
383 return idx;
384 }
385
386 /* Return the value of property PROP, in OBJECT at POSITION.
387 It's the value of PROP that a char inserted at POSITION would get.
388 OBJECT is optional and defaults to the current buffer.
389 If OBJECT is a buffer, then overlay properties are considered as well as
390 text properties.
391 If OBJECT is a window, then that window's buffer is used, but
392 window-specific overlays are considered only if they are associated
393 with OBJECT. */
394 Lisp_Object
395 get_pos_property (position, prop, object)
396 Lisp_Object position, object;
397 register Lisp_Object prop;
398 {
399 CHECK_NUMBER_COERCE_MARKER (position);
400
401 if (NILP (object))
402 XSETBUFFER (object, current_buffer);
403 else if (WINDOWP (object))
404 object = XWINDOW (object)->buffer;
405
406 if (!BUFFERP (object))
407 /* pos-property only makes sense in buffers right now, since strings
408 have no overlays and no notion of insertion for which stickiness
409 could be obeyed. */
410 return Fget_text_property (position, prop, object);
411 else
412 {
413 int posn = XINT (position);
414 int noverlays;
415 Lisp_Object *overlay_vec, tem;
416 struct buffer *obuf = current_buffer;
417
418 set_buffer_temp (XBUFFER (object));
419
420 /* First try with room for 40 overlays. */
421 noverlays = 40;
422 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
423 noverlays = overlays_around (posn, overlay_vec, noverlays);
424
425 /* If there are more than 40,
426 make enough space for all, and try again. */
427 if (noverlays > 40)
428 {
429 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
430 noverlays = overlays_around (posn, overlay_vec, noverlays);
431 }
432 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
433
434 set_buffer_temp (obuf);
435
436 /* Now check the overlays in order of decreasing priority. */
437 while (--noverlays >= 0)
438 {
439 Lisp_Object ol = overlay_vec[noverlays];
440 tem = Foverlay_get (ol, prop);
441 if (!NILP (tem))
442 {
443 /* Check the overlay is indeed active at point. */
444 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
445 if ((OVERLAY_POSITION (start) == posn
446 && XMARKER (start)->insertion_type == 1)
447 || (OVERLAY_POSITION (finish) == posn
448 && XMARKER (finish)->insertion_type == 0))
449 ; /* The overlay will not cover a char inserted at point. */
450 else
451 {
452 return tem;
453 }
454 }
455 }
456
457 { /* Now check the text-properties. */
458 int stickiness = text_property_stickiness (prop, position, object);
459 if (stickiness > 0)
460 return Fget_text_property (position, prop, object);
461 else if (stickiness < 0
462 && XINT (position) > BUF_BEGV (XBUFFER (object)))
463 return Fget_text_property (make_number (XINT (position) - 1),
464 prop, object);
465 else
466 return Qnil;
467 }
468 }
469 }
470
471 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
472 the value of point is used instead. If BEG or END null,
473 means don't store the beginning or end of the field.
474
475 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
476 results; they do not effect boundary behavior.
477
478 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
479 position of a field, then the beginning of the previous field is
480 returned instead of the beginning of POS's field (since the end of a
481 field is actually also the beginning of the next input field, this
482 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
483 true case, if two fields are separated by a field with the special
484 value `boundary', and POS lies within it, then the two separated
485 fields are considered to be adjacent, and POS between them, when
486 finding the beginning and ending of the "merged" field.
487
488 Either BEG or END may be 0, in which case the corresponding value
489 is not stored. */
490
491 static void
492 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
493 Lisp_Object pos;
494 Lisp_Object merge_at_boundary;
495 Lisp_Object beg_limit, end_limit;
496 int *beg, *end;
497 {
498 /* Fields right before and after the point. */
499 Lisp_Object before_field, after_field;
500 /* 1 if POS counts as the start of a field. */
501 int at_field_start = 0;
502 /* 1 if POS counts as the end of a field. */
503 int at_field_end = 0;
504
505 if (NILP (pos))
506 XSETFASTINT (pos, PT);
507 else
508 CHECK_NUMBER_COERCE_MARKER (pos);
509
510 after_field
511 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
512 before_field
513 = (XFASTINT (pos) > BEGV
514 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
515 Qfield, Qnil, NULL)
516 : Qnil);
517
518 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
519 and POS is at beginning of a field, which can also be interpreted
520 as the end of the previous field. Note that the case where if
521 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
522 more natural one; then we avoid treating the beginning of a field
523 specially. */
524 if (NILP (merge_at_boundary))
525 {
526 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
527 if (!EQ (field, after_field))
528 at_field_end = 1;
529 if (!EQ (field, before_field))
530 at_field_start = 1;
531 if (NILP (field) && at_field_start && at_field_end)
532 /* If an inserted char would have a nil field while the surrounding
533 text is non-nil, we're probably not looking at a
534 zero-length field, but instead at a non-nil field that's
535 not intended for editing (such as comint's prompts). */
536 at_field_end = at_field_start = 0;
537 }
538
539 /* Note about special `boundary' fields:
540
541 Consider the case where the point (`.') is between the fields `x' and `y':
542
543 xxxx.yyyy
544
545 In this situation, if merge_at_boundary is true, we consider the
546 `x' and `y' fields as forming one big merged field, and so the end
547 of the field is the end of `y'.
548
549 However, if `x' and `y' are separated by a special `boundary' field
550 (a field with a `field' char-property of 'boundary), then we ignore
551 this special field when merging adjacent fields. Here's the same
552 situation, but with a `boundary' field between the `x' and `y' fields:
553
554 xxx.BBBByyyy
555
556 Here, if point is at the end of `x', the beginning of `y', or
557 anywhere in-between (within the `boundary' field), we merge all
558 three fields and consider the beginning as being the beginning of
559 the `x' field, and the end as being the end of the `y' field. */
560
561 if (beg)
562 {
563 if (at_field_start)
564 /* POS is at the edge of a field, and we should consider it as
565 the beginning of the following field. */
566 *beg = XFASTINT (pos);
567 else
568 /* Find the previous field boundary. */
569 {
570 Lisp_Object p = pos;
571 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
572 /* Skip a `boundary' field. */
573 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
574 beg_limit);
575
576 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
577 beg_limit);
578 *beg = NILP (p) ? BEGV : XFASTINT (p);
579 }
580 }
581
582 if (end)
583 {
584 if (at_field_end)
585 /* POS is at the edge of a field, and we should consider it as
586 the end of the previous field. */
587 *end = XFASTINT (pos);
588 else
589 /* Find the next field boundary. */
590 {
591 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
592 /* Skip a `boundary' field. */
593 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
594 end_limit);
595
596 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
597 end_limit);
598 *end = NILP (pos) ? ZV : XFASTINT (pos);
599 }
600 }
601 }
602
603 \f
604 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
605 doc: /* Delete the field surrounding POS.
606 A field is a region of text with the same `field' property.
607 If POS is nil, the value of point is used for POS. */)
608 (pos)
609 Lisp_Object pos;
610 {
611 int beg, end;
612 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
613 if (beg != end)
614 del_range (beg, end);
615 return Qnil;
616 }
617
618 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
619 doc: /* Return the contents of the field surrounding POS as a string.
620 A field is a region of text with the same `field' property.
621 If POS is nil, the value of point is used for POS. */)
622 (pos)
623 Lisp_Object pos;
624 {
625 int beg, end;
626 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
627 return make_buffer_string (beg, end, 1);
628 }
629
630 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
631 doc: /* Return the contents of the field around POS, without text-properties.
632 A field is a region of text with the same `field' property.
633 If POS is nil, the value of point is used for POS. */)
634 (pos)
635 Lisp_Object pos;
636 {
637 int beg, end;
638 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
639 return make_buffer_string (beg, end, 0);
640 }
641
642 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
643 doc: /* Return the beginning of the field surrounding POS.
644 A field is a region of text with the same `field' property.
645 If POS is nil, the value of point is used for POS.
646 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
647 field, then the beginning of the *previous* field is returned.
648 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
649 is before LIMIT, then LIMIT will be returned instead. */)
650 (pos, escape_from_edge, limit)
651 Lisp_Object pos, escape_from_edge, limit;
652 {
653 int beg;
654 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
655 return make_number (beg);
656 }
657
658 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
659 doc: /* Return the end of the field surrounding POS.
660 A field is a region of text with the same `field' property.
661 If POS is nil, the value of point is used for POS.
662 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
663 then the end of the *following* field is returned.
664 If LIMIT is non-nil, it is a buffer position; if the end of the field
665 is after LIMIT, then LIMIT will be returned instead. */)
666 (pos, escape_from_edge, limit)
667 Lisp_Object pos, escape_from_edge, limit;
668 {
669 int end;
670 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
671 return make_number (end);
672 }
673
674 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
675 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
676
677 A field is a region of text with the same `field' property.
678 If NEW-POS is nil, then the current point is used instead, and set to the
679 constrained position if that is different.
680
681 If OLD-POS is at the boundary of two fields, then the allowable
682 positions for NEW-POS depends on the value of the optional argument
683 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
684 constrained to the field that has the same `field' char-property
685 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
686 is non-nil, NEW-POS is constrained to the union of the two adjacent
687 fields. Additionally, if two fields are separated by another field with
688 the special value `boundary', then any point within this special field is
689 also considered to be `on the boundary'.
690
691 If the optional argument ONLY-IN-LINE is non-nil and constraining
692 NEW-POS would move it to a different line, NEW-POS is returned
693 unconstrained. This useful for commands that move by line, like
694 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
695 only in the case where they can still move to the right line.
696
697 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
698 a non-nil property of that name, then any field boundaries are ignored.
699
700 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
701 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
702 Lisp_Object new_pos, old_pos;
703 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
704 {
705 /* If non-zero, then the original point, before re-positioning. */
706 int orig_point = 0;
707
708 if (NILP (new_pos))
709 /* Use the current point, and afterwards, set it. */
710 {
711 orig_point = PT;
712 XSETFASTINT (new_pos, PT);
713 }
714
715 if (NILP (Vinhibit_field_text_motion)
716 && !EQ (new_pos, old_pos)
717 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
718 || !NILP (Fget_char_property (old_pos, Qfield, Qnil)))
719 && (NILP (inhibit_capture_property)
720 || NILP (Fget_char_property(old_pos, inhibit_capture_property, Qnil))))
721 /* NEW_POS is not within the same field as OLD_POS; try to
722 move NEW_POS so that it is. */
723 {
724 int fwd, shortage;
725 Lisp_Object field_bound;
726
727 CHECK_NUMBER_COERCE_MARKER (new_pos);
728 CHECK_NUMBER_COERCE_MARKER (old_pos);
729
730 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
731
732 if (fwd)
733 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
734 else
735 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
736
737 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
738 other side of NEW_POS, which would mean that NEW_POS is
739 already acceptable, and it's not necessary to constrain it
740 to FIELD_BOUND. */
741 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
742 /* NEW_POS should be constrained, but only if either
743 ONLY_IN_LINE is nil (in which case any constraint is OK),
744 or NEW_POS and FIELD_BOUND are on the same line (in which
745 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
746 && (NILP (only_in_line)
747 /* This is the ONLY_IN_LINE case, check that NEW_POS and
748 FIELD_BOUND are on the same line by seeing whether
749 there's an intervening newline or not. */
750 || (scan_buffer ('\n',
751 XFASTINT (new_pos), XFASTINT (field_bound),
752 fwd ? -1 : 1, &shortage, 1),
753 shortage != 0)))
754 /* Constrain NEW_POS to FIELD_BOUND. */
755 new_pos = field_bound;
756
757 if (orig_point && XFASTINT (new_pos) != orig_point)
758 /* The NEW_POS argument was originally nil, so automatically set PT. */
759 SET_PT (XFASTINT (new_pos));
760 }
761
762 return new_pos;
763 }
764
765 \f
766 DEFUN ("line-beginning-position",
767 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
768 doc: /* Return the character position of the first character on the current line.
769 With argument N not nil or 1, move forward N - 1 lines first.
770 If scan reaches end of buffer, return that position.
771
772 The scan does not cross a field boundary unless doing so would move
773 beyond there to a different line; if N is nil or 1, and scan starts at a
774 field boundary, the scan stops as soon as it starts. To ignore field
775 boundaries bind `inhibit-field-text-motion' to t.
776
777 This function does not move point. */)
778 (n)
779 Lisp_Object n;
780 {
781 int orig, orig_byte, end;
782
783 if (NILP (n))
784 XSETFASTINT (n, 1);
785 else
786 CHECK_NUMBER (n);
787
788 orig = PT;
789 orig_byte = PT_BYTE;
790 Fforward_line (make_number (XINT (n) - 1));
791 end = PT;
792
793 SET_PT_BOTH (orig, orig_byte);
794
795 /* Return END constrained to the current input field. */
796 return Fconstrain_to_field (make_number (end), make_number (orig),
797 XINT (n) != 1 ? Qt : Qnil,
798 Qt, Qnil);
799 }
800
801 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
802 doc: /* Return the character position of the last character on the current line.
803 With argument N not nil or 1, move forward N - 1 lines first.
804 If scan reaches end of buffer, return that position.
805
806 The scan does not cross a field boundary unless doing so would move
807 beyond there to a different line; if N is nil or 1, and scan starts at a
808 field boundary, the scan stops as soon as it starts. To ignore field
809 boundaries bind `inhibit-field-text-motion' to t.
810
811 This function does not move point. */)
812 (n)
813 Lisp_Object n;
814 {
815 int end_pos;
816 int orig = PT;
817
818 if (NILP (n))
819 XSETFASTINT (n, 1);
820 else
821 CHECK_NUMBER (n);
822
823 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
824
825 /* Return END_POS constrained to the current input field. */
826 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
827 Qnil, Qt, Qnil);
828 }
829
830 \f
831 Lisp_Object
832 save_excursion_save ()
833 {
834 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
835 == current_buffer);
836
837 return Fcons (Fpoint_marker (),
838 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
839 Fcons (visible ? Qt : Qnil,
840 Fcons (current_buffer->mark_active,
841 selected_window))));
842 }
843
844 Lisp_Object
845 save_excursion_restore (info)
846 Lisp_Object info;
847 {
848 Lisp_Object tem, tem1, omark, nmark;
849 struct gcpro gcpro1, gcpro2, gcpro3;
850 int visible_p;
851
852 tem = Fmarker_buffer (XCAR (info));
853 /* If buffer being returned to is now deleted, avoid error */
854 /* Otherwise could get error here while unwinding to top level
855 and crash */
856 /* In that case, Fmarker_buffer returns nil now. */
857 if (NILP (tem))
858 return Qnil;
859
860 omark = nmark = Qnil;
861 GCPRO3 (info, omark, nmark);
862
863 Fset_buffer (tem);
864
865 /* Point marker. */
866 tem = XCAR (info);
867 Fgoto_char (tem);
868 unchain_marker (XMARKER (tem));
869
870 /* Mark marker. */
871 info = XCDR (info);
872 tem = XCAR (info);
873 omark = Fmarker_position (current_buffer->mark);
874 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
875 nmark = Fmarker_position (tem);
876 unchain_marker (XMARKER (tem));
877
878 /* visible */
879 info = XCDR (info);
880 visible_p = !NILP (XCAR (info));
881
882 #if 0 /* We used to make the current buffer visible in the selected window
883 if that was true previously. That avoids some anomalies.
