]> code.delx.au - gnu-emacs/blob - src/editfns.c
*** empty log message ***
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985,86,87,89,93,94,95,96,97,98, 1999, 2000, 2001, 02, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <sys/types.h>
25
26 #ifdef VMS
27 #include "vms-pwd.h"
28 #else
29 #include <pwd.h>
30 #endif
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 /* Without this, sprintf on Mac OS Classic will produce wrong
37 result. */
38 #ifdef MAC_OS8
39 #include <stdio.h>
40 #endif
41
42 #include <ctype.h>
43
44 #include "lisp.h"
45 #include "intervals.h"
46 #include "buffer.h"
47 #include "character.h"
48 #include "coding.h"
49 #include "frame.h"
50 #include "window.h"
51
52 #include "systime.h"
53
54 #ifdef STDC_HEADERS
55 #include <float.h>
56 #define MAX_10_EXP DBL_MAX_10_EXP
57 #else
58 #define MAX_10_EXP 310
59 #endif
60
61 #ifndef NULL
62 #define NULL 0
63 #endif
64
65 #ifndef USE_CRT_DLL
66 extern char **environ;
67 #endif
68
69 extern Lisp_Object make_time P_ ((time_t));
70 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
71 const struct tm *, int));
72 static int tm_diff P_ ((struct tm *, struct tm *));
73 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
74 static void update_buffer_properties P_ ((int, int));
75 static Lisp_Object region_limit P_ ((int));
76 static int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
77 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
78 size_t, const struct tm *, int));
79 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
80 void (*) (Lisp_Object, int, int, int,
81 int, int),
82 int, int, Lisp_Object *));
83 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
84 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
85 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
86
87 #ifdef HAVE_INDEX
88 extern char *index P_ ((const char *, int));
89 #endif
90
91 Lisp_Object Vbuffer_access_fontify_functions;
92 Lisp_Object Qbuffer_access_fontify_functions;
93 Lisp_Object Vbuffer_access_fontified_property;
94
95 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
96
97 /* Non-nil means don't stop at field boundary in text motion commands. */
98
99 Lisp_Object Vinhibit_field_text_motion;
100
101 /* Some static data, and a function to initialize it for each run */
102
103 Lisp_Object Vsystem_name;
104 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
105 Lisp_Object Vuser_full_name; /* full name of current user */
106 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
107
108 /* Symbol for the text property used to mark fields. */
109
110 Lisp_Object Qfield;
111
112 /* A special value for Qfield properties. */
113
114 Lisp_Object Qboundary;
115
116
117 void
118 init_editfns ()
119 {
120 char *user_name;
121 register unsigned char *p;
122 struct passwd *pw; /* password entry for the current user */
123 Lisp_Object tem;
124
125 /* Set up system_name even when dumping. */
126 init_system_name ();
127
128 #ifndef CANNOT_DUMP
129 /* Don't bother with this on initial start when just dumping out */
130 if (!initialized)
131 return;
132 #endif /* not CANNOT_DUMP */
133
134 pw = (struct passwd *) getpwuid (getuid ());
135 #ifdef MSDOS
136 /* We let the real user name default to "root" because that's quite
137 accurate on MSDOG and because it lets Emacs find the init file.
138 (The DVX libraries override the Djgpp libraries here.) */
139 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
140 #else
141 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
142 #endif
143
144 /* Get the effective user name, by consulting environment variables,
145 or the effective uid if those are unset. */
146 user_name = (char *) getenv ("LOGNAME");
147 if (!user_name)
148 #ifdef WINDOWSNT
149 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
150 #else /* WINDOWSNT */
151 user_name = (char *) getenv ("USER");
152 #endif /* WINDOWSNT */
153 if (!user_name)
154 {
155 pw = (struct passwd *) getpwuid (geteuid ());
156 user_name = (char *) (pw ? pw->pw_name : "unknown");
157 }
158 Vuser_login_name = build_string (user_name);
159
160 /* If the user name claimed in the environment vars differs from
161 the real uid, use the claimed name to find the full name. */
162 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
163 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
164 : Vuser_login_name);
165
166 p = (unsigned char *) getenv ("NAME");
167 if (p)
168 Vuser_full_name = build_string (p);
169 else if (NILP (Vuser_full_name))
170 Vuser_full_name = build_string ("unknown");
171 }
172 \f
173 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
174 doc: /* Convert arg CHAR to a string containing that character.
175 usage: (char-to-string CHAR) */)
176 (character)
177 Lisp_Object character;
178 {
179 int len;
180 unsigned char str[MAX_MULTIBYTE_LENGTH];
181
182 CHECK_NUMBER (character);
183
184 len = CHAR_STRING (XFASTINT (character), str);
185 return make_string_from_bytes (str, 1, len);
186 }
187
188 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
189 doc: /* Convert arg STRING to a character, the first character of that string.
190 A multibyte character is handled correctly. */)
191 (string)
192 register Lisp_Object string;
193 {
194 register Lisp_Object val;
195 CHECK_STRING (string);
196 if (SCHARS (string))
197 {
198 if (STRING_MULTIBYTE (string))
199 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
200 else
201 XSETFASTINT (val, SREF (string, 0));
202 }
203 else
204 XSETFASTINT (val, 0);
205 return val;
206 }
207 \f
208 static Lisp_Object
209 buildmark (charpos, bytepos)
210 int charpos, bytepos;
211 {
212 register Lisp_Object mark;
213 mark = Fmake_marker ();
214 set_marker_both (mark, Qnil, charpos, bytepos);
215 return mark;
216 }
217
218 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
219 doc: /* Return value of point, as an integer.
220 Beginning of buffer is position (point-min). */)
221 ()
222 {
223 Lisp_Object temp;
224 XSETFASTINT (temp, PT);
225 return temp;
226 }
227
228 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
229 doc: /* Return value of point, as a marker object. */)
230 ()
231 {
232 return buildmark (PT, PT_BYTE);
233 }
234
235 int
236 clip_to_bounds (lower, num, upper)
237 int lower, num, upper;
238 {
239 if (num < lower)
240 return lower;
241 else if (num > upper)
242 return upper;
243 else
244 return num;
245 }
246
247 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
248 doc: /* Set point to POSITION, a number or marker.
249 Beginning of buffer is position (point-min), end is (point-max).
250 If the position is in the middle of a multibyte form,
251 the actual point is set at the head of the multibyte form
252 except in the case that `enable-multibyte-characters' is nil. */)
253 (position)
254 register Lisp_Object position;
255 {
256 int pos;
257
258 if (MARKERP (position)
259 && current_buffer == XMARKER (position)->buffer)
260 {
261 pos = marker_position (position);
262 if (pos < BEGV)
263 SET_PT_BOTH (BEGV, BEGV_BYTE);
264 else if (pos > ZV)
265 SET_PT_BOTH (ZV, ZV_BYTE);
266 else
267 SET_PT_BOTH (pos, marker_byte_position (position));
268
269 return position;
270 }
271
272 CHECK_NUMBER_COERCE_MARKER (position);
273
274 pos = clip_to_bounds (BEGV, XINT (position), ZV);
275 SET_PT (pos);
276 return position;
277 }
278
279
280 /* Return the start or end position of the region.
281 BEGINNINGP non-zero means return the start.
282 If there is no region active, signal an error. */
283
284 static Lisp_Object
285 region_limit (beginningp)
286 int beginningp;
287 {
288 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
289 Lisp_Object m;
290
291 if (!NILP (Vtransient_mark_mode)
292 && NILP (Vmark_even_if_inactive)
293 && NILP (current_buffer->mark_active))
294 Fsignal (Qmark_inactive, Qnil);
295
296 m = Fmarker_position (current_buffer->mark);
297 if (NILP (m))
298 error ("The mark is not set now, so there is no region");
299
300 if ((PT < XFASTINT (m)) == beginningp)
301 m = make_number (PT);
302 return m;
303 }
304
305 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
306 doc: /* Return position of beginning of region, as an integer. */)
307 ()
308 {
309 return region_limit (1);
310 }
311
312 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
313 doc: /* Return position of end of region, as an integer. */)
314 ()
315 {
316 return region_limit (0);
317 }
318
319 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
320 doc: /* Return this buffer's mark, as a marker object.
321 Watch out! Moving this marker changes the mark position.
322 If you set the marker not to point anywhere, the buffer will have no mark. */)
323 ()
324 {
325 return current_buffer->mark;
326 }
327
328 \f
329 /* Find all the overlays in the current buffer that touch position POS.
330 Return the number found, and store them in a vector in VEC
331 of length LEN. */
332
333 static int
334 overlays_around (pos, vec, len)
335 int pos;
336 Lisp_Object *vec;
337 int len;
338 {
339 Lisp_Object overlay, start, end;
340 struct Lisp_Overlay *tail;
341 int startpos, endpos;
342 int idx = 0;
343
344 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
345 {
346 XSETMISC (overlay, tail);
347
348 end = OVERLAY_END (overlay);
349 endpos = OVERLAY_POSITION (end);
350 if (endpos < pos)
351 break;
352 start = OVERLAY_START (overlay);
353 startpos = OVERLAY_POSITION (start);
354 if (startpos <= pos)
355 {
356 if (idx < len)
357 vec[idx] = overlay;
358 /* Keep counting overlays even if we can't return them all. */
359 idx++;
360 }
361 }
362
363 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
364 {
365 XSETMISC (overlay, tail);
366
367 start = OVERLAY_START (overlay);
368 startpos = OVERLAY_POSITION (start);
369 if (pos < startpos)
370 break;
371 end = OVERLAY_END (overlay);
372 endpos = OVERLAY_POSITION (end);
373 if (pos <= endpos)
374 {
375 if (idx < len)
376 vec[idx] = overlay;
377 idx++;
378 }
379 }
380
381 return idx;
382 }
383
384 /* Return the value of property PROP, in OBJECT at POSITION.
385 It's the value of PROP that a char inserted at POSITION would get.
386 OBJECT is optional and defaults to the current buffer.
387 If OBJECT is a buffer, then overlay properties are considered as well as
388 text properties.
389 If OBJECT is a window, then that window's buffer is used, but
390 window-specific overlays are considered only if they are associated
391 with OBJECT. */
392 Lisp_Object
393 get_pos_property (position, prop, object)
394 Lisp_Object position, object;
395 register Lisp_Object prop;
396 {
397 CHECK_NUMBER_COERCE_MARKER (position);
398
399 if (NILP (object))
400 XSETBUFFER (object, current_buffer);
401 else if (WINDOWP (object))
402 object = XWINDOW (object)->buffer;
403
404 if (!BUFFERP (object))
405 /* pos-property only makes sense in buffers right now, since strings
406 have no overlays and no notion of insertion for which stickiness
407 could be obeyed. */
408 return Fget_text_property (position, prop, object);
409 else
410 {
411 int posn = XINT (position);
412 int noverlays;
413 Lisp_Object *overlay_vec, tem;
414 struct buffer *obuf = current_buffer;
415
416 set_buffer_temp (XBUFFER (object));
417
418 /* First try with room for 40 overlays. */
419 noverlays = 40;
420 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
421 noverlays = overlays_around (posn, overlay_vec, noverlays);
422
423 /* If there are more than 40,
424 make enough space for all, and try again. */
425 if (noverlays > 40)
426 {
427 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
428 noverlays = overlays_around (posn, overlay_vec, noverlays);
429 }
430 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
431
432 set_buffer_temp (obuf);
433
434 /* Now check the overlays in order of decreasing priority. */
435 while (--noverlays >= 0)
436 {
437 Lisp_Object ol = overlay_vec[noverlays];
438 tem = Foverlay_get (ol, prop);
439 if (!NILP (tem))
440 {
441 /* Check the overlay is indeed active at point. */
442 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
443 if ((OVERLAY_POSITION (start) == posn
444 && XMARKER (start)->insertion_type == 1)
445 || (OVERLAY_POSITION (finish) == posn
446 && XMARKER (finish)->insertion_type == 0))
447 ; /* The overlay will not cover a char inserted at point. */
448 else
449 {
450 return tem;
451 }
452 }
453 }
454
455 { /* Now check the text-properties. */
456 int stickiness = text_property_stickiness (prop, position, object);
457 if (stickiness > 0)
458 return Fget_text_property (position, prop, object);
459 else if (stickiness < 0
460 && XINT (position) > BUF_BEGV (XBUFFER (object)))
461 return Fget_text_property (make_number (XINT (position) - 1),
462 prop, object);
463 else
464 return Qnil;
465 }
466 }
467 }
468
469 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
470 the value of point is used instead. If BEG or END null,
471 means don't store the beginning or end of the field.
472
473 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
474 results; they do not effect boundary behavior.
475
476 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
477 position of a field, then the beginning of the previous field is
478 returned instead of the beginning of POS's field (since the end of a
479 field is actually also the beginning of the next input field, this
480 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
481 true case, if two fields are separated by a field with the special
482 value `boundary', and POS lies within it, then the two separated
483 fields are considered to be adjacent, and POS between them, when
484 finding the beginning and ending of the "merged" field.
485
486 Either BEG or END may be 0, in which case the corresponding value
487 is not stored. */
488
489 static void
490 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
491 Lisp_Object pos;
492 Lisp_Object merge_at_boundary;
493 Lisp_Object beg_limit, end_limit;
494 int *beg, *end;
495 {
496 /* Fields right before and after the point. */
497 Lisp_Object before_field, after_field;
498 /* 1 if POS counts as the start of a field. */
499 int at_field_start = 0;
500 /* 1 if POS counts as the end of a field. */
501 int at_field_end = 0;
502
503 if (NILP (pos))
504 XSETFASTINT (pos, PT);
505 else
506 CHECK_NUMBER_COERCE_MARKER (pos);
507
508 after_field
509 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
510 before_field
511 = (XFASTINT (pos) > BEGV
512 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
513 Qfield, Qnil, NULL)
514 : Qnil);
515
516 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
517 and POS is at beginning of a field, which can also be interpreted
518 as the end of the previous field. Note that the case where if
519 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
520 more natural one; then we avoid treating the beginning of a field
521 specially. */
522 if (NILP (merge_at_boundary))
523 {
524 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
525 if (!EQ (field, after_field))
526 at_field_end = 1;
527 if (!EQ (field, before_field))
528 at_field_start = 1;
529 if (NILP (field) && at_field_start && at_field_end)
530 /* If an inserted char would have a nil field while the surrounding
531 text is non-nil, we're probably not looking at a
532 zero-length field, but instead at a non-nil field that's
533 not intended for editing (such as comint's prompts). */
534 at_field_end = at_field_start = 0;
535 }
536
537 /* Note about special `boundary' fields:
538
539 Consider the case where the point (`.') is between the fields `x' and `y':
540
541 xxxx.yyyy
542
543 In this situation, if merge_at_boundary is true, we consider the
544 `x' and `y' fields as forming one big merged field, and so the end
545 of the field is the end of `y'.
546
547 However, if `x' and `y' are separated by a special `boundary' field
548 (a field with a `field' char-property of 'boundary), then we ignore
549 this special field when merging adjacent fields. Here's the same
550 situation, but with a `boundary' field between the `x' and `y' fields:
551
552 xxx.BBBByyyy
553
554 Here, if point is at the end of `x', the beginning of `y', or
555 anywhere in-between (within the `boundary' field), we merge all
556 three fields and consider the beginning as being the beginning of
557 the `x' field, and the end as being the end of the `y' field. */
558
559 if (beg)
560 {
561 if (at_field_start)
562 /* POS is at the edge of a field, and we should consider it as
563 the beginning of the following field. */
564 *beg = XFASTINT (pos);
565 else
566 /* Find the previous field boundary. */
567 {
568 Lisp_Object p = pos;
569 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
570 /* Skip a `boundary' field. */
571 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
572 beg_limit);
573
574 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
575 beg_limit);
576 *beg = NILP (p) ? BEGV : XFASTINT (p);
577 }
578 }
579
580 if (end)
581 {
582 if (at_field_end)
583 /* POS is at the edge of a field, and we should consider it as
584 the end of the previous field. */
585 *end = XFASTINT (pos);
586 else
587 /* Find the next field boundary. */
588 {
589 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
590 /* Skip a `boundary' field. */
591 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
592 end_limit);
593
594 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
595 end_limit);
596 *end = NILP (pos) ? ZV : XFASTINT (pos);
597 }
598 }
599 }
600
601 \f
602 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
603 doc: /* Delete the field surrounding POS.
604 A field is a region of text with the same `field' property.
605 If POS is nil, the value of point is used for POS. */)
606 (pos)
607 Lisp_Object pos;
608 {
609 int beg, end;
610 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
611 if (beg != end)
612 del_range (beg, end);
613 return Qnil;
614 }
615
616 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
617 doc: /* Return the contents of the field surrounding POS as a string.
618 A field is a region of text with the same `field' property.
619 If POS is nil, the value of point is used for POS. */)
620 (pos)
621 Lisp_Object pos;
622 {
623 int beg, end;
624 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
625 return make_buffer_string (beg, end, 1);
626 }
627
628 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
629 doc: /* Return the contents of the field around POS, without text-properties.
630 A field is a region of text with the same `field' property.
631 If POS is nil, the value of point is used for POS. */)
632 (pos)
633 Lisp_Object pos;
634 {
635 int beg, end;
636 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
637 return make_buffer_string (beg, end, 0);
638 }
639
640 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
641 doc: /* Return the beginning of the field surrounding POS.
