]> code.delx.au - gnu-emacs/blob - doc/lispref/sequences.texi
Merge from origin/emacs-25
[gnu-emacs] / doc / lispref / sequences.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2016 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Sequences Arrays Vectors
7 @chapter Sequences, Arrays, and Vectors
8 @cindex sequence
9
10 The @dfn{sequence} type is the union of two other Lisp types: lists
11 and arrays. In other words, any list is a sequence, and any array is
12 a sequence. The common property that all sequences have is that each
13 is an ordered collection of elements.
14
15 An @dfn{array} is a fixed-length object with a slot for each of its
16 elements. All the elements are accessible in constant time. The four
17 types of arrays are strings, vectors, char-tables and bool-vectors.
18
19 A list is a sequence of elements, but it is not a single primitive
20 object; it is made of cons cells, one cell per element. Finding the
21 @var{n}th element requires looking through @var{n} cons cells, so
22 elements farther from the beginning of the list take longer to access.
23 But it is possible to add elements to the list, or remove elements.
24
25 The following diagram shows the relationship between these types:
26
27 @example
28 @group
29 _____________________________________________
30 | |
31 | Sequence |
32 | ______ ________________________________ |
33 | | | | | |
34 | | List | | Array | |
35 | | | | ________ ________ | |
36 | |______| | | | | | | |
37 | | | Vector | | String | | |
38 | | |________| |________| | |
39 | | ____________ _____________ | |
40 | | | | | | | |
41 | | | Char-table | | Bool-vector | | |
42 | | |____________| |_____________| | |
43 | |________________________________| |
44 |_____________________________________________|
45 @end group
46 @end example
47
48 @menu
49 * Sequence Functions:: Functions that accept any kind of sequence.
50 * Arrays:: Characteristics of arrays in Emacs Lisp.
51 * Array Functions:: Functions specifically for arrays.
52 * Vectors:: Special characteristics of Emacs Lisp vectors.
53 * Vector Functions:: Functions specifically for vectors.
54 * Char-Tables:: How to work with char-tables.
55 * Bool-Vectors:: How to work with bool-vectors.
56 * Rings:: Managing a fixed-size ring of objects.
57 @end menu
58
59 @node Sequence Functions
60 @section Sequences
61
62 This section describes functions that accept any kind of sequence.
63
64 @defun sequencep object
65 This function returns @code{t} if @var{object} is a list, vector,
66 string, bool-vector, or char-table, @code{nil} otherwise.
67 @end defun
68
69 @defun length sequence
70 @cindex string length
71 @cindex list length
72 @cindex vector length
73 @cindex sequence length
74 @cindex char-table length
75 @anchor{Definition of length}
76 This function returns the number of elements in @var{sequence}. If
77 @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
78 signaled. Circular lists may cause an infinite loop. For a
79 char-table, the value returned is always one more than the maximum
80 Emacs character code.
81
82 @xref{Definition of safe-length}, for the related function @code{safe-length}.
83
84 @example
85 @group
86 (length '(1 2 3))
87 @result{} 3
88 @end group
89 @group
90 (length ())
91 @result{} 0
92 @end group
93 @group
94 (length "foobar")
95 @result{} 6
96 @end group
97 @group
98 (length [1 2 3])
99 @result{} 3
100 @end group
101 @group
102 (length (make-bool-vector 5 nil))
103 @result{} 5
104 @end group
105 @end example
106 @end defun
107
108 @noindent
109 See also @code{string-bytes}, in @ref{Text Representations}.
110
111 If you need to compute the width of a string on display, you should use
112 @code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
113 since @code{length} only counts the number of characters, but does not
114 account for the display width of each character.
115
116 @defun elt sequence index
117 @anchor{Definition of elt}
118 @cindex elements of sequences
119 This function returns the element of @var{sequence} indexed by
120 @var{index}. Legitimate values of @var{index} are integers ranging
121 from 0 up to one less than the length of @var{sequence}. If
122 @var{sequence} is a list, out-of-range values behave as for
123 @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
124 trigger an @code{args-out-of-range} error.
125
126 @example
127 @group
128 (elt [1 2 3 4] 2)
129 @result{} 3
130 @end group
131 @group
132 (elt '(1 2 3 4) 2)
133 @result{} 3
134 @end group
135 @group
136 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
137 (string (elt "1234" 2))
138 @result{} "3"
139 @end group
140 @group
141 (elt [1 2 3 4] 4)
142 @error{} Args out of range: [1 2 3 4], 4
143 @end group
144 @group
145 (elt [1 2 3 4] -1)
146 @error{} Args out of range: [1 2 3 4], -1
147 @end group
148 @end example
149
150 This function generalizes @code{aref} (@pxref{Array Functions}) and
151 @code{nth} (@pxref{Definition of nth}).
152 @end defun
153
154 @defun copy-sequence sequence
155 @cindex copying sequences
156 This function returns a copy of @var{sequence}. The copy is the same
157 type of object as the original sequence, and it has the same elements
158 in the same order.
159
160 Storing a new element into the copy does not affect the original
161 @var{sequence}, and vice versa. However, the elements of the new
162 sequence are not copies; they are identical (@code{eq}) to the elements
163 of the original. Therefore, changes made within these elements, as
164 found via the copied sequence, are also visible in the original
165 sequence.
166
167 If the sequence is a string with text properties, the property list in
168 the copy is itself a copy, not shared with the original's property
169 list. However, the actual values of the properties are shared.
170 @xref{Text Properties}.
171
172 This function does not work for dotted lists. Trying to copy a
173 circular list may cause an infinite loop.
174
175 See also @code{append} in @ref{Building Lists}, @code{concat} in
176 @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
177 for other ways to copy sequences.
178
179 @example
180 @group
181 (setq bar '(1 2))
182 @result{} (1 2)
183 @end group
184 @group
185 (setq x (vector 'foo bar))
186 @result{} [foo (1 2)]
187 @end group
188 @group
189 (setq y (copy-sequence x))
190 @result{} [foo (1 2)]
191 @end group
192
193 @group
194 (eq x y)
195 @result{} nil
196 @end group
197 @group
198 (equal x y)
199 @result{} t
200 @end group
201 @group
202 (eq (elt x 1) (elt y 1))
203 @result{} t
204 @end group
205
206 @group
207 ;; @r{Replacing an element of one sequence.}
208 (aset x 0 'quux)
209 x @result{} [quux (1 2)]
210 y @result{} [foo (1 2)]
211 @end group
212
213 @group
214 ;; @r{Modifying the inside of a shared element.}
215 (setcar (aref x 1) 69)
216 x @result{} [quux (69 2)]
217 y @result{} [foo (69 2)]
218 @end group
219 @end example
220 @end defun
221
222 @defun reverse sequence
223 @cindex string reverse
224 @cindex list reverse
225 @cindex vector reverse
226 @cindex sequence reverse
227 This function creates a new sequence whose elements are the elements
228 of @var{sequence}, but in reverse order. The original argument @var{sequence}
229 is @emph{not} altered. Note that char-tables cannot be reversed.