884 But it creates others, and it wasn't documented, and it is simpler
885 and cleaner never to alter the window/buffer connections. */
886 tem1 = Fcar (tem);
887 if (!NILP (tem1)
888 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
889 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
890 #endif /* 0 */
891
892 /* Mark active */
893 info = XCDR (info);
894 tem = XCAR (info);
895 tem1 = current_buffer->mark_active;
896 current_buffer->mark_active = tem;
897
898 if (!NILP (Vrun_hooks))
899 {
900 /* If mark is active now, and either was not active
901 or was at a different place, run the activate hook. */
902 if (! NILP (current_buffer->mark_active))
903 {
904 if (! EQ (omark, nmark))
905 call1 (Vrun_hooks, intern ("activate-mark-hook"));
906 }
907 /* If mark has ceased to be active, run deactivate hook. */
908 else if (! NILP (tem1))
909 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
910 }
911
912 /* If buffer was visible in a window, and a different window was
913 selected, and the old selected window is still showing this
914 buffer, restore point in that window. */
915 tem = XCDR (info);
916 if (visible_p
917 && !EQ (tem, selected_window)
918 && (tem1 = XWINDOW (tem)->buffer,
919 (/* Window is live... */
920 BUFFERP (tem1)
921 /* ...and it shows the current buffer. */
922 && XBUFFER (tem1) == current_buffer)))
923 Fset_window_point (tem, make_number (PT));
924
925 UNGCPRO;
926 return Qnil;
927 }
928
929 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
930 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
931 Executes BODY just like `progn'.
932 The values of point, mark and the current buffer are restored
933 even in case of abnormal exit (throw or error).
934 The state of activation of the mark is also restored.
935
936 This construct does not save `deactivate-mark', and therefore
937 functions that change the buffer will still cause deactivation
938 of the mark at the end of the command. To prevent that, bind
939 `deactivate-mark' with `let'.
940
941 usage: (save-excursion &rest BODY) */)
942 (args)
943 Lisp_Object args;
944 {
945 register Lisp_Object val;
946 int count = SPECPDL_INDEX ();
947
948 record_unwind_protect (save_excursion_restore, save_excursion_save ());
949
950 val = Fprogn (args);
951 return unbind_to (count, val);
952 }
953
954 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
955 doc: /* Save the current buffer; execute BODY; restore the current buffer.
956 Executes BODY just like `progn'.
957 usage: (save-current-buffer &rest BODY) */)
958 (args)
959 Lisp_Object args;
960 {
961 Lisp_Object val;
962 int count = SPECPDL_INDEX ();
963
964 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
965
966 val = Fprogn (args);
967 return unbind_to (count, val);
968 }
969 \f
970 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
971 doc: /* Return the number of characters in the current buffer.
972 If BUFFER, return the number of characters in that buffer instead. */)
973 (buffer)
974 Lisp_Object buffer;
975 {
976 if (NILP (buffer))
977 return make_number (Z - BEG);
978 else
979 {
980 CHECK_BUFFER (buffer);
981 return make_number (BUF_Z (XBUFFER (buffer))
982 - BUF_BEG (XBUFFER (buffer)));
983 }
984 }
985
986 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
987 doc: /* Return the minimum permissible value of point in the current buffer.
988 This is 1, unless narrowing (a buffer restriction) is in effect. */)
989 ()
990 {
991 Lisp_Object temp;
992 XSETFASTINT (temp, BEGV);
993 return temp;
994 }
995
996 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
997 doc: /* Return a marker to the minimum permissible value of point in this buffer.
998 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
999 ()
1000 {
1001 return buildmark (BEGV, BEGV_BYTE);
1002 }
1003
1004 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1005 doc: /* Return the maximum permissible value of point in the current buffer.
1006 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1007 is in effect, in which case it is less. */)
1008 ()
1009 {
1010 Lisp_Object temp;
1011 XSETFASTINT (temp, ZV);
1012 return temp;
1013 }
1014
1015 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1016 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1017 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1018 is in effect, in which case it is less. */)
1019 ()
1020 {
1021 return buildmark (ZV, ZV_BYTE);
1022 }
1023
1024 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1025 doc: /* Return the position of the gap, in the current buffer.
1026 See also `gap-size'. */)
1027 ()
1028 {
1029 Lisp_Object temp;
1030 XSETFASTINT (temp, GPT);
1031 return temp;
1032 }
1033
1034 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1035 doc: /* Return the size of the current buffer's gap.
1036 See also `gap-position'. */)
1037 ()
1038 {
1039 Lisp_Object temp;
1040 XSETFASTINT (temp, GAP_SIZE);
1041 return temp;
1042 }
1043
1044 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1045 doc: /* Return the byte position for character position POSITION.
1046 If POSITION is out of range, the value is nil. */)
1047 (position)
1048 Lisp_Object position;
1049 {
1050 CHECK_NUMBER_COERCE_MARKER (position);
1051 if (XINT (position) < BEG || XINT (position) > Z)
1052 return Qnil;
1053 return make_number (CHAR_TO_BYTE (XINT (position)));
1054 }
1055
1056 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1057 doc: /* Return the character position for byte position BYTEPOS.
1058 If BYTEPOS is out of range, the value is nil. */)
1059 (bytepos)
1060 Lisp_Object bytepos;
1061 {
1062 CHECK_NUMBER (bytepos);
1063 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1064 return Qnil;
1065 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1066 }
1067 \f
1068 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1069 doc: /* Return the character following point, as a number.
1070 At the end of the buffer or accessible region, return 0. */)
1071 ()
1072 {
1073 Lisp_Object temp;
1074 if (PT >= ZV)
1075 XSETFASTINT (temp, 0);
1076 else
1077 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1078 return temp;
1079 }
1080
1081 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1082 doc: /* Return the character preceding point, as a number.
1083 At the beginning of the buffer or accessible region, return 0. */)
1084 ()
1085 {
1086 Lisp_Object temp;
1087 if (PT <= BEGV)
1088 XSETFASTINT (temp, 0);
1089 else if (!NILP (current_buffer->enable_multibyte_characters))
1090 {
1091 int pos = PT_BYTE;
1092 DEC_POS (pos);
1093 XSETFASTINT (temp, FETCH_CHAR (pos));
1094 }
1095 else
1096 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1097 return temp;
1098 }
1099
1100 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1101 doc: /* Return t if point is at the beginning of the buffer.
1102 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1103 ()
1104 {
1105 if (PT == BEGV)
1106 return Qt;
1107 return Qnil;
1108 }
1109
1110 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1111 doc: /* Return t if point is at the end of the buffer.
1112 If the buffer is narrowed, this means the end of the narrowed part. */)
1113 ()
1114 {
1115 if (PT == ZV)
1116 return Qt;
1117 return Qnil;
1118 }
1119
1120 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1121 doc: /* Return t if point is at the beginning of a line. */)
1122 ()
1123 {
1124 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1125 return Qt;
1126 return Qnil;
1127 }
1128
1129 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1130 doc: /* Return t if point is at the end of a line.
1131 `End of a line' includes point being at the end of the buffer. */)
1132 ()
1133 {
1134 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1135 return Qt;
1136 return Qnil;
1137 }
1138
1139 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1140 doc: /* Return character in current buffer at position POS.
1141 POS is an integer or a marker.
1142 If POS is out of range, the value is nil. */)
1143 (pos)
1144 Lisp_Object pos;
1145 {
1146 register int pos_byte;
1147
1148 if (NILP (pos))
1149 {
1150 pos_byte = PT_BYTE;
1151 XSETFASTINT (pos, PT);
1152 }
1153
1154 if (MARKERP (pos))
1155 {
1156 pos_byte = marker_byte_position (pos);
1157 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1158 return Qnil;
1159 }
1160 else
1161 {
1162 CHECK_NUMBER_COERCE_MARKER (pos);
1163 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1164 return Qnil;
1165
1166 pos_byte = CHAR_TO_BYTE (XINT (pos));
1167 }
1168
1169 return make_number (FETCH_CHAR (pos_byte));
1170 }
1171
1172 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1173 doc: /* Return character in current buffer preceding position POS.
1174 POS is an integer or a marker.
1175 If POS is out of range, the value is nil. */)
1176 (pos)
1177 Lisp_Object pos;
1178 {
1179 register Lisp_Object val;
1180 register int pos_byte;
1181
1182 if (NILP (pos))
1183 {
1184 pos_byte = PT_BYTE;
1185 XSETFASTINT (pos, PT);
1186 }
1187
1188 if (MARKERP (pos))
1189 {
1190 pos_byte = marker_byte_position (pos);
1191
1192 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1193 return Qnil;
1194 }
1195 else
1196 {
1197 CHECK_NUMBER_COERCE_MARKER (pos);
1198
1199 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1200 return Qnil;
1201
1202 pos_byte = CHAR_TO_BYTE (XINT (pos));
1203 }
1204
1205 if (!NILP (current_buffer->enable_multibyte_characters))
1206 {
1207 DEC_POS (pos_byte);
1208 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1209 }
1210 else
1211 {
1212 pos_byte--;
1213 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1214 }
1215 return val;
1216 }
1217 \f
1218 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1219 doc: /* Return the name under which the user logged in, as a string.
1220 This is based on the effective uid, not the real uid.
1221 Also, if the environment variable LOGNAME or USER is set,
1222 that determines the value of this function.
1223
1224 If optional argument UID is an integer, return the login name of the user
1225 with that uid, or nil if there is no such user. */)
1226 (uid)
1227 Lisp_Object uid;
1228 {
1229 struct passwd *pw;
1230
1231 /* Set up the user name info if we didn't do it before.
1232 (That can happen if Emacs is dumpable
1233 but you decide to run `temacs -l loadup' and not dump. */
1234 if (INTEGERP (Vuser_login_name))
1235 init_editfns ();
1236
1237 if (NILP (uid))
1238 return Vuser_login_name;
1239
1240 CHECK_NUMBER (uid);
1241 pw = (struct passwd *) getpwuid (XINT (uid));
1242 return (pw ? build_string (pw->pw_name) : Qnil);
1243 }
1244
1245 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1246 0, 0, 0,
1247 doc: /* Return the name of the user's real uid, as a string.
1248 This ignores the environment variables LOGNAME and USER, so it differs from
1249 `user-login-name' when running under `su'. */)
1250 ()
1251 {
1252 /* Set up the user name info if we didn't do it before.
1253 (That can happen if Emacs is dumpable
1254 but you decide to run `temacs -l loadup' and not dump. */
1255 if (INTEGERP (Vuser_login_name))
1256 init_editfns ();
1257 return Vuser_real_login_name;
1258 }
1259
1260 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1261 doc: /* Return the effective uid of Emacs.
1262 Value is an integer or float, depending on the value. */)
1263 ()
1264 {
1265 return make_fixnum_or_float (geteuid ());
1266 }
1267
1268 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1269 doc: /* Return the real uid of Emacs.
1270 Value is an integer or float, depending on the value. */)
1271 ()
1272 {
1273 return make_fixnum_or_float (getuid ());
1274 }
1275
1276 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1277 doc: /* Return the full name of the user logged in, as a string.
1278 If the full name corresponding to Emacs's userid is not known,
1279 return "unknown".
1280
1281 If optional argument UID is an integer or float, return the full name
1282 of the user with that uid, or nil if there is no such user.
1283 If UID is a string, return the full name of the user with that login
1284 name, or nil if there is no such user. */)
1285 (uid)
1286 Lisp_Object uid;
1287 {
1288 struct passwd *pw;
1289 register unsigned char *p, *q;
1290 Lisp_Object full;
1291
1292 if (NILP (uid))
1293 return Vuser_full_name;
1294 else if (NUMBERP (uid))
1295 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1296 else if (STRINGP (uid))
1297 pw = (struct passwd *) getpwnam (SDATA (uid));
1298 else
1299 error ("Invalid UID specification");
1300
1301 if (!pw)
1302 return Qnil;
1303
1304 p = (unsigned char *) USER_FULL_NAME;
1305 /* Chop off everything after the first comma. */
1306 q = (unsigned char *) index (p, ',');
1307 full = make_string (p, q ? q - p : strlen (p));
1308
1309 #ifdef AMPERSAND_FULL_NAME
1310 p = SDATA (full);
1311 q = (unsigned char *) index (p, '&');
1312 /* Substitute the login name for the &, upcasing the first character. */
1313 if (q)
1314 {
1315 register unsigned char *r;
1316 Lisp_Object login;
1317
1318 login = Fuser_login_name (make_number (pw->pw_uid));
1319 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1320 bcopy (p, r, q - p);
1321 r[q - p] = 0;
1322 strcat (r, SDATA (login));
1323 r[q - p] = UPCASE (r[q - p]);
1324 strcat (r, q + 1);
1325 full = build_string (r);
1326 }
1327 #endif /* AMPERSAND_FULL_NAME */
1328
1329 return full;
1330 }
1331
1332 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1333 doc: /* Return the name of the machine you are running on, as a string. */)
1334 ()
1335 {
1336 return Vsystem_name;
1337 }
1338
1339 /* For the benefit of callers who don't want to include lisp.h */
1340
1341 char *
1342 get_system_name ()
1343 {
1344 if (STRINGP (Vsystem_name))
1345 return (char *) SDATA (Vsystem_name);
1346 else
1347 return "";
1348 }
1349
1350 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1351 doc: /* Return the process ID of Emacs, as an integer. */)
1352 ()
1353 {
1354 return make_number (getpid ());
1355 }
1356
1357 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1358 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1359 The time is returned as a list of three integers. The first has the
1360 most significant 16 bits of the seconds, while the second has the
1361 least significant 16 bits. The third integer gives the microsecond
1362 count.
1363
1364 The microsecond count is zero on systems that do not provide
1365 resolution finer than a second. */)
1366 ()
1367 {
1368 EMACS_TIME t;
1369 Lisp_Object result[3];
1370
1371 EMACS_GET_TIME (t);
1372 XSETINT (result[0], (EMACS_SECS (t) >> 16) & 0xffff);
1373 XSETINT (result[1], (EMACS_SECS (t) >> 0) & 0xffff);
1374 XSETINT (result[2], EMACS_USECS (t));
1375
1376 return Flist (3, result);
1377 }
1378 \f
1379
1380 static int
1381 lisp_time_argument (specified_time, result, usec)
1382 Lisp_Object specified_time;
1383 time_t *result;
1384 int *usec;
1385 {
1386 if (NILP (specified_time))
1387 {
1388 if (usec)
1389 {
1390 EMACS_TIME t;
1391
1392 EMACS_GET_TIME (t);
1393 *usec = EMACS_USECS (t);
1394 *result = EMACS_SECS (t);
1395 return 1;
1396 }
1397 else
1398 return time (result) != -1;
1399 }
1400 else
1401 {
1402 Lisp_Object high, low;
1403 high = Fcar (specified_time);
1404 CHECK_NUMBER (high);
1405 low = Fcdr (specified_time);
1406 if (CONSP (low))
1407 {
1408 if (usec)
1409 {
1410 Lisp_Object usec_l = Fcdr (low);
1411 if (CONSP (usec_l))
1412 usec_l = Fcar (usec_l);
1413 if (NILP (usec_l))
1414 *usec = 0;
1415 else
1416 {
1417 CHECK_NUMBER (usec_l);
1418 *usec = XINT (usec_l);
1419 }
1420 }
1421 low = Fcar (low);
1422 }
1423 else if (usec)
1424 *usec = 0;
1425 CHECK_NUMBER (low);
1426 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1427 return *result >> 16 == XINT (high);
1428 }
1429 }
1430
1431 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1432 doc: /* Return the current time, as a float number of seconds since the epoch.
1433 If an argument is given, it specifies a time to convert to float
1434 instead of the current time. The argument should have the forms:
1435 (HIGH . LOW) or (HIGH LOW USEC) or (HIGH LOW . USEC).
1436 Thus, you can use times obtained from `current-time'
1437 and from `file-attributes'.
1438
1439 WARNING: Since the result is floating point, it may not be exact.
1440 Do not use this function if precise time stamps are required. */)
1441 (specified_time)
1442 Lisp_Object specified_time;
1443 {
1444 time_t sec;
1445 int usec;
1446
1447 if (! lisp_time_argument (specified_time, &sec, &usec))
1448 error ("Invalid time specification");
1449
1450 return make_float ((sec * 1e6 + usec) / 1e6);
1451 }
1452
1453 /* Write information into buffer S of size MAXSIZE, according to the
1454 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1455 Default to Universal Time if UT is nonzero, local time otherwise.