642 A field is a region of text with the same `field' property.
643 If POS is nil, the value of point is used for POS.
644 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
645 field, then the beginning of the *previous* field is returned.
646 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
647 is before LIMIT, then LIMIT will be returned instead. */)
648 (pos, escape_from_edge, limit)
649 Lisp_Object pos, escape_from_edge, limit;
650 {
651 int beg;
652 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
653 return make_number (beg);
654 }
655
656 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
657 doc: /* Return the end of the field surrounding POS.
658 A field is a region of text with the same `field' property.
659 If POS is nil, the value of point is used for POS.
660 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
661 then the end of the *following* field is returned.
662 If LIMIT is non-nil, it is a buffer position; if the end of the field
663 is after LIMIT, then LIMIT will be returned instead. */)
664 (pos, escape_from_edge, limit)
665 Lisp_Object pos, escape_from_edge, limit;
666 {
667 int end;
668 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
669 return make_number (end);
670 }
671
672 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
673 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
674
675 A field is a region of text with the same `field' property.
676 If NEW-POS is nil, then the current point is used instead, and set to the
677 constrained position if that is different.
678
679 If OLD-POS is at the boundary of two fields, then the allowable
680 positions for NEW-POS depends on the value of the optional argument
681 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
682 constrained to the field that has the same `field' char-property
683 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
684 is non-nil, NEW-POS is constrained to the union of the two adjacent
685 fields. Additionally, if two fields are separated by another field with
686 the special value `boundary', then any point within this special field is
687 also considered to be `on the boundary'.
688
689 If the optional argument ONLY-IN-LINE is non-nil and constraining
690 NEW-POS would move it to a different line, NEW-POS is returned
691 unconstrained. This useful for commands that move by line, like
692 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
693 only in the case where they can still move to the right line.
694
695 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
696 a non-nil property of that name, then any field boundaries are ignored.
697
698 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
699 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
700 Lisp_Object new_pos, old_pos;
701 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
702 {
703 /* If non-zero, then the original point, before re-positioning. */
704 int orig_point = 0;
705
706 if (NILP (new_pos))
707 /* Use the current point, and afterwards, set it. */
708 {
709 orig_point = PT;
710 XSETFASTINT (new_pos, PT);
711 }
712
713 if (NILP (Vinhibit_field_text_motion)
714 && !EQ (new_pos, old_pos)
715 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
716 || !NILP (Fget_char_property (old_pos, Qfield, Qnil)))
717 && (NILP (inhibit_capture_property)
718 || NILP (Fget_char_property(old_pos, inhibit_capture_property, Qnil))))
719 /* NEW_POS is not within the same field as OLD_POS; try to
720 move NEW_POS so that it is. */
721 {
722 int fwd, shortage;
723 Lisp_Object field_bound;
724
725 CHECK_NUMBER_COERCE_MARKER (new_pos);
726 CHECK_NUMBER_COERCE_MARKER (old_pos);
727
728 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
729
730 if (fwd)
731 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
732 else
733 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
734
735 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
736 other side of NEW_POS, which would mean that NEW_POS is
737 already acceptable, and it's not necessary to constrain it
738 to FIELD_BOUND. */
739 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
740 /* NEW_POS should be constrained, but only if either
741 ONLY_IN_LINE is nil (in which case any constraint is OK),
742 or NEW_POS and FIELD_BOUND are on the same line (in which
743 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
744 && (NILP (only_in_line)
745 /* This is the ONLY_IN_LINE case, check that NEW_POS and
746 FIELD_BOUND are on the same line by seeing whether
747 there's an intervening newline or not. */
748 || (scan_buffer ('\n',
749 XFASTINT (new_pos), XFASTINT (field_bound),
750 fwd ? -1 : 1, &shortage, 1),
751 shortage != 0)))
752 /* Constrain NEW_POS to FIELD_BOUND. */
753 new_pos = field_bound;
754
755 if (orig_point && XFASTINT (new_pos) != orig_point)
756 /* The NEW_POS argument was originally nil, so automatically set PT. */
757 SET_PT (XFASTINT (new_pos));
758 }
759
760 return new_pos;
761 }
762
763 \f
764 DEFUN ("line-beginning-position",
765 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
766 doc: /* Return the character position of the first character on the current line.
767 With argument N not nil or 1, move forward N - 1 lines first.
768 If scan reaches end of buffer, return that position.
769
770 The scan does not cross a field boundary unless doing so would move
771 beyond there to a different line; if N is nil or 1, and scan starts at a
772 field boundary, the scan stops as soon as it starts. To ignore field
773 boundaries bind `inhibit-field-text-motion' to t.
774
775 This function does not move point. */)
776 (n)
777 Lisp_Object n;
778 {
779 int orig, orig_byte, end;
780
781 if (NILP (n))
782 XSETFASTINT (n, 1);
783 else
784 CHECK_NUMBER (n);
785
786 orig = PT;
787 orig_byte = PT_BYTE;
788 Fforward_line (make_number (XINT (n) - 1));
789 end = PT;
790
791 SET_PT_BOTH (orig, orig_byte);
792
793 /* Return END constrained to the current input field. */
794 return Fconstrain_to_field (make_number (end), make_number (orig),
795 XINT (n) != 1 ? Qt : Qnil,
796 Qt, Qnil);
797 }
798
799 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
800 doc: /* Return the character position of the last character on the current line.
801 With argument N not nil or 1, move forward N - 1 lines first.
802 If scan reaches end of buffer, return that position.
803
804 The scan does not cross a field boundary unless doing so would move
805 beyond there to a different line; if N is nil or 1, and scan starts at a
806 field boundary, the scan stops as soon as it starts. To ignore field
807 boundaries bind `inhibit-field-text-motion' to t.
808
809 This function does not move point. */)
810 (n)
811 Lisp_Object n;
812 {
813 int end_pos;
814 int orig = PT;
815
816 if (NILP (n))
817 XSETFASTINT (n, 1);
818 else
819 CHECK_NUMBER (n);
820
821 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
822
823 /* Return END_POS constrained to the current input field. */
824 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
825 Qnil, Qt, Qnil);
826 }
827
828 \f
829 Lisp_Object
830 save_excursion_save ()
831 {
832 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
833 == current_buffer);
834
835 return Fcons (Fpoint_marker (),
836 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
837 Fcons (visible ? Qt : Qnil,
838 Fcons (current_buffer->mark_active,
839 selected_window))));
840 }
841
842 Lisp_Object
843 save_excursion_restore (info)
844 Lisp_Object info;
845 {
846 Lisp_Object tem, tem1, omark, nmark;
847 struct gcpro gcpro1, gcpro2, gcpro3;
848 int visible_p;
849
850 tem = Fmarker_buffer (XCAR (info));
851 /* If buffer being returned to is now deleted, avoid error */
852 /* Otherwise could get error here while unwinding to top level
853 and crash */
854 /* In that case, Fmarker_buffer returns nil now. */
855 if (NILP (tem))
856 return Qnil;
857
858 omark = nmark = Qnil;
859 GCPRO3 (info, omark, nmark);
860
861 Fset_buffer (tem);
862
863 /* Point marker. */
864 tem = XCAR (info);
865 Fgoto_char (tem);
866 unchain_marker (XMARKER (tem));
867
868 /* Mark marker. */
869 info = XCDR (info);
870 tem = XCAR (info);
871 omark = Fmarker_position (current_buffer->mark);
872 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
873 nmark = Fmarker_position (tem);
874 unchain_marker (XMARKER (tem));
875
876 /* visible */
877 info = XCDR (info);
878 visible_p = !NILP (XCAR (info));
879
880 #if 0 /* We used to make the current buffer visible in the selected window
881 if that was true previously. That avoids some anomalies.
882 But it creates others, and it wasn't documented, and it is simpler
883 and cleaner never to alter the window/buffer connections. */
884 tem1 = Fcar (tem);
885 if (!NILP (tem1)
886 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
887 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
888 #endif /* 0 */
889
890 /* Mark active */
891 info = XCDR (info);
892 tem = XCAR (info);
893 tem1 = current_buffer->mark_active;
894 current_buffer->mark_active = tem;
895
896 if (!NILP (Vrun_hooks))
897 {
898 /* If mark is active now, and either was not active
899 or was at a different place, run the activate hook. */
900 if (! NILP (current_buffer->mark_active))
901 {
902 if (! EQ (omark, nmark))
903 call1 (Vrun_hooks, intern ("activate-mark-hook"));
904 }
905 /* If mark has ceased to be active, run deactivate hook. */
906 else if (! NILP (tem1))
907 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
908 }
909
910 /* If buffer was visible in a window, and a different window was
911 selected, and the old selected window is still showing this
912 buffer, restore point in that window. */
913 tem = XCDR (info);
914 if (visible_p
915 && !EQ (tem, selected_window)
916 && (tem1 = XWINDOW (tem)->buffer,
917 (/* Window is live... */
918 BUFFERP (tem1)
919 /* ...and it shows the current buffer. */
920 && XBUFFER (tem1) == current_buffer)))
921 Fset_window_point (tem, make_number (PT));
922
923 UNGCPRO;
924 return Qnil;
925 }
926
927 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
928 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
929 Executes BODY just like `progn'.
930 The values of point, mark and the current buffer are restored
931 even in case of abnormal exit (throw or error).
932 The state of activation of the mark is also restored.
933
934 This construct does not save `deactivate-mark', and therefore
935 functions that change the buffer will still cause deactivation
936 of the mark at the end of the command. To prevent that, bind
937 `deactivate-mark' with `let'.
938
939 usage: (save-excursion &rest BODY) */)
940 (args)
941 Lisp_Object args;
942 {
943 register Lisp_Object val;
944 int count = SPECPDL_INDEX ();
945
946 record_unwind_protect (save_excursion_restore, save_excursion_save ());
947
948 val = Fprogn (args);
949 return unbind_to (count, val);
950 }
951
952 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
953 doc: /* Save the current buffer; execute BODY; restore the current buffer.
954 Executes BODY just like `progn'.
955 usage: (save-current-buffer &rest BODY) */)
956 (args)
957 Lisp_Object args;
958 {
959 Lisp_Object val;
960 int count = SPECPDL_INDEX ();
961
962 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
963
964 val = Fprogn (args);
965 return unbind_to (count, val);
966 }
967 \f
968 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
969 doc: /* Return the number of characters in the current buffer.
970 If BUFFER, return the number of characters in that buffer instead. */)
971 (buffer)
972 Lisp_Object buffer;
973 {
974 if (NILP (buffer))
975 return make_number (Z - BEG);
976 else
977 {
978 CHECK_BUFFER (buffer);
979 return make_number (BUF_Z (XBUFFER (buffer))
980 - BUF_BEG (XBUFFER (buffer)));
981 }
982 }
983
984 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
985 doc: /* Return the minimum permissible value of point in the current buffer.
986 This is 1, unless narrowing (a buffer restriction) is in effect. */)
987 ()
988 {
989 Lisp_Object temp;
990 XSETFASTINT (temp, BEGV);
991 return temp;
992 }
993
994 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
995 doc: /* Return a marker to the minimum permissible value of point in this buffer.
996 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
997 ()
998 {
999 return buildmark (BEGV, BEGV_BYTE);
1000 }
1001
1002 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1003 doc: /* Return the maximum permissible value of point in the current buffer.
1004 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1005 is in effect, in which case it is less. */)
1006 ()
1007 {
1008 Lisp_Object temp;
1009 XSETFASTINT (temp, ZV);
1010 return temp;
1011 }
1012
1013 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1014 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1015 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1016 is in effect, in which case it is less. */)
1017 ()
1018 {
1019 return buildmark (ZV, ZV_BYTE);
1020 }
1021
1022 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1023 doc: /* Return the position of the gap, in the current buffer.
1024 See also `gap-size'. */)
1025 ()
1026 {
1027 Lisp_Object temp;
1028 XSETFASTINT (temp, GPT);
1029 return temp;
1030 }
1031
1032 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1033 doc: /* Return the size of the current buffer's gap.
1034 See also `gap-position'. */)
1035 ()
1036 {
1037 Lisp_Object temp;
1038 XSETFASTINT (temp, GAP_SIZE);
1039 return temp;
1040 }
1041
1042 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1043 doc: /* Return the byte position for character position POSITION.
1044 If POSITION is out of range, the value is nil. */)
1045 (position)
1046 Lisp_Object position;
1047 {
1048 CHECK_NUMBER_COERCE_MARKER (position);
1049 if (XINT (position) < BEG || XINT (position) > Z)
1050 return Qnil;
1051 return make_number (CHAR_TO_BYTE (XINT (position)));
1052 }
1053
1054 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1055 doc: /* Return the character position for byte position BYTEPOS.
1056 If BYTEPOS is out of range, the value is nil. */)
1057 (bytepos)
1058 Lisp_Object bytepos;
1059 {
1060 CHECK_NUMBER (bytepos);
1061 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1062 return Qnil;
1063 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1064 }
1065 \f
1066 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1067 doc: /* Return the character following point, as a number.
1068 At the end of the buffer or accessible region, return 0. */)
1069 ()
1070 {
1071 Lisp_Object temp;
1072 if (PT >= ZV)
1073 XSETFASTINT (temp, 0);
1074 else
1075 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1076 return temp;
1077 }
1078
1079 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1080 doc: /* Return the character preceding point, as a number.
1081 At the beginning of the buffer or accessible region, return 0. */)
1082 ()
1083 {
1084 Lisp_Object temp;
1085 if (PT <= BEGV)
1086 XSETFASTINT (temp, 0);
1087 else if (!NILP (current_buffer->enable_multibyte_characters))
1088 {
1089 int pos = PT_BYTE;
1090 DEC_POS (pos);
1091 XSETFASTINT (temp, FETCH_CHAR (pos));
1092 }
1093 else
1094 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1095 return temp;
1096 }
1097
1098 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1099 doc: /* Return t if point is at the beginning of the buffer.
1100 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1101 ()
1102 {
1103 if (PT == BEGV)
1104 return Qt;
1105 return Qnil;
1106 }
1107
1108 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1109 doc: /* Return t if point is at the end of the buffer.
1110 If the buffer is narrowed, this means the end of the narrowed part. */)
1111 ()
1112 {
1113 if (PT == ZV)
1114 return Qt;
1115 return Qnil;
1116 }
1117
1118 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1119 doc: /* Return t if point is at the beginning of a line. */)
1120 ()
1121 {
1122 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1123 return Qt;
1124 return Qnil;
1125 }
1126
1127 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1128 doc: /* Return t if point is at the end of a line.
1129 `End of a line' includes point being at the end of the buffer. */)
1130 ()
1131 {
1132 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1133 return Qt;
1134 return Qnil;
1135 }
1136
1137 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1138 doc: /* Return character in current buffer at position POS.
1139 POS is an integer or a marker.
1140 If POS is out of range, the value is nil. */)
1141 (pos)
1142 Lisp_Object pos;
1143 {
1144 register int pos_byte;
1145
1146 if (NILP (pos))
1147 {
1148 pos_byte = PT_BYTE;
1149 XSETFASTINT (pos, PT);
1150 }
1151
1152 if (MARKERP (pos))
1153 {
1154 pos_byte = marker_byte_position (pos);
1155 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1156 return Qnil;
1157 }
1158 else
1159 {
1160 CHECK_NUMBER_COERCE_MARKER (pos);
1161 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1162 return Qnil;
1163
1164 pos_byte = CHAR_TO_BYTE (XINT (pos));
1165 }
1166
1167 return make_number (FETCH_CHAR (pos_byte));
1168 }
1169
1170 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1171 doc: /* Return character in current buffer preceding position POS.
1172 POS is an integer or a marker.
1173 If POS is out of range, the value is nil. */)
1174 (pos)
1175 Lisp_Object pos;
1176 {
1177 register Lisp_Object val;
1178 register int pos_byte;
1179
1180 if (NILP (pos))
1181 {
1182 pos_byte = PT_BYTE;
1183 XSETFASTINT (pos, PT);
1184 }
1185
1186 if (MARKERP (pos))
1187 {
1188 pos_byte = marker_byte_position (pos);
1189
1190 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1191 return Qnil;
1192 }
1193 else
1194 {
1195 CHECK_NUMBER_COERCE_MARKER (pos);
1196
1197 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1198 return Qnil;
1199
1200 pos_byte = CHAR_TO_BYTE (XINT (pos));
1201 }
1202
1203 if (!NILP (current_buffer->enable_multibyte_characters))
1204 {
1205 DEC_POS (pos_byte);
1206 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1207 }
1208 else
1209 {
1210 pos_byte--;
1211 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1212 }
1213 return val;
1214 }
1215 \f
1216 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1217 doc: /* Return the name under which the user logged in, as a string.
1218 This is based on the effective uid, not the real uid.
1219 Also, if the environment variable LOGNAME or USER is set,
1220 that determines the value of this function.
1221
1222 If optional argument UID is an integer, return the login name of the user
1223 with that uid, or nil if there is no such user. */)
1224 (uid)
1225 Lisp_Object uid;
1226 {
1227 struct passwd *pw;
1228
1229 /* Set up the user name info if we didn't do it before.