230
231 @example
232 @group
233 (setq x '(1 2 3 4))
234 @result{} (1 2 3 4)
235 @end group
236 @group
237 (reverse x)
238 @result{} (4 3 2 1)
239 x
240 @result{} (1 2 3 4)
241 @end group
242 @group
243 (setq x [1 2 3 4])
244 @result{} [1 2 3 4]
245 @end group
246 @group
247 (reverse x)
248 @result{} [4 3 2 1]
249 x
250 @result{} [1 2 3 4]
251 @end group
252 @group
253 (setq x "xyzzy")
254 @result{} "xyzzy"
255 @end group
256 @group
257 (reverse x)
258 @result{} "yzzyx"
259 x
260 @result{} "xyzzy"
261 @end group
262 @end example
263 @end defun
264
265 @defun nreverse sequence
266 @cindex reversing a string
267 @cindex reversing a list
268 @cindex reversing a vector
269 This function reverses the order of the elements of @var{sequence}.
270 Unlike @code{reverse} the original @var{sequence} may be modified.
271
272 For example:
273
274 @example
275 @group
276 (setq x '(a b c))
277 @result{} (a b c)
278 @end group
279 @group
280 x
281 @result{} (a b c)
282 (nreverse x)
283 @result{} (c b a)
284 @end group
285 @group
286 ;; @r{The cons cell that was first is now last.}
287 x
288 @result{} (a)
289 @end group
290 @end example
291
292 To avoid confusion, we usually store the result of @code{nreverse}
293 back in the same variable which held the original list:
294
295 @example
296 (setq x (nreverse x))
297 @end example
298
299 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
300 presented graphically:
301
302 @smallexample
303 @group
304 @r{Original list head:} @r{Reversed list:}
305 ------------- ------------- ------------
306 | car | cdr | | car | cdr | | car | cdr |
307 | a | nil |<-- | b | o |<-- | c | o |
308 | | | | | | | | | | | | |
309 ------------- | --------- | - | -------- | -
310 | | | |
311 ------------- ------------
312 @end group
313 @end smallexample
314
315 For the vector, it is even simpler because you don't need setq:
316
317 @example
318 (setq x [1 2 3 4])
319 @result{} [1 2 3 4]
320 (nreverse x)
321 @result{} [4 3 2 1]
322 x
323 @result{} [4 3 2 1]
324 @end example
325
326 Note that unlike @code{reverse}, this function doesn't work with strings.
327 Although you can alter string data by using @code{aset}, it is strongly
328 encouraged to treat strings as immutable.
329
330 @end defun
331
332 @defun sort sequence predicate
333 @cindex stable sort
334 @cindex sorting lists
335 @cindex sorting vectors
336 This function sorts @var{sequence} stably. Note that this function doesn't work
337 for all sequences; it may be used only for lists and vectors. If @var{sequence}
338 is a list, it is modified destructively. This functions returns the sorted
339 @var{sequence} and compares elements using @var{predicate}. A stable sort is
340 one in which elements with equal sort keys maintain their relative order before
341 and after the sort. Stability is important when successive sorts are used to
342 order elements according to different criteria.
343
344 The argument @var{predicate} must be a function that accepts two
345 arguments. It is called with two elements of @var{sequence}. To get an
346 increasing order sort, the @var{predicate} should return non-@code{nil} if the
347 first element is ``less'' than the second, or @code{nil} if not.
348
349 The comparison function @var{predicate} must give reliable results for
350 any given pair of arguments, at least within a single call to
351 @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
352 less than @var{b}, @var{b} must not be less than @var{a}. It must be
353 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
354 is less than @var{c}, then @var{a} must be less than @var{c}. If you
355 use a comparison function which does not meet these requirements, the
356 result of @code{sort} is unpredictable.
357
358 The destructive aspect of @code{sort} for lists is that it rearranges the
359 cons cells forming @var{sequence} by changing @sc{cdr}s. A nondestructive
360 sort function would create new cons cells to store the elements in their
361 sorted order. If you wish to make a sorted copy without destroying the
362 original, copy it first with @code{copy-sequence} and then sort.
363
364 Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
365 the cons cell that originally contained the element @code{a} in
366 @var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
367 appears in a different position in the list due to the change of
368 @sc{cdr}s. For example:
369
370 @example
371 @group
372 (setq nums '(1 3 2 6 5 4 0))
373 @result{} (1 3 2 6 5 4 0)
374 @end group
375 @group
376 (sort nums '<)
377 @result{} (0 1 2 3 4 5 6)
378 @end group
379 @group
380 nums
381 @result{} (1 2 3 4 5 6)
382 @end group
383 @end example
384
385 @noindent
386 @strong{Warning}: Note that the list in @code{nums} no longer contains
387 0; this is the same cons cell that it was before, but it is no longer
388 the first one in the list. Don't assume a variable that formerly held
389 the argument now holds the entire sorted list! Instead, save the result
390 of @code{sort} and use that. Most often we store the result back into
391 the variable that held the original list:
392
393 @example
394 (setq nums (sort nums '<))
395 @end example
396
397 For the better understanding of what stable sort is, consider the following
398 vector example. After sorting, all items whose @code{car} is 8 are grouped
399 at the beginning of @code{vector}, but their relative order is preserved.
400 All items whose @code{car} is 9 are grouped at the end of @code{vector},
401 but their relative order is also preserved:
402
403 @example
404 @group
405 (setq
406 vector
407 (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
408 '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
409 @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
410 (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
411 @end group
412 @group
413 (sort vector (lambda (x y) (< (car x) (car y))))
414 @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
415 (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
416 @end group
417 @end example
418
419 @xref{Sorting}, for more functions that perform sorting.
420 See @code{documentation} in @ref{Accessing Documentation}, for a
421 useful example of @code{sort}.
422 @end defun
423
424 @cindex sequence functions in seq
425 @cindex seq library
426 The @file{seq.el} library provides the following additional sequence
427 manipulation macros and functions, prefixed with @code{seq-}. To use
428 them, you must first load the @file{seq} library.
429
430 All functions defined in this library are free of side-effects;
431 i.e., they do not modify any sequence (list, vector, or string) that
432 you pass as an argument. Unless otherwise stated, the result is a
433 sequence of the same type as the input. For those functions that take
434 a predicate, this should be a function of one argument.
435
436 The @file{seq.el} library can be extended to work with additional
437 types of sequential data-structures. For that purpose, all functions
438 are defined using @code{cl-defgeneric}. @xref{Generic Functions}, for
439 more details about using @code{cl-defgeneric} for adding extensions.
440
441 @defun seq-elt sequence index
442 This function returns the element of @var{sequence} at the specified
443 @var{index}, which is an integer whose valid value range is zero to
444 one less than the length of @var{sequence}. For out-of-range values
445 on built-in sequence types, @code{seq-elt} behaves like @code{elt}.