1456 Return the number of bytes written, not including the terminating
1457 '\0'. If S is NULL, nothing will be written anywhere; so to
1458 determine how many bytes would be written, use NULL for S and
1459 ((size_t) -1) for MAXSIZE.
1460
1461 This function behaves like emacs_strftimeu, except it allows null
1462 bytes in FORMAT. */
1463 static size_t
1464 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1465 char *s;
1466 size_t maxsize;
1467 const char *format;
1468 size_t format_len;
1469 const struct tm *tp;
1470 int ut;
1471 {
1472 size_t total = 0;
1473
1474 /* Loop through all the null-terminated strings in the format
1475 argument. Normally there's just one null-terminated string, but
1476 there can be arbitrarily many, concatenated together, if the
1477 format contains '\0' bytes. emacs_strftimeu stops at the first
1478 '\0' byte so we must invoke it separately for each such string. */
1479 for (;;)
1480 {
1481 size_t len;
1482 size_t result;
1483
1484 if (s)
1485 s[0] = '\1';
1486
1487 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1488
1489 if (s)
1490 {
1491 if (result == 0 && s[0] != '\0')
1492 return 0;
1493 s += result + 1;
1494 }
1495
1496 maxsize -= result + 1;
1497 total += result;
1498 len = strlen (format);
1499 if (len == format_len)
1500 return total;
1501 total++;
1502 format += len + 1;
1503 format_len -= len + 1;
1504 }
1505 }
1506
1507 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1508 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1509 TIME is specified as (HIGH LOW . IGNORED) or (HIGH . LOW), as returned by
1510 `current-time' or `file-attributes'.
1511 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1512 as Universal Time; nil means describe TIME in the local time zone.
1513 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1514 by text that describes the specified date and time in TIME:
1515
1516 %Y is the year, %y within the century, %C the century.
1517 %G is the year corresponding to the ISO week, %g within the century.
1518 %m is the numeric month.
1519 %b and %h are the locale's abbreviated month name, %B the full name.
1520 %d is the day of the month, zero-padded, %e is blank-padded.
1521 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1522 %a is the locale's abbreviated name of the day of week, %A the full name.
1523 %U is the week number starting on Sunday, %W starting on Monday,
1524 %V according to ISO 8601.
1525 %j is the day of the year.
1526
1527 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1528 only blank-padded, %l is like %I blank-padded.
1529 %p is the locale's equivalent of either AM or PM.
1530 %M is the minute.
1531 %S is the second.
1532 %Z is the time zone name, %z is the numeric form.
1533 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1534
1535 %c is the locale's date and time format.
1536 %x is the locale's "preferred" date format.
1537 %D is like "%m/%d/%y".
1538
1539 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1540 %X is the locale's "preferred" time format.
1541
1542 Finally, %n is a newline, %t is a tab, %% is a literal %.
1543
1544 Certain flags and modifiers are available with some format controls.
1545 The flags are `_', `-', `^' and `#'. For certain characters X,
1546 %_X is like %X, but padded with blanks; %-X is like %X,
1547 but without padding. %^X is like %X, but with all textual
1548 characters up-cased; %#X is like %X, but with letter-case of
1549 all textual characters reversed.
1550 %NX (where N stands for an integer) is like %X,
1551 but takes up at least N (a number) positions.
1552 The modifiers are `E' and `O'. For certain characters X,
1553 %EX is a locale's alternative version of %X;
1554 %OX is like %X, but uses the locale's number symbols.
1555
1556 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1557 (format_string, time, universal)
1558 Lisp_Object format_string, time, universal;
1559 {
1560 time_t value;
1561 int size;
1562 struct tm *tm;
1563 int ut = ! NILP (universal);
1564
1565 CHECK_STRING (format_string);
1566
1567 if (! lisp_time_argument (time, &value, NULL))
1568 error ("Invalid time specification");
1569
1570 format_string = code_convert_string_norecord (format_string,
1571 Vlocale_coding_system, 1);
1572
1573 /* This is probably enough. */
1574 size = SBYTES (format_string) * 6 + 50;
1575
1576 tm = ut ? gmtime (&value) : localtime (&value);
1577 if (! tm)
1578 error ("Specified time is not representable");
1579
1580 synchronize_system_time_locale ();
1581
1582 while (1)
1583 {
1584 char *buf = (char *) alloca (size + 1);
1585 int result;
1586
1587 buf[0] = '\1';
1588 result = emacs_memftimeu (buf, size, SDATA (format_string),
1589 SBYTES (format_string),
1590 tm, ut);
1591 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1592 return code_convert_string_norecord (make_string (buf, result),
1593 Vlocale_coding_system, 0);
1594
1595 /* If buffer was too small, make it bigger and try again. */
1596 result = emacs_memftimeu (NULL, (size_t) -1,
1597 SDATA (format_string),
1598 SBYTES (format_string),
1599 tm, ut);
1600 size = result + 1;
1601 }
1602 }
1603
1604 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1605 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1606 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED)
1607 or (HIGH . LOW), as from `current-time' and `file-attributes', or `nil'
1608 to use the current time. The list has the following nine members:
1609 SEC is an integer between 0 and 60; SEC is 60 for a leap second, which
1610 only some operating systems support. MINUTE is an integer between 0 and 59.
1611 HOUR is an integer between 0 and 23. DAY is an integer between 1 and 31.
1612 MONTH is an integer between 1 and 12. YEAR is an integer indicating the
1613 four-digit year. DOW is the day of week, an integer between 0 and 6, where
1614 0 is Sunday. DST is t if daylight savings time is effect, otherwise nil.
1615 ZONE is an integer indicating the number of seconds east of Greenwich.
1616 (Note that Common Lisp has different meanings for DOW and ZONE.) */)
1617 (specified_time)
1618 Lisp_Object specified_time;
1619 {
1620 time_t time_spec;
1621 struct tm save_tm;
1622 struct tm *decoded_time;
1623 Lisp_Object list_args[9];
1624
1625 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1626 error ("Invalid time specification");
1627
1628 decoded_time = localtime (&time_spec);
1629 if (! decoded_time)
1630 error ("Specified time is not representable");
1631 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1632 XSETFASTINT (list_args[1], decoded_time->tm_min);
1633 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1634 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1635 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1636 XSETINT (list_args[5], decoded_time->tm_year + 1900);
1637 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1638 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1639
1640 /* Make a copy, in case gmtime modifies the struct. */
1641 save_tm = *decoded_time;
1642 decoded_time = gmtime (&time_spec);
1643 if (decoded_time == 0)
1644 list_args[8] = Qnil;
1645 else
1646 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1647 return Flist (9, list_args);
1648 }
1649
1650 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1651 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1652 This is the reverse operation of `decode-time', which see.
1653 ZONE defaults to the current time zone rule. This can
1654 be a string or t (as from `set-time-zone-rule'), or it can be a list
1655 \(as from `current-time-zone') or an integer (as from `decode-time')
1656 applied without consideration for daylight savings time.
1657
1658 You can pass more than 7 arguments; then the first six arguments
1659 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1660 The intervening arguments are ignored.
1661 This feature lets (apply 'encode-time (decode-time ...)) work.
1662
1663 Out-of-range values for SEC, MINUTE, HOUR, DAY, or MONTH are allowed;
1664 for example, a DAY of 0 means the day preceding the given month.
1665 Year numbers less than 100 are treated just like other year numbers.
1666 If you want them to stand for years in this century, you must do that yourself.
1667
1668 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1669 (nargs, args)
1670 int nargs;
1671 register Lisp_Object *args;
1672 {
1673 time_t time;
1674 struct tm tm;
1675 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1676
1677 CHECK_NUMBER (args[0]); /* second */
1678 CHECK_NUMBER (args[1]); /* minute */
1679 CHECK_NUMBER (args[2]); /* hour */
1680 CHECK_NUMBER (args[3]); /* day */
1681 CHECK_NUMBER (args[4]); /* month */
1682 CHECK_NUMBER (args[5]); /* year */
1683
1684 tm.tm_sec = XINT (args[0]);
1685 tm.tm_min = XINT (args[1]);
1686 tm.tm_hour = XINT (args[2]);
1687 tm.tm_mday = XINT (args[3]);
1688 tm.tm_mon = XINT (args[4]) - 1;
1689 tm.tm_year = XINT (args[5]) - 1900;
1690 tm.tm_isdst = -1;
1691
1692 if (CONSP (zone))
1693 zone = Fcar (zone);
1694 if (NILP (zone))
1695 time = mktime (&tm);
1696 else
1697 {
1698 char tzbuf[100];
1699 char *tzstring;
1700 char **oldenv = environ, **newenv;
1701
1702 if (EQ (zone, Qt))
1703 tzstring = "UTC0";
1704 else if (STRINGP (zone))
1705 tzstring = (char *) SDATA (zone);
1706 else if (INTEGERP (zone))
1707 {
1708 int abszone = abs (XINT (zone));
1709 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1710 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1711 tzstring = tzbuf;
1712 }
1713 else
1714 error ("Invalid time zone specification");
1715
1716 /* Set TZ before calling mktime; merely adjusting mktime's returned
1717 value doesn't suffice, since that would mishandle leap seconds. */
1718 set_time_zone_rule (tzstring);
1719
1720 time = mktime (&tm);
1721
1722 /* Restore TZ to previous value. */
1723 newenv = environ;
1724 environ = oldenv;
1725 xfree (newenv);
1726 #ifdef LOCALTIME_CACHE
1727 tzset ();
1728 #endif
1729 }
1730
1731 if (time == (time_t) -1)
1732 error ("Specified time is not representable");
1733
1734 return make_time (time);
1735 }
1736
1737 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1738 doc: /* Return the current time, as a human-readable string.
1739 Programs can use this function to decode a time,
1740 since the number of columns in each field is fixed.
1741 The format is `Sun Sep 16 01:03:52 1973'.
1742 However, see also the functions `decode-time' and `format-time-string'
1743 which provide a much more powerful and general facility.
1744
1745 If an argument is given, it specifies a time to format
1746 instead of the current time. The argument should have the form:
1747 (HIGH . LOW)
1748 or the form:
1749 (HIGH LOW . IGNORED).
1750 Thus, you can use times obtained from `current-time'
1751 and from `file-attributes'. */)
1752 (specified_time)
1753 Lisp_Object specified_time;
1754 {
1755 time_t value;
1756 char buf[30];
1757 register char *tem;
1758
1759 if (! lisp_time_argument (specified_time, &value, NULL))
1760 value = -1;
1761 tem = (char *) ctime (&value);
1762
1763 strncpy (buf, tem, 24);
1764 buf[24] = 0;
1765
1766 return build_string (buf);
1767 }
1768
1769 #define TM_YEAR_BASE 1900
1770
1771 /* Yield A - B, measured in seconds.
1772 This function is copied from the GNU C Library. */
1773 static int
1774 tm_diff (a, b)
1775 struct tm *a, *b;
1776 {
1777 /* Compute intervening leap days correctly even if year is negative.
1778 Take care to avoid int overflow in leap day calculations,
1779 but it's OK to assume that A and B are close to each other. */
1780 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1781 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1782 int a100 = a4 / 25 - (a4 % 25 < 0);
1783 int b100 = b4 / 25 - (b4 % 25 < 0);
1784 int a400 = a100 >> 2;
1785 int b400 = b100 >> 2;
1786 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1787 int years = a->tm_year - b->tm_year;
1788 int days = (365 * years + intervening_leap_days
1789 + (a->tm_yday - b->tm_yday));
1790 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1791 + (a->tm_min - b->tm_min))
1792 + (a->tm_sec - b->tm_sec));
1793 }
1794
1795 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1796 doc: /* Return the offset and name for the local time zone.
1797 This returns a list of the form (OFFSET NAME).
1798 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1799 A negative value means west of Greenwich.
1800 NAME is a string giving the name of the time zone.
1801 If an argument is given, it specifies when the time zone offset is determined
1802 instead of using the current time. The argument should have the form:
1803 (HIGH . LOW)
1804 or the form:
1805 (HIGH LOW . IGNORED).
1806 Thus, you can use times obtained from `current-time'
1807 and from `file-attributes'.
1808
1809 Some operating systems cannot provide all this information to Emacs;
1810 in this case, `current-time-zone' returns a list containing nil for
1811 the data it can't find. */)
1812 (specified_time)
1813 Lisp_Object specified_time;
1814 {
1815 time_t value;
1816 struct tm *t;
1817 struct tm gmt;
1818
1819 if (lisp_time_argument (specified_time, &value, NULL)
1820 && (t = gmtime (&value)) != 0
1821 && (gmt = *t, t = localtime (&value)) != 0)
1822 {
1823 int offset = tm_diff (t, &gmt);
1824 char *s = 0;
1825 char buf[6];
1826 #ifdef HAVE_TM_ZONE
1827 if (t->tm_zone)
1828 s = (char *)t->tm_zone;
1829 #else /* not HAVE_TM_ZONE */
1830 #ifdef HAVE_TZNAME
1831 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1832 s = tzname[t->tm_isdst];
1833 #endif
1834 #endif /* not HAVE_TM_ZONE */
1835
1836 #if defined HAVE_TM_ZONE || defined HAVE_TZNAME
1837 if (s)
1838 {
1839 /* On Japanese w32, we can get a Japanese string as time
1840 zone name. Don't accept that. */
1841 char *p;
1842 for (p = s; *p && (isalnum ((unsigned char)*p) || *p == ' '); ++p)
1843 ;
1844 if (p == s || *p)
1845 s = NULL;
1846 }
1847 #endif
1848
1849 if (!s)
1850 {
1851 /* No local time zone name is available; use "+-NNNN" instead. */
1852 int am = (offset < 0 ? -offset : offset) / 60;
1853 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
1854 s = buf;
1855 }
1856 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
1857 }
1858 else
1859 return Fmake_list (make_number (2), Qnil);
1860 }
1861
1862 /* This holds the value of `environ' produced by the previous
1863 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
1864 has never been called. */
1865 static char **environbuf;
1866
1867 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
1868 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
1869 If TZ is nil, use implementation-defined default time zone information.
1870 If TZ is t, use Universal Time. */)
1871 (tz)
1872 Lisp_Object tz;
1873 {
1874 char *tzstring;
1875
1876 if (NILP (tz))
1877 tzstring = 0;
1878 else if (EQ (tz, Qt))
1879 tzstring = "UTC0";
1880 else
1881 {
1882 CHECK_STRING (tz);
1883 tzstring = (char *) SDATA (tz);
1884 }
1885
1886 set_time_zone_rule (tzstring);
1887 if (environbuf)
1888 free (environbuf);
1889 environbuf = environ;
1890
1891 return Qnil;
1892 }
1893
1894 #ifdef LOCALTIME_CACHE
1895
1896 /* These two values are known to load tz files in buggy implementations,
1897 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
1898 Their values shouldn't matter in non-buggy implementations.
1899 We don't use string literals for these strings,
1900 since if a string in the environment is in readonly
1901 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
1902 See Sun bugs 1113095 and 1114114, ``Timezone routines
1903 improperly modify environment''. */
1904
1905 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
1906 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
1907
1908 #endif
1909
1910 /* Set the local time zone rule to TZSTRING.
1911 This allocates memory into `environ', which it is the caller's
1912 responsibility to free. */
1913
1914 void
1915 set_time_zone_rule (tzstring)
1916 char *tzstring;
1917 {
1918 int envptrs;
1919 char **from, **to, **newenv;
1920
1921 /* Make the ENVIRON vector longer with room for TZSTRING. */
1922 for (from = environ; *from; from++)
1923 continue;
1924 envptrs = from - environ + 2;
1925 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
1926 + (tzstring ? strlen (tzstring) + 4 : 0));
1927
1928 /* Add TZSTRING to the end of environ, as a value for TZ. */
1929 if (tzstring)
1930 {
1931 char *t = (char *) (to + envptrs);
1932 strcpy (t, "TZ=");
1933 strcat (t, tzstring);
1934 *to++ = t;
1935 }
1936
1937 /* Copy the old environ vector elements into NEWENV,
1938 but don't copy the TZ variable.