1230 (That can happen if Emacs is dumpable
1231 but you decide to run `temacs -l loadup' and not dump. */
1232 if (INTEGERP (Vuser_login_name))
1233 init_editfns ();
1234
1235 if (NILP (uid))
1236 return Vuser_login_name;
1237
1238 CHECK_NUMBER (uid);
1239 pw = (struct passwd *) getpwuid (XINT (uid));
1240 return (pw ? build_string (pw->pw_name) : Qnil);
1241 }
1242
1243 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1244 0, 0, 0,
1245 doc: /* Return the name of the user's real uid, as a string.
1246 This ignores the environment variables LOGNAME and USER, so it differs from
1247 `user-login-name' when running under `su'. */)
1248 ()
1249 {
1250 /* Set up the user name info if we didn't do it before.
1251 (That can happen if Emacs is dumpable
1252 but you decide to run `temacs -l loadup' and not dump. */
1253 if (INTEGERP (Vuser_login_name))
1254 init_editfns ();
1255 return Vuser_real_login_name;
1256 }
1257
1258 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1259 doc: /* Return the effective uid of Emacs.
1260 Value is an integer or float, depending on the value. */)
1261 ()
1262 {
1263 return make_fixnum_or_float (geteuid ());
1264 }
1265
1266 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1267 doc: /* Return the real uid of Emacs.
1268 Value is an integer or float, depending on the value. */)
1269 ()
1270 {
1271 return make_fixnum_or_float (getuid ());
1272 }
1273
1274 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1275 doc: /* Return the full name of the user logged in, as a string.
1276 If the full name corresponding to Emacs's userid is not known,
1277 return "unknown".
1278
1279 If optional argument UID is an integer or float, return the full name
1280 of the user with that uid, or nil if there is no such user.
1281 If UID is a string, return the full name of the user with that login
1282 name, or nil if there is no such user. */)
1283 (uid)
1284 Lisp_Object uid;
1285 {
1286 struct passwd *pw;
1287 register unsigned char *p, *q;
1288 Lisp_Object full;
1289
1290 if (NILP (uid))
1291 return Vuser_full_name;
1292 else if (NUMBERP (uid))
1293 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1294 else if (STRINGP (uid))
1295 pw = (struct passwd *) getpwnam (SDATA (uid));
1296 else
1297 error ("Invalid UID specification");
1298
1299 if (!pw)
1300 return Qnil;
1301
1302 p = (unsigned char *) USER_FULL_NAME;
1303 /* Chop off everything after the first comma. */
1304 q = (unsigned char *) index (p, ',');
1305 full = make_string (p, q ? q - p : strlen (p));
1306
1307 #ifdef AMPERSAND_FULL_NAME
1308 p = SDATA (full);
1309 q = (unsigned char *) index (p, '&');
1310 /* Substitute the login name for the &, upcasing the first character. */
1311 if (q)
1312 {
1313 register unsigned char *r;
1314 Lisp_Object login;
1315
1316 login = Fuser_login_name (make_number (pw->pw_uid));
1317 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1318 bcopy (p, r, q - p);
1319 r[q - p] = 0;
1320 strcat (r, SDATA (login));
1321 r[q - p] = UPCASE (r[q - p]);
1322 strcat (r, q + 1);
1323 full = build_string (r);
1324 }
1325 #endif /* AMPERSAND_FULL_NAME */
1326
1327 return full;
1328 }
1329
1330 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1331 doc: /* Return the name of the machine you are running on, as a string. */)
1332 ()
1333 {
1334 return Vsystem_name;
1335 }
1336
1337 /* For the benefit of callers who don't want to include lisp.h */
1338
1339 char *
1340 get_system_name ()
1341 {
1342 if (STRINGP (Vsystem_name))
1343 return (char *) SDATA (Vsystem_name);
1344 else
1345 return "";
1346 }
1347
1348 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1349 doc: /* Return the process ID of Emacs, as an integer. */)
1350 ()
1351 {
1352 return make_number (getpid ());
1353 }
1354
1355 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1356 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1357 The time is returned as a list of three integers. The first has the
1358 most significant 16 bits of the seconds, while the second has the
1359 least significant 16 bits. The third integer gives the microsecond
1360 count.
1361
1362 The microsecond count is zero on systems that do not provide
1363 resolution finer than a second. */)
1364 ()
1365 {
1366 EMACS_TIME t;
1367 Lisp_Object result[3];
1368
1369 EMACS_GET_TIME (t);
1370 XSETINT (result[0], (EMACS_SECS (t) >> 16) & 0xffff);
1371 XSETINT (result[1], (EMACS_SECS (t) >> 0) & 0xffff);
1372 XSETINT (result[2], EMACS_USECS (t));
1373
1374 return Flist (3, result);
1375 }
1376 \f
1377
1378 static int
1379 lisp_time_argument (specified_time, result, usec)
1380 Lisp_Object specified_time;
1381 time_t *result;
1382 int *usec;
1383 {
1384 if (NILP (specified_time))
1385 {
1386 if (usec)
1387 {
1388 EMACS_TIME t;
1389
1390 EMACS_GET_TIME (t);
1391 *usec = EMACS_USECS (t);
1392 *result = EMACS_SECS (t);
1393 return 1;
1394 }
1395 else
1396 return time (result) != -1;
1397 }
1398 else
1399 {
1400 Lisp_Object high, low;
1401 high = Fcar (specified_time);
1402 CHECK_NUMBER (high);
1403 low = Fcdr (specified_time);
1404 if (CONSP (low))
1405 {
1406 if (usec)
1407 {
1408 Lisp_Object usec_l = Fcdr (low);
1409 if (CONSP (usec_l))
1410 usec_l = Fcar (usec_l);
1411 if (NILP (usec_l))
1412 *usec = 0;
1413 else
1414 {
1415 CHECK_NUMBER (usec_l);
1416 *usec = XINT (usec_l);
1417 }
1418 }
1419 low = Fcar (low);
1420 }
1421 else if (usec)
1422 *usec = 0;
1423 CHECK_NUMBER (low);
1424 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1425 return *result >> 16 == XINT (high);
1426 }
1427 }
1428
1429 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1430 doc: /* Return the current time, as a float number of seconds since the epoch.
1431 If an argument is given, it specifies a time to convert to float
1432 instead of the current time. The argument should have the forms:
1433 (HIGH . LOW) or (HIGH LOW USEC) or (HIGH LOW . USEC).
1434 Thus, you can use times obtained from `current-time'
1435 and from `file-attributes'.
1436
1437 WARNING: Since the result is floating point, it may not be exact.
1438 Do not use this function if precise time stamps are required. */)
1439 (specified_time)
1440 Lisp_Object specified_time;
1441 {
1442 time_t sec;
1443 int usec;
1444
1445 if (! lisp_time_argument (specified_time, &sec, &usec))
1446 error ("Invalid time specification");
1447
1448 return make_float ((sec * 1e6 + usec) / 1e6);
1449 }
1450
1451 /* Write information into buffer S of size MAXSIZE, according to the
1452 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1453 Default to Universal Time if UT is nonzero, local time otherwise.
1454 Return the number of bytes written, not including the terminating
1455 '\0'. If S is NULL, nothing will be written anywhere; so to
1456 determine how many bytes would be written, use NULL for S and
1457 ((size_t) -1) for MAXSIZE.
1458
1459 This function behaves like emacs_strftimeu, except it allows null
1460 bytes in FORMAT. */
1461 static size_t
1462 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1463 char *s;
1464 size_t maxsize;
1465 const char *format;
1466 size_t format_len;
1467 const struct tm *tp;
1468 int ut;
1469 {
1470 size_t total = 0;
1471
1472 /* Loop through all the null-terminated strings in the format
1473 argument. Normally there's just one null-terminated string, but
1474 there can be arbitrarily many, concatenated together, if the
1475 format contains '\0' bytes. emacs_strftimeu stops at the first
1476 '\0' byte so we must invoke it separately for each such string. */
1477 for (;;)
1478 {
1479 size_t len;
1480 size_t result;
1481
1482 if (s)
1483 s[0] = '\1';
1484
1485 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1486
1487 if (s)
1488 {
1489 if (result == 0 && s[0] != '\0')
1490 return 0;
1491 s += result + 1;
1492 }
1493
1494 maxsize -= result + 1;
1495 total += result;
1496 len = strlen (format);
1497 if (len == format_len)
1498 return total;
1499 total++;
1500 format += len + 1;
1501 format_len -= len + 1;
1502 }
1503 }
1504
1505 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1506 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1507 TIME is specified as (HIGH LOW . IGNORED) or (HIGH . LOW), as returned by
1508 `current-time' or `file-attributes'.
1509 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1510 as Universal Time; nil means describe TIME in the local time zone.
1511 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1512 by text that describes the specified date and time in TIME:
1513
1514 %Y is the year, %y within the century, %C the century.
1515 %G is the year corresponding to the ISO week, %g within the century.
1516 %m is the numeric month.
1517 %b and %h are the locale's abbreviated month name, %B the full name.
1518 %d is the day of the month, zero-padded, %e is blank-padded.
1519 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1520 %a is the locale's abbreviated name of the day of week, %A the full name.
1521 %U is the week number starting on Sunday, %W starting on Monday,
1522 %V according to ISO 8601.
1523 %j is the day of the year.
1524
1525 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1526 only blank-padded, %l is like %I blank-padded.
1527 %p is the locale's equivalent of either AM or PM.
1528 %M is the minute.
1529 %S is the second.
1530 %Z is the time zone name, %z is the numeric form.
1531 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1532
1533 %c is the locale's date and time format.
1534 %x is the locale's "preferred" date format.
1535 %D is like "%m/%d/%y".
1536
1537 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1538 %X is the locale's "preferred" time format.
1539
1540 Finally, %n is a newline, %t is a tab, %% is a literal %.
1541
1542 Certain flags and modifiers are available with some format controls.
1543 The flags are `_', `-', `^' and `#'. For certain characters X,
1544 %_X is like %X, but padded with blanks; %-X is like %X,
1545 but without padding. %^X is like %X, but with all textual
1546 characters up-cased; %#X is like %X, but with letter-case of
1547 all textual characters reversed.
1548 %NX (where N stands for an integer) is like %X,
1549 but takes up at least N (a number) positions.
1550 The modifiers are `E' and `O'. For certain characters X,
1551 %EX is a locale's alternative version of %X;
1552 %OX is like %X, but uses the locale's number symbols.
1553
1554 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1555 (format_string, time, universal)
1556 Lisp_Object format_string, time, universal;
1557 {
1558 time_t value;
1559 int size;
1560 struct tm *tm;
1561 int ut = ! NILP (universal);
1562
1563 CHECK_STRING (format_string);
1564
1565 if (! lisp_time_argument (time, &value, NULL))
1566 error ("Invalid time specification");
1567
1568 format_string = code_convert_string_norecord (format_string,
1569 Vlocale_coding_system, 1);
1570
1571 /* This is probably enough. */
1572 size = SBYTES (format_string) * 6 + 50;
1573
1574 tm = ut ? gmtime (&value) : localtime (&value);
1575 if (! tm)
1576 error ("Specified time is not representable");
1577
1578 synchronize_system_time_locale ();
1579
1580 while (1)
1581 {
1582 char *buf = (char *) alloca (size + 1);
1583 int result;
1584
1585 buf[0] = '\1';
1586 result = emacs_memftimeu (buf, size, SDATA (format_string),
1587 SBYTES (format_string),
1588 tm, ut);
1589 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1590 return code_convert_string_norecord (make_string (buf, result),
1591 Vlocale_coding_system, 0);
1592
1593 /* If buffer was too small, make it bigger and try again. */
1594 result = emacs_memftimeu (NULL, (size_t) -1,
1595 SDATA (format_string),
1596 SBYTES (format_string),
1597 tm, ut);
1598 size = result + 1;
1599 }
1600 }
1601
1602 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1603 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1604 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED)
1605 or (HIGH . LOW), as from `current-time' and `file-attributes', or `nil'
1606 to use the current time. The list has the following nine members:
1607 SEC is an integer between 0 and 60; SEC is 60 for a leap second, which
1608 only some operating systems support. MINUTE is an integer between 0 and 59.
1609 HOUR is an integer between 0 and 23. DAY is an integer between 1 and 31.
1610 MONTH is an integer between 1 and 12. YEAR is an integer indicating the
1611 four-digit year. DOW is the day of week, an integer between 0 and 6, where
1612 0 is Sunday. DST is t if daylight savings time is effect, otherwise nil.
1613 ZONE is an integer indicating the number of seconds east of Greenwich.
1614 (Note that Common Lisp has different meanings for DOW and ZONE.) */)
1615 (specified_time)
1616 Lisp_Object specified_time;
1617 {
1618 time_t time_spec;
1619 struct tm save_tm;
1620 struct tm *decoded_time;
1621 Lisp_Object list_args[9];
1622
1623 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1624 error ("Invalid time specification");
1625
1626 decoded_time = localtime (&time_spec);
1627 if (! decoded_time)
1628 error ("Specified time is not representable");
1629 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1630 XSETFASTINT (list_args[1], decoded_time->tm_min);
1631 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1632 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1633 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1634 XSETINT (list_args[5], decoded_time->tm_year + 1900);
1635 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1636 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1637
1638 /* Make a copy, in case gmtime modifies the struct. */
1639 save_tm = *decoded_time;
1640 decoded_time = gmtime (&time_spec);
1641 if (decoded_time == 0)
1642 list_args[8] = Qnil;
1643 else
1644 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1645 return Flist (9, list_args);
1646 }
1647
1648 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1649 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1650 This is the reverse operation of `decode-time', which see.
1651 ZONE defaults to the current time zone rule. This can
1652 be a string or t (as from `set-time-zone-rule'), or it can be a list
1653 \(as from `current-time-zone') or an integer (as from `decode-time')
1654 applied without consideration for daylight savings time.
1655
1656 You can pass more than 7 arguments; then the first six arguments
1657 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1658 The intervening arguments are ignored.
1659 This feature lets (apply 'encode-time (decode-time ...)) work.
1660
1661 Out-of-range values for SEC, MINUTE, HOUR, DAY, or MONTH are allowed;
1662 for example, a DAY of 0 means the day preceding the given month.
1663 Year numbers less than 100 are treated just like other year numbers.
1664 If you want them to stand for years in this century, you must do that yourself.
1665
1666 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1667 (nargs, args)
1668 int nargs;
1669 register Lisp_Object *args;
1670 {
1671 time_t time;
1672 struct tm tm;
1673 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1674
1675 CHECK_NUMBER (args[0]); /* second */
1676 CHECK_NUMBER (args[1]); /* minute */
1677 CHECK_NUMBER (args[2]); /* hour */
1678 CHECK_NUMBER (args[3]); /* day */
1679 CHECK_NUMBER (args[4]); /* month */
1680 CHECK_NUMBER (args[5]); /* year */
1681
1682 tm.tm_sec = XINT (args[0]);
1683 tm.tm_min = XINT (args[1]);
1684 tm.tm_hour = XINT (args[2]);
1685 tm.tm_mday = XINT (args[3]);
1686 tm.tm_mon = XINT (args[4]) - 1;
1687 tm.tm_year = XINT (args[5]) - 1900;
1688 tm.tm_isdst = -1;
1689
1690 if (CONSP (zone))
1691 zone = Fcar (zone);
1692 if (NILP (zone))
1693 time = mktime (&tm);
1694 else
1695 {
1696 char tzbuf[100];
1697 char *tzstring;
1698 char **oldenv = environ, **newenv;
1699
1700 if (EQ (zone, Qt))
1701 tzstring = "UTC0";
1702 else if (STRINGP (zone))
1703 tzstring = (char *) SDATA (zone);
1704 else if (INTEGERP (zone))
1705 {
1706 int abszone = abs (XINT (zone));
1707 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1708 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1709 tzstring = tzbuf;
1710 }
1711 else
1712 error ("Invalid time zone specification");
1713
1714 /* Set TZ before calling mktime; merely adjusting mktime's returned
1715 value doesn't suffice, since that would mishandle leap seconds. */
1716 set_time_zone_rule (tzstring);
1717
1718 time = mktime (&tm);
1719
1720 /* Restore TZ to previous value. */
1721 newenv = environ;
1722 environ = oldenv;
1723 xfree (newenv);
1724 #ifdef LOCALTIME_CACHE
1725 tzset ();
1726 #endif
1727 }
1728
1729 if (time == (time_t) -1)
1730 error ("Specified time is not representable");
1731
1732 return make_time (time);
1733 }
1734
1735 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1736 doc: /* Return the current time, as a human-readable string.
1737 Programs can use this function to decode a time,
1738 since the number of columns in each field is fixed.
1739 The format is `Sun Sep 16 01:03:52 1973'.
1740 However, see also the functions `decode-time' and `format-time-string'
1741 which provide a much more powerful and general facility.
1742
1743 If an argument is given, it specifies a time to format
1744 instead of the current time. The argument should have the form:
1745 (HIGH . LOW)
1746 or the form:
1747 (HIGH LOW . IGNORED).