446 For the details, see @ref{Definition of elt}.
447
448 @example
449 @group
450 (seq-elt [1 2 3 4] 2)
451 @result{} 3
452 @end group
453 @end example
454
455 @code{seq-elt} returns places settable using @code{setf}
456 (@pxref{Setting Generalized Variables}).
457
458 @example
459 @group
460 (setq vec [1 2 3 4])
461 (setf (seq-elt vec 2) 5)
462 vec
463 @result{} [1 2 5 4]
464 @end group
465 @end example
466 @end defun
467
468 @defun seq-length sequence
469 This function returns the number of elements in @var{sequence}. For
470 built-in sequence types, @code{seq-length} behaves like @code{length}.
471 @xref{Definition of length}.
472 @end defun
473
474 @defun seqp sequence
475 This function returns non-@code{nil} if @var{sequence} is a sequence
476 (a list or array), or any additional type of sequence defined via
477 @file{seq.el} generic functions.
478
479 @example
480 @group
481 (seqp [1 2])
482 @result{} t
483 @end group
484 @group
485 (seqp 2)
486 @result{} nil
487 @end group
488 @end example
489 @end defun
490
491 @defun seq-drop sequence n
492 This function returns all but the first @var{n} (an integer)
493 elements of @var{sequence}. If @var{n} is negative or zero,
494 the result is @var{sequence}.
495
496 @example
497 @group
498 (seq-drop [1 2 3 4 5 6] 3)
499 @result{} [4 5 6]
500 @end group
501 @group
502 (seq-drop "hello world" -4)
503 @result{} "hello world"
504 @end group
505 @end example
506 @end defun
507
508 @defun seq-take sequence n
509 This function returns the first @var{n} (an integer) elements of
510 @var{sequence}. If @var{n} is negative or zero, the result
511 is @code{nil}.
512
513 @example
514 @group
515 (seq-take '(1 2 3 4) 3)
516 @result{} (1 2 3)
517 @end group
518 @group
519 (seq-take [1 2 3 4] 0)
520 @result{} []
521 @end group
522 @end example
523 @end defun
524
525 @defun seq-take-while predicate sequence
526 This function returns the members of @var{sequence} in order,
527 stopping before the first one for which @var{predicate} returns @code{nil}.
528
529 @example
530 @group
531 (seq-take-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
532 @result{} (1 2 3)
533 @end group
534 @group
535 (seq-take-while (lambda (elt) (> elt 0)) [-1 4 6])
536 @result{} []
537 @end group
538 @end example
539 @end defun
540
541 @defun seq-drop-while predicate sequence
542 This function returns the members of @var{sequence} in order,
543 starting from the first one for which @var{predicate} returns @code{nil}.
544
545 @example
546 @group
547 (seq-drop-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
548 @result{} (-1 -2)
549 @end group
550 @group
551 (seq-drop-while (lambda (elt) (< elt 0)) [1 4 6])
552 @result{} [1 4 6]
553 @end group
554 @end example
555 @end defun
556
557 @defun seq-do function sequence
558 This function applies @var{function} to each element of
559 @var{sequence} in turn (presumably for side effects), and returns
560 @var{sequence}.
561 @end defun
562
563 @defun seq-map function sequence
564 This function returns the result of applying @var{function} to each
565 element of @var{sequence}. The returned value is a list.
566
567 @example
568 @group
569 (seq-map #'1+ '(2 4 6))
570 @result{} (3 5 7)
571 @end group
572 @group
573 (seq-map #'symbol-name [foo bar])
574 @result{} ("foo" "bar")
575 @end group
576 @end example
577 @end defun
578
579 @defun seq-map-indexed function sequence
580 This function returns the result of applying @var{function} to each
581 element of @var{sequence} and its index within @var{seq}. The
582 returned value is a list.
583
584 @example
585 @group
586 (seq-map-indexed (lambda (elt idx)
587 (list idx elt))
588 '(a b c))
589 @result{} ((0 a) (b 1) (c 2))
590 @end group
591 @end example
592 @end defun
593
594 @defun seq-mapn function &rest sequences
595 This function returns the result of applying @var{function} to each
596 element of @var{sequences}. The arity (@pxref{What Is a Function,
597 sub-arity}) of @var{function} must match the number of sequences.
598 Mapping stops at the end of the shortest sequence, and the returned
599 value is a list.
600
601 @example
602 @group
603 (seq-mapn #'+ '(2 4 6) '(20 40 60))
604 @result{} (22 44 66)
605 @end group
606 @group
607 (seq-mapn #'concat '("moskito" "bite") ["bee" "sting"])
608 @result{} ("moskitobee" "bitesting")
609 @end group
610 @end example
611 @end defun
612
613 @defun seq-filter predicate sequence
614 @cindex filtering sequences
615 This function returns a list of all the elements in @var{sequence}
616 for which @var{predicate} returns non-@code{nil}.
617
618 @example
619 @group
620 (seq-filter (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
621 @result{} (1 3 5)
622 @end group
623 @group
624 (seq-filter (lambda (elt) (> elt 0)) '(-1 -3 -5))
625 @result{} nil
626 @end group
627 @end example
628 @end defun
629
630 @defun seq-remove predicate sequence
631 @cindex removing from sequences
632 This function returns a list of all the elements in @var{sequence}
633 for which @var{predicate} returns @code{nil}.
634
635 @example
636 @group
637 (seq-remove (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
638 @result{} (-1 -3)
639 @end group
640 @group
641 (seq-remove (lambda (elt) (< elt 0)) '(-1 -3 -5))
642 @result{} nil
643 @end group
644 @end example
645 @end defun
646
647 @defun seq-reduce function sequence initial-value
648 @cindex reducing sequences
649 This function returns the result of calling @var{function} with
650 @var{initial-value} and the first element of @var{sequence}, then calling
651 @var{function} with that result and the second element of @var{sequence},
652 then with that result and the third element of @var{sequence}, etc.
653 @var{function} should be a function of two arguments. If
654 @var{sequence} is empty, this returns @var{initial-value} without
655 calling @var{function}.
656
657 @example
658 @group
659 (seq-reduce #'+ [1 2 3 4] 0)
660 @result{} 10
661 @end group
662 @group
663 (seq-reduce #'+ '(1 2 3 4) 5)
664 @result{} 15
665 @end group
666 @group
667 (seq-reduce #'+ '() 3)
668 @result{} 3
669 @end group
670 @end example
671 @end defun
672
673 @defun seq-some predicate sequence
674 This function returns the first non-@code{nil} value returned by
675 applying @var{predicate} to each element of @var{sequence} in turn.
