]> code.delx.au - gnu-emacs/blob - src/fns.c
Merge from emacs--devo--0
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <config.h>
24
25 #ifdef HAVE_UNISTD_H
26 #include <unistd.h>
27 #endif
28 #include <time.h>
29
30 #ifndef MAC_OS
31 /* On Mac OS, defining this conflicts with precompiled headers. */
32
33 /* Note on some machines this defines `vector' as a typedef,
34 so make sure we don't use that name in this file. */
35 #undef vector
36 #define vector *****
37
38 #endif /* ! MAC_OSX */
39
40 #include "lisp.h"
41 #include "commands.h"
42 #include "charset.h"
43 #include "coding.h"
44 #include "buffer.h"
45 #include "keyboard.h"
46 #include "keymap.h"
47 #include "intervals.h"
48 #include "frame.h"
49 #include "window.h"
50 #include "blockinput.h"
51 #ifdef HAVE_MENUS
52 #if defined (HAVE_X_WINDOWS)
53 #include "xterm.h"
54 #elif defined (MAC_OS)
55 #include "macterm.h"
56 #endif
57 #endif
58
59 #ifndef NULL
60 #define NULL ((POINTER_TYPE *)0)
61 #endif
62
63 /* Nonzero enables use of dialog boxes for questions
64 asked by mouse commands. */
65 int use_dialog_box;
66
67 /* Nonzero enables use of a file dialog for file name
68 questions asked by mouse commands. */
69 int use_file_dialog;
70
71 extern int minibuffer_auto_raise;
72 extern Lisp_Object minibuf_window;
73 extern Lisp_Object Vlocale_coding_system;
74 extern int load_in_progress;
75
76 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
77 Lisp_Object Qyes_or_no_p_history;
78 Lisp_Object Qcursor_in_echo_area;
79 Lisp_Object Qwidget_type;
80 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
81
82 extern Lisp_Object Qinput_method_function;
83
84 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
85
86 extern long get_random ();
87 extern void seed_random P_ ((long));
88
89 #ifndef HAVE_UNISTD_H
90 extern long time ();
91 #endif
92 \f
93 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
94 doc: /* Return the argument unchanged. */)
95 (arg)
96 Lisp_Object arg;
97 {
98 return arg;
99 }
100
101 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
102 doc: /* Return a pseudo-random number.
103 All integers representable in Lisp are equally likely.
104 On most systems, this is 29 bits' worth.
105 With positive integer argument N, return random number in interval [0,N).
106 With argument t, set the random number seed from the current time and pid. */)
107 (n)
108 Lisp_Object n;
109 {
110 EMACS_INT val;
111 Lisp_Object lispy_val;
112 unsigned long denominator;
113
114 if (EQ (n, Qt))
115 seed_random (getpid () + time (NULL));
116 if (NATNUMP (n) && XFASTINT (n) != 0)
117 {
118 /* Try to take our random number from the higher bits of VAL,
119 not the lower, since (says Gentzel) the low bits of `random'
120 are less random than the higher ones. We do this by using the
121 quotient rather than the remainder. At the high end of the RNG
122 it's possible to get a quotient larger than n; discarding
123 these values eliminates the bias that would otherwise appear
124 when using a large n. */
125 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
126 do
127 val = get_random () / denominator;
128 while (val >= XFASTINT (n));
129 }
130 else
131 val = get_random ();
132 XSETINT (lispy_val, val);
133 return lispy_val;
134 }
135 \f
136 /* Random data-structure functions */
137
138 DEFUN ("length", Flength, Slength, 1, 1, 0,
139 doc: /* Return the length of vector, list or string SEQUENCE.
140 A byte-code function object is also allowed.
141 If the string contains multibyte characters, this is not necessarily
142 the number of bytes in the string; it is the number of characters.
143 To get the number of bytes, use `string-bytes'. */)
144 (sequence)
145 register Lisp_Object sequence;
146 {
147 register Lisp_Object val;
148 register int i;
149
150 if (STRINGP (sequence))
151 XSETFASTINT (val, SCHARS (sequence));
152 else if (VECTORP (sequence))
153 XSETFASTINT (val, ASIZE (sequence));
154 else if (SUB_CHAR_TABLE_P (sequence))
155 XSETFASTINT (val, SUB_CHAR_TABLE_ORDINARY_SLOTS);
156 else if (CHAR_TABLE_P (sequence))
157 XSETFASTINT (val, MAX_CHAR);
158 else if (BOOL_VECTOR_P (sequence))
159 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
160 else if (COMPILEDP (sequence))
161 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
162 else if (CONSP (sequence))
163 {
164 i = 0;
165 while (CONSP (sequence))
166 {
167 sequence = XCDR (sequence);
168 ++i;
169
170 if (!CONSP (sequence))
171 break;
172
173 sequence = XCDR (sequence);
174 ++i;
175 QUIT;
176 }
177
178 CHECK_LIST_END (sequence, sequence);
179
180 val = make_number (i);
181 }
182 else if (NILP (sequence))
183 XSETFASTINT (val, 0);
184 else
185 wrong_type_argument (Qsequencep, sequence);
186
187 return val;
188 }
189
190 /* This does not check for quits. That is safe since it must terminate. */
191
192 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
193 doc: /* Return the length of a list, but avoid error or infinite loop.
194 This function never gets an error. If LIST is not really a list,
195 it returns 0. If LIST is circular, it returns a finite value
196 which is at least the number of distinct elements. */)
197 (list)
198 Lisp_Object list;
199 {
200 Lisp_Object tail, halftail, length;
201 int len = 0;
202
203 /* halftail is used to detect circular lists. */
204 halftail = list;
205 for (tail = list; CONSP (tail); tail = XCDR (tail))
206 {
207 if (EQ (tail, halftail) && len != 0)
208 break;
209 len++;
210 if ((len & 1) == 0)
211 halftail = XCDR (halftail);
212 }
213
214 XSETINT (length, len);
215 return length;
216 }
217
218 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
219 doc: /* Return the number of bytes in STRING.