1748 Thus, you can use times obtained from `current-time'
1749 and from `file-attributes'. */)
1750 (specified_time)
1751 Lisp_Object specified_time;
1752 {
1753 time_t value;
1754 char buf[30];
1755 register char *tem;
1756
1757 if (! lisp_time_argument (specified_time, &value, NULL))
1758 value = -1;
1759 tem = (char *) ctime (&value);
1760
1761 strncpy (buf, tem, 24);
1762 buf[24] = 0;
1763
1764 return build_string (buf);
1765 }
1766
1767 #define TM_YEAR_BASE 1900
1768
1769 /* Yield A - B, measured in seconds.
1770 This function is copied from the GNU C Library. */
1771 static int
1772 tm_diff (a, b)
1773 struct tm *a, *b;
1774 {
1775 /* Compute intervening leap days correctly even if year is negative.
1776 Take care to avoid int overflow in leap day calculations,
1777 but it's OK to assume that A and B are close to each other. */
1778 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1779 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1780 int a100 = a4 / 25 - (a4 % 25 < 0);
1781 int b100 = b4 / 25 - (b4 % 25 < 0);
1782 int a400 = a100 >> 2;
1783 int b400 = b100 >> 2;
1784 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1785 int years = a->tm_year - b->tm_year;
1786 int days = (365 * years + intervening_leap_days
1787 + (a->tm_yday - b->tm_yday));
1788 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1789 + (a->tm_min - b->tm_min))
1790 + (a->tm_sec - b->tm_sec));
1791 }
1792
1793 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1794 doc: /* Return the offset and name for the local time zone.
1795 This returns a list of the form (OFFSET NAME).
1796 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1797 A negative value means west of Greenwich.
1798 NAME is a string giving the name of the time zone.
1799 If an argument is given, it specifies when the time zone offset is determined
1800 instead of using the current time. The argument should have the form:
1801 (HIGH . LOW)
1802 or the form:
1803 (HIGH LOW . IGNORED).
1804 Thus, you can use times obtained from `current-time'
1805 and from `file-attributes'.
1806
1807 Some operating systems cannot provide all this information to Emacs;
1808 in this case, `current-time-zone' returns a list containing nil for
1809 the data it can't find. */)
1810 (specified_time)
1811 Lisp_Object specified_time;
1812 {
1813 time_t value;
1814 struct tm *t;
1815 struct tm gmt;
1816
1817 if (lisp_time_argument (specified_time, &value, NULL)
1818 && (t = gmtime (&value)) != 0
1819 && (gmt = *t, t = localtime (&value)) != 0)
1820 {
1821 int offset = tm_diff (t, &gmt);
1822 char *s = 0;
1823 char buf[6];
1824 #ifdef HAVE_TM_ZONE
1825 if (t->tm_zone)
1826 s = (char *)t->tm_zone;
1827 #else /* not HAVE_TM_ZONE */
1828 #ifdef HAVE_TZNAME
1829 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1830 s = tzname[t->tm_isdst];
1831 #endif
1832 #endif /* not HAVE_TM_ZONE */
1833
1834 #if defined HAVE_TM_ZONE || defined HAVE_TZNAME
1835 if (s)
1836 {
1837 /* On Japanese w32, we can get a Japanese string as time
1838 zone name. Don't accept that. */
1839 char *p;
1840 for (p = s; *p && (isalnum ((unsigned char)*p) || *p == ' '); ++p)
1841 ;
1842 if (p == s || *p)
1843 s = NULL;
1844 }
1845 #endif
1846
1847 if (!s)
1848 {
1849 /* No local time zone name is available; use "+-NNNN" instead. */
1850 int am = (offset < 0 ? -offset : offset) / 60;
1851 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
1852 s = buf;
1853 }
1854 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
1855 }
1856 else
1857 return Fmake_list (make_number (2), Qnil);
1858 }
1859
1860 /* This holds the value of `environ' produced by the previous
1861 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
1862 has never been called. */
1863 static char **environbuf;
1864
1865 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
1866 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
1867 If TZ is nil, use implementation-defined default time zone information.
1868 If TZ is t, use Universal Time. */)
1869 (tz)
1870 Lisp_Object tz;
1871 {
1872 char *tzstring;
1873
1874 if (NILP (tz))
1875 tzstring = 0;
1876 else if (EQ (tz, Qt))
1877 tzstring = "UTC0";
1878 else
1879 {
1880 CHECK_STRING (tz);
1881 tzstring = (char *) SDATA (tz);
1882 }
1883
1884 set_time_zone_rule (tzstring);
1885 if (environbuf)
1886 free (environbuf);
1887 environbuf = environ;
1888
1889 return Qnil;
1890 }
1891
1892 #ifdef LOCALTIME_CACHE
1893
1894 /* These two values are known to load tz files in buggy implementations,
1895 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
1896 Their values shouldn't matter in non-buggy implementations.
1897 We don't use string literals for these strings,
1898 since if a string in the environment is in readonly
1899 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
1900 See Sun bugs 1113095 and 1114114, ``Timezone routines
1901 improperly modify environment''. */
1902
1903 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
1904 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
1905
1906 #endif
1907
1908 /* Set the local time zone rule to TZSTRING.
1909 This allocates memory into `environ', which it is the caller's
1910 responsibility to free. */
1911
1912 void
1913 set_time_zone_rule (tzstring)
1914 char *tzstring;
1915 {
1916 int envptrs;
1917 char **from, **to, **newenv;
1918
1919 /* Make the ENVIRON vector longer with room for TZSTRING. */
1920 for (from = environ; *from; from++)
1921 continue;
1922 envptrs = from - environ + 2;
1923 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
1924 + (tzstring ? strlen (tzstring) + 4 : 0));
1925
1926 /* Add TZSTRING to the end of environ, as a value for TZ. */
1927 if (tzstring)
1928 {
1929 char *t = (char *) (to + envptrs);
1930 strcpy (t, "TZ=");
1931 strcat (t, tzstring);
1932 *to++ = t;
1933 }
1934
1935 /* Copy the old environ vector elements into NEWENV,
1936 but don't copy the TZ variable.
1937 So we have only one definition of TZ, which came from TZSTRING. */
1938 for (from = environ; *from; from++)
1939 if (strncmp (*from, "TZ=", 3) != 0)
1940 *to++ = *from;
1941 *to = 0;
1942
1943 environ = newenv;
1944
1945 /* If we do have a TZSTRING, NEWENV points to the vector slot where
1946 the TZ variable is stored. If we do not have a TZSTRING,
1947 TO points to the vector slot which has the terminating null. */
1948
1949 #ifdef LOCALTIME_CACHE
1950 {
1951 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
1952 "US/Pacific" that loads a tz file, then changes to a value like
1953 "XXX0" that does not load a tz file, and then changes back to
1954 its original value, the last change is (incorrectly) ignored.
1955 Also, if TZ changes twice in succession to values that do
1956 not load a tz file, tzset can dump core (see Sun bug#1225179).
1957 The following code works around these bugs. */
1958
1959 if (tzstring)
1960 {
1961 /* Temporarily set TZ to a value that loads a tz file
1962 and that differs from tzstring. */
1963 char *tz = *newenv;
1964 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
1965 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
1966 tzset ();
1967 *newenv = tz;
1968 }
1969 else
1970 {
1971 /* The implied tzstring is unknown, so temporarily set TZ to
1972 two different values that each load a tz file. */
1973 *to = set_time_zone_rule_tz1;
1974 to[1] = 0;
1975 tzset ();
1976 *to = set_time_zone_rule_tz2;
1977 tzset ();
1978 *to = 0;
1979 }
1980
1981 /* Now TZ has the desired value, and tzset can be invoked safely. */
1982 }
1983
1984 tzset ();
1985 #endif
1986 }
1987 \f
1988 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
1989 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
1990 type of object is Lisp_String). INHERIT is passed to
1991 INSERT_FROM_STRING_FUNC as the last argument. */
1992
1993 static void
1994 general_insert_function (insert_func, insert_from_string_func,
1995 inherit, nargs, args)
1996 void (*insert_func) P_ ((const unsigned char *, int));
1997 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
1998 int inherit, nargs;
1999 register Lisp_Object *args;
2000 {
2001 register int argnum;
2002 register Lisp_Object val;
2003
2004 for (argnum = 0; argnum < nargs; argnum++)
2005 {
2006 val = args[argnum];
2007 retry:
2008 if (INTEGERP (val))
2009 {
2010 unsigned char str[MAX_MULTIBYTE_LENGTH];
2011 int len;
2012
2013 if (!NILP (current_buffer->enable_multibyte_characters))
2014 len = CHAR_STRING (XFASTINT (val), str);
2015 else
2016 {
2017 str[0] = (ASCII_CHAR_P (XINT (val))
2018 ? XINT (val)
2019 : multibyte_char_to_unibyte (XINT (val), Qnil));
2020 len = 1;
2021 }
2022 (*insert_func) (str, len);
2023 }
2024 else if (STRINGP (val))
2025 {
2026 (*insert_from_string_func) (val, 0, 0,
2027 SCHARS (val),
2028 SBYTES (val),
2029 inherit);
2030 }
2031 else
2032 {
2033 val = wrong_type_argument (Qchar_or_string_p, val);
2034 goto retry;
2035 }
2036 }
2037 }
2038
2039 void
2040 insert1 (arg)
2041 Lisp_Object arg;
2042 {
2043 Finsert (1, &arg);
2044 }
2045
2046
2047 /* Callers passing one argument to Finsert need not gcpro the
2048 argument "array", since the only element of the array will
2049 not be used after calling insert or insert_from_string, so
2050 we don't care if it gets trashed. */
2051
2052 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2053 doc: /* Insert the arguments, either strings or characters, at point.
2054 Point and before-insertion markers move forward to end up
2055 after the inserted text.
2056 Any other markers at the point of insertion remain before the text.
2057
2058 If the current buffer is multibyte, unibyte strings are converted
2059 to multibyte for insertion (see `string-make-multibyte').
2060 If the current buffer is unibyte, multibyte strings are converted
2061 to unibyte for insertion (see `string-make-unibyte').
2062
2063 When operating on binary data, it may be necessary to preserve the
2064 original bytes of a unibyte string when inserting it into a multibyte
2065 buffer; to accomplish this, apply `string-as-multibyte' to the string
2066 and insert the result.
2067
2068 usage: (insert &rest ARGS) */)
2069 (nargs, args)
2070 int nargs;
2071 register Lisp_Object *args;
2072 {
2073 general_insert_function (insert, insert_from_string, 0, nargs, args);
2074 return Qnil;
2075 }
2076
2077 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2078 0, MANY, 0,
2079 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2080 Point and before-insertion markers move forward to end up
2081 after the inserted text.
2082 Any other markers at the point of insertion remain before the text.
2083
2084 If the current buffer is multibyte, unibyte strings are converted
2085 to multibyte for insertion (see `unibyte-char-to-multibyte').
2086 If the current buffer is unibyte, multibyte strings are converted
2087 to unibyte for insertion.
2088
2089 usage: (insert-and-inherit &rest ARGS) */)
2090 (nargs, args)
2091 int nargs;
2092 register Lisp_Object *args;
2093 {
2094 general_insert_function (insert_and_inherit, insert_from_string, 1,
2095 nargs, args);
2096 return Qnil;
2097 }
2098
2099 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2100 doc: /* Insert strings or characters at point, relocating markers after the text.
2101 Point and markers move forward to end up after the inserted text.
2102
2103 If the current buffer is multibyte, unibyte strings are converted
2104 to multibyte for insertion (see `unibyte-char-to-multibyte').
2105 If the current buffer is unibyte, multibyte strings are converted
2106 to unibyte for insertion.
2107
2108 usage: (insert-before-markers &rest ARGS) */)
2109 (nargs, args)
2110 int nargs;
2111 register Lisp_Object *args;
2112 {
2113 general_insert_function (insert_before_markers,
2114 insert_from_string_before_markers, 0,
2115 nargs, args);
2116 return Qnil;
2117 }
2118
2119 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2120 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2121 doc: /* Insert text at point, relocating markers and inheriting properties.
2122 Point and markers move forward to end up after the inserted text.
2123
2124 If the current buffer is multibyte, unibyte strings are converted
2125 to multibyte for insertion (see `unibyte-char-to-multibyte').
2126 If the current buffer is unibyte, multibyte strings are converted
2127 to unibyte for insertion.
2128
2129 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2130 (nargs, args)
2131 int nargs;
2132 register Lisp_Object *args;
2133 {
2134 general_insert_function (insert_before_markers_and_inherit,
2135 insert_from_string_before_markers, 1,
2136 nargs, args);
2137 return Qnil;
2138 }
2139 \f
2140 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2141 doc: /* Insert COUNT (second arg) copies of CHARACTER (first arg).
2142 Both arguments are required.
2143 Point, and before-insertion markers, are relocated as in the function `insert'.
2144 The optional third arg INHERIT, if non-nil, says to inherit text properties
2145 from adjoining text, if those properties are sticky. */)
2146 (character, count, inherit)
2147 Lisp_Object character, count, inherit;
2148 {
2149 register unsigned char *string;
2150 register int strlen;
2151 register int i, n;
2152 int len;
2153 unsigned char str[MAX_MULTIBYTE_LENGTH];
2154
2155 CHECK_NUMBER (character);
2156 CHECK_NUMBER (count);
2157
2158 if (!NILP (current_buffer->enable_multibyte_characters))
2159 len = CHAR_STRING (XFASTINT (character), str);
2160 else
2161 str[0] = XFASTINT (character), len = 1;
2162 n = XINT (count) * len;
2163 if (n <= 0)
2164 return Qnil;
2165 strlen = min (n, 256 * len);
2166 string = (unsigned char *) alloca (strlen);
2167 for (i = 0; i < strlen; i++)
2168 string[i] = str[i % len];
2169 while (n >= strlen)
2170 {
2171 QUIT;
2172 if (!NILP (inherit))
2173 insert_and_inherit (string, strlen);
2174 else
2175 insert (string, strlen);
2176 n -= strlen;
2177 }
2178 if (n > 0)
2179 {
2180 if (!NILP (inherit))
2181 insert_and_inherit (string, n);
2182 else
2183 insert (string, n);
2184 }
2185 return Qnil;
2186 }
2187
2188 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2189 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2190 Both arguments are required.
2191 BYTE is a number of the range 0..255.
2192
2193 If BYTE is 128..255 and the current buffer is multibyte, the
2194 corresponding eight-bit character is inserted.
2195
2196 Point, and before-insertion markers, are relocated as in the function `insert'.
2197 The optional third arg INHERIT, if non-nil, says to inherit text properties
2198 from adjoining text, if those properties are sticky. */)
2199 (byte, count, inherit)
2200 Lisp_Object byte, count, inherit;
2201 {
2202 CHECK_NUMBER (byte);
2203 if (XINT (byte) < 0 || XINT (byte) > 255)
2204 args_out_of_range_3 (byte, make_number (0), make_number (255));
2205 if (XINT (byte) >= 128
2206 && ! NILP (current_buffer->enable_multibyte_characters))
2207 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2208 return Finsert_char (byte, count, inherit);
2209 }
2210
2211 \f
2212 /* Making strings from buffer contents. */
2213
2214 /* Return a Lisp_String containing the text of the current buffer from
2215 START to END. If text properties are in use and the current buffer
2216 has properties in the range specified, the resulting string will also
2217 have them, if PROPS is nonzero.
2218
2219 We don't want to use plain old make_string here, because it calls
2220 make_uninit_string, which can cause the buffer arena to be
2221 compacted. make_string has no way of knowing that the data has
2222 been moved, and thus copies the wrong data into the string. This
2223 doesn't effect most of the other users of make_string, so it should
2224 be left as is. But we should use this function when conjuring
2225 buffer substrings. */
2226
2227 Lisp_Object
2228 make_buffer_string (start, end, props)
2229 int start, end;
2230 int props;
2231 {
2232 int start_byte = CHAR_TO_BYTE (start);
2233 int end_byte = CHAR_TO_BYTE (end);
2234
2235 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2236 }
2237
2238 /* Return a Lisp_String containing the text of the current buffer from
2239 START / START_BYTE to END / END_BYTE.
2240
2241 If text properties are in use and the current buffer
2242 has properties in the range specified, the resulting string will also
2243 have them, if PROPS is nonzero.
2244
2245 We don't want to use plain old make_string here, because it calls
2246 make_uninit_string, which can cause the buffer arena to be
2247 compacted. make_string has no way of knowing that the data has
2248 been moved, and thus copies the wrong data into the string. This
2249 doesn't effect most of the other users of make_string, so it should
2250 be left as is. But we should use this function when conjuring
2251 buffer substrings. */
2252
2253 Lisp_Object
2254 make_buffer_string_both (start, start_byte, end, end_byte, props)
2255 int start, start_byte, end, end_byte;
2256 int props;
2257 {
2258 Lisp_Object result, tem, tem1;
2259
2260 if (start < GPT && GPT < end)
2261 move_gap (start);
2262
2263 if (! NILP (current_buffer->enable_multibyte_characters))
2264 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2265 else
2266 result = make_uninit_string (end - start);
2267 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2268 end_byte - start_byte);
2269
2270 /* If desired, update and copy the text properties. */
2271 if (props)
2272 {
2273 update_buffer_properties (start, end);
2274
2275 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2276 tem1 = Ftext_properties_at (make_number (start), Qnil);
2277
2278 if (XINT (tem) != end || !NILP (tem1))
2279 copy_intervals_to_string (result, current_buffer, start,
2280 end - start);
2281 }
2282
2283 return result;
2284 }
2285
2286 /* Call Vbuffer_access_fontify_functions for the range START ... END
2287 in the current buffer, if necessary. */
2288
2289 static void
2290 update_buffer_properties (start, end)
2291 int start, end;
2292 {
2293 /* If this buffer has some access functions,
2294 call them, specifying the range of the buffer being accessed. */
2295 if (!NILP (Vbuffer_access_fontify_functions))
2296 {
2297 Lisp_Object args[3];
2298 Lisp_Object tem;
2299
2300 args[0] = Qbuffer_access_fontify_functions;
2301 XSETINT (args[1], start);
2302 XSETINT (args[2], end);
2303
2304 /* But don't call them if we can tell that the work
2305 has already been done. */
2306 if (!NILP (Vbuffer_access_fontified_property))
2307 {
2308 tem = Ftext_property_any (args[1], args[2],
2309 Vbuffer_access_fontified_property,
2310 Qnil, Qnil);
2311 if (! NILP (tem))
2312 Frun_hook_with_args (3, args);
2313 }
2314 else
2315 Frun_hook_with_args (3, args);
2316 }
2317 }
2318
2319 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2320 doc: /* Return the contents of part of the current buffer as a string.
2321 The two arguments START and END are character positions;
2322 they can be in either order.
2323 The string returned is multibyte if the buffer is multibyte.
2324
2325 This function copies the text properties of that part of the buffer
2326 into the result string; if you don't want the text properties,
2327 use `buffer-substring-no-properties' instead. */)
2328 (start, end)
2329 Lisp_Object start, end;
2330 {
2331 register int b, e;
2332
2333 validate_region (&start, &end);
2334 b = XINT (start);
2335 e = XINT (end);
2336
2337 return make_buffer_string (b, e, 1);
2338 }
2339
2340 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2341 Sbuffer_substring_no_properties, 2, 2, 0,
2342 doc: /* Return the characters of part of the buffer, without the text properties.
2343 The two arguments START and END are character positions;
2344 they can be in either order. */)
2345 (start, end)
2346 Lisp_Object start, end;
2347 {
2348 register int b, e;
2349
2350 validate_region (&start, &end);
2351 b = XINT (start);
2352 e = XINT (end);
2353
2354 return make_buffer_string (b, e, 0);
2355 }
2356
2357 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2358 doc: /* Return the contents of the current buffer as a string.
2359 If narrowing is in effect, this function returns only the visible part
2360 of the buffer. */)
2361 ()
2362 {
2363 return make_buffer_string (BEGV, ZV, 1);
2364 }
2365
2366 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2367 1, 3, 0,
2368 doc: /* Insert before point a substring of the contents of buffer BUFFER.
2369 BUFFER may be a buffer or a buffer name.
2370 Arguments START and END are character numbers specifying the substring.
2371 They default to the beginning and the end of BUFFER. */)
2372 (buf, start, end)
2373 Lisp_Object buf, start, end;
2374 {
2375 register int b, e, temp;
2376 register struct buffer *bp, *obuf;
2377 Lisp_Object buffer;
2378
2379 buffer = Fget_buffer (buf);
2380 if (NILP (buffer))
2381 nsberror (buf);
2382 bp = XBUFFER (buffer);
2383 if (NILP (bp->name))
2384 error ("Selecting deleted buffer");
2385
2386 if (NILP (start))
2387 b = BUF_BEGV (bp);
2388 else
2389 {
2390 CHECK_NUMBER_COERCE_MARKER (start);
2391 b = XINT (start);
2392 }
2393 if (NILP (end))
2394 e = BUF_ZV (bp);
2395 else
2396 {
2397 CHECK_NUMBER_COERCE_MARKER (end);
2398 e = XINT (end);
2399 }
2400
2401 if (b > e)
2402 temp = b, b = e, e = temp;
2403
2404 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2405 args_out_of_range (start, end);
2406
2407 obuf = current_buffer;
2408 set_buffer_internal_1 (bp);
2409 update_buffer_properties (b, e);
2410 set_buffer_internal_1 (obuf);
2411
2412 insert_from_buffer (bp, b, e - b, 0);
2413 return Qnil;
2414 }
2415
2416 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2417 6, 6, 0,
2418 doc: /* Compare two substrings of two buffers; return result as number.
2419 the value is -N if first string is less after N-1 chars,
2420 +N if first string is greater after N-1 chars, or 0 if strings match.
2421 Each substring is represented as three arguments: BUFFER, START and END.
2422 That makes six args in all, three for each substring.
2423
2424 The value of `case-fold-search' in the current buffer
2425 determines whether case is significant or ignored. */)
2426 (buffer1, start1, end1, buffer2, start2, end2)
2427 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2428 {
2429 register int begp1, endp1, begp2, endp2, temp;
2430 register struct buffer *bp1, *bp2;
2431 register Lisp_Object *trt
2432 = (!NILP (current_buffer->case_fold_search)
2433 ? XCHAR_TABLE (current_buffer->case_canon_table)->contents : 0);
2434 int chars = 0;
2435 int i1, i2, i1_byte, i2_byte;
2436
2437 /* Find the first buffer and its substring. */
2438
2439 if (NILP (buffer1))
2440 bp1 = current_buffer;
2441 else
2442 {
2443 Lisp_Object buf1;
2444 buf1 = Fget_buffer (buffer1);
2445 if (NILP (buf1))
2446 nsberror (buffer1);
2447 bp1 = XBUFFER (buf1);
2448 if (NILP (bp1->name))
2449 error ("Selecting deleted buffer");
2450 }
2451
2452 if (NILP (start1))
2453 begp1 = BUF_BEGV (bp1);
2454 else
2455 {
2456 CHECK_NUMBER_COERCE_MARKER (start1);
2457 begp1 = XINT (start1);
2458 }
2459 if (NILP (end1))
2460 endp1 = BUF_ZV (bp1);
2461 else
2462 {
2463 CHECK_NUMBER_COERCE_MARKER (end1);
2464 endp1 = XINT (end1);
2465 }
2466
2467 if (begp1 > endp1)
2468 temp = begp1, begp1 = endp1, endp1 = temp;
2469
2470 if (!(BUF_BEGV (bp1) <= begp1
2471 && begp1 <= endp1
2472 && endp1 <= BUF_ZV (bp1)))
2473 args_out_of_range (start1, end1);
2474
2475 /* Likewise for second substring. */
2476
2477 if (NILP (buffer2))
2478 bp2 = current_buffer;
2479 else
2480 {
2481 Lisp_Object buf2;
2482 buf2 = Fget_buffer (buffer2);
2483 if (NILP (buf2))
2484 nsberror (buffer2);
2485 bp2 = XBUFFER (buf2);
2486 if (NILP (bp2->name))
2487 error ("Selecting deleted buffer");
2488 }
2489
2490 if (NILP (start2))
2491 begp2 = BUF_BEGV (bp2);
2492 else
2493 {
2494 CHECK_NUMBER_COERCE_MARKER (start2);
2495 begp2 = XINT (start2);
2496 }
2497 if (NILP (end2))
2498 endp2 = BUF_ZV (bp2);
2499 else
2500 {
2501 CHECK_NUMBER_COERCE_MARKER (end2);
2502 endp2 = XINT (end2);
2503 }
2504
2505 if (begp2 > endp2)
2506 temp = begp2, begp2 = endp2, endp2 = temp;
2507
2508 if (!(BUF_BEGV (bp2) <= begp2
2509 && begp2 <= endp2
2510 && endp2 <= BUF_ZV (bp2)))
2511 args_out_of_range (start2, end2);
2512
2513 i1 = begp1;
2514 i2 = begp2;
2515 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2516 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2517
2518 while (i1 < endp1 && i2 < endp2)
2519 {
2520 /* When we find a mismatch, we must compare the
2521 characters, not just the bytes. */
2522 int c1, c2;
2523
2524 QUIT;
2525
2526 if (! NILP (bp1->enable_multibyte_characters))
2527 {
2528 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2529 BUF_INC_POS (bp1, i1_byte);
2530 i1++;
2531 }
2532 else
2533 {
2534 c1 = BUF_FETCH_BYTE (bp1, i1);
2535 c1 = unibyte_char_to_multibyte (c1);
2536 i1++;
2537 }
2538
2539 if (! NILP (bp2->enable_multibyte_characters))
2540 {
2541 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2542 BUF_INC_POS (bp2, i2_byte);
2543 i2++;
2544 }
2545 else
2546 {
2547 c2 = BUF_FETCH_BYTE (bp2, i2);
2548 c2 = unibyte_char_to_multibyte (c2);
2549 i2++;
2550 }
2551
2552 if (trt)
2553 {
2554 c1 = XINT (trt[c1]);
2555 c2 = XINT (trt[c2]);
2556 }
2557 if (c1 < c2)
2558 return make_number (- 1 - chars);
2559 if (c1 > c2)
2560 return make_number (chars + 1);
2561
2562 chars++;
2563 }
2564
2565 /* The strings match as far as they go.
2566 If one is shorter, that one is less. */
2567 if (chars < endp1 - begp1)
2568 return make_number (chars + 1);
2569 else if (chars < endp2 - begp2)
2570 return make_number (- chars - 1);
2571
2572 /* Same length too => they are equal. */
2573 return make_number (0);
2574 }
2575 \f
2576 static Lisp_Object
2577 subst_char_in_region_unwind (arg)
2578 Lisp_Object arg;
2579 {
2580 return current_buffer->undo_list = arg;
2581 }
2582
2583 static Lisp_Object
2584 subst_char_in_region_unwind_1 (arg)
2585 Lisp_Object arg;
2586 {
2587 return current_buffer->filename = arg;
2588 }
2589
2590 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2591 Ssubst_char_in_region, 4, 5, 0,
2592 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2593 If optional arg NOUNDO is non-nil, don't record this change for undo
2594 and don't mark the buffer as really changed.
2595 Both characters must have the same length of multi-byte form. */)
2596 (start, end, fromchar, tochar, noundo)
2597 Lisp_Object start, end, fromchar, tochar, noundo;
2598 {
2599 register int pos, pos_byte, stop, i, len, end_byte;
2600 int changed = 0;
2601 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2602 unsigned char *p;
2603 int count = SPECPDL_INDEX ();
2604 #define COMBINING_NO 0
2605 #define COMBINING_BEFORE 1
2606 #define COMBINING_AFTER 2
2607 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2608 int maybe_byte_combining = COMBINING_NO;
2609 int last_changed = 0;
2610 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2611
2612 validate_region (&start, &end);
2613 CHECK_NUMBER (fromchar);
2614 CHECK_NUMBER (tochar);
2615
2616 if (multibyte_p)
2617 {
2618 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2619 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2620 error ("Characters in subst-char-in-region have different byte-lengths");
2621 if (!ASCII_BYTE_P (*tostr))
2622 {
2623 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2624 complete multibyte character, it may be combined with the
2625 after bytes. If it is in the range 0xA0..0xFF, it may be
2626 combined with the before and after bytes. */
2627 if (!CHAR_HEAD_P (*tostr))
2628 maybe_byte_combining = COMBINING_BOTH;
2629 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2630 maybe_byte_combining = COMBINING_AFTER;
2631 }
2632 }
2633 else
2634 {
2635 len = 1;
2636 fromstr[0] = XFASTINT (fromchar);
2637 tostr[0] = XFASTINT (tochar);
2638 }
2639
2640 pos = XINT (start);
2641 pos_byte = CHAR_TO_BYTE (pos);
2642 stop = CHAR_TO_BYTE (XINT (end));
2643 end_byte = stop;
2644
2645 /* If we don't want undo, turn off putting stuff on the list.
2646 That's faster than getting rid of things,
2647 and it prevents even the entry for a first change.
2648 Also inhibit locking the file. */
2649 if (!NILP (noundo))
2650 {
2651 record_unwind_protect (subst_char_in_region_unwind,
2652 current_buffer->undo_list);
2653 current_buffer->undo_list = Qt;
2654 /* Don't do file-locking. */
2655 record_unwind_protect (subst_char_in_region_unwind_1,
2656 current_buffer->filename);
2657 current_buffer->filename = Qnil;
2658 }
2659
2660 if (pos_byte < GPT_BYTE)
2661 stop = min (stop, GPT_BYTE);
2662 while (1)
2663 {
2664 int pos_byte_next = pos_byte;
2665
2666 if (pos_byte >= stop)
2667 {
2668 if (pos_byte >= end_byte) break;
2669 stop = end_byte;
2670 }
2671 p = BYTE_POS_ADDR (pos_byte);
2672 if (multibyte_p)
2673 INC_POS (pos_byte_next);
2674 else
2675 ++pos_byte_next;
2676 if (pos_byte_next - pos_byte == len
2677 && p[0] == fromstr[0]
2678 && (len == 1
2679 || (p[1] == fromstr[1]
2680 && (len == 2 || (p[2] == fromstr[2]
2681 && (len == 3 || p[3] == fromstr[3]))))))
2682 {
2683 if (! changed)
2684 {
2685 changed = pos;
2686 modify_region (current_buffer, changed, XINT (end));
2687
2688 if (! NILP (noundo))
2689 {
2690 if (MODIFF - 1 == SAVE_MODIFF)
2691 SAVE_MODIFF++;
2692 if (MODIFF - 1 == current_buffer->auto_save_modified)
2693 current_buffer->auto_save_modified++;
2694 }
2695 }
2696
2697 /* Take care of the case where the new character
2698 combines with neighboring bytes. */
2699 if (maybe_byte_combining
2700 && (maybe_byte_combining == COMBINING_AFTER
2701 ? (pos_byte_next < Z_BYTE
2702 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2703 : ((pos_byte_next < Z_BYTE
2704 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2705 || (pos_byte > BEG_BYTE
2706 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2707 {
2708 Lisp_Object tem, string;
2709
2710 struct gcpro gcpro1;
2711
2712 tem = current_buffer->undo_list;
2713 GCPRO1 (tem);
2714
2715 /* Make a multibyte string containing this single character. */
2716 string = make_multibyte_string (tostr, 1, len);
2717 /* replace_range is less efficient, because it moves the gap,
2718 but it handles combining correctly. */
2719 replace_range (pos, pos + 1, string,
2720 0, 0, 1);
2721 pos_byte_next = CHAR_TO_BYTE (pos);
2722 if (pos_byte_next > pos_byte)
2723 /* Before combining happened. We should not increment
2724 POS. So, to cancel the later increment of POS,
2725 decrease it now. */
2726 pos--;
2727 else
2728 INC_POS (pos_byte_next);
2729
2730 if (! NILP (noundo))
2731 current_buffer->undo_list = tem;
2732
2733 UNGCPRO;
2734 }
2735 else
2736 {
2737 if (NILP (noundo))
2738 record_change (pos, 1);
2739 for (i = 0; i < len; i++) *p++ = tostr[i];
2740 }
2741 last_changed = pos + 1;
2742 }
2743 pos_byte = pos_byte_next;
2744 pos++;
2745 }
2746
2747 if (changed)
2748 {
2749 signal_after_change (changed,
2750 last_changed - changed, last_changed - changed);
2751 update_compositions (changed, last_changed, CHECK_ALL);
2752 }
2753
2754 unbind_to (count, Qnil);
2755 return Qnil;
2756 }
2757
2758 DEFUN ("translate-region", Ftranslate_region, Stranslate_region, 3, 3, 0,
2759 doc: /* From START to END, translate characters according to TABLE.
2760 TABLE is a string; the Nth character in it is the mapping
2761 for the character with code N.
2762 This function does not alter multibyte characters.
2763 It returns the number of characters changed. */)
2764 (start, end, table)
2765 Lisp_Object start;
2766 Lisp_Object end;
2767 register Lisp_Object table;
2768 {
2769 register int pos_byte, stop; /* Limits of the region. */
2770 register unsigned char *tt; /* Trans table. */
2771 register int nc; /* New character. */
2772 int cnt; /* Number of changes made. */
2773 int size; /* Size of translate table. */
2774 int pos;
2775 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2776
2777 validate_region (&start, &end);
2778 CHECK_STRING (table);
2779
2780 size = SBYTES (table);
2781 tt = SDATA (table);
2782
2783 pos_byte = CHAR_TO_BYTE (XINT (start));
2784 stop = CHAR_TO_BYTE (XINT (end));
2785 modify_region (current_buffer, XINT (start), XINT (end));
2786 pos = XINT (start);
2787
2788 cnt = 0;
2789 for (; pos_byte < stop; )
2790 {
2791 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
2792 int len;
2793 int oc;
2794 int pos_byte_next;
2795
2796 if (multibyte)
2797 oc = STRING_CHAR_AND_LENGTH (p, stop - pos_byte, len);
2798 else
2799 oc = *p, len = 1;
2800 pos_byte_next = pos_byte + len;
2801 if (oc < size && len == 1)
2802 {
2803 nc = tt[oc];
2804 if (nc != oc)
2805 {
2806 /* Take care of the case where the new character
2807 combines with neighboring bytes. */
2808 if (!ASCII_BYTE_P (nc)
2809 && (CHAR_HEAD_P (nc)
2810 ? ! CHAR_HEAD_P (FETCH_BYTE (pos_byte + 1))
2811 : (pos_byte > BEG_BYTE
2812 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1)))))
2813 {
2814 Lisp_Object string;
2815
2816 string = make_multibyte_string (tt + oc, 1, 1);
2817 /* This is less efficient, because it moves the gap,
2818 but it handles combining correctly. */
2819 replace_range (pos, pos + 1, string,
2820 1, 0, 1);
2821 pos_byte_next = CHAR_TO_BYTE (pos);
2822 if (pos_byte_next > pos_byte)
2823 /* Before combining happened. We should not
2824 increment POS. So, to cancel the later
2825 increment of POS, we decrease it now. */
2826 pos--;
2827 else
2828 INC_POS (pos_byte_next);
2829 }
2830 else
2831 {
2832 record_change (pos, 1);
2833 *p = nc;
2834 signal_after_change (pos, 1, 1);
2835 update_compositions (pos, pos + 1, CHECK_BORDER);
2836 }
2837 ++cnt;
2838 }
2839 }
2840 pos_byte = pos_byte_next;
2841 pos++;
2842 }
2843
2844 return make_number (cnt);
2845 }
2846
2847 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
2848 doc: /* Delete the text between point and mark.
2849 When called from a program, expects two arguments,
2850 positions (integers or markers) specifying the stretch to be deleted. */)
2851 (start, end)
2852 Lisp_Object start, end;
2853 {
2854 validate_region (&start, &end);
2855 del_range (XINT (start), XINT (end));
2856 return Qnil;
2857 }
2858
2859 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
2860 Sdelete_and_extract_region, 2, 2, 0,
2861 doc: /* Delete the text between START and END and return it. */)
2862 (start, end)
2863 Lisp_Object start, end;
2864 {
2865 validate_region (&start, &end);
2866 return del_range_1 (XINT (start), XINT (end), 1, 1);
2867 }
2868 \f
2869 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
2870 doc: /* Remove restrictions (narrowing) from current buffer.
2871 This allows the buffer's full text to be seen and edited. */)
2872 ()
2873 {
2874 if (BEG != BEGV || Z != ZV)
2875 current_buffer->clip_changed = 1;
2876 BEGV = BEG;
2877 BEGV_BYTE = BEG_BYTE;
2878 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
2879 /* Changing the buffer bounds invalidates any recorded current column. */
2880 invalidate_current_column ();
2881 return Qnil;
2882 }
2883
2884 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
2885 doc: /* Restrict editing in this buffer to the current region.
2886 The rest of the text becomes temporarily invisible and untouchable
2887 but is not deleted; if you save the buffer in a file, the invisible
2888 text is included in the file. \\[widen] makes all visible again.
2889 See also `save-restriction'.
2890
2891 When calling from a program, pass two arguments; positions (integers
2892 or markers) bounding the text that should remain visible. */)
2893 (start, end)
2894 register Lisp_Object start, end;
2895 {
2896 CHECK_NUMBER_COERCE_MARKER (start);
2897 CHECK_NUMBER_COERCE_MARKER (end);
2898
2899 if (XINT (start) > XINT (end))
2900 {
2901 Lisp_Object tem;
2902 tem = start; start = end; end = tem;
2903 }
2904
2905 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
2906 args_out_of_range (start, end);
2907
2908 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
2909 current_buffer->clip_changed = 1;
2910
2911 SET_BUF_BEGV (current_buffer, XFASTINT (start));
2912 SET_BUF_ZV (current_buffer, XFASTINT (end));
2913 if (PT < XFASTINT (start))
2914 SET_PT (XFASTINT (start));
2915 if (PT > XFASTINT (end))
2916 SET_PT (XFASTINT (end));
2917 /* Changing the buffer bounds invalidates any recorded current column. */
2918 invalidate_current_column ();
2919 return Qnil;
2920 }
2921
2922 Lisp_Object
2923 save_restriction_save ()
2924 {
2925 if (BEGV == BEG && ZV == Z)
2926 /* The common case that the buffer isn't narrowed.
2927 We return just the buffer object, which save_restriction_restore
2928 recognizes as meaning `no restriction'. */
2929 return Fcurrent_buffer ();
2930 else
2931 /* We have to save a restriction, so return a pair of markers, one
2932 for the beginning and one for the end. */
2933 {
2934 Lisp_Object beg, end;
2935
2936 beg = buildmark (BEGV, BEGV_BYTE);
2937 end = buildmark (ZV, ZV_BYTE);
2938
2939 /* END must move forward if text is inserted at its exact location. */
2940 XMARKER(end)->insertion_type = 1;
2941
2942 return Fcons (beg, end);
2943 }
2944 }
2945
2946 Lisp_Object
2947 save_restriction_restore (data)
2948 Lisp_Object data;
2949 {
2950 if (CONSP (data))
2951 /* A pair of marks bounding a saved restriction. */
2952 {
2953 struct Lisp_Marker *beg = XMARKER (XCAR (data));
2954 struct Lisp_Marker *end = XMARKER (XCDR (data));
2955 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
2956
2957 if (buf /* Verify marker still points to a buffer. */
2958 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
2959 /* The restriction has changed from the saved one, so restore
2960 the saved restriction. */
2961 {
2962 int pt = BUF_PT (buf);
2963
2964 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
2965 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
2966
2967 if (pt < beg->charpos || pt > end->charpos)
2968 /* The point is outside the new visible range, move it inside. */
2969 SET_BUF_PT_BOTH (buf,
2970 clip_to_bounds (beg->charpos, pt, end->charpos),
2971 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
2972 end->bytepos));
2973
2974 buf->clip_changed = 1; /* Remember that the narrowing changed. */
2975 }
2976 }
2977 else
2978 /* A buffer, which means that there was no old restriction. */
2979 {
2980 struct buffer *buf = XBUFFER (data);
2981
2982 if (buf /* Verify marker still points to a buffer. */
2983 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
2984 /* The buffer has been narrowed, get rid of the narrowing. */
2985 {
2986 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
2987 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
2988
2989 buf->clip_changed = 1; /* Remember that the narrowing changed. */
2990 }
2991 }
2992
2993 return Qnil;
2994 }
2995
2996 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
2997 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
2998 The buffer's restrictions make parts of the beginning and end invisible.
2999 (They are set up with `narrow-to-region' and eliminated with `widen'.)
3000 This special form, `save-restriction', saves the current buffer's restrictions
3001 when it is entered, and restores them when it is exited.
3002 So any `narrow-to-region' within BODY lasts only until the end of the form.
3003 The old restrictions settings are restored
3004 even in case of abnormal exit (throw or error).
3005
3006 The value returned is the value of the last form in BODY.
3007
3008 Note: if you are using both `save-excursion' and `save-restriction',
3009 use `save-excursion' outermost:
3010 (save-excursion (save-restriction ...))
3011
3012 usage: (save-restriction &rest BODY) */)
3013 (body)
3014 Lisp_Object body;
3015 {
3016 register Lisp_Object val;
3017 int count = SPECPDL_INDEX ();
3018
3019 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3020 val = Fprogn (body);
3021 return unbind_to (count, val);
3022 }
3023 \f
3024 /* Buffer for the most recent text displayed by Fmessage_box. */
3025 static char *message_text;
3026
3027 /* Allocated length of that buffer. */
3028 static int message_length;
3029
3030 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3031 doc: /* Print a one-line message at the bottom of the screen.
3032 The first argument is a format control string, and the rest are data
3033 to be formatted under control of the string. See `format' for details.
3034
3035 If the first argument is nil, clear any existing message; let the
3036 minibuffer contents show.
3037
3038 usage: (message STRING &rest ARGS) */)
3039 (nargs, args)
3040 int nargs;
3041 Lisp_Object *args;
3042 {
3043 if (NILP (args[0])
3044 || (STRINGP (args[0])
3045 && SBYTES (args[0]) == 0))
3046 {
3047 message (0);
3048 return Qnil;
3049 }
3050 else
3051 {
3052 register Lisp_Object val;
3053 val = Fformat (nargs, args);
3054 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3055 return val;
3056 }
3057 }
3058
3059 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3060 doc: /* Display a message, in a dialog box if possible.
3061 If a dialog box is not available, use the echo area.
3062 The first argument is a format control string, and the rest are data
3063 to be formatted under control of the string. See `format' for details.
3064
3065 If the first argument is nil, clear any existing message; let the
3066 minibuffer contents show.
3067
3068 usage: (message-box STRING &rest ARGS) */)
3069 (nargs, args)
3070 int nargs;
3071 Lisp_Object *args;
3072 {
3073 if (NILP (args[0]))
3074 {
3075 message (0);
3076 return Qnil;
3077 }
3078 else
3079 {
3080 register Lisp_Object val;
3081 val = Fformat (nargs, args);
3082 #ifdef HAVE_MENUS
3083 /* The MS-DOS frames support popup menus even though they are
3084 not FRAME_WINDOW_P. */
3085 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3086 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3087 {
3088 Lisp_Object pane, menu, obj;
3089 struct gcpro gcpro1;
3090 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3091 GCPRO1 (pane);
3092 menu = Fcons (val, pane);
3093 obj = Fx_popup_dialog (Qt, menu);
3094 UNGCPRO;
3095 return val;
3096 }
3097 #endif /* HAVE_MENUS */
3098 /* Copy the data so that it won't move when we GC. */
3099 if (! message_text)
3100 {
3101 message_text = (char *)xmalloc (80);
3102 message_length = 80;
3103 }
3104 if (SBYTES (val) > message_length)
3105 {
3106 message_length = SBYTES (val);
3107 message_text = (char *)xrealloc (message_text, message_length);
3108 }
3109 bcopy (SDATA (val), message_text, SBYTES (val));
3110 message2 (message_text, SBYTES (val),
3111 STRING_MULTIBYTE (val));
3112 return val;
3113 }
3114 }
3115 #ifdef HAVE_MENUS
3116 extern Lisp_Object last_nonmenu_event;
3117 #endif
3118
3119 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3120 doc: /* Display a message in a dialog box or in the echo area.
3121 If this command was invoked with the mouse, use a dialog box if
3122 `use-dialog-box' is non-nil.
3123 Otherwise, use the echo area.
3124 The first argument is a format control string, and the rest are data
3125 to be formatted under control of the string. See `format' for details.
3126
3127 If the first argument is nil, clear any existing message; let the
3128 minibuffer contents show.
3129
3130 usage: (message-or-box STRING &rest ARGS) */)
3131 (nargs, args)
3132 int nargs;
3133 Lisp_Object *args;
3134 {
3135 #ifdef HAVE_MENUS
3136 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3137 && use_dialog_box)
3138 return Fmessage_box (nargs, args);
3139 #endif
3140 return Fmessage (nargs, args);
3141 }
3142
3143 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3144 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3145 ()
3146 {
3147 return current_message ();
3148 }
3149
3150
3151 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3152 doc: /* Return a copy of STRING with text properties added.
3153 First argument is the string to copy.
3154 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3155 properties to add to the result.
3156 usage: (propertize STRING &rest PROPERTIES) */)
3157 (nargs, args)
3158 int nargs;
3159 Lisp_Object *args;
3160 {
3161 Lisp_Object properties, string;
3162 struct gcpro gcpro1, gcpro2;
3163 int i;
3164
3165 /* Number of args must be odd. */
3166 if ((nargs & 1) == 0 || nargs < 1)
3167 error ("Wrong number of arguments");
3168
3169 properties = string = Qnil;
3170 GCPRO2 (properties, string);
3171
3172 /* First argument must be a string. */
3173 CHECK_STRING (args[0]);
3174 string = Fcopy_sequence (args[0]);
3175
3176 for (i = 1; i < nargs; i += 2)
3177 {
3178 CHECK_SYMBOL (args[i]);
3179 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3180 }
3181
3182 Fadd_text_properties (make_number (0),
3183 make_number (SCHARS (string)),
3184 properties, string);
3185 RETURN_UNGCPRO (string);
3186 }
3187
3188
3189 /* Number of bytes that STRING will occupy when put into the result.
3190 MULTIBYTE is nonzero if the result should be multibyte. */
3191
3192 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3193 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3194 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3195 : SBYTES (STRING))
3196
3197 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3198 doc: /* Format a string out of a control-string and arguments.
3199 The first argument is a control string.
3200 The other arguments are substituted into it to make the result, a string.
3201 It may contain %-sequences meaning to substitute the next argument.
3202 %s means print a string argument. Actually, prints any object, with `princ'.
3203 %d means print as number in decimal (%o octal, %x hex).
3204 %X is like %x, but uses upper case.
3205 %e means print a number in exponential notation.
3206 %f means print a number in decimal-point notation.
3207 %g means print a number in exponential notation
3208 or decimal-point notation, whichever uses fewer characters.
3209 %c means print a number as a single character.
3210 %S means print any object as an s-expression (using `prin1').
3211 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3212 Use %% to put a single % into the output.
3213
3214 usage: (format STRING &rest OBJECTS) */)
3215 (nargs, args)
3216 int nargs;
3217 register Lisp_Object *args;
3218 {
3219 register int n; /* The number of the next arg to substitute */
3220 register int total; /* An estimate of the final length */
3221 char *buf, *p;
3222 register unsigned char *format, *end, *format_start;
3223 int nchars;
3224 /* Nonzero if the output should be a multibyte string,
3225 which is true if any of the inputs is one. */
3226 int multibyte = 0;
3227 /* When we make a multibyte string, we must pay attention to the
3228 byte combining problem, i.e., a byte may be combined with a
3229 multibyte charcter of the previous string. This flag tells if we
3230 must consider such a situation or not. */
3231 int maybe_combine_byte;
3232 unsigned char *this_format;
3233 /* Precision for each spec, or -1, a flag value meaning no precision
3234 was given in that spec. Element 0, corresonding to the format
3235 string itself, will not be used. Element NARGS, corresponding to
3236 no argument, *will* be assigned to in the case that a `%' and `.'
3237 occur after the final format specifier. */
3238 int *precision = (int *) (alloca(nargs * sizeof (int)));
3239 int longest_format;
3240 Lisp_Object val;
3241 int arg_intervals = 0;
3242
3243 /* discarded[I] is 1 if byte I of the format
3244 string was not copied into the output.
3245 It is 2 if byte I was not the first byte of its character. */
3246 char *discarded;
3247
3248 /* Each element records, for one argument,
3249 the start and end bytepos in the output string,
3250 and whether the argument is a string with intervals.
3251 info[0] is unused. Unused elements have -1 for start. */
3252 struct info
3253 {
3254 int start, end, intervals;
3255 } *info = 0;
3256
3257 /* It should not be necessary to GCPRO ARGS, because
3258 the caller in the interpreter should take care of that. */
3259
3260 /* Try to determine whether the result should be multibyte.
3261 This is not always right; sometimes the result needs to be multibyte
3262 because of an object that we will pass through prin1,
3263 and in that case, we won't know it here. */
3264 for (n = 0; n < nargs; n++)
3265 {
3266 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3267 multibyte = 1;
3268 /* Piggyback on this loop to initialize precision[N]. */
3269 precision[n] = -1;
3270 }
3271
3272 CHECK_STRING (args[0]);
3273 /* We may have to change "%S" to "%s". */
3274 args[0] = Fcopy_sequence (args[0]);
3275
3276 /* GC should never happen here, so abort if it does. */
3277 abort_on_gc++;
3278
3279 /* If we start out planning a unibyte result,
3280 then discover it has to be multibyte, we jump back to retry.
3281 That can only happen from the first large while loop below. */
3282 retry:
3283
3284 format = SDATA (args[0]);
3285 format_start = format;
3286 end = format + SBYTES (args[0]);
3287 longest_format = 0;
3288
3289 /* Make room in result for all the non-%-codes in the control string. */
3290 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]);
3291
3292 /* Allocate the info and discarded tables. */
3293 {
3294 int nbytes = nargs * sizeof *info;
3295 int i;
3296 info = (struct info *) alloca (nbytes);
3297 bzero (info, nbytes);
3298 for (i = 0; i <= nargs; i++)
3299 info[i].start = -1;
3300 discarded = (char *) alloca (SBYTES (args[0]));
3301 bzero (discarded, SBYTES (args[0]));
3302 }
3303
3304 /* Add to TOTAL enough space to hold the converted arguments. */
3305
3306 n = 0;
3307 while (format != end)
3308 if (*format++ == '%')
3309 {
3310 int thissize = 0;
3311 int actual_width = 0;
3312 unsigned char *this_format_start = format - 1;
3313 int field_width = 0;
3314
3315 /* General format specifications look like
3316
3317 '%' [flags] [field-width] [precision] format
3318
3319 where
3320
3321 flags ::= [#-* 0]+
3322 field-width ::= [0-9]+
3323 precision ::= '.' [0-9]*
3324
3325 If a field-width is specified, it specifies to which width
3326 the output should be padded with blanks, iff the output
3327 string is shorter than field-width.
3328
3329 If precision is specified, it specifies the number of
3330 digits to print after the '.' for floats, or the max.
3331 number of chars to print from a string. */
3332
3333 /* NOTE the handling of specifiers here differs in some ways
3334 from the libc model. There are bugs in this code that lead
3335 to incorrect formatting when flags recognized by C but
3336 neither parsed nor rejected here are used. Further
3337 revisions will be made soon. */
3338
3339 /* incorrect list of flags to skip; will be fixed */
3340 while (index ("-*# 0", *format))
3341 ++format;
3342
3343 if (*format >= '0' && *format <= '9')
3344 {
3345 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3346 field_width = 10 * field_width + *format - '0';
3347 }
3348
3349 /* N is not incremented for another few lines below, so refer to
3350 element N+1 (which might be precision[NARGS]). */
3351 if (*format == '.')
3352 {
3353 ++format;
3354 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3355 precision[n+1] = 10 * precision[n+1] + *format - '0';
3356 }
3357
3358 if (format - this_format_start + 1 > longest_format)
3359 longest_format = format - this_format_start + 1;
3360
3361 if (format == end)
3362 error ("Format string ends in middle of format specifier");
3363 if (*format == '%')
3364 format++;
3365 else if (++n >= nargs)
3366 error ("Not enough arguments for format string");
3367 else if (*format == 'S')
3368 {
3369 /* For `S', prin1 the argument and then treat like a string. */
3370 register Lisp_Object tem;
3371 tem = Fprin1_to_string (args[n], Qnil);
3372 if (STRING_MULTIBYTE (tem) && ! multibyte)
3373 {
3374 multibyte = 1;
3375 goto retry;
3376 }
3377 args[n] = tem;
3378 /* If we restart the loop, we should not come here again
3379 because args[n] is now a string and calling
3380 Fprin1_to_string on it produces superflous double
3381 quotes. So, change "%S" to "%s" now. */
3382 *format = 's';
3383 goto string;
3384 }
3385 else if (SYMBOLP (args[n]))
3386 {
3387 args[n] = SYMBOL_NAME (args[n]);
3388 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3389 {
3390 multibyte = 1;
3391 goto retry;
3392 }
3393 goto string;
3394 }
3395 else if (STRINGP (args[n]))
3396 {
3397 string:
3398 if (*format != 's' && *format != 'S')
3399 error ("Format specifier doesn't match argument type");
3400 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3401 to be as large as is calculated here. Easy check for
3402 the case PRECISION = 0. */
3403 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3404 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3405 }
3406 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3407 else if (INTEGERP (args[n]) && *format != 's')
3408 {
3409 /* The following loop assumes the Lisp type indicates
3410 the proper way to pass the argument.
3411 So make sure we have a flonum if the argument should
3412 be a double. */
3413 if (*format == 'e' || *format == 'f' || *format == 'g')
3414 args[n] = Ffloat (args[n]);
3415 else
3416 if (*format != 'd' && *format != 'o' && *format != 'x'
3417 && *format != 'i' && *format != 'X' && *format != 'c')
3418 error ("Invalid format operation %%%c", *format);
3419
3420 thissize = 30;
3421 if (*format == 'c')
3422 {
3423 if (! ASCII_CHAR_P (XINT (args[n]))
3424 /* Note: No one can remeber why we have to treat
3425 the character 0 as a multibyte character here.
3426 But, until it causes a real problem, let's
3427 don't change it. */
3428 || XINT (args[n]) == 0)
3429 {
3430 if (! multibyte)
3431 {
3432 multibyte = 1;
3433 goto retry;
3434 }
3435 args[n] = Fchar_to_string (args[n]);
3436 thissize = SBYTES (args[n]);
3437 }
3438 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3439 {
3440 args[n]
3441 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3442 thissize = SBYTES (args[n]);
3443 }
3444 }
3445 }
3446 else if (FLOATP (args[n]) && *format != 's')
3447 {
3448 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3449 {
3450 if (*format != 'd' && *format != 'o' && *format != 'x'
3451 && *format != 'i' && *format != 'X' && *format != 'c')
3452 error ("Invalid format operation %%%c", *format);
3453 args[n] = Ftruncate (args[n], Qnil);
3454 }
3455
3456 /* Note that we're using sprintf to print floats,
3457 so we have to take into account what that function
3458 prints. */
3459 /* Filter out flag value of -1. */
3460 thissize = (MAX_10_EXP + 100
3461 + (precision[n] > 0 ? precision[n] : 0));
3462 }
3463 else
3464 {
3465 /* Anything but a string, convert to a string using princ. */
3466 register Lisp_Object tem;
3467 tem = Fprin1_to_string (args[n], Qt);
3468 if (STRING_MULTIBYTE (tem) & ! multibyte)
3469 {
3470 multibyte = 1;
3471 goto retry;
3472 }
3473 args[n] = tem;
3474 goto string;
3475 }
3476
3477 thissize += max (0, field_width - actual_width);
3478 total += thissize + 4;
3479 }
3480
3481 abort_on_gc--;
3482
3483 /* Now we can no longer jump to retry.
3484 TOTAL and LONGEST_FORMAT are known for certain. */
3485
3486 this_format = (unsigned char *) alloca (longest_format + 1);
3487
3488 /* Allocate the space for the result.
3489 Note that TOTAL is an overestimate. */
3490 if (total < 1000)
3491 buf = (char *) alloca (total + 1);
3492 else
3493 buf = (char *) xmalloc (total + 1);
3494
3495 p = buf;
3496 nchars = 0;
3497 n = 0;
3498
3499 /* Scan the format and store result in BUF. */
3500 format = SDATA (args[0]);
3501 format_start = format;
3502 end = format + SBYTES (args[0]);
3503 maybe_combine_byte = 0;
3504 while (format != end)
3505 {
3506 if (*format == '%')
3507 {
3508 int minlen;
3509 int negative = 0;
3510 unsigned char *this_format_start = format;
3511
3512 discarded[format - format_start] = 1;
3513 format++;
3514
3515 /* Process a numeric arg and skip it. */
3516 /* NOTE atoi is the wrong thing to use here; will be fixed */
3517 minlen = atoi (format);
3518 if (minlen < 0)
3519 minlen = - minlen, negative = 1;
3520
3521 /* NOTE the parsing here is not consistent with the first
3522 pass, and neither attempt is what we want to do. Will be
3523 fixed. */
3524 while ((*format >= '0' && *format <= '9')
3525 || *format == '-' || *format == ' ' || *format == '.')
3526 {
3527 discarded[format - format_start] = 1;
3528 format++;
3529 }
3530
3531 if (*format++ == '%')
3532 {
3533 *p++ = '%';
3534 nchars++;
3535 continue;
3536 }
3537
3538 ++n;
3539
3540 discarded[format - format_start - 1] = 1;
3541 info[n].start = nchars;
3542
3543 if (STRINGP (args[n]))
3544 {
3545 /* handle case (precision[n] >= 0) */
3546
3547 int width, padding;
3548 int nbytes, start, end;
3549 int nchars_string;
3550
3551 /* lisp_string_width ignores a precision of 0, but GNU
3552 libc functions print 0 characters when the precision
3553 is 0. Imitate libc behavior here. Changing
3554 lisp_string_width is the right thing, and will be
3555 done, but meanwhile we work with it. */
3556
3557 if (precision[n] == 0)
3558 width = nchars_string = nbytes = 0;
3559 else if (precision[n] > 0)
3560 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3561 else
3562 { /* no precision spec given for this argument */
3563 width = lisp_string_width (args[n], -1, NULL, NULL);
3564 nbytes = SBYTES (args[n]);
3565 nchars_string = SCHARS (args[n]);
3566 }
3567
3568 /* If spec requires it, pad on right with spaces. */
3569 padding = minlen - width;
3570 if (! negative)
3571 while (padding-- > 0)
3572 {
3573 *p++ = ' ';
3574 ++nchars;
3575 }
3576
3577 start = nchars;
3578 nchars += nchars_string;
3579 end = nchars;
3580
3581 if (p > buf
3582 && multibyte
3583 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3584 && STRING_MULTIBYTE (args[n])
3585 && !CHAR_HEAD_P (SREF (args[n], 0)))
3586 maybe_combine_byte = 1;
3587
3588 p += copy_text (SDATA (args[n]), p,
3589 nbytes,
3590 STRING_MULTIBYTE (args[n]), multibyte);
3591
3592 if (negative)
3593 while (padding-- > 0)
3594 {
3595 *p++ = ' ';
3596 nchars++;
3597 }
3598
3599 /* If this argument has text properties, record where
3600 in the result string it appears. */
3601 if (STRING_INTERVALS (args[n]))
3602 info[n].intervals = arg_intervals = 1;
3603 }
3604 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3605 {
3606 int this_nchars;
3607
3608 bcopy (this_format_start, this_format,
3609 format - this_format_start);
3610 this_format[format - this_format_start] = 0;
3611
3612 if (INTEGERP (args[n]))
3613 sprintf (p, this_format, XINT (args[n]));
3614 else
3615 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3616
3617 if (p > buf
3618 && multibyte
3619 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3620 && !CHAR_HEAD_P (*((unsigned char *) p)))
3621 maybe_combine_byte = 1;
3622 this_nchars = strlen (p);
3623 if (multibyte)
3624 p += str_to_multibyte (p, buf + total - p, this_nchars);
3625 else
3626 p += this_nchars;
3627 nchars += this_nchars;
3628 }
3629
3630 info[n].end = nchars;
3631 }
3632 else if (STRING_MULTIBYTE (args[0]))
3633 {
3634 /* Copy a whole multibyte character. */
3635 if (p > buf
3636 && multibyte
3637 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3638 && !CHAR_HEAD_P (*format))
3639 maybe_combine_byte = 1;
3640 *p++ = *format++;
3641 while (! CHAR_HEAD_P (*format))
3642 {
3643 discarded[format - format_start] = 2;
3644 *p++ = *format++;
3645 }
3646 nchars++;
3647 }
3648 else if (multibyte)
3649 {
3650 /* Convert a single-byte character to multibyte. */
3651 int len = copy_text (format, p, 1, 0, 1);
3652
3653 p += len;
3654 format++;
3655 nchars++;
3656 }
3657 else
3658 *p++ = *format++, nchars++;
3659 }
3660
3661 if (p > buf + total + 1)
3662 abort ();
3663
3664 if (maybe_combine_byte)
3665 nchars = multibyte_chars_in_text (buf, p - buf);
3666 val = make_specified_string (buf, nchars, p - buf, multibyte);
3667
3668 /* If we allocated BUF with malloc, free it too. */
3669 if (total >= 1000)
3670 xfree (buf);
3671
3672 /* If the format string has text properties, or any of the string
3673 arguments has text properties, set up text properties of the
3674 result string. */
3675
3676 if (STRING_INTERVALS (args[0]) || arg_intervals)
3677 {
3678 Lisp_Object len, new_len, props;
3679 struct gcpro gcpro1;
3680
3681 /* Add text properties from the format string. */
3682 len = make_number (SCHARS (args[0]));
3683 props = text_property_list (args[0], make_number (0), len, Qnil);
3684 GCPRO1 (props);
3685
3686 if (CONSP (props))
3687 {
3688 int bytepos = 0, position = 0, translated = 0, argn = 1;
3689 Lisp_Object list;
3690
3691 /* Adjust the bounds of each text property
3692 to the proper start and end in the output string. */
3693 /* We take advantage of the fact that the positions in PROPS
3694 are in increasing order, so that we can do (effectively)
3695 one scan through the position space of the format string.
3696
3697 BYTEPOS is the byte position in the format string,
3698 POSITION is the untranslated char position in it,
3699 TRANSLATED is the translated char position in BUF,
3700 and ARGN is the number of the next arg we will come to. */
3701 for (list = props; CONSP (list); list = XCDR (list))
3702 {
3703 Lisp_Object item;
3704 int pos;
3705
3706 item = XCAR (list);
3707
3708 /* First adjust the property start position. */
3709 pos = XINT (XCAR (item));
3710
3711 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
3712 up to this position. */
3713 for (; position < pos; bytepos++)
3714 {
3715 if (! discarded[bytepos])
3716 position++, translated++;
3717 else if (discarded[bytepos] == 1)
3718 {
3719 position++;
3720 if (translated == info[argn].start)
3721 {
3722 translated += info[argn].end - info[argn].start;
3723 argn++;
3724 }
3725 }
3726 }
3727
3728 XSETCAR (item, make_number (translated));
3729
3730 /* Likewise adjust the property end position. */
3731 pos = XINT (XCAR (XCDR (item)));
3732
3733 for (; bytepos < pos; bytepos++)
3734 {
3735 if (! discarded[bytepos])
3736 position++, translated++;
3737 else if (discarded[bytepos] == 1)
3738 {
3739 position++;
3740 if (translated == info[argn].start)
3741 {
3742 translated += info[argn].end - info[argn].start;
3743 argn++;
3744 }
3745 }
3746 }
3747
3748 XSETCAR (XCDR (item), make_number (translated));
3749 }
3750
3751 add_text_properties_from_list (val, props, make_number (0));
3752 }
3753
3754 /* Add text properties from arguments. */
3755 if (arg_intervals)
3756 for (n = 1; n < nargs; ++n)
3757 if (info[n].intervals)
3758 {
3759 len = make_number (SCHARS (args[n]));
3760 new_len = make_number (info[n].end - info[n].start);
3761 props = text_property_list (args[n], make_number (0), len, Qnil);
3762 extend_property_ranges (props, len, new_len);
3763 /* If successive arguments have properites, be sure that
3764 the value of `composition' property be the copy. */
3765 if (n > 1 && info[n - 1].end)
3766 make_composition_value_copy (props);
3767 add_text_properties_from_list (val, props,
3768 make_number (info[n].start));
3769 }
3770
3771 UNGCPRO;
3772 }
3773
3774 return val;
3775 }
3776
3777 Lisp_Object
3778 format2 (string1, arg0, arg1)
3779 char *string1;
3780 Lisp_Object arg0, arg1;
3781 {
3782 Lisp_Object args[3];
3783 args[0] = build_string (string1);
3784 args[1] = arg0;
3785 args[2] = arg1;
3786 return Fformat (3, args);
3787 }
3788 \f
3789 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
3790 doc: /* Return t if two characters match, optionally ignoring case.
3791 Both arguments must be characters (i.e. integers).
3792 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
3793 (c1, c2)
3794 register Lisp_Object c1, c2;
3795 {
3796 int i1, i2;
3797 CHECK_NUMBER (c1);
3798 CHECK_NUMBER (c2);
3799
3800 if (XINT (c1) == XINT (c2))
3801 return Qt;
3802 if (NILP (current_buffer->case_fold_search))
3803 return Qnil;
3804
3805 /* Do these in separate statements,
3806 then compare the variables.
3807 because of the way DOWNCASE uses temp variables. */
3808 i1 = XFASTINT (c1);
3809 if (NILP (current_buffer->enable_multibyte_characters)
3810 && ! ASCII_CHAR_P (i1))
3811 {
3812 MAKE_CHAR_MULTIBYTE (i1);
3813 }
3814 i2 = XFASTINT (c2);
3815 if (NILP (current_buffer->enable_multibyte_characters)
3816 && ! ASCII_CHAR_P (i2))
3817 {
3818 MAKE_CHAR_MULTIBYTE (i2);
3819 }
3820 i1 = DOWNCASE (i1);
3821 i2 = DOWNCASE (i2);
3822 return (i1 == i2 ? Qt : Qnil);
3823 }
3824 \f
3825 /* Transpose the markers in two regions of the current buffer, and
3826 adjust the ones between them if necessary (i.e.: if the regions
3827 differ in size).
3828
3829 START1, END1 are the character positions of the first region.
3830 START1_BYTE, END1_BYTE are the byte positions.
3831 START2, END2 are the character positions of the second region.
3832 START2_BYTE, END2_BYTE are the byte positions.
3833
3834 Traverses the entire marker list of the buffer to do so, adding an
3835 appropriate amount to some, subtracting from some, and leaving the
3836 rest untouched. Most of this is copied from adjust_markers in insdel.c.
3837
3838 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
3839
3840 static void
3841 transpose_markers (start1, end1, start2, end2,
3842 start1_byte, end1_byte, start2_byte, end2_byte)
3843 register int start1, end1, start2, end2;
3844 register int start1_byte, end1_byte, start2_byte, end2_byte;
3845 {
3846 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
3847 register struct Lisp_Marker *marker;
3848
3849 /* Update point as if it were a marker. */
3850 if (PT < start1)
3851 ;
3852 else if (PT < end1)
3853 TEMP_SET_PT_BOTH (PT + (end2 - end1),
3854 PT_BYTE + (end2_byte - end1_byte));
3855 else if (PT < start2)
3856 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
3857 (PT_BYTE + (end2_byte - start2_byte)
3858 - (end1_byte - start1_byte)));
3859 else if (PT < end2)
3860 TEMP_SET_PT_BOTH (PT - (start2 - start1),
3861 PT_BYTE - (start2_byte - start1_byte));
3862
3863 /* We used to adjust the endpoints here to account for the gap, but that
3864 isn't good enough. Even if we assume the caller has tried to move the
3865 gap out of our way, it might still be at start1 exactly, for example;
3866 and that places it `inside' the interval, for our purposes. The amount
3867 of adjustment is nontrivial if there's a `denormalized' marker whose
3868 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
3869 the dirty work to Fmarker_position, below. */
3870
3871 /* The difference between the region's lengths */
3872 diff = (end2 - start2) - (end1 - start1);
3873 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
3874
3875 /* For shifting each marker in a region by the length of the other
3876 region plus the distance between the regions. */
3877 amt1 = (end2 - start2) + (start2 - end1);
3878 amt2 = (end1 - start1) + (start2 - end1);
3879 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
3880 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
3881
3882 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
3883 {
3884 mpos = marker->bytepos;
3885 if (mpos >= start1_byte && mpos < end2_byte)
3886 {
3887 if (mpos < end1_byte)
3888 mpos += amt1_byte;
3889 else if (mpos < start2_byte)
3890 mpos += diff_byte;
3891 else
3892 mpos -= amt2_byte;
3893 marker->bytepos = mpos;
3894 }
3895 mpos = marker->charpos;
3896 if (mpos >= start1 && mpos < end2)
3897 {
3898 if (mpos < end1)
3899 mpos += amt1;
3900 else if (mpos < start2)
3901 mpos += diff;
3902 else
3903 mpos -= amt2;
3904 }
3905 marker->charpos = mpos;
3906 }
3907 }
3908
3909 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
3910 doc: /* Transpose region START1 to END1 with START2 to END2.
3911 The regions may not be overlapping, because the size of the buffer is
3912 never changed in a transposition.
3913
3914 Optional fifth arg LEAVE_MARKERS, if non-nil, means don't update
3915 any markers that happen to be located in the regions.
3916
3917 Transposing beyond buffer boundaries is an error. */)
3918 (startr1, endr1, startr2, endr2, leave_markers)
3919 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
3920 {
3921 register int start1, end1, start2, end2;
3922 int start1_byte, start2_byte, len1_byte, len2_byte;
3923 int gap, len1, len_mid, len2;
3924 unsigned char *start1_addr, *start2_addr, *temp;
3925
3926 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2;
3927 cur_intv = BUF_INTERVALS (current_buffer);
3928
3929 validate_region (&startr1, &endr1);
3930 validate_region (&startr2, &endr2);
3931
3932 start1 = XFASTINT (startr1);
3933 end1 = XFASTINT (endr1);
3934 start2 = XFASTINT (startr2);
3935 end2 = XFASTINT (endr2);
3936 gap = GPT;
3937
3938 /* Swap the regions if they're reversed. */
3939 if (start2 < end1)
3940 {
3941 register int glumph = start1;
3942 start1 = start2;
3943 start2 = glumph;
3944 glumph = end1;
3945 end1 = end2;
3946 end2 = glumph;
3947 }
3948
3949 len1 = end1 - start1;
3950 len2 = end2 - start2;
3951
3952 if (start2 < end1)
3953 error ("Transposed regions overlap");
3954 else if (start1 == end1 || start2 == end2)
3955 error ("Transposed region has length 0");
3956
3957 /* The possibilities are:
3958 1. Adjacent (contiguous) regions, or separate but equal regions
3959 (no, really equal, in this case!), or
3960 2. Separate regions of unequal size.
3961
3962 The worst case is usually No. 2. It means that (aside from
3963 potential need for getting the gap out of the way), there also
3964 needs to be a shifting of the text between the two regions. So
3965 if they are spread far apart, we are that much slower... sigh. */
3966
3967 /* It must be pointed out that the really studly thing to do would
3968 be not to move the gap at all, but to leave it in place and work
3969 around it if necessary. This would be extremely efficient,
3970 especially considering that people are likely to do
3971 transpositions near where they are working interactively, which
3972 is exactly where the gap would be found. However, such code
3973 would be much harder to write and to read. So, if you are
3974 reading this comment and are feeling squirrely, by all means have
3975 a go! I just didn't feel like doing it, so I will simply move
3976 the gap the minimum distance to get it out of the way, and then
3977 deal with an unbroken array. */
3978
3979 /* Make sure the gap won't interfere, by moving it out of the text
3980 we will operate on. */
3981 if (start1 < gap && gap < end2)
3982 {
3983 if (gap - start1 < end2 - gap)
3984 move_gap (start1);
3985 else
3986 move_gap (end2);
3987 }
3988
3989 start1_byte = CHAR_TO_BYTE (start1);
3990 start2_byte = CHAR_TO_BYTE (start2);
3991 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
3992 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
3993
3994 #ifdef BYTE_COMBINING_DEBUG
3995 if (end1 == start2)
3996 {
3997 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
3998 len2_byte, start1, start1_byte)
3999 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4000 len1_byte, end2, start2_byte + len2_byte)
4001 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4002 len1_byte, end2, start2_byte + len2_byte))
4003 abort ();
4004 }
4005 else
4006 {
4007 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4008 len2_byte, start1, start1_byte)
4009 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4010 len1_byte, start2, start2_byte)
4011 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4012 len2_byte, end1, start1_byte + len1_byte)
4013 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4014 len1_byte, end2, start2_byte + len2_byte))
4015 abort ();
4016 }
4017 #endif
4018
4019 /* Hmmm... how about checking to see if the gap is large
4020 enough to use as the temporary storage? That would avoid an
4021 allocation... interesting. Later, don't fool with it now. */
4022
4023 /* Working without memmove, for portability (sigh), so must be
4024 careful of overlapping subsections of the array... */
4025
4026 if (end1 == start2) /* adjacent regions */
4027 {
4028 modify_region (current_buffer, start1, end2);
4029 record_change (start1, len1 + len2);
4030
4031 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4032 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4033 Fset_text_properties (make_number (start1), make_number (end2),
4034 Qnil, Qnil);
4035
4036 /* First region smaller than second. */
4037 if (len1_byte < len2_byte)
4038 {
4039 /* We use alloca only if it is small,
4040 because we want to avoid stack overflow. */
4041 if (len2_byte > 20000)
4042 temp = (unsigned char *) xmalloc (len2_byte);
4043 else
4044 temp = (unsigned char *) alloca (len2_byte);
4045
4046 /* Don't precompute these addresses. We have to compute them
4047 at the last minute, because the relocating allocator might
4048 have moved the buffer around during the xmalloc. */
4049 start1_addr = BYTE_POS_ADDR (start1_byte);
4050 start2_addr = BYTE_POS_ADDR (start2_byte);
4051
4052 bcopy (start2_addr, temp, len2_byte);
4053 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4054 bcopy (temp, start1_addr, len2_byte);
4055 if (len2_byte > 20000)
4056 xfree (temp);
4057 }
4058 else
4059 /* First region not smaller than second. */
4060 {
4061 if (len1_byte > 20000)
4062 temp = (unsigned char *) xmalloc (len1_byte);
4063 else
4064 temp = (unsigned char *) alloca (len1_byte);
4065 start1_addr = BYTE_POS_ADDR (start1_byte);
4066 start2_addr = BYTE_POS_ADDR (start2_byte);
4067 bcopy (start1_addr, temp, len1_byte);
4068 bcopy (start2_addr, start1_addr, len2_byte);
4069 bcopy (temp, start1_addr + len2_byte, len1_byte);
4070 if (len1_byte > 20000)
4071 xfree (temp);
4072 }
4073 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4074 len1, current_buffer, 0);
4075 graft_intervals_into_buffer (tmp_interval2, start1,
4076 len2, current_buffer, 0);
4077 update_compositions (start1, start1 + len2, CHECK_BORDER);
4078 update_compositions (start1 + len2, end2, CHECK_TAIL);
4079 }
4080 /* Non-adjacent regions, because end1 != start2, bleagh... */
4081 else
4082 {
4083 len_mid = start2_byte - (start1_byte + len1_byte);
4084
4085 if (len1_byte == len2_byte)
4086 /* Regions are same size, though, how nice. */
4087 {
4088 modify_region (current_buffer, start1, end1);
4089 modify_region (current_buffer, start2, end2);
4090 record_change (start1, len1);
4091 record_change (start2, len2);
4092 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4093 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4094 Fset_text_properties (make_number (start1), make_number (end1),
4095 Qnil, Qnil);
4096 Fset_text_properties (make_number (start2), make_number (end2),
4097 Qnil, Qnil);
4098
4099 if (len1_byte > 20000)
4100 temp = (unsigned char *) xmalloc (len1_byte);
4101 else
4102 temp = (unsigned char *) alloca (len1_byte);
4103 start1_addr = BYTE_POS_ADDR (start1_byte);
4104 start2_addr = BYTE_POS_ADDR (start2_byte);
4105 bcopy (start1_addr, temp, len1_byte);
4106 bcopy (start2_addr, start1_addr, len2_byte);
4107 bcopy (temp, start2_addr, len1_byte);
4108 if (len1_byte > 20000)
4109 xfree (temp);
4110 graft_intervals_into_buffer (tmp_interval1, start2,
4111 len1, current_buffer, 0);
4112 graft_intervals_into_buffer (tmp_interval2, start1,
4113 len2, current_buffer, 0);
4114 }
4115
4116 else if (len1_byte < len2_byte) /* Second region larger than first */
4117 /* Non-adjacent & unequal size, area between must also be shifted. */
4118 {
4119 modify_region (current_buffer, start1, end2);
4120 record_change (start1, (end2 - start1));
4121 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4122 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4123 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4124 Fset_text_properties (make_number (start1), make_number (end2),
4125 Qnil, Qnil);
4126
4127 /* holds region 2 */
4128 if (len2_byte > 20000)
4129 temp = (unsigned char *) xmalloc (len2_byte);
4130 else
4131 temp = (unsigned char *) alloca (len2_byte);
4132 start1_addr = BYTE_POS_ADDR (start1_byte);
4133 start2_addr = BYTE_POS_ADDR (start2_byte);
4134 bcopy (start2_addr, temp, len2_byte);
4135 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4136 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4137 bcopy (temp, start1_addr, len2_byte);
4138 if (len2_byte > 20000)
4139 xfree (temp);
4140 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4141 len1, current_buffer, 0);
4142 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4143 len_mid, current_buffer, 0);
4144 graft_intervals_into_buffer (tmp_interval2, start1,
4145 len2, current_buffer, 0);
4146 }
4147 else
4148 /* Second region smaller than first. */
4149 {
4150 record_change (start1, (end2 - start1));
4151 modify_region (current_buffer, start1, end2);
4152
4153 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4154 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4155 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4156 Fset_text_properties (make_number (start1), make_number (end2),
4157 Qnil, Qnil);
4158
4159 /* holds region 1 */
4160 if (len1_byte > 20000)
4161 temp = (unsigned char *) xmalloc (len1_byte);
4162 else
4163 temp = (unsigned char *) alloca (len1_byte);
4164 start1_addr = BYTE_POS_ADDR (start1_byte);
4165 start2_addr = BYTE_POS_ADDR (start2_byte);
4166 bcopy (start1_addr, temp, len1_byte);
4167 bcopy (start2_addr, start1_addr, len2_byte);
4168 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4169 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4170 if (len1_byte > 20000)
4171 xfree (temp);
4172 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4173 len1, current_buffer, 0);
4174 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4175 len_mid, current_buffer, 0);
4176 graft_intervals_into_buffer (tmp_interval2, start1,
4177 len2, current_buffer, 0);
4178 }
4179
4180 update_compositions (start1, start1 + len2, CHECK_BORDER);
4181 update_compositions (end2 - len1, end2, CHECK_BORDER);
4182 }
4183
4184 /* When doing multiple transpositions, it might be nice
4185 to optimize this. Perhaps the markers in any one buffer
4186 should be organized in some sorted data tree. */
4187 if (NILP (leave_markers))
4188 {
4189 transpose_markers (start1, end1, start2, end2,
4190 start1_byte, start1_byte + len1_byte,
4191 start2_byte, start2_byte + len2_byte);
4192 fix_overlays_in_range (start1, end2);
4193 }
4194
4195 return Qnil;
4196 }
4197
4198 \f
4199 void
4200 syms_of_editfns ()
4201 {
4202 environbuf = 0;
4203
4204 Qbuffer_access_fontify_functions
4205 = intern ("buffer-access-fontify-functions");
4206 staticpro (&Qbuffer_access_fontify_functions);
4207
4208 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4209 doc: /* Non-nil means text motion commands don't notice fields. */);
4210 Vinhibit_field_text_motion = Qnil;
4211
4212 DEFVAR_LISP ("buffer-access-fontify-functions",
4213 &Vbuffer_access_fontify_functions,
4214 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4215 Each function is called with two arguments which specify the range
4216 of the buffer being accessed. */);
4217 Vbuffer_access_fontify_functions = Qnil;
4218
4219 {
4220 Lisp_Object obuf;
4221 extern Lisp_Object Vprin1_to_string_buffer;
4222 obuf = Fcurrent_buffer ();
4223 /* Do this here, because init_buffer_once is too early--it won't work. */
4224 Fset_buffer (Vprin1_to_string_buffer);
4225 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4226 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4227 Qnil);
4228 Fset_buffer (obuf);
4229 }
4230
4231 DEFVAR_LISP ("buffer-access-fontified-property",
4232 &Vbuffer_access_fontified_property,
4233 doc: /* Property which (if non-nil) indicates text has been fontified.
4234 `buffer-substring' need not call the `buffer-access-fontify-functions'
4235 functions if all the text being accessed has this property. */);
4236 Vbuffer_access_fontified_property = Qnil;
4237
4238 DEFVAR_LISP ("system-name", &Vsystem_name,
4239 doc: /* The name of the machine Emacs is running on. */);
4240
4241 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4242 doc: /* The full name of the user logged in. */);
4243
4244 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4245 doc: /* The user's name, taken from environment variables if possible. */);
4246
4247 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4248 doc: /* The user's name, based upon the real uid only. */);
4249
4250 defsubr (&Spropertize);
4251 defsubr (&Schar_equal);
4252 defsubr (&Sgoto_char);
4253 defsubr (&Sstring_to_char);
4254 defsubr (&Schar_to_string);
4255 defsubr (&Sbuffer_substring);
4256 defsubr (&Sbuffer_substring_no_properties);
4257 defsubr (&Sbuffer_string);
4258
4259 defsubr (&Spoint_marker);
4260 defsubr (&Smark_marker);
4261 defsubr (&Spoint);
4262 defsubr (&Sregion_beginning);
4263 defsubr (&Sregion_end);
4264
4265 staticpro (&Qfield);
4266 Qfield = intern ("field");
4267 staticpro (&Qboundary);
4268 Qboundary = intern ("boundary");
4269 defsubr (&Sfield_beginning);
4270 defsubr (&Sfield_end);
4271 defsubr (&Sfield_string);
4272 defsubr (&Sfield_string_no_properties);
4273 defsubr (&Sdelete_field);
4274 defsubr (&Sconstrain_to_field);
4275
4276 defsubr (&Sline_beginning_position);
4277 defsubr (&Sline_end_position);
4278
4279 /* defsubr (&Smark); */
4280 /* defsubr (&Sset_mark); */
4281 defsubr (&Ssave_excursion);
4282 defsubr (&Ssave_current_buffer);
4283
4284 defsubr (&Sbufsize);
4285 defsubr (&Spoint_max);
4286 defsubr (&Spoint_min);
4287 defsubr (&Spoint_min_marker);
4288 defsubr (&Spoint_max_marker);
4289 defsubr (&Sgap_position);
4290 defsubr (&Sgap_size);
4291 defsubr (&Sposition_bytes);
4292 defsubr (&Sbyte_to_position);
4293
4294 defsubr (&Sbobp);
4295 defsubr (&Seobp);
4296 defsubr (&Sbolp);
4297 defsubr (&Seolp);
4298 defsubr (&Sfollowing_char);
4299 defsubr (&Sprevious_char);
4300 defsubr (&Schar_after);
4301 defsubr (&Schar_before);
4302 defsubr (&Sinsert);
4303 defsubr (&Sinsert_before_markers);
4304 defsubr (&Sinsert_and_inherit);
4305 defsubr (&Sinsert_and_inherit_before_markers);
4306 defsubr (&Sinsert_char);
4307 defsubr (&Sinsert_byte);
4308
4309 defsubr (&Suser_login_name);
4310 defsubr (&Suser_real_login_name);
4311 defsubr (&Suser_uid);
4312 defsubr (&Suser_real_uid);
4313 defsubr (&Suser_full_name);
4314 defsubr (&Semacs_pid);
4315 defsubr (&Scurrent_time);
4316 defsubr (&Sformat_time_string);
4317 defsubr (&Sfloat_time);
4318 defsubr (&Sdecode_time);
4319 defsubr (&Sencode_time);
4320 defsubr (&Scurrent_time_string);
4321 defsubr (&Scurrent_time_zone);
4322 defsubr (&Sset_time_zone_rule);
4323 defsubr (&Ssystem_name);
4324 defsubr (&Smessage);
4325 defsubr (&Smessage_box);
4326 defsubr (&Smessage_or_box);
4327 defsubr (&Scurrent_message);
4328 defsubr (&Sformat);
4329
4330 defsubr (&Sinsert_buffer_substring);
4331 defsubr (&Scompare_buffer_substrings);
4332 defsubr (&Ssubst_char_in_region);
4333 defsubr (&Stranslate_region);
4334 defsubr (&Sdelete_region);
4335 defsubr (&Sdelete_and_extract_region);
4336 defsubr (&Swiden);
4337 defsubr (&Snarrow_to_region);
4338 defsubr (&Ssave_restriction);
4339 defsubr (&Stranspose_regions);
4340 }