676
677 @example
678 @group
679 (seq-some #'numberp ["abc" 1 nil])
680 @result{} t
681 @end group
682 @group
683 (seq-some #'numberp ["abc" "def"])
684 @result{} nil
685 @end group
686 @group
687 (seq-some #'null ["abc" 1 nil])
688 @result{} t
689 @end group
690 @group
691 (seq-some #'1+ [2 4 6])
692 @result{} 3
693 @end group
694 @end example
695 @end defun
696
697 @defun seq-find predicate sequence &optional default
698 This function returns the first element in @var{sequence} for which
699 @var{predicate} returns non-@code{nil}. If no element matches
700 @var{predicate}, the function returns @var{default}.
701
702 Note that this function has an ambiguity if the found element is
703 identical to @var{default}, as in that case it cannot be known whether
704 an element was found or not.
705
706 @example
707 @group
708 (seq-find #'numberp ["abc" 1 nil])
709 @result{} 1
710 @end group
711 @group
712 (seq-find #'numberp ["abc" "def"])
713 @result{} nil
714 @end group
715 @end example
716 @end defun
717
718 @defun seq-every-p predicate sequence
719 This function returns non-@code{nil} if applying @var{predicate}
720 to every element of @var{sequence} returns non-@code{nil}.
721
722 @example
723 @group
724 (seq-every-p #'numberp [2 4 6])
725 @result{} t
726 @end group
727 @group
728 (seq-some #'numberp [2 4 "6"])
729 @result{} nil
730 @end group
731 @end example
732 @end defun
733
734 @defun seq-empty-p sequence
735 This function returns non-@code{nil} if @var{sequence} is empty.
736
737 @example
738 @group
739 (seq-empty-p "not empty")
740 @result{} nil
741 @end group
742 @group
743 (seq-empty-p "")
744 @result{} t
745 @end group
746 @end example
747 @end defun
748
749 @defun seq-count predicate sequence
750 This function returns the number of elements in @var{sequence} for which
751 @var{predicate} returns non-@code{nil}.
752
753 @example
754 (seq-count (lambda (elt) (> elt 0)) [-1 2 0 3 -2])
755 @result{} 2
756 @end example
757 @end defun
758
759 @cindex sorting sequences
760 @defun seq-sort function sequence
761 This function returns a copy of @var{sequence} that is sorted
762 according to @var{function}, a function of two arguments that returns
763 non-@code{nil} if the first argument should sort before the second.
764 @end defun
765
766 @defun seq-sort-by function predicate sequence
767 This function is similar to @code{seq-sort}, but the elements of
768 @var{sequence} are transformed by applying @var{function} on them
769 before being sorted. @var{function} is a function of one argument.
770
771 @example
772 (seq-sort-by #'seq-length #'> ["a" "ab" "abc"])
773 @result{} ["abc" "ab" "a"]
774 @end example
775 @end defun
776
777
778 @defun seq-contains sequence elt &optional function
779 This function returns the first element in @var{sequence} that is equal to
780 @var{elt}. If the optional argument @var{function} is non-@code{nil},
781 it is a function of two arguments to use instead of the default @code{equal}.
782
783 @example
784 @group
785 (seq-contains '(symbol1 symbol2) 'symbol1)
786 @result{} symbol1
787 @end group
788 @group
789 (seq-contains '(symbol1 symbol2) 'symbol3)
790 @result{} nil
791 @end group
792 @end example
793
794 @end defun
795
796 @defun seq-position sequence elt &optional function
797 This function returns the index of the first element in
798 @var{sequence} that is equal to @var{elt}. If the optional argument
799 @var{function} is non-@code{nil}, it is a function of two arguments to
800 use instead of the default @code{equal}.
801
802 @example
803 @group
804 (seq-position '(a b c) 'b)
805 @result{} 1
806 @end group
807 @group
808 (seq-position '(a b c) 'd)
809 @result{} nil
810 @end group
811 @end example
812 @end defun
813
814
815 @defun seq-uniq sequence &optional function
816 This function returns a list of the elements of @var{sequence} with
817 duplicates removed. If the optional argument @var{function} is non-@code{nil},
818 it is a function of two arguments to use instead of the default @code{equal}.
819
820 @example
821 @group
822 (seq-uniq '(1 2 2 1 3))
823 @result{} (1 2 3)
824 @end group
825 @group
826 (seq-uniq '(1 2 2.0 1.0) #'=)
827 @result{} [3 4]
828 @end group
829 @end example
830 @end defun
831
832 @defun seq-subseq sequence start &optional end
833 This function returns a subset of @var{sequence} from @var{start}
834 to @var{end}, both integers (@var{end} defaults to the last element).
835 If @var{start} or @var{end} is negative, it counts from the end of
836 @var{sequence}.
837
838 @example
839 @group
840 (seq-subseq '(1 2 3 4 5) 1)
841 @result{} (2 3 4 5)
842 @end group
843 @group
844 (seq-subseq '[1 2 3 4 5] 1 3)
845 @result{} [2 3]
846 @end group
847 @group
848 (seq-subseq '[1 2 3 4 5] -3 -1)
849 @result{} [3 4]
850 @end group
851 @end example
852 @end defun
853
854 @defun seq-concatenate type &rest sequences
855 This function returns a sequence of type @var{type} made of the
856 concatenation of @var{sequences}. @var{type} may be: @code{vector},
857 @code{list} or @code{string}.
858
859 @example
860 @group
861 (seq-concatenate 'list '(1 2) '(3 4) [5 6])
862 @result{} (1 2 3 5 6)
863 @end group
864 @group
865 (seq-concatenate 'string "Hello " "world")
866 @result{} "Hello world"
867 @end group
868 @end example
869 @end defun
870
871 @defun seq-mapcat function sequence &optional type
872 This function returns the result of applying @code{seq-concatenate}
873 to the result of applying @var{function} to each element of
874 @var{sequence}. The result is a sequence of type @var{type}, or a
875 list if @var{type} is @code{nil}.
876
877 @example
878 @group
879 (seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)))
880 @result{} (1 2 3 4 5 6)
881 @end group
882 @end example
883 @end defun
884
885 @defun seq-partition sequence n
886 This function returns a list of the elements of @var{sequence}
887 grouped into sub-sequences of length @var{n}. The last sequence may
888 contain less elements than @var{n}. @var{n} must be an integer. If
889 @var{n} is a negative integer or 0, the return value is @code{nil}.
890
891 @example
892 @group
893 (seq-partition '(0 1 2 3 4 5 6 7) 3)
894 @result{} ((0 1 2) (3 4 5) (6 7))
895 @end group
896 @end example
897 @end defun
898
899 @defun seq-intersection sequence1 sequence2 &optional function
900 This function returns a list of the elements that appear both in
901 @var{sequence1} and @var{sequence2}. If the optional argument
902 @var{function} is non-@code{nil}, it is a function of two arguments to
903 use to compare elements instead of the default @code{equal}.
