]> code.delx.au - gnu-emacs/blob - lisp/international/ccl.el
*** empty log message ***
[gnu-emacs] / lisp / international / ccl.el
1 ;;; ccl.el --- CCL (Code Conversion Language) compiler
2
3 ;; Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
4 ;; Licensed to the Free Software Foundation.
5 ;; Copyright (C) 2002 Free Software Foundation, Inc.
6
7 ;; Keywords: CCL, mule, multilingual, character set, coding-system
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 ;; Boston, MA 02111-1307, USA.
25
26 ;;; Commentary:
27
28 ;; CCL (Code Conversion Language) is a simple programming language to
29 ;; be used for various kind of code conversion. A CCL program is
30 ;; compiled to CCL code (vector of integers) and executed by the CCL
31 ;; interpreter in Emacs.
32 ;;
33 ;; CCL is used for code conversion at process I/O and file I/O for
34 ;; non-standard coding-systems. In addition, it is used for
35 ;; calculating code points of X fonts from character codes.
36 ;; However, since CCL is designed as a powerful programming language,
37 ;; it can be used for more generic calculation. For instance,
38 ;; combination of three or more arithmetic operations can be
39 ;; calculated faster than in Emacs Lisp.
40 ;;
41 ;; The syntax and semantics of CCL programs are described in the
42 ;; documentation of `define-ccl-program'.
43
44 ;;; Code:
45
46 (defgroup ccl nil
47 "CCL (Code Conversion Language) compiler."
48 :prefix "ccl-"
49 :group 'i18n)
50
51 (defconst ccl-command-table
52 [if branch loop break repeat write-repeat write-read-repeat
53 read read-if read-branch write call end
54 read-multibyte-character write-multibyte-character
55 translate-character
56 iterate-multiple-map map-multiple map-single lookup-integer
57 lookup-character]
58 "Vector of CCL commands (symbols).")
59
60 ;; Put a property to each symbol of CCL commands for the compiler.
61 (let (op (i 0) (len (length ccl-command-table)))
62 (while (< i len)
63 (setq op (aref ccl-command-table i))
64 (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
65 (setq i (1+ i))))
66
67 (defconst ccl-code-table
68 [set-register
69 set-short-const
70 set-const
71 set-array
72 jump
73 jump-cond
74 write-register-jump
75 write-register-read-jump
76 write-const-jump
77 write-const-read-jump
78 write-string-jump
79 write-array-read-jump
80 read-jump
81 branch
82 read-register
83 write-expr-const
84 read-branch
85 write-register
86 write-expr-register
87 call
88 write-const-string
89 write-array
90 end
91 set-assign-expr-const
92 set-assign-expr-register
93 set-expr-const
94 set-expr-register
95 jump-cond-expr-const
96 jump-cond-expr-register
97 read-jump-cond-expr-const
98 read-jump-cond-expr-register
99 ex-cmd
100 ]
101 "Vector of CCL compiled codes (symbols).")
102
103 (defconst ccl-extended-code-table
104 [read-multibyte-character
105 write-multibyte-character
106 translate-character
107 translate-character-const-tbl
108 nil nil nil nil nil nil nil nil nil nil nil nil ; 0x04-0x0f
109 iterate-multiple-map
110 map-multiple
111 map-single
112 lookup-int-const-tbl
113 lookup-char-const-tbl
114 ]
115 "Vector of CCL extended compiled codes (symbols).")
116
117 ;; Put a property to each symbol of CCL codes for the disassembler.
118 (let (code (i 0) (len (length ccl-code-table)))
119 (while (< i len)
120 (setq code (aref ccl-code-table i))
121 (put code 'ccl-code i)
122 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
123 (setq i (1+ i))))
124
125 (let (code (i 0) (len (length ccl-extended-code-table)))
126 (while (< i len)
127 (setq code (aref ccl-extended-code-table i))
128 (if code
129 (progn
130 (put code 'ccl-ex-code i)
131 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
132 (setq i (1+ i))))
133
134 (defconst ccl-jump-code-list
135 '(jump jump-cond write-register-jump write-register-read-jump
136 write-const-jump write-const-read-jump write-string-jump
137 write-array-read-jump read-jump))
138
139 ;; Put a property `jump-flag' to each CCL code which execute jump in
140 ;; some way.
141 (let ((l ccl-jump-code-list))
142 (while l
143 (put (car l) 'jump-flag t)
144 (setq l (cdr l))))
145
146 (defconst ccl-register-table
147 [r0 r1 r2 r3 r4 r5 r6 r7]
148 "Vector of CCL registers (symbols).")
149
150 ;; Put a property to indicate register number to each symbol of CCL.
151 ;; registers.
152 (let (reg (i 0) (len (length ccl-register-table)))
153 (while (< i len)
154 (setq reg (aref ccl-register-table i))
155 (put reg 'ccl-register-number i)
156 (setq i (1+ i))))
157
158 (defconst ccl-arith-table
159 [+ - * / % & | ^ << >> <8 >8 // nil nil nil
160 < > == <= >= != de-sjis en-sjis]
161 "Vector of CCL arithmetic/logical operators (symbols).")
162
163 ;; Put a property to each symbol of CCL operators for the compiler.
164 (let (arith (i 0) (len (length ccl-arith-table)))
165 (while (< i len)
166 (setq arith (aref ccl-arith-table i))
167 (if arith (put arith 'ccl-arith-code i))
168 (setq i (1+ i))))
169
170 (defconst ccl-assign-arith-table
171 [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
172 "Vector of CCL assignment operators (symbols).")
173
174 ;; Put a property to each symbol of CCL assignment operators for the compiler.
175 (let (arith (i 0) (len (length ccl-assign-arith-table)))
176 (while (< i len)
177 (setq arith (aref ccl-assign-arith-table i))
178 (put arith 'ccl-self-arith-code i)
179 (setq i (1+ i))))
180
181 (defvar ccl-program-vector nil
182 "Working vector of CCL codes produced by CCL compiler.")
183 (defvar ccl-current-ic 0
184 "The current index for `ccl-program-vector'.")
185
186 ;; Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
187 ;; increment it. If IC is specified, embed DATA at IC.
188 (defun ccl-embed-data (data &optional ic)
189 (if ic
190 (aset ccl-program-vector ic data)
191 (let ((len (length ccl-program-vector)))
192 (if (>= ccl-current-ic len)
193 (let ((new (make-vector (* len 2) nil)))
194 (while (> len 0)
195 (setq len (1- len))
196 (aset new len (aref ccl-program-vector len)))
197 (setq ccl-program-vector new))))
198 (aset ccl-program-vector ccl-current-ic data)
199 (setq ccl-current-ic (1+ ccl-current-ic))))
200
201 ;; Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
202 ;; proper index number for SYMBOL. PROP should be
203 ;; `translation-table-id', `translation-hash-table-id'
204 ;; `code-conversion-map-id', or `ccl-program-idx'.
205 (defun ccl-embed-symbol (symbol prop)
206 (ccl-embed-data (cons symbol prop)))
207
208 ;; Embed string STR of length LEN in `ccl-program-vector' at
209 ;; `ccl-current-ic'.
210 (defun ccl-embed-string (len str)
211 (let ((i 0))
212 (while (< i len)
213 (ccl-embed-data (logior (ash (aref str i) 16)
214 (if (< (1+ i) len)
215 (ash (aref str (1+ i)) 8)
216 0)
217 (if (< (+ i 2) len)
218 (aref str (+ i 2))
219 0)))
220 (setq i (+ i 3)))))
221
222 ;; Embed a relative jump address to `ccl-current-ic' in
223 ;; `ccl-program-vector' at IC without altering the other bit field.