1939 So we have only one definition of TZ, which came from TZSTRING. */
1940 for (from = environ; *from; from++)
1941 if (strncmp (*from, "TZ=", 3) != 0)
1942 *to++ = *from;
1943 *to = 0;
1944
1945 environ = newenv;
1946
1947 /* If we do have a TZSTRING, NEWENV points to the vector slot where
1948 the TZ variable is stored. If we do not have a TZSTRING,
1949 TO points to the vector slot which has the terminating null. */
1950
1951 #ifdef LOCALTIME_CACHE
1952 {
1953 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
1954 "US/Pacific" that loads a tz file, then changes to a value like
1955 "XXX0" that does not load a tz file, and then changes back to
1956 its original value, the last change is (incorrectly) ignored.
1957 Also, if TZ changes twice in succession to values that do
1958 not load a tz file, tzset can dump core (see Sun bug#1225179).
1959 The following code works around these bugs. */
1960
1961 if (tzstring)
1962 {
1963 /* Temporarily set TZ to a value that loads a tz file
1964 and that differs from tzstring. */
1965 char *tz = *newenv;
1966 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
1967 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
1968 tzset ();
1969 *newenv = tz;
1970 }
1971 else
1972 {
1973 /* The implied tzstring is unknown, so temporarily set TZ to
1974 two different values that each load a tz file. */
1975 *to = set_time_zone_rule_tz1;
1976 to[1] = 0;
1977 tzset ();
1978 *to = set_time_zone_rule_tz2;
1979 tzset ();
1980 *to = 0;
1981 }
1982
1983 /* Now TZ has the desired value, and tzset can be invoked safely. */
1984 }
1985
1986 tzset ();
1987 #endif
1988 }
1989 \f
1990 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
1991 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
1992 type of object is Lisp_String). INHERIT is passed to
1993 INSERT_FROM_STRING_FUNC as the last argument. */
1994
1995 static void
1996 general_insert_function (insert_func, insert_from_string_func,
1997 inherit, nargs, args)
1998 void (*insert_func) P_ ((const unsigned char *, int));
1999 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
2000 int inherit, nargs;
2001 register Lisp_Object *args;
2002 {
2003 register int argnum;
2004 register Lisp_Object val;
2005
2006 for (argnum = 0; argnum < nargs; argnum++)
2007 {
2008 val = args[argnum];
2009 retry:
2010 if (INTEGERP (val))
2011 {
2012 unsigned char str[MAX_MULTIBYTE_LENGTH];
2013 int len;
2014
2015 if (!NILP (current_buffer->enable_multibyte_characters))
2016 len = CHAR_STRING (XFASTINT (val), str);
2017 else
2018 {
2019 str[0] = (SINGLE_BYTE_CHAR_P (XINT (val))
2020 ? XINT (val)
2021 : multibyte_char_to_unibyte (XINT (val), Qnil));
2022 len = 1;
2023 }
2024 (*insert_func) (str, len);
2025 }
2026 else if (STRINGP (val))
2027 {
2028 (*insert_from_string_func) (val, 0, 0,
2029 SCHARS (val),
2030 SBYTES (val),
2031 inherit);
2032 }
2033 else
2034 {
2035 val = wrong_type_argument (Qchar_or_string_p, val);
2036 goto retry;
2037 }
2038 }
2039 }
2040
2041 void
2042 insert1 (arg)
2043 Lisp_Object arg;
2044 {
2045 Finsert (1, &arg);
2046 }
2047
2048
2049 /* Callers passing one argument to Finsert need not gcpro the
2050 argument "array", since the only element of the array will
2051 not be used after calling insert or insert_from_string, so
2052 we don't care if it gets trashed. */
2053
2054 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2055 doc: /* Insert the arguments, either strings or characters, at point.
2056 Point and before-insertion markers move forward to end up
2057 after the inserted text.
2058 Any other markers at the point of insertion remain before the text.
2059
2060 If the current buffer is multibyte, unibyte strings are converted
2061 to multibyte for insertion (see `string-make-multibyte').
2062 If the current buffer is unibyte, multibyte strings are converted
2063 to unibyte for insertion (see `string-make-unibyte').
2064
2065 When operating on binary data, it may be necessary to preserve the
2066 original bytes of a unibyte string when inserting it into a multibyte
2067 buffer; to accomplish this, apply `string-as-multibyte' to the string
2068 and insert the result.
2069
2070 usage: (insert &rest ARGS) */)
2071 (nargs, args)
2072 int nargs;
2073 register Lisp_Object *args;
2074 {
2075 general_insert_function (insert, insert_from_string, 0, nargs, args);
2076 return Qnil;
2077 }
2078
2079 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2080 0, MANY, 0,
2081 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2082 Point and before-insertion markers move forward to end up
2083 after the inserted text.
2084 Any other markers at the point of insertion remain before the text.
2085
2086 If the current buffer is multibyte, unibyte strings are converted
2087 to multibyte for insertion (see `unibyte-char-to-multibyte').
2088 If the current buffer is unibyte, multibyte strings are converted
2089 to unibyte for insertion.
2090
2091 usage: (insert-and-inherit &rest ARGS) */)
2092 (nargs, args)
2093 int nargs;
2094 register Lisp_Object *args;
2095 {
2096 general_insert_function (insert_and_inherit, insert_from_string, 1,
2097 nargs, args);
2098 return Qnil;
2099 }
2100
2101 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2102 doc: /* Insert strings or characters at point, relocating markers after the text.
2103 Point and markers move forward to end up after the inserted text.
2104
2105 If the current buffer is multibyte, unibyte strings are converted
2106 to multibyte for insertion (see `unibyte-char-to-multibyte').
2107 If the current buffer is unibyte, multibyte strings are converted
2108 to unibyte for insertion.
2109
2110 usage: (insert-before-markers &rest ARGS) */)
2111 (nargs, args)
2112 int nargs;
2113 register Lisp_Object *args;
2114 {
2115 general_insert_function (insert_before_markers,
2116 insert_from_string_before_markers, 0,
2117 nargs, args);
2118 return Qnil;
2119 }
2120
2121 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2122 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2123 doc: /* Insert text at point, relocating markers and inheriting properties.
2124 Point and markers move forward to end up after the inserted text.
2125
2126 If the current buffer is multibyte, unibyte strings are converted
2127 to multibyte for insertion (see `unibyte-char-to-multibyte').
2128 If the current buffer is unibyte, multibyte strings are converted
2129 to unibyte for insertion.
2130
2131 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2132 (nargs, args)
2133 int nargs;
2134 register Lisp_Object *args;
2135 {
2136 general_insert_function (insert_before_markers_and_inherit,
2137 insert_from_string_before_markers, 1,
2138 nargs, args);
2139 return Qnil;
2140 }
2141 \f
2142 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2143 doc: /* Insert COUNT (second arg) copies of CHARACTER (first arg).
2144 Both arguments are required.
2145 Point, and before-insertion markers, are relocated as in the function `insert'.
2146 The optional third arg INHERIT, if non-nil, says to inherit text properties
2147 from adjoining text, if those properties are sticky. */)
2148 (character, count, inherit)
2149 Lisp_Object character, count, inherit;
2150 {
2151 register unsigned char *string;
2152 register int strlen;
2153 register int i, n;
2154 int len;
2155 unsigned char str[MAX_MULTIBYTE_LENGTH];
2156
2157 CHECK_NUMBER (character);
2158 CHECK_NUMBER (count);
2159
2160 if (!NILP (current_buffer->enable_multibyte_characters))
2161 len = CHAR_STRING (XFASTINT (character), str);
2162 else
2163 str[0] = XFASTINT (character), len = 1;
2164 n = XINT (count) * len;
2165 if (n <= 0)
2166 return Qnil;
2167 strlen = min (n, 256 * len);
2168 string = (unsigned char *) alloca (strlen);
2169 for (i = 0; i < strlen; i++)
2170 string[i] = str[i % len];
2171 while (n >= strlen)
2172 {
2173 QUIT;
2174 if (!NILP (inherit))
2175 insert_and_inherit (string, strlen);
2176 else
2177 insert (string, strlen);
2178 n -= strlen;
2179 }
2180 if (n > 0)
2181 {
2182 if (!NILP (inherit))
2183 insert_and_inherit (string, n);
2184 else
2185 insert (string, n);
2186 }
2187 return Qnil;
2188 }
2189
2190 \f
2191 /* Making strings from buffer contents. */
2192
2193 /* Return a Lisp_String containing the text of the current buffer from
2194 START to END. If text properties are in use and the current buffer
2195 has properties in the range specified, the resulting string will also
2196 have them, if PROPS is nonzero.
2197
2198 We don't want to use plain old make_string here, because it calls
2199 make_uninit_string, which can cause the buffer arena to be
2200 compacted. make_string has no way of knowing that the data has
2201 been moved, and thus copies the wrong data into the string. This
2202 doesn't effect most of the other users of make_string, so it should
2203 be left as is. But we should use this function when conjuring
2204 buffer substrings. */
2205
2206 Lisp_Object
2207 make_buffer_string (start, end, props)
2208 int start, end;
2209 int props;
2210 {
2211 int start_byte = CHAR_TO_BYTE (start);
2212 int end_byte = CHAR_TO_BYTE (end);
2213
2214 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2215 }
2216
2217 /* Return a Lisp_String containing the text of the current buffer from
2218 START / START_BYTE to END / END_BYTE.
2219
2220 If text properties are in use and the current buffer
2221 has properties in the range specified, the resulting string will also
2222 have them, if PROPS is nonzero.
2223
2224 We don't want to use plain old make_string here, because it calls
2225 make_uninit_string, which can cause the buffer arena to be
2226 compacted. make_string has no way of knowing that the data has
2227 been moved, and thus copies the wrong data into the string. This
2228 doesn't effect most of the other users of make_string, so it should
2229 be left as is. But we should use this function when conjuring
2230 buffer substrings. */
2231
2232 Lisp_Object
2233 make_buffer_string_both (start, start_byte, end, end_byte, props)
2234 int start, start_byte, end, end_byte;
2235 int props;
2236 {
2237 Lisp_Object result, tem, tem1;
2238
2239 if (start < GPT && GPT < end)
2240 move_gap (start);
2241
2242 if (! NILP (current_buffer->enable_multibyte_characters))
2243 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2244 else
2245 result = make_uninit_string (end - start);
2246 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2247 end_byte - start_byte);
2248
2249 /* If desired, update and copy the text properties. */
2250 if (props)
2251 {
2252 update_buffer_properties (start, end);
2253
2254 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2255 tem1 = Ftext_properties_at (make_number (start), Qnil);
2256
2257 if (XINT (tem) != end || !NILP (tem1))
2258 copy_intervals_to_string (result, current_buffer, start,
2259 end - start);
2260 }
2261
2262 return result;
2263 }
2264
2265 /* Call Vbuffer_access_fontify_functions for the range START ... END
2266 in the current buffer, if necessary. */
2267
2268 static void
2269 update_buffer_properties (start, end)
2270 int start, end;
2271 {
2272 /* If this buffer has some access functions,
2273 call them, specifying the range of the buffer being accessed. */
2274 if (!NILP (Vbuffer_access_fontify_functions))
2275 {
2276 Lisp_Object args[3];
2277 Lisp_Object tem;
2278
2279 args[0] = Qbuffer_access_fontify_functions;
2280 XSETINT (args[1], start);
2281 XSETINT (args[2], end);
2282
2283 /* But don't call them if we can tell that the work
2284 has already been done. */
2285 if (!NILP (Vbuffer_access_fontified_property))
2286 {
2287 tem = Ftext_property_any (args[1], args[2],
2288 Vbuffer_access_fontified_property,
2289 Qnil, Qnil);
2290 if (! NILP (tem))
2291 Frun_hook_with_args (3, args);
2292 }
2293 else
2294 Frun_hook_with_args (3, args);
2295 }
2296 }
2297
2298 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2299 doc: /* Return the contents of part of the current buffer as a string.
2300 The two arguments START and END are character positions;
2301 they can be in either order.
2302 The string returned is multibyte if the buffer is multibyte.
2303
2304 This function copies the text properties of that part of the buffer
2305 into the result string; if you don't want the text properties,
2306 use `buffer-substring-no-properties' instead. */)
2307 (start, end)
2308 Lisp_Object start, end;
2309 {
2310 register int b, e;
2311
2312 validate_region (&start, &end);
2313 b = XINT (start);
2314 e = XINT (end);
2315
2316 return make_buffer_string (b, e, 1);
2317 }
2318
2319 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2320 Sbuffer_substring_no_properties, 2, 2, 0,
2321 doc: /* Return the characters of part of the buffer, without the text properties.
2322 The two arguments START and END are character positions;
2323 they can be in either order. */)
2324 (start, end)
2325 Lisp_Object start, end;
2326 {
2327 register int b, e;
2328
2329 validate_region (&start, &end);
2330 b = XINT (start);
2331 e = XINT (end);
2332
2333 return make_buffer_string (b, e, 0);
2334 }
2335
2336 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2337 doc: /* Return the contents of the current buffer as a string.
2338 If narrowing is in effect, this function returns only the visible part
2339 of the buffer. */)
2340 ()
2341 {
2342 return make_buffer_string (BEGV, ZV, 1);
2343 }
2344
2345 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2346 1, 3, 0,
2347 doc: /* Insert before point a substring of the contents of buffer BUFFER.
2348 BUFFER may be a buffer or a buffer name.
2349 Arguments START and END are character numbers specifying the substring.
2350 They default to the beginning and the end of BUFFER. */)
2351 (buf, start, end)
2352 Lisp_Object buf, start, end;
2353 {
2354 register int b, e, temp;
2355 register struct buffer *bp, *obuf;
2356 Lisp_Object buffer;
2357
2358 buffer = Fget_buffer (buf);
2359 if (NILP (buffer))
2360 nsberror (buf);
2361 bp = XBUFFER (buffer);
2362 if (NILP (bp->name))
2363 error ("Selecting deleted buffer");
2364
2365 if (NILP (start))
2366 b = BUF_BEGV (bp);
2367 else
2368 {
2369 CHECK_NUMBER_COERCE_MARKER (start);
2370 b = XINT (start);
2371 }
2372 if (NILP (end))
2373 e = BUF_ZV (bp);
2374 else
2375 {
2376 CHECK_NUMBER_COERCE_MARKER (end);
2377 e = XINT (end);
2378 }
2379
2380 if (b > e)
2381 temp = b, b = e, e = temp;
2382
2383 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2384 args_out_of_range (start, end);
2385
2386 obuf = current_buffer;
2387 set_buffer_internal_1 (bp);
2388 update_buffer_properties (b, e);
2389 set_buffer_internal_1 (obuf);
2390
2391 insert_from_buffer (bp, b, e - b, 0);
2392 return Qnil;
2393 }
2394
2395 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2396 6, 6, 0,
2397 doc: /* Compare two substrings of two buffers; return result as number.
2398 the value is -N if first string is less after N-1 chars,
2399 +N if first string is greater after N-1 chars, or 0 if strings match.