904
905 @example
906 @group
907 (seq-intersection [2 3 4 5] [1 3 5 6 7])
908 @result{} (3 5)
909 @end group
910 @end example
911 @end defun
912
913
914 @defun seq-difference sequence1 sequence2 &optional function
915 This function returns a list of the elements that appear in
916 @var{sequence1} but not in @var{sequence2}. If the optional argument
917 @var{function} is non-@code{nil}, it is a function of two arguments to
918 use to compare elements instead of the default @code{equal}.
919
920 @example
921 @group
922 (seq-difference '(2 3 4 5) [1 3 5 6 7])
923 @result{} (2 4)
924 @end group
925 @end example
926 @end defun
927
928 @defun seq-group-by function sequence
929 This function separates the elements of @var{sequence} into an alist
930 whose keys are the result of applying @var{function} to each element
931 of @var{sequence}. Keys are compared using @code{equal}.
932
933 @example
934 @group
935 (seq-group-by #'integerp '(1 2.1 3 2 3.2))
936 @result{} ((t 1 3 2) (nil 2.1 3.2))
937 @end group
938 @group
939 (seq-group-by #'car '((a 1) (b 2) (a 3) (c 4)))
940 @result{} ((b (b 2)) (a (a 1) (a 3)) (c (c 4)))
941 @end group
942 @end example
943 @end defun
944
945 @defun seq-into sequence type
946 This function converts the sequence @var{sequence} into a sequence
947 of type @var{type}. @var{type} can be one of the following symbols:
948 @code{vector}, @code{string} or @code{list}.
949
950 @example
951 @group
952 (seq-into [1 2 3] 'list)
953 @result{} (1 2 3)
954 @end group
955 @group
956 (seq-into nil 'vector)
957 @result{} []
958 @end group
959 @group
960 (seq-into "hello" 'vector)
961 @result{} [104 101 108 108 111]
962 @end group
963 @end example
964 @end defun
965
966 @defun seq-min sequence
967 This function returns the smallest element of @var{sequence}. The
968 elements of @var{sequence} must be numbers or markers
969 (@pxref{Markers}).
970
971 @example
972 @group
973 (seq-min [3 1 2])
974 @result{} 1
975 @end group
976 @group
977 (seq-min "Hello")
978 @result{} 72
979 @end group
980 @end example
981 @end defun
982
983 @defun seq-max sequence
984 This function returns the largest element of @var{sequence}. The
985 elements of @var{sequence} must be numbers or markers.
986
987 @example
988 @group
989 (seq-max [1 3 2])
990 @result{} 3
991 @end group
992 @group
993 (seq-max "Hello")
994 @result{} 111
995 @end group
996 @end example
997 @end defun
998
999 @defmac seq-doseq (var sequence) body@dots{}
1000 @cindex sequence iteration
1001 This macro is like @code{dolist} (@pxref{Iteration, dolist}), except
1002 that @var{sequence} can be a list, vector or string. This is
1003 primarily useful for side-effects.
1004 @end defmac
1005
1006 @defmac seq-let arguments sequence body@dots{}
1007 @cindex sequence destructuring
1008 This macro binds the variables defined in @var{arguments} to the
1009 elements of @var{sequence}. @var{arguments} can themselves include
1010 sequences, allowing for nested destructuring.
1011
1012 The @var{arguments} sequence can also include the @code{&rest} marker
1013 followed by a variable name to be bound to the rest of
1014 @code{sequence}.
1015
1016 @example
1017 @group
1018 (seq-let [first second] [1 2 3 4]
1019 (list first second))
1020 @result{} (1 2)
1021 @end group
1022 @group
1023 (seq-let (_ a _ b) '(1 2 3 4)
1024 (list a b))
1025 @result{} (2 4)
1026 @end group
1027 @group
1028 (seq-let [a [b [c]]] [1 [2 [3]]]
1029 (list a b c))
1030 @result{} (1 2 3)
1031 @end group
1032 @group
1033 (seq-let [a b &rest others] [1 2 3 4]
1034 others)
1035 @end group
1036 @result{} [3 4]
1037 @end example
1038 @end defmac
1039
1040
1041 @node Arrays
1042 @section Arrays
1043 @cindex array
1044
1045 An @dfn{array} object has slots that hold a number of other Lisp
1046 objects, called the elements of the array. Any element of an array
1047 may be accessed in constant time. In contrast, the time to access an
1048 element of a list is proportional to the position of that element in
1049 the list.
1050
1051 Emacs defines four types of array, all one-dimensional:
1052 @dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
1053 Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
1054 @dfn{char-tables} (@pxref{Char-Table Type}). Vectors and char-tables
1055 can hold elements of any type, but strings can only hold characters,
1056 and bool-vectors can only hold @code{t} and @code{nil}.
1057
1058 All four kinds of array share these characteristics:
1059
1060 @itemize @bullet
1061 @item
1062 The first element of an array has index zero, the second element has
1063 index 1, and so on. This is called @dfn{zero-origin} indexing. For
1064 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
1065
1066 @item
1067 The length of the array is fixed once you create it; you cannot
1068 change the length of an existing array.
1069
1070 @item
1071 For purposes of evaluation, the array is a constant---i.e.,
1072 it evaluates to itself.
1073
1074 @item
1075 The elements of an array may be referenced or changed with the functions
1076 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
1077 @end itemize
1078
1079 When you create an array, other than a char-table, you must specify
1080 its length. You cannot specify the length of a char-table, because that
1081 is determined by the range of character codes.
1082
1083 In principle, if you want an array of text characters, you could use
1084 either a string or a vector. In practice, we always choose strings for
1085 such applications, for four reasons:
1086
1087 @itemize @bullet
1088 @item
1089 They occupy one-fourth the space of a vector of the same elements.
1090
1091 @item
1092 Strings are printed in a way that shows the contents more clearly
1093 as text.
1094
1095 @item
1096 Strings can hold text properties. @xref{Text Properties}.
1097
1098 @item
1099 Many of the specialized editing and I/O facilities of Emacs accept only
1100 strings. For example, you cannot insert a vector of characters into a
1101 buffer the way you can insert a string. @xref{Strings and Characters}.
1102 @end itemize
1103
1104 By contrast, for an array of keyboard input characters (such as a key
1105 sequence), a vector may be necessary, because many keyboard input
1106 characters are outside the range that will fit in a string. @xref{Key
1107 Sequence Input}.
1108
1109 @node Array Functions
1110 @section Functions that Operate on Arrays
1111
1112 In this section, we describe the functions that accept all types of
1113 arrays.
1114
1115 @defun arrayp object
1116 This function returns @code{t} if @var{object} is an array (i.e., a
1117 vector, a string, a bool-vector or a char-table).
1118
1119 @example
1120 @group
1121 (arrayp [a])
1122 @result{} t
1123 (arrayp "asdf")
1124 @result{} t
1125 (arrayp (syntax-table)) ;; @r{A char-table.}
1126 @result{} t
1127 @end group
1128 @end example
1129 @end defun
1130
1131 @defun aref array index
1132 @cindex array elements
1133 This function returns the @var{index}th element of @var{array}. The
1134 first element is at index zero.