224 (defun ccl-embed-current-address (ic)
225 (let ((relative (- ccl-current-ic (1+ ic))))
226 (aset ccl-program-vector ic
227 (logior (aref ccl-program-vector ic) (ash relative 8)))))
228
229 ;; Embed CCL code for the operation OP and arguments REG and DATA in
230 ;; `ccl-program-vector' at `ccl-current-ic' in the following format.
231 ;; |----------------- integer (28-bit) ------------------|
232 ;; |------------ 20-bit ------------|- 3-bit --|- 5-bit -|
233 ;; |------------- DATA -------------|-- REG ---|-- OP ---|
234 ;; If REG2 is specified, embed a code in the following format.
235 ;; |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
236 ;; |-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
237
238 ;; If REG is a CCL register symbol (e.g. r0, r1...), the register
239 ;; number is embedded. If OP is one of unconditional jumps, DATA is
240 ;; changed to a relative jump address.
241
242 (defun ccl-embed-code (op reg data &optional reg2)
243 (if (and (> data 0) (get op 'jump-flag))
244 ;; DATA is an absolute jump address. Make it relative to the
245 ;; next of jump code.
246 (setq data (- data (1+ ccl-current-ic))))
247 (let ((code (logior (get op 'ccl-code)
248 (ash
249 (if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
250 (if reg2
251 (logior (ash (get reg2 'ccl-register-number) 8)
252 (ash data 11))
253 (ash data 8)))))
254 (ccl-embed-data code)))
255
256 ;; extended ccl command format
257 ;; |- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
258 ;; |- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|
259 (defun ccl-embed-extended-command (ex-op reg reg2 reg3)
260 (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
261 (if (symbolp reg3)
262 (get reg3 'ccl-register-number)
263 0))))
264 (ccl-embed-code 'ex-cmd reg data reg2)))
265
266 ;; Just advance `ccl-current-ic' by INC.
267 (defun ccl-increment-ic (inc)
268 (setq ccl-current-ic (+ ccl-current-ic inc)))
269
270 ;; If non-nil, index of the start of the current loop.
271 (defvar ccl-loop-head nil)
272 ;; If non-nil, list of absolute addresses of the breaking points of
273 ;; the current loop.
274 (defvar ccl-breaks nil)
275
276 ;;;###autoload
277 (defun ccl-compile (ccl-program)
278 "Return the compiled code of CCL-PROGRAM as a vector of integers."
279 (if (or (null (consp ccl-program))
280 (null (integerp (car ccl-program)))
281 (null (listp (car (cdr ccl-program)))))
282 (error "CCL: Invalid CCL program: %s" ccl-program))
283 (if (null (vectorp ccl-program-vector))
284 (setq ccl-program-vector (make-vector 8192 0)))
285 (setq ccl-loop-head nil ccl-breaks nil)
286 (setq ccl-current-ic 0)
287
288 ;; The first element is the buffer magnification.
289 (ccl-embed-data (car ccl-program))
290
291 ;; The second element is the address of the start CCL code for
292 ;; processing end of input buffer (we call it eof-processor). We
293 ;; set it later.
294 (ccl-increment-ic 1)
295
296 ;; Compile the main body of the CCL program.
297 (ccl-compile-1 (car (cdr ccl-program)))
298
299 ;; Embed the address of eof-processor.
300 (ccl-embed-data ccl-current-ic 1)
301
302 ;; Then compile eof-processor.
303 (if (nth 2 ccl-program)
304 (ccl-compile-1 (nth 2 ccl-program)))
305
306 ;; At last, embed termination code.
307 (ccl-embed-code 'end 0 0)
308
309 (let ((vec (make-vector ccl-current-ic 0))
310 (i 0))
311 (while (< i ccl-current-ic)
312 (aset vec i (aref ccl-program-vector i))
313 (setq i (1+ i)))
314 vec))
315
316 ;; Signal syntax error.
317 (defun ccl-syntax-error (cmd)
318 (error "CCL: Syntax error: %s" cmd))
319
320 ;; Check if ARG is a valid CCL register.
321 (defun ccl-check-register (arg cmd)
322 (if (get arg 'ccl-register-number)
323 arg
324 (error "CCL: Invalid register %s in %s" arg cmd)))
325
326 ;; Check if ARG is a valid CCL command.
327 (defun ccl-check-compile-function (arg cmd)
328 (or (get arg 'ccl-compile-function)
329 (error "CCL: Invalid command: %s" cmd)))
330
331 ;; In the following code, most ccl-compile-XXXX functions return t if
332 ;; they end with unconditional jump, else return nil.
333
334 ;; Compile CCL-BLOCK (see the syntax above).
335 (defun ccl-compile-1 (ccl-block)
336 (let (unconditional-jump
337 cmd)
338 (if (or (integerp ccl-block)
339 (stringp ccl-block)
340 (and ccl-block (symbolp (car ccl-block))))
341 ;; This block consists of single statement.
342 (setq ccl-block (list ccl-block)))
343
344 ;; Now CCL-BLOCK is a list of statements. Compile them one by
345 ;; one.
346 (while ccl-block
347 (setq cmd (car ccl-block))
348 (setq unconditional-jump
349 (cond ((integerp cmd)
350 ;; SET statement for the register 0.
351 (ccl-compile-set (list 'r0 '= cmd)))
352
353 ((stringp cmd)
354 ;; WRITE statement of string argument.
355 (ccl-compile-write-string cmd))
356
357 ((listp cmd)
358 ;; The other statements.
359 (cond ((eq (nth 1 cmd) '=)
360 ;; SET statement of the form `(REG = EXPRESSION)'.
361 (ccl-compile-set cmd))
362
363 ((and (symbolp (nth 1 cmd))
364 (get (nth 1 cmd) 'ccl-self-arith-code))
365 ;; SET statement with an assignment operation.
366 (ccl-compile-self-set cmd))
367
368 (t
369 (funcall (ccl-check-compile-function (car cmd) cmd)
370 cmd))))
371
372 (t
373 (ccl-syntax-error cmd))))
374 (setq ccl-block (cdr ccl-block)))
375 unconditional-jump))
376
377 (defconst ccl-max-short-const (ash 1 19))
378 (defconst ccl-min-short-const (ash -1 19))
379
380 ;; Compile SET statement.
381 (defun ccl-compile-set (cmd)
382 (let ((rrr (ccl-check-register (car cmd) cmd))
383 (right (nth 2 cmd)))
384 (cond ((listp right)
385 ;; CMD has the form `(RRR = (XXX OP YYY))'.
386 (ccl-compile-expression rrr right))
387
388 ((integerp right)
389 ;; CMD has the form `(RRR = integer)'.
390 (if (and (<= right ccl-max-short-const)
391 (>= right ccl-min-short-const))
392 (ccl-embed-code 'set-short-const rrr right)
393 (ccl-embed-code 'set-const rrr 0)
394 (ccl-embed-data right)))
395
396 (t
397 ;; CMD has the form `(RRR = rrr [ array ])'.
398 (ccl-check-register right cmd)
399 (let ((ary (nth 3 cmd)))
400 (if (vectorp ary)
401 (let ((i 0) (len (length ary)))
402 (ccl-embed-code 'set-array rrr len right)
403 (while (< i len)
404 (ccl-embed-data (aref ary i))
405 (setq i (1+ i))))
406 (ccl-embed-code 'set-register rrr 0 right))))))
407 nil)
408
409 ;; Compile SET statement with ASSIGNMENT_OPERATOR.
410 (defun ccl-compile-self-set (cmd)
411 (let ((rrr (ccl-check-register (car cmd) cmd))
412 (right (nth 2 cmd)))
413 (if (listp right)
414 ;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
415 ;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
416 ;; register 7 can be used for storing temporary value).