2400 Each substring is represented as three arguments: BUFFER, START and END.
2401 That makes six args in all, three for each substring.
2402
2403 The value of `case-fold-search' in the current buffer
2404 determines whether case is significant or ignored. */)
2405 (buffer1, start1, end1, buffer2, start2, end2)
2406 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2407 {
2408 register int begp1, endp1, begp2, endp2, temp;
2409 register struct buffer *bp1, *bp2;
2410 register Lisp_Object *trt
2411 = (!NILP (current_buffer->case_fold_search)
2412 ? XCHAR_TABLE (current_buffer->case_canon_table)->contents : 0);
2413 int chars = 0;
2414 int i1, i2, i1_byte, i2_byte;
2415
2416 /* Find the first buffer and its substring. */
2417
2418 if (NILP (buffer1))
2419 bp1 = current_buffer;
2420 else
2421 {
2422 Lisp_Object buf1;
2423 buf1 = Fget_buffer (buffer1);
2424 if (NILP (buf1))
2425 nsberror (buffer1);
2426 bp1 = XBUFFER (buf1);
2427 if (NILP (bp1->name))
2428 error ("Selecting deleted buffer");
2429 }
2430
2431 if (NILP (start1))
2432 begp1 = BUF_BEGV (bp1);
2433 else
2434 {
2435 CHECK_NUMBER_COERCE_MARKER (start1);
2436 begp1 = XINT (start1);
2437 }
2438 if (NILP (end1))
2439 endp1 = BUF_ZV (bp1);
2440 else
2441 {
2442 CHECK_NUMBER_COERCE_MARKER (end1);
2443 endp1 = XINT (end1);
2444 }
2445
2446 if (begp1 > endp1)
2447 temp = begp1, begp1 = endp1, endp1 = temp;
2448
2449 if (!(BUF_BEGV (bp1) <= begp1
2450 && begp1 <= endp1
2451 && endp1 <= BUF_ZV (bp1)))
2452 args_out_of_range (start1, end1);
2453
2454 /* Likewise for second substring. */
2455
2456 if (NILP (buffer2))
2457 bp2 = current_buffer;
2458 else
2459 {
2460 Lisp_Object buf2;
2461 buf2 = Fget_buffer (buffer2);
2462 if (NILP (buf2))
2463 nsberror (buffer2);
2464 bp2 = XBUFFER (buf2);
2465 if (NILP (bp2->name))
2466 error ("Selecting deleted buffer");
2467 }
2468
2469 if (NILP (start2))
2470 begp2 = BUF_BEGV (bp2);
2471 else
2472 {
2473 CHECK_NUMBER_COERCE_MARKER (start2);
2474 begp2 = XINT (start2);
2475 }
2476 if (NILP (end2))
2477 endp2 = BUF_ZV (bp2);
2478 else
2479 {
2480 CHECK_NUMBER_COERCE_MARKER (end2);
2481 endp2 = XINT (end2);
2482 }
2483
2484 if (begp2 > endp2)
2485 temp = begp2, begp2 = endp2, endp2 = temp;
2486
2487 if (!(BUF_BEGV (bp2) <= begp2
2488 && begp2 <= endp2
2489 && endp2 <= BUF_ZV (bp2)))
2490 args_out_of_range (start2, end2);
2491
2492 i1 = begp1;
2493 i2 = begp2;
2494 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2495 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2496
2497 while (i1 < endp1 && i2 < endp2)
2498 {
2499 /* When we find a mismatch, we must compare the
2500 characters, not just the bytes. */
2501 int c1, c2;
2502
2503 QUIT;
2504
2505 if (! NILP (bp1->enable_multibyte_characters))
2506 {
2507 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2508 BUF_INC_POS (bp1, i1_byte);
2509 i1++;
2510 }
2511 else
2512 {
2513 c1 = BUF_FETCH_BYTE (bp1, i1);
2514 c1 = unibyte_char_to_multibyte (c1);
2515 i1++;
2516 }
2517
2518 if (! NILP (bp2->enable_multibyte_characters))
2519 {
2520 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2521 BUF_INC_POS (bp2, i2_byte);
2522 i2++;
2523 }
2524 else
2525 {
2526 c2 = BUF_FETCH_BYTE (bp2, i2);
2527 c2 = unibyte_char_to_multibyte (c2);
2528 i2++;
2529 }
2530
2531 if (trt)
2532 {
2533 c1 = XINT (trt[c1]);
2534 c2 = XINT (trt[c2]);
2535 }
2536 if (c1 < c2)
2537 return make_number (- 1 - chars);
2538 if (c1 > c2)
2539 return make_number (chars + 1);
2540
2541 chars++;
2542 }
2543
2544 /* The strings match as far as they go.
2545 If one is shorter, that one is less. */
2546 if (chars < endp1 - begp1)
2547 return make_number (chars + 1);
2548 else if (chars < endp2 - begp2)
2549 return make_number (- chars - 1);
2550
2551 /* Same length too => they are equal. */
2552 return make_number (0);
2553 }
2554 \f
2555 static Lisp_Object
2556 subst_char_in_region_unwind (arg)
2557 Lisp_Object arg;
2558 {
2559 return current_buffer->undo_list = arg;
2560 }
2561
2562 static Lisp_Object
2563 subst_char_in_region_unwind_1 (arg)
2564 Lisp_Object arg;
2565 {
2566 return current_buffer->filename = arg;
2567 }
2568
2569 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2570 Ssubst_char_in_region, 4, 5, 0,
2571 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2572 If optional arg NOUNDO is non-nil, don't record this change for undo
2573 and don't mark the buffer as really changed.
2574 Both characters must have the same length of multi-byte form. */)
2575 (start, end, fromchar, tochar, noundo)
2576 Lisp_Object start, end, fromchar, tochar, noundo;
2577 {
2578 register int pos, pos_byte, stop, i, len, end_byte;
2579 int changed = 0;
2580 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2581 unsigned char *p;
2582 int count = SPECPDL_INDEX ();
2583 #define COMBINING_NO 0
2584 #define COMBINING_BEFORE 1
2585 #define COMBINING_AFTER 2
2586 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2587 int maybe_byte_combining = COMBINING_NO;
2588 int last_changed = 0;
2589 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2590
2591 validate_region (&start, &end);
2592 CHECK_NUMBER (fromchar);
2593 CHECK_NUMBER (tochar);
2594
2595 if (multibyte_p)
2596 {
2597 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2598 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2599 error ("Characters in subst-char-in-region have different byte-lengths");
2600 if (!ASCII_BYTE_P (*tostr))
2601 {
2602 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2603 complete multibyte character, it may be combined with the
2604 after bytes. If it is in the range 0xA0..0xFF, it may be
2605 combined with the before and after bytes. */
2606 if (!CHAR_HEAD_P (*tostr))
2607 maybe_byte_combining = COMBINING_BOTH;
2608 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2609 maybe_byte_combining = COMBINING_AFTER;
2610 }
2611 }
2612 else
2613 {
2614 len = 1;
2615 fromstr[0] = XFASTINT (fromchar);
2616 tostr[0] = XFASTINT (tochar);
2617 }
2618
2619 pos = XINT (start);
2620 pos_byte = CHAR_TO_BYTE (pos);
2621 stop = CHAR_TO_BYTE (XINT (end));
2622 end_byte = stop;
2623
2624 /* If we don't want undo, turn off putting stuff on the list.
2625 That's faster than getting rid of things,
2626 and it prevents even the entry for a first change.
2627 Also inhibit locking the file. */
2628 if (!NILP (noundo))
2629 {
2630 record_unwind_protect (subst_char_in_region_unwind,
2631 current_buffer->undo_list);
2632 current_buffer->undo_list = Qt;
2633 /* Don't do file-locking. */
2634 record_unwind_protect (subst_char_in_region_unwind_1,
2635 current_buffer->filename);
2636 current_buffer->filename = Qnil;
2637 }
2638
2639 if (pos_byte < GPT_BYTE)
2640 stop = min (stop, GPT_BYTE);
2641 while (1)
2642 {
2643 int pos_byte_next = pos_byte;
2644
2645 if (pos_byte >= stop)
2646 {
2647 if (pos_byte >= end_byte) break;
2648 stop = end_byte;
2649 }
2650 p = BYTE_POS_ADDR (pos_byte);
2651 if (multibyte_p)
2652 INC_POS (pos_byte_next);
2653 else
2654 ++pos_byte_next;
2655 if (pos_byte_next - pos_byte == len
2656 && p[0] == fromstr[0]
2657 && (len == 1
2658 || (p[1] == fromstr[1]
2659 && (len == 2 || (p[2] == fromstr[2]
2660 && (len == 3 || p[3] == fromstr[3]))))))
2661 {
2662 if (! changed)
2663 {
2664 changed = pos;
2665 modify_region (current_buffer, changed, XINT (end));
2666
2667 if (! NILP (noundo))
2668 {
2669 if (MODIFF - 1 == SAVE_MODIFF)
2670 SAVE_MODIFF++;
2671 if (MODIFF - 1 == current_buffer->auto_save_modified)
2672 current_buffer->auto_save_modified++;
2673 }
2674 }
2675
2676 /* Take care of the case where the new character
2677 combines with neighboring bytes. */
2678 if (maybe_byte_combining
2679 && (maybe_byte_combining == COMBINING_AFTER
2680 ? (pos_byte_next < Z_BYTE
2681 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2682 : ((pos_byte_next < Z_BYTE
2683 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2684 || (pos_byte > BEG_BYTE
2685 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2686 {
2687 Lisp_Object tem, string;
2688
2689 struct gcpro gcpro1;
2690
2691 tem = current_buffer->undo_list;
2692 GCPRO1 (tem);
2693
2694 /* Make a multibyte string containing this single character. */
2695 string = make_multibyte_string (tostr, 1, len);
2696 /* replace_range is less efficient, because it moves the gap,
2697 but it handles combining correctly. */
2698 replace_range (pos, pos + 1, string,
2699 0, 0, 1);
2700 pos_byte_next = CHAR_TO_BYTE (pos);
2701 if (pos_byte_next > pos_byte)
2702 /* Before combining happened. We should not increment
2703 POS. So, to cancel the later increment of POS,
2704 decrease it now. */
2705 pos--;
2706 else
2707 INC_POS (pos_byte_next);
2708
2709 if (! NILP (noundo))
2710 current_buffer->undo_list = tem;
2711
2712 UNGCPRO;
2713 }
2714 else
2715 {
2716 if (NILP (noundo))
2717 record_change (pos, 1);
2718 for (i = 0; i < len; i++) *p++ = tostr[i];
2719 }
2720 last_changed = pos + 1;
2721 }
2722 pos_byte = pos_byte_next;
2723 pos++;
2724 }
2725
2726 if (changed)
2727 {
2728 signal_after_change (changed,
2729 last_changed - changed, last_changed - changed);
2730 update_compositions (changed, last_changed, CHECK_ALL);
2731 }
2732
2733 unbind_to (count, Qnil);
2734 return Qnil;
2735 }
2736
2737 DEFUN ("translate-region", Ftranslate_region, Stranslate_region, 3, 3, 0,
2738 doc: /* From START to END, translate characters according to TABLE.
2739 TABLE is a string; the Nth character in it is the mapping
2740 for the character with code N.
2741 This function does not alter multibyte characters.
2742 It returns the number of characters changed. */)
2743 (start, end, table)
2744 Lisp_Object start;
2745 Lisp_Object end;
2746 register Lisp_Object table;
2747 {
2748 register int pos_byte, stop; /* Limits of the region. */
2749 register unsigned char *tt; /* Trans table. */
2750 register int nc; /* New character. */
2751 int cnt; /* Number of changes made. */
2752 int size; /* Size of translate table. */
2753 int pos;
2754 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2755
2756 validate_region (&start, &end);
2757 CHECK_STRING (table);
2758
2759 size = SBYTES (table);
2760 tt = SDATA (table);
2761
2762 pos_byte = CHAR_TO_BYTE (XINT (start));
2763 stop = CHAR_TO_BYTE (XINT (end));
2764 modify_region (current_buffer, XINT (start), XINT (end));
2765 pos = XINT (start);
2766
2767 cnt = 0;
2768 for (; pos_byte < stop; )
2769 {
2770 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
2771 int len;
2772 int oc;
2773 int pos_byte_next;
2774
2775 if (multibyte)
2776 oc = STRING_CHAR_AND_LENGTH (p, stop - pos_byte, len);
2777 else
2778 oc = *p, len = 1;
2779 pos_byte_next = pos_byte + len;
2780 if (oc < size && len == 1)
2781 {
2782 nc = tt[oc];
2783 if (nc != oc)
2784 {
2785 /* Take care of the case where the new character
2786 combines with neighboring bytes. */
2787 if (!ASCII_BYTE_P (nc)
2788 && (CHAR_HEAD_P (nc)
2789 ? ! CHAR_HEAD_P (FETCH_BYTE (pos_byte + 1))
2790 : (pos_byte > BEG_BYTE
2791 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1)))))
2792 {
2793 Lisp_Object string;
2794
2795 string = make_multibyte_string (tt + oc, 1, 1);
2796 /* This is less efficient, because it moves the gap,
2797 but it handles combining correctly. */
2798 replace_range (pos, pos + 1, string,
2799 1, 0, 1);
2800 pos_byte_next = CHAR_TO_BYTE (pos);
2801 if (pos_byte_next > pos_byte)
2802 /* Before combining happened. We should not
2803 increment POS. So, to cancel the later
2804 increment of POS, we decrease it now. */
2805 pos--;
2806 else
2807 INC_POS (pos_byte_next);
2808 }
2809 else
2810 {
2811 record_change (pos, 1);
2812 *p = nc;
2813 signal_after_change (pos, 1, 1);
2814 update_compositions (pos, pos + 1, CHECK_BORDER);
2815 }
2816 ++cnt;
2817 }
2818 }
2819 pos_byte = pos_byte_next;
2820 pos++;
2821 }
2822
2823 return make_number (cnt);
2824 }
2825
2826 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
2827 doc: /* Delete the text between point and mark.
2828 When called from a program, expects two arguments,
2829 positions (integers or markers) specifying the stretch to be deleted. */)
2830 (start, end)
2831 Lisp_Object start, end;
2832 {
2833 validate_region (&start, &end);
2834 del_range (XINT (start), XINT (end));
2835 return Qnil;
2836 }
2837
2838 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
2839 Sdelete_and_extract_region, 2, 2, 0,
2840 doc: /* Delete the text between START and END and return it. */)
2841 (start, end)
2842 Lisp_Object start, end;
2843 {
2844 validate_region (&start, &end);
2845 return del_range_1 (XINT (start), XINT (end), 1, 1);
2846 }
2847 \f
2848 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
2849 doc: /* Remove restrictions (narrowing) from current buffer.
2850 This allows the buffer's full text to be seen and edited. */)
2851 ()
2852 {
2853 if (BEG != BEGV || Z != ZV)
2854 current_buffer->clip_changed = 1;
2855 BEGV = BEG;
2856 BEGV_BYTE = BEG_BYTE;
2857 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
2858 /* Changing the buffer bounds invalidates any recorded current column. */
2859 invalidate_current_column ();
2860 return Qnil;
2861 }
2862
2863 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
2864 doc: /* Restrict editing in this buffer to the current region.
2865 The rest of the text becomes temporarily invisible and untouchable
2866 but is not deleted; if you save the buffer in a file, the invisible
2867 text is included in the file. \\[widen] makes all visible again.
2868 See also `save-restriction'.
2869
2870 When calling from a program, pass two arguments; positions (integers
2871 or markers) bounding the text that should remain visible. */)
2872 (start, end)
2873 register Lisp_Object start, end;
2874 {
2875 CHECK_NUMBER_COERCE_MARKER (start);
2876 CHECK_NUMBER_COERCE_MARKER (end);
2877
2878 if (XINT (start) > XINT (end))
2879 {
2880 Lisp_Object tem;
2881 tem = start; start = end; end = tem;
2882 }
2883
2884 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
2885 args_out_of_range (start, end);
2886
2887 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
2888 current_buffer->clip_changed = 1;
2889
2890 SET_BUF_BEGV (current_buffer, XFASTINT (start));
2891 SET_BUF_ZV (current_buffer, XFASTINT (end));
2892 if (PT < XFASTINT (start))
2893 SET_PT (XFASTINT (start));
2894 if (PT > XFASTINT (end))
2895 SET_PT (XFASTINT (end));
2896 /* Changing the buffer bounds invalidates any recorded current column. */
2897 invalidate_current_column ();
2898 return Qnil;
2899 }
2900
2901 Lisp_Object
2902 save_restriction_save ()
2903 {
2904 if (BEGV == BEG && ZV == Z)
2905 /* The common case that the buffer isn't narrowed.