1135
1136 @example
1137 @group
1138 (setq primes [2 3 5 7 11 13])
1139 @result{} [2 3 5 7 11 13]
1140 (aref primes 4)
1141 @result{} 11
1142 @end group
1143 @group
1144 (aref "abcdefg" 1)
1145 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
1146 @end group
1147 @end example
1148
1149 See also the function @code{elt}, in @ref{Sequence Functions}.
1150 @end defun
1151
1152 @defun aset array index object
1153 This function sets the @var{index}th element of @var{array} to be
1154 @var{object}. It returns @var{object}.
1155
1156 @example
1157 @group
1158 (setq w [foo bar baz])
1159 @result{} [foo bar baz]
1160 (aset w 0 'fu)
1161 @result{} fu
1162 w
1163 @result{} [fu bar baz]
1164 @end group
1165
1166 @group
1167 (setq x "asdfasfd")
1168 @result{} "asdfasfd"
1169 (aset x 3 ?Z)
1170 @result{} 90
1171 x
1172 @result{} "asdZasfd"
1173 @end group
1174 @end example
1175
1176 If @var{array} is a string and @var{object} is not a character, a
1177 @code{wrong-type-argument} error results. The function converts a
1178 unibyte string to multibyte if necessary to insert a character.
1179 @end defun
1180
1181 @defun fillarray array object
1182 This function fills the array @var{array} with @var{object}, so that
1183 each element of @var{array} is @var{object}. It returns @var{array}.
1184
1185 @example
1186 @group
1187 (setq a [a b c d e f g])
1188 @result{} [a b c d e f g]
1189 (fillarray a 0)
1190 @result{} [0 0 0 0 0 0 0]
1191 a
1192 @result{} [0 0 0 0 0 0 0]
1193 @end group
1194 @group
1195 (setq s "When in the course")
1196 @result{} "When in the course"
1197 (fillarray s ?-)
1198 @result{} "------------------"
1199 @end group
1200 @end example
1201
1202 If @var{array} is a string and @var{object} is not a character, a
1203 @code{wrong-type-argument} error results.
1204 @end defun
1205
1206 The general sequence functions @code{copy-sequence} and @code{length}
1207 are often useful for objects known to be arrays. @xref{Sequence Functions}.
1208
1209 @node Vectors
1210 @section Vectors
1211 @cindex vector (type)
1212
1213 A @dfn{vector} is a general-purpose array whose elements can be any
1214 Lisp objects. (By contrast, the elements of a string can only be
1215 characters. @xref{Strings and Characters}.) Vectors are used in
1216 Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
1217 symbol-lookup tables (@pxref{Creating Symbols}), as part of the
1218 representation of a byte-compiled function (@pxref{Byte Compilation}),
1219 and more.
1220
1221 Like other arrays, vectors use zero-origin indexing: the first
1222 element has index 0.
1223
1224 Vectors are printed with square brackets surrounding the elements.
1225 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
1226 @code{a} is printed as @code{[a b a]}. You can write vectors in the
1227 same way in Lisp input.
1228
1229 A vector, like a string or a number, is considered a constant for
1230 evaluation: the result of evaluating it is the same vector. This does
1231 not evaluate or even examine the elements of the vector.
1232 @xref{Self-Evaluating Forms}.
1233
1234 Here are examples illustrating these principles:
1235
1236 @example
1237 @group
1238 (setq avector [1 two '(three) "four" [five]])
1239 @result{} [1 two (quote (three)) "four" [five]]
1240 (eval avector)
1241 @result{} [1 two (quote (three)) "four" [five]]
1242 (eq avector (eval avector))
1243 @result{} t
1244 @end group
1245 @end example
1246
1247 @node Vector Functions
1248 @section Functions for Vectors
1249
1250 Here are some functions that relate to vectors:
1251
1252 @defun vectorp object
1253 This function returns @code{t} if @var{object} is a vector.
1254
1255 @example
1256 @group
1257 (vectorp [a])
1258 @result{} t
1259 (vectorp "asdf")
1260 @result{} nil
1261 @end group
1262 @end example
1263 @end defun
1264
1265 @defun vector &rest objects
1266 This function creates and returns a vector whose elements are the
1267 arguments, @var{objects}.
1268
1269 @example
1270 @group
1271 (vector 'foo 23 [bar baz] "rats")
1272 @result{} [foo 23 [bar baz] "rats"]
1273 (vector)
1274 @result{} []
1275 @end group
1276 @end example
1277 @end defun
1278
1279 @defun make-vector length object
1280 This function returns a new vector consisting of @var{length} elements,
1281 each initialized to @var{object}.
1282
1283 @example
1284 @group
1285 (setq sleepy (make-vector 9 'Z))
1286 @result{} [Z Z Z Z Z Z Z Z Z]
1287 @end group
1288 @end example
1289 @end defun
1290
1291 @defun vconcat &rest sequences
1292 @cindex copying vectors
1293 This function returns a new vector containing all the elements of
1294 @var{sequences}. The arguments @var{sequences} may be true lists,
1295 vectors, strings or bool-vectors. If no @var{sequences} are given,
1296 the empty vector is returned.
1297
1298 The value is either the empty vector, or is a newly constructed
1299 nonempty vector that is not @code{eq} to any existing vector.
1300
1301 @example
1302 @group
1303 (setq a (vconcat '(A B C) '(D E F)))
1304 @result{} [A B C D E F]
1305 (eq a (vconcat a))
1306 @result{} nil
1307 @end group
1308 @group
1309 (vconcat)
1310 @result{} []
1311 (vconcat [A B C] "aa" '(foo (6 7)))
1312 @result{} [A B C 97 97 foo (6 7)]
1313 @end group
1314 @end example
1315
1316 The @code{vconcat} function also allows byte-code function objects as
1317 arguments. This is a special feature to make it easy to access the entire
1318 contents of a byte-code function object. @xref{Byte-Code Objects}.
1319
1320 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
1321 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
1322 in @ref{Building Lists}.
1323 @end defun
1324
1325 The @code{append} function also provides a way to convert a vector into a
1326 list with the same elements:
1327
1328 @example
1329 @group
1330 (setq avector [1 two (quote (three)) "four" [five]])
1331 @result{} [1 two (quote (three)) "four" [five]]
1332 (append avector nil)
1333 @result{} (1 two (quote (three)) "four" [five])
1334 @end group
1335 @end example
1336
1337 @node Char-Tables
1338 @section Char-Tables
1339 @cindex char-tables
1340 @cindex extra slots of char-table
1341
1342 A char-table is much like a vector, except that it is indexed by
1343 character codes. Any valid character code, without modifiers, can be
1344 used as an index in a char-table. You can access a char-table's
1345 elements with @code{aref} and @code{aset}, as with any array. In
1346 addition, a char-table can have @dfn{extra slots} to hold additional
1347 data not associated with particular character codes. Like vectors,
1348 char-tables are constants when evaluated, and can hold elements of any
1349 type.
1350
1351 @cindex subtype of char-table
1352 Each char-table has a @dfn{subtype}, a symbol, which serves two
1353 purposes:
1354
1355 @itemize @bullet
1356 @item
1357 The subtype provides an easy way to tell what the char-table is for.
1358 For instance, display tables are char-tables with @code{display-table}
1359 as the subtype, and syntax tables are char-tables with
1360 @code{syntax-table} as the subtype. The subtype can be queried using
1361 the function @code{char-table-subtype}, described below.
1362
1363 @item
1364 The subtype controls the number of @dfn{extra slots} in the
1365 char-table. This number is specified by the subtype's
1366 @code{char-table-extra-slots} symbol property (@pxref{Symbol
1367 Properties}), whose value should be an integer between 0 and 10. If
1368 the subtype has no such symbol property, the char-table has no extra
1369 slots.
1370 @end itemize
1371
1372 @cindex parent of char-table
1373 A char-table can have a @dfn{parent}, which is another char-table. If
1374 it does, then whenever the char-table specifies @code{nil} for a
1375 particular character @var{c}, it inherits the value specified in the
1376 parent. In other words, @code{(aref @var{char-table} @var{c})} returns
1377 the value from the parent of @var{char-table} if @var{char-table} itself
1378 specifies @code{nil}.
1379
1380 @cindex default value of char-table
1381 A char-table can also have a @dfn{default value}. If so, then
1382 @code{(aref @var{char-table} @var{c})} returns the default value
1383 whenever the char-table does not specify any other non-@code{nil} value.
1384
1385 @defun make-char-table subtype &optional init
1386 Return a newly-created char-table, with subtype @var{subtype} (a
1387 symbol). Each element is initialized to @var{init}, which defaults to
1388 @code{nil}. You cannot alter the subtype of a char-table after the
1389 char-table is created.
1390
1391 There is no argument to specify the length of the char-table, because
1392 all char-tables have room for any valid character code as an index.
1393
1394 If @var{subtype} has the @code{char-table-extra-slots} symbol
1395 property, that specifies the number of extra slots in the char-table.
1396 This should be an integer between 0 and 10; otherwise,
1397 @code{make-char-table} raises an error. If @var{subtype} has no
1398 @code{char-table-extra-slots} symbol property (@pxref{Property
1399 Lists}), the char-table has no extra slots.
1400 @end defun
1401
1402 @defun char-table-p object
1403 This function returns @code{t} if @var{object} is a char-table, and
1404 @code{nil} otherwise.
1405 @end defun
1406
1407 @defun char-table-subtype char-table
1408 This function returns the subtype symbol of @var{char-table}.
1409 @end defun
1410
1411 There is no special function to access default values in a char-table.
1412 To do that, use @code{char-table-range} (see below).
1413
1414 @defun char-table-parent char-table
1415 This function returns the parent of @var{char-table}. The parent is
1416 always either @code{nil} or another char-table.
1417 @end defun
1418
1419 @defun set-char-table-parent char-table new-parent
1420 This function sets the parent of @var{char-table} to @var{new-parent}.
1421 @end defun
1422
1423 @defun char-table-extra-slot char-table n
1424 This function returns the contents of extra slot @var{n} (zero based)
1425 of @var{char-table}. The number of extra slots in a char-table is
1426 determined by its subtype.
1427 @end defun
1428
1429 @defun set-char-table-extra-slot char-table n value
1430 This function stores @var{value} in extra slot @var{n} (zero based) of
1431 @var{char-table}.
1432 @end defun
1433
1434 A char-table can specify an element value for a single character code;
1435 it can also specify a value for an entire character set.
1436
1437 @defun char-table-range char-table range
1438 This returns the value specified in @var{char-table} for a range of
1439 characters @var{range}. Here are the possibilities for @var{range}:
1440
1441 @table @asis
1442 @item @code{nil}
1443 Refers to the default value.
1444
1445 @item @var{char}
1446 Refers to the element for character @var{char}
1447 (supposing @var{char} is a valid character code).
1448
1449 @item @code{(@var{from} . @var{to})}
1450 A cons cell refers to all the characters in the inclusive range
1451 @samp{[@var{from}..@var{to}]}.
1452 @end table
1453 @end defun
1454
1455 @defun set-char-table-range char-table range value
1456 This function sets the value in @var{char-table} for a range of
1457 characters @var{range}. Here are the possibilities for @var{range}:
1458
1459 @table @asis
1460 @item @code{nil}
1461 Refers to the default value.
1462
1463 @item @code{t}
1464 Refers to the whole range of character codes.
1465
1466 @item @var{char}
1467 Refers to the element for character @var{char}
1468 (supposing @var{char} is a valid character code).
1469
1470 @item @code{(@var{from} . @var{to})}
1471 A cons cell refers to all the characters in the inclusive range
1472 @samp{[@var{from}..@var{to}]}.
1473 @end table
1474 @end defun
1475
1476 @defun map-char-table function char-table
1477 This function calls its argument @var{function} for each element of
1478 @var{char-table} that has a non-@code{nil} value. The call to
1479 @var{function} is with two arguments, a key and a value. The key
1480 is a possible @var{range} argument for @code{char-table-range}---either
1481 a valid character or a cons cell @code{(@var{from} . @var{to})},
1482 specifying a range of characters that share the same value. The value is
1483 what @code{(char-table-range @var{char-table} @var{key})} returns.
1484
1485 Overall, the key-value pairs passed to @var{function} describe all the
1486 values stored in @var{char-table}.
1487
1488 The return value is always @code{nil}; to make calls to
1489 @code{map-char-table} useful, @var{function} should have side effects.
1490 For example, here is how to examine the elements of the syntax table:
1491
1492 @example
1493 (let (accumulator)
1494 (map-char-table
1495 #'(lambda (key value)
1496 (setq accumulator
1497 (cons (list
1498 (if (consp key)
1499 (list (car key) (cdr key))
1500 key)
1501 value)
1502 accumulator)))
1503 (syntax-table))
1504 accumulator)
1505 @result{}
1506 (((2597602 4194303) (2)) ((2597523 2597601) (3))
1507 ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
1508 ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
1509 @end example
1510 @end defun
1511
1512 @node Bool-Vectors
1513 @section Bool-vectors
1514 @cindex Bool-vectors
1515
1516 A bool-vector is much like a vector, except that it stores only the
1517 values @code{t} and @code{nil}. If you try to store any non-@code{nil}
1518 value into an element of the bool-vector, the effect is to store
1519 @code{t} there. As with all arrays, bool-vector indices start from 0,
1520 and the length cannot be changed once the bool-vector is created.
1521 Bool-vectors are constants when evaluated.
1522
1523 Several functions work specifically with bool-vectors; aside
1524 from that, you manipulate them with same functions used for other kinds
1525 of arrays.