417 (progn
418 (ccl-compile-expression 'r7 right)
419 (setq right 'r7)))
420 ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'. Compile it as
421 ;; `(RRR = (RRR OP ARG))'.
422 (ccl-compile-expression
423 rrr
424 (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
425 nil)
426
427 ;; Compile SET statement of the form `(RRR = EXPR)'.
428 (defun ccl-compile-expression (rrr expr)
429 (let ((left (car expr))
430 (op (get (nth 1 expr) 'ccl-arith-code))
431 (right (nth 2 expr)))
432 (if (listp left)
433 (progn
434 ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'. Compile
435 ;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
436 (ccl-compile-expression 'r7 left)
437 (setq left 'r7)))
438
439 ;; Now EXPR has the form (LEFT OP RIGHT).
440 (if (and (eq rrr left)
441 (< op (length ccl-assign-arith-table)))
442 ;; Compile this SET statement as `(RRR OP= RIGHT)'.
443 (if (integerp right)
444 (progn
445 (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
446 (ccl-embed-data right))
447 (ccl-check-register right expr)
448 (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
449
450 ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
451 (if (integerp right)
452 (progn
453 (ccl-embed-code 'set-expr-const rrr (ash op 3) left)
454 (ccl-embed-data right))
455 (ccl-check-register right expr)
456 (ccl-embed-code 'set-expr-register
457 rrr
458 (logior (ash op 3) (get right 'ccl-register-number))
459 left)))))
460
461 ;; Compile WRITE statement with string argument.
462 (defun ccl-compile-write-string (str)
463 (setq str (string-as-unibyte str))
464 (let ((len (length str)))
465 (ccl-embed-code 'write-const-string 1 len)
466 (ccl-embed-string len str))
467 nil)
468
469 ;; Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
470 ;; If READ-FLAG is non-nil, this statement has the form
471 ;; `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'.
472 (defun ccl-compile-if (cmd &optional read-flag)
473 (if (and (/= (length cmd) 3) (/= (length cmd) 4))
474 (error "CCL: Invalid number of arguments: %s" cmd))
475 (let ((condition (nth 1 cmd))
476 (true-cmds (nth 2 cmd))
477 (false-cmds (nth 3 cmd))
478 jump-cond-address
479 false-ic)
480 (if (and (listp condition)
481 (listp (car condition)))
482 ;; If CONDITION is a nested expression, the inner expression
483 ;; should be compiled at first as SET statement, i.e.:
484 ;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
485 ;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
486 (progn
487 (ccl-compile-expression 'r7 (car condition))
488 (setq condition (cons 'r7 (cdr condition)))
489 (setq cmd (cons (car cmd)
490 (cons condition (cdr (cdr cmd)))))))
491
492 (setq jump-cond-address ccl-current-ic)
493 ;; Compile CONDITION.
494 (if (symbolp condition)
495 ;; CONDITION is a register.
496 (progn
497 (ccl-check-register condition cmd)
498 (ccl-embed-code 'jump-cond condition 0))
499 ;; CONDITION is a simple expression of the form (RRR OP ARG).
500 (let ((rrr (car condition))
501 (op (get (nth 1 condition) 'ccl-arith-code))
502 (arg (nth 2 condition)))
503 (ccl-check-register rrr cmd)
504 (if (integerp arg)
505 (progn
506 (ccl-embed-code (if read-flag 'read-jump-cond-expr-const
507 'jump-cond-expr-const)
508 rrr 0)
509 (ccl-embed-data op)
510 (ccl-embed-data arg))
511 (ccl-check-register arg cmd)
512 (ccl-embed-code (if read-flag 'read-jump-cond-expr-register
513 'jump-cond-expr-register)
514 rrr 0)
515 (ccl-embed-data op)
516 (ccl-embed-data (get arg 'ccl-register-number)))))
517
518 ;; Compile TRUE-PART.
519 (let ((unconditional-jump (ccl-compile-1 true-cmds)))
520 (if (null false-cmds)
521 ;; This is the place to jump to if condition is false.
522 (progn
523 (ccl-embed-current-address jump-cond-address)
524 (setq unconditional-jump nil))
525 (let (end-true-part-address)
526 (if (not unconditional-jump)
527 (progn
528 ;; If TRUE-PART does not end with unconditional jump, we
529 ;; have to jump to the end of FALSE-PART from here.
530 (setq end-true-part-address ccl-current-ic)
531 (ccl-embed-code 'jump 0 0)))
532 ;; This is the place to jump to if CONDITION is false.
533 (ccl-embed-current-address jump-cond-address)
534 ;; Compile FALSE-PART.
535 (setq unconditional-jump
536 (and (ccl-compile-1 false-cmds) unconditional-jump))
537 (if end-true-part-address
538 ;; This is the place to jump to after the end of TRUE-PART.
539 (ccl-embed-current-address end-true-part-address))))
540 unconditional-jump)))
541
542 ;; Compile BRANCH statement.
543 (defun ccl-compile-branch (cmd)
544 (if (< (length cmd) 3)
545 (error "CCL: Invalid number of arguments: %s" cmd))
546 (ccl-compile-branch-blocks 'branch
547 (ccl-compile-branch-expression (nth 1 cmd) cmd)
548 (cdr (cdr cmd))))
549
550 ;; Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'.
551 (defun ccl-compile-read-branch (cmd)
552 (if (< (length cmd) 3)
553 (error "CCL: Invalid number of arguments: %s" cmd))
554 (ccl-compile-branch-blocks 'read-branch
555 (ccl-compile-branch-expression (nth 1 cmd) cmd)
556 (cdr (cdr cmd))))
557
558 ;; Compile EXPRESSION part of BRANCH statement and return register
559 ;; which holds a value of the expression.
560 (defun ccl-compile-branch-expression (expr cmd)
561 (if (listp expr)
562 ;; EXPR has the form `(EXPR2 OP ARG)'. Compile it as SET
563 ;; statement of the form `(r7 = (EXPR2 OP ARG))'.
564 (progn
565 (ccl-compile-expression 'r7 expr)
566 'r7)
567 (ccl-check-register expr cmd)))
568
569 ;; Compile BLOCKs of BRANCH statement. CODE is 'branch or 'read-branch.
570 ;; REG is a register which holds a value of EXPRESSION part. BLOCKs
571 ;; is a list of CCL-BLOCKs.
572 (defun ccl-compile-branch-blocks (code rrr blocks)
573 (let ((branches (length blocks))
574 branch-idx
575 jump-table-head-address
576 empty-block-indexes
577 block-tail-addresses
578 block-unconditional-jump)
579 (ccl-embed-code code rrr branches)
580 (setq jump-table-head-address ccl-current-ic)
581 ;; The size of jump table is the number of blocks plus 1 (for the
582 ;; case RRR is out of range).
583 (ccl-increment-ic (1+ branches))
584 (setq empty-block-indexes (list branches))
585 ;; Compile each block.
586 (setq branch-idx 0)
587 (while blocks
588 (if (null (car blocks))
589 ;; This block is empty.
590 (setq empty-block-indexes (cons branch-idx empty-block-indexes)
591 block-unconditional-jump t)
592 ;; This block is not empty.
593 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
594 (+ jump-table-head-address branch-idx))
595 (setq block-unconditional-jump (ccl-compile-1 (car blocks)))
596 (if (not block-unconditional-jump)
597 (progn
598 ;; Jump address of the end of branches are embedded later.
599 ;; For the moment, just remember where to embed them.