2906 We return just the buffer object, which save_restriction_restore
2907 recognizes as meaning `no restriction'. */
2908 return Fcurrent_buffer ();
2909 else
2910 /* We have to save a restriction, so return a pair of markers, one
2911 for the beginning and one for the end. */
2912 {
2913 Lisp_Object beg, end;
2914
2915 beg = buildmark (BEGV, BEGV_BYTE);
2916 end = buildmark (ZV, ZV_BYTE);
2917
2918 /* END must move forward if text is inserted at its exact location. */
2919 XMARKER(end)->insertion_type = 1;
2920
2921 return Fcons (beg, end);
2922 }
2923 }
2924
2925 Lisp_Object
2926 save_restriction_restore (data)
2927 Lisp_Object data;
2928 {
2929 if (CONSP (data))
2930 /* A pair of marks bounding a saved restriction. */
2931 {
2932 struct Lisp_Marker *beg = XMARKER (XCAR (data));
2933 struct Lisp_Marker *end = XMARKER (XCDR (data));
2934 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
2935
2936 if (buf /* Verify marker still points to a buffer. */
2937 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
2938 /* The restriction has changed from the saved one, so restore
2939 the saved restriction. */
2940 {
2941 int pt = BUF_PT (buf);
2942
2943 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
2944 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
2945
2946 if (pt < beg->charpos || pt > end->charpos)
2947 /* The point is outside the new visible range, move it inside. */
2948 SET_BUF_PT_BOTH (buf,
2949 clip_to_bounds (beg->charpos, pt, end->charpos),
2950 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
2951 end->bytepos));
2952
2953 buf->clip_changed = 1; /* Remember that the narrowing changed. */
2954 }
2955 }
2956 else
2957 /* A buffer, which means that there was no old restriction. */
2958 {
2959 struct buffer *buf = XBUFFER (data);
2960
2961 if (buf /* Verify marker still points to a buffer. */
2962 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
2963 /* The buffer has been narrowed, get rid of the narrowing. */
2964 {
2965 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
2966 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
2967
2968 buf->clip_changed = 1; /* Remember that the narrowing changed. */
2969 }
2970 }
2971
2972 return Qnil;
2973 }
2974
2975 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
2976 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
2977 The buffer's restrictions make parts of the beginning and end invisible.
2978 (They are set up with `narrow-to-region' and eliminated with `widen'.)
2979 This special form, `save-restriction', saves the current buffer's restrictions
2980 when it is entered, and restores them when it is exited.
2981 So any `narrow-to-region' within BODY lasts only until the end of the form.
2982 The old restrictions settings are restored
2983 even in case of abnormal exit (throw or error).
2984
2985 The value returned is the value of the last form in BODY.
2986
2987 Note: if you are using both `save-excursion' and `save-restriction',
2988 use `save-excursion' outermost:
2989 (save-excursion (save-restriction ...))
2990
2991 usage: (save-restriction &rest BODY) */)
2992 (body)
2993 Lisp_Object body;
2994 {
2995 register Lisp_Object val;
2996 int count = SPECPDL_INDEX ();
2997
2998 record_unwind_protect (save_restriction_restore, save_restriction_save ());
2999 val = Fprogn (body);
3000 return unbind_to (count, val);
3001 }
3002 \f
3003 /* Buffer for the most recent text displayed by Fmessage_box. */
3004 static char *message_text;
3005
3006 /* Allocated length of that buffer. */
3007 static int message_length;
3008
3009 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3010 doc: /* Print a one-line message at the bottom of the screen.
3011 The first argument is a format control string, and the rest are data
3012 to be formatted under control of the string. See `format' for details.
3013
3014 If the first argument is nil, clear any existing message; let the
3015 minibuffer contents show.
3016
3017 usage: (message STRING &rest ARGS) */)
3018 (nargs, args)
3019 int nargs;
3020 Lisp_Object *args;
3021 {
3022 if (NILP (args[0])
3023 || (STRINGP (args[0])
3024 && SBYTES (args[0]) == 0))
3025 {
3026 message (0);
3027 return Qnil;
3028 }
3029 else
3030 {
3031 register Lisp_Object val;
3032 val = Fformat (nargs, args);
3033 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3034 return val;
3035 }
3036 }
3037
3038 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3039 doc: /* Display a message, in a dialog box if possible.
3040 If a dialog box is not available, use the echo area.
3041 The first argument is a format control string, and the rest are data
3042 to be formatted under control of the string. See `format' for details.
3043
3044 If the first argument is nil, clear any existing message; let the
3045 minibuffer contents show.
3046
3047 usage: (message-box STRING &rest ARGS) */)
3048 (nargs, args)
3049 int nargs;
3050 Lisp_Object *args;
3051 {
3052 if (NILP (args[0]))
3053 {
3054 message (0);
3055 return Qnil;
3056 }
3057 else
3058 {
3059 register Lisp_Object val;
3060 val = Fformat (nargs, args);
3061 #ifdef HAVE_MENUS
3062 /* The MS-DOS frames support popup menus even though they are
3063 not FRAME_WINDOW_P. */
3064 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3065 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3066 {
3067 Lisp_Object pane, menu, obj;
3068 struct gcpro gcpro1;
3069 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3070 GCPRO1 (pane);
3071 menu = Fcons (val, pane);
3072 obj = Fx_popup_dialog (Qt, menu);
3073 UNGCPRO;
3074 return val;
3075 }
3076 #endif /* HAVE_MENUS */
3077 /* Copy the data so that it won't move when we GC. */
3078 if (! message_text)
3079 {
3080 message_text = (char *)xmalloc (80);
3081 message_length = 80;
3082 }
3083 if (SBYTES (val) > message_length)
3084 {
3085 message_length = SBYTES (val);
3086 message_text = (char *)xrealloc (message_text, message_length);
3087 }
3088 bcopy (SDATA (val), message_text, SBYTES (val));
3089 message2 (message_text, SBYTES (val),
3090 STRING_MULTIBYTE (val));
3091 return val;
3092 }
3093 }
3094 #ifdef HAVE_MENUS
3095 extern Lisp_Object last_nonmenu_event;
3096 #endif
3097
3098 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3099 doc: /* Display a message in a dialog box or in the echo area.
3100 If this command was invoked with the mouse, use a dialog box if
3101 `use-dialog-box' is non-nil.
3102 Otherwise, use the echo area.
3103 The first argument is a format control string, and the rest are data
3104 to be formatted under control of the string. See `format' for details.
3105
3106 If the first argument is nil, clear any existing message; let the
3107 minibuffer contents show.
3108
3109 usage: (message-or-box STRING &rest ARGS) */)
3110 (nargs, args)
3111 int nargs;
3112 Lisp_Object *args;
3113 {
3114 #ifdef HAVE_MENUS
3115 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3116 && use_dialog_box)
3117 return Fmessage_box (nargs, args);
3118 #endif
3119 return Fmessage (nargs, args);
3120 }
3121
3122 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3123 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3124 ()
3125 {
3126 return current_message ();
3127 }
3128
3129
3130 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3131 doc: /* Return a copy of STRING with text properties added.
3132 First argument is the string to copy.
3133 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3134 properties to add to the result.
3135 usage: (propertize STRING &rest PROPERTIES) */)
3136 (nargs, args)
3137 int nargs;
3138 Lisp_Object *args;
3139 {
3140 Lisp_Object properties, string;
3141 struct gcpro gcpro1, gcpro2;
3142 int i;
3143
3144 /* Number of args must be odd. */
3145 if ((nargs & 1) == 0 || nargs < 1)
3146 error ("Wrong number of arguments");
3147
3148 properties = string = Qnil;
3149 GCPRO2 (properties, string);
3150
3151 /* First argument must be a string. */
3152 CHECK_STRING (args[0]);
3153 string = Fcopy_sequence (args[0]);
3154
3155 for (i = 1; i < nargs; i += 2)
3156 {
3157 CHECK_SYMBOL (args[i]);
3158 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3159 }
3160
3161 Fadd_text_properties (make_number (0),
3162 make_number (SCHARS (string)),
3163 properties, string);
3164 RETURN_UNGCPRO (string);
3165 }
3166
3167
3168 /* Number of bytes that STRING will occupy when put into the result.
3169 MULTIBYTE is nonzero if the result should be multibyte. */
3170
3171 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3172 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3173 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3174 : SBYTES (STRING))
3175
3176 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3177 doc: /* Format a string out of a control-string and arguments.
3178 The first argument is a control string.
3179 The other arguments are substituted into it to make the result, a string.
3180 It may contain %-sequences meaning to substitute the next argument.
3181 %s means print a string argument. Actually, prints any object, with `princ'.
3182 %d means print as number in decimal (%o octal, %x hex).
3183 %X is like %x, but uses upper case.
3184 %e means print a number in exponential notation.
3185 %f means print a number in decimal-point notation.
3186 %g means print a number in exponential notation
3187 or decimal-point notation, whichever uses fewer characters.
3188 %c means print a number as a single character.
3189 %S means print any object as an s-expression (using `prin1').
3190 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3191 Use %% to put a single % into the output.
3192
3193 usage: (format STRING &rest OBJECTS) */)
3194 (nargs, args)
3195 int nargs;
3196 register Lisp_Object *args;
3197 {
3198 register int n; /* The number of the next arg to substitute */
3199 register int total; /* An estimate of the final length */
3200 char *buf, *p;
3201 register unsigned char *format, *end, *format_start;
3202 int nchars;
3203 /* Nonzero if the output should be a multibyte string,
3204 which is true if any of the inputs is one. */
3205 int multibyte = 0;
3206 /* When we make a multibyte string, we must pay attention to the
3207 byte combining problem, i.e., a byte may be combined with a
3208 multibyte charcter of the previous string. This flag tells if we
3209 must consider such a situation or not. */
3210 int maybe_combine_byte;
3211 unsigned char *this_format;
3212 /* Precision for each spec, or -1, a flag value meaning no precision
3213 was given in that spec. Element 0, corresonding to the format
3214 string itself, will not be used. Element NARGS, corresponding to
3215 no argument, *will* be assigned to in the case that a `%' and `.'
3216 occur after the final format specifier. */
3217 int *precision = (int *) (alloca(nargs * sizeof (int)));
3218 int longest_format;
3219 Lisp_Object val;
3220 int arg_intervals = 0;
3221
3222 /* discarded[I] is 1 if byte I of the format
3223 string was not copied into the output.
3224 It is 2 if byte I was not the first byte of its character. */
3225 char *discarded;
3226
3227 /* Each element records, for one argument,
3228 the start and end bytepos in the output string,
3229 and whether the argument is a string with intervals.
3230 info[0] is unused. Unused elements have -1 for start. */
3231 struct info
3232 {
3233 int start, end, intervals;
3234 } *info = 0;
3235
3236 /* It should not be necessary to GCPRO ARGS, because
3237 the caller in the interpreter should take care of that. */
3238
3239 /* Try to determine whether the result should be multibyte.
3240 This is not always right; sometimes the result needs to be multibyte
3241 because of an object that we will pass through prin1,
3242 and in that case, we won't know it here. */
3243 for (n = 0; n < nargs; n++)
3244 {
3245 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3246 multibyte = 1;
3247 /* Piggyback on this loop to initialize precision[N]. */
3248 precision[n] = -1;
3249 }
3250
3251 CHECK_STRING (args[0]);
3252 /* We may have to change "%S" to "%s". */
3253 args[0] = Fcopy_sequence (args[0]);
3254
3255 /* GC should never happen here, so abort if it does. */
3256 abort_on_gc++;
3257
3258 /* If we start out planning a unibyte result,
3259 then discover it has to be multibyte, we jump back to retry.
3260 That can only happen from the first large while loop below. */
3261 retry:
3262
3263 format = SDATA (args[0]);
3264 format_start = format;
3265 end = format + SBYTES (args[0]);
3266 longest_format = 0;
3267
3268 /* Make room in result for all the non-%-codes in the control string. */
3269 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]);
3270
3271 /* Allocate the info and discarded tables. */
3272 {
3273 int nbytes = nargs * sizeof *info;
3274 int i;
3275 info = (struct info *) alloca (nbytes);
3276 bzero (info, nbytes);
3277 for (i = 0; i <= nargs; i++)
3278 info[i].start = -1;
3279 discarded = (char *) alloca (SBYTES (args[0]));
3280 bzero (discarded, SBYTES (args[0]));
3281 }
3282
3283 /* Add to TOTAL enough space to hold the converted arguments. */
3284
3285 n = 0;
3286 while (format != end)
3287 if (*format++ == '%')
3288 {
3289 int thissize = 0;
3290 int actual_width = 0;
3291 unsigned char *this_format_start = format - 1;
3292 int field_width = 0;
3293
3294 /* General format specifications look like
3295
3296 '%' [flags] [field-width] [precision] format
3297
3298 where
3299
3300 flags ::= [#-* 0]+
3301 field-width ::= [0-9]+
3302 precision ::= '.' [0-9]*
3303
3304 If a field-width is specified, it specifies to which width
3305 the output should be padded with blanks, iff the output
3306 string is shorter than field-width.
3307
3308 If precision is specified, it specifies the number of
3309 digits to print after the '.' for floats, or the max.
3310 number of chars to print from a string. */
3311
3312 /* NOTE the handling of specifiers here differs in some ways
3313 from the libc model. There are bugs in this code that lead
3314 to incorrect formatting when flags recognized by C but
3315 neither parsed nor rejected here are used. Further
3316 revisions will be made soon. */
3317
3318 /* incorrect list of flags to skip; will be fixed */
3319 while (index ("-*# 0", *format))
3320 ++format;
3321
3322 if (*format >= '0' && *format <= '9')
3323 {
3324 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3325 field_width = 10 * field_width + *format - '0';
3326 }
3327
3328 /* N is not incremented for another few lines below, so refer to
3329 element N+1 (which might be precision[NARGS]). */
3330 if (*format == '.')
3331 {
3332 ++format;
3333 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3334 precision[n+1] = 10 * precision[n+1] + *format - '0';
3335 }
3336
3337 if (format - this_format_start + 1 > longest_format)
3338 longest_format = format - this_format_start + 1;
3339
3340 if (format == end)
3341 error ("Format string ends in middle of format specifier");
3342 if (*format == '%')
3343 format++;
3344 else if (++n >= nargs)
3345 error ("Not enough arguments for format string");
3346 else if (*format == 'S')
3347 {
3348 /* For `S', prin1 the argument and then treat like a string. */
3349 register Lisp_Object tem;
3350 tem = Fprin1_to_string (args[n], Qnil);
3351 if (STRING_MULTIBYTE (tem) && ! multibyte)
3352 {
3353 multibyte = 1;
3354 goto retry;
3355 }
3356 args[n] = tem;
3357 /* If we restart the loop, we should not come here again
3358 because args[n] is now a string and calling
3359 Fprin1_to_string on it produces superflous double
3360 quotes. So, change "%S" to "%s" now. */
3361 *format = 's';
3362 goto string;
3363 }
3364 else if (SYMBOLP (args[n]))
3365 {
3366 args[n] = SYMBOL_NAME (args[n]);
3367 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3368 {
3369 multibyte = 1;
3370 goto retry;
3371 }
3372 goto string;
3373 }
3374 else if (STRINGP (args[n]))
3375 {
3376 string:
3377 if (*format != 's' && *format != 'S')
3378 error ("Format specifier doesn't match argument type");
3379 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3380 to be as large as is calculated here. Easy check for
3381 the case PRECISION = 0. */
3382 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3383 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3384 }
3385 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3386 else if (INTEGERP (args[n]) && *format != 's')
3387 {
3388 /* The following loop assumes the Lisp type indicates
3389 the proper way to pass the argument.
3390 So make sure we have a flonum if the argument should
3391 be a double. */
3392 if (*format == 'e' || *format == 'f' || *format == 'g')
3393 args[n] = Ffloat (args[n]);
3394 else
3395 if (*format != 'd' && *format != 'o' && *format != 'x'
3396 && *format != 'i' && *format != 'X' && *format != 'c')
3397 error ("Invalid format operation %%%c", *format);
3398
3399 thissize = 30;
3400 if (*format == 'c')
3401 {
3402 if (! SINGLE_BYTE_CHAR_P (XINT (args[n]))
3403 /* Note: No one can remeber why we have to treat
3404 the character 0 as a multibyte character here.
3405 But, until it causes a real problem, let's
3406 don't change it. */
3407 || XINT (args[n]) == 0)
3408 {
3409 if (! multibyte)
3410 {
3411 multibyte = 1;
3412 goto retry;
3413 }
3414 args[n] = Fchar_to_string (args[n]);
3415 thissize = SBYTES (args[n]);
3416 }
3417 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3418 {
3419 args[n]
3420 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3421 thissize = SBYTES (args[n]);
3422 }
3423 }
3424 }
3425 else if (FLOATP (args[n]) && *format != 's')
3426 {
3427 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3428 {
3429 if (*format != 'd' && *format != 'o' && *format != 'x'
3430 && *format != 'i' && *format != 'X' && *format != 'c')
3431 error ("Invalid format operation %%%c", *format);
3432 args[n] = Ftruncate (args[n], Qnil);
3433 }
3434
3435 /* Note that we're using sprintf to print floats,
3436 so we have to take into account what that function
3437 prints. */
3438 /* Filter out flag value of -1. */
3439 thissize = (MAX_10_EXP + 100
3440 + (precision[n] > 0 ? precision[n] : 0));
3441 }
3442 else
3443 {
3444 /* Anything but a string, convert to a string using princ. */
3445 register Lisp_Object tem;
3446 tem = Fprin1_to_string (args[n], Qt);
3447 if (STRING_MULTIBYTE (tem) & ! multibyte)
3448 {
3449 multibyte = 1;
3450 goto retry;
3451 }
3452 args[n] = tem;
3453 goto string;
3454 }
3455
3456 thissize += max (0, field_width - actual_width);
3457 total += thissize + 4;
3458 }
3459
3460 abort_on_gc--;
3461
3462 /* Now we can no longer jump to retry.
3463 TOTAL and LONGEST_FORMAT are known for certain. */
3464
3465 this_format = (unsigned char *) alloca (longest_format + 1);
3466
3467 /* Allocate the space for the result.
3468 Note that TOTAL is an overestimate. */
3469 if (total < 1000)
3470 buf = (char *) alloca (total + 1);
3471 else
3472 buf = (char *) xmalloc (total + 1);
3473
3474 p = buf;
3475 nchars = 0;
3476 n = 0;
3477
3478 /* Scan the format and store result in BUF. */
3479 format = SDATA (args[0]);
3480 format_start = format;
3481 end = format + SBYTES (args[0]);
3482 maybe_combine_byte = 0;
3483 while (format != end)
3484 {
3485 if (*format == '%')
3486 {
3487 int minlen;
3488 int negative = 0;
3489 unsigned char *this_format_start = format;
3490
3491 discarded[format - format_start] = 1;
3492 format++;
3493
3494 /* Process a numeric arg and skip it. */
3495 /* NOTE atoi is the wrong thing to use here; will be fixed */
3496 minlen = atoi (format);
3497 if (minlen < 0)
3498 minlen = - minlen, negative = 1;
3499
3500 /* NOTE the parsing here is not consistent with the first
3501 pass, and neither attempt is what we want to do. Will be
3502 fixed. */
3503 while ((*format >= '0' && *format <= '9')
3504 || *format == '-' || *format == ' ' || *format == '.')
3505 {
3506 discarded[format - format_start] = 1;
3507 format++;
3508 }
3509
3510 if (*format++ == '%')
3511 {
3512 *p++ = '%';
3513 nchars++;
3514 continue;
3515 }
3516
3517 ++n;
3518
3519 discarded[format - format_start - 1] = 1;
3520 info[n].start = nchars;
3521
3522 if (STRINGP (args[n]))
3523 {
3524 /* handle case (precision[n] >= 0) */
3525
3526 int width, padding;
3527 int nbytes, start, end;
3528 int nchars_string;
3529
3530 /* lisp_string_width ignores a precision of 0, but GNU
3531 libc functions print 0 characters when the precision
3532 is 0. Imitate libc behavior here. Changing
3533 lisp_string_width is the right thing, and will be
3534 done, but meanwhile we work with it. */
3535
3536 if (precision[n] == 0)
3537 width = nchars_string = nbytes = 0;
3538 else if (precision[n] > 0)
3539 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3540 else
3541 { /* no precision spec given for this argument */
3542 width = lisp_string_width (args[n], -1, NULL, NULL);
3543 nbytes = SBYTES (args[n]);
3544 nchars_string = SCHARS (args[n]);
3545 }
3546
3547 /* If spec requires it, pad on right with spaces. */
3548 padding = minlen - width;
3549 if (! negative)
3550 while (padding-- > 0)
3551 {
3552 *p++ = ' ';
3553 ++nchars;
3554 }
3555
3556 start = nchars;
3557 nchars += nchars_string;
3558 end = nchars;
3559
3560 if (p > buf
3561 && multibyte
3562 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3563 && STRING_MULTIBYTE (args[n])
3564 && !CHAR_HEAD_P (SREF (args[n], 0)))
3565 maybe_combine_byte = 1;
3566
3567 p += copy_text (SDATA (args[n]), p,
3568 nbytes,
3569 STRING_MULTIBYTE (args[n]), multibyte);
3570
3571 if (negative)
3572 while (padding-- > 0)
3573 {
3574 *p++ = ' ';
3575 nchars++;
3576 }
3577
3578 /* If this argument has text properties, record where
3579 in the result string it appears. */
3580 if (STRING_INTERVALS (args[n]))
3581 info[n].intervals = arg_intervals = 1;
3582 }
3583 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3584 {
3585 int this_nchars;
3586
3587 bcopy (this_format_start, this_format,
3588 format - this_format_start);
3589 this_format[format - this_format_start] = 0;
3590
3591 if (INTEGERP (args[n]))
3592 sprintf (p, this_format, XINT (args[n]));
3593 else
3594 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3595
3596 if (p > buf
3597 && multibyte
3598 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3599 && !CHAR_HEAD_P (*((unsigned char *) p)))
3600 maybe_combine_byte = 1;
3601 this_nchars = strlen (p);
3602 if (multibyte)
3603 p += str_to_multibyte (p, buf + total - p, this_nchars);
3604 else
3605 p += this_nchars;
3606 nchars += this_nchars;
3607 }
3608
3609 info[n].end = nchars;
3610 }
3611 else if (STRING_MULTIBYTE (args[0]))
3612 {
3613 /* Copy a whole multibyte character. */
3614 if (p > buf
3615 && multibyte
3616 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3617 && !CHAR_HEAD_P (*format))
3618 maybe_combine_byte = 1;
3619 *p++ = *format++;
3620 while (! CHAR_HEAD_P (*format))
3621 {
3622 discarded[format - format_start] = 2;
3623 *p++ = *format++;
3624 }
3625 nchars++;
3626 }
3627 else if (multibyte)
3628 {
3629 /* Convert a single-byte character to multibyte. */
3630 int len = copy_text (format, p, 1, 0, 1);
3631
3632 p += len;
3633 format++;
3634 nchars++;
3635 }
3636 else
3637 *p++ = *format++, nchars++;
3638 }
3639
3640 if (p > buf + total + 1)
3641 abort ();
3642
3643 if (maybe_combine_byte)
3644 nchars = multibyte_chars_in_text (buf, p - buf);
3645 val = make_specified_string (buf, nchars, p - buf, multibyte);
3646
3647 /* If we allocated BUF with malloc, free it too. */
3648 if (total >= 1000)
3649 xfree (buf);
3650
3651 /* If the format string has text properties, or any of the string
3652 arguments has text properties, set up text properties of the
3653 result string. */
3654
3655 if (STRING_INTERVALS (args[0]) || arg_intervals)
3656 {
3657 Lisp_Object len, new_len, props;
3658 struct gcpro gcpro1;
3659
3660 /* Add text properties from the format string. */
3661 len = make_number (SCHARS (args[0]));
3662 props = text_property_list (args[0], make_number (0), len, Qnil);
3663 GCPRO1 (props);
3664
3665 if (CONSP (props))
3666 {
3667 int bytepos = 0, position = 0, translated = 0, argn = 1;
3668 Lisp_Object list;
3669
3670 /* Adjust the bounds of each text property
3671 to the proper start and end in the output string. */
3672 /* We take advantage of the fact that the positions in PROPS
3673 are in increasing order, so that we can do (effectively)
3674 one scan through the position space of the format string.
3675
3676 BYTEPOS is the byte position in the format string,
3677 POSITION is the untranslated char position in it,
3678 TRANSLATED is the translated char position in BUF,
3679 and ARGN is the number of the next arg we will come to. */
3680 for (list = props; CONSP (list); list = XCDR (list))
3681 {
3682 Lisp_Object item;
3683 int pos;
3684
3685 item = XCAR (list);
3686
3687 /* First adjust the property start position. */
3688 pos = XINT (XCAR (item));
3689
3690 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
3691 up to this position. */
3692 for (; position < pos; bytepos++)
3693 {
3694 if (! discarded[bytepos])
3695 position++, translated++;
3696 else if (discarded[bytepos] == 1)
3697 {
3698 position++;
3699 if (translated == info[argn].start)
3700 {
3701 translated += info[argn].end - info[argn].start;
3702 argn++;
3703 }
3704 }
3705 }
3706
3707 XSETCAR (item, make_number (translated));
3708
3709 /* Likewise adjust the property end position. */
3710 pos = XINT (XCAR (XCDR (item)));
3711
3712 for (; bytepos < pos; bytepos++)
3713 {
3714 if (! discarded[bytepos])
3715 position++, translated++;
3716 else if (discarded[bytepos] == 1)
3717 {
3718 position++;
3719 if (translated == info[argn].start)
3720 {
3721 translated += info[argn].end - info[argn].start;
3722 argn++;
3723 }
3724 }
3725 }
3726
3727 XSETCAR (XCDR (item), make_number (translated));
3728 }
3729
3730 add_text_properties_from_list (val, props, make_number (0));
3731 }
3732
3733 /* Add text properties from arguments. */
3734 if (arg_intervals)
3735 for (n = 1; n < nargs; ++n)
3736 if (info[n].intervals)
3737 {
3738 len = make_number (SCHARS (args[n]));
3739 new_len = make_number (info[n].end - info[n].start);
3740 props = text_property_list (args[n], make_number (0), len, Qnil);
3741 extend_property_ranges (props, len, new_len);
3742 /* If successive arguments have properites, be sure that
3743 the value of `composition' property be the copy. */
3744 if (n > 1 && info[n - 1].end)
3745 make_composition_value_copy (props);
3746 add_text_properties_from_list (val, props,
3747 make_number (info[n].start));
3748 }
3749
3750 UNGCPRO;
3751 }
3752
3753 return val;
3754 }
3755
3756 Lisp_Object
3757 format2 (string1, arg0, arg1)
3758 char *string1;
3759 Lisp_Object arg0, arg1;
3760 {
3761 Lisp_Object args[3];
3762 args[0] = build_string (string1);
3763 args[1] = arg0;
3764 args[2] = arg1;
3765 return Fformat (3, args);
3766 }
3767 \f
3768 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
3769 doc: /* Return t if two characters match, optionally ignoring case.
3770 Both arguments must be characters (i.e. integers).
3771 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
3772 (c1, c2)
3773 register Lisp_Object c1, c2;
3774 {
3775 int i1, i2;
3776 CHECK_NUMBER (c1);
3777 CHECK_NUMBER (c2);
3778
3779 if (XINT (c1) == XINT (c2))
3780 return Qt;
3781 if (NILP (current_buffer->case_fold_search))
3782 return Qnil;
3783
3784 /* Do these in separate statements,
3785 then compare the variables.
3786 because of the way DOWNCASE uses temp variables. */
3787 i1 = DOWNCASE (XFASTINT (c1));
3788 i2 = DOWNCASE (XFASTINT (c2));
3789 return (i1 == i2 ? Qt : Qnil);
3790 }
3791 \f
3792 /* Transpose the markers in two regions of the current buffer, and
3793 adjust the ones between them if necessary (i.e.: if the regions
3794 differ in size).
3795
3796 START1, END1 are the character positions of the first region.
3797 START1_BYTE, END1_BYTE are the byte positions.
3798 START2, END2 are the character positions of the second region.
3799 START2_BYTE, END2_BYTE are the byte positions.
3800
3801 Traverses the entire marker list of the buffer to do so, adding an
3802 appropriate amount to some, subtracting from some, and leaving the
3803 rest untouched. Most of this is copied from adjust_markers in insdel.c.
3804
3805 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
3806
3807 static void
3808 transpose_markers (start1, end1, start2, end2,
3809 start1_byte, end1_byte, start2_byte, end2_byte)
3810 register int start1, end1, start2, end2;
3811 register int start1_byte, end1_byte, start2_byte, end2_byte;
3812 {
3813 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
3814 register struct Lisp_Marker *marker;
3815
3816 /* Update point as if it were a marker. */
3817 if (PT < start1)
3818 ;
3819 else if (PT < end1)
3820 TEMP_SET_PT_BOTH (PT + (end2 - end1),
3821 PT_BYTE + (end2_byte - end1_byte));
3822 else if (PT < start2)
3823 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
3824 (PT_BYTE + (end2_byte - start2_byte)
3825 - (end1_byte - start1_byte)));
3826 else if (PT < end2)
3827 TEMP_SET_PT_BOTH (PT - (start2 - start1),
3828 PT_BYTE - (start2_byte - start1_byte));
3829
3830 /* We used to adjust the endpoints here to account for the gap, but that
3831 isn't good enough. Even if we assume the caller has tried to move the
3832 gap out of our way, it might still be at start1 exactly, for example;
3833 and that places it `inside' the interval, for our purposes. The amount
3834 of adjustment is nontrivial if there's a `denormalized' marker whose
3835 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
3836 the dirty work to Fmarker_position, below. */
3837
3838 /* The difference between the region's lengths */
3839 diff = (end2 - start2) - (end1 - start1);
3840 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
3841
3842 /* For shifting each marker in a region by the length of the other
3843 region plus the distance between the regions. */
3844 amt1 = (end2 - start2) + (start2 - end1);
3845 amt2 = (end1 - start1) + (start2 - end1);
3846 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
3847 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
3848
3849 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
3850 {
3851 mpos = marker->bytepos;
3852 if (mpos >= start1_byte && mpos < end2_byte)
3853 {
3854 if (mpos < end1_byte)
3855 mpos += amt1_byte;
3856 else if (mpos < start2_byte)
3857 mpos += diff_byte;
3858 else
3859 mpos -= amt2_byte;
3860 marker->bytepos = mpos;
3861 }
3862 mpos = marker->charpos;
3863 if (mpos >= start1 && mpos < end2)
3864 {
3865 if (mpos < end1)
3866 mpos += amt1;
3867 else if (mpos < start2)
3868 mpos += diff;
3869 else
3870 mpos -= amt2;
3871 }
3872 marker->charpos = mpos;
3873 }
3874 }
3875
3876 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
3877 doc: /* Transpose region START1 to END1 with START2 to END2.
3878 The regions may not be overlapping, because the size of the buffer is
3879 never changed in a transposition.
3880
3881 Optional fifth arg LEAVE_MARKERS, if non-nil, means don't update
3882 any markers that happen to be located in the regions.
3883
3884 Transposing beyond buffer boundaries is an error. */)
3885 (startr1, endr1, startr2, endr2, leave_markers)
3886 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
3887 {
3888 register int start1, end1, start2, end2;
3889 int start1_byte, start2_byte, len1_byte, len2_byte;
3890 int gap, len1, len_mid, len2;
3891 unsigned char *start1_addr, *start2_addr, *temp;
3892
3893 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2;
3894 cur_intv = BUF_INTERVALS (current_buffer);
3895
3896 validate_region (&startr1, &endr1);
3897 validate_region (&startr2, &endr2);
3898
3899 start1 = XFASTINT (startr1);
3900 end1 = XFASTINT (endr1);
3901 start2 = XFASTINT (startr2);
3902 end2 = XFASTINT (endr2);
3903 gap = GPT;
3904
3905 /* Swap the regions if they're reversed. */
3906 if (start2 < end1)
3907 {
3908 register int glumph = start1;
3909 start1 = start2;
3910 start2 = glumph;
3911 glumph = end1;
3912 end1 = end2;
3913 end2 = glumph;
3914 }
3915
3916 len1 = end1 - start1;
3917 len2 = end2 - start2;
3918
3919 if (start2 < end1)
3920 error ("Transposed regions overlap");
3921 else if (start1 == end1 || start2 == end2)
3922 error ("Transposed region has length 0");
3923
3924 /* The possibilities are:
3925 1. Adjacent (contiguous) regions, or separate but equal regions
3926 (no, really equal, in this case!), or
3927 2. Separate regions of unequal size.
3928
3929 The worst case is usually No. 2. It means that (aside from
3930 potential need for getting the gap out of the way), there also
3931 needs to be a shifting of the text between the two regions. So
3932 if they are spread far apart, we are that much slower... sigh. */
3933
3934 /* It must be pointed out that the really studly thing to do would
3935 be not to move the gap at all, but to leave it in place and work
3936 around it if necessary. This would be extremely efficient,
3937 especially considering that people are likely to do
3938 transpositions near where they are working interactively, which
3939 is exactly where the gap would be found. However, such code
3940 would be much harder to write and to read. So, if you are
3941 reading this comment and are feeling squirrely, by all means have
3942 a go! I just didn't feel like doing it, so I will simply move
3943 the gap the minimum distance to get it out of the way, and then
3944 deal with an unbroken array. */
3945
3946 /* Make sure the gap won't interfere, by moving it out of the text
3947 we will operate on. */
3948 if (start1 < gap && gap < end2)
3949 {
3950 if (gap - start1 < end2 - gap)
3951 move_gap (start1);
3952 else
3953 move_gap (end2);
3954 }
3955
3956 start1_byte = CHAR_TO_BYTE (start1);
3957 start2_byte = CHAR_TO_BYTE (start2);
3958 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
3959 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
3960
3961 #ifdef BYTE_COMBINING_DEBUG
3962 if (end1 == start2)
3963 {
3964 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
3965 len2_byte, start1, start1_byte)
3966 || count_combining_before (BYTE_POS_ADDR (start1_byte),
3967 len1_byte, end2, start2_byte + len2_byte)
3968 || count_combining_after (BYTE_POS_ADDR (start1_byte),
3969 len1_byte, end2, start2_byte + len2_byte))
3970 abort ();
3971 }
3972 else
3973 {
3974 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
3975 len2_byte, start1, start1_byte)
3976 || count_combining_before (BYTE_POS_ADDR (start1_byte),
3977 len1_byte, start2, start2_byte)
3978 || count_combining_after (BYTE_POS_ADDR (start2_byte),
3979 len2_byte, end1, start1_byte + len1_byte)
3980 || count_combining_after (BYTE_POS_ADDR (start1_byte),
3981 len1_byte, end2, start2_byte + len2_byte))
3982 abort ();
3983 }
3984 #endif
3985
3986 /* Hmmm... how about checking to see if the gap is large
3987 enough to use as the temporary storage? That would avoid an
3988 allocation... interesting. Later, don't fool with it now. */
3989
3990 /* Working without memmove, for portability (sigh), so must be
3991 careful of overlapping subsections of the array... */
3992
3993 if (end1 == start2) /* adjacent regions */
3994 {
3995 modify_region (current_buffer, start1, end2);
3996 record_change (start1, len1 + len2);
3997
3998 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
3999 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4000 Fset_text_properties (make_number (start1), make_number (end2),
4001 Qnil, Qnil);
4002
4003 /* First region smaller than second. */
4004 if (len1_byte < len2_byte)
4005 {
4006 /* We use alloca only if it is small,
4007 because we want to avoid stack overflow. */
4008 if (len2_byte > 20000)
4009 temp = (unsigned char *) xmalloc (len2_byte);
4010 else
4011 temp = (unsigned char *) alloca (len2_byte);
4012
4013 /* Don't precompute these addresses. We have to compute them
4014 at the last minute, because the relocating allocator might
4015 have moved the buffer around during the xmalloc. */
4016 start1_addr = BYTE_POS_ADDR (start1_byte);
4017 start2_addr = BYTE_POS_ADDR (start2_byte);
4018
4019 bcopy (start2_addr, temp, len2_byte);
4020 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4021 bcopy (temp, start1_addr, len2_byte);
4022 if (len2_byte > 20000)
4023 xfree (temp);
4024 }
4025 else
4026 /* First region not smaller than second. */
4027 {
4028 if (len1_byte > 20000)
4029 temp = (unsigned char *) xmalloc (len1_byte);
4030 else
4031 temp = (unsigned char *) alloca (len1_byte);
4032 start1_addr = BYTE_POS_ADDR (start1_byte);
4033 start2_addr = BYTE_POS_ADDR (start2_byte);
4034 bcopy (start1_addr, temp, len1_byte);
4035 bcopy (start2_addr, start1_addr, len2_byte);
4036 bcopy (temp, start1_addr + len2_byte, len1_byte);
4037 if (len1_byte > 20000)
4038 xfree (temp);
4039 }
4040 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4041 len1, current_buffer, 0);
4042 graft_intervals_into_buffer (tmp_interval2, start1,
4043 len2, current_buffer, 0);
4044 update_compositions (start1, start1 + len2, CHECK_BORDER);
4045 update_compositions (start1 + len2, end2, CHECK_TAIL);
4046 }
4047 /* Non-adjacent regions, because end1 != start2, bleagh... */
4048 else
4049 {
4050 len_mid = start2_byte - (start1_byte + len1_byte);
4051
4052 if (len1_byte == len2_byte)
4053 /* Regions are same size, though, how nice. */
4054 {
4055 modify_region (current_buffer, start1, end1);
4056 modify_region (current_buffer, start2, end2);
4057 record_change (start1, len1);
4058 record_change (start2, len2);
4059 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4060 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4061 Fset_text_properties (make_number (start1), make_number (end1),
4062 Qnil, Qnil);
4063 Fset_text_properties (make_number (start2), make_number (end2),
4064 Qnil, Qnil);
4065
4066 if (len1_byte > 20000)
4067 temp = (unsigned char *) xmalloc (len1_byte);
4068 else
4069 temp = (unsigned char *) alloca (len1_byte);
4070 start1_addr = BYTE_POS_ADDR (start1_byte);
4071 start2_addr = BYTE_POS_ADDR (start2_byte);
4072 bcopy (start1_addr, temp, len1_byte);
4073 bcopy (start2_addr, start1_addr, len2_byte);
4074 bcopy (temp, start2_addr, len1_byte);
4075 if (len1_byte > 20000)
4076 xfree (temp);
4077 graft_intervals_into_buffer (tmp_interval1, start2,
4078 len1, current_buffer, 0);
4079 graft_intervals_into_buffer (tmp_interval2, start1,
4080 len2, current_buffer, 0);
4081 }
4082
4083 else if (len1_byte < len2_byte) /* Second region larger than first */
4084 /* Non-adjacent & unequal size, area between must also be shifted. */
4085 {
4086 modify_region (current_buffer, start1, end2);
4087 record_change (start1, (end2 - start1));
4088 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4089 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4090 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4091 Fset_text_properties (make_number (start1), make_number (end2),
4092 Qnil, Qnil);
4093
4094 /* holds region 2 */
4095 if (len2_byte > 20000)
4096 temp = (unsigned char *) xmalloc (len2_byte);
4097 else
4098 temp = (unsigned char *) alloca (len2_byte);
4099 start1_addr = BYTE_POS_ADDR (start1_byte);
4100 start2_addr = BYTE_POS_ADDR (start2_byte);
4101 bcopy (start2_addr, temp, len2_byte);
4102 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4103 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4104 bcopy (temp, start1_addr, len2_byte);
4105 if (len2_byte > 20000)
4106 xfree (temp);
4107 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4108 len1, current_buffer, 0);
4109 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4110 len_mid, current_buffer, 0);
4111 graft_intervals_into_buffer (tmp_interval2, start1,
4112 len2, current_buffer, 0);
4113 }
4114 else
4115 /* Second region smaller than first. */
4116 {
4117 record_change (start1, (end2 - start1));
4118 modify_region (current_buffer, start1, end2);
4119
4120 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4121 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4122 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4123 Fset_text_properties (make_number (start1), make_number (end2),
4124 Qnil, Qnil);
4125
4126 /* holds region 1 */
4127 if (len1_byte > 20000)
4128 temp = (unsigned char *) xmalloc (len1_byte);
4129 else
4130 temp = (unsigned char *) alloca (len1_byte);
4131 start1_addr = BYTE_POS_ADDR (start1_byte);
4132 start2_addr = BYTE_POS_ADDR (start2_byte);
4133 bcopy (start1_addr, temp, len1_byte);
4134 bcopy (start2_addr, start1_addr, len2_byte);
4135 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4136 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4137 if (len1_byte > 20000)
4138 xfree (temp);
4139 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4140 len1, current_buffer, 0);
4141 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4142 len_mid, current_buffer, 0);
4143 graft_intervals_into_buffer (tmp_interval2, start1,
4144 len2, current_buffer, 0);
4145 }
4146
4147 update_compositions (start1, start1 + len2, CHECK_BORDER);
4148 update_compositions (end2 - len1, end2, CHECK_BORDER);
4149 }
4150
4151 /* When doing multiple transpositions, it might be nice
4152 to optimize this. Perhaps the markers in any one buffer
4153 should be organized in some sorted data tree. */
4154 if (NILP (leave_markers))
4155 {
4156 transpose_markers (start1, end1, start2, end2,
4157 start1_byte, start1_byte + len1_byte,
4158 start2_byte, start2_byte + len2_byte);
4159 fix_overlays_in_range (start1, end2);
4160 }
4161
4162 return Qnil;
4163 }
4164
4165 \f
4166 void
4167 syms_of_editfns ()
4168 {
4169 environbuf = 0;
4170
4171 Qbuffer_access_fontify_functions
4172 = intern ("buffer-access-fontify-functions");
4173 staticpro (&Qbuffer_access_fontify_functions);
4174
4175 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4176 doc: /* Non-nil means text motion commands don't notice fields. */);
4177 Vinhibit_field_text_motion = Qnil;
4178
4179 DEFVAR_LISP ("buffer-access-fontify-functions",
4180 &Vbuffer_access_fontify_functions,
4181 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4182 Each function is called with two arguments which specify the range
4183 of the buffer being accessed. */);
4184 Vbuffer_access_fontify_functions = Qnil;
4185
4186 {
4187 Lisp_Object obuf;
4188 extern Lisp_Object Vprin1_to_string_buffer;
4189 obuf = Fcurrent_buffer ();
4190 /* Do this here, because init_buffer_once is too early--it won't work. */
4191 Fset_buffer (Vprin1_to_string_buffer);
4192 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4193 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4194 Qnil);
4195 Fset_buffer (obuf);
4196 }
4197
4198 DEFVAR_LISP ("buffer-access-fontified-property",
4199 &Vbuffer_access_fontified_property,
4200 doc: /* Property which (if non-nil) indicates text has been fontified.
4201 `buffer-substring' need not call the `buffer-access-fontify-functions'
4202 functions if all the text being accessed has this property. */);
4203 Vbuffer_access_fontified_property = Qnil;
4204
4205 DEFVAR_LISP ("system-name", &Vsystem_name,
4206 doc: /* The name of the machine Emacs is running on. */);
4207
4208 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4209 doc: /* The full name of the user logged in. */);
4210
4211 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4212 doc: /* The user's name, taken from environment variables if possible. */);
4213
4214 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4215 doc: /* The user's name, based upon the real uid only. */);
4216
4217 defsubr (&Spropertize);
4218 defsubr (&Schar_equal);
4219 defsubr (&Sgoto_char);
4220 defsubr (&Sstring_to_char);
4221 defsubr (&Schar_to_string);
4222 defsubr (&Sbuffer_substring);
4223 defsubr (&Sbuffer_substring_no_properties);
4224 defsubr (&Sbuffer_string);
4225
4226 defsubr (&Spoint_marker);
4227 defsubr (&Smark_marker);
4228 defsubr (&Spoint);
4229 defsubr (&Sregion_beginning);
4230 defsubr (&Sregion_end);
4231
4232 staticpro (&Qfield);
4233 Qfield = intern ("field");
4234 staticpro (&Qboundary);
4235 Qboundary = intern ("boundary");
4236 defsubr (&Sfield_beginning);
4237 defsubr (&Sfield_end);
4238 defsubr (&Sfield_string);
4239 defsubr (&Sfield_string_no_properties);
4240 defsubr (&Sdelete_field);
4241 defsubr (&Sconstrain_to_field);
4242
4243 defsubr (&Sline_beginning_position);
4244 defsubr (&Sline_end_position);
4245
4246 /* defsubr (&Smark); */
4247 /* defsubr (&Sset_mark); */
4248 defsubr (&Ssave_excursion);
4249 defsubr (&Ssave_current_buffer);
4250
4251 defsubr (&Sbufsize);
4252 defsubr (&Spoint_max);
4253 defsubr (&Spoint_min);
4254 defsubr (&Spoint_min_marker);
4255 defsubr (&Spoint_max_marker);
4256 defsubr (&Sgap_position);
4257 defsubr (&Sgap_size);
4258 defsubr (&Sposition_bytes);
4259 defsubr (&Sbyte_to_position);
4260
4261 defsubr (&Sbobp);
4262 defsubr (&Seobp);
4263 defsubr (&Sbolp);
4264 defsubr (&Seolp);
4265 defsubr (&Sfollowing_char);
4266 defsubr (&Sprevious_char);
4267 defsubr (&Schar_after);
4268 defsubr (&Schar_before);
4269 defsubr (&Sinsert);
4270 defsubr (&Sinsert_before_markers);
4271 defsubr (&Sinsert_and_inherit);
4272 defsubr (&Sinsert_and_inherit_before_markers);
4273 defsubr (&Sinsert_char);
4274
4275 defsubr (&Suser_login_name);
4276 defsubr (&Suser_real_login_name);
4277 defsubr (&Suser_uid);
4278 defsubr (&Suser_real_uid);
4279 defsubr (&Suser_full_name);
4280 defsubr (&Semacs_pid);
4281 defsubr (&Scurrent_time);
4282 defsubr (&Sformat_time_string);
4283 defsubr (&Sfloat_time);
4284 defsubr (&Sdecode_time);
4285 defsubr (&Sencode_time);
4286 defsubr (&Scurrent_time_string);
4287 defsubr (&Scurrent_time_zone);
4288 defsubr (&Sset_time_zone_rule);
4289 defsubr (&Ssystem_name);
4290 defsubr (&Smessage);
4291 defsubr (&Smessage_box);
4292 defsubr (&Smessage_or_box);
4293 defsubr (&Scurrent_message);
4294 defsubr (&Sformat);
4295
4296 defsubr (&Sinsert_buffer_substring);
4297 defsubr (&Scompare_buffer_substrings);
4298 defsubr (&Ssubst_char_in_region);
4299 defsubr (&Stranslate_region);
4300 defsubr (&Sdelete_region);
4301 defsubr (&Sdelete_and_extract_region);
4302 defsubr (&Swiden);
4303 defsubr (&Snarrow_to_region);
4304 defsubr (&Ssave_restriction);
4305 defsubr (&Stranspose_regions);
4306 }