1526
1527 @defun make-bool-vector length initial
1528 Return a new bool-vector of @var{length} elements,
1529 each one initialized to @var{initial}.
1530 @end defun
1531
1532 @defun bool-vector &rest objects
1533 This function creates and returns a bool-vector whose elements are the
1534 arguments, @var{objects}.
1535 @end defun
1536
1537 @defun bool-vector-p object
1538 This returns @code{t} if @var{object} is a bool-vector,
1539 and @code{nil} otherwise.
1540 @end defun
1541
1542 There are also some bool-vector set operation functions, described below:
1543
1544 @defun bool-vector-exclusive-or a b &optional c
1545 Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
1546 If optional argument @var{c} is given, the result of this operation is
1547 stored into @var{c}. All arguments should be bool vectors of the same length.
1548 @end defun
1549
1550 @defun bool-vector-union a b &optional c
1551 Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}. If
1552 optional argument @var{c} is given, the result of this operation is
1553 stored into @var{c}. All arguments should be bool vectors of the same length.
1554 @end defun
1555
1556 @defun bool-vector-intersection a b &optional c
1557 Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}. If
1558 optional argument @var{c} is given, the result of this operation is
1559 stored into @var{c}. All arguments should be bool vectors of the same length.
1560 @end defun
1561
1562 @defun bool-vector-set-difference a b &optional c
1563 Return @dfn{set difference} of bool vectors @var{a} and @var{b}. If
1564 optional argument @var{c} is given, the result of this operation is
1565 stored into @var{c}. All arguments should be bool vectors of the same length.
1566 @end defun
1567
1568 @defun bool-vector-not a &optional b
1569 Return @dfn{set complement} of bool vector @var{a}. If optional
1570 argument @var{b} is given, the result of this operation is stored into
1571 @var{b}. All arguments should be bool vectors of the same length.
1572 @end defun
1573
1574 @defun bool-vector-subsetp a b
1575 Return @code{t} if every @code{t} value in @var{a} is also t in
1576 @var{b}, @code{nil} otherwise. All arguments should be bool vectors of the
1577 same length.
1578 @end defun
1579
1580 @defun bool-vector-count-consecutive a b i
1581 Return the number of consecutive elements in @var{a} equal @var{b}
1582 starting at @var{i}. @code{a} is a bool vector, @var{b} is @code{t}
1583 or @code{nil}, and @var{i} is an index into @code{a}.
1584 @end defun
1585
1586 @defun bool-vector-count-population a
1587 Return the number of elements that are @code{t} in bool vector @var{a}.
1588 @end defun
1589
1590 The printed form represents up to 8 boolean values as a single
1591 character:
1592
1593 @example
1594 @group
1595 (bool-vector t nil t nil)
1596 @result{} #&4"^E"
1597 (bool-vector)
1598 @result{} #&0""
1599 @end group
1600 @end example
1601
1602 You can use @code{vconcat} to print a bool-vector like other vectors:
1603
1604 @example
1605 @group
1606 (vconcat (bool-vector nil t nil t))
1607 @result{} [nil t nil t]
1608 @end group
1609 @end example
1610
1611 Here is another example of creating, examining, and updating a
1612 bool-vector:
1613
1614 @example
1615 (setq bv (make-bool-vector 5 t))
1616 @result{} #&5"^_"
1617 (aref bv 1)
1618 @result{} t
1619 (aset bv 3 nil)
1620 @result{} nil
1621 bv
1622 @result{} #&5"^W"
1623 @end example
1624
1625 @noindent
1626 These results make sense because the binary codes for control-_ and
1627 control-W are 11111 and 10111, respectively.
1628
1629 @node Rings
1630 @section Managing a Fixed-Size Ring of Objects
1631
1632 @cindex ring data structure
1633 A @dfn{ring} is a fixed-size data structure that supports insertion,
1634 deletion, rotation, and modulo-indexed reference and traversal. An
1635 efficient ring data structure is implemented by the @code{ring}
1636 package. It provides the functions listed in this section.
1637
1638 Note that several rings in Emacs, like the kill ring and the
1639 mark ring, are actually implemented as simple lists, @emph{not} using
1640 the @code{ring} package; thus the following functions won't work on
1641 them.
1642
1643 @defun make-ring size
1644 This returns a new ring capable of holding @var{size} objects.
1645 @var{size} should be an integer.
1646 @end defun
1647
1648 @defun ring-p object
1649 This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1650 @end defun
1651
1652 @defun ring-size ring
1653 This returns the maximum capacity of the @var{ring}.
1654 @end defun
1655
1656 @defun ring-length ring
1657 This returns the number of objects that @var{ring} currently contains.
1658 The value will never exceed that returned by @code{ring-size}.
1659 @end defun
1660
1661 @defun ring-elements ring
1662 This returns a list of the objects in @var{ring}, in order, newest first.
1663 @end defun
1664
1665 @defun ring-copy ring
1666 This returns a new ring which is a copy of @var{ring}.
1667 The new ring contains the same (@code{eq}) objects as @var{ring}.
1668 @end defun
1669
1670 @defun ring-empty-p ring
1671 This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1672 @end defun
1673
1674 The newest element in the ring always has index 0. Higher indices
1675 correspond to older elements. Indices are computed modulo the ring
1676 length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1677 to the next-oldest, and so forth.
1678
1679 @defun ring-ref ring index
1680 This returns the object in @var{ring} found at index @var{index}.
1681 @var{index} may be negative or greater than the ring length. If
1682 @var{ring} is empty, @code{ring-ref} signals an error.
1683 @end defun
1684
1685 @defun ring-insert ring object
1686 This inserts @var{object} into @var{ring}, making it the newest
1687 element, and returns @var{object}.
1688
1689 If the ring is full, insertion removes the oldest element to
1690 make room for the new element.
1691 @end defun
1692
1693 @defun ring-remove ring &optional index
1694 Remove an object from @var{ring}, and return that object. The
1695 argument @var{index} specifies which item to remove; if it is
1696 @code{nil}, that means to remove the oldest item. If @var{ring} is
1697 empty, @code{ring-remove} signals an error.
1698 @end defun
1699
1700 @defun ring-insert-at-beginning ring object
1701 This inserts @var{object} into @var{ring}, treating it as the oldest
1702 element. The return value is not significant.
1703
1704 If the ring is full, this function removes the newest element to make
1705 room for the inserted element.
1706 @end defun
1707
1708 @cindex fifo data structure
1709 If you are careful not to exceed the ring size, you can
1710 use the ring as a first-in-first-out queue. For example:
1711
1712 @lisp
1713 (let ((fifo (make-ring 5)))
1714 (mapc (lambda (obj) (ring-insert fifo obj))
1715 '(0 one "two"))
1716 (list (ring-remove fifo) t
1717 (ring-remove fifo) t
1718 (ring-remove fifo)))
1719 @result{} (0 t one t "two")
1720 @end lisp