600 (setq block-tail-addresses
601 (cons ccl-current-ic block-tail-addresses))
602 (ccl-embed-code 'jump 0 0))))
603 (setq branch-idx (1+ branch-idx))
604 (setq blocks (cdr blocks)))
605 (if (not block-unconditional-jump)
606 ;; We don't need jump code at the end of the last block.
607 (setq block-tail-addresses (cdr block-tail-addresses)
608 ccl-current-ic (1- ccl-current-ic)))
609 ;; Embed jump address at the tailing jump commands of blocks.
610 (while block-tail-addresses
611 (ccl-embed-current-address (car block-tail-addresses))
612 (setq block-tail-addresses (cdr block-tail-addresses)))
613 ;; For empty blocks, make entries in the jump table point directly here.
614 (while empty-block-indexes
615 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
616 (+ jump-table-head-address (car empty-block-indexes)))
617 (setq empty-block-indexes (cdr empty-block-indexes))))
618 ;; Branch command ends by unconditional jump if RRR is out of range.
619 nil)
620
621 ;; Compile LOOP statement.
622 (defun ccl-compile-loop (cmd)
623 (if (< (length cmd) 2)
624 (error "CCL: Invalid number of arguments: %s" cmd))
625 (let* ((ccl-loop-head ccl-current-ic)
626 (ccl-breaks nil)
627 unconditional-jump)
628 (setq cmd (cdr cmd))
629 (if cmd
630 (progn
631 (setq unconditional-jump t)
632 (while cmd
633 (setq unconditional-jump
634 (and (ccl-compile-1 (car cmd)) unconditional-jump))
635 (setq cmd (cdr cmd)))
636 (if (not ccl-breaks)
637 unconditional-jump
638 ;; Embed jump address for break statements encountered in
639 ;; this loop.
640 (while ccl-breaks
641 (ccl-embed-current-address (car ccl-breaks))
642 (setq ccl-breaks (cdr ccl-breaks))))
643 nil))))
644
645 ;; Compile BREAK statement.
646 (defun ccl-compile-break (cmd)
647 (if (/= (length cmd) 1)
648 (error "CCL: Invalid number of arguments: %s" cmd))
649 (if (null ccl-loop-head)
650 (error "CCL: No outer loop: %s" cmd))
651 (setq ccl-breaks (cons ccl-current-ic ccl-breaks))
652 (ccl-embed-code 'jump 0 0)
653 t)
654
655 ;; Compile REPEAT statement.
656 (defun ccl-compile-repeat (cmd)
657 (if (/= (length cmd) 1)
658 (error "CCL: Invalid number of arguments: %s" cmd))
659 (if (null ccl-loop-head)
660 (error "CCL: No outer loop: %s" cmd))
661 (ccl-embed-code 'jump 0 ccl-loop-head)
662 t)
663
664 ;; Compile WRITE-REPEAT statement.
665 (defun ccl-compile-write-repeat (cmd)
666 (if (/= (length cmd) 2)
667 (error "CCL: Invalid number of arguments: %s" cmd))
668 (if (null ccl-loop-head)
669 (error "CCL: No outer loop: %s" cmd))
670 (let ((arg (nth 1 cmd)))
671 (cond ((integerp arg)
672 (ccl-embed-code 'write-const-jump 0 ccl-loop-head)
673 (ccl-embed-data arg))
674 ((stringp arg)
675 (setq arg (string-as-unibyte arg))
676 (let ((len (length arg))
677 (i 0))
678 (ccl-embed-code 'write-string-jump 0 ccl-loop-head)
679 (ccl-embed-data len)
680 (ccl-embed-string len arg)))
681 (t
682 (ccl-check-register arg cmd)
683 (ccl-embed-code 'write-register-jump arg ccl-loop-head))))
684 t)
685
686 ;; Compile WRITE-READ-REPEAT statement.
687 (defun ccl-compile-write-read-repeat (cmd)
688 (if (or (< (length cmd) 2) (> (length cmd) 3))
689 (error "CCL: Invalid number of arguments: %s" cmd))
690 (if (null ccl-loop-head)
691 (error "CCL: No outer loop: %s" cmd))
692 (let ((rrr (ccl-check-register (nth 1 cmd) cmd))
693 (arg (nth 2 cmd)))
694 (cond ((null arg)
695 (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
696 ((integerp arg)
697 (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
698 ((vectorp arg)
699 (let ((len (length arg))
700 (i 0))
701 (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
702 (ccl-embed-data len)
703 (while (< i len)
704 (ccl-embed-data (aref arg i))
705 (setq i (1+ i)))))
706 (t
707 (error "CCL: Invalid argument %s: %s" arg cmd)))
708 (ccl-embed-code 'read-jump rrr ccl-loop-head))
709 t)
710
711 ;; Compile READ statement.
712 (defun ccl-compile-read (cmd)
713 (if (< (length cmd) 2)
714 (error "CCL: Invalid number of arguments: %s" cmd))
715 (let* ((args (cdr cmd))
716 (i (1- (length args))))
717 (while args
718 (let ((rrr (ccl-check-register (car args) cmd)))
719 (ccl-embed-code 'read-register rrr i)
720 (setq args (cdr args) i (1- i)))))
721 nil)
722
723 ;; Compile READ-IF statement.
724 (defun ccl-compile-read-if (cmd)
725 (ccl-compile-if cmd 'read))
726
727 ;; Compile WRITE statement.
728 (defun ccl-compile-write (cmd)
729 (if (< (length cmd) 2)
730 (error "CCL: Invalid number of arguments: %s" cmd))
731 (let ((rrr (nth 1 cmd)))
732 (cond ((integerp rrr)
733 (ccl-embed-code 'write-const-string 0 rrr))
734 ((stringp rrr)
735 (ccl-compile-write-string rrr))
736 ((and (symbolp rrr) (vectorp (nth 2 cmd)))
737 (ccl-check-register rrr cmd)
738 ;; CMD has the form `(write REG ARRAY)'.
739 (let* ((arg (nth 2 cmd))
740 (len (length arg))
741 (i 0))
742 (ccl-embed-code 'write-array rrr len)
743 (while (< i len)
744 (if (not (integerp (aref arg i)))
745 (error "CCL: Invalid argument %s: %s" arg cmd))
746 (ccl-embed-data (aref arg i))
747 (setq i (1+ i)))))
748
749 ((symbolp rrr)
750 ;; CMD has the form `(write REG ...)'.
751 (let* ((args (cdr cmd))
752 (i (1- (length args))))
753 (while args
754 (setq rrr (ccl-check-register (car args) cmd))
755 (ccl-embed-code 'write-register rrr i)
756 (setq args (cdr args) i (1- i)))))
757
758 ((listp rrr)
759 ;; CMD has the form `(write (LEFT OP RIGHT))'.
760 (let ((left (car rrr))
761 (op (get (nth 1 rrr) 'ccl-arith-code))
762 (right (nth 2 rrr)))
763 (if (listp left)
764 (progn
765 ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
766 ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
767 (ccl-compile-expression 'r7 left)
768 (setq left 'r7)))
769 ;; Now RRR has the form `(ARG OP RIGHT)'.
770 (if (integerp right)
771 (progn
772 (ccl-embed-code 'write-expr-const 0 (ash op 3) left)
773 (ccl-embed-data right))
774 (ccl-check-register right rrr)
775 (ccl-embed-code 'write-expr-register 0
776 (logior (ash op 3)
777 (get right 'ccl-register-number))))))
778
779 (t
780 (error "CCL: Invalid argument: %s" cmd))))
781 nil)
782
783 ;; Compile CALL statement.
784 (defun ccl-compile-call (cmd)
785 (if (/= (length cmd) 2)
786 (error "CCL: Invalid number of arguments: %s" cmd))
787 (if (not (symbolp (nth 1 cmd)))
788 (error "CCL: Subroutine should be a symbol: %s" cmd))
789 (ccl-embed-code 'call 1 0)
790 (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
791 nil)
792
793 ;; Compile END statement.
794 (defun ccl-compile-end (cmd)
795 (if (/= (length cmd) 1)
796 (error "CCL: Invalid number of arguments: %s" cmd))
797 (ccl-embed-code 'end 0 0)
798 t)
799
800 ;; Compile read-multibyte-character
801 (defun ccl-compile-read-multibyte-character (cmd)
802 (if (/= (length cmd) 3)
803 (error "CCL: Invalid number of arguments: %s" cmd))
804 (let ((RRR (nth 1 cmd))
805 (rrr (nth 2 cmd)))
806 (ccl-check-register rrr cmd)
807 (ccl-check-register RRR cmd)
808 (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
809 nil)
810
811 ;; Compile write-multibyte-character
812 (defun ccl-compile-write-multibyte-character (cmd)
813 (if (/= (length cmd) 3)
814 (error "CCL: Invalid number of arguments: %s" cmd))
815 (let ((RRR (nth 1 cmd))
816 (rrr (nth 2 cmd)))
817 (ccl-check-register rrr cmd)
818 (ccl-check-register RRR cmd)
819 (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
820 nil)
821
822 ;; Compile translate-character
823 (defun ccl-compile-translate-character (cmd)
824 (if (/= (length cmd) 4)
825 (error "CCL: Invalid number of arguments: %s" cmd))
826 (let ((Rrr (nth 1 cmd))
827 (RRR (nth 2 cmd))
828 (rrr (nth 3 cmd)))
829 (ccl-check-register rrr cmd)
830 (ccl-check-register RRR cmd)
831 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
832 (ccl-embed-extended-command 'translate-character-const-tbl
833 rrr RRR 0)
834 (ccl-embed-symbol Rrr 'translation-table-id))
835 (t
836 (ccl-check-register Rrr cmd)
837 (ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
838 nil)
839
840 ;; Compile lookup-integer
841 (defun ccl-compile-lookup-integer (cmd)
842 (if (/= (length cmd) 4)
843 (error "CCL: Invalid number of arguments: %s" cmd))
844 (let ((Rrr (nth 1 cmd))
845 (RRR (nth 2 cmd))
846 (rrr (nth 3 cmd)))
847 (ccl-check-register RRR cmd)
848 (ccl-check-register rrr cmd)
849 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
850 (ccl-embed-extended-command 'lookup-int-const-tbl
851 rrr RRR 0)
852 (ccl-embed-symbol Rrr 'translation-hash-table-id))
853 (t
854 (error "CCL: non-constant table: %s" cmd)
855 ;; not implemented:
856 (ccl-check-register Rrr cmd)
857 (ccl-embed-extended-command 'lookup-int rrr RRR 0))))
858 nil)
859
860 ;; Compile lookup-character
861 (defun ccl-compile-lookup-character (cmd)
862 (if (/= (length cmd) 4)
863 (error "CCL: Invalid number of arguments: %s" cmd))
864 (let ((Rrr (nth 1 cmd))
865 (RRR (nth 2 cmd))
866 (rrr (nth 3 cmd)))
867 (ccl-check-register RRR cmd)
868 (ccl-check-register rrr cmd)
869 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
870 (ccl-embed-extended-command 'lookup-char-const-tbl
871 rrr RRR 0)
872 (ccl-embed-symbol Rrr 'translation-hash-table-id))
873 (t
874 (error "CCL: non-constant table: %s" cmd)
875 ;; not implemented:
876 (ccl-check-register Rrr cmd)
877 (ccl-embed-extended-command 'lookup-char rrr RRR 0))))
878 nil)
879
880 (defun ccl-compile-iterate-multiple-map (cmd)
881 (ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
882 nil)
883
884 (defun ccl-compile-map-multiple (cmd)
885 (if (/= (length cmd) 4)
886 (error "CCL: Invalid number of arguments: %s" cmd))
887 (let (func arg)
888 (setq func
889 (lambda (arg mp)
890 (let ((len 0) result add)
891 (while arg
892 (if (consp (car arg))
893 (setq add (funcall func (car arg) t)
894 result (append result add)
895 add (+ (- (car add)) 1))
896 (setq result
897 (append result
898 (list (car arg)))
899 add 1))
900 (setq arg (cdr arg)
901 len (+ len add)))
902 (if mp
903 (cons (- len) result)
904 result))))
905 (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
906 (funcall func (nth 3 cmd) nil)))
907 (ccl-compile-multiple-map-function 'map-multiple arg))
908 nil)
909
910 (defun ccl-compile-map-single (cmd)
911 (if (/= (length cmd) 4)
912 (error "CCL: Invalid number of arguments: %s" cmd))
913 (let ((RRR (nth 1 cmd))
914 (rrr (nth 2 cmd))
915 (map (nth 3 cmd))
916 id)
917 (ccl-check-register rrr cmd)
918 (ccl-check-register RRR cmd)
919 (ccl-embed-extended-command 'map-single rrr RRR 0)
920 (cond ((symbolp map)
921 (if (get map 'code-conversion-map)
922 (ccl-embed-symbol map 'code-conversion-map-id)
923 (error "CCL: Invalid map: %s" map)))
924 (t
925 (error "CCL: Invalid type of arguments: %s" cmd))))
926 nil)
927
928 (defun ccl-compile-multiple-map-function (command cmd)
929 (if (< (length cmd) 4)
930 (error "CCL: Invalid number of arguments: %s" cmd))
931 (let ((RRR (nth 1 cmd))
932 (rrr (nth 2 cmd))
933 (args (nthcdr 3 cmd))
934 map)
935 (ccl-check-register rrr cmd)
936 (ccl-check-register RRR cmd)
937 (ccl-embed-extended-command command rrr RRR 0)
938 (ccl-embed-data (length args))
939 (while args
940 (setq map (car args))
941 (cond ((symbolp map)
942 (if (get map 'code-conversion-map)
943 (ccl-embed-symbol map 'code-conversion-map-id)
944 (error "CCL: Invalid map: %s" map)))
945 ((numberp map)
946 (ccl-embed-data map))
947 (t
948 (error "CCL: Invalid type of arguments: %s" cmd)))
949 (setq args (cdr args)))))
950
951 \f
952 ;;; CCL dump stuff
953
954 ;; To avoid byte-compiler warning.
955 (defvar ccl-code)
956
957 ;;;###autoload
958 (defun ccl-dump (ccl-code)
959 "Disassemble compiled CCL-CODE."
960 (let ((len (length ccl-code))
961 (buffer-mag (aref ccl-code 0)))
962 (cond ((= buffer-mag 0)
963 (insert "Don't output anything.\n"))
964 ((= buffer-mag 1)
965 (insert "Out-buffer must be as large as in-buffer.\n"))
966 (t
967 (insert
968 (format "Out-buffer must be %d times bigger than in-buffer.\n"
969 buffer-mag))))
970 (insert "Main-body:\n")
971 (setq ccl-current-ic 2)
972 (if (> (aref ccl-code 1) 0)
973 (progn
974 (while (< ccl-current-ic (aref ccl-code 1))
975 (ccl-dump-1))
976 (insert "At EOF:\n")))
977 (while (< ccl-current-ic len)
978 (ccl-dump-1))
979 ))
980
981 ;; Return a CCL code in `ccl-code' at `ccl-current-ic'.