220 If STRING is a multibyte string, this is greater than the length of STRING. */)
221 (string)
222 Lisp_Object string;
223 {
224 CHECK_STRING (string);
225 return make_number (SBYTES (string));
226 }
227
228 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
229 doc: /* Return t if two strings have identical contents.
230 Case is significant, but text properties are ignored.
231 Symbols are also allowed; their print names are used instead. */)
232 (s1, s2)
233 register Lisp_Object s1, s2;
234 {
235 if (SYMBOLP (s1))
236 s1 = SYMBOL_NAME (s1);
237 if (SYMBOLP (s2))
238 s2 = SYMBOL_NAME (s2);
239 CHECK_STRING (s1);
240 CHECK_STRING (s2);
241
242 if (SCHARS (s1) != SCHARS (s2)
243 || SBYTES (s1) != SBYTES (s2)
244 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
245 return Qnil;
246 return Qt;
247 }
248
249 DEFUN ("compare-strings", Fcompare_strings,
250 Scompare_strings, 6, 7, 0,
251 doc: /* Compare the contents of two strings, converting to multibyte if needed.
252 In string STR1, skip the first START1 characters and stop at END1.
253 In string STR2, skip the first START2 characters and stop at END2.
254 END1 and END2 default to the full lengths of the respective strings.
255
256 Case is significant in this comparison if IGNORE-CASE is nil.
257 Unibyte strings are converted to multibyte for comparison.
258
259 The value is t if the strings (or specified portions) match.
260 If string STR1 is less, the value is a negative number N;
261 - 1 - N is the number of characters that match at the beginning.
262 If string STR1 is greater, the value is a positive number N;
263 N - 1 is the number of characters that match at the beginning. */)
264 (str1, start1, end1, str2, start2, end2, ignore_case)
265 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
266 {
267 register int end1_char, end2_char;
268 register int i1, i1_byte, i2, i2_byte;
269
270 CHECK_STRING (str1);
271 CHECK_STRING (str2);
272 if (NILP (start1))
273 start1 = make_number (0);
274 if (NILP (start2))
275 start2 = make_number (0);
276 CHECK_NATNUM (start1);
277 CHECK_NATNUM (start2);
278 if (! NILP (end1))
279 CHECK_NATNUM (end1);
280 if (! NILP (end2))
281 CHECK_NATNUM (end2);
282
283 i1 = XINT (start1);
284 i2 = XINT (start2);
285
286 i1_byte = string_char_to_byte (str1, i1);
287 i2_byte = string_char_to_byte (str2, i2);
288
289 end1_char = SCHARS (str1);
290 if (! NILP (end1) && end1_char > XINT (end1))
291 end1_char = XINT (end1);
292
293 end2_char = SCHARS (str2);
294 if (! NILP (end2) && end2_char > XINT (end2))
295 end2_char = XINT (end2);
296
297 while (i1 < end1_char && i2 < end2_char)
298 {
299 /* When we find a mismatch, we must compare the
300 characters, not just the bytes. */
301 int c1, c2;
302
303 if (STRING_MULTIBYTE (str1))
304 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
305 else
306 {
307 c1 = SREF (str1, i1++);
308 c1 = unibyte_char_to_multibyte (c1);
309 }
310
311 if (STRING_MULTIBYTE (str2))
312 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
313 else
314 {
315 c2 = SREF (str2, i2++);
316 c2 = unibyte_char_to_multibyte (c2);
317 }
318
319 if (c1 == c2)
320 continue;
321
322 if (! NILP (ignore_case))
323 {
324 Lisp_Object tem;
325
326 tem = Fupcase (make_number (c1));
327 c1 = XINT (tem);
328 tem = Fupcase (make_number (c2));
329 c2 = XINT (tem);
330 }
331
332 if (c1 == c2)
333 continue;
334
335 /* Note that I1 has already been incremented
336 past the character that we are comparing;
337 hence we don't add or subtract 1 here. */
338 if (c1 < c2)
339 return make_number (- i1 + XINT (start1));
340 else
341 return make_number (i1 - XINT (start1));
342 }
343
344 if (i1 < end1_char)
345 return make_number (i1 - XINT (start1) + 1);
346 if (i2 < end2_char)
347 return make_number (- i1 + XINT (start1) - 1);
348
349 return Qt;
350 }
351
352 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
353 doc: /* Return t if first arg string is less than second in lexicographic order.
354 Case is significant.
355 Symbols are also allowed; their print names are used instead. */)
356 (s1, s2)
357 register Lisp_Object s1, s2;
358 {
359 register int end;
360 register int i1, i1_byte, i2, i2_byte;
361
362 if (SYMBOLP (s1))
363 s1 = SYMBOL_NAME (s1);
364 if (SYMBOLP (s2))
365 s2 = SYMBOL_NAME (s2);
366 CHECK_STRING (s1);
367 CHECK_STRING (s2);
368
369 i1 = i1_byte = i2 = i2_byte = 0;
370
371 end = SCHARS (s1);
372 if (end > SCHARS (s2))
373 end = SCHARS (s2);
374
375 while (i1 < end)
376 {
377 /* When we find a mismatch, we must compare the
378 characters, not just the bytes. */
379 int c1, c2;
380
381 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
382 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
383
384 if (c1 != c2)
385 return c1 < c2 ? Qt : Qnil;
386 }
387 return i1 < SCHARS (s2) ? Qt : Qnil;
388 }
389 \f
390 #if __GNUC__
391 /* "gcc -O3" enables automatic function inlining, which optimizes out
392 the arguments for the invocations of this function, whereas it
393 expects these values on the stack. */
394 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)) __attribute__((noinline));
395 #else /* !__GNUC__ */
396 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special));
397 #endif
398
399 /* ARGSUSED */
400 Lisp_Object
401 concat2 (s1, s2)
402 Lisp_Object s1, s2;
403 {
404 #ifdef NO_ARG_ARRAY
405 Lisp_Object args[2];
406 args[0] = s1;
407 args[1] = s2;
408 return concat (2, args, Lisp_String, 0);
409 #else
410 return concat (2, &s1, Lisp_String, 0);
411 #endif /* NO_ARG_ARRAY */
412 }
413
414 /* ARGSUSED */
415 Lisp_Object
416 concat3 (s1, s2, s3)
417 Lisp_Object s1, s2, s3;
418 {
419 #ifdef NO_ARG_ARRAY
420 Lisp_Object args[3];
421 args[0] = s1;
422 args[1] = s2;
423 args[2] = s3;
424 return concat (3, args, Lisp_String, 0);
425 #else
426 return concat (3, &s1, Lisp_String, 0);
427 #endif /* NO_ARG_ARRAY */
428 }
429
430 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
431 doc: /* Concatenate all the arguments and make the result a list.
432 The result is a list whose elements are the elements of all the arguments.
433 Each argument may be a list, vector or string.
434 The last argument is not copied, just used as the tail of the new list.
435 usage: (append &rest SEQUENCES) */)
436 (nargs, args)
437 int nargs;
438 Lisp_Object *args;
439 {
440 return concat (nargs, args, Lisp_Cons, 1);
441 }
442
443 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
444 doc: /* Concatenate all the arguments and make the result a string.
445 The result is a string whose elements are the elements of all the arguments.
446 Each argument may be a string or a list or vector of characters (integers).
447 usage: (concat &rest SEQUENCES) */)
448 (nargs, args)
449 int nargs;
450 Lisp_Object *args;
451 {
452 return concat (nargs, args, Lisp_String, 0);
453 }
454
455 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
456 doc: /* Concatenate all the arguments and make the result a vector.
457 The result is a vector whose elements are the elements of all the arguments.
458 Each argument may be a list, vector or string.
459 usage: (vconcat &rest SEQUENCES) */)
460 (nargs, args)
461 int nargs;
462 Lisp_Object *args;
463 {
464 return concat (nargs, args, Lisp_Vectorlike, 0);
465 }
466
467 /* Return a copy of a sub char table ARG. The elements except for a
468 nested sub char table are not copied. */
469 static Lisp_Object
470 copy_sub_char_table (arg)
471 Lisp_Object arg;
472 {
473 Lisp_Object copy = make_sub_char_table (Qnil);
474 int i;
475
476 XCHAR_TABLE (copy)->defalt = XCHAR_TABLE (arg)->defalt;
477 /* Copy all the contents. */
478 bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
479 SUB_CHAR_TABLE_ORDINARY_SLOTS * sizeof (Lisp_Object));
480 /* Recursively copy any sub char-tables in the ordinary slots. */
481 for (i = 32; i < SUB_CHAR_TABLE_ORDINARY_SLOTS; i++)
482 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
483 XCHAR_TABLE (copy)->contents[i]
484 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
485
486 return copy;
487 }
488
489
490 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
491 doc: /* Return a copy of a list, vector, string or char-table.
492 The elements of a list or vector are not copied; they are shared
493 with the original. */)
494 (arg)
495 Lisp_Object arg;
496 {
497 if (NILP (arg)) return arg;
498
499 if (CHAR_TABLE_P (arg))
500 {
501 int i;
502 Lisp_Object copy;
503
504 copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
505 /* Copy all the slots, including the extra ones. */
506 bcopy (XVECTOR (arg)->contents, XVECTOR (copy)->contents,
507 ((XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK)
508 * sizeof (Lisp_Object)));
509
510 /* Recursively copy any sub char tables in the ordinary slots
511 for multibyte characters. */
512 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS;
513 i < CHAR_TABLE_ORDINARY_SLOTS; i++)
514 if (SUB_CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
515 XCHAR_TABLE (copy)->contents[i]
516 = copy_sub_char_table (XCHAR_TABLE (copy)->contents[i]);
517
518 return copy;
519 }
520
521 if (BOOL_VECTOR_P (arg))
522 {
523 Lisp_Object val;
524 int size_in_chars
525 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
526 / BOOL_VECTOR_BITS_PER_CHAR);
527
528 val = Fmake_bool_vector (Flength (arg), Qnil);
529 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
530 size_in_chars);
531 return val;
532 }
533
534 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
535 wrong_type_argument (Qsequencep, arg);
536
537 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
538 }
539
540 /* This structure holds information of an argument of `concat' that is
541 a string and has text properties to be copied. */
542 struct textprop_rec
543 {
544 int argnum; /* refer to ARGS (arguments of `concat') */
545 int from; /* refer to ARGS[argnum] (argument string) */
546 int to; /* refer to VAL (the target string) */
547 };
548
549 static Lisp_Object
550 concat (nargs, args, target_type, last_special)
551 int nargs;
552 Lisp_Object *args;
553 enum Lisp_Type target_type;
554 int last_special;
555 {
556 Lisp_Object val;
557 register Lisp_Object tail;
558 register Lisp_Object this;
559 int toindex;
560 int toindex_byte = 0;
561 register int result_len;
562 register int result_len_byte;
563 register int argnum;
564 Lisp_Object last_tail;
565 Lisp_Object prev;
566 int some_multibyte;
567 /* When we make a multibyte string, we can't copy text properties
568 while concatinating each string because the length of resulting
569 string can't be decided until we finish the whole concatination.
570 So, we record strings that have text properties to be copied
571 here, and copy the text properties after the concatination. */
572 struct textprop_rec *textprops = NULL;
573 /* Number of elments in textprops. */
574 int num_textprops = 0;
575 USE_SAFE_ALLOCA;
576
577 tail = Qnil;
578
579 /* In append, the last arg isn't treated like the others */
580 if (last_special && nargs > 0)
581 {
582 nargs--;
583 last_tail = args[nargs];
584 }
585 else
586 last_tail = Qnil;
587
588 /* Check each argument. */
589 for (argnum = 0; argnum < nargs; argnum++)
590 {
591 this = args[argnum];
592 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
593 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
594 wrong_type_argument (Qsequencep, this);
595 }
596
597 /* Compute total length in chars of arguments in RESULT_LEN.
598 If desired output is a string, also compute length in bytes
599 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
600 whether the result should be a multibyte string. */
601 result_len_byte = 0;
602 result_len = 0;
603 some_multibyte = 0;
604 for (argnum = 0; argnum < nargs; argnum++)
605 {
606 int len;
607 this = args[argnum];
608 len = XFASTINT (Flength (this));
609 if (target_type == Lisp_String)
610 {
611 /* We must count the number of bytes needed in the string
612 as well as the number of characters. */
613 int i;
614 Lisp_Object ch;
615 int this_len_byte;
616
617 if (VECTORP (this))
618 for (i = 0; i < len; i++)
619 {
620 ch = AREF (this, i);
621 CHECK_NUMBER (ch);
622 this_len_byte = CHAR_BYTES (XINT (ch));
623 result_len_byte += this_len_byte;
624 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
625 some_multibyte = 1;
626 }
627 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
628 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
629 else if (CONSP (this))
630 for (; CONSP (this); this = XCDR (this))
631 {
632 ch = XCAR (this);
633 CHECK_NUMBER (ch);
634 this_len_byte = CHAR_BYTES (XINT (ch));
635 result_len_byte += this_len_byte;
636 if (!SINGLE_BYTE_CHAR_P (XINT (ch)))
637 some_multibyte = 1;
638 }
639 else if (STRINGP (this))
640 {
641 if (STRING_MULTIBYTE (this))
642 {
643 some_multibyte = 1;
644 result_len_byte += SBYTES (this);
645 }
646 else
647 result_len_byte += count_size_as_multibyte (SDATA (this),
648 SCHARS (this));
649 }
650 }
651
652 result_len += len;
653 }
654
655 if (! some_multibyte)
656 result_len_byte = result_len;
657
658 /* Create the output object. */
659 if (target_type == Lisp_Cons)
660 val = Fmake_list (make_number (result_len), Qnil);
661 else if (target_type == Lisp_Vectorlike)
662 val = Fmake_vector (make_number (result_len), Qnil);
663 else if (some_multibyte)
664 val = make_uninit_multibyte_string (result_len, result_len_byte);
665 else
666 val = make_uninit_string (result_len);
667
668 /* In `append', if all but last arg are nil, return last arg. */
669 if (target_type == Lisp_Cons && EQ (val, Qnil))
670 return last_tail;
671
672 /* Copy the contents of the args into the result. */
673 if (CONSP (val))
674 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
675 else
676 toindex = 0, toindex_byte = 0;
677
678 prev = Qnil;
679 if (STRINGP (val))
680 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
681
682 for (argnum = 0; argnum < nargs; argnum++)
683 {
684 Lisp_Object thislen;
685 int thisleni = 0;
686 register unsigned int thisindex = 0;
687 register unsigned int thisindex_byte = 0;
688
689 this = args[argnum];
690 if (!CONSP (this))
691 thislen = Flength (this), thisleni = XINT (thislen);
692
693 /* Between strings of the same kind, copy fast. */
694 if (STRINGP (this) && STRINGP (val)
695 && STRING_MULTIBYTE (this) == some_multibyte)
696 {
697 int thislen_byte = SBYTES (this);
698
699 bcopy (SDATA (this), SDATA (val) + toindex_byte,
700 SBYTES (this));
701 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
702 {
703 textprops[num_textprops].argnum = argnum;
704 textprops[num_textprops].from = 0;
705 textprops[num_textprops++].to = toindex;
706 }
707 toindex_byte += thislen_byte;
708 toindex += thisleni;
709 STRING_SET_CHARS (val, SCHARS (val));
710 }
711 /* Copy a single-byte string to a multibyte string. */
712 else if (STRINGP (this) && STRINGP (val))
713 {
714 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
715 {
716 textprops[num_textprops].argnum = argnum;
717 textprops[num_textprops].from = 0;
718 textprops[num_textprops++].to = toindex;
719 }
720 toindex_byte += copy_text (SDATA (this),
721 SDATA (val) + toindex_byte,
722 SCHARS (this), 0, 1);
723 toindex += thisleni;
724 }
725 else
726 /* Copy element by element. */
727 while (1)
728 {
729 register Lisp_Object elt;
730
731 /* Fetch next element of `this' arg into `elt', or break if
732 `this' is exhausted. */
733 if (NILP (this)) break;
734 if (CONSP (this))
735 elt = XCAR (this), this = XCDR (this);
736 else if (thisindex >= thisleni)
737 break;
738 else if (STRINGP (this))
739 {
740 int c;
741 if (STRING_MULTIBYTE (this))
742 {
743 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
744 thisindex,
745 thisindex_byte);
746 XSETFASTINT (elt, c);
747 }
748 else
749 {
750 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
751 if (some_multibyte
752 && (XINT (elt) >= 0240
753 || (XINT (elt) >= 0200
754 && ! NILP (Vnonascii_translation_table)))
755 && XINT (elt) < 0400)
756 {
757 c = unibyte_char_to_multibyte (XINT (elt));
758 XSETINT (elt, c);
759 }
760 }
761 }
762 else if (BOOL_VECTOR_P (this))
763 {
764 int byte;
765 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
766 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
767 elt = Qt;
768 else
769 elt = Qnil;
770 thisindex++;
771 }
772 else
773 elt = AREF (this, thisindex++);
774
775 /* Store this element into the result. */
776 if (toindex < 0)
777 {
778 XSETCAR (tail, elt);
779 prev = tail;
780 tail = XCDR (tail);
781 }
782 else if (VECTORP (val))
783 AREF (val, toindex++) = elt;
784 else
785 {
786 CHECK_NUMBER (elt);
787 if (SINGLE_BYTE_CHAR_P (XINT (elt)))
788 {
789 if (some_multibyte)
790 toindex_byte
791 += CHAR_STRING (XINT (elt),
792 SDATA (val) + toindex_byte);
793 else
794 SSET (val, toindex_byte++, XINT (elt));
795 toindex++;
796 }
797 else
798 /* If we have any multibyte characters,
799 we already decided to make a multibyte string. */
800 {
801 int c = XINT (elt);
802 /* P exists as a variable
803 to avoid a bug on the Masscomp C compiler. */
804 unsigned char *p = SDATA (val) + toindex_byte;
805
806 toindex_byte += CHAR_STRING (c, p);
807 toindex++;
808 }
809 }
810 }
811 }
812 if (!NILP (prev))
813 XSETCDR (prev, last_tail);
814
815 if (num_textprops > 0)
816 {
817 Lisp_Object props;
818 int last_to_end = -1;
819
820 for (argnum = 0; argnum < num_textprops; argnum++)
821 {
822 this = args[textprops[argnum].argnum];
823 props = text_property_list (this,
824 make_number (0),
825 make_number (SCHARS (this)),
826 Qnil);
827 /* If successive arguments have properites, be sure that the
828 value of `composition' property be the copy. */
829 if (last_to_end == textprops[argnum].to)
830 make_composition_value_copy (props);
831 add_text_properties_from_list (val, props,
832 make_number (textprops[argnum].to));
833 last_to_end = textprops[argnum].to + SCHARS (this);
834 }
835 }
836
837 SAFE_FREE ();
838 return val;
839 }
840 \f
841 static Lisp_Object string_char_byte_cache_string;
842 static int string_char_byte_cache_charpos;
843 static int string_char_byte_cache_bytepos;
844
845 void
846 clear_string_char_byte_cache ()
847 {
848 string_char_byte_cache_string = Qnil;
849 }
850
851 /* Return the character index corresponding to CHAR_INDEX in STRING. */
852
853 int
854 string_char_to_byte (string, char_index)
855 Lisp_Object string;
856 int char_index;
857 {
858 int i, i_byte;
859 int best_below, best_below_byte;
860 int best_above, best_above_byte;
861
862 best_below = best_below_byte = 0;
863 best_above = SCHARS (string);
864 best_above_byte = SBYTES (string);
865 if (best_above == best_above_byte)
866 return char_index;
867
868 if (EQ (string, string_char_byte_cache_string))
869 {
870 if (string_char_byte_cache_charpos < char_index)
871 {
872 best_below = string_char_byte_cache_charpos;
873 best_below_byte = string_char_byte_cache_bytepos;
874 }
875 else
876 {
877 best_above = string_char_byte_cache_charpos;
878 best_above_byte = string_char_byte_cache_bytepos;
879 }
880 }
881
882 if (char_index - best_below < best_above - char_index)
883 {
884 while (best_below < char_index)
885 {
886 int c;
887 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
888 best_below, best_below_byte);
889 }
890 i = best_below;
891 i_byte = best_below_byte;
892 }
893 else
894 {
895 while (best_above > char_index)
896 {
897 unsigned char *pend = SDATA (string) + best_above_byte;
898 unsigned char *pbeg = pend - best_above_byte;
899 unsigned char *p = pend - 1;
900 int bytes;
901
902 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
903 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
904 if (bytes == pend - p)
905 best_above_byte -= bytes;
906 else if (bytes > pend - p)
907 best_above_byte -= (pend - p);
908 else
909 best_above_byte--;
910 best_above--;
911 }
912 i = best_above;
913 i_byte = best_above_byte;
914 }
915
916 string_char_byte_cache_bytepos = i_byte;
917 string_char_byte_cache_charpos = i;
918 string_char_byte_cache_string = string;
919
920 return i_byte;
921 }
922 \f
923 /* Return the character index corresponding to BYTE_INDEX in STRING. */
924
925 int
926 string_byte_to_char (string, byte_index)
927 Lisp_Object string;
928 int byte_index;
929 {
930 int i, i_byte;
931 int best_below, best_below_byte;
932 int best_above, best_above_byte;
933
934 best_below = best_below_byte = 0;
935 best_above = SCHARS (string);
936 best_above_byte = SBYTES (string);
937 if (best_above == best_above_byte)
938 return byte_index;
939
940 if (EQ (string, string_char_byte_cache_string))
941 {
942 if (string_char_byte_cache_bytepos < byte_index)
943 {
944 best_below = string_char_byte_cache_charpos;
945 best_below_byte = string_char_byte_cache_bytepos;
946 }
947 else
948 {
949 best_above = string_char_byte_cache_charpos;
950 best_above_byte = string_char_byte_cache_bytepos;
951 }
952 }
953
954 if (byte_index - best_below_byte < best_above_byte - byte_index)
955 {
956 while (best_below_byte < byte_index)
957 {
958 int c;
959 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, string,
960 best_below, best_below_byte);
961 }
962 i = best_below;
963 i_byte = best_below_byte;
964 }
965 else
966 {
967 while (best_above_byte > byte_index)
968 {
969 unsigned char *pend = SDATA (string) + best_above_byte;
970 unsigned char *pbeg = pend - best_above_byte;
971 unsigned char *p = pend - 1;
972 int bytes;
973
974 while (p > pbeg && !CHAR_HEAD_P (*p)) p--;
975 PARSE_MULTIBYTE_SEQ (p, pend - p, bytes);
976 if (bytes == pend - p)
977 best_above_byte -= bytes;
978 else if (bytes > pend - p)
979 best_above_byte -= (pend - p);
980 else
981 best_above_byte--;
982 best_above--;
983 }
984 i = best_above;
985 i_byte = best_above_byte;
986 }
987
988 string_char_byte_cache_bytepos = i_byte;
989 string_char_byte_cache_charpos = i;
990 string_char_byte_cache_string = string;
991
992 return i;
993 }
994 \f
995 /* Convert STRING to a multibyte string.
996 Single-byte characters 0240 through 0377 are converted
997 by adding nonascii_insert_offset to each. */
998
999 Lisp_Object
1000 string_make_multibyte (string)
1001 Lisp_Object string;
1002 {
1003 unsigned char *buf;
1004 int nbytes;
1005 Lisp_Object ret;
1006 USE_SAFE_ALLOCA;
1007
1008 if (STRING_MULTIBYTE (string))
1009 return string;
1010
1011 nbytes = count_size_as_multibyte (SDATA (string),
1012 SCHARS (string));
1013 /* If all the chars are ASCII, they won't need any more bytes
1014 once converted. In that case, we can return STRING itself. */
1015 if (nbytes == SBYTES (string))
1016 return string;
1017
1018 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1019 copy_text (SDATA (string), buf, SBYTES (string),
1020 0, 1);
1021
1022 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1023 SAFE_FREE ();
1024
1025 return ret;
1026 }
1027
1028
1029 /* Convert STRING to a multibyte string without changing each
1030 character codes. Thus, characters 0200 trough 0237 are converted
1031 to eight-bit-control characters, and characters 0240 through 0377
1032 are converted eight-bit-graphic characters. */
1033
1034 Lisp_Object
1035 string_to_multibyte (string)
1036 Lisp_Object string;
1037 {
1038 unsigned char *buf;
1039 int nbytes;
1040 Lisp_Object ret;
1041 USE_SAFE_ALLOCA;
1042
1043 if (STRING_MULTIBYTE (string))
1044 return string;
1045
1046 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
1047 /* If all the chars are ASCII or eight-bit-graphic, they won't need
1048 any more bytes once converted. */
1049 if (nbytes == SBYTES (string))
1050 return make_multibyte_string (SDATA (string), nbytes, nbytes);
1051
1052 SAFE_ALLOCA (buf, unsigned char *, nbytes);
1053 bcopy (SDATA (string), buf, SBYTES (string));
1054 str_to_multibyte (buf, nbytes, SBYTES (string));
1055
1056 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
1057 SAFE_FREE ();
1058
1059 return ret;
1060 }
1061
1062
1063 /* Convert STRING to a single-byte string. */
1064
1065 Lisp_Object
1066 string_make_unibyte (string)
1067 Lisp_Object string;
1068 {
1069 int nchars;
1070 unsigned char *buf;
1071 Lisp_Object ret;
1072 USE_SAFE_ALLOCA;
1073
1074 if (! STRING_MULTIBYTE (string))
1075 return string;
1076
1077 nchars = SCHARS (string);
1078
1079 SAFE_ALLOCA (buf, unsigned char *, nchars);
1080 copy_text (SDATA (string), buf, SBYTES (string),
1081 1, 0);
1082
1083 ret = make_unibyte_string (buf, nchars);
1084 SAFE_FREE ();
1085
1086 return ret;
1087 }
1088
1089 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1090 1, 1, 0,
1091 doc: /* Return the multibyte equivalent of STRING.
1092 If STRING is unibyte and contains non-ASCII characters, the function
1093 `unibyte-char-to-multibyte' is used to convert each unibyte character
1094 to a multibyte character. In this case, the returned string is a
1095 newly created string with no text properties. If STRING is multibyte
1096 or entirely ASCII, it is returned unchanged. In particular, when
1097 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1098 \(When the characters are all ASCII, Emacs primitives will treat the
1099 string the same way whether it is unibyte or multibyte.) */)
1100 (string)
1101 Lisp_Object string;
1102 {
1103 CHECK_STRING (string);
1104
1105 return string_make_multibyte (string);
1106 }
1107
1108 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1109 1, 1, 0,
1110 doc: /* Return the unibyte equivalent of STRING.
1111 Multibyte character codes are converted to unibyte according to
1112 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1113 If the lookup in the translation table fails, this function takes just
1114 the low 8 bits of each character. */)
1115 (string)
1116 Lisp_Object string;
1117 {
1118 CHECK_STRING (string);
1119
1120 return string_make_unibyte (string);
1121 }
1122
1123 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1124 1, 1, 0,
1125 doc: /* Return a unibyte string with the same individual bytes as STRING.
1126 If STRING is unibyte, the result is STRING itself.
1127 Otherwise it is a newly created string, with no text properties.
1128 If STRING is multibyte and contains a character of charset
1129 `eight-bit-control' or `eight-bit-graphic', it is converted to the
1130 corresponding single byte. */)
1131 (string)
1132 Lisp_Object string;
1133 {
1134 CHECK_STRING (string);
1135
1136 if (STRING_MULTIBYTE (string))
1137 {
1138 int bytes = SBYTES (string);
1139 unsigned char *str = (unsigned char *) xmalloc (bytes);
1140
1141 bcopy (SDATA (string), str, bytes);
1142 bytes = str_as_unibyte (str, bytes);
1143 string = make_unibyte_string (str, bytes);
1144 xfree (str);
1145 }
1146 return string;
1147 }
1148
1149 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1150 1, 1, 0,
1151 doc: /* Return a multibyte string with the same individual bytes as STRING.
1152 If STRING is multibyte, the result is STRING itself.
1153 Otherwise it is a newly created string, with no text properties.
1154 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1155 part of a multibyte form), it is converted to the corresponding
1156 multibyte character of charset `eight-bit-control' or `eight-bit-graphic'.
1157 Beware, this often doesn't really do what you think it does.
1158 It is similar to (decode-coding-string STRING 'emacs-mule-unix).
1159 If you're not sure, whether to use `string-as-multibyte' or
1160 `string-to-multibyte', use `string-to-multibyte'. Beware:
1161 (aref (string-as-multibyte "\\201") 0) -> 129 (aka ?\\201)
1162 (aref (string-as-multibyte "\\300") 0) -> 192 (aka ?\\300)
1163 (aref (string-as-multibyte "\\300\\201") 0) -> 192 (aka ?\\300)
1164 (aref (string-as-multibyte "\\300\\201") 1) -> 129 (aka ?\\201)
1165 but
1166 (aref (string-as-multibyte "\\201\\300") 0) -> 2240
1167 (aref (string-as-multibyte "\\201\\300") 1) -> <error> */)
1168 (string)
1169 Lisp_Object string;
1170 {
1171 CHECK_STRING (string);
1172
1173 if (! STRING_MULTIBYTE (string))
1174 {
1175 Lisp_Object new_string;
1176 int nchars, nbytes;
1177
1178 parse_str_as_multibyte (SDATA (string),
1179 SBYTES (string),
1180 &nchars, &nbytes);
1181 new_string = make_uninit_multibyte_string (nchars, nbytes);
1182 bcopy (SDATA (string), SDATA (new_string),
1183 SBYTES (string));
1184 if (nbytes != SBYTES (string))
1185 str_as_multibyte (SDATA (new_string), nbytes,
1186 SBYTES (string), NULL);
1187 string = new_string;
1188 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1189 }
1190 return string;
1191 }
1192
1193 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1194 1, 1, 0,
1195 doc: /* Return a multibyte string with the same individual chars as STRING.
1196 If STRING is multibyte, the result is STRING itself.
1197 Otherwise it is a newly created string, with no text properties.
1198 Characters 0200 through 0237 are converted to eight-bit-control
1199 characters of the same character code. Characters 0240 through 0377
1200 are converted to eight-bit-graphic characters of the same character
1201 codes.
1202 This is similar to (decode-coding-string STRING 'binary) */)
1203 (string)
1204 Lisp_Object string;
1205 {
1206 CHECK_STRING (string);
1207
1208 return string_to_multibyte (string);
1209 }
1210
1211 \f
1212 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1213 doc: /* Return a copy of ALIST.
1214 This is an alist which represents the same mapping from objects to objects,
1215 but does not share the alist structure with ALIST.
1216 The objects mapped (cars and cdrs of elements of the alist)
1217 are shared, however.
1218 Elements of ALIST that are not conses are also shared. */)
1219 (alist)
1220 Lisp_Object alist;
1221 {
1222 register Lisp_Object tem;
1223
1224 CHECK_LIST (alist);
1225 if (NILP (alist))
1226 return alist;
1227 alist = concat (1, &alist, Lisp_Cons, 0);
1228 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1229 {
1230 register Lisp_Object car;
1231 car = XCAR (tem);
1232
1233 if (CONSP (car))
1234 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1235 }
1236 return alist;
1237 }
1238
1239 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1240 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1241 TO may be nil or omitted; then the substring runs to the end of STRING.
1242 FROM and TO start at 0. If either is negative, it counts from the end.
1243
1244 This function allows vectors as well as strings. */)
1245 (string, from, to)
1246 Lisp_Object string;
1247 register Lisp_Object from, to;
1248 {
1249 Lisp_Object res;
1250 int size;
1251 int size_byte = 0;
1252 int from_char, to_char;
1253 int from_byte = 0, to_byte = 0;
1254
1255 CHECK_VECTOR_OR_STRING (string);
1256 CHECK_NUMBER (from);
1257
1258 if (STRINGP (string))
1259 {
1260 size = SCHARS (string);
1261 size_byte = SBYTES (string);
1262 }
1263 else
1264 size = ASIZE (string);
1265
1266 if (NILP (to))
1267 {
1268 to_char = size;
1269 to_byte = size_byte;
1270 }
1271 else
1272 {
1273 CHECK_NUMBER (to);
1274
1275 to_char = XINT (to);
1276 if (to_char < 0)
1277 to_char += size;
1278
1279 if (STRINGP (string))
1280 to_byte = string_char_to_byte (string, to_char);
1281 }
1282
1283 from_char = XINT (from);
1284 if (from_char < 0)
1285 from_char += size;
1286 if (STRINGP (string))
1287 from_byte = string_char_to_byte (string, from_char);
1288
1289 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1290 args_out_of_range_3 (string, make_number (from_char),
1291 make_number (to_char));
1292
1293 if (STRINGP (string))
1294 {
1295 res = make_specified_string (SDATA (string) + from_byte,
1296 to_char - from_char, to_byte - from_byte,
1297 STRING_MULTIBYTE (string));
1298 copy_text_properties (make_number (from_char), make_number (to_char),
1299 string, make_number (0), res, Qnil);
1300 }
1301 else
1302 res = Fvector (to_char - from_char, &AREF (string, from_char));
1303
1304 return res;
1305 }
1306
1307
1308 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1309 doc: /* Return a substring of STRING, without text properties.
1310 It starts at index FROM and ending before TO.
1311 TO may be nil or omitted; then the substring runs to the end of STRING.
1312 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1313 If FROM or TO is negative, it counts from the end.
1314
1315 With one argument, just copy STRING without its properties. */)
1316 (string, from, to)
1317 Lisp_Object string;
1318 register Lisp_Object from, to;
1319 {
1320 int size, size_byte;
1321 int from_char, to_char;
1322 int from_byte, to_byte;
1323
1324 CHECK_STRING (string);
1325
1326 size = SCHARS (string);
1327 size_byte = SBYTES (string);
1328
1329 if (NILP (from))
1330 from_char = from_byte = 0;
1331 else
1332 {
1333 CHECK_NUMBER (from);
1334 from_char = XINT (from);
1335 if (from_char < 0)
1336 from_char += size;
1337
1338 from_byte = string_char_to_byte (string, from_char);
1339 }
1340
1341 if (NILP (to))
1342 {
1343 to_char = size;
1344 to_byte = size_byte;
1345 }
1346 else
1347 {
1348 CHECK_NUMBER (to);
1349
1350 to_char = XINT (to);
1351 if (to_char < 0)
1352 to_char += size;
1353
1354 to_byte = string_char_to_byte (string, to_char);
1355 }
1356
1357 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1358 args_out_of_range_3 (string, make_number (from_char),
1359 make_number (to_char));
1360
1361 return make_specified_string (SDATA (string) + from_byte,
1362 to_char - from_char, to_byte - from_byte,
1363 STRING_MULTIBYTE (string));
1364 }
1365
1366 /* Extract a substring of STRING, giving start and end positions
1367 both in characters and in bytes. */
1368
1369 Lisp_Object
1370 substring_both (string, from, from_byte, to, to_byte)
1371 Lisp_Object string;
1372 int from, from_byte, to, to_byte;
1373 {
1374 Lisp_Object res;
1375 int size;
1376 int size_byte;
1377
1378 CHECK_VECTOR_OR_STRING (string);
1379
1380 if (STRINGP (string))
1381 {
1382 size = SCHARS (string);
1383 size_byte = SBYTES (string);
1384 }
1385 else
1386 size = ASIZE (string);
1387
1388 if (!(0 <= from && from <= to && to <= size))
1389 args_out_of_range_3 (string, make_number (from), make_number (to));
1390
1391 if (STRINGP (string))
1392 {
1393 res = make_specified_string (SDATA (string) + from_byte,
1394 to - from, to_byte - from_byte,
1395 STRING_MULTIBYTE (string));
1396 copy_text_properties (make_number (from), make_number (to),
1397 string, make_number (0), res, Qnil);
1398 }
1399 else
1400 res = Fvector (to - from, &AREF (string, from));
1401
1402 return res;
1403 }
1404 \f
1405 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1406 doc: /* Take cdr N times on LIST, returns the result. */)
1407 (n, list)
1408 Lisp_Object n;
1409 register Lisp_Object list;
1410 {
1411 register int i, num;
1412 CHECK_NUMBER (n);
1413 num = XINT (n);
1414 for (i = 0; i < num && !NILP (list); i++)
1415 {
1416 QUIT;
1417 CHECK_LIST_CONS (list, list);
1418 list = XCDR (list);
1419 }
1420 return list;
1421 }
1422
1423 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1424 doc: /* Return the Nth element of LIST.
1425 N counts from zero. If LIST is not that long, nil is returned. */)
1426 (n, list)
1427 Lisp_Object n, list;
1428 {
1429 return Fcar (Fnthcdr (n, list));
1430 }
1431
1432 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1433 doc: /* Return element of SEQUENCE at index N. */)
1434 (sequence, n)
1435 register Lisp_Object sequence, n;
1436 {
1437 CHECK_NUMBER (n);
1438 if (CONSP (sequence) || NILP (sequence))
1439 return Fcar (Fnthcdr (n, sequence));
1440
1441 /* Faref signals a "not array" error, so check here. */
1442 CHECK_ARRAY (sequence, Qsequencep);
1443 return Faref (sequence, n);
1444 }
1445
1446 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1447 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1448 The value is actually the tail of LIST whose car is ELT. */)
1449 (elt, list)
1450 register Lisp_Object elt;
1451 Lisp_Object list;
1452 {
1453 register Lisp_Object tail;
1454 for (tail = list; !NILP (tail); tail = XCDR (tail))
1455 {
1456 register Lisp_Object tem;
1457 CHECK_LIST_CONS (tail, list);
1458 tem = XCAR (tail);
1459 if (! NILP (Fequal (elt, tem)))
1460 return tail;
1461 QUIT;
1462 }
1463 return Qnil;
1464 }
1465
1466 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1467 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1468 The value is actually the tail of LIST whose car is ELT. */)
1469 (elt, list)
1470 register Lisp_Object elt, list;
1471 {
1472 while (1)
1473 {
1474 if (!CONSP (list) || EQ (XCAR (list), elt))
1475 break;
1476
1477 list = XCDR (list);
1478 if (!CONSP (list) || EQ (XCAR (list), elt))
1479 break;
1480
1481 list = XCDR (list);
1482 if (!CONSP (list) || EQ (XCAR (list), elt))
1483 break;
1484
1485 list = XCDR (list);
1486 QUIT;
1487 }
1488
1489 CHECK_LIST (list);
1490 return list;
1491 }
1492
1493 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1494 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1495 The value is actually the tail of LIST whose car is ELT. */)
1496 (elt, list)
1497 register Lisp_Object elt;
1498 Lisp_Object list;
1499 {
1500 register Lisp_Object tail;
1501
1502 if (!FLOATP (elt))
1503 return Fmemq (elt, list);
1504
1505 for (tail = list; !NILP (tail); tail = XCDR (tail))
1506 {
1507 register Lisp_Object tem;
1508 CHECK_LIST_CONS (tail, list);
1509 tem = XCAR (tail);
1510 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1511 return tail;
1512 QUIT;
1513 }
1514 return Qnil;
1515 }
1516
1517 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1518 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1519 The value is actually the first element of LIST whose car is KEY.
1520 Elements of LIST that are not conses are ignored. */)
1521 (key, list)
1522 Lisp_Object key, list;
1523 {
1524 while (1)
1525 {
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && EQ (XