]> code.delx.au - gnu-emacs/blob - src/alloc.c
* etc/AUTHORS: Update the AUTHORS file
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "dispextern.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
49
50 #include <verify.h>
51 #include <execinfo.h> /* For backtrace. */
52
53 #ifdef HAVE_LINUX_SYSINFO
54 #include <sys/sysinfo.h>
55 #endif
56
57 #ifdef MSDOS
58 #include "dosfns.h" /* For dos_memory_info. */
59 #endif
60
61 #if (defined ENABLE_CHECKING \
62 && defined HAVE_VALGRIND_VALGRIND_H \
63 && !defined USE_VALGRIND)
64 # define USE_VALGRIND 1
65 #endif
66
67 #if USE_VALGRIND
68 #include <valgrind/valgrind.h>
69 #include <valgrind/memcheck.h>
70 static bool valgrind_p;
71 #endif
72
73 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
74
75 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
76 memory. Can do this only if using gmalloc.c and if not checking
77 marked objects. */
78
79 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
80 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
81 #undef GC_MALLOC_CHECK
82 #endif
83
84 #include <unistd.h>
85 #include <fcntl.h>
86
87 #ifdef USE_GTK
88 # include "gtkutil.h"
89 #endif
90 #ifdef WINDOWSNT
91 #include "w32.h"
92 #include "w32heap.h" /* for sbrk */
93 #endif
94
95 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
96 /* The address where the heap starts. */
97 void *
98 my_heap_start (void)
99 {
100 static void *start;
101 if (! start)
102 start = sbrk (0);
103 return start;
104 }
105 #endif
106
107 #ifdef DOUG_LEA_MALLOC
108
109 #include <malloc.h>
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Get and free this pointer; useful around unexec. */
121 void
122 alloc_unexec_pre (void)
123 {
124 malloc_state_ptr = malloc_get_state ();
125 }
126 void
127 alloc_unexec_post (void)
128 {
129 free (malloc_state_ptr);
130 }
131
132 /* Restore the dumped malloc state. Because malloc can be invoked
133 even before main (e.g. by the dynamic linker), the dumped malloc
134 state must be restored as early as possible using this special hook. */
135 static void
136 malloc_initialize_hook (void)
137 {
138 static bool malloc_using_checking;
139
140 if (! initialized)
141 {
142 my_heap_start ();
143 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
144 }
145 else
146 {
147 if (!malloc_using_checking)
148 {
149 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
150 ignored if the heap to be restored was constructed without
151 malloc checking. Can't use unsetenv, since that calls malloc. */
152 char **p = environ;
153 if (p)
154 for (; *p; p++)
155 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
156 {
157 do
158 *p = p[1];
159 while (*++p);
160
161 break;
162 }
163 }
164
165 malloc_set_state (malloc_state_ptr);
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
169 }
170 }
171
172 # ifndef __MALLOC_HOOK_VOLATILE
173 # define __MALLOC_HOOK_VOLATILE
174 # endif
175 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook
176 = malloc_initialize_hook;
177
178 #endif
179
180 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
181 to a struct Lisp_String. */
182
183 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
184 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
185 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
186
187 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
188 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
189 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
190
191 /* Default value of gc_cons_threshold (see below). */
192
193 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
194
195 /* Global variables. */
196 struct emacs_globals globals;
197
198 /* Number of bytes of consing done since the last gc. */
199
200 EMACS_INT consing_since_gc;
201
202 /* Similar minimum, computed from Vgc_cons_percentage. */
203
204 EMACS_INT gc_relative_threshold;
205
206 /* Minimum number of bytes of consing since GC before next GC,
207 when memory is full. */
208
209 EMACS_INT memory_full_cons_threshold;
210
211 /* True during GC. */
212
213 bool gc_in_progress;
214
215 /* True means abort if try to GC.
216 This is for code which is written on the assumption that
217 no GC will happen, so as to verify that assumption. */
218
219 bool abort_on_gc;
220
221 /* Number of live and free conses etc. */
222
223 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
224 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
225 static EMACS_INT total_free_floats, total_floats;
226
227 /* Points to memory space allocated as "spare", to be freed if we run
228 out of memory. We keep one large block, four cons-blocks, and
229 two string blocks. */
230
231 static char *spare_memory[7];
232
233 /* Amount of spare memory to keep in large reserve block, or to see
234 whether this much is available when malloc fails on a larger request. */
235
236 #define SPARE_MEMORY (1 << 14)
237
238 /* Initialize it to a nonzero value to force it into data space
239 (rather than bss space). That way unexec will remap it into text
240 space (pure), on some systems. We have not implemented the
241 remapping on more recent systems because this is less important
242 nowadays than in the days of small memories and timesharing. */
243
244 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
245 #define PUREBEG (char *) pure
246
247 /* Pointer to the pure area, and its size. */
248
249 static char *purebeg;
250 static ptrdiff_t pure_size;
251
252 /* Number of bytes of pure storage used before pure storage overflowed.
253 If this is non-zero, this implies that an overflow occurred. */
254
255 static ptrdiff_t pure_bytes_used_before_overflow;
256
257 /* Index in pure at which next pure Lisp object will be allocated.. */
258
259 static ptrdiff_t pure_bytes_used_lisp;
260
261 /* Number of bytes allocated for non-Lisp objects in pure storage. */
262
263 static ptrdiff_t pure_bytes_used_non_lisp;
264
265 /* If nonzero, this is a warning delivered by malloc and not yet
266 displayed. */
267
268 const char *pending_malloc_warning;
269
270 #if 0 /* Normally, pointer sanity only on request... */
271 #ifdef ENABLE_CHECKING
272 #define SUSPICIOUS_OBJECT_CHECKING 1
273 #endif
274 #endif
275
276 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
277 bug is unresolved. */
278 #define SUSPICIOUS_OBJECT_CHECKING 1
279
280 #ifdef SUSPICIOUS_OBJECT_CHECKING
281 struct suspicious_free_record
282 {
283 void *suspicious_object;
284 void *backtrace[128];
285 };
286 static void *suspicious_objects[32];
287 static int suspicious_object_index;
288 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
289 static int suspicious_free_history_index;
290 /* Find the first currently-monitored suspicious pointer in range
291 [begin,end) or NULL if no such pointer exists. */
292 static void *find_suspicious_object_in_range (void *begin, void *end);
293 static void detect_suspicious_free (void *ptr);
294 #else
295 # define find_suspicious_object_in_range(begin, end) NULL
296 # define detect_suspicious_free(ptr) (void)
297 #endif
298
299 /* Maximum amount of C stack to save when a GC happens. */
300
301 #ifndef MAX_SAVE_STACK
302 #define MAX_SAVE_STACK 16000
303 #endif
304
305 /* Buffer in which we save a copy of the C stack at each GC. */
306
307 #if MAX_SAVE_STACK > 0
308 static char *stack_copy;
309 static ptrdiff_t stack_copy_size;
310
311 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
312 avoiding any address sanitization. */
313
314 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
315 no_sanitize_memcpy (void *dest, void const *src, size_t size)
316 {
317 if (! ADDRESS_SANITIZER)
318 return memcpy (dest, src, size);
319 else
320 {
321 size_t i;
322 char *d = dest;
323 char const *s = src;
324 for (i = 0; i < size; i++)
325 d[i] = s[i];
326 return dest;
327 }
328 }
329
330 #endif /* MAX_SAVE_STACK > 0 */
331
332 static void mark_terminals (void);
333 static void gc_sweep (void);
334 static Lisp_Object make_pure_vector (ptrdiff_t);
335 static void mark_buffer (struct buffer *);
336
337 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
338 static void refill_memory_reserve (void);
339 #endif
340 static void compact_small_strings (void);
341 static void free_large_strings (void);
342 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
343
344 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
345 what memory allocated via lisp_malloc and lisp_align_malloc is intended
346 for what purpose. This enumeration specifies the type of memory. */
347
348 enum mem_type
349 {
350 MEM_TYPE_NON_LISP,
351 MEM_TYPE_BUFFER,
352 MEM_TYPE_CONS,
353 MEM_TYPE_STRING,
354 MEM_TYPE_MISC,
355 MEM_TYPE_SYMBOL,
356 MEM_TYPE_FLOAT,
357 /* Since all non-bool pseudovectors are small enough to be
358 allocated from vector blocks, this memory type denotes
359 large regular vectors and large bool pseudovectors. */
360 MEM_TYPE_VECTORLIKE,
361 /* Special type to denote vector blocks. */
362 MEM_TYPE_VECTOR_BLOCK,
363 /* Special type to denote reserved memory. */
364 MEM_TYPE_SPARE
365 };
366
367 /* A unique object in pure space used to make some Lisp objects
368 on free lists recognizable in O(1). */
369
370 static Lisp_Object Vdead;
371 #define DEADP(x) EQ (x, Vdead)
372
373 #ifdef GC_MALLOC_CHECK
374
375 enum mem_type allocated_mem_type;
376
377 #endif /* GC_MALLOC_CHECK */
378
379 /* A node in the red-black tree describing allocated memory containing
380 Lisp data. Each such block is recorded with its start and end
381 address when it is allocated, and removed from the tree when it
382 is freed.
383
384 A red-black tree is a balanced binary tree with the following
385 properties:
386
387 1. Every node is either red or black.
388 2. Every leaf is black.
389 3. If a node is red, then both of its children are black.
390 4. Every simple path from a node to a descendant leaf contains
391 the same number of black nodes.
392 5. The root is always black.
393
394 When nodes are inserted into the tree, or deleted from the tree,
395 the tree is "fixed" so that these properties are always true.
396
397 A red-black tree with N internal nodes has height at most 2
398 log(N+1). Searches, insertions and deletions are done in O(log N).
399 Please see a text book about data structures for a detailed
400 description of red-black trees. Any book worth its salt should
401 describe them. */
402
403 struct mem_node
404 {
405 /* Children of this node. These pointers are never NULL. When there
406 is no child, the value is MEM_NIL, which points to a dummy node. */
407 struct mem_node *left, *right;
408
409 /* The parent of this node. In the root node, this is NULL. */
410 struct mem_node *parent;
411
412 /* Start and end of allocated region. */
413 void *start, *end;
414
415 /* Node color. */
416 enum {MEM_BLACK, MEM_RED} color;
417
418 /* Memory type. */
419 enum mem_type type;
420 };
421
422 /* Base address of stack. Set in main. */
423
424 Lisp_Object *stack_base;
425
426 /* Root of the tree describing allocated Lisp memory. */
427
428 static struct mem_node *mem_root;
429
430 /* Lowest and highest known address in the heap. */
431
432 static void *min_heap_address, *max_heap_address;
433
434 /* Sentinel node of the tree. */
435
436 static struct mem_node mem_z;
437 #define MEM_NIL &mem_z
438
439 static struct mem_node *mem_insert (void *, void *, enum mem_type);
440 static void mem_insert_fixup (struct mem_node *);
441 static void mem_rotate_left (struct mem_node *);
442 static void mem_rotate_right (struct mem_node *);
443 static void mem_delete (struct mem_node *);
444 static void mem_delete_fixup (struct mem_node *);
445 static struct mem_node *mem_find (void *);
446
447 #ifndef DEADP
448 # define DEADP(x) 0
449 #endif
450
451 /* Addresses of staticpro'd variables. Initialize it to a nonzero
452 value; otherwise some compilers put it into BSS. */
453
454 enum { NSTATICS = 2048 };
455 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
456
457 /* Index of next unused slot in staticvec. */
458
459 static int staticidx;
460
461 static void *pure_alloc (size_t, int);
462
463 /* Return X rounded to the next multiple of Y. Arguments should not
464 have side effects, as they are evaluated more than once. Assume X
465 + Y - 1 does not overflow. Tune for Y being a power of 2. */
466
467 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
468 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
469 : ((x) + (y) - 1) & ~ ((y) - 1))
470
471 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
472
473 static void *
474 ALIGN (void *ptr, int alignment)
475 {
476 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
477 }
478
479 /* Extract the pointer hidden within A, if A is not a symbol.
480 If A is a symbol, extract the hidden pointer's offset from lispsym,
481 converted to void *. */
482
483 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
484 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
485
486 /* Extract the pointer hidden within A. */
487
488 #define macro_XPNTR(a) \
489 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
490 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
491
492 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
493 functions, as functions are cleaner and can be used in debuggers.
494 Also, define them as macros if being compiled with GCC without
495 optimization, for performance in that case. The macro_* names are
496 private to this section of code. */
497
498 static ATTRIBUTE_UNUSED void *
499 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
500 {
501 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
502 }
503 static ATTRIBUTE_UNUSED void *
504 XPNTR (Lisp_Object a)
505 {
506 return macro_XPNTR (a);
507 }
508
509 #if DEFINE_KEY_OPS_AS_MACROS
510 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
511 # define XPNTR(a) macro_XPNTR (a)
512 #endif
513
514 static void
515 XFLOAT_INIT (Lisp_Object f, double n)
516 {
517 XFLOAT (f)->u.data = n;
518 }
519
520 #ifdef DOUG_LEA_MALLOC
521 static bool
522 pointers_fit_in_lispobj_p (void)
523 {
524 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
525 }
526
527 static bool
528 mmap_lisp_allowed_p (void)
529 {
530 /* If we can't store all memory addresses in our lisp objects, it's
531 risky to let the heap use mmap and give us addresses from all
532 over our address space. We also can't use mmap for lisp objects
533 if we might dump: unexec doesn't preserve the contents of mmapped
534 regions. */
535 return pointers_fit_in_lispobj_p () && !might_dump;
536 }
537 #endif
538
539 /* Head of a circularly-linked list of extant finalizers. */
540 static struct Lisp_Finalizer finalizers;
541
542 /* Head of a circularly-linked list of finalizers that must be invoked
543 because we deemed them unreachable. This list must be global, and
544 not a local inside garbage_collect_1, in case we GC again while
545 running finalizers. */
546 static struct Lisp_Finalizer doomed_finalizers;
547
548 \f
549 /************************************************************************
550 Malloc
551 ************************************************************************/
552
553 /* Function malloc calls this if it finds we are near exhausting storage. */
554
555 void
556 malloc_warning (const char *str)
557 {
558 pending_malloc_warning = str;
559 }
560
561
562 /* Display an already-pending malloc warning. */
563
564 void
565 display_malloc_warning (void)
566 {
567 call3 (intern ("display-warning"),
568 intern ("alloc"),
569 build_string (pending_malloc_warning),
570 intern ("emergency"));
571 pending_malloc_warning = 0;
572 }
573 \f
574 /* Called if we can't allocate relocatable space for a buffer. */
575
576 void
577 buffer_memory_full (ptrdiff_t nbytes)
578 {
579 /* If buffers use the relocating allocator, no need to free
580 spare_memory, because we may have plenty of malloc space left
581 that we could get, and if we don't, the malloc that fails will
582 itself cause spare_memory to be freed. If buffers don't use the
583 relocating allocator, treat this like any other failing
584 malloc. */
585
586 #ifndef REL_ALLOC
587 memory_full (nbytes);
588 #else
589 /* This used to call error, but if we've run out of memory, we could
590 get infinite recursion trying to build the string. */
591 xsignal (Qnil, Vmemory_signal_data);
592 #endif
593 }
594
595 /* A common multiple of the positive integers A and B. Ideally this
596 would be the least common multiple, but there's no way to do that
597 as a constant expression in C, so do the best that we can easily do. */
598 #define COMMON_MULTIPLE(a, b) \
599 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
600
601 #ifndef XMALLOC_OVERRUN_CHECK
602 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
603 #else
604
605 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
606 around each block.
607
608 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
609 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
610 block size in little-endian order. The trailer consists of
611 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
612
613 The header is used to detect whether this block has been allocated
614 through these functions, as some low-level libc functions may
615 bypass the malloc hooks. */
616
617 #define XMALLOC_OVERRUN_CHECK_SIZE 16
618 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
619 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
620
621 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
622 hold a size_t value and (2) the header size is a multiple of the
623 alignment that Emacs needs for C types and for USE_LSB_TAG. */
624 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
625
626 #define XMALLOC_HEADER_ALIGNMENT \
627 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
628 #define XMALLOC_OVERRUN_SIZE_SIZE \
629 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
630 + XMALLOC_HEADER_ALIGNMENT - 1) \
631 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
632 - XMALLOC_OVERRUN_CHECK_SIZE)
633
634 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
635 { '\x9a', '\x9b', '\xae', '\xaf',
636 '\xbf', '\xbe', '\xce', '\xcf',
637 '\xea', '\xeb', '\xec', '\xed',
638 '\xdf', '\xde', '\x9c', '\x9d' };
639
640 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
641 { '\xaa', '\xab', '\xac', '\xad',
642 '\xba', '\xbb', '\xbc', '\xbd',
643 '\xca', '\xcb', '\xcc', '\xcd',
644 '\xda', '\xdb', '\xdc', '\xdd' };
645
646 /* Insert and extract the block size in the header. */
647
648 static void
649 xmalloc_put_size (unsigned char *ptr, size_t size)
650 {
651 int i;
652 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
653 {
654 *--ptr = size & ((1 << CHAR_BIT) - 1);
655 size >>= CHAR_BIT;
656 }
657 }
658
659 static size_t
660 xmalloc_get_size (unsigned char *ptr)
661 {
662 size_t size = 0;
663 int i;
664 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
665 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
666 {
667 size <<= CHAR_BIT;
668 size += *ptr++;
669 }
670 return size;
671 }
672
673
674 /* Like malloc, but wraps allocated block with header and trailer. */
675
676 static void *
677 overrun_check_malloc (size_t size)
678 {
679 register unsigned char *val;
680 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
681 emacs_abort ();
682
683 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
684 if (val)
685 {
686 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
687 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
688 xmalloc_put_size (val, size);
689 memcpy (val + size, xmalloc_overrun_check_trailer,
690 XMALLOC_OVERRUN_CHECK_SIZE);
691 }
692 return val;
693 }
694
695
696 /* Like realloc, but checks old block for overrun, and wraps new block
697 with header and trailer. */
698
699 static void *
700 overrun_check_realloc (void *block, size_t size)
701 {
702 register unsigned char *val = (unsigned char *) block;
703 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
704 emacs_abort ();
705
706 if (val
707 && memcmp (xmalloc_overrun_check_header,
708 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
709 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
710 {
711 size_t osize = xmalloc_get_size (val);
712 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
713 XMALLOC_OVERRUN_CHECK_SIZE))
714 emacs_abort ();
715 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
716 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
717 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
718 }
719
720 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
721
722 if (val)
723 {
724 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
725 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
726 xmalloc_put_size (val, size);
727 memcpy (val + size, xmalloc_overrun_check_trailer,
728 XMALLOC_OVERRUN_CHECK_SIZE);
729 }
730 return val;
731 }
732
733 /* Like free, but checks block for overrun. */
734
735 static void
736 overrun_check_free (void *block)
737 {
738 unsigned char *val = (unsigned char *) block;
739
740 if (val
741 && memcmp (xmalloc_overrun_check_header,
742 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
743 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
744 {
745 size_t osize = xmalloc_get_size (val);
746 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
747 XMALLOC_OVERRUN_CHECK_SIZE))
748 emacs_abort ();
749 #ifdef XMALLOC_CLEAR_FREE_MEMORY
750 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
751 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
752 #else
753 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
754 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
755 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
756 #endif
757 }
758
759 free (val);
760 }
761
762 #undef malloc
763 #undef realloc
764 #undef free
765 #define malloc overrun_check_malloc
766 #define realloc overrun_check_realloc
767 #define free overrun_check_free
768 #endif
769
770 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
771 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
772 If that variable is set, block input while in one of Emacs's memory
773 allocation functions. There should be no need for this debugging
774 option, since signal handlers do not allocate memory, but Emacs
775 formerly allocated memory in signal handlers and this compile-time
776 option remains as a way to help debug the issue should it rear its
777 ugly head again. */
778 #ifdef XMALLOC_BLOCK_INPUT_CHECK
779 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
780 static void
781 malloc_block_input (void)
782 {
783 if (block_input_in_memory_allocators)
784 block_input ();
785 }
786 static void
787 malloc_unblock_input (void)
788 {
789 if (block_input_in_memory_allocators)
790 unblock_input ();
791 }
792 # define MALLOC_BLOCK_INPUT malloc_block_input ()
793 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
794 #else
795 # define MALLOC_BLOCK_INPUT ((void) 0)
796 # define MALLOC_UNBLOCK_INPUT ((void) 0)
797 #endif
798
799 #define MALLOC_PROBE(size) \
800 do { \
801 if (profiler_memory_running) \
802 malloc_probe (size); \
803 } while (0)
804
805 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
806 static void *lrealloc (void *, size_t);
807
808 /* Like malloc but check for no memory and block interrupt input. */
809
810 void *
811 xmalloc (size_t size)
812 {
813 void *val;
814
815 MALLOC_BLOCK_INPUT;
816 val = lmalloc (size);
817 MALLOC_UNBLOCK_INPUT;
818
819 if (!val && size)
820 memory_full (size);
821 MALLOC_PROBE (size);
822 return val;
823 }
824
825 /* Like the above, but zeroes out the memory just allocated. */
826
827 void *
828 xzalloc (size_t size)
829 {
830 void *val;
831
832 MALLOC_BLOCK_INPUT;
833 val = lmalloc (size);
834 MALLOC_UNBLOCK_INPUT;
835
836 if (!val && size)
837 memory_full (size);
838 memset (val, 0, size);
839 MALLOC_PROBE (size);
840 return val;
841 }
842
843 /* Like realloc but check for no memory and block interrupt input.. */
844
845 void *
846 xrealloc (void *block, size_t size)
847 {
848 void *val;
849
850 MALLOC_BLOCK_INPUT;
851 /* We must call malloc explicitly when BLOCK is 0, since some
852 reallocs don't do this. */
853 if (! block)
854 val = lmalloc (size);
855 else
856 val = lrealloc (block, size);
857 MALLOC_UNBLOCK_INPUT;
858
859 if (!val && size)
860 memory_full (size);
861 MALLOC_PROBE (size);
862 return val;
863 }
864
865
866 /* Like free but block interrupt input. */
867
868 void
869 xfree (void *block)
870 {
871 if (!block)
872 return;
873 MALLOC_BLOCK_INPUT;
874 free (block);
875 MALLOC_UNBLOCK_INPUT;
876 /* We don't call refill_memory_reserve here
877 because in practice the call in r_alloc_free seems to suffice. */
878 }
879
880
881 /* Other parts of Emacs pass large int values to allocator functions
882 expecting ptrdiff_t. This is portable in practice, but check it to
883 be safe. */
884 verify (INT_MAX <= PTRDIFF_MAX);
885
886
887 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
888 Signal an error on memory exhaustion, and block interrupt input. */
889
890 void *
891 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
892 {
893 eassert (0 <= nitems && 0 < item_size);
894 ptrdiff_t nbytes;
895 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
896 memory_full (SIZE_MAX);
897 return xmalloc (nbytes);
898 }
899
900
901 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
902 Signal an error on memory exhaustion, and block interrupt input. */
903
904 void *
905 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
906 {
907 eassert (0 <= nitems && 0 < item_size);
908 ptrdiff_t nbytes;
909 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
910 memory_full (SIZE_MAX);
911 return xrealloc (pa, nbytes);
912 }
913
914
915 /* Grow PA, which points to an array of *NITEMS items, and return the
916 location of the reallocated array, updating *NITEMS to reflect its
917 new size. The new array will contain at least NITEMS_INCR_MIN more
918 items, but will not contain more than NITEMS_MAX items total.
919 ITEM_SIZE is the size of each item, in bytes.
920
921 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
922 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
923 infinity.
924
925 If PA is null, then allocate a new array instead of reallocating
926 the old one.
927
928 Block interrupt input as needed. If memory exhaustion occurs, set
929 *NITEMS to zero if PA is null, and signal an error (i.e., do not
930 return).
931
932 Thus, to grow an array A without saving its old contents, do
933 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
934 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
935 and signals an error, and later this code is reexecuted and
936 attempts to free A. */
937
938 void *
939 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
940 ptrdiff_t nitems_max, ptrdiff_t item_size)
941 {
942 ptrdiff_t n0 = *nitems;
943 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
944
945 /* The approximate size to use for initial small allocation
946 requests. This is the largest "small" request for the GNU C
947 library malloc. */
948 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
949
950 /* If the array is tiny, grow it to about (but no greater than)
951 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
952 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
953 NITEMS_MAX, and what the C language can represent safely. */
954
955 ptrdiff_t n, nbytes;
956 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
957 n = PTRDIFF_MAX;
958 if (0 <= nitems_max && nitems_max < n)
959 n = nitems_max;
960
961 ptrdiff_t adjusted_nbytes
962 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
963 ? min (PTRDIFF_MAX, SIZE_MAX)
964 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
965 if (adjusted_nbytes)
966 {
967 n = adjusted_nbytes / item_size;
968 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
969 }
970
971 if (! pa)
972 *nitems = 0;
973 if (n - n0 < nitems_incr_min
974 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
975 || (0 <= nitems_max && nitems_max < n)
976 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
977 memory_full (SIZE_MAX);
978 pa = xrealloc (pa, nbytes);
979 *nitems = n;
980 return pa;
981 }
982
983
984 /* Like strdup, but uses xmalloc. */
985
986 char *
987 xstrdup (const char *s)
988 {
989 ptrdiff_t size;
990 eassert (s);
991 size = strlen (s) + 1;
992 return memcpy (xmalloc (size), s, size);
993 }
994
995 /* Like above, but duplicates Lisp string to C string. */
996
997 char *
998 xlispstrdup (Lisp_Object string)
999 {
1000 ptrdiff_t size = SBYTES (string) + 1;
1001 return memcpy (xmalloc (size), SSDATA (string), size);
1002 }
1003
1004 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1005 pointed to. If STRING is null, assign it without copying anything.
1006 Allocate before freeing, to avoid a dangling pointer if allocation
1007 fails. */
1008
1009 void
1010 dupstring (char **ptr, char const *string)
1011 {
1012 char *old = *ptr;
1013 *ptr = string ? xstrdup (string) : 0;
1014 xfree (old);
1015 }
1016
1017
1018 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1019 argument is a const pointer. */
1020
1021 void
1022 xputenv (char const *string)
1023 {
1024 if (putenv ((char *) string) != 0)
1025 memory_full (0);
1026 }
1027
1028 /* Return a newly allocated memory block of SIZE bytes, remembering
1029 to free it when unwinding. */
1030 void *
1031 record_xmalloc (size_t size)
1032 {
1033 void *p = xmalloc (size);
1034 record_unwind_protect_ptr (xfree, p);
1035 return p;
1036 }
1037
1038
1039 /* Like malloc but used for allocating Lisp data. NBYTES is the
1040 number of bytes to allocate, TYPE describes the intended use of the
1041 allocated memory block (for strings, for conses, ...). */
1042
1043 #if ! USE_LSB_TAG
1044 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1045 #endif
1046
1047 static void *
1048 lisp_malloc (size_t nbytes, enum mem_type type)
1049 {
1050 register void *val;
1051
1052 MALLOC_BLOCK_INPUT;
1053
1054 #ifdef GC_MALLOC_CHECK
1055 allocated_mem_type = type;
1056 #endif
1057
1058 val = lmalloc (nbytes);
1059
1060 #if ! USE_LSB_TAG
1061 /* If the memory just allocated cannot be addressed thru a Lisp
1062 object's pointer, and it needs to be,
1063 that's equivalent to running out of memory. */
1064 if (val && type != MEM_TYPE_NON_LISP)
1065 {
1066 Lisp_Object tem;
1067 XSETCONS (tem, (char *) val + nbytes - 1);
1068 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1069 {
1070 lisp_malloc_loser = val;
1071 free (val);
1072 val = 0;
1073 }
1074 }
1075 #endif
1076
1077 #ifndef GC_MALLOC_CHECK
1078 if (val && type != MEM_TYPE_NON_LISP)
1079 mem_insert (val, (char *) val + nbytes, type);
1080 #endif
1081
1082 MALLOC_UNBLOCK_INPUT;
1083 if (!val && nbytes)
1084 memory_full (nbytes);
1085 MALLOC_PROBE (nbytes);
1086 return val;
1087 }
1088
1089 /* Free BLOCK. This must be called to free memory allocated with a
1090 call to lisp_malloc. */
1091
1092 static void
1093 lisp_free (void *block)
1094 {
1095 MALLOC_BLOCK_INPUT;
1096 free (block);
1097 #ifndef GC_MALLOC_CHECK
1098 mem_delete (mem_find (block));
1099 #endif
1100 MALLOC_UNBLOCK_INPUT;
1101 }
1102
1103 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1104
1105 /* The entry point is lisp_align_malloc which returns blocks of at most
1106 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1107
1108 /* Use aligned_alloc if it or a simple substitute is available.
1109 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1110 clang 3.3 anyway. Aligned allocation is incompatible with
1111 unexmacosx.c, so don't use it on Darwin. */
1112
1113 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1114 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1115 # define USE_ALIGNED_ALLOC 1
1116 # ifndef HAVE_ALIGNED_ALLOC
1117 /* Defined in gmalloc.c. */
1118 void *aligned_alloc (size_t, size_t);
1119 # endif
1120 # elif defined HYBRID_MALLOC
1121 # if defined HAVE_ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1122 # define USE_ALIGNED_ALLOC 1
1123 # define aligned_alloc hybrid_aligned_alloc
1124 /* Defined in gmalloc.c. */
1125 void *aligned_alloc (size_t, size_t);
1126 # endif
1127 # elif defined HAVE_ALIGNED_ALLOC
1128 # define USE_ALIGNED_ALLOC 1
1129 # elif defined HAVE_POSIX_MEMALIGN
1130 # define USE_ALIGNED_ALLOC 1
1131 static void *
1132 aligned_alloc (size_t alignment, size_t size)
1133 {
1134 void *p;
1135 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1136 }
1137 # endif
1138 #endif
1139
1140 /* BLOCK_ALIGN has to be a power of 2. */
1141 #define BLOCK_ALIGN (1 << 10)
1142
1143 /* Padding to leave at the end of a malloc'd block. This is to give
1144 malloc a chance to minimize the amount of memory wasted to alignment.
1145 It should be tuned to the particular malloc library used.
1146 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1147 aligned_alloc on the other hand would ideally prefer a value of 4
1148 because otherwise, there's 1020 bytes wasted between each ablocks.
1149 In Emacs, testing shows that those 1020 can most of the time be
1150 efficiently used by malloc to place other objects, so a value of 0 can
1151 still preferable unless you have a lot of aligned blocks and virtually
1152 nothing else. */
1153 #define BLOCK_PADDING 0
1154 #define BLOCK_BYTES \
1155 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1156
1157 /* Internal data structures and constants. */
1158
1159 #define ABLOCKS_SIZE 16
1160
1161 /* An aligned block of memory. */
1162 struct ablock
1163 {
1164 union
1165 {
1166 char payload[BLOCK_BYTES];
1167 struct ablock *next_free;
1168 } x;
1169 /* `abase' is the aligned base of the ablocks. */
1170 /* It is overloaded to hold the virtual `busy' field that counts
1171 the number of used ablock in the parent ablocks.
1172 The first ablock has the `busy' field, the others have the `abase'
1173 field. To tell the difference, we assume that pointers will have
1174 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1175 is used to tell whether the real base of the parent ablocks is `abase'
1176 (if not, the word before the first ablock holds a pointer to the
1177 real base). */
1178 struct ablocks *abase;
1179 /* The padding of all but the last ablock is unused. The padding of
1180 the last ablock in an ablocks is not allocated. */
1181 #if BLOCK_PADDING
1182 char padding[BLOCK_PADDING];
1183 #endif
1184 };
1185
1186 /* A bunch of consecutive aligned blocks. */
1187 struct ablocks
1188 {
1189 struct ablock blocks[ABLOCKS_SIZE];
1190 };
1191
1192 /* Size of the block requested from malloc or aligned_alloc. */
1193 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1194
1195 #define ABLOCK_ABASE(block) \
1196 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1197 ? (struct ablocks *)(block) \
1198 : (block)->abase)
1199
1200 /* Virtual `busy' field. */
1201 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1202
1203 /* Pointer to the (not necessarily aligned) malloc block. */
1204 #ifdef USE_ALIGNED_ALLOC
1205 #define ABLOCKS_BASE(abase) (abase)
1206 #else
1207 #define ABLOCKS_BASE(abase) \
1208 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1209 #endif
1210
1211 /* The list of free ablock. */
1212 static struct ablock *free_ablock;
1213
1214 /* Allocate an aligned block of nbytes.
1215 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1216 smaller or equal to BLOCK_BYTES. */
1217 static void *
1218 lisp_align_malloc (size_t nbytes, enum mem_type type)
1219 {
1220 void *base, *val;
1221 struct ablocks *abase;
1222
1223 eassert (nbytes <= BLOCK_BYTES);
1224
1225 MALLOC_BLOCK_INPUT;
1226
1227 #ifdef GC_MALLOC_CHECK
1228 allocated_mem_type = type;
1229 #endif
1230
1231 if (!free_ablock)
1232 {
1233 int i;
1234 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1235
1236 #ifdef DOUG_LEA_MALLOC
1237 if (!mmap_lisp_allowed_p ())
1238 mallopt (M_MMAP_MAX, 0);
1239 #endif
1240
1241 #ifdef USE_ALIGNED_ALLOC
1242 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1243 #else
1244 base = malloc (ABLOCKS_BYTES);
1245 abase = ALIGN (base, BLOCK_ALIGN);
1246 #endif
1247
1248 if (base == 0)
1249 {
1250 MALLOC_UNBLOCK_INPUT;
1251 memory_full (ABLOCKS_BYTES);
1252 }
1253
1254 aligned = (base == abase);
1255 if (!aligned)
1256 ((void **) abase)[-1] = base;
1257
1258 #ifdef DOUG_LEA_MALLOC
1259 if (!mmap_lisp_allowed_p ())
1260 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1261 #endif
1262
1263 #if ! USE_LSB_TAG
1264 /* If the memory just allocated cannot be addressed thru a Lisp
1265 object's pointer, and it needs to be, that's equivalent to
1266 running out of memory. */
1267 if (type != MEM_TYPE_NON_LISP)
1268 {
1269 Lisp_Object tem;
1270 char *end = (char *) base + ABLOCKS_BYTES - 1;
1271 XSETCONS (tem, end);
1272 if ((char *) XCONS (tem) != end)
1273 {
1274 lisp_malloc_loser = base;
1275 free (base);
1276 MALLOC_UNBLOCK_INPUT;
1277 memory_full (SIZE_MAX);
1278 }
1279 }
1280 #endif
1281
1282 /* Initialize the blocks and put them on the free list.
1283 If `base' was not properly aligned, we can't use the last block. */
1284 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1285 {
1286 abase->blocks[i].abase = abase;
1287 abase->blocks[i].x.next_free = free_ablock;
1288 free_ablock = &abase->blocks[i];
1289 }
1290 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1291
1292 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1293 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1294 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1295 eassert (ABLOCKS_BASE (abase) == base);
1296 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1297 }
1298
1299 abase = ABLOCK_ABASE (free_ablock);
1300 ABLOCKS_BUSY (abase)
1301 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1302 val = free_ablock;
1303 free_ablock = free_ablock->x.next_free;
1304
1305 #ifndef GC_MALLOC_CHECK
1306 if (type != MEM_TYPE_NON_LISP)
1307 mem_insert (val, (char *) val + nbytes, type);
1308 #endif
1309
1310 MALLOC_UNBLOCK_INPUT;
1311
1312 MALLOC_PROBE (nbytes);
1313
1314 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1315 return val;
1316 }
1317
1318 static void
1319 lisp_align_free (void *block)
1320 {
1321 struct ablock *ablock = block;
1322 struct ablocks *abase = ABLOCK_ABASE (ablock);
1323
1324 MALLOC_BLOCK_INPUT;
1325 #ifndef GC_MALLOC_CHECK
1326 mem_delete (mem_find (block));
1327 #endif
1328 /* Put on free list. */
1329 ablock->x.next_free = free_ablock;
1330 free_ablock = ablock;
1331 /* Update busy count. */
1332 ABLOCKS_BUSY (abase)
1333 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1334
1335 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1336 { /* All the blocks are free. */
1337 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1338 struct ablock **tem = &free_ablock;
1339 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1340
1341 while (*tem)
1342 {
1343 if (*tem >= (struct ablock *) abase && *tem < atop)
1344 {
1345 i++;
1346 *tem = (*tem)->x.next_free;
1347 }
1348 else
1349 tem = &(*tem)->x.next_free;
1350 }
1351 eassert ((aligned & 1) == aligned);
1352 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1353 #ifdef USE_POSIX_MEMALIGN
1354 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1355 #endif
1356 free (ABLOCKS_BASE (abase));
1357 }
1358 MALLOC_UNBLOCK_INPUT;
1359 }
1360
1361 #if !defined __GNUC__ && !defined __alignof__
1362 # define __alignof__(type) alignof (type)
1363 #endif
1364
1365 /* True if malloc returns a multiple of GCALIGNMENT. In practice this
1366 holds if __alignof__ (max_align_t) is a multiple. Use __alignof__
1367 if available, as otherwise this check would fail with GCC x86.
1368 This is a macro, not an enum constant, for portability to HP-UX
1369 10.20 cc and AIX 3.2.5 xlc. */
1370 #define MALLOC_IS_GC_ALIGNED (__alignof__ (max_align_t) % GCALIGNMENT == 0)
1371
1372 /* True if P is suitably aligned for SIZE, where Lisp alignment may be
1373 needed if SIZE is Lisp-aligned. */
1374
1375 static bool
1376 laligned (void *p, size_t size)
1377 {
1378 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1379 || size % GCALIGNMENT != 0);
1380 }
1381
1382 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1383 sure the result is too, if necessary by reallocating (typically
1384 with larger and larger sizes) until the allocator returns a
1385 Lisp-aligned pointer. Code that needs to allocate C heap memory
1386 for a Lisp object should use one of these functions to obtain a
1387 pointer P; that way, if T is an enum Lisp_Type value and L ==
1388 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1389
1390 On typical modern platforms these functions' loops do not iterate.
1391 On now-rare (and perhaps nonexistent) platforms, the loops in
1392 theory could repeat forever. If an infinite loop is possible on a
1393 platform, a build would surely loop and the builder can then send
1394 us a bug report. Adding a counter to try to detect any such loop
1395 would complicate the code (and possibly introduce bugs, in code
1396 that's never really exercised) for little benefit. */
1397
1398 static void *
1399 lmalloc (size_t size)
1400 {
1401 #if USE_ALIGNED_ALLOC
1402 if (! MALLOC_IS_GC_ALIGNED)
1403 return aligned_alloc (GCALIGNMENT, size);
1404 #endif
1405
1406 void *p;
1407 while (true)
1408 {
1409 p = malloc (size);
1410 if (laligned (p, size))
1411 break;
1412 free (p);
1413 size_t bigger;
1414 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1415 size = bigger;
1416 }
1417
1418 eassert ((intptr_t) p % GCALIGNMENT == 0);
1419 return p;
1420 }
1421
1422 static void *
1423 lrealloc (void *p, size_t size)
1424 {
1425 while (true)
1426 {
1427 p = realloc (p, size);
1428 if (laligned (p, size))
1429 break;
1430 size_t bigger;
1431 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1432 size = bigger;
1433 }
1434
1435 eassert ((intptr_t) p % GCALIGNMENT == 0);
1436 return p;
1437 }
1438
1439 \f
1440 /***********************************************************************
1441 Interval Allocation
1442 ***********************************************************************/
1443
1444 /* Number of intervals allocated in an interval_block structure.
1445 The 1020 is 1024 minus malloc overhead. */
1446
1447 #define INTERVAL_BLOCK_SIZE \
1448 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1449
1450 /* Intervals are allocated in chunks in the form of an interval_block
1451 structure. */
1452
1453 struct interval_block
1454 {
1455 /* Place `intervals' first, to preserve alignment. */
1456 struct interval intervals[INTERVAL_BLOCK_SIZE];
1457 struct interval_block *next;
1458 };
1459
1460 /* Current interval block. Its `next' pointer points to older
1461 blocks. */
1462
1463 static struct interval_block *interval_block;
1464
1465 /* Index in interval_block above of the next unused interval
1466 structure. */
1467
1468 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1469
1470 /* Number of free and live intervals. */
1471
1472 static EMACS_INT total_free_intervals, total_intervals;
1473
1474 /* List of free intervals. */
1475
1476 static INTERVAL interval_free_list;
1477
1478 /* Return a new interval. */
1479
1480 INTERVAL
1481 make_interval (void)
1482 {
1483 INTERVAL val;
1484
1485 MALLOC_BLOCK_INPUT;
1486
1487 if (interval_free_list)
1488 {
1489 val = interval_free_list;
1490 interval_free_list = INTERVAL_PARENT (interval_free_list);
1491 }
1492 else
1493 {
1494 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1495 {
1496 struct interval_block *newi
1497 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1498
1499 newi->next = interval_block;
1500 interval_block = newi;
1501 interval_block_index = 0;
1502 total_free_intervals += INTERVAL_BLOCK_SIZE;
1503 }
1504 val = &interval_block->intervals[interval_block_index++];
1505 }
1506
1507 MALLOC_UNBLOCK_INPUT;
1508
1509 consing_since_gc += sizeof (struct interval);
1510 intervals_consed++;
1511 total_free_intervals--;
1512 RESET_INTERVAL (val);
1513 val->gcmarkbit = 0;
1514 return val;
1515 }
1516
1517
1518 /* Mark Lisp objects in interval I. */
1519
1520 static void
1521 mark_interval (register INTERVAL i, Lisp_Object dummy)
1522 {
1523 /* Intervals should never be shared. So, if extra internal checking is
1524 enabled, GC aborts if it seems to have visited an interval twice. */
1525 eassert (!i->gcmarkbit);
1526 i->gcmarkbit = 1;
1527 mark_object (i->plist);
1528 }
1529
1530 /* Mark the interval tree rooted in I. */
1531
1532 #define MARK_INTERVAL_TREE(i) \
1533 do { \
1534 if (i && !i->gcmarkbit) \
1535 traverse_intervals_noorder (i, mark_interval, Qnil); \
1536 } while (0)
1537
1538 /***********************************************************************
1539 String Allocation
1540 ***********************************************************************/
1541
1542 /* Lisp_Strings are allocated in string_block structures. When a new
1543 string_block is allocated, all the Lisp_Strings it contains are
1544 added to a free-list string_free_list. When a new Lisp_String is
1545 needed, it is taken from that list. During the sweep phase of GC,
1546 string_blocks that are entirely free are freed, except two which
1547 we keep.
1548
1549 String data is allocated from sblock structures. Strings larger
1550 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1551 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1552
1553 Sblocks consist internally of sdata structures, one for each
1554 Lisp_String. The sdata structure points to the Lisp_String it
1555 belongs to. The Lisp_String points back to the `u.data' member of
1556 its sdata structure.
1557
1558 When a Lisp_String is freed during GC, it is put back on
1559 string_free_list, and its `data' member and its sdata's `string'
1560 pointer is set to null. The size of the string is recorded in the
1561 `n.nbytes' member of the sdata. So, sdata structures that are no
1562 longer used, can be easily recognized, and it's easy to compact the
1563 sblocks of small strings which we do in compact_small_strings. */
1564
1565 /* Size in bytes of an sblock structure used for small strings. This
1566 is 8192 minus malloc overhead. */
1567
1568 #define SBLOCK_SIZE 8188
1569
1570 /* Strings larger than this are considered large strings. String data
1571 for large strings is allocated from individual sblocks. */
1572
1573 #define LARGE_STRING_BYTES 1024
1574
1575 /* The SDATA typedef is a struct or union describing string memory
1576 sub-allocated from an sblock. This is where the contents of Lisp
1577 strings are stored. */
1578
1579 struct sdata
1580 {
1581 /* Back-pointer to the string this sdata belongs to. If null, this
1582 structure is free, and NBYTES (in this structure or in the union below)
1583 contains the string's byte size (the same value that STRING_BYTES
1584 would return if STRING were non-null). If non-null, STRING_BYTES
1585 (STRING) is the size of the data, and DATA contains the string's
1586 contents. */
1587 struct Lisp_String *string;
1588
1589 #ifdef GC_CHECK_STRING_BYTES
1590 ptrdiff_t nbytes;
1591 #endif
1592
1593 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1594 };
1595
1596 #ifdef GC_CHECK_STRING_BYTES
1597
1598 typedef struct sdata sdata;
1599 #define SDATA_NBYTES(S) (S)->nbytes
1600 #define SDATA_DATA(S) (S)->data
1601
1602 #else
1603
1604 typedef union
1605 {
1606 struct Lisp_String *string;
1607
1608 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1609 which has a flexible array member. However, if implemented by
1610 giving this union a member of type 'struct sdata', the union
1611 could not be the last (flexible) member of 'struct sblock',
1612 because C99 prohibits a flexible array member from having a type
1613 that is itself a flexible array. So, comment this member out here,
1614 but remember that the option's there when using this union. */
1615 #if 0
1616 struct sdata u;
1617 #endif
1618
1619 /* When STRING is null. */
1620 struct
1621 {
1622 struct Lisp_String *string;
1623 ptrdiff_t nbytes;
1624 } n;
1625 } sdata;
1626
1627 #define SDATA_NBYTES(S) (S)->n.nbytes
1628 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1629
1630 #endif /* not GC_CHECK_STRING_BYTES */
1631
1632 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1633
1634 /* Structure describing a block of memory which is sub-allocated to
1635 obtain string data memory for strings. Blocks for small strings
1636 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1637 as large as needed. */
1638
1639 struct sblock
1640 {
1641 /* Next in list. */
1642 struct sblock *next;
1643
1644 /* Pointer to the next free sdata block. This points past the end
1645 of the sblock if there isn't any space left in this block. */
1646 sdata *next_free;
1647
1648 /* String data. */
1649 sdata data[FLEXIBLE_ARRAY_MEMBER];
1650 };
1651
1652 /* Number of Lisp strings in a string_block structure. The 1020 is
1653 1024 minus malloc overhead. */
1654
1655 #define STRING_BLOCK_SIZE \
1656 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1657
1658 /* Structure describing a block from which Lisp_String structures
1659 are allocated. */
1660
1661 struct string_block
1662 {
1663 /* Place `strings' first, to preserve alignment. */
1664 struct Lisp_String strings[STRING_BLOCK_SIZE];
1665 struct string_block *next;
1666 };
1667
1668 /* Head and tail of the list of sblock structures holding Lisp string
1669 data. We always allocate from current_sblock. The NEXT pointers
1670 in the sblock structures go from oldest_sblock to current_sblock. */
1671
1672 static struct sblock *oldest_sblock, *current_sblock;
1673
1674 /* List of sblocks for large strings. */
1675
1676 static struct sblock *large_sblocks;
1677
1678 /* List of string_block structures. */
1679
1680 static struct string_block *string_blocks;
1681
1682 /* Free-list of Lisp_Strings. */
1683
1684 static struct Lisp_String *string_free_list;
1685
1686 /* Number of live and free Lisp_Strings. */
1687
1688 static EMACS_INT total_strings, total_free_strings;
1689
1690 /* Number of bytes used by live strings. */
1691
1692 static EMACS_INT total_string_bytes;
1693
1694 /* Given a pointer to a Lisp_String S which is on the free-list
1695 string_free_list, return a pointer to its successor in the
1696 free-list. */
1697
1698 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1699
1700 /* Return a pointer to the sdata structure belonging to Lisp string S.
1701 S must be live, i.e. S->data must not be null. S->data is actually
1702 a pointer to the `u.data' member of its sdata structure; the
1703 structure starts at a constant offset in front of that. */
1704
1705 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1706
1707
1708 #ifdef GC_CHECK_STRING_OVERRUN
1709
1710 /* We check for overrun in string data blocks by appending a small
1711 "cookie" after each allocated string data block, and check for the
1712 presence of this cookie during GC. */
1713
1714 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1715 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1716 { '\xde', '\xad', '\xbe', '\xef' };
1717
1718 #else
1719 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1720 #endif
1721
1722 /* Value is the size of an sdata structure large enough to hold NBYTES
1723 bytes of string data. The value returned includes a terminating
1724 NUL byte, the size of the sdata structure, and padding. */
1725
1726 #ifdef GC_CHECK_STRING_BYTES
1727
1728 #define SDATA_SIZE(NBYTES) \
1729 ((SDATA_DATA_OFFSET \
1730 + (NBYTES) + 1 \
1731 + sizeof (ptrdiff_t) - 1) \
1732 & ~(sizeof (ptrdiff_t) - 1))
1733
1734 #else /* not GC_CHECK_STRING_BYTES */
1735
1736 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1737 less than the size of that member. The 'max' is not needed when
1738 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1739 alignment code reserves enough space. */
1740
1741 #define SDATA_SIZE(NBYTES) \
1742 ((SDATA_DATA_OFFSET \
1743 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1744 ? NBYTES \
1745 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1746 + 1 \
1747 + sizeof (ptrdiff_t) - 1) \
1748 & ~(sizeof (ptrdiff_t) - 1))
1749
1750 #endif /* not GC_CHECK_STRING_BYTES */
1751
1752 /* Extra bytes to allocate for each string. */
1753
1754 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1755
1756 /* Exact bound on the number of bytes in a string, not counting the
1757 terminating null. A string cannot contain more bytes than
1758 STRING_BYTES_BOUND, nor can it be so long that the size_t
1759 arithmetic in allocate_string_data would overflow while it is
1760 calculating a value to be passed to malloc. */
1761 static ptrdiff_t const STRING_BYTES_MAX =
1762 min (STRING_BYTES_BOUND,
1763 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1764 - GC_STRING_EXTRA
1765 - offsetof (struct sblock, data)
1766 - SDATA_DATA_OFFSET)
1767 & ~(sizeof (EMACS_INT) - 1)));
1768
1769 /* Initialize string allocation. Called from init_alloc_once. */
1770
1771 static void
1772 init_strings (void)
1773 {
1774 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1775 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1776 }
1777
1778
1779 #ifdef GC_CHECK_STRING_BYTES
1780
1781 static int check_string_bytes_count;
1782
1783 /* Like STRING_BYTES, but with debugging check. Can be
1784 called during GC, so pay attention to the mark bit. */
1785
1786 ptrdiff_t
1787 string_bytes (struct Lisp_String *s)
1788 {
1789 ptrdiff_t nbytes =
1790 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1791
1792 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1793 emacs_abort ();
1794 return nbytes;
1795 }
1796
1797 /* Check validity of Lisp strings' string_bytes member in B. */
1798
1799 static void
1800 check_sblock (struct sblock *b)
1801 {
1802 sdata *from, *end, *from_end;
1803
1804 end = b->next_free;
1805
1806 for (from = b->data; from < end; from = from_end)
1807 {
1808 /* Compute the next FROM here because copying below may
1809 overwrite data we need to compute it. */
1810 ptrdiff_t nbytes;
1811
1812 /* Check that the string size recorded in the string is the
1813 same as the one recorded in the sdata structure. */
1814 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1815 : SDATA_NBYTES (from));
1816 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1817 }
1818 }
1819
1820
1821 /* Check validity of Lisp strings' string_bytes member. ALL_P
1822 means check all strings, otherwise check only most
1823 recently allocated strings. Used for hunting a bug. */
1824
1825 static void
1826 check_string_bytes (bool all_p)
1827 {
1828 if (all_p)
1829 {
1830 struct sblock *b;
1831
1832 for (b = large_sblocks; b; b = b->next)
1833 {
1834 struct Lisp_String *s = b->data[0].string;
1835 if (s)
1836 string_bytes (s);
1837 }
1838
1839 for (b = oldest_sblock; b; b = b->next)
1840 check_sblock (b);
1841 }
1842 else if (current_sblock)
1843 check_sblock (current_sblock);
1844 }
1845
1846 #else /* not GC_CHECK_STRING_BYTES */
1847
1848 #define check_string_bytes(all) ((void) 0)
1849
1850 #endif /* GC_CHECK_STRING_BYTES */
1851
1852 #ifdef GC_CHECK_STRING_FREE_LIST
1853
1854 /* Walk through the string free list looking for bogus next pointers.
1855 This may catch buffer overrun from a previous string. */
1856
1857 static void
1858 check_string_free_list (void)
1859 {
1860 struct Lisp_String *s;
1861
1862 /* Pop a Lisp_String off the free-list. */
1863 s = string_free_list;
1864 while (s != NULL)
1865 {
1866 if ((uintptr_t) s < 1024)
1867 emacs_abort ();
1868 s = NEXT_FREE_LISP_STRING (s);
1869 }
1870 }
1871 #else
1872 #define check_string_free_list()
1873 #endif
1874
1875 /* Return a new Lisp_String. */
1876
1877 static struct Lisp_String *
1878 allocate_string (void)
1879 {
1880 struct Lisp_String *s;
1881
1882 MALLOC_BLOCK_INPUT;
1883
1884 /* If the free-list is empty, allocate a new string_block, and
1885 add all the Lisp_Strings in it to the free-list. */
1886 if (string_free_list == NULL)
1887 {
1888 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1889 int i;
1890
1891 b->next = string_blocks;
1892 string_blocks = b;
1893
1894 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1895 {
1896 s = b->strings + i;
1897 /* Every string on a free list should have NULL data pointer. */
1898 s->data = NULL;
1899 NEXT_FREE_LISP_STRING (s) = string_free_list;
1900 string_free_list = s;
1901 }
1902
1903 total_free_strings += STRING_BLOCK_SIZE;
1904 }
1905
1906 check_string_free_list ();
1907
1908 /* Pop a Lisp_String off the free-list. */
1909 s = string_free_list;
1910 string_free_list = NEXT_FREE_LISP_STRING (s);
1911
1912 MALLOC_UNBLOCK_INPUT;
1913
1914 --total_free_strings;
1915 ++total_strings;
1916 ++strings_consed;
1917 consing_since_gc += sizeof *s;
1918
1919 #ifdef GC_CHECK_STRING_BYTES
1920 if (!noninteractive)
1921 {
1922 if (++check_string_bytes_count == 200)
1923 {
1924 check_string_bytes_count = 0;
1925 check_string_bytes (1);
1926 }
1927 else
1928 check_string_bytes (0);
1929 }
1930 #endif /* GC_CHECK_STRING_BYTES */
1931
1932 return s;
1933 }
1934
1935
1936 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1937 plus a NUL byte at the end. Allocate an sdata structure for S, and
1938 set S->data to its `u.data' member. Store a NUL byte at the end of
1939 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1940 S->data if it was initially non-null. */
1941
1942 void
1943 allocate_string_data (struct Lisp_String *s,
1944 EMACS_INT nchars, EMACS_INT nbytes)
1945 {
1946 sdata *data, *old_data;
1947 struct sblock *b;
1948 ptrdiff_t needed, old_nbytes;
1949
1950 if (STRING_BYTES_MAX < nbytes)
1951 string_overflow ();
1952
1953 /* Determine the number of bytes needed to store NBYTES bytes
1954 of string data. */
1955 needed = SDATA_SIZE (nbytes);
1956 if (s->data)
1957 {
1958 old_data = SDATA_OF_STRING (s);
1959 old_nbytes = STRING_BYTES (s);
1960 }
1961 else
1962 old_data = NULL;
1963
1964 MALLOC_BLOCK_INPUT;
1965
1966 if (nbytes > LARGE_STRING_BYTES)
1967 {
1968 size_t size = offsetof (struct sblock, data) + needed;
1969
1970 #ifdef DOUG_LEA_MALLOC
1971 if (!mmap_lisp_allowed_p ())
1972 mallopt (M_MMAP_MAX, 0);
1973 #endif
1974
1975 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1976
1977 #ifdef DOUG_LEA_MALLOC
1978 if (!mmap_lisp_allowed_p ())
1979 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1980 #endif
1981
1982 b->next_free = b->data;
1983 b->data[0].string = NULL;
1984 b->next = large_sblocks;
1985 large_sblocks = b;
1986 }
1987 else if (current_sblock == NULL
1988 || (((char *) current_sblock + SBLOCK_SIZE
1989 - (char *) current_sblock->next_free)
1990 < (needed + GC_STRING_EXTRA)))
1991 {
1992 /* Not enough room in the current sblock. */
1993 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1994 b->next_free = b->data;
1995 b->data[0].string = NULL;
1996 b->next = NULL;
1997
1998 if (current_sblock)
1999 current_sblock->next = b;
2000 else
2001 oldest_sblock = b;
2002 current_sblock = b;
2003 }
2004 else
2005 b = current_sblock;
2006
2007 data = b->next_free;
2008 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2009
2010 MALLOC_UNBLOCK_INPUT;
2011
2012 data->string = s;
2013 s->data = SDATA_DATA (data);
2014 #ifdef GC_CHECK_STRING_BYTES
2015 SDATA_NBYTES (data) = nbytes;
2016 #endif
2017 s->size = nchars;
2018 s->size_byte = nbytes;
2019 s->data[nbytes] = '\0';
2020 #ifdef GC_CHECK_STRING_OVERRUN
2021 memcpy ((char *) data + needed, string_overrun_cookie,
2022 GC_STRING_OVERRUN_COOKIE_SIZE);
2023 #endif
2024
2025 /* Note that Faset may call to this function when S has already data
2026 assigned. In this case, mark data as free by setting it's string
2027 back-pointer to null, and record the size of the data in it. */
2028 if (old_data)
2029 {
2030 SDATA_NBYTES (old_data) = old_nbytes;
2031 old_data->string = NULL;
2032 }
2033
2034 consing_since_gc += needed;
2035 }
2036
2037
2038 /* Sweep and compact strings. */
2039
2040 NO_INLINE /* For better stack traces */
2041 static void
2042 sweep_strings (void)
2043 {
2044 struct string_block *b, *next;
2045 struct string_block *live_blocks = NULL;
2046
2047 string_free_list = NULL;
2048 total_strings = total_free_strings = 0;
2049 total_string_bytes = 0;
2050
2051 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2052 for (b = string_blocks; b; b = next)
2053 {
2054 int i, nfree = 0;
2055 struct Lisp_String *free_list_before = string_free_list;
2056
2057 next = b->next;
2058
2059 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2060 {
2061 struct Lisp_String *s = b->strings + i;
2062
2063 if (s->data)
2064 {
2065 /* String was not on free-list before. */
2066 if (STRING_MARKED_P (s))
2067 {
2068 /* String is live; unmark it and its intervals. */
2069 UNMARK_STRING (s);
2070
2071 /* Do not use string_(set|get)_intervals here. */
2072 s->intervals = balance_intervals (s->intervals);
2073
2074 ++total_strings;
2075 total_string_bytes += STRING_BYTES (s);
2076 }
2077 else
2078 {
2079 /* String is dead. Put it on the free-list. */
2080 sdata *data = SDATA_OF_STRING (s);
2081
2082 /* Save the size of S in its sdata so that we know
2083 how large that is. Reset the sdata's string
2084 back-pointer so that we know it's free. */
2085 #ifdef GC_CHECK_STRING_BYTES
2086 if (string_bytes (s) != SDATA_NBYTES (data))
2087 emacs_abort ();
2088 #else
2089 data->n.nbytes = STRING_BYTES (s);
2090 #endif
2091 data->string = NULL;
2092
2093 /* Reset the strings's `data' member so that we
2094 know it's free. */
2095 s->data = NULL;
2096
2097 /* Put the string on the free-list. */
2098 NEXT_FREE_LISP_STRING (s) = string_free_list;
2099 string_free_list = s;
2100 ++nfree;
2101 }
2102 }
2103 else
2104 {
2105 /* S was on the free-list before. Put it there again. */
2106 NEXT_FREE_LISP_STRING (s) = string_free_list;
2107 string_free_list = s;
2108 ++nfree;
2109 }
2110 }
2111
2112 /* Free blocks that contain free Lisp_Strings only, except
2113 the first two of them. */
2114 if (nfree == STRING_BLOCK_SIZE
2115 && total_free_strings > STRING_BLOCK_SIZE)
2116 {
2117 lisp_free (b);
2118 string_free_list = free_list_before;
2119 }
2120 else
2121 {
2122 total_free_strings += nfree;
2123 b->next = live_blocks;
2124 live_blocks = b;
2125 }
2126 }
2127
2128 check_string_free_list ();
2129
2130 string_blocks = live_blocks;
2131 free_large_strings ();
2132 compact_small_strings ();
2133
2134 check_string_free_list ();
2135 }
2136
2137
2138 /* Free dead large strings. */
2139
2140 static void
2141 free_large_strings (void)
2142 {
2143 struct sblock *b, *next;
2144 struct sblock *live_blocks = NULL;
2145
2146 for (b = large_sblocks; b; b = next)
2147 {
2148 next = b->next;
2149
2150 if (b->data[0].string == NULL)
2151 lisp_free (b);
2152 else
2153 {
2154 b->next = live_blocks;
2155 live_blocks = b;
2156 }
2157 }
2158
2159 large_sblocks = live_blocks;
2160 }
2161
2162
2163 /* Compact data of small strings. Free sblocks that don't contain
2164 data of live strings after compaction. */
2165
2166 static void
2167 compact_small_strings (void)
2168 {
2169 struct sblock *b, *tb, *next;
2170 sdata *from, *to, *end, *tb_end;
2171 sdata *to_end, *from_end;
2172
2173 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2174 to, and TB_END is the end of TB. */
2175 tb = oldest_sblock;
2176 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2177 to = tb->data;
2178
2179 /* Step through the blocks from the oldest to the youngest. We
2180 expect that old blocks will stabilize over time, so that less
2181 copying will happen this way. */
2182 for (b = oldest_sblock; b; b = b->next)
2183 {
2184 end = b->next_free;
2185 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2186
2187 for (from = b->data; from < end; from = from_end)
2188 {
2189 /* Compute the next FROM here because copying below may
2190 overwrite data we need to compute it. */
2191 ptrdiff_t nbytes;
2192 struct Lisp_String *s = from->string;
2193
2194 #ifdef GC_CHECK_STRING_BYTES
2195 /* Check that the string size recorded in the string is the
2196 same as the one recorded in the sdata structure. */
2197 if (s && string_bytes (s) != SDATA_NBYTES (from))
2198 emacs_abort ();
2199 #endif /* GC_CHECK_STRING_BYTES */
2200
2201 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2202 eassert (nbytes <= LARGE_STRING_BYTES);
2203
2204 nbytes = SDATA_SIZE (nbytes);
2205 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2206
2207 #ifdef GC_CHECK_STRING_OVERRUN
2208 if (memcmp (string_overrun_cookie,
2209 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2210 GC_STRING_OVERRUN_COOKIE_SIZE))
2211 emacs_abort ();
2212 #endif
2213
2214 /* Non-NULL S means it's alive. Copy its data. */
2215 if (s)
2216 {
2217 /* If TB is full, proceed with the next sblock. */
2218 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2219 if (to_end > tb_end)
2220 {
2221 tb->next_free = to;
2222 tb = tb->next;
2223 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2224 to = tb->data;
2225 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2226 }
2227
2228 /* Copy, and update the string's `data' pointer. */
2229 if (from != to)
2230 {
2231 eassert (tb != b || to < from);
2232 memmove (to, from, nbytes + GC_STRING_EXTRA);
2233 to->string->data = SDATA_DATA (to);
2234 }
2235
2236 /* Advance past the sdata we copied to. */
2237 to = to_end;
2238 }
2239 }
2240 }
2241
2242 /* The rest of the sblocks following TB don't contain live data, so
2243 we can free them. */
2244 for (b = tb->next; b; b = next)
2245 {
2246 next = b->next;
2247 lisp_free (b);
2248 }
2249
2250 tb->next_free = to;
2251 tb->next = NULL;
2252 current_sblock = tb;
2253 }
2254
2255 void
2256 string_overflow (void)
2257 {
2258 error ("Maximum string size exceeded");
2259 }
2260
2261 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2262 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2263 LENGTH must be an integer.
2264 INIT must be an integer that represents a character. */)
2265 (Lisp_Object length, Lisp_Object init)
2266 {
2267 register Lisp_Object val;
2268 int c;
2269 EMACS_INT nbytes;
2270
2271 CHECK_NATNUM (length);
2272 CHECK_CHARACTER (init);
2273
2274 c = XFASTINT (init);
2275 if (ASCII_CHAR_P (c))
2276 {
2277 nbytes = XINT (length);
2278 val = make_uninit_string (nbytes);
2279 if (nbytes)
2280 {
2281 memset (SDATA (val), c, nbytes);
2282 SDATA (val)[nbytes] = 0;
2283 }
2284 }
2285 else
2286 {
2287 unsigned char str[MAX_MULTIBYTE_LENGTH];
2288 ptrdiff_t len = CHAR_STRING (c, str);
2289 EMACS_INT string_len = XINT (length);
2290 unsigned char *p, *beg, *end;
2291
2292 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2293 string_overflow ();
2294 val = make_uninit_multibyte_string (string_len, nbytes);
2295 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2296 {
2297 /* First time we just copy `str' to the data of `val'. */
2298 if (p == beg)
2299 memcpy (p, str, len);
2300 else
2301 {
2302 /* Next time we copy largest possible chunk from
2303 initialized to uninitialized part of `val'. */
2304 len = min (p - beg, end - p);
2305 memcpy (p, beg, len);
2306 }
2307 }
2308 if (nbytes)
2309 *p = 0;
2310 }
2311
2312 return val;
2313 }
2314
2315 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2316 Return A. */
2317
2318 Lisp_Object
2319 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2320 {
2321 EMACS_INT nbits = bool_vector_size (a);
2322 if (0 < nbits)
2323 {
2324 unsigned char *data = bool_vector_uchar_data (a);
2325 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2326 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2327 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2328 memset (data, pattern, nbytes - 1);
2329 data[nbytes - 1] = pattern & last_mask;
2330 }
2331 return a;
2332 }
2333
2334 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2335
2336 Lisp_Object
2337 make_uninit_bool_vector (EMACS_INT nbits)
2338 {
2339 Lisp_Object val;
2340 EMACS_INT words = bool_vector_words (nbits);
2341 EMACS_INT word_bytes = words * sizeof (bits_word);
2342 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2343 + word_size - 1)
2344 / word_size);
2345 struct Lisp_Bool_Vector *p
2346 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2347 XSETVECTOR (val, p);
2348 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2349 p->size = nbits;
2350
2351 /* Clear padding at the end. */
2352 if (words)
2353 p->data[words - 1] = 0;
2354
2355 return val;
2356 }
2357
2358 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2359 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2360 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2361 (Lisp_Object length, Lisp_Object init)
2362 {
2363 Lisp_Object val;
2364
2365 CHECK_NATNUM (length);
2366 val = make_uninit_bool_vector (XFASTINT (length));
2367 return bool_vector_fill (val, init);
2368 }
2369
2370 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2371 doc: /* Return a new bool-vector with specified arguments as elements.
2372 Any number of arguments, even zero arguments, are allowed.
2373 usage: (bool-vector &rest OBJECTS) */)
2374 (ptrdiff_t nargs, Lisp_Object *args)
2375 {
2376 ptrdiff_t i;
2377 Lisp_Object vector;
2378
2379 vector = make_uninit_bool_vector (nargs);
2380 for (i = 0; i < nargs; i++)
2381 bool_vector_set (vector, i, !NILP (args[i]));
2382
2383 return vector;
2384 }
2385
2386 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2387 of characters from the contents. This string may be unibyte or
2388 multibyte, depending on the contents. */
2389
2390 Lisp_Object
2391 make_string (const char *contents, ptrdiff_t nbytes)
2392 {
2393 register Lisp_Object val;
2394 ptrdiff_t nchars, multibyte_nbytes;
2395
2396 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2397 &nchars, &multibyte_nbytes);
2398 if (nbytes == nchars || nbytes != multibyte_nbytes)
2399 /* CONTENTS contains no multibyte sequences or contains an invalid
2400 multibyte sequence. We must make unibyte string. */
2401 val = make_unibyte_string (contents, nbytes);
2402 else
2403 val = make_multibyte_string (contents, nchars, nbytes);
2404 return val;
2405 }
2406
2407 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2408
2409 Lisp_Object
2410 make_unibyte_string (const char *contents, ptrdiff_t length)
2411 {
2412 register Lisp_Object val;
2413 val = make_uninit_string (length);
2414 memcpy (SDATA (val), contents, length);
2415 return val;
2416 }
2417
2418
2419 /* Make a multibyte string from NCHARS characters occupying NBYTES
2420 bytes at CONTENTS. */
2421
2422 Lisp_Object
2423 make_multibyte_string (const char *contents,
2424 ptrdiff_t nchars, ptrdiff_t nbytes)
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 memcpy (SDATA (val), contents, nbytes);
2429 return val;
2430 }
2431
2432
2433 /* Make a string from NCHARS characters occupying NBYTES bytes at
2434 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2435
2436 Lisp_Object
2437 make_string_from_bytes (const char *contents,
2438 ptrdiff_t nchars, ptrdiff_t nbytes)
2439 {
2440 register Lisp_Object val;
2441 val = make_uninit_multibyte_string (nchars, nbytes);
2442 memcpy (SDATA (val), contents, nbytes);
2443 if (SBYTES (val) == SCHARS (val))
2444 STRING_SET_UNIBYTE (val);
2445 return val;
2446 }
2447
2448
2449 /* Make a string from NCHARS characters occupying NBYTES bytes at
2450 CONTENTS. The argument MULTIBYTE controls whether to label the
2451 string as multibyte. If NCHARS is negative, it counts the number of
2452 characters by itself. */
2453
2454 Lisp_Object
2455 make_specified_string (const char *contents,
2456 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2457 {
2458 Lisp_Object val;
2459
2460 if (nchars < 0)
2461 {
2462 if (multibyte)
2463 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2464 nbytes);
2465 else
2466 nchars = nbytes;
2467 }
2468 val = make_uninit_multibyte_string (nchars, nbytes);
2469 memcpy (SDATA (val), contents, nbytes);
2470 if (!multibyte)
2471 STRING_SET_UNIBYTE (val);
2472 return val;
2473 }
2474
2475
2476 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2477 occupying LENGTH bytes. */
2478
2479 Lisp_Object
2480 make_uninit_string (EMACS_INT length)
2481 {
2482 Lisp_Object val;
2483
2484 if (!length)
2485 return empty_unibyte_string;
2486 val = make_uninit_multibyte_string (length, length);
2487 STRING_SET_UNIBYTE (val);
2488 return val;
2489 }
2490
2491
2492 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2493 which occupy NBYTES bytes. */
2494
2495 Lisp_Object
2496 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2497 {
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2500
2501 if (nchars < 0)
2502 emacs_abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2505
2506 s = allocate_string ();
2507 s->intervals = NULL;
2508 allocate_string_data (s, nchars, nbytes);
2509 XSETSTRING (string, s);
2510 string_chars_consed += nbytes;
2511 return string;
2512 }
2513
2514 /* Print arguments to BUF according to a FORMAT, then return
2515 a Lisp_String initialized with the data from BUF. */
2516
2517 Lisp_Object
2518 make_formatted_string (char *buf, const char *format, ...)
2519 {
2520 va_list ap;
2521 int length;
2522
2523 va_start (ap, format);
2524 length = vsprintf (buf, format, ap);
2525 va_end (ap);
2526 return make_string (buf, length);
2527 }
2528
2529 \f
2530 /***********************************************************************
2531 Float Allocation
2532 ***********************************************************************/
2533
2534 /* We store float cells inside of float_blocks, allocating a new
2535 float_block with malloc whenever necessary. Float cells reclaimed
2536 by GC are put on a free list to be reallocated before allocating
2537 any new float cells from the latest float_block. */
2538
2539 #define FLOAT_BLOCK_SIZE \
2540 (((BLOCK_BYTES - sizeof (struct float_block *) \
2541 /* The compiler might add padding at the end. */ \
2542 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2543 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2544
2545 #define GETMARKBIT(block,n) \
2546 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2547 >> ((n) % BITS_PER_BITS_WORD)) \
2548 & 1)
2549
2550 #define SETMARKBIT(block,n) \
2551 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2552 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2553
2554 #define UNSETMARKBIT(block,n) \
2555 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2556 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2557
2558 #define FLOAT_BLOCK(fptr) \
2559 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2560
2561 #define FLOAT_INDEX(fptr) \
2562 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2563
2564 struct float_block
2565 {
2566 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2567 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2568 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2569 struct float_block *next;
2570 };
2571
2572 #define FLOAT_MARKED_P(fptr) \
2573 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2574
2575 #define FLOAT_MARK(fptr) \
2576 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2577
2578 #define FLOAT_UNMARK(fptr) \
2579 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2580
2581 /* Current float_block. */
2582
2583 static struct float_block *float_block;
2584
2585 /* Index of first unused Lisp_Float in the current float_block. */
2586
2587 static int float_block_index = FLOAT_BLOCK_SIZE;
2588
2589 /* Free-list of Lisp_Floats. */
2590
2591 static struct Lisp_Float *float_free_list;
2592
2593 /* Return a new float object with value FLOAT_VALUE. */
2594
2595 Lisp_Object
2596 make_float (double float_value)
2597 {
2598 register Lisp_Object val;
2599
2600 MALLOC_BLOCK_INPUT;
2601
2602 if (float_free_list)
2603 {
2604 /* We use the data field for chaining the free list
2605 so that we won't use the same field that has the mark bit. */
2606 XSETFLOAT (val, float_free_list);
2607 float_free_list = float_free_list->u.chain;
2608 }
2609 else
2610 {
2611 if (float_block_index == FLOAT_BLOCK_SIZE)
2612 {
2613 struct float_block *new
2614 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2615 new->next = float_block;
2616 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2617 float_block = new;
2618 float_block_index = 0;
2619 total_free_floats += FLOAT_BLOCK_SIZE;
2620 }
2621 XSETFLOAT (val, &float_block->floats[float_block_index]);
2622 float_block_index++;
2623 }
2624
2625 MALLOC_UNBLOCK_INPUT;
2626
2627 XFLOAT_INIT (val, float_value);
2628 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2629 consing_since_gc += sizeof (struct Lisp_Float);
2630 floats_consed++;
2631 total_free_floats--;
2632 return val;
2633 }
2634
2635
2636 \f
2637 /***********************************************************************
2638 Cons Allocation
2639 ***********************************************************************/
2640
2641 /* We store cons cells inside of cons_blocks, allocating a new
2642 cons_block with malloc whenever necessary. Cons cells reclaimed by
2643 GC are put on a free list to be reallocated before allocating
2644 any new cons cells from the latest cons_block. */
2645
2646 #define CONS_BLOCK_SIZE \
2647 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2648 /* The compiler might add padding at the end. */ \
2649 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2650 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2651
2652 #define CONS_BLOCK(fptr) \
2653 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2654
2655 #define CONS_INDEX(fptr) \
2656 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2657
2658 struct cons_block
2659 {
2660 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2661 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2662 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2663 struct cons_block *next;
2664 };
2665
2666 #define CONS_MARKED_P(fptr) \
2667 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2668
2669 #define CONS_MARK(fptr) \
2670 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2671
2672 #define CONS_UNMARK(fptr) \
2673 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2674
2675 /* Current cons_block. */
2676
2677 static struct cons_block *cons_block;
2678
2679 /* Index of first unused Lisp_Cons in the current block. */
2680
2681 static int cons_block_index = CONS_BLOCK_SIZE;
2682
2683 /* Free-list of Lisp_Cons structures. */
2684
2685 static struct Lisp_Cons *cons_free_list;
2686
2687 /* Explicitly free a cons cell by putting it on the free-list. */
2688
2689 void
2690 free_cons (struct Lisp_Cons *ptr)
2691 {
2692 ptr->u.chain = cons_free_list;
2693 ptr->car = Vdead;
2694 cons_free_list = ptr;
2695 consing_since_gc -= sizeof *ptr;
2696 total_free_conses++;
2697 }
2698
2699 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2700 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2701 (Lisp_Object car, Lisp_Object cdr)
2702 {
2703 register Lisp_Object val;
2704
2705 MALLOC_BLOCK_INPUT;
2706
2707 if (cons_free_list)
2708 {
2709 /* We use the cdr for chaining the free list
2710 so that we won't use the same field that has the mark bit. */
2711 XSETCONS (val, cons_free_list);
2712 cons_free_list = cons_free_list->u.chain;
2713 }
2714 else
2715 {
2716 if (cons_block_index == CONS_BLOCK_SIZE)
2717 {
2718 struct cons_block *new
2719 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2720 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2721 new->next = cons_block;
2722 cons_block = new;
2723 cons_block_index = 0;
2724 total_free_conses += CONS_BLOCK_SIZE;
2725 }
2726 XSETCONS (val, &cons_block->conses[cons_block_index]);
2727 cons_block_index++;
2728 }
2729
2730 MALLOC_UNBLOCK_INPUT;
2731
2732 XSETCAR (val, car);
2733 XSETCDR (val, cdr);
2734 eassert (!CONS_MARKED_P (XCONS (val)));
2735 consing_since_gc += sizeof (struct Lisp_Cons);
2736 total_free_conses--;
2737 cons_cells_consed++;
2738 return val;
2739 }
2740
2741 #ifdef GC_CHECK_CONS_LIST
2742 /* Get an error now if there's any junk in the cons free list. */
2743 void
2744 check_cons_list (void)
2745 {
2746 struct Lisp_Cons *tail = cons_free_list;
2747
2748 while (tail)
2749 tail = tail->u.chain;
2750 }
2751 #endif
2752
2753 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2754
2755 Lisp_Object
2756 list1 (Lisp_Object arg1)
2757 {
2758 return Fcons (arg1, Qnil);
2759 }
2760
2761 Lisp_Object
2762 list2 (Lisp_Object arg1, Lisp_Object arg2)
2763 {
2764 return Fcons (arg1, Fcons (arg2, Qnil));
2765 }
2766
2767
2768 Lisp_Object
2769 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2770 {
2771 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2772 }
2773
2774
2775 Lisp_Object
2776 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2777 {
2778 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2779 }
2780
2781
2782 Lisp_Object
2783 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2784 {
2785 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2786 Fcons (arg5, Qnil)))));
2787 }
2788
2789 /* Make a list of COUNT Lisp_Objects, where ARG is the
2790 first one. Allocate conses from pure space if TYPE
2791 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2792
2793 Lisp_Object
2794 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2795 {
2796 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2797 switch (type)
2798 {
2799 case CONSTYPE_PURE: cons = pure_cons; break;
2800 case CONSTYPE_HEAP: cons = Fcons; break;
2801 default: emacs_abort ();
2802 }
2803
2804 eassume (0 < count);
2805 Lisp_Object val = cons (arg, Qnil);
2806 Lisp_Object tail = val;
2807
2808 va_list ap;
2809 va_start (ap, arg);
2810 for (ptrdiff_t i = 1; i < count; i++)
2811 {
2812 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2813 XSETCDR (tail, elem);
2814 tail = elem;
2815 }
2816 va_end (ap);
2817
2818 return val;
2819 }
2820
2821 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2822 doc: /* Return a newly created list with specified arguments as elements.
2823 Any number of arguments, even zero arguments, are allowed.
2824 usage: (list &rest OBJECTS) */)
2825 (ptrdiff_t nargs, Lisp_Object *args)
2826 {
2827 register Lisp_Object val;
2828 val = Qnil;
2829
2830 while (nargs > 0)
2831 {
2832 nargs--;
2833 val = Fcons (args[nargs], val);
2834 }
2835 return val;
2836 }
2837
2838
2839 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2840 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2841 (register Lisp_Object length, Lisp_Object init)
2842 {
2843 register Lisp_Object val;
2844 register EMACS_INT size;
2845
2846 CHECK_NATNUM (length);
2847 size = XFASTINT (length);
2848
2849 val = Qnil;
2850 while (size > 0)
2851 {
2852 val = Fcons (init, val);
2853 --size;
2854
2855 if (size > 0)
2856 {
2857 val = Fcons (init, val);
2858 --size;
2859
2860 if (size > 0)
2861 {
2862 val = Fcons (init, val);
2863 --size;
2864
2865 if (size > 0)
2866 {
2867 val = Fcons (init, val);
2868 --size;
2869
2870 if (size > 0)
2871 {
2872 val = Fcons (init, val);
2873 --size;
2874 }
2875 }
2876 }
2877 }
2878
2879 QUIT;
2880 }
2881
2882 return val;
2883 }
2884
2885
2886 \f
2887 /***********************************************************************
2888 Vector Allocation
2889 ***********************************************************************/
2890
2891 /* Sometimes a vector's contents are merely a pointer internally used
2892 in vector allocation code. On the rare platforms where a null
2893 pointer cannot be tagged, represent it with a Lisp 0.
2894 Usually you don't want to touch this. */
2895
2896 static struct Lisp_Vector *
2897 next_vector (struct Lisp_Vector *v)
2898 {
2899 return XUNTAG (v->contents[0], Lisp_Int0);
2900 }
2901
2902 static void
2903 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2904 {
2905 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2906 }
2907
2908 /* This value is balanced well enough to avoid too much internal overhead
2909 for the most common cases; it's not required to be a power of two, but
2910 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2911
2912 #define VECTOR_BLOCK_SIZE 4096
2913
2914 enum
2915 {
2916 /* Alignment of struct Lisp_Vector objects. */
2917 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2918 GCALIGNMENT),
2919
2920 /* Vector size requests are a multiple of this. */
2921 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2922 };
2923
2924 /* Verify assumptions described above. */
2925 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2926 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2927
2928 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2929 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2930 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2931 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2932
2933 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2934
2935 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2936
2937 /* Size of the minimal vector allocated from block. */
2938
2939 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2940
2941 /* Size of the largest vector allocated from block. */
2942
2943 #define VBLOCK_BYTES_MAX \
2944 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2945
2946 /* We maintain one free list for each possible block-allocated
2947 vector size, and this is the number of free lists we have. */
2948
2949 #define VECTOR_MAX_FREE_LIST_INDEX \
2950 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2951
2952 /* Common shortcut to advance vector pointer over a block data. */
2953
2954 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2955
2956 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2957
2958 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2959
2960 /* Common shortcut to setup vector on a free list. */
2961
2962 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2963 do { \
2964 (tmp) = ((nbytes - header_size) / word_size); \
2965 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2966 eassert ((nbytes) % roundup_size == 0); \
2967 (tmp) = VINDEX (nbytes); \
2968 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2969 set_next_vector (v, vector_free_lists[tmp]); \
2970 vector_free_lists[tmp] = (v); \
2971 total_free_vector_slots += (nbytes) / word_size; \
2972 } while (0)
2973
2974 /* This internal type is used to maintain the list of large vectors
2975 which are allocated at their own, e.g. outside of vector blocks.
2976
2977 struct large_vector itself cannot contain a struct Lisp_Vector, as
2978 the latter contains a flexible array member and C99 does not allow
2979 such structs to be nested. Instead, each struct large_vector
2980 object LV is followed by a struct Lisp_Vector, which is at offset
2981 large_vector_offset from LV, and whose address is therefore
2982 large_vector_vec (&LV). */
2983
2984 struct large_vector
2985 {
2986 struct large_vector *next;
2987 };
2988
2989 enum
2990 {
2991 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2992 };
2993
2994 static struct Lisp_Vector *
2995 large_vector_vec (struct large_vector *p)
2996 {
2997 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2998 }
2999
3000 /* This internal type is used to maintain an underlying storage
3001 for small vectors. */
3002
3003 struct vector_block
3004 {
3005 char data[VECTOR_BLOCK_BYTES];
3006 struct vector_block *next;
3007 };
3008
3009 /* Chain of vector blocks. */
3010
3011 static struct vector_block *vector_blocks;
3012
3013 /* Vector free lists, where NTH item points to a chain of free
3014 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3015
3016 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3017
3018 /* Singly-linked list of large vectors. */
3019
3020 static struct large_vector *large_vectors;
3021
3022 /* The only vector with 0 slots, allocated from pure space. */
3023
3024 Lisp_Object zero_vector;
3025
3026 /* Number of live vectors. */
3027
3028 static EMACS_INT total_vectors;
3029
3030 /* Total size of live and free vectors, in Lisp_Object units. */
3031
3032 static EMACS_INT total_vector_slots, total_free_vector_slots;
3033
3034 /* Get a new vector block. */
3035
3036 static struct vector_block *
3037 allocate_vector_block (void)
3038 {
3039 struct vector_block *block = xmalloc (sizeof *block);
3040
3041 #ifndef GC_MALLOC_CHECK
3042 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3043 MEM_TYPE_VECTOR_BLOCK);
3044 #endif
3045
3046 block->next = vector_blocks;
3047 vector_blocks = block;
3048 return block;
3049 }
3050
3051 /* Called once to initialize vector allocation. */
3052
3053 static void
3054 init_vectors (void)
3055 {
3056 zero_vector = make_pure_vector (0);
3057 }
3058
3059 /* Allocate vector from a vector block. */
3060
3061 static struct Lisp_Vector *
3062 allocate_vector_from_block (size_t nbytes)
3063 {
3064 struct Lisp_Vector *vector;
3065 struct vector_block *block;
3066 size_t index, restbytes;
3067
3068 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3069 eassert (nbytes % roundup_size == 0);
3070
3071 /* First, try to allocate from a free list
3072 containing vectors of the requested size. */
3073 index = VINDEX (nbytes);
3074 if (vector_free_lists[index])
3075 {
3076 vector = vector_free_lists[index];
3077 vector_free_lists[index] = next_vector (vector);
3078 total_free_vector_slots -= nbytes / word_size;
3079 return vector;
3080 }
3081
3082 /* Next, check free lists containing larger vectors. Since
3083 we will split the result, we should have remaining space
3084 large enough to use for one-slot vector at least. */
3085 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3086 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3087 if (vector_free_lists[index])
3088 {
3089 /* This vector is larger than requested. */
3090 vector = vector_free_lists[index];
3091 vector_free_lists[index] = next_vector (vector);
3092 total_free_vector_slots -= nbytes / word_size;
3093
3094 /* Excess bytes are used for the smaller vector,
3095 which should be set on an appropriate free list. */
3096 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3097 eassert (restbytes % roundup_size == 0);
3098 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3099 return vector;
3100 }
3101
3102 /* Finally, need a new vector block. */
3103 block = allocate_vector_block ();
3104
3105 /* New vector will be at the beginning of this block. */
3106 vector = (struct Lisp_Vector *) block->data;
3107
3108 /* If the rest of space from this block is large enough
3109 for one-slot vector at least, set up it on a free list. */
3110 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3111 if (restbytes >= VBLOCK_BYTES_MIN)
3112 {
3113 eassert (restbytes % roundup_size == 0);
3114 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3115 }
3116 return vector;
3117 }
3118
3119 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3120
3121 #define VECTOR_IN_BLOCK(vector, block) \
3122 ((char *) (vector) <= (block)->data \
3123 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3124
3125 /* Return the memory footprint of V in bytes. */
3126
3127 static ptrdiff_t
3128 vector_nbytes (struct Lisp_Vector *v)
3129 {
3130 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3131 ptrdiff_t nwords;
3132
3133 if (size & PSEUDOVECTOR_FLAG)
3134 {
3135 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3136 {
3137 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3138 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3139 * sizeof (bits_word));
3140 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3141 verify (header_size <= bool_header_size);
3142 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3143 }
3144 else
3145 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3146 + ((size & PSEUDOVECTOR_REST_MASK)
3147 >> PSEUDOVECTOR_SIZE_BITS));
3148 }
3149 else
3150 nwords = size;
3151 return vroundup (header_size + word_size * nwords);
3152 }
3153
3154 /* Release extra resources still in use by VECTOR, which may be any
3155 vector-like object. For now, this is used just to free data in
3156 font objects. */
3157
3158 static void
3159 cleanup_vector (struct Lisp_Vector *vector)
3160 {
3161 detect_suspicious_free (vector);
3162 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3163 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3164 == FONT_OBJECT_MAX))
3165 {
3166 struct font_driver *drv = ((struct font *) vector)->driver;
3167
3168 /* The font driver might sometimes be NULL, e.g. if Emacs was
3169 interrupted before it had time to set it up. */
3170 if (drv)
3171 {
3172 /* Attempt to catch subtle bugs like Bug#16140. */
3173 eassert (valid_font_driver (drv));
3174 drv->close ((struct font *) vector);
3175 }
3176 }
3177 }
3178
3179 /* Reclaim space used by unmarked vectors. */
3180
3181 NO_INLINE /* For better stack traces */
3182 static void
3183 sweep_vectors (void)
3184 {
3185 struct vector_block *block, **bprev = &vector_blocks;
3186 struct large_vector *lv, **lvprev = &large_vectors;
3187 struct Lisp_Vector *vector, *next;
3188
3189 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3190 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3191
3192 /* Looking through vector blocks. */
3193
3194 for (block = vector_blocks; block; block = *bprev)
3195 {
3196 bool free_this_block = 0;
3197 ptrdiff_t nbytes;
3198
3199 for (vector = (struct Lisp_Vector *) block->data;
3200 VECTOR_IN_BLOCK (vector, block); vector = next)
3201 {
3202 if (VECTOR_MARKED_P (vector))
3203 {
3204 VECTOR_UNMARK (vector);
3205 total_vectors++;
3206 nbytes = vector_nbytes (vector);
3207 total_vector_slots += nbytes / word_size;
3208 next = ADVANCE (vector, nbytes);
3209 }
3210 else
3211 {
3212 ptrdiff_t total_bytes;
3213
3214 cleanup_vector (vector);
3215 nbytes = vector_nbytes (vector);
3216 total_bytes = nbytes;
3217 next = ADVANCE (vector, nbytes);
3218
3219 /* While NEXT is not marked, try to coalesce with VECTOR,
3220 thus making VECTOR of the largest possible size. */
3221
3222 while (VECTOR_IN_BLOCK (next, block))
3223 {
3224 if (VECTOR_MARKED_P (next))
3225 break;
3226 cleanup_vector (next);
3227 nbytes = vector_nbytes (next);
3228 total_bytes += nbytes;
3229 next = ADVANCE (next, nbytes);
3230 }
3231
3232 eassert (total_bytes % roundup_size == 0);
3233
3234 if (vector == (struct Lisp_Vector *) block->data
3235 && !VECTOR_IN_BLOCK (next, block))
3236 /* This block should be freed because all of its
3237 space was coalesced into the only free vector. */
3238 free_this_block = 1;
3239 else
3240 {
3241 size_t tmp;
3242 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3243 }
3244 }
3245 }
3246
3247 if (free_this_block)
3248 {
3249 *bprev = block->next;
3250 #ifndef GC_MALLOC_CHECK
3251 mem_delete (mem_find (block->data));
3252 #endif
3253 xfree (block);
3254 }
3255 else
3256 bprev = &block->next;
3257 }
3258
3259 /* Sweep large vectors. */
3260
3261 for (lv = large_vectors; lv; lv = *lvprev)
3262 {
3263 vector = large_vector_vec (lv);
3264 if (VECTOR_MARKED_P (vector))
3265 {
3266 VECTOR_UNMARK (vector);
3267 total_vectors++;
3268 if (vector->header.size & PSEUDOVECTOR_FLAG)
3269 {
3270 /* All non-bool pseudovectors are small enough to be allocated
3271 from vector blocks. This code should be redesigned if some
3272 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3273 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3274 total_vector_slots += vector_nbytes (vector) / word_size;
3275 }
3276 else
3277 total_vector_slots
3278 += header_size / word_size + vector->header.size;
3279 lvprev = &lv->next;
3280 }
3281 else
3282 {
3283 *lvprev = lv->next;
3284 lisp_free (lv);
3285 }
3286 }
3287 }
3288
3289 /* Value is a pointer to a newly allocated Lisp_Vector structure
3290 with room for LEN Lisp_Objects. */
3291
3292 static struct Lisp_Vector *
3293 allocate_vectorlike (ptrdiff_t len)
3294 {
3295 struct Lisp_Vector *p;
3296
3297 MALLOC_BLOCK_INPUT;
3298
3299 if (len == 0)
3300 p = XVECTOR (zero_vector);
3301 else
3302 {
3303 size_t nbytes = header_size + len * word_size;
3304
3305 #ifdef DOUG_LEA_MALLOC
3306 if (!mmap_lisp_allowed_p ())
3307 mallopt (M_MMAP_MAX, 0);
3308 #endif
3309
3310 if (nbytes <= VBLOCK_BYTES_MAX)
3311 p = allocate_vector_from_block (vroundup (nbytes));
3312 else
3313 {
3314 struct large_vector *lv
3315 = lisp_malloc ((large_vector_offset + header_size
3316 + len * word_size),
3317 MEM_TYPE_VECTORLIKE);
3318 lv->next = large_vectors;
3319 large_vectors = lv;
3320 p = large_vector_vec (lv);
3321 }
3322
3323 #ifdef DOUG_LEA_MALLOC
3324 if (!mmap_lisp_allowed_p ())
3325 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3326 #endif
3327
3328 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3329 emacs_abort ();
3330
3331 consing_since_gc += nbytes;
3332 vector_cells_consed += len;
3333 }
3334
3335 MALLOC_UNBLOCK_INPUT;
3336
3337 return p;
3338 }
3339
3340
3341 /* Allocate a vector with LEN slots. */
3342
3343 struct Lisp_Vector *
3344 allocate_vector (EMACS_INT len)
3345 {
3346 struct Lisp_Vector *v;
3347 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3348
3349 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3350 memory_full (SIZE_MAX);
3351 v = allocate_vectorlike (len);
3352 if (len)
3353 v->header.size = len;
3354 return v;
3355 }
3356
3357
3358 /* Allocate other vector-like structures. */
3359
3360 struct Lisp_Vector *
3361 allocate_pseudovector (int memlen, int lisplen,
3362 int zerolen, enum pvec_type tag)
3363 {
3364 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3365
3366 /* Catch bogus values. */
3367 eassert (0 <= tag && tag <= PVEC_FONT);
3368 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3369 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3370 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3371
3372 /* Only the first LISPLEN slots will be traced normally by the GC. */
3373 memclear (v->contents, zerolen * word_size);
3374 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3375 return v;
3376 }
3377
3378 struct buffer *
3379 allocate_buffer (void)
3380 {
3381 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3382
3383 BUFFER_PVEC_INIT (b);
3384 /* Put B on the chain of all buffers including killed ones. */
3385 b->next = all_buffers;
3386 all_buffers = b;
3387 /* Note that the rest fields of B are not initialized. */
3388 return b;
3389 }
3390
3391 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3392 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3393 See also the function `vector'. */)
3394 (register Lisp_Object length, Lisp_Object init)
3395 {
3396 Lisp_Object vector;
3397 register ptrdiff_t sizei;
3398 register ptrdiff_t i;
3399 register struct Lisp_Vector *p;
3400
3401 CHECK_NATNUM (length);
3402
3403 p = allocate_vector (XFASTINT (length));
3404 sizei = XFASTINT (length);
3405 for (i = 0; i < sizei; i++)
3406 p->contents[i] = init;
3407
3408 XSETVECTOR (vector, p);
3409 return vector;
3410 }
3411
3412 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3413 doc: /* Return a newly created vector with specified arguments as elements.
3414 Any number of arguments, even zero arguments, are allowed.
3415 usage: (vector &rest OBJECTS) */)
3416 (ptrdiff_t nargs, Lisp_Object *args)
3417 {
3418 ptrdiff_t i;
3419 register Lisp_Object val = make_uninit_vector (nargs);
3420 register struct Lisp_Vector *p = XVECTOR (val);
3421
3422 for (i = 0; i < nargs; i++)
3423 p->contents[i] = args[i];
3424 return val;
3425 }
3426
3427 void
3428 make_byte_code (struct Lisp_Vector *v)
3429 {
3430 /* Don't allow the global zero_vector to become a byte code object. */
3431 eassert (0 < v->header.size);
3432
3433 if (v->header.size > 1 && STRINGP (v->contents[1])
3434 && STRING_MULTIBYTE (v->contents[1]))
3435 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3436 earlier because they produced a raw 8-bit string for byte-code
3437 and now such a byte-code string is loaded as multibyte while
3438 raw 8-bit characters converted to multibyte form. Thus, now we
3439 must convert them back to the original unibyte form. */
3440 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3441 XSETPVECTYPE (v, PVEC_COMPILED);
3442 }
3443
3444 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3445 doc: /* Create a byte-code object with specified arguments as elements.
3446 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3447 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3448 and (optional) INTERACTIVE-SPEC.
3449 The first four arguments are required; at most six have any
3450 significance.
3451 The ARGLIST can be either like the one of `lambda', in which case the arguments
3452 will be dynamically bound before executing the byte code, or it can be an
3453 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3454 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3455 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3456 argument to catch the left-over arguments. If such an integer is used, the
3457 arguments will not be dynamically bound but will be instead pushed on the
3458 stack before executing the byte-code.
3459 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3460 (ptrdiff_t nargs, Lisp_Object *args)
3461 {
3462 ptrdiff_t i;
3463 register Lisp_Object val = make_uninit_vector (nargs);
3464 register struct Lisp_Vector *p = XVECTOR (val);
3465
3466 /* We used to purecopy everything here, if purify-flag was set. This worked
3467 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3468 dangerous, since make-byte-code is used during execution to build
3469 closures, so any closure built during the preload phase would end up
3470 copied into pure space, including its free variables, which is sometimes
3471 just wasteful and other times plainly wrong (e.g. those free vars may want
3472 to be setcar'd). */
3473
3474 for (i = 0; i < nargs; i++)
3475 p->contents[i] = args[i];
3476 make_byte_code (p);
3477 XSETCOMPILED (val, p);
3478 return val;
3479 }
3480
3481
3482 \f
3483 /***********************************************************************
3484 Symbol Allocation
3485 ***********************************************************************/
3486
3487 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3488 of the required alignment. */
3489
3490 union aligned_Lisp_Symbol
3491 {
3492 struct Lisp_Symbol s;
3493 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3494 & -GCALIGNMENT];
3495 };
3496
3497 /* Each symbol_block is just under 1020 bytes long, since malloc
3498 really allocates in units of powers of two and uses 4 bytes for its
3499 own overhead. */
3500
3501 #define SYMBOL_BLOCK_SIZE \
3502 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3503
3504 struct symbol_block
3505 {
3506 /* Place `symbols' first, to preserve alignment. */
3507 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3508 struct symbol_block *next;
3509 };
3510
3511 /* Current symbol block and index of first unused Lisp_Symbol
3512 structure in it. */
3513
3514 static struct symbol_block *symbol_block;
3515 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3516 /* Pointer to the first symbol_block that contains pinned symbols.
3517 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3518 10K of which are pinned (and all but 250 of them are interned in obarray),
3519 whereas a "typical session" has in the order of 30K symbols.
3520 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3521 than 30K to find the 10K symbols we need to mark. */
3522 static struct symbol_block *symbol_block_pinned;
3523
3524 /* List of free symbols. */
3525
3526 static struct Lisp_Symbol *symbol_free_list;
3527
3528 static void
3529 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3530 {
3531 XSYMBOL (sym)->name = name;
3532 }
3533
3534 void
3535 init_symbol (Lisp_Object val, Lisp_Object name)
3536 {
3537 struct Lisp_Symbol *p = XSYMBOL (val);
3538 set_symbol_name (val, name);
3539 set_symbol_plist (val, Qnil);
3540 p->redirect = SYMBOL_PLAINVAL;
3541 SET_SYMBOL_VAL (p, Qunbound);
3542 set_symbol_function (val, Qnil);
3543 set_symbol_next (val, NULL);
3544 p->gcmarkbit = false;
3545 p->interned = SYMBOL_UNINTERNED;
3546 p->constant = 0;
3547 p->declared_special = false;
3548 p->pinned = false;
3549 }
3550
3551 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3552 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3553 Its value is void, and its function definition and property list are nil. */)
3554 (Lisp_Object name)
3555 {
3556 Lisp_Object val;
3557
3558 CHECK_STRING (name);
3559
3560 MALLOC_BLOCK_INPUT;
3561
3562 if (symbol_free_list)
3563 {
3564 XSETSYMBOL (val, symbol_free_list);
3565 symbol_free_list = symbol_free_list->next;
3566 }
3567 else
3568 {
3569 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3570 {
3571 struct symbol_block *new
3572 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3573 new->next = symbol_block;
3574 symbol_block = new;
3575 symbol_block_index = 0;
3576 total_free_symbols += SYMBOL_BLOCK_SIZE;
3577 }
3578 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3579 symbol_block_index++;
3580 }
3581
3582 MALLOC_UNBLOCK_INPUT;
3583
3584 init_symbol (val, name);
3585 consing_since_gc += sizeof (struct Lisp_Symbol);
3586 symbols_consed++;
3587 total_free_symbols--;
3588 return val;
3589 }
3590
3591
3592 \f
3593 /***********************************************************************
3594 Marker (Misc) Allocation
3595 ***********************************************************************/
3596
3597 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3598 the required alignment. */
3599
3600 union aligned_Lisp_Misc
3601 {
3602 union Lisp_Misc m;
3603 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3604 & -GCALIGNMENT];
3605 };
3606
3607 /* Allocation of markers and other objects that share that structure.
3608 Works like allocation of conses. */
3609
3610 #define MARKER_BLOCK_SIZE \
3611 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3612
3613 struct marker_block
3614 {
3615 /* Place `markers' first, to preserve alignment. */
3616 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3617 struct marker_block *next;
3618 };
3619
3620 static struct marker_block *marker_block;
3621 static int marker_block_index = MARKER_BLOCK_SIZE;
3622
3623 static union Lisp_Misc *marker_free_list;
3624
3625 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3626
3627 static Lisp_Object
3628 allocate_misc (enum Lisp_Misc_Type type)
3629 {
3630 Lisp_Object val;
3631
3632 MALLOC_BLOCK_INPUT;
3633
3634 if (marker_free_list)
3635 {
3636 XSETMISC (val, marker_free_list);
3637 marker_free_list = marker_free_list->u_free.chain;
3638 }
3639 else
3640 {
3641 if (marker_block_index == MARKER_BLOCK_SIZE)
3642 {
3643 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3644 new->next = marker_block;
3645 marker_block = new;
3646 marker_block_index = 0;
3647 total_free_markers += MARKER_BLOCK_SIZE;
3648 }
3649 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3650 marker_block_index++;
3651 }
3652
3653 MALLOC_UNBLOCK_INPUT;
3654
3655 --total_free_markers;
3656 consing_since_gc += sizeof (union Lisp_Misc);
3657 misc_objects_consed++;
3658 XMISCANY (val)->type = type;
3659 XMISCANY (val)->gcmarkbit = 0;
3660 return val;
3661 }
3662
3663 /* Free a Lisp_Misc object. */
3664
3665 void
3666 free_misc (Lisp_Object misc)
3667 {
3668 XMISCANY (misc)->type = Lisp_Misc_Free;
3669 XMISC (misc)->u_free.chain = marker_free_list;
3670 marker_free_list = XMISC (misc);
3671 consing_since_gc -= sizeof (union Lisp_Misc);
3672 total_free_markers++;
3673 }
3674
3675 /* Verify properties of Lisp_Save_Value's representation
3676 that are assumed here and elsewhere. */
3677
3678 verify (SAVE_UNUSED == 0);
3679 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3680 >> SAVE_SLOT_BITS)
3681 == 0);
3682
3683 /* Return Lisp_Save_Value objects for the various combinations
3684 that callers need. */
3685
3686 Lisp_Object
3687 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3688 {
3689 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3690 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3691 p->save_type = SAVE_TYPE_INT_INT_INT;
3692 p->data[0].integer = a;
3693 p->data[1].integer = b;
3694 p->data[2].integer = c;
3695 return val;
3696 }
3697
3698 Lisp_Object
3699 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3700 Lisp_Object d)
3701 {
3702 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3703 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3704 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3705 p->data[0].object = a;
3706 p->data[1].object = b;
3707 p->data[2].object = c;
3708 p->data[3].object = d;
3709 return val;
3710 }
3711
3712 Lisp_Object
3713 make_save_ptr (void *a)
3714 {
3715 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3716 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3717 p->save_type = SAVE_POINTER;
3718 p->data[0].pointer = a;
3719 return val;
3720 }
3721
3722 Lisp_Object
3723 make_save_ptr_int (void *a, ptrdiff_t b)
3724 {
3725 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3726 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3727 p->save_type = SAVE_TYPE_PTR_INT;
3728 p->data[0].pointer = a;
3729 p->data[1].integer = b;
3730 return val;
3731 }
3732
3733 Lisp_Object
3734 make_save_ptr_ptr (void *a, void *b)
3735 {
3736 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3737 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3738 p->save_type = SAVE_TYPE_PTR_PTR;
3739 p->data[0].pointer = a;
3740 p->data[1].pointer = b;
3741 return val;
3742 }
3743
3744 Lisp_Object
3745 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3746 {
3747 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3748 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3749 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3750 p->data[0].funcpointer = a;
3751 p->data[1].pointer = b;
3752 p->data[2].object = c;
3753 return val;
3754 }
3755
3756 /* Return a Lisp_Save_Value object that represents an array A
3757 of N Lisp objects. */
3758
3759 Lisp_Object
3760 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3761 {
3762 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3763 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3764 p->save_type = SAVE_TYPE_MEMORY;
3765 p->data[0].pointer = a;
3766 p->data[1].integer = n;
3767 return val;
3768 }
3769
3770 /* Free a Lisp_Save_Value object. Do not use this function
3771 if SAVE contains pointer other than returned by xmalloc. */
3772
3773 void
3774 free_save_value (Lisp_Object save)
3775 {
3776 xfree (XSAVE_POINTER (save, 0));
3777 free_misc (save);
3778 }
3779
3780 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3781
3782 Lisp_Object
3783 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3784 {
3785 register Lisp_Object overlay;
3786
3787 overlay = allocate_misc (Lisp_Misc_Overlay);
3788 OVERLAY_START (overlay) = start;
3789 OVERLAY_END (overlay) = end;
3790 set_overlay_plist (overlay, plist);
3791 XOVERLAY (overlay)->next = NULL;
3792 return overlay;
3793 }
3794
3795 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3796 doc: /* Return a newly allocated marker which does not point at any place. */)
3797 (void)
3798 {
3799 register Lisp_Object val;
3800 register struct Lisp_Marker *p;
3801
3802 val = allocate_misc (Lisp_Misc_Marker);
3803 p = XMARKER (val);
3804 p->buffer = 0;
3805 p->bytepos = 0;
3806 p->charpos = 0;
3807 p->next = NULL;
3808 p->insertion_type = 0;
3809 p->need_adjustment = 0;
3810 return val;
3811 }
3812
3813 /* Return a newly allocated marker which points into BUF
3814 at character position CHARPOS and byte position BYTEPOS. */
3815
3816 Lisp_Object
3817 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3818 {
3819 Lisp_Object obj;
3820 struct Lisp_Marker *m;
3821
3822 /* No dead buffers here. */
3823 eassert (BUFFER_LIVE_P (buf));
3824
3825 /* Every character is at least one byte. */
3826 eassert (charpos <= bytepos);
3827
3828 obj = allocate_misc (Lisp_Misc_Marker);
3829 m = XMARKER (obj);
3830 m->buffer = buf;
3831 m->charpos = charpos;
3832 m->bytepos = bytepos;
3833 m->insertion_type = 0;
3834 m->need_adjustment = 0;
3835 m->next = BUF_MARKERS (buf);
3836 BUF_MARKERS (buf) = m;
3837 return obj;
3838 }
3839
3840 /* Put MARKER back on the free list after using it temporarily. */
3841
3842 void
3843 free_marker (Lisp_Object marker)
3844 {
3845 unchain_marker (XMARKER (marker));
3846 free_misc (marker);
3847 }
3848
3849 \f
3850 /* Return a newly created vector or string with specified arguments as
3851 elements. If all the arguments are characters that can fit
3852 in a string of events, make a string; otherwise, make a vector.
3853
3854 Any number of arguments, even zero arguments, are allowed. */
3855
3856 Lisp_Object
3857 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3858 {
3859 ptrdiff_t i;
3860
3861 for (i = 0; i < nargs; i++)
3862 /* The things that fit in a string
3863 are characters that are in 0...127,
3864 after discarding the meta bit and all the bits above it. */
3865 if (!INTEGERP (args[i])
3866 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3867 return Fvector (nargs, args);
3868
3869 /* Since the loop exited, we know that all the things in it are
3870 characters, so we can make a string. */
3871 {
3872 Lisp_Object result;
3873
3874 result = Fmake_string (make_number (nargs), make_number (0));
3875 for (i = 0; i < nargs; i++)
3876 {
3877 SSET (result, i, XINT (args[i]));
3878 /* Move the meta bit to the right place for a string char. */
3879 if (XINT (args[i]) & CHAR_META)
3880 SSET (result, i, SREF (result, i) | 0x80);
3881 }
3882
3883 return result;
3884 }
3885 }
3886
3887 #ifdef HAVE_MODULES
3888 /* Create a new module user ptr object. */
3889 Lisp_Object
3890 make_user_ptr (void (*finalizer) (void *), void *p)
3891 {
3892 Lisp_Object obj;
3893 struct Lisp_User_Ptr *uptr;
3894
3895 obj = allocate_misc (Lisp_Misc_User_Ptr);
3896 uptr = XUSER_PTR (obj);
3897 uptr->finalizer = finalizer;
3898 uptr->p = p;
3899 return obj;
3900 }
3901
3902 #endif
3903
3904 static void
3905 init_finalizer_list (struct Lisp_Finalizer *head)
3906 {
3907 head->prev = head->next = head;
3908 }
3909
3910 /* Insert FINALIZER before ELEMENT. */
3911
3912 static void
3913 finalizer_insert (struct Lisp_Finalizer *element,
3914 struct Lisp_Finalizer *finalizer)
3915 {
3916 eassert (finalizer->prev == NULL);
3917 eassert (finalizer->next == NULL);
3918 finalizer->next = element;
3919 finalizer->prev = element->prev;
3920 finalizer->prev->next = finalizer;
3921 element->prev = finalizer;
3922 }
3923
3924 static void
3925 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3926 {
3927 if (finalizer->prev != NULL)
3928 {
3929 eassert (finalizer->next != NULL);
3930 finalizer->prev->next = finalizer->next;
3931 finalizer->next->prev = finalizer->prev;
3932 finalizer->prev = finalizer->next = NULL;
3933 }
3934 }
3935
3936 static void
3937 mark_finalizer_list (struct Lisp_Finalizer *head)
3938 {
3939 for (struct Lisp_Finalizer *finalizer = head->next;
3940 finalizer != head;
3941 finalizer = finalizer->next)
3942 {
3943 finalizer->base.gcmarkbit = true;
3944 mark_object (finalizer->function);
3945 }
3946 }
3947
3948 /* Move doomed finalizers to list DEST from list SRC. A doomed
3949 finalizer is one that is not GC-reachable and whose
3950 finalizer->function is non-nil. */
3951
3952 static void
3953 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3954 struct Lisp_Finalizer *src)
3955 {
3956 struct Lisp_Finalizer *finalizer = src->next;
3957 while (finalizer != src)
3958 {
3959 struct Lisp_Finalizer *next = finalizer->next;
3960 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3961 {
3962 unchain_finalizer (finalizer);
3963 finalizer_insert (dest, finalizer);
3964 }
3965
3966 finalizer = next;
3967 }
3968 }
3969
3970 static Lisp_Object
3971 run_finalizer_handler (Lisp_Object args)
3972 {
3973 add_to_log ("finalizer failed: %S", args);
3974 return Qnil;
3975 }
3976
3977 static void
3978 run_finalizer_function (Lisp_Object function)
3979 {
3980 ptrdiff_t count = SPECPDL_INDEX ();
3981
3982 specbind (Qinhibit_quit, Qt);
3983 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3984 unbind_to (count, Qnil);
3985 }
3986
3987 static void
3988 run_finalizers (struct Lisp_Finalizer *finalizers)
3989 {
3990 struct Lisp_Finalizer *finalizer;
3991 Lisp_Object function;
3992
3993 while (finalizers->next != finalizers)
3994 {
3995 finalizer = finalizers->next;
3996 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3997 unchain_finalizer (finalizer);
3998 function = finalizer->function;
3999 if (!NILP (function))
4000 {
4001 finalizer->function = Qnil;
4002 run_finalizer_function (function);
4003 }
4004 }
4005 }
4006
4007 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4008 doc: /* Make a finalizer that will run FUNCTION.
4009 FUNCTION will be called after garbage collection when the returned
4010 finalizer object becomes unreachable. If the finalizer object is
4011 reachable only through references from finalizer objects, it does not
4012 count as reachable for the purpose of deciding whether to run
4013 FUNCTION. FUNCTION will be run once per finalizer object. */)
4014 (Lisp_Object function)
4015 {
4016 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4017 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4018 finalizer->function = function;
4019 finalizer->prev = finalizer->next = NULL;
4020 finalizer_insert (&finalizers, finalizer);
4021 return val;
4022 }
4023
4024 \f
4025 /************************************************************************
4026 Memory Full Handling
4027 ************************************************************************/
4028
4029
4030 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4031 there may have been size_t overflow so that malloc was never
4032 called, or perhaps malloc was invoked successfully but the
4033 resulting pointer had problems fitting into a tagged EMACS_INT. In
4034 either case this counts as memory being full even though malloc did
4035 not fail. */
4036
4037 void
4038 memory_full (size_t nbytes)
4039 {
4040 /* Do not go into hysterics merely because a large request failed. */
4041 bool enough_free_memory = 0;
4042 if (SPARE_MEMORY < nbytes)
4043 {
4044 void *p;
4045
4046 MALLOC_BLOCK_INPUT;
4047 p = malloc (SPARE_MEMORY);
4048 if (p)
4049 {
4050 free (p);
4051 enough_free_memory = 1;
4052 }
4053 MALLOC_UNBLOCK_INPUT;
4054 }
4055
4056 if (! enough_free_memory)
4057 {
4058 int i;
4059
4060 Vmemory_full = Qt;
4061
4062 memory_full_cons_threshold = sizeof (struct cons_block);
4063
4064 /* The first time we get here, free the spare memory. */
4065 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4066 if (spare_memory[i])
4067 {
4068 if (i == 0)
4069 free (spare_memory[i]);
4070 else if (i >= 1 && i <= 4)
4071 lisp_align_free (spare_memory[i]);
4072 else
4073 lisp_free (spare_memory[i]);
4074 spare_memory[i] = 0;
4075 }
4076 }
4077
4078 /* This used to call error, but if we've run out of memory, we could
4079 get infinite recursion trying to build the string. */
4080 xsignal (Qnil, Vmemory_signal_data);
4081 }
4082
4083 /* If we released our reserve (due to running out of memory),
4084 and we have a fair amount free once again,
4085 try to set aside another reserve in case we run out once more.
4086
4087 This is called when a relocatable block is freed in ralloc.c,
4088 and also directly from this file, in case we're not using ralloc.c. */
4089
4090 void
4091 refill_memory_reserve (void)
4092 {
4093 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4094 if (spare_memory[0] == 0)
4095 spare_memory[0] = malloc (SPARE_MEMORY);
4096 if (spare_memory[1] == 0)
4097 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4098 MEM_TYPE_SPARE);
4099 if (spare_memory[2] == 0)
4100 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4101 MEM_TYPE_SPARE);
4102 if (spare_memory[3] == 0)
4103 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4104 MEM_TYPE_SPARE);
4105 if (spare_memory[4] == 0)
4106 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4107 MEM_TYPE_SPARE);
4108 if (spare_memory[5] == 0)
4109 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4110 MEM_TYPE_SPARE);
4111 if (spare_memory[6] == 0)
4112 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4113 MEM_TYPE_SPARE);
4114 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4115 Vmemory_full = Qnil;
4116 #endif
4117 }
4118 \f
4119 /************************************************************************
4120 C Stack Marking
4121 ************************************************************************/
4122
4123 /* Conservative C stack marking requires a method to identify possibly
4124 live Lisp objects given a pointer value. We do this by keeping
4125 track of blocks of Lisp data that are allocated in a red-black tree
4126 (see also the comment of mem_node which is the type of nodes in
4127 that tree). Function lisp_malloc adds information for an allocated
4128 block to the red-black tree with calls to mem_insert, and function
4129 lisp_free removes it with mem_delete. Functions live_string_p etc
4130 call mem_find to lookup information about a given pointer in the
4131 tree, and use that to determine if the pointer points to a Lisp
4132 object or not. */
4133
4134 /* Initialize this part of alloc.c. */
4135
4136 static void
4137 mem_init (void)
4138 {
4139 mem_z.left = mem_z.right = MEM_NIL;
4140 mem_z.parent = NULL;
4141 mem_z.color = MEM_BLACK;
4142 mem_z.start = mem_z.end = NULL;
4143 mem_root = MEM_NIL;
4144 }
4145
4146
4147 /* Value is a pointer to the mem_node containing START. Value is
4148 MEM_NIL if there is no node in the tree containing START. */
4149
4150 static struct mem_node *
4151 mem_find (void *start)
4152 {
4153 struct mem_node *p;
4154
4155 if (start < min_heap_address || start > max_heap_address)
4156 return MEM_NIL;
4157
4158 /* Make the search always successful to speed up the loop below. */
4159 mem_z.start = start;
4160 mem_z.end = (char *) start + 1;
4161
4162 p = mem_root;
4163 while (start < p->start || start >= p->end)
4164 p = start < p->start ? p->left : p->right;
4165 return p;
4166 }
4167
4168
4169 /* Insert a new node into the tree for a block of memory with start
4170 address START, end address END, and type TYPE. Value is a
4171 pointer to the node that was inserted. */
4172
4173 static struct mem_node *
4174 mem_insert (void *start, void *end, enum mem_type type)
4175 {
4176 struct mem_node *c, *parent, *x;
4177
4178 if (min_heap_address == NULL || start < min_heap_address)
4179 min_heap_address = start;
4180 if (max_heap_address == NULL || end > max_heap_address)
4181 max_heap_address = end;
4182
4183 /* See where in the tree a node for START belongs. In this
4184 particular application, it shouldn't happen that a node is already
4185 present. For debugging purposes, let's check that. */
4186 c = mem_root;
4187 parent = NULL;
4188
4189 while (c != MEM_NIL)
4190 {
4191 parent = c;
4192 c = start < c->start ? c->left : c->right;
4193 }
4194
4195 /* Create a new node. */
4196 #ifdef GC_MALLOC_CHECK
4197 x = malloc (sizeof *x);
4198 if (x == NULL)
4199 emacs_abort ();
4200 #else
4201 x = xmalloc (sizeof *x);
4202 #endif
4203 x->start = start;
4204 x->end = end;
4205 x->type = type;
4206 x->parent = parent;
4207 x->left = x->right = MEM_NIL;
4208 x->color = MEM_RED;
4209
4210 /* Insert it as child of PARENT or install it as root. */
4211 if (parent)
4212 {
4213 if (start < parent->start)
4214 parent->left = x;
4215 else
4216 parent->right = x;
4217 }
4218 else
4219 mem_root = x;
4220
4221 /* Re-establish red-black tree properties. */
4222 mem_insert_fixup (x);
4223
4224 return x;
4225 }
4226
4227
4228 /* Re-establish the red-black properties of the tree, and thereby
4229 balance the tree, after node X has been inserted; X is always red. */
4230
4231 static void
4232 mem_insert_fixup (struct mem_node *x)
4233 {
4234 while (x != mem_root && x->parent->color == MEM_RED)
4235 {
4236 /* X is red and its parent is red. This is a violation of
4237 red-black tree property #3. */
4238
4239 if (x->parent == x->parent->parent->left)
4240 {
4241 /* We're on the left side of our grandparent, and Y is our
4242 "uncle". */
4243 struct mem_node *y = x->parent->parent->right;
4244
4245 if (y->color == MEM_RED)
4246 {
4247 /* Uncle and parent are red but should be black because
4248 X is red. Change the colors accordingly and proceed
4249 with the grandparent. */
4250 x->parent->color = MEM_BLACK;
4251 y->color = MEM_BLACK;
4252 x->parent->parent->color = MEM_RED;
4253 x = x->parent->parent;
4254 }
4255 else
4256 {
4257 /* Parent and uncle have different colors; parent is
4258 red, uncle is black. */
4259 if (x == x->parent->right)
4260 {
4261 x = x->parent;
4262 mem_rotate_left (x);
4263 }
4264
4265 x->parent->color = MEM_BLACK;
4266 x->parent->parent->color = MEM_RED;
4267 mem_rotate_right (x->parent->parent);
4268 }
4269 }
4270 else
4271 {
4272 /* This is the symmetrical case of above. */
4273 struct mem_node *y = x->parent->parent->left;
4274
4275 if (y->color == MEM_RED)
4276 {
4277 x->parent->color = MEM_BLACK;
4278 y->color = MEM_BLACK;
4279 x->parent->parent->color = MEM_RED;
4280 x = x->parent->parent;
4281 }
4282 else
4283 {
4284 if (x == x->parent->left)
4285 {
4286 x = x->parent;
4287 mem_rotate_right (x);
4288 }
4289
4290 x->parent->color = MEM_BLACK;
4291 x->parent->parent->color = MEM_RED;
4292 mem_rotate_left (x->parent->parent);
4293 }
4294 }
4295 }
4296
4297 /* The root may have been changed to red due to the algorithm. Set
4298 it to black so that property #5 is satisfied. */
4299 mem_root->color = MEM_BLACK;
4300 }
4301
4302
4303 /* (x) (y)
4304 / \ / \
4305 a (y) ===> (x) c
4306 / \ / \
4307 b c a b */
4308
4309 static void
4310 mem_rotate_left (struct mem_node *x)
4311 {
4312 struct mem_node *y;
4313
4314 /* Turn y's left sub-tree into x's right sub-tree. */
4315 y = x->right;
4316 x->right = y->left;
4317 if (y->left != MEM_NIL)
4318 y->left->parent = x;
4319
4320 /* Y's parent was x's parent. */
4321 if (y != MEM_NIL)
4322 y->parent = x->parent;
4323
4324 /* Get the parent to point to y instead of x. */
4325 if (x->parent)
4326 {
4327 if (x == x->parent->left)
4328 x->parent->left = y;
4329 else
4330 x->parent->right = y;
4331 }
4332 else
4333 mem_root = y;
4334
4335 /* Put x on y's left. */
4336 y->left = x;
4337 if (x != MEM_NIL)
4338 x->parent = y;
4339 }
4340
4341
4342 /* (x) (Y)
4343 / \ / \
4344 (y) c ===> a (x)
4345 / \ / \
4346 a b b c */
4347
4348 static void
4349 mem_rotate_right (struct mem_node *x)
4350 {
4351 struct mem_node *y = x->left;
4352
4353 x->left = y->right;
4354 if (y->right != MEM_NIL)
4355 y->right->parent = x;
4356
4357 if (y != MEM_NIL)
4358 y->parent = x->parent;
4359 if (x->parent)
4360 {
4361 if (x == x->parent->right)
4362 x->parent->right = y;
4363 else
4364 x->parent->left = y;
4365 }
4366 else
4367 mem_root = y;
4368
4369 y->right = x;
4370 if (x != MEM_NIL)
4371 x->parent = y;
4372 }
4373
4374
4375 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4376
4377 static void
4378 mem_delete (struct mem_node *z)
4379 {
4380 struct mem_node *x, *y;
4381
4382 if (!z || z == MEM_NIL)
4383 return;
4384
4385 if (z->left == MEM_NIL || z->right == MEM_NIL)
4386 y = z;
4387 else
4388 {
4389 y = z->right;
4390 while (y->left != MEM_NIL)
4391 y = y->left;
4392 }
4393
4394 if (y->left != MEM_NIL)
4395 x = y->left;
4396 else
4397 x = y->right;
4398
4399 x->parent = y->parent;
4400 if (y->parent)
4401 {
4402 if (y == y->parent->left)
4403 y->parent->left = x;
4404 else
4405 y->parent->right = x;
4406 }
4407 else
4408 mem_root = x;
4409
4410 if (y != z)
4411 {
4412 z->start = y->start;
4413 z->end = y->end;
4414 z->type = y->type;
4415 }
4416
4417 if (y->color == MEM_BLACK)
4418 mem_delete_fixup (x);
4419
4420 #ifdef GC_MALLOC_CHECK
4421 free (y);
4422 #else
4423 xfree (y);
4424 #endif
4425 }
4426
4427
4428 /* Re-establish the red-black properties of the tree, after a
4429 deletion. */
4430
4431 static void
4432 mem_delete_fixup (struct mem_node *x)
4433 {
4434 while (x != mem_root && x->color == MEM_BLACK)
4435 {
4436 if (x == x->parent->left)
4437 {
4438 struct mem_node *w = x->parent->right;
4439
4440 if (w->color == MEM_RED)
4441 {
4442 w->color = MEM_BLACK;
4443 x->parent->color = MEM_RED;
4444 mem_rotate_left (x->parent);
4445 w = x->parent->right;
4446 }
4447
4448 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4449 {
4450 w->color = MEM_RED;
4451 x = x->parent;
4452 }
4453 else
4454 {
4455 if (w->right->color == MEM_BLACK)
4456 {
4457 w->left->color = MEM_BLACK;
4458 w->color = MEM_RED;
4459 mem_rotate_right (w);
4460 w = x->parent->right;
4461 }
4462 w->color = x->parent->color;
4463 x->parent->color = MEM_BLACK;
4464 w->right->color = MEM_BLACK;
4465 mem_rotate_left (x->parent);
4466 x = mem_root;
4467 }
4468 }
4469 else
4470 {
4471 struct mem_node *w = x->parent->left;
4472
4473 if (w->color == MEM_RED)
4474 {
4475 w->color = MEM_BLACK;
4476 x->parent->color = MEM_RED;
4477 mem_rotate_right (x->parent);
4478 w = x->parent->left;
4479 }
4480
4481 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4482 {
4483 w->color = MEM_RED;
4484 x = x->parent;
4485 }
4486 else
4487 {
4488 if (w->left->color == MEM_BLACK)
4489 {
4490 w->right->color = MEM_BLACK;
4491 w->color = MEM_RED;
4492 mem_rotate_left (w);
4493 w = x->parent->left;
4494 }
4495
4496 w->color = x->parent->color;
4497 x->parent->color = MEM_BLACK;
4498 w->left->color = MEM_BLACK;
4499 mem_rotate_right (x->parent);
4500 x = mem_root;
4501 }
4502 }
4503 }
4504
4505 x->color = MEM_BLACK;
4506 }
4507
4508
4509 /* Value is non-zero if P is a pointer to a live Lisp string on
4510 the heap. M is a pointer to the mem_block for P. */
4511
4512 static bool
4513 live_string_p (struct mem_node *m, void *p)
4514 {
4515 if (m->type == MEM_TYPE_STRING)
4516 {
4517 struct string_block *b = m->start;
4518 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4519
4520 /* P must point to the start of a Lisp_String structure, and it
4521 must not be on the free-list. */
4522 return (offset >= 0
4523 && offset % sizeof b->strings[0] == 0
4524 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4525 && ((struct Lisp_String *) p)->data != NULL);
4526 }
4527 else
4528 return 0;
4529 }
4530
4531
4532 /* Value is non-zero if P is a pointer to a live Lisp cons on
4533 the heap. M is a pointer to the mem_block for P. */
4534
4535 static bool
4536 live_cons_p (struct mem_node *m, void *p)
4537 {
4538 if (m->type == MEM_TYPE_CONS)
4539 {
4540 struct cons_block *b = m->start;
4541 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4542
4543 /* P must point to the start of a Lisp_Cons, not be
4544 one of the unused cells in the current cons block,
4545 and not be on the free-list. */
4546 return (offset >= 0
4547 && offset % sizeof b->conses[0] == 0
4548 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4549 && (b != cons_block
4550 || offset / sizeof b->conses[0] < cons_block_index)
4551 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4552 }
4553 else
4554 return 0;
4555 }
4556
4557
4558 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4559 the heap. M is a pointer to the mem_block for P. */
4560
4561 static bool
4562 live_symbol_p (struct mem_node *m, void *p)
4563 {
4564 if (m->type == MEM_TYPE_SYMBOL)
4565 {
4566 struct symbol_block *b = m->start;
4567 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4568
4569 /* P must point to the start of a Lisp_Symbol, not be
4570 one of the unused cells in the current symbol block,
4571 and not be on the free-list. */
4572 return (offset >= 0
4573 && offset % sizeof b->symbols[0] == 0
4574 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4575 && (b != symbol_block
4576 || offset / sizeof b->symbols[0] < symbol_block_index)
4577 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4578 }
4579 else
4580 return 0;
4581 }
4582
4583
4584 /* Value is non-zero if P is a pointer to a live Lisp float on
4585 the heap. M is a pointer to the mem_block for P. */
4586
4587 static bool
4588 live_float_p (struct mem_node *m, void *p)
4589 {
4590 if (m->type == MEM_TYPE_FLOAT)
4591 {
4592 struct float_block *b = m->start;
4593 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4594
4595 /* P must point to the start of a Lisp_Float and not be
4596 one of the unused cells in the current float block. */
4597 return (offset >= 0
4598 && offset % sizeof b->floats[0] == 0
4599 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4600 && (b != float_block
4601 || offset / sizeof b->floats[0] < float_block_index));
4602 }
4603 else
4604 return 0;
4605 }
4606
4607
4608 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4609 the heap. M is a pointer to the mem_block for P. */
4610
4611 static bool
4612 live_misc_p (struct mem_node *m, void *p)
4613 {
4614 if (m->type == MEM_TYPE_MISC)
4615 {
4616 struct marker_block *b = m->start;
4617 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4618
4619 /* P must point to the start of a Lisp_Misc, not be
4620 one of the unused cells in the current misc block,
4621 and not be on the free-list. */
4622 return (offset >= 0
4623 && offset % sizeof b->markers[0] == 0
4624 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4625 && (b != marker_block
4626 || offset / sizeof b->markers[0] < marker_block_index)
4627 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4628 }
4629 else
4630 return 0;
4631 }
4632
4633
4634 /* Value is non-zero if P is a pointer to a live vector-like object.
4635 M is a pointer to the mem_block for P. */
4636
4637 static bool
4638 live_vector_p (struct mem_node *m, void *p)
4639 {
4640 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4641 {
4642 /* This memory node corresponds to a vector block. */
4643 struct vector_block *block = m->start;
4644 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4645
4646 /* P is in the block's allocation range. Scan the block
4647 up to P and see whether P points to the start of some
4648 vector which is not on a free list. FIXME: check whether
4649 some allocation patterns (probably a lot of short vectors)
4650 may cause a substantial overhead of this loop. */
4651 while (VECTOR_IN_BLOCK (vector, block)
4652 && vector <= (struct Lisp_Vector *) p)
4653 {
4654 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4655 return 1;
4656 else
4657 vector = ADVANCE (vector, vector_nbytes (vector));
4658 }
4659 }
4660 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4661 /* This memory node corresponds to a large vector. */
4662 return 1;
4663 return 0;
4664 }
4665
4666
4667 /* Value is non-zero if P is a pointer to a live buffer. M is a
4668 pointer to the mem_block for P. */
4669
4670 static bool
4671 live_buffer_p (struct mem_node *m, void *p)
4672 {
4673 /* P must point to the start of the block, and the buffer
4674 must not have been killed. */
4675 return (m->type == MEM_TYPE_BUFFER
4676 && p == m->start
4677 && !NILP (((struct buffer *) p)->name_));
4678 }
4679
4680 /* Mark OBJ if we can prove it's a Lisp_Object. */
4681
4682 static void
4683 mark_maybe_object (Lisp_Object obj)
4684 {
4685 #if USE_VALGRIND
4686 if (valgrind_p)
4687 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4688 #endif
4689
4690 if (INTEGERP (obj))
4691 return;
4692
4693 void *po = XPNTR (obj);
4694 struct mem_node *m = mem_find (po);
4695
4696 if (m != MEM_NIL)
4697 {
4698 bool mark_p = false;
4699
4700 switch (XTYPE (obj))
4701 {
4702 case Lisp_String:
4703 mark_p = (live_string_p (m, po)
4704 && !STRING_MARKED_P ((struct Lisp_String *) po));
4705 break;
4706
4707 case Lisp_Cons:
4708 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4709 break;
4710
4711 case Lisp_Symbol:
4712 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4713 break;
4714
4715 case Lisp_Float:
4716 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4717 break;
4718
4719 case Lisp_Vectorlike:
4720 /* Note: can't check BUFFERP before we know it's a
4721 buffer because checking that dereferences the pointer
4722 PO which might point anywhere. */
4723 if (live_vector_p (m, po))
4724 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4725 else if (live_buffer_p (m, po))
4726 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4727 break;
4728
4729 case Lisp_Misc:
4730 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4731 break;
4732
4733 default:
4734 break;
4735 }
4736
4737 if (mark_p)
4738 mark_object (obj);
4739 }
4740 }
4741
4742 /* Return true if P can point to Lisp data, and false otherwise.
4743 Symbols are implemented via offsets not pointers, but the offsets
4744 are also multiples of GCALIGNMENT. */
4745
4746 static bool
4747 maybe_lisp_pointer (void *p)
4748 {
4749 return (uintptr_t) p % GCALIGNMENT == 0;
4750 }
4751
4752 #ifndef HAVE_MODULES
4753 enum { HAVE_MODULES = false };
4754 #endif
4755
4756 /* If P points to Lisp data, mark that as live if it isn't already
4757 marked. */
4758
4759 static void
4760 mark_maybe_pointer (void *p)
4761 {
4762 struct mem_node *m;
4763
4764 #if USE_VALGRIND
4765 if (valgrind_p)
4766 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4767 #endif
4768
4769 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4770 {
4771 if (!maybe_lisp_pointer (p))
4772 return;
4773 }
4774 else
4775 {
4776 /* For the wide-int case, also mark emacs_value tagged pointers,
4777 which can be generated by emacs-module.c's value_to_lisp. */
4778 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4779 }
4780
4781 m = mem_find (p);
4782 if (m != MEM_NIL)
4783 {
4784 Lisp_Object obj = Qnil;
4785
4786 switch (m->type)
4787 {
4788 case MEM_TYPE_NON_LISP:
4789 case MEM_TYPE_SPARE:
4790 /* Nothing to do; not a pointer to Lisp memory. */
4791 break;
4792
4793 case MEM_TYPE_BUFFER:
4794 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4795 XSETVECTOR (obj, p);
4796 break;
4797
4798 case MEM_TYPE_CONS:
4799 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4800 XSETCONS (obj, p);
4801 break;
4802
4803 case MEM_TYPE_STRING:
4804 if (live_string_p (m, p)
4805 && !STRING_MARKED_P ((struct Lisp_String *) p))
4806 XSETSTRING (obj, p);
4807 break;
4808
4809 case MEM_TYPE_MISC:
4810 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4811 XSETMISC (obj, p);
4812 break;
4813
4814 case MEM_TYPE_SYMBOL:
4815 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4816 XSETSYMBOL (obj, p);
4817 break;
4818
4819 case MEM_TYPE_FLOAT:
4820 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4821 XSETFLOAT (obj, p);
4822 break;
4823
4824 case MEM_TYPE_VECTORLIKE:
4825 case MEM_TYPE_VECTOR_BLOCK:
4826 if (live_vector_p (m, p))
4827 {
4828 Lisp_Object tem;
4829 XSETVECTOR (tem, p);
4830 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4831 obj = tem;
4832 }
4833 break;
4834
4835 default:
4836 emacs_abort ();
4837 }
4838
4839 if (!NILP (obj))
4840 mark_object (obj);
4841 }
4842 }
4843
4844
4845 /* Alignment of pointer values. Use alignof, as it sometimes returns
4846 a smaller alignment than GCC's __alignof__ and mark_memory might
4847 miss objects if __alignof__ were used. */
4848 #define GC_POINTER_ALIGNMENT alignof (void *)
4849
4850 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4851 or END+OFFSET..START. */
4852
4853 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4854 mark_memory (void *start, void *end)
4855 {
4856 char *pp;
4857
4858 /* Make START the pointer to the start of the memory region,
4859 if it isn't already. */
4860 if (end < start)
4861 {
4862 void *tem = start;
4863 start = end;
4864 end = tem;
4865 }
4866
4867 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4868
4869 /* Mark Lisp data pointed to. This is necessary because, in some
4870 situations, the C compiler optimizes Lisp objects away, so that
4871 only a pointer to them remains. Example:
4872
4873 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4874 ()
4875 {
4876 Lisp_Object obj = build_string ("test");
4877 struct Lisp_String *s = XSTRING (obj);
4878 Fgarbage_collect ();
4879 fprintf (stderr, "test '%s'\n", s->data);
4880 return Qnil;
4881 }
4882
4883 Here, `obj' isn't really used, and the compiler optimizes it
4884 away. The only reference to the life string is through the
4885 pointer `s'. */
4886
4887 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4888 {
4889 mark_maybe_pointer (*(void **) pp);
4890 mark_maybe_object (*(Lisp_Object *) pp);
4891 }
4892 }
4893
4894 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4895
4896 static bool setjmp_tested_p;
4897 static int longjmps_done;
4898
4899 #define SETJMP_WILL_LIKELY_WORK "\
4900 \n\
4901 Emacs garbage collector has been changed to use conservative stack\n\
4902 marking. Emacs has determined that the method it uses to do the\n\
4903 marking will likely work on your system, but this isn't sure.\n\
4904 \n\
4905 If you are a system-programmer, or can get the help of a local wizard\n\
4906 who is, please take a look at the function mark_stack in alloc.c, and\n\
4907 verify that the methods used are appropriate for your system.\n\
4908 \n\
4909 Please mail the result to <emacs-devel@gnu.org>.\n\
4910 "
4911
4912 #define SETJMP_WILL_NOT_WORK "\
4913 \n\
4914 Emacs garbage collector has been changed to use conservative stack\n\
4915 marking. Emacs has determined that the default method it uses to do the\n\
4916 marking will not work on your system. We will need a system-dependent\n\
4917 solution for your system.\n\
4918 \n\
4919 Please take a look at the function mark_stack in alloc.c, and\n\
4920 try to find a way to make it work on your system.\n\
4921 \n\
4922 Note that you may get false negatives, depending on the compiler.\n\
4923 In particular, you need to use -O with GCC for this test.\n\
4924 \n\
4925 Please mail the result to <emacs-devel@gnu.org>.\n\
4926 "
4927
4928
4929 /* Perform a quick check if it looks like setjmp saves registers in a
4930 jmp_buf. Print a message to stderr saying so. When this test
4931 succeeds, this is _not_ a proof that setjmp is sufficient for
4932 conservative stack marking. Only the sources or a disassembly
4933 can prove that. */
4934
4935 static void
4936 test_setjmp (void)
4937 {
4938 char buf[10];
4939 register int x;
4940 sys_jmp_buf jbuf;
4941
4942 /* Arrange for X to be put in a register. */
4943 sprintf (buf, "1");
4944 x = strlen (buf);
4945 x = 2 * x - 1;
4946
4947 sys_setjmp (jbuf);
4948 if (longjmps_done == 1)
4949 {
4950 /* Came here after the longjmp at the end of the function.
4951
4952 If x == 1, the longjmp has restored the register to its
4953 value before the setjmp, and we can hope that setjmp
4954 saves all such registers in the jmp_buf, although that
4955 isn't sure.
4956
4957 For other values of X, either something really strange is
4958 taking place, or the setjmp just didn't save the register. */
4959
4960 if (x == 1)
4961 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4962 else
4963 {
4964 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4965 exit (1);
4966 }
4967 }
4968
4969 ++longjmps_done;
4970 x = 2;
4971 if (longjmps_done == 1)
4972 sys_longjmp (jbuf, 1);
4973 }
4974
4975 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4976
4977
4978 /* Mark live Lisp objects on the C stack.
4979
4980 There are several system-dependent problems to consider when
4981 porting this to new architectures:
4982
4983 Processor Registers
4984
4985 We have to mark Lisp objects in CPU registers that can hold local
4986 variables or are used to pass parameters.
4987
4988 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4989 something that either saves relevant registers on the stack, or
4990 calls mark_maybe_object passing it each register's contents.
4991
4992 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4993 implementation assumes that calling setjmp saves registers we need
4994 to see in a jmp_buf which itself lies on the stack. This doesn't
4995 have to be true! It must be verified for each system, possibly
4996 by taking a look at the source code of setjmp.
4997
4998 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4999 can use it as a machine independent method to store all registers
5000 to the stack. In this case the macros described in the previous
5001 two paragraphs are not used.
5002
5003 Stack Layout
5004
5005 Architectures differ in the way their processor stack is organized.
5006 For example, the stack might look like this
5007
5008 +----------------+
5009 | Lisp_Object | size = 4
5010 +----------------+
5011 | something else | size = 2
5012 +----------------+
5013 | Lisp_Object | size = 4
5014 +----------------+
5015 | ... |
5016
5017 In such a case, not every Lisp_Object will be aligned equally. To
5018 find all Lisp_Object on the stack it won't be sufficient to walk
5019 the stack in steps of 4 bytes. Instead, two passes will be
5020 necessary, one starting at the start of the stack, and a second
5021 pass starting at the start of the stack + 2. Likewise, if the
5022 minimal alignment of Lisp_Objects on the stack is 1, four passes
5023 would be necessary, each one starting with one byte more offset
5024 from the stack start. */
5025
5026 static void
5027 mark_stack (void *end)
5028 {
5029
5030 /* This assumes that the stack is a contiguous region in memory. If
5031 that's not the case, something has to be done here to iterate
5032 over the stack segments. */
5033 mark_memory (stack_base, end);
5034
5035 /* Allow for marking a secondary stack, like the register stack on the
5036 ia64. */
5037 #ifdef GC_MARK_SECONDARY_STACK
5038 GC_MARK_SECONDARY_STACK ();
5039 #endif
5040 }
5041
5042 static bool
5043 c_symbol_p (struct Lisp_Symbol *sym)
5044 {
5045 char *lispsym_ptr = (char *) lispsym;
5046 char *sym_ptr = (char *) sym;
5047 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5048 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5049 }
5050
5051 /* Determine whether it is safe to access memory at address P. */
5052 static int
5053 valid_pointer_p (void *p)
5054 {
5055 #ifdef WINDOWSNT
5056 return w32_valid_pointer_p (p, 16);
5057 #else
5058
5059 if (ADDRESS_SANITIZER)
5060 return p ? -1 : 0;
5061
5062 int fd[2];
5063
5064 /* Obviously, we cannot just access it (we would SEGV trying), so we
5065 trick the o/s to tell us whether p is a valid pointer.
5066 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5067 not validate p in that case. */
5068
5069 if (emacs_pipe (fd) == 0)
5070 {
5071 bool valid = emacs_write (fd[1], p, 16) == 16;
5072 emacs_close (fd[1]);
5073 emacs_close (fd[0]);
5074 return valid;
5075 }
5076
5077 return -1;
5078 #endif
5079 }
5080
5081 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5082 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5083 cannot validate OBJ. This function can be quite slow, so its primary
5084 use is the manual debugging. The only exception is print_object, where
5085 we use it to check whether the memory referenced by the pointer of
5086 Lisp_Save_Value object contains valid objects. */
5087
5088 int
5089 valid_lisp_object_p (Lisp_Object obj)
5090 {
5091 if (INTEGERP (obj))
5092 return 1;
5093
5094 void *p = XPNTR (obj);
5095 if (PURE_P (p))
5096 return 1;
5097
5098 if (SYMBOLP (obj) && c_symbol_p (p))
5099 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5100
5101 if (p == &buffer_defaults || p == &buffer_local_symbols)
5102 return 2;
5103
5104 struct mem_node *m = mem_find (p);
5105
5106 if (m == MEM_NIL)
5107 {
5108 int valid = valid_pointer_p (p);
5109 if (valid <= 0)
5110 return valid;
5111
5112 if (SUBRP (obj))
5113 return 1;
5114
5115 return 0;
5116 }
5117
5118 switch (m->type)
5119 {
5120 case MEM_TYPE_NON_LISP:
5121 case MEM_TYPE_SPARE:
5122 return 0;
5123
5124 case MEM_TYPE_BUFFER:
5125 return live_buffer_p (m, p) ? 1 : 2;
5126
5127 case MEM_TYPE_CONS:
5128 return live_cons_p (m, p);
5129
5130 case MEM_TYPE_STRING:
5131 return live_string_p (m, p);
5132
5133 case MEM_TYPE_MISC:
5134 return live_misc_p (m, p);
5135
5136 case MEM_TYPE_SYMBOL:
5137 return live_symbol_p (m, p);
5138
5139 case MEM_TYPE_FLOAT:
5140 return live_float_p (m, p);
5141
5142 case MEM_TYPE_VECTORLIKE:
5143 case MEM_TYPE_VECTOR_BLOCK:
5144 return live_vector_p (m, p);
5145
5146 default:
5147 break;
5148 }
5149
5150 return 0;
5151 }
5152
5153 /***********************************************************************
5154 Pure Storage Management
5155 ***********************************************************************/
5156
5157 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5158 pointer to it. TYPE is the Lisp type for which the memory is
5159 allocated. TYPE < 0 means it's not used for a Lisp object. */
5160
5161 static void *
5162 pure_alloc (size_t size, int type)
5163 {
5164 void *result;
5165
5166 again:
5167 if (type >= 0)
5168 {
5169 /* Allocate space for a Lisp object from the beginning of the free
5170 space with taking account of alignment. */
5171 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5172 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5173 }
5174 else
5175 {
5176 /* Allocate space for a non-Lisp object from the end of the free
5177 space. */
5178 pure_bytes_used_non_lisp += size;
5179 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5180 }
5181 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5182
5183 if (pure_bytes_used <= pure_size)
5184 return result;
5185
5186 /* Don't allocate a large amount here,
5187 because it might get mmap'd and then its address
5188 might not be usable. */
5189 purebeg = xmalloc (10000);
5190 pure_size = 10000;
5191 pure_bytes_used_before_overflow += pure_bytes_used - size;
5192 pure_bytes_used = 0;
5193 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5194 goto again;
5195 }
5196
5197
5198 /* Print a warning if PURESIZE is too small. */
5199
5200 void
5201 check_pure_size (void)
5202 {
5203 if (pure_bytes_used_before_overflow)
5204 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5205 " bytes needed)"),
5206 pure_bytes_used + pure_bytes_used_before_overflow);
5207 }
5208
5209
5210 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5211 the non-Lisp data pool of the pure storage, and return its start
5212 address. Return NULL if not found. */
5213
5214 static char *
5215 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5216 {
5217 int i;
5218 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5219 const unsigned char *p;
5220 char *non_lisp_beg;
5221
5222 if (pure_bytes_used_non_lisp <= nbytes)
5223 return NULL;
5224
5225 /* Set up the Boyer-Moore table. */
5226 skip = nbytes + 1;
5227 for (i = 0; i < 256; i++)
5228 bm_skip[i] = skip;
5229
5230 p = (const unsigned char *) data;
5231 while (--skip > 0)
5232 bm_skip[*p++] = skip;
5233
5234 last_char_skip = bm_skip['\0'];
5235
5236 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5237 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5238
5239 /* See the comments in the function `boyer_moore' (search.c) for the
5240 use of `infinity'. */
5241 infinity = pure_bytes_used_non_lisp + 1;
5242 bm_skip['\0'] = infinity;
5243
5244 p = (const unsigned char *) non_lisp_beg + nbytes;
5245 start = 0;
5246 do
5247 {
5248 /* Check the last character (== '\0'). */
5249 do
5250 {
5251 start += bm_skip[*(p + start)];
5252 }
5253 while (start <= start_max);
5254
5255 if (start < infinity)
5256 /* Couldn't find the last character. */
5257 return NULL;
5258
5259 /* No less than `infinity' means we could find the last
5260 character at `p[start - infinity]'. */
5261 start -= infinity;
5262
5263 /* Check the remaining characters. */
5264 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5265 /* Found. */
5266 return non_lisp_beg + start;
5267
5268 start += last_char_skip;
5269 }
5270 while (start <= start_max);
5271
5272 return NULL;
5273 }
5274
5275
5276 /* Return a string allocated in pure space. DATA is a buffer holding
5277 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5278 means make the result string multibyte.
5279
5280 Must get an error if pure storage is full, since if it cannot hold
5281 a large string it may be able to hold conses that point to that
5282 string; then the string is not protected from gc. */
5283
5284 Lisp_Object
5285 make_pure_string (const char *data,
5286 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5287 {
5288 Lisp_Object string;
5289 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5290 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5291 if (s->data == NULL)
5292 {
5293 s->data = pure_alloc (nbytes + 1, -1);
5294 memcpy (s->data, data, nbytes);
5295 s->data[nbytes] = '\0';
5296 }
5297 s->size = nchars;
5298 s->size_byte = multibyte ? nbytes : -1;
5299 s->intervals = NULL;
5300 XSETSTRING (string, s);
5301 return string;
5302 }
5303
5304 /* Return a string allocated in pure space. Do not
5305 allocate the string data, just point to DATA. */
5306
5307 Lisp_Object
5308 make_pure_c_string (const char *data, ptrdiff_t nchars)
5309 {
5310 Lisp_Object string;
5311 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5312 s->size = nchars;
5313 s->size_byte = -1;
5314 s->data = (unsigned char *) data;
5315 s->intervals = NULL;
5316 XSETSTRING (string, s);
5317 return string;
5318 }
5319
5320 static Lisp_Object purecopy (Lisp_Object obj);
5321
5322 /* Return a cons allocated from pure space. Give it pure copies
5323 of CAR as car and CDR as cdr. */
5324
5325 Lisp_Object
5326 pure_cons (Lisp_Object car, Lisp_Object cdr)
5327 {
5328 Lisp_Object new;
5329 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5330 XSETCONS (new, p);
5331 XSETCAR (new, purecopy (car));
5332 XSETCDR (new, purecopy (cdr));
5333 return new;
5334 }
5335
5336
5337 /* Value is a float object with value NUM allocated from pure space. */
5338
5339 static Lisp_Object
5340 make_pure_float (double num)
5341 {
5342 Lisp_Object new;
5343 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5344 XSETFLOAT (new, p);
5345 XFLOAT_INIT (new, num);
5346 return new;
5347 }
5348
5349
5350 /* Return a vector with room for LEN Lisp_Objects allocated from
5351 pure space. */
5352
5353 static Lisp_Object
5354 make_pure_vector (ptrdiff_t len)
5355 {
5356 Lisp_Object new;
5357 size_t size = header_size + len * word_size;
5358 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5359 XSETVECTOR (new, p);
5360 XVECTOR (new)->header.size = len;
5361 return new;
5362 }
5363
5364 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5365 doc: /* Make a copy of object OBJ in pure storage.
5366 Recursively copies contents of vectors and cons cells.
5367 Does not copy symbols. Copies strings without text properties. */)
5368 (register Lisp_Object obj)
5369 {
5370 if (NILP (Vpurify_flag))
5371 return obj;
5372 else if (MARKERP (obj) || OVERLAYP (obj)
5373 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5374 /* Can't purify those. */
5375 return obj;
5376 else
5377 return purecopy (obj);
5378 }
5379
5380 static Lisp_Object
5381 purecopy (Lisp_Object obj)
5382 {
5383 if (INTEGERP (obj)
5384 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5385 || SUBRP (obj))
5386 return obj; /* Already pure. */
5387
5388 if (STRINGP (obj) && XSTRING (obj)->intervals)
5389 message_with_string ("Dropping text-properties while making string `%s' pure",
5390 obj, true);
5391
5392 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5393 {
5394 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5395 if (!NILP (tmp))
5396 return tmp;
5397 }
5398
5399 if (CONSP (obj))
5400 obj = pure_cons (XCAR (obj), XCDR (obj));
5401 else if (FLOATP (obj))
5402 obj = make_pure_float (XFLOAT_DATA (obj));
5403 else if (STRINGP (obj))
5404 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5405 SBYTES (obj),
5406 STRING_MULTIBYTE (obj));
5407 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5408 {
5409 struct Lisp_Vector *objp = XVECTOR (obj);
5410 ptrdiff_t nbytes = vector_nbytes (objp);
5411 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5412 register ptrdiff_t i;
5413 ptrdiff_t size = ASIZE (obj);
5414 if (size & PSEUDOVECTOR_FLAG)
5415 size &= PSEUDOVECTOR_SIZE_MASK;
5416 memcpy (vec, objp, nbytes);
5417 for (i = 0; i < size; i++)
5418 vec->contents[i] = purecopy (vec->contents[i]);
5419 XSETVECTOR (obj, vec);
5420 }
5421 else if (SYMBOLP (obj))
5422 {
5423 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5424 { /* We can't purify them, but they appear in many pure objects.
5425 Mark them as `pinned' so we know to mark them at every GC cycle. */
5426 XSYMBOL (obj)->pinned = true;
5427 symbol_block_pinned = symbol_block;
5428 }
5429 /* Don't hash-cons it. */
5430 return obj;
5431 }
5432 else
5433 {
5434 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5435 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5436 }
5437
5438 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5439 Fputhash (obj, obj, Vpurify_flag);
5440
5441 return obj;
5442 }
5443
5444
5445 \f
5446 /***********************************************************************
5447 Protection from GC
5448 ***********************************************************************/
5449
5450 /* Put an entry in staticvec, pointing at the variable with address
5451 VARADDRESS. */
5452
5453 void
5454 staticpro (Lisp_Object *varaddress)
5455 {
5456 if (staticidx >= NSTATICS)
5457 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5458 staticvec[staticidx++] = varaddress;
5459 }
5460
5461 \f
5462 /***********************************************************************
5463 Protection from GC
5464 ***********************************************************************/
5465
5466 /* Temporarily prevent garbage collection. */
5467
5468 ptrdiff_t
5469 inhibit_garbage_collection (void)
5470 {
5471 ptrdiff_t count = SPECPDL_INDEX ();
5472
5473 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5474 return count;
5475 }
5476
5477 /* Used to avoid possible overflows when
5478 converting from C to Lisp integers. */
5479
5480 static Lisp_Object
5481 bounded_number (EMACS_INT number)
5482 {
5483 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5484 }
5485
5486 /* Calculate total bytes of live objects. */
5487
5488 static size_t
5489 total_bytes_of_live_objects (void)
5490 {
5491 size_t tot = 0;
5492 tot += total_conses * sizeof (struct Lisp_Cons);
5493 tot += total_symbols * sizeof (struct Lisp_Symbol);
5494 tot += total_markers * sizeof (union Lisp_Misc);
5495 tot += total_string_bytes;
5496 tot += total_vector_slots * word_size;
5497 tot += total_floats * sizeof (struct Lisp_Float);
5498 tot += total_intervals * sizeof (struct interval);
5499 tot += total_strings * sizeof (struct Lisp_String);
5500 return tot;
5501 }
5502
5503 #ifdef HAVE_WINDOW_SYSTEM
5504
5505 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5506 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5507
5508 static Lisp_Object
5509 compact_font_cache_entry (Lisp_Object entry)
5510 {
5511 Lisp_Object tail, *prev = &entry;
5512
5513 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5514 {
5515 bool drop = 0;
5516 Lisp_Object obj = XCAR (tail);
5517
5518 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5519 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5520 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5521 /* Don't use VECTORP here, as that calls ASIZE, which could
5522 hit assertion violation during GC. */
5523 && (VECTORLIKEP (XCDR (obj))
5524 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5525 {
5526 ptrdiff_t i, size = gc_asize (XCDR (obj));
5527 Lisp_Object obj_cdr = XCDR (obj);
5528
5529 /* If font-spec is not marked, most likely all font-entities
5530 are not marked too. But we must be sure that nothing is
5531 marked within OBJ before we really drop it. */
5532 for (i = 0; i < size; i++)
5533 {
5534 Lisp_Object objlist;
5535
5536 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5537 break;
5538
5539 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5540 for (; CONSP (objlist); objlist = XCDR (objlist))
5541 {
5542 Lisp_Object val = XCAR (objlist);
5543 struct font *font = GC_XFONT_OBJECT (val);
5544
5545 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5546 && VECTOR_MARKED_P(font))
5547 break;
5548 }
5549 if (CONSP (objlist))
5550 {
5551 /* Found a marked font, bail out. */
5552 break;
5553 }
5554 }
5555
5556 if (i == size)
5557 {
5558 /* No marked fonts were found, so this entire font
5559 entity can be dropped. */
5560 drop = 1;
5561 }
5562 }
5563 if (drop)
5564 *prev = XCDR (tail);
5565 else
5566 prev = xcdr_addr (tail);
5567 }
5568 return entry;
5569 }
5570
5571 /* Compact font caches on all terminals and mark
5572 everything which is still here after compaction. */
5573
5574 static void
5575 compact_font_caches (void)
5576 {
5577 struct terminal *t;
5578
5579 for (t = terminal_list; t; t = t->next_terminal)
5580 {
5581 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5582 if (CONSP (cache))
5583 {
5584 Lisp_Object entry;
5585
5586 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5587 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5588 }
5589 mark_object (cache);
5590 }
5591 }
5592
5593 #else /* not HAVE_WINDOW_SYSTEM */
5594
5595 #define compact_font_caches() (void)(0)
5596
5597 #endif /* HAVE_WINDOW_SYSTEM */
5598
5599 /* Remove (MARKER . DATA) entries with unmarked MARKER
5600 from buffer undo LIST and return changed list. */
5601
5602 static Lisp_Object
5603 compact_undo_list (Lisp_Object list)
5604 {
5605 Lisp_Object tail, *prev = &list;
5606
5607 for (tail = list; CONSP (tail); tail = XCDR (tail))
5608 {
5609 if (CONSP (XCAR (tail))
5610 && MARKERP (XCAR (XCAR (tail)))
5611 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5612 *prev = XCDR (tail);
5613 else
5614 prev = xcdr_addr (tail);
5615 }
5616 return list;
5617 }
5618
5619 static void
5620 mark_pinned_symbols (void)
5621 {
5622 struct symbol_block *sblk;
5623 int lim = (symbol_block_pinned == symbol_block
5624 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5625
5626 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5627 {
5628 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5629 for (; sym < end; ++sym)
5630 if (sym->s.pinned)
5631 mark_object (make_lisp_symbol (&sym->s));
5632
5633 lim = SYMBOL_BLOCK_SIZE;
5634 }
5635 }
5636
5637 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5638 separate function so that we could limit mark_stack in searching
5639 the stack frames below this function, thus avoiding the rare cases
5640 where mark_stack finds values that look like live Lisp objects on
5641 portions of stack that couldn't possibly contain such live objects.
5642 For more details of this, see the discussion at
5643 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5644 static Lisp_Object
5645 garbage_collect_1 (void *end)
5646 {
5647 struct buffer *nextb;
5648 char stack_top_variable;
5649 ptrdiff_t i;
5650 bool message_p;
5651 ptrdiff_t count = SPECPDL_INDEX ();
5652 struct timespec start;
5653 Lisp_Object retval = Qnil;
5654 size_t tot_before = 0;
5655
5656 if (abort_on_gc)
5657 emacs_abort ();
5658
5659 /* Can't GC if pure storage overflowed because we can't determine
5660 if something is a pure object or not. */
5661 if (pure_bytes_used_before_overflow)
5662 return Qnil;
5663
5664 /* Record this function, so it appears on the profiler's backtraces. */
5665 record_in_backtrace (Qautomatic_gc, 0, 0);
5666
5667 check_cons_list ();
5668
5669 /* Don't keep undo information around forever.
5670 Do this early on, so it is no problem if the user quits. */
5671 FOR_EACH_BUFFER (nextb)
5672 compact_buffer (nextb);
5673
5674 if (profiler_memory_running)
5675 tot_before = total_bytes_of_live_objects ();
5676
5677 start = current_timespec ();
5678
5679 /* In case user calls debug_print during GC,
5680 don't let that cause a recursive GC. */
5681 consing_since_gc = 0;
5682
5683 /* Save what's currently displayed in the echo area. Don't do that
5684 if we are GC'ing because we've run out of memory, since
5685 push_message will cons, and we might have no memory for that. */
5686 if (NILP (Vmemory_full))
5687 {
5688 message_p = push_message ();
5689 record_unwind_protect_void (pop_message_unwind);
5690 }
5691 else
5692 message_p = false;
5693
5694 /* Save a copy of the contents of the stack, for debugging. */
5695 #if MAX_SAVE_STACK > 0
5696 if (NILP (Vpurify_flag))
5697 {
5698 char *stack;
5699 ptrdiff_t stack_size;
5700 if (&stack_top_variable < stack_bottom)
5701 {
5702 stack = &stack_top_variable;
5703 stack_size = stack_bottom - &stack_top_variable;
5704 }
5705 else
5706 {
5707 stack = stack_bottom;
5708 stack_size = &stack_top_variable - stack_bottom;
5709 }
5710 if (stack_size <= MAX_SAVE_STACK)
5711 {
5712 if (stack_copy_size < stack_size)
5713 {
5714 stack_copy = xrealloc (stack_copy, stack_size);
5715 stack_copy_size = stack_size;
5716 }
5717 no_sanitize_memcpy (stack_copy, stack, stack_size);
5718 }
5719 }
5720 #endif /* MAX_SAVE_STACK > 0 */
5721
5722 if (garbage_collection_messages)
5723 message1_nolog ("Garbage collecting...");
5724
5725 block_input ();
5726
5727 shrink_regexp_cache ();
5728
5729 gc_in_progress = 1;
5730
5731 /* Mark all the special slots that serve as the roots of accessibility. */
5732
5733 mark_buffer (&buffer_defaults);
5734 mark_buffer (&buffer_local_symbols);
5735
5736 for (i = 0; i < ARRAYELTS (lispsym); i++)
5737 mark_object (builtin_lisp_symbol (i));
5738
5739 for (i = 0; i < staticidx; i++)
5740 mark_object (*staticvec[i]);
5741
5742 mark_pinned_symbols ();
5743 mark_specpdl ();
5744 mark_terminals ();
5745 mark_kboards ();
5746
5747 #ifdef USE_GTK
5748 xg_mark_data ();
5749 #endif
5750
5751 mark_stack (end);
5752
5753 {
5754 struct handler *handler;
5755 for (handler = handlerlist; handler; handler = handler->next)
5756 {
5757 mark_object (handler->tag_or_ch);
5758 mark_object (handler->val);
5759 }
5760 }
5761 #ifdef HAVE_WINDOW_SYSTEM
5762 mark_fringe_data ();
5763 #endif
5764
5765 /* Everything is now marked, except for the data in font caches,
5766 undo lists, and finalizers. The first two are compacted by
5767 removing an items which aren't reachable otherwise. */
5768
5769 compact_font_caches ();
5770
5771 FOR_EACH_BUFFER (nextb)
5772 {
5773 if (!EQ (BVAR (nextb, undo_list), Qt))
5774 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5775 /* Now that we have stripped the elements that need not be
5776 in the undo_list any more, we can finally mark the list. */
5777 mark_object (BVAR (nextb, undo_list));
5778 }
5779
5780 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5781 to doomed_finalizers so we can run their associated functions
5782 after GC. It's important to scan finalizers at this stage so
5783 that we can be sure that unmarked finalizers are really
5784 unreachable except for references from their associated functions
5785 and from other finalizers. */
5786
5787 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5788 mark_finalizer_list (&doomed_finalizers);
5789
5790 gc_sweep ();
5791
5792 relocate_byte_stack ();
5793
5794 /* Clear the mark bits that we set in certain root slots. */
5795 VECTOR_UNMARK (&buffer_defaults);
5796 VECTOR_UNMARK (&buffer_local_symbols);
5797
5798 check_cons_list ();
5799
5800 gc_in_progress = 0;
5801
5802 unblock_input ();
5803
5804 consing_since_gc = 0;
5805 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5806 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5807
5808 gc_relative_threshold = 0;
5809 if (FLOATP (Vgc_cons_percentage))
5810 { /* Set gc_cons_combined_threshold. */
5811 double tot = total_bytes_of_live_objects ();
5812
5813 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5814 if (0 < tot)
5815 {
5816 if (tot < TYPE_MAXIMUM (EMACS_INT))
5817 gc_relative_threshold = tot;
5818 else
5819 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5820 }
5821 }
5822
5823 if (garbage_collection_messages && NILP (Vmemory_full))
5824 {
5825 if (message_p || minibuf_level > 0)
5826 restore_message ();
5827 else
5828 message1_nolog ("Garbage collecting...done");
5829 }
5830
5831 unbind_to (count, Qnil);
5832
5833 Lisp_Object total[] = {
5834 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5835 bounded_number (total_conses),
5836 bounded_number (total_free_conses)),
5837 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5838 bounded_number (total_symbols),
5839 bounded_number (total_free_symbols)),
5840 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5841 bounded_number (total_markers),
5842 bounded_number (total_free_markers)),
5843 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5844 bounded_number (total_strings),
5845 bounded_number (total_free_strings)),
5846 list3 (Qstring_bytes, make_number (1),
5847 bounded_number (total_string_bytes)),
5848 list3 (Qvectors,
5849 make_number (header_size + sizeof (Lisp_Object)),
5850 bounded_number (total_vectors)),
5851 list4 (Qvector_slots, make_number (word_size),
5852 bounded_number (total_vector_slots),
5853 bounded_number (total_free_vector_slots)),
5854 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5855 bounded_number (total_floats),
5856 bounded_number (total_free_floats)),
5857 list4 (Qintervals, make_number (sizeof (struct interval)),
5858 bounded_number (total_intervals),
5859 bounded_number (total_free_intervals)),
5860 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5861 bounded_number (total_buffers)),
5862
5863 #ifdef DOUG_LEA_MALLOC
5864 list4 (Qheap, make_number (1024),
5865 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5866 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5867 #endif
5868 };
5869 retval = CALLMANY (Flist, total);
5870
5871 /* GC is complete: now we can run our finalizer callbacks. */
5872 run_finalizers (&doomed_finalizers);
5873
5874 if (!NILP (Vpost_gc_hook))
5875 {
5876 ptrdiff_t gc_count = inhibit_garbage_collection ();
5877 safe_run_hooks (Qpost_gc_hook);
5878 unbind_to (gc_count, Qnil);
5879 }
5880
5881 /* Accumulate statistics. */
5882 if (FLOATP (Vgc_elapsed))
5883 {
5884 struct timespec since_start = timespec_sub (current_timespec (), start);
5885 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5886 + timespectod (since_start));
5887 }
5888
5889 gcs_done++;
5890
5891 /* Collect profiling data. */
5892 if (profiler_memory_running)
5893 {
5894 size_t swept = 0;
5895 size_t tot_after = total_bytes_of_live_objects ();
5896 if (tot_before > tot_after)
5897 swept = tot_before - tot_after;
5898 malloc_probe (swept);
5899 }
5900
5901 return retval;
5902 }
5903
5904 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5905 doc: /* Reclaim storage for Lisp objects no longer needed.
5906 Garbage collection happens automatically if you cons more than
5907 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5908 `garbage-collect' normally returns a list with info on amount of space in use,
5909 where each entry has the form (NAME SIZE USED FREE), where:
5910 - NAME is a symbol describing the kind of objects this entry represents,
5911 - SIZE is the number of bytes used by each one,
5912 - USED is the number of those objects that were found live in the heap,
5913 - FREE is the number of those objects that are not live but that Emacs
5914 keeps around for future allocations (maybe because it does not know how
5915 to return them to the OS).
5916 However, if there was overflow in pure space, `garbage-collect'
5917 returns nil, because real GC can't be done.
5918 See Info node `(elisp)Garbage Collection'. */)
5919 (void)
5920 {
5921 void *end;
5922
5923 #ifdef HAVE___BUILTIN_UNWIND_INIT
5924 /* Force callee-saved registers and register windows onto the stack.
5925 This is the preferred method if available, obviating the need for
5926 machine dependent methods. */
5927 __builtin_unwind_init ();
5928 end = &end;
5929 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5930 #ifndef GC_SAVE_REGISTERS_ON_STACK
5931 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5932 union aligned_jmpbuf {
5933 Lisp_Object o;
5934 sys_jmp_buf j;
5935 } j;
5936 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5937 #endif
5938 /* This trick flushes the register windows so that all the state of
5939 the process is contained in the stack. */
5940 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5941 needed on ia64 too. See mach_dep.c, where it also says inline
5942 assembler doesn't work with relevant proprietary compilers. */
5943 #ifdef __sparc__
5944 #if defined (__sparc64__) && defined (__FreeBSD__)
5945 /* FreeBSD does not have a ta 3 handler. */
5946 asm ("flushw");
5947 #else
5948 asm ("ta 3");
5949 #endif
5950 #endif
5951
5952 /* Save registers that we need to see on the stack. We need to see
5953 registers used to hold register variables and registers used to
5954 pass parameters. */
5955 #ifdef GC_SAVE_REGISTERS_ON_STACK
5956 GC_SAVE_REGISTERS_ON_STACK (end);
5957 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5958
5959 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5960 setjmp will definitely work, test it
5961 and print a message with the result
5962 of the test. */
5963 if (!setjmp_tested_p)
5964 {
5965 setjmp_tested_p = 1;
5966 test_setjmp ();
5967 }
5968 #endif /* GC_SETJMP_WORKS */
5969
5970 sys_setjmp (j.j);
5971 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5972 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5973 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5974 return garbage_collect_1 (end);
5975 }
5976
5977 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5978 only interesting objects referenced from glyphs are strings. */
5979
5980 static void
5981 mark_glyph_matrix (struct glyph_matrix *matrix)
5982 {
5983 struct glyph_row *row = matrix->rows;
5984 struct glyph_row *end = row + matrix->nrows;
5985
5986 for (; row < end; ++row)
5987 if (row->enabled_p)
5988 {
5989 int area;
5990 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5991 {
5992 struct glyph *glyph = row->glyphs[area];
5993 struct glyph *end_glyph = glyph + row->used[area];
5994
5995 for (; glyph < end_glyph; ++glyph)
5996 if (STRINGP (glyph->object)
5997 && !STRING_MARKED_P (XSTRING (glyph->object)))
5998 mark_object (glyph->object);
5999 }
6000 }
6001 }
6002
6003 /* Mark reference to a Lisp_Object.
6004 If the object referred to has not been seen yet, recursively mark
6005 all the references contained in it. */
6006
6007 #define LAST_MARKED_SIZE 500
6008 static Lisp_Object last_marked[LAST_MARKED_SIZE];
6009 static int last_marked_index;
6010
6011 /* For debugging--call abort when we cdr down this many
6012 links of a list, in mark_object. In debugging,
6013 the call to abort will hit a breakpoint.
6014 Normally this is zero and the check never goes off. */
6015 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6016
6017 static void
6018 mark_vectorlike (struct Lisp_Vector *ptr)
6019 {
6020 ptrdiff_t size = ptr->header.size;
6021 ptrdiff_t i;
6022
6023 eassert (!VECTOR_MARKED_P (ptr));
6024 VECTOR_MARK (ptr); /* Else mark it. */
6025 if (size & PSEUDOVECTOR_FLAG)
6026 size &= PSEUDOVECTOR_SIZE_MASK;
6027
6028 /* Note that this size is not the memory-footprint size, but only
6029 the number of Lisp_Object fields that we should trace.
6030 The distinction is used e.g. by Lisp_Process which places extra
6031 non-Lisp_Object fields at the end of the structure... */
6032 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6033 mark_object (ptr->contents[i]);
6034 }
6035
6036 /* Like mark_vectorlike but optimized for char-tables (and
6037 sub-char-tables) assuming that the contents are mostly integers or
6038 symbols. */
6039
6040 static void
6041 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6042 {
6043 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6044 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6045 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6046
6047 eassert (!VECTOR_MARKED_P (ptr));
6048 VECTOR_MARK (ptr);
6049 for (i = idx; i < size; i++)
6050 {
6051 Lisp_Object val = ptr->contents[i];
6052
6053 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6054 continue;
6055 if (SUB_CHAR_TABLE_P (val))
6056 {
6057 if (! VECTOR_MARKED_P (XVECTOR (val)))
6058 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6059 }
6060 else
6061 mark_object (val);
6062 }
6063 }
6064
6065 NO_INLINE /* To reduce stack depth in mark_object. */
6066 static Lisp_Object
6067 mark_compiled (struct Lisp_Vector *ptr)
6068 {
6069 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6070
6071 VECTOR_MARK (ptr);
6072 for (i = 0; i < size; i++)
6073 if (i != COMPILED_CONSTANTS)
6074 mark_object (ptr->contents[i]);
6075 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6076 }
6077
6078 /* Mark the chain of overlays starting at PTR. */
6079
6080 static void
6081 mark_overlay (struct Lisp_Overlay *ptr)
6082 {
6083 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6084 {
6085 ptr->gcmarkbit = 1;
6086 /* These two are always markers and can be marked fast. */
6087 XMARKER (ptr->start)->gcmarkbit = 1;
6088 XMARKER (ptr->end)->gcmarkbit = 1;
6089 mark_object (ptr->plist);
6090 }
6091 }
6092
6093 /* Mark Lisp_Objects and special pointers in BUFFER. */
6094
6095 static void
6096 mark_buffer (struct buffer *buffer)
6097 {
6098 /* This is handled much like other pseudovectors... */
6099 mark_vectorlike ((struct Lisp_Vector *) buffer);
6100
6101 /* ...but there are some buffer-specific things. */
6102
6103 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6104
6105 /* For now, we just don't mark the undo_list. It's done later in
6106 a special way just before the sweep phase, and after stripping
6107 some of its elements that are not needed any more. */
6108
6109 mark_overlay (buffer->overlays_before);
6110 mark_overlay (buffer->overlays_after);
6111
6112 /* If this is an indirect buffer, mark its base buffer. */
6113 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6114 mark_buffer (buffer->base_buffer);
6115 }
6116
6117 /* Mark Lisp faces in the face cache C. */
6118
6119 NO_INLINE /* To reduce stack depth in mark_object. */
6120 static void
6121 mark_face_cache (struct face_cache *c)
6122 {
6123 if (c)
6124 {
6125 int i, j;
6126 for (i = 0; i < c->used; ++i)
6127 {
6128 struct face *face = FACE_FROM_ID (c->f, i);
6129
6130 if (face)
6131 {
6132 if (face->font && !VECTOR_MARKED_P (face->font))
6133 mark_vectorlike ((struct Lisp_Vector *) face->font);
6134
6135 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6136 mark_object (face->lface[j]);
6137 }
6138 }
6139 }
6140 }
6141
6142 NO_INLINE /* To reduce stack depth in mark_object. */
6143 static void
6144 mark_localized_symbol (struct Lisp_Symbol *ptr)
6145 {
6146 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6147 Lisp_Object where = blv->where;
6148 /* If the value is set up for a killed buffer or deleted
6149 frame, restore its global binding. If the value is
6150 forwarded to a C variable, either it's not a Lisp_Object
6151 var, or it's staticpro'd already. */
6152 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6153 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6154 swap_in_global_binding (ptr);
6155 mark_object (blv->where);
6156 mark_object (blv->valcell);
6157 mark_object (blv->defcell);
6158 }
6159
6160 NO_INLINE /* To reduce stack depth in mark_object. */
6161 static void
6162 mark_save_value (struct Lisp_Save_Value *ptr)
6163 {
6164 /* If `save_type' is zero, `data[0].pointer' is the address
6165 of a memory area containing `data[1].integer' potential
6166 Lisp_Objects. */
6167 if (ptr->save_type == SAVE_TYPE_MEMORY)
6168 {
6169 Lisp_Object *p = ptr->data[0].pointer;
6170 ptrdiff_t nelt;
6171 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6172 mark_maybe_object (*p);
6173 }
6174 else
6175 {
6176 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6177 int i;
6178 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6179 if (save_type (ptr, i) == SAVE_OBJECT)
6180 mark_object (ptr->data[i].object);
6181 }
6182 }
6183
6184 /* Remove killed buffers or items whose car is a killed buffer from
6185 LIST, and mark other items. Return changed LIST, which is marked. */
6186
6187 static Lisp_Object
6188 mark_discard_killed_buffers (Lisp_Object list)
6189 {
6190 Lisp_Object tail, *prev = &list;
6191
6192 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6193 tail = XCDR (tail))
6194 {
6195 Lisp_Object tem = XCAR (tail);
6196 if (CONSP (tem))
6197 tem = XCAR (tem);
6198 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6199 *prev = XCDR (tail);
6200 else
6201 {
6202 CONS_MARK (XCONS (tail));
6203 mark_object (XCAR (tail));
6204 prev = xcdr_addr (tail);
6205 }
6206 }
6207 mark_object (tail);
6208 return list;
6209 }
6210
6211 /* Determine type of generic Lisp_Object and mark it accordingly.
6212
6213 This function implements a straightforward depth-first marking
6214 algorithm and so the recursion depth may be very high (a few
6215 tens of thousands is not uncommon). To minimize stack usage,
6216 a few cold paths are moved out to NO_INLINE functions above.
6217 In general, inlining them doesn't help you to gain more speed. */
6218
6219 void
6220 mark_object (Lisp_Object arg)
6221 {
6222 register Lisp_Object obj;
6223 void *po;
6224 #ifdef GC_CHECK_MARKED_OBJECTS
6225 struct mem_node *m;
6226 #endif
6227 ptrdiff_t cdr_count = 0;
6228
6229 obj = arg;
6230 loop:
6231
6232 po = XPNTR (obj);
6233 if (PURE_P (po))
6234 return;
6235
6236 last_marked[last_marked_index++] = obj;
6237 if (last_marked_index == LAST_MARKED_SIZE)
6238 last_marked_index = 0;
6239
6240 /* Perform some sanity checks on the objects marked here. Abort if
6241 we encounter an object we know is bogus. This increases GC time
6242 by ~80%. */
6243 #ifdef GC_CHECK_MARKED_OBJECTS
6244
6245 /* Check that the object pointed to by PO is known to be a Lisp
6246 structure allocated from the heap. */
6247 #define CHECK_ALLOCATED() \
6248 do { \
6249 m = mem_find (po); \
6250 if (m == MEM_NIL) \
6251 emacs_abort (); \
6252 } while (0)
6253
6254 /* Check that the object pointed to by PO is live, using predicate
6255 function LIVEP. */
6256 #define CHECK_LIVE(LIVEP) \
6257 do { \
6258 if (!LIVEP (m, po)) \
6259 emacs_abort (); \
6260 } while (0)
6261
6262 /* Check both of the above conditions, for non-symbols. */
6263 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6264 do { \
6265 CHECK_ALLOCATED (); \
6266 CHECK_LIVE (LIVEP); \
6267 } while (0) \
6268
6269 /* Check both of the above conditions, for symbols. */
6270 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6271 do { \
6272 if (!c_symbol_p (ptr)) \
6273 { \
6274 CHECK_ALLOCATED (); \
6275 CHECK_LIVE (live_symbol_p); \
6276 } \
6277 } while (0) \
6278
6279 #else /* not GC_CHECK_MARKED_OBJECTS */
6280
6281 #define CHECK_LIVE(LIVEP) ((void) 0)
6282 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6283 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6284
6285 #endif /* not GC_CHECK_MARKED_OBJECTS */
6286
6287 switch (XTYPE (obj))
6288 {
6289 case Lisp_String:
6290 {
6291 register struct Lisp_String *ptr = XSTRING (obj);
6292 if (STRING_MARKED_P (ptr))
6293 break;
6294 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6295 MARK_STRING (ptr);
6296 MARK_INTERVAL_TREE (ptr->intervals);
6297 #ifdef GC_CHECK_STRING_BYTES
6298 /* Check that the string size recorded in the string is the
6299 same as the one recorded in the sdata structure. */
6300 string_bytes (ptr);
6301 #endif /* GC_CHECK_STRING_BYTES */
6302 }
6303 break;
6304
6305 case Lisp_Vectorlike:
6306 {
6307 register struct Lisp_Vector *ptr = XVECTOR (obj);
6308 register ptrdiff_t pvectype;
6309
6310 if (VECTOR_MARKED_P (ptr))
6311 break;
6312
6313 #ifdef GC_CHECK_MARKED_OBJECTS
6314 m = mem_find (po);
6315 if (m == MEM_NIL && !SUBRP (obj))
6316 emacs_abort ();
6317 #endif /* GC_CHECK_MARKED_OBJECTS */
6318
6319 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6320 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6321 >> PSEUDOVECTOR_AREA_BITS);
6322 else
6323 pvectype = PVEC_NORMAL_VECTOR;
6324
6325 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6326 CHECK_LIVE (live_vector_p);
6327
6328 switch (pvectype)
6329 {
6330 case PVEC_BUFFER:
6331 #ifdef GC_CHECK_MARKED_OBJECTS
6332 {
6333 struct buffer *b;
6334 FOR_EACH_BUFFER (b)
6335 if (b == po)
6336 break;
6337 if (b == NULL)
6338 emacs_abort ();
6339 }
6340 #endif /* GC_CHECK_MARKED_OBJECTS */
6341 mark_buffer ((struct buffer *) ptr);
6342 break;
6343
6344 case PVEC_COMPILED:
6345 /* Although we could treat this just like a vector, mark_compiled
6346 returns the COMPILED_CONSTANTS element, which is marked at the
6347 next iteration of goto-loop here. This is done to avoid a few
6348 recursive calls to mark_object. */
6349 obj = mark_compiled (ptr);
6350 if (!NILP (obj))
6351 goto loop;
6352 break;
6353
6354 case PVEC_FRAME:
6355 {
6356 struct frame *f = (struct frame *) ptr;
6357
6358 mark_vectorlike (ptr);
6359 mark_face_cache (f->face_cache);
6360 #ifdef HAVE_WINDOW_SYSTEM
6361 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6362 {
6363 struct font *font = FRAME_FONT (f);
6364
6365 if (font && !VECTOR_MARKED_P (font))
6366 mark_vectorlike ((struct Lisp_Vector *) font);
6367 }
6368 #endif
6369 }
6370 break;
6371
6372 case PVEC_WINDOW:
6373 {
6374 struct window *w = (struct window *) ptr;
6375
6376 mark_vectorlike (ptr);
6377
6378 /* Mark glyph matrices, if any. Marking window
6379 matrices is sufficient because frame matrices
6380 use the same glyph memory. */
6381 if (w->current_matrix)
6382 {
6383 mark_glyph_matrix (w->current_matrix);
6384 mark_glyph_matrix (w->desired_matrix);
6385 }
6386
6387 /* Filter out killed buffers from both buffer lists
6388 in attempt to help GC to reclaim killed buffers faster.
6389 We can do it elsewhere for live windows, but this is the
6390 best place to do it for dead windows. */
6391 wset_prev_buffers
6392 (w, mark_discard_killed_buffers (w->prev_buffers));
6393 wset_next_buffers
6394 (w, mark_discard_killed_buffers (w->next_buffers));
6395 }
6396 break;
6397
6398 case PVEC_HASH_TABLE:
6399 {
6400 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6401
6402 mark_vectorlike (ptr);
6403 mark_object (h->test.name);
6404 mark_object (h->test.user_hash_function);
6405 mark_object (h->test.user_cmp_function);
6406 /* If hash table is not weak, mark all keys and values.
6407 For weak tables, mark only the vector. */
6408 if (NILP (h->weak))
6409 mark_object (h->key_and_value);
6410 else
6411 VECTOR_MARK (XVECTOR (h->key_and_value));
6412 }
6413 break;
6414
6415 case PVEC_CHAR_TABLE:
6416 case PVEC_SUB_CHAR_TABLE:
6417 mark_char_table (ptr, (enum pvec_type) pvectype);
6418 break;
6419
6420 case PVEC_BOOL_VECTOR:
6421 /* No Lisp_Objects to mark in a bool vector. */
6422 VECTOR_MARK (ptr);
6423 break;
6424
6425 case PVEC_SUBR:
6426 break;
6427
6428 case PVEC_FREE:
6429 emacs_abort ();
6430
6431 default:
6432 mark_vectorlike (ptr);
6433 }
6434 }
6435 break;
6436
6437 case Lisp_Symbol:
6438 {
6439 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6440 nextsym:
6441 if (ptr->gcmarkbit)
6442 break;
6443 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6444 ptr->gcmarkbit = 1;
6445 /* Attempt to catch bogus objects. */
6446 eassert (valid_lisp_object_p (ptr->function));
6447 mark_object (ptr->function);
6448 mark_object (ptr->plist);
6449 switch (ptr->redirect)
6450 {
6451 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6452 case SYMBOL_VARALIAS:
6453 {
6454 Lisp_Object tem;
6455 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6456 mark_object (tem);
6457 break;
6458 }
6459 case SYMBOL_LOCALIZED:
6460 mark_localized_symbol (ptr);
6461 break;
6462 case SYMBOL_FORWARDED:
6463 /* If the value is forwarded to a buffer or keyboard field,
6464 these are marked when we see the corresponding object.
6465 And if it's forwarded to a C variable, either it's not
6466 a Lisp_Object var, or it's staticpro'd already. */
6467 break;
6468 default: emacs_abort ();
6469 }
6470 if (!PURE_P (XSTRING (ptr->name)))
6471 MARK_STRING (XSTRING (ptr->name));
6472 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6473 /* Inner loop to mark next symbol in this bucket, if any. */
6474 po = ptr = ptr->next;
6475 if (ptr)
6476 goto nextsym;
6477 }
6478 break;
6479
6480 case Lisp_Misc:
6481 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6482
6483 if (XMISCANY (obj)->gcmarkbit)
6484 break;
6485
6486 switch (XMISCTYPE (obj))
6487 {
6488 case Lisp_Misc_Marker:
6489 /* DO NOT mark thru the marker's chain.
6490 The buffer's markers chain does not preserve markers from gc;
6491 instead, markers are removed from the chain when freed by gc. */
6492 XMISCANY (obj)->gcmarkbit = 1;
6493 break;
6494
6495 case Lisp_Misc_Save_Value:
6496 XMISCANY (obj)->gcmarkbit = 1;
6497 mark_save_value (XSAVE_VALUE (obj));
6498 break;
6499
6500 case Lisp_Misc_Overlay:
6501 mark_overlay (XOVERLAY (obj));
6502 break;
6503
6504 case Lisp_Misc_Finalizer:
6505 XMISCANY (obj)->gcmarkbit = true;
6506 mark_object (XFINALIZER (obj)->function);
6507 break;
6508
6509 #ifdef HAVE_MODULES
6510 case Lisp_Misc_User_Ptr:
6511 XMISCANY (obj)->gcmarkbit = true;
6512 break;
6513 #endif
6514
6515 default:
6516 emacs_abort ();
6517 }
6518 break;
6519
6520 case Lisp_Cons:
6521 {
6522 register struct Lisp_Cons *ptr = XCONS (obj);
6523 if (CONS_MARKED_P (ptr))
6524 break;
6525 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6526 CONS_MARK (ptr);
6527 /* If the cdr is nil, avoid recursion for the car. */
6528 if (EQ (ptr->u.cdr, Qnil))
6529 {
6530 obj = ptr->car;
6531 cdr_count = 0;
6532 goto loop;
6533 }
6534 mark_object (ptr->car);
6535 obj = ptr->u.cdr;
6536 cdr_count++;
6537 if (cdr_count == mark_object_loop_halt)
6538 emacs_abort ();
6539 goto loop;
6540 }
6541
6542 case Lisp_Float:
6543 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6544 FLOAT_MARK (XFLOAT (obj));
6545 break;
6546
6547 case_Lisp_Int:
6548 break;
6549
6550 default:
6551 emacs_abort ();
6552 }
6553
6554 #undef CHECK_LIVE
6555 #undef CHECK_ALLOCATED
6556 #undef CHECK_ALLOCATED_AND_LIVE
6557 }
6558 /* Mark the Lisp pointers in the terminal objects.
6559 Called by Fgarbage_collect. */
6560
6561 static void
6562 mark_terminals (void)
6563 {
6564 struct terminal *t;
6565 for (t = terminal_list; t; t = t->next_terminal)
6566 {
6567 eassert (t->name != NULL);
6568 #ifdef HAVE_WINDOW_SYSTEM
6569 /* If a terminal object is reachable from a stacpro'ed object,
6570 it might have been marked already. Make sure the image cache
6571 gets marked. */
6572 mark_image_cache (t->image_cache);
6573 #endif /* HAVE_WINDOW_SYSTEM */
6574 if (!VECTOR_MARKED_P (t))
6575 mark_vectorlike ((struct Lisp_Vector *)t);
6576 }
6577 }
6578
6579
6580
6581 /* Value is non-zero if OBJ will survive the current GC because it's
6582 either marked or does not need to be marked to survive. */
6583
6584 bool
6585 survives_gc_p (Lisp_Object obj)
6586 {
6587 bool survives_p;
6588
6589 switch (XTYPE (obj))
6590 {
6591 case_Lisp_Int:
6592 survives_p = 1;
6593 break;
6594
6595 case Lisp_Symbol:
6596 survives_p = XSYMBOL (obj)->gcmarkbit;
6597 break;
6598
6599 case Lisp_Misc:
6600 survives_p = XMISCANY (obj)->gcmarkbit;
6601 break;
6602
6603 case Lisp_String:
6604 survives_p = STRING_MARKED_P (XSTRING (obj));
6605 break;
6606
6607 case Lisp_Vectorlike:
6608 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6609 break;
6610
6611 case Lisp_Cons:
6612 survives_p = CONS_MARKED_P (XCONS (obj));
6613 break;
6614
6615 case Lisp_Float:
6616 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6617 break;
6618
6619 default:
6620 emacs_abort ();
6621 }
6622
6623 return survives_p || PURE_P (XPNTR (obj));
6624 }
6625
6626
6627 \f
6628
6629 NO_INLINE /* For better stack traces */
6630 static void
6631 sweep_conses (void)
6632 {
6633 struct cons_block *cblk;
6634 struct cons_block **cprev = &cons_block;
6635 int lim = cons_block_index;
6636 EMACS_INT num_free = 0, num_used = 0;
6637
6638 cons_free_list = 0;
6639
6640 for (cblk = cons_block; cblk; cblk = *cprev)
6641 {
6642 int i = 0;
6643 int this_free = 0;
6644 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6645
6646 /* Scan the mark bits an int at a time. */
6647 for (i = 0; i < ilim; i++)
6648 {
6649 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6650 {
6651 /* Fast path - all cons cells for this int are marked. */
6652 cblk->gcmarkbits[i] = 0;
6653 num_used += BITS_PER_BITS_WORD;
6654 }
6655 else
6656 {
6657 /* Some cons cells for this int are not marked.
6658 Find which ones, and free them. */
6659 int start, pos, stop;
6660
6661 start = i * BITS_PER_BITS_WORD;
6662 stop = lim - start;
6663 if (stop > BITS_PER_BITS_WORD)
6664 stop = BITS_PER_BITS_WORD;
6665 stop += start;
6666
6667 for (pos = start; pos < stop; pos++)
6668 {
6669 if (!CONS_MARKED_P (&cblk->conses[pos]))
6670 {
6671 this_free++;
6672 cblk->conses[pos].u.chain = cons_free_list;
6673 cons_free_list = &cblk->conses[pos];
6674 cons_free_list->car = Vdead;
6675 }
6676 else
6677 {
6678 num_used++;
6679 CONS_UNMARK (&cblk->conses[pos]);
6680 }
6681 }
6682 }
6683 }
6684
6685 lim = CONS_BLOCK_SIZE;
6686 /* If this block contains only free conses and we have already
6687 seen more than two blocks worth of free conses then deallocate
6688 this block. */
6689 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6690 {
6691 *cprev = cblk->next;
6692 /* Unhook from the free list. */
6693 cons_free_list = cblk->conses[0].u.chain;
6694 lisp_align_free (cblk);
6695 }
6696 else
6697 {
6698 num_free += this_free;
6699 cprev = &cblk->next;
6700 }
6701 }
6702 total_conses = num_used;
6703 total_free_conses = num_free;
6704 }
6705
6706 NO_INLINE /* For better stack traces */
6707 static void
6708 sweep_floats (void)
6709 {
6710 register struct float_block *fblk;
6711 struct float_block **fprev = &float_block;
6712 register int lim = float_block_index;
6713 EMACS_INT num_free = 0, num_used = 0;
6714
6715 float_free_list = 0;
6716
6717 for (fblk = float_block; fblk; fblk = *fprev)
6718 {
6719 register int i;
6720 int this_free = 0;
6721 for (i = 0; i < lim; i++)
6722 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6723 {
6724 this_free++;
6725 fblk->floats[i].u.chain = float_free_list;
6726 float_free_list = &fblk->floats[i];
6727 }
6728 else
6729 {
6730 num_used++;
6731 FLOAT_UNMARK (&fblk->floats[i]);
6732 }
6733 lim = FLOAT_BLOCK_SIZE;
6734 /* If this block contains only free floats and we have already
6735 seen more than two blocks worth of free floats then deallocate
6736 this block. */
6737 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6738 {
6739 *fprev = fblk->next;
6740 /* Unhook from the free list. */
6741 float_free_list = fblk->floats[0].u.chain;
6742 lisp_align_free (fblk);
6743 }
6744 else
6745 {
6746 num_free += this_free;
6747 fprev = &fblk->next;
6748 }
6749 }
6750 total_floats = num_used;
6751 total_free_floats = num_free;
6752 }
6753
6754 NO_INLINE /* For better stack traces */
6755 static void
6756 sweep_intervals (void)
6757 {
6758 register struct interval_block *iblk;
6759 struct interval_block **iprev = &interval_block;
6760 register int lim = interval_block_index;
6761 EMACS_INT num_free = 0, num_used = 0;
6762
6763 interval_free_list = 0;
6764
6765 for (iblk = interval_block; iblk; iblk = *iprev)
6766 {
6767 register int i;
6768 int this_free = 0;
6769
6770 for (i = 0; i < lim; i++)
6771 {
6772 if (!iblk->intervals[i].gcmarkbit)
6773 {
6774 set_interval_parent (&iblk->intervals[i], interval_free_list);
6775 interval_free_list = &iblk->intervals[i];
6776 this_free++;
6777 }
6778 else
6779 {
6780 num_used++;
6781 iblk->intervals[i].gcmarkbit = 0;
6782 }
6783 }
6784 lim = INTERVAL_BLOCK_SIZE;
6785 /* If this block contains only free intervals and we have already
6786 seen more than two blocks worth of free intervals then
6787 deallocate this block. */
6788 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6789 {
6790 *iprev = iblk->next;
6791 /* Unhook from the free list. */
6792 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6793 lisp_free (iblk);
6794 }
6795 else
6796 {
6797 num_free += this_free;
6798 iprev = &iblk->next;
6799 }
6800 }
6801 total_intervals = num_used;
6802 total_free_intervals = num_free;
6803 }
6804
6805 NO_INLINE /* For better stack traces */
6806 static void
6807 sweep_symbols (void)
6808 {
6809 struct symbol_block *sblk;
6810 struct symbol_block **sprev = &symbol_block;
6811 int lim = symbol_block_index;
6812 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6813
6814 symbol_free_list = NULL;
6815
6816 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6817 lispsym[i].gcmarkbit = 0;
6818
6819 for (sblk = symbol_block; sblk; sblk = *sprev)
6820 {
6821 int this_free = 0;
6822 union aligned_Lisp_Symbol *sym = sblk->symbols;
6823 union aligned_Lisp_Symbol *end = sym + lim;
6824
6825 for (; sym < end; ++sym)
6826 {
6827 if (!sym->s.gcmarkbit)
6828 {
6829 if (sym->s.redirect == SYMBOL_LOCALIZED)
6830 xfree (SYMBOL_BLV (&sym->s));
6831 sym->s.next = symbol_free_list;
6832 symbol_free_list = &sym->s;
6833 symbol_free_list->function = Vdead;
6834 ++this_free;
6835 }
6836 else
6837 {
6838 ++num_used;
6839 sym->s.gcmarkbit = 0;
6840 /* Attempt to catch bogus objects. */
6841 eassert (valid_lisp_object_p (sym->s.function));
6842 }
6843 }
6844
6845 lim = SYMBOL_BLOCK_SIZE;
6846 /* If this block contains only free symbols and we have already
6847 seen more than two blocks worth of free symbols then deallocate
6848 this block. */
6849 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6850 {
6851 *sprev = sblk->next;
6852 /* Unhook from the free list. */
6853 symbol_free_list = sblk->symbols[0].s.next;
6854 lisp_free (sblk);
6855 }
6856 else
6857 {
6858 num_free += this_free;
6859 sprev = &sblk->next;
6860 }
6861 }
6862 total_symbols = num_used;
6863 total_free_symbols = num_free;
6864 }
6865
6866 NO_INLINE /* For better stack traces. */
6867 static void
6868 sweep_misc (void)
6869 {
6870 register struct marker_block *mblk;
6871 struct marker_block **mprev = &marker_block;
6872 register int lim = marker_block_index;
6873 EMACS_INT num_free = 0, num_used = 0;
6874
6875 /* Put all unmarked misc's on free list. For a marker, first
6876 unchain it from the buffer it points into. */
6877
6878 marker_free_list = 0;
6879
6880 for (mblk = marker_block; mblk; mblk = *mprev)
6881 {
6882 register int i;
6883 int this_free = 0;
6884
6885 for (i = 0; i < lim; i++)
6886 {
6887 if (!mblk->markers[i].m.u_any.gcmarkbit)
6888 {
6889 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6890 unchain_marker (&mblk->markers[i].m.u_marker);
6891 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6892 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6893 #ifdef HAVE_MODULES
6894 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6895 {
6896 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6897 uptr->finalizer (uptr->p);
6898 }
6899 #endif
6900 /* Set the type of the freed object to Lisp_Misc_Free.
6901 We could leave the type alone, since nobody checks it,
6902 but this might catch bugs faster. */
6903 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6904 mblk->markers[i].m.u_free.chain = marker_free_list;
6905 marker_free_list = &mblk->markers[i].m;
6906 this_free++;
6907 }
6908 else
6909 {
6910 num_used++;
6911 mblk->markers[i].m.u_any.gcmarkbit = 0;
6912 }
6913 }
6914 lim = MARKER_BLOCK_SIZE;
6915 /* If this block contains only free markers and we have already
6916 seen more than two blocks worth of free markers then deallocate
6917 this block. */
6918 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6919 {
6920 *mprev = mblk->next;
6921 /* Unhook from the free list. */
6922 marker_free_list = mblk->markers[0].m.u_free.chain;
6923 lisp_free (mblk);
6924 }
6925 else
6926 {
6927 num_free += this_free;
6928 mprev = &mblk->next;
6929 }
6930 }
6931
6932 total_markers = num_used;
6933 total_free_markers = num_free;
6934 }
6935
6936 NO_INLINE /* For better stack traces */
6937 static void
6938 sweep_buffers (void)
6939 {
6940 register struct buffer *buffer, **bprev = &all_buffers;
6941
6942 total_buffers = 0;
6943 for (buffer = all_buffers; buffer; buffer = *bprev)
6944 if (!VECTOR_MARKED_P (buffer))
6945 {
6946 *bprev = buffer->next;
6947 lisp_free (buffer);
6948 }
6949 else
6950 {
6951 VECTOR_UNMARK (buffer);
6952 /* Do not use buffer_(set|get)_intervals here. */
6953 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6954 total_buffers++;
6955 bprev = &buffer->next;
6956 }
6957 }
6958
6959 /* Sweep: find all structures not marked, and free them. */
6960 static void
6961 gc_sweep (void)
6962 {
6963 /* Remove or mark entries in weak hash tables.
6964 This must be done before any object is unmarked. */
6965 sweep_weak_hash_tables ();
6966
6967 sweep_strings ();
6968 check_string_bytes (!noninteractive);
6969 sweep_conses ();
6970 sweep_floats ();
6971 sweep_intervals ();
6972 sweep_symbols ();
6973 sweep_misc ();
6974 sweep_buffers ();
6975 sweep_vectors ();
6976 check_string_bytes (!noninteractive);
6977 }
6978
6979 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6980 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6981 All values are in Kbytes. If there is no swap space,
6982 last two values are zero. If the system is not supported
6983 or memory information can't be obtained, return nil. */)
6984 (void)
6985 {
6986 #if defined HAVE_LINUX_SYSINFO
6987 struct sysinfo si;
6988 uintmax_t units;
6989
6990 if (sysinfo (&si))
6991 return Qnil;
6992 #ifdef LINUX_SYSINFO_UNIT
6993 units = si.mem_unit;
6994 #else
6995 units = 1;
6996 #endif
6997 return list4i ((uintmax_t) si.totalram * units / 1024,
6998 (uintmax_t) si.freeram * units / 1024,
6999 (uintmax_t) si.totalswap * units / 1024,
7000 (uintmax_t) si.freeswap * units / 1024);
7001 #elif defined WINDOWSNT
7002 unsigned long long totalram, freeram, totalswap, freeswap;
7003
7004 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7005 return list4i ((uintmax_t) totalram / 1024,
7006 (uintmax_t) freeram / 1024,
7007 (uintmax_t) totalswap / 1024,
7008 (uintmax_t) freeswap / 1024);
7009 else
7010 return Qnil;
7011 #elif defined MSDOS
7012 unsigned long totalram, freeram, totalswap, freeswap;
7013
7014 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7015 return list4i ((uintmax_t) totalram / 1024,
7016 (uintmax_t) freeram / 1024,
7017 (uintmax_t) totalswap / 1024,
7018 (uintmax_t) freeswap / 1024);
7019 else
7020 return Qnil;
7021 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7022 /* FIXME: add more systems. */
7023 return Qnil;
7024 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7025 }
7026
7027 /* Debugging aids. */
7028
7029 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7030 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7031 This may be helpful in debugging Emacs's memory usage.
7032 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7033 (void)
7034 {
7035 Lisp_Object end;
7036
7037 #ifdef HAVE_NS
7038 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7039 XSETINT (end, 0);
7040 #else
7041 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7042 #endif
7043
7044 return end;
7045 }
7046
7047 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7048 doc: /* Return a list of counters that measure how much consing there has been.
7049 Each of these counters increments for a certain kind of object.
7050 The counters wrap around from the largest positive integer to zero.
7051 Garbage collection does not decrease them.
7052 The elements of the value are as follows:
7053 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7054 All are in units of 1 = one object consed
7055 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7056 objects consed.
7057 MISCS include overlays, markers, and some internal types.
7058 Frames, windows, buffers, and subprocesses count as vectors
7059 (but the contents of a buffer's text do not count here). */)
7060 (void)
7061 {
7062 return listn (CONSTYPE_HEAP, 8,
7063 bounded_number (cons_cells_consed),
7064 bounded_number (floats_consed),
7065 bounded_number (vector_cells_consed),
7066 bounded_number (symbols_consed),
7067 bounded_number (string_chars_consed),
7068 bounded_number (misc_objects_consed),
7069 bounded_number (intervals_consed),
7070 bounded_number (strings_consed));
7071 }
7072
7073 static bool
7074 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7075 {
7076 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7077 Lisp_Object val = find_symbol_value (symbol);
7078 return (EQ (val, obj)
7079 || EQ (sym->function, obj)
7080 || (!NILP (sym->function)
7081 && COMPILEDP (sym->function)
7082 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7083 || (!NILP (val)
7084 && COMPILEDP (val)
7085 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7086 }
7087
7088 /* Find at most FIND_MAX symbols which have OBJ as their value or
7089 function. This is used in gdbinit's `xwhichsymbols' command. */
7090
7091 Lisp_Object
7092 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7093 {
7094 struct symbol_block *sblk;
7095 ptrdiff_t gc_count = inhibit_garbage_collection ();
7096 Lisp_Object found = Qnil;
7097
7098 if (! DEADP (obj))
7099 {
7100 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7101 {
7102 Lisp_Object sym = builtin_lisp_symbol (i);
7103 if (symbol_uses_obj (sym, obj))
7104 {
7105 found = Fcons (sym, found);
7106 if (--find_max == 0)
7107 goto out;
7108 }
7109 }
7110
7111 for (sblk = symbol_block; sblk; sblk = sblk->next)
7112 {
7113 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7114 int bn;
7115
7116 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7117 {
7118 if (sblk == symbol_block && bn >= symbol_block_index)
7119 break;
7120
7121 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7122 if (symbol_uses_obj (sym, obj))
7123 {
7124 found = Fcons (sym, found);
7125 if (--find_max == 0)
7126 goto out;
7127 }
7128 }
7129 }
7130 }
7131
7132 out:
7133 unbind_to (gc_count, Qnil);
7134 return found;
7135 }
7136
7137 #ifdef SUSPICIOUS_OBJECT_CHECKING
7138
7139 static void *
7140 find_suspicious_object_in_range (void *begin, void *end)
7141 {
7142 char *begin_a = begin;
7143 char *end_a = end;
7144 int i;
7145
7146 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7147 {
7148 char *suspicious_object = suspicious_objects[i];
7149 if (begin_a <= suspicious_object && suspicious_object < end_a)
7150 return suspicious_object;
7151 }
7152
7153 return NULL;
7154 }
7155
7156 static void
7157 note_suspicious_free (void* ptr)
7158 {
7159 struct suspicious_free_record* rec;
7160
7161 rec = &suspicious_free_history[suspicious_free_history_index++];
7162 if (suspicious_free_history_index ==
7163 ARRAYELTS (suspicious_free_history))
7164 {
7165 suspicious_free_history_index = 0;
7166 }
7167
7168 memset (rec, 0, sizeof (*rec));
7169 rec->suspicious_object = ptr;
7170 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7171 }
7172
7173 static void
7174 detect_suspicious_free (void* ptr)
7175 {
7176 int i;
7177
7178 eassert (ptr != NULL);
7179
7180 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7181 if (suspicious_objects[i] == ptr)
7182 {
7183 note_suspicious_free (ptr);
7184 suspicious_objects[i] = NULL;
7185 }
7186 }
7187
7188 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7189
7190 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7191 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7192 If Emacs is compiled with suspicious object checking, capture
7193 a stack trace when OBJ is freed in order to help track down
7194 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7195 (Lisp_Object obj)
7196 {
7197 #ifdef SUSPICIOUS_OBJECT_CHECKING
7198 /* Right now, we care only about vectors. */
7199 if (VECTORLIKEP (obj))
7200 {
7201 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7202 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7203 suspicious_object_index = 0;
7204 }
7205 #endif
7206 return obj;
7207 }
7208
7209 #ifdef ENABLE_CHECKING
7210
7211 bool suppress_checking;
7212
7213 void
7214 die (const char *msg, const char *file, int line)
7215 {
7216 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7217 file, line, msg);
7218 terminate_due_to_signal (SIGABRT, INT_MAX);
7219 }
7220
7221 #endif /* ENABLE_CHECKING */
7222
7223 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7224
7225 /* Debugging check whether STR is ASCII-only. */
7226
7227 const char *
7228 verify_ascii (const char *str)
7229 {
7230 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7231 while (ptr < end)
7232 {
7233 int c = STRING_CHAR_ADVANCE (ptr);
7234 if (!ASCII_CHAR_P (c))
7235 emacs_abort ();
7236 }
7237 return str;
7238 }
7239
7240 /* Stress alloca with inconveniently sized requests and check
7241 whether all allocated areas may be used for Lisp_Object. */
7242
7243 NO_INLINE static void
7244 verify_alloca (void)
7245 {
7246 int i;
7247 enum { ALLOCA_CHECK_MAX = 256 };
7248 /* Start from size of the smallest Lisp object. */
7249 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7250 {
7251 void *ptr = alloca (i);
7252 make_lisp_ptr (ptr, Lisp_Cons);
7253 }
7254 }
7255
7256 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7257
7258 #define verify_alloca() ((void) 0)
7259
7260 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7261
7262 /* Initialization. */
7263
7264 void
7265 init_alloc_once (void)
7266 {
7267 /* Even though Qt's contents are not set up, its address is known. */
7268 Vpurify_flag = Qt;
7269
7270 purebeg = PUREBEG;
7271 pure_size = PURESIZE;
7272
7273 verify_alloca ();
7274 init_finalizer_list (&finalizers);
7275 init_finalizer_list (&doomed_finalizers);
7276
7277 mem_init ();
7278 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7279
7280 #ifdef DOUG_LEA_MALLOC
7281 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7282 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7283 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7284 #endif
7285 init_strings ();
7286 init_vectors ();
7287
7288 refill_memory_reserve ();
7289 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7290 }
7291
7292 void
7293 init_alloc (void)
7294 {
7295 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7296 setjmp_tested_p = longjmps_done = 0;
7297 #endif
7298 Vgc_elapsed = make_float (0.0);
7299 gcs_done = 0;
7300
7301 #if USE_VALGRIND
7302 valgrind_p = RUNNING_ON_VALGRIND != 0;
7303 #endif
7304 }
7305
7306 void
7307 syms_of_alloc (void)
7308 {
7309 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7310 doc: /* Number of bytes of consing between garbage collections.
7311 Garbage collection can happen automatically once this many bytes have been
7312 allocated since the last garbage collection. All data types count.
7313
7314 Garbage collection happens automatically only when `eval' is called.
7315
7316 By binding this temporarily to a large number, you can effectively
7317 prevent garbage collection during a part of the program.
7318 See also `gc-cons-percentage'. */);
7319
7320 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7321 doc: /* Portion of the heap used for allocation.
7322 Garbage collection can happen automatically once this portion of the heap
7323 has been allocated since the last garbage collection.
7324 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7325 Vgc_cons_percentage = make_float (0.1);
7326
7327 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7328 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7329
7330 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7331 doc: /* Number of cons cells that have been consed so far. */);
7332
7333 DEFVAR_INT ("floats-consed", floats_consed,
7334 doc: /* Number of floats that have been consed so far. */);
7335
7336 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7337 doc: /* Number of vector cells that have been consed so far. */);
7338
7339 DEFVAR_INT ("symbols-consed", symbols_consed,
7340 doc: /* Number of symbols that have been consed so far. */);
7341 symbols_consed += ARRAYELTS (lispsym);
7342
7343 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7344 doc: /* Number of string characters that have been consed so far. */);
7345
7346 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7347 doc: /* Number of miscellaneous objects that have been consed so far.
7348 These include markers and overlays, plus certain objects not visible
7349 to users. */);
7350
7351 DEFVAR_INT ("intervals-consed", intervals_consed,
7352 doc: /* Number of intervals that have been consed so far. */);
7353
7354 DEFVAR_INT ("strings-consed", strings_consed,
7355 doc: /* Number of strings that have been consed so far. */);
7356
7357 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7358 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7359 This means that certain objects should be allocated in shared (pure) space.
7360 It can also be set to a hash-table, in which case this table is used to
7361 do hash-consing of the objects allocated to pure space. */);
7362
7363 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7364 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7365 garbage_collection_messages = 0;
7366
7367 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7368 doc: /* Hook run after garbage collection has finished. */);
7369 Vpost_gc_hook = Qnil;
7370 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7371
7372 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7373 doc: /* Precomputed `signal' argument for memory-full error. */);
7374 /* We build this in advance because if we wait until we need it, we might
7375 not be able to allocate the memory to hold it. */
7376 Vmemory_signal_data
7377 = listn (CONSTYPE_PURE, 2, Qerror,
7378 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7379
7380 DEFVAR_LISP ("memory-full", Vmemory_full,
7381 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7382 Vmemory_full = Qnil;
7383
7384 DEFSYM (Qconses, "conses");
7385 DEFSYM (Qsymbols, "symbols");
7386 DEFSYM (Qmiscs, "miscs");
7387 DEFSYM (Qstrings, "strings");
7388 DEFSYM (Qvectors, "vectors");
7389 DEFSYM (Qfloats, "floats");
7390 DEFSYM (Qintervals, "intervals");
7391 DEFSYM (Qbuffers, "buffers");
7392 DEFSYM (Qstring_bytes, "string-bytes");
7393 DEFSYM (Qvector_slots, "vector-slots");
7394 DEFSYM (Qheap, "heap");
7395 DEFSYM (Qautomatic_gc, "Automatic GC");
7396
7397 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7398 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7399
7400 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7401 doc: /* Accumulated time elapsed in garbage collections.
7402 The time is in seconds as a floating point value. */);
7403 DEFVAR_INT ("gcs-done", gcs_done,
7404 doc: /* Accumulated number of garbage collections done. */);
7405
7406 defsubr (&Scons);
7407 defsubr (&Slist);
7408 defsubr (&Svector);
7409 defsubr (&Sbool_vector);
7410 defsubr (&Smake_byte_code);
7411 defsubr (&Smake_list);
7412 defsubr (&Smake_vector);
7413 defsubr (&Smake_string);
7414 defsubr (&Smake_bool_vector);
7415 defsubr (&Smake_symbol);
7416 defsubr (&Smake_marker);
7417 defsubr (&Smake_finalizer);
7418 defsubr (&Spurecopy);
7419 defsubr (&Sgarbage_collect);
7420 defsubr (&Smemory_limit);
7421 defsubr (&Smemory_info);
7422 defsubr (&Smemory_use_counts);
7423 defsubr (&Ssuspicious_object);
7424 }
7425
7426 /* When compiled with GCC, GDB might say "No enum type named
7427 pvec_type" if we don't have at least one symbol with that type, and
7428 then xbacktrace could fail. Similarly for the other enums and
7429 their values. Some non-GCC compilers don't like these constructs. */
7430 #ifdef __GNUC__
7431 union
7432 {
7433 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7434 enum char_table_specials char_table_specials;
7435 enum char_bits char_bits;
7436 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7437 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7438 enum Lisp_Bits Lisp_Bits;
7439 enum Lisp_Compiled Lisp_Compiled;
7440 enum maxargs maxargs;
7441 enum MAX_ALLOCA MAX_ALLOCA;
7442 enum More_Lisp_Bits More_Lisp_Bits;
7443 enum pvec_type pvec_type;
7444 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7445 #endif /* __GNUC__ */