982 (defun ccl-get-next-code ()
983 (prog1
984 (aref ccl-code ccl-current-ic)
985 (setq ccl-current-ic (1+ ccl-current-ic))))
986
987 (defun ccl-dump-1 ()
988 (let* ((code (ccl-get-next-code))
989 (cmd (aref ccl-code-table (logand code 31)))
990 (rrr (ash (logand code 255) -5))
991 (cc (ash code -8)))
992 (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
993 (funcall (get cmd 'ccl-dump-function) rrr cc)))
994
995 (defun ccl-dump-set-register (rrr cc)
996 (insert (format "r%d = r%d\n" rrr cc)))
997
998 (defun ccl-dump-set-short-const (rrr cc)
999 (insert (format "r%d = %d\n" rrr cc)))
1000
1001 (defun ccl-dump-set-const (rrr ignore)
1002 (insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
1003
1004 (defun ccl-dump-set-array (rrr cc)
1005 (let ((rrr2 (logand cc 7))
1006 (len (ash cc -3))
1007 (i 0))
1008 (insert (format "r%d = array[r%d] of length %d\n\t"
1009 rrr rrr2 len))
1010 (while (< i len)
1011 (insert (format "%d " (ccl-get-next-code)))
1012 (setq i (1+ i)))
1013 (insert "\n")))
1014
1015 (defun ccl-dump-jump (ignore cc &optional address)
1016 (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
1017 (if (>= cc 0)
1018 (insert "+"))
1019 (insert (format "%d)\n" (1+ cc))))
1020
1021 (defun ccl-dump-jump-cond (rrr cc)
1022 (insert (format "if (r%d == 0), " rrr))
1023 (ccl-dump-jump nil cc))
1024
1025 (defun ccl-dump-write-register-jump (rrr cc)
1026 (insert (format "write r%d, " rrr))
1027 (ccl-dump-jump nil cc))
1028
1029 (defun ccl-dump-write-register-read-jump (rrr cc)
1030 (insert (format "write r%d, read r%d, " rrr rrr))
1031 (ccl-dump-jump nil cc)
1032 (ccl-get-next-code) ; Skip dummy READ-JUMP
1033 )
1034
1035 (defun ccl-extract-arith-op (cc)
1036 (aref ccl-arith-table (ash cc -6)))
1037
1038 (defun ccl-dump-write-expr-const (ignore cc)
1039 (insert (format "write (r%d %s %d)\n"
1040 (logand cc 7)
1041 (ccl-extract-arith-op cc)
1042 (ccl-get-next-code))))
1043
1044 (defun ccl-dump-write-expr-register (ignore cc)
1045 (insert (format "write (r%d %s r%d)\n"
1046 (logand cc 7)
1047 (ccl-extract-arith-op cc)
1048 (logand (ash cc -3) 7))))
1049
1050 (defun ccl-dump-insert-char (cc)
1051 (cond ((= cc ?\t) (insert " \"^I\""))
1052 ((= cc ?\n) (insert " \"^J\""))
1053 (t (insert (format " \"%c\"" cc)))))
1054
1055 (defun ccl-dump-write-const-jump (ignore cc)
1056 (let ((address ccl-current-ic))
1057 (insert "write char")
1058 (ccl-dump-insert-char (ccl-get-next-code))
1059 (insert ", ")
1060 (ccl-dump-jump nil cc address)))
1061
1062 (defun ccl-dump-write-const-read-jump (rrr cc)
1063 (let ((address ccl-current-ic))
1064 (insert "write char")
1065 (ccl-dump-insert-char (ccl-get-next-code))
1066 (insert (format ", read r%d, " rrr))
1067 (ccl-dump-jump cc address)
1068 (ccl-get-next-code) ; Skip dummy READ-JUMP
1069 ))
1070
1071 (defun ccl-dump-write-string-jump (ignore cc)
1072 (let ((address ccl-current-ic)
1073 (len (ccl-get-next-code))
1074 (i 0))
1075 (insert "write \"")
1076 (while (< i len)
1077 (let ((code (ccl-get-next-code)))
1078 (insert (ash code -16))
1079 (if (< (1+ i) len) (insert (logand (ash code -8) 255)))
1080 (if (< (+ i 2) len) (insert (logand code 255))))
1081 (setq i (+ i 3)))
1082 (insert "\", ")
1083 (ccl-dump-jump nil cc address)))
1084
1085 (defun ccl-dump-write-array-read-jump (rrr cc)
1086 (let ((address ccl-current-ic)
1087 (len (ccl-get-next-code))
1088 (i 0))
1089 (insert (format "write array[r%d] of length %d,\n\t" rrr len))
1090 (while (< i len)
1091 (ccl-dump-insert-char (ccl-get-next-code))
1092 (setq i (1+ i)))
1093 (insert (format "\n\tthen read r%d, " rrr))
1094 (ccl-dump-jump nil cc address)
1095 (ccl-get-next-code) ; Skip dummy READ-JUMP.
1096 ))
1097
1098 (defun ccl-dump-read-jump (rrr cc)
1099 (insert (format "read r%d, " rrr))
1100 (ccl-dump-jump nil cc))
1101
1102 (defun ccl-dump-branch (rrr len)
1103 (let ((jump-table-head ccl-current-ic)
1104 (i 0))
1105 (insert (format "jump to array[r%d] of length %d\n\t" rrr len))
1106 (while (<= i len)
1107 (insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
1108 (setq i (1+ i)))
1109 (insert "\n")))
1110
1111 (defun ccl-dump-read-register (rrr cc)
1112 (insert (format "read r%d (%d remaining)\n" rrr cc)))
1113
1114 (defun ccl-dump-read-branch (rrr len)
1115 (insert (format "read r%d, " rrr))
1116 (ccl-dump-branch rrr len))
1117
1118 (defun ccl-dump-write-register (rrr cc)
1119 (insert (format "write r%d (%d remaining)\n" rrr cc)))
1120
1121 (defun ccl-dump-call (ignore cc)
1122 (insert (format "call subroutine #%d\n" cc)))
1123
1124 (defun ccl-dump-write-const-string (rrr cc)
1125 (if (= rrr 0)
1126 (progn
1127 (insert "write char")
1128 (ccl-dump-insert-char cc)
1129 (newline))
1130 (let ((len cc)
1131 (i 0))
1132 (insert "write \"")
1133 (while (< i len)
1134 (let ((code (ccl-get-next-code)))
1135 (insert (format "%c" (lsh code -16)))
1136 (if (< (1+ i) len)
1137 (insert (format "%c" (logand (lsh code -8) 255))))
1138 (if (< (+ i 2) len)
1139 (insert (format "%c" (logand code 255))))
1140 (setq i (+ i 3))))
1141 (insert "\"\n"))))
1142
1143 (defun ccl-dump-write-array (rrr cc)
1144 (let ((i 0))
1145 (insert (format "write array[r%d] of length %d\n\t" rrr cc))
1146 (while (< i cc)
1147 (ccl-dump-insert-char (ccl-get-next-code))
1148 (setq i (1+ i)))
1149 (insert "\n")))
1150
1151 (defun ccl-dump-end (&rest ignore)
1152 (insert "end\n"))
1153
1154 (defun ccl-dump-set-assign-expr-const (rrr cc)
1155 (insert (format "r%d %s= %d\n"
1156 rrr
1157 (ccl-extract-arith-op cc)
1158 (ccl-get-next-code))))
1159
1160 (defun ccl-dump-set-assign-expr-register (rrr cc)
1161 (insert (format "r%d %s= r%d\n"
1162 rrr
1163 (ccl-extract-arith-op cc)
1164 (logand cc 7))))
1165
1166 (defun ccl-dump-set-expr-const (rrr cc)
1167 (insert (format "r%d = r%d %s %d\n"
1168 rrr
1169 (logand cc 7)
1170 (ccl-extract-arith-op cc)
1171 (ccl-get-next-code))))
1172
1173 (defun ccl-dump-set-expr-register (rrr cc)
1174 (insert (format "r%d = r%d %s r%d\n"
1175 rrr
1176 (logand cc 7)
1177 (ccl-extract-arith-op cc)
1178 (logand (ash cc -3) 7))))
1179
1180 (defun ccl-dump-jump-cond-expr-const (rrr cc)
1181 (let ((address ccl-current-ic))
1182 (insert (format "if !(r%d %s %d), "
1183 rrr
1184 (aref ccl-arith-table (ccl-get-next-code))
1185 (ccl-get-next-code)))
1186 (ccl-dump-jump nil cc address)))
1187
1188 (defun ccl-dump-jump-cond-expr-register (rrr cc)
1189 (let ((address ccl-current-ic))
1190 (insert (format "if !(r%d %s r%d), "
1191 rrr
1192 (aref ccl-arith-table (ccl-get-next-code))
1193 (ccl-get-next-code)))
1194 (ccl-dump-jump nil cc address)))
1195
1196 (defun ccl-dump-read-jump-cond-expr-const (rrr cc)
1197 (insert (format "read r%d, " rrr))
1198 (ccl-dump-jump-cond-expr-const rrr cc))
1199
1200 (defun ccl-dump-read-jump-cond-expr-register (rrr cc)
1201 (insert (format "read r%d, " rrr))
1202 (ccl-dump-jump-cond-expr-register rrr cc))
1203
1204 (defun ccl-dump-binary (ccl-code)
1205 (let ((len (length ccl-code))
1206 (i 2))
1207 (while (< i len)
1208 (let ((code (aref ccl-code i))
1209 (j 27))
1210 (while (>= j 0)
1211 (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
1212 (setq j (1- j)))
1213 (setq code (logand code 31))
1214 (if (< code (length ccl-code-table))
1215 (insert (format ":%s" (aref ccl-code-table code))))
1216 (insert "\n"))
1217 (setq i (1+ i)))))
1218
1219 (defun ccl-dump-ex-cmd (rrr cc)
1220 (let* ((RRR (logand cc ?\x7))
1221 (Rrr (logand (ash cc -3) ?\x7))
1222 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) ?\x3fff))))
1223 (insert (format "<%s> " ex-op))
1224 (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
1225
1226 (defun ccl-dump-read-multibyte-character (rrr RRR Rrr)
1227 (insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
1228
1229 (defun ccl-dump-write-multibyte-character (rrr RRR Rrr)
1230 (insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
1231
1232 (defun ccl-dump-translate-character (rrr RRR Rrr)
1233 (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
1234
1235 (defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr)
1236 (let ((tbl (ccl-get-next-code)))
1237 (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
1238
1239 (defun ccl-dump-lookup-int-const-tbl (rrr RRR Rrr)
1240 (let ((tbl (ccl-get-next-code)))
1241 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
1242
1243 (defun ccl-dump-lookup-char-const-tbl (rrr RRR Rrr)
1244 (let ((tbl (ccl-get-next-code)))
1245 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
1246
1247 (defun ccl-dump-iterate-multiple-map (rrr RRR Rrr)
1248 (let ((notbl (ccl-get-next-code))
1249 (i 0) id)
1250 (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
1251 (insert (format "\tnumber of maps is %d .\n\t [" notbl))
1252 (while (< i notbl)
1253 (setq id (ccl-get-next-code))
1254 (insert (format "%S" id))
1255 (setq i (1+ i)))
1256 (insert "]\n")))
1257
1258 (defun ccl-dump-map-multiple (rrr RRR Rrr)
1259 (let ((notbl (ccl-get-next-code))
1260 (i 0) id)
1261 (insert (format "map-multiple r%d r%d\n" RRR rrr))
1262 (insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
1263 (while (< i notbl)
1264 (setq id (ccl-get-next-code))
1265 (if (= id -1)
1266 (insert "]\n\t [")
1267 (insert (format "%S " id)))
1268 (setq i (1+ i)))
1269 (insert "]\n")))
1270
1271 (defun ccl-dump-map-single (rrr RRR Rrr)
1272 (let ((id (ccl-get-next-code)))
1273 (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
1274
1275 \f
1276 ;; CCL emulation staffs
1277
1278 ;; Not yet implemented.
1279 \f
1280 ;; Auto-loaded functions.
1281
1282 ;;;###autoload
1283 (defmacro declare-ccl-program (name &optional vector)
1284 "Declare NAME as a name of CCL program.
1285
1286 This macro exists for backward compatibility. In the old version of
1287 Emacs, to compile a CCL program which calls another CCL program not
1288 yet defined, it must be declared as a CCL program in advance. But,
1289 now CCL program names are resolved not at compile time but before
1290 execution.
1291
1292 Optional arg VECTOR is a compiled CCL code of the CCL program."
1293 `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
1294
1295 ;;;###autoload
1296 (defmacro define-ccl-program (name ccl-program &optional doc)
1297 "Set NAME the compiled code of CCL-PROGRAM.
1298
1299 CCL-PROGRAM has this form:
1300 (BUFFER_MAGNIFICATION
1301 CCL_MAIN_CODE
1302 [ CCL_EOF_CODE ])
1303
1304 BUFFER_MAGNIFICATION is an integer value specifying the approximate
1305 output buffer magnification size compared with the bytes of input data
1306 text. If the value is zero, the CCL program can't execute `read' and
1307 `write' commands.
1308
1309 CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes. CCL_MAIN_CODE
1310 executed at first. If there's no more input data when `read' command
1311 is executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed. If
1312 CCL_MAIN_CODE is terminated, CCL_EOF_CODE is not executed.
1313
1314 Here's the syntax of CCL program code in BNF notation. The lines
1315 starting by two semicolons (and optional leading spaces) describe the
1316 semantics.
1317
1318 CCL_MAIN_CODE := CCL_BLOCK
1319
1320 CCL_EOF_CODE := CCL_BLOCK
1321
1322 CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
1323
1324 STATEMENT :=
1325 SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
1326 | TRANSLATE | MAP | LOOKUP | END
1327
1328 SET := (REG = EXPRESSION)
1329 | (REG ASSIGNMENT_OPERATOR EXPRESSION)
1330 ;; The following form is the same as (r0 = integer).
1331 | integer
1332
1333 EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
1334
1335 ;; Evaluate EXPRESSION. If the result is nonzero, execute
1336 ;; CCL_BLOCK_0. Otherwise, execute CCL_BLOCK_1.
1337 IF := (if EXPRESSION CCL_BLOCK_0 CCL_BLOCK_1)
1338
1339 ;; Evaluate EXPRESSION. Provided that the result is N, execute
1340 ;; CCL_BLOCK_N.
1341 BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
1342
1343 ;; Execute STATEMENTs until (break) or (end) is executed.
1344 LOOP := (loop STATEMENT [STATEMENT ...])
1345
1346 ;; Terminate the most inner loop.
1347 BREAK := (break)
1348
1349 REPEAT :=
1350 ;; Jump to the head of the most inner loop.
1351 (repeat)
1352 ;; Same as: ((write [REG | integer | string])
1353 ;; (repeat))
1354 | (write-repeat [REG | integer | string])
1355 ;; Same as: ((write REG [ARRAY])
1356 ;; (read REG)
1357 ;; (repeat))
1358 | (write-read-repeat REG [ARRAY])
1359 ;; Same as: ((write integer)
1360 ;; (read REG)
1361 ;; (repeat))
1362 | (write-read-repeat REG integer)
1363
1364 READ := ;; Set REG_0 to a byte read from the input text, set REG_1
1365 ;; to the next byte read, and so on.
1366 (read REG_0 [REG_1 ...])
1367 ;; Same as: ((read REG)
1368 ;; (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
1369 | (read-if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1)
1370 ;; Same as: ((read REG)
1371 ;; (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
1372 | (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
1373 ;; Read a character from the input text while parsing
1374 ;; multibyte representation, set REG_0 to the charset ID of
1375 ;; the character, set REG_1 to the code point of the
1376 ;; character. If the dimension of charset is two, set REG_1
1377 ;; to ((CODE0 << 7) | CODE1), where CODE0 is the first code
1378 ;; point and CODE1 is the second code point.
1379 | (read-multibyte-character REG_0 REG_1)
1380
1381 WRITE :=
1382 ;; Write REG_0, REG_1, ... to the output buffer. If REG_N is
1383 ;; a multibyte character, write the corresponding multibyte
1384 ;; representation.
1385 (write REG_0 [REG_1 ...])
1386 ;; Same as: ((r7 = EXPRESSION)
1387 ;; (write r7))
1388 | (write EXPRESSION)
1389 ;; Write the value of `integer' to the output buffer. If it
1390 ;; is a multibyte character, write the corresponding multibyte
1391 ;; representation.
1392 | (write integer)
1393 ;; Write the byte sequence of `string' as is to the output
1394 ;; buffer.
1395 | (write string)
1396 ;; Same as: (write string)
1397 | string
1398 ;; Provided that the value of REG is N, write Nth element of
1399 ;; ARRAY to the output buffer. If it is a multibyte
1400 ;; character, write the corresponding multibyte
1401 ;; representation.
1402 | (write REG ARRAY)
1403 ;; Write a multibyte representation of a character whose
1404 ;; charset ID is REG_0 and code point is REG_1. If the
1405 ;; dimension of the charset is two, REG_1 should be ((CODE0 <<
1406 ;; 7) | CODE1), where CODE0 is the first code point and CODE1
1407 ;; is the second code point of the character.
1408 | (write-multibyte-character REG_0 REG_1)
1409
1410 ;; Call CCL program whose name is ccl-program-name.
1411 CALL := (call ccl-program-name)
1412
1413 ;; Terminate the CCL program.
1414 END := (end)
1415
1416 ;; CCL registers that can contain any integer value. As r7 is also
1417 ;; used by CCL interpreter, its value is changed unexpectedly.
1418 REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
1419
1420 ARG := REG | integer
1421
1422 OPERATOR :=
1423 ;; Normal arithmethic operators (same meaning as C code).
1424 + | - | * | / | %
1425
1426 ;; Bitwize operators (same meaning as C code)
1427 | & | `|' | ^
1428
1429 ;; Shifting operators (same meaning as C code)
1430 | << | >>
1431
1432 ;; (REG = ARG_0 <8 ARG_1) means:
1433 ;; (REG = ((ARG_0 << 8) | ARG_1))
1434 | <8
1435
1436 ;; (REG = ARG_0 >8 ARG_1) means:
1437 ;; ((REG = (ARG_0 >> 8))
1438 ;; (r7 = (ARG_0 & 255)))
1439 | >8
1440
1441 ;; (REG = ARG_0 // ARG_1) means:
1442 ;; ((REG = (ARG_0 / ARG_1))
1443 ;; (r7 = (ARG_0 % ARG_1)))
1444 | //
1445
1446 ;; Normal comparing operators (same meaning as C code)
1447 | < | > | == | <= | >= | !=
1448
1449 ;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
1450 ;; code, and CHAR is the corresponding JISX0208 character,
1451 ;; (REG = ARG_0 de-sjis ARG_1) means:
1452 ;; ((REG = CODE0)
1453 ;; (r7 = CODE1))
1454 ;; where CODE0 is the first code point of CHAR, CODE1 is the
1455 ;; second code point of CHAR.
1456 | de-sjis
1457
1458 ;; If ARG_0 and ARG_1 are the first and second code point of
1459 ;; JISX0208 character CHAR, and SJIS is the correponding
1460 ;; Shift-JIS code,
1461 ;; (REG = ARG_0 en-sjis ARG_1) means:
1462 ;; ((REG = HIGH)
1463 ;; (r7 = LOW))
1464 ;; where HIGH is the higher byte of SJIS, LOW is the lower
1465 ;; byte of SJIS.
1466 | en-sjis
1467
1468 ASSIGNMENT_OPERATOR :=
1469 ;; Same meaning as C code
1470 += | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
1471
1472 ;; (REG <8= ARG) is the same as:
1473 ;; ((REG <<= 8)
1474 ;; (REG |= ARG))
1475 | <8=
1476
1477 ;; (REG >8= ARG) is the same as:
1478 ;; ((r7 = (REG & 255))
1479 ;; (REG >>= 8))
1480
1481 ;; (REG //= ARG) is the same as:
1482 ;; ((r7 = (REG % ARG))
1483 ;; (REG /= ARG))
1484 | //=
1485
1486 ARRAY := `[' integer ... `]'
1487
1488
1489 TRANSLATE :=
1490 (translate-character REG(table) REG(charset) REG(codepoint))
1491 | (translate-character SYMBOL REG(charset) REG(codepoint))
1492 ;; SYMBOL must refer to a table defined by `define-translation-table'.
1493 LOOKUP :=
1494 (lookup-character SYMBOL REG(charset) REG(codepoint))
1495 | (lookup-integer SYMBOL REG(integer))
1496 ;; SYMBOL refers to a table defined by `define-translation-hash-table'.
1497 MAP :=
1498 (iterate-multiple-map REG REG MAP-IDs)
1499 | (map-multiple REG REG (MAP-SET))
1500 | (map-single REG REG MAP-ID)
1501 MAP-IDs := MAP-ID ...
1502 MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
1503 MAP-ID := integer
1504 "
1505 `(let ((prog ,(unwind-protect
1506 (progn
1507 ;; To make ,(charset-id CHARSET) works well.
1508 (fset 'charset-id 'charset-id-internal)
1509 (ccl-compile (eval ccl-program)))
1510 (fmakunbound 'charset-id))))
1511 (defconst ,name prog ,doc)
1512 (put ',name 'ccl-program-idx (register-ccl-program ',name prog))
1513 nil))
1514
1515 ;;;###autoload
1516 (defmacro check-ccl-program (ccl-program &optional name)
1517 "Check validity of CCL-PROGRAM.
1518 If CCL-PROGRAM is a symbol denoting a CCL program, return
1519 CCL-PROGRAM, else return nil.
1520 If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
1521 register CCL-PROGRAM by name NAME, and return NAME."
1522 `(if (ccl-program-p ,ccl-program)
1523 (if (vectorp ,ccl-program)
1524 (progn
1525 (register-ccl-program ,name ,ccl-program)
1526 ,name)
1527 ,ccl-program)))
1528
1529 ;;;###autoload
1530 (defun ccl-execute-with-args (ccl-prog &rest args)
1531 "Execute CCL-PROGRAM with registers initialized by the remaining args.
1532 The return value is a vector of resulting CCL registers.
1533
1534 See the documentation of `define-ccl-program' for the detail of CCL program."
1535 (let ((reg (make-vector 8 0))
1536 (i 0))
1537 (while (and args (< i 8))
1538 (if (not (integerp (car args)))
1539 (error "Arguments should be integer"))
1540 (aset reg i (car args))
1541 (setq args (cdr args) i (1+ i)))
1542 (ccl-execute ccl-prog reg)
1543 reg))
1544
1545 (provide 'ccl)
1546
1547 ;;; ccl.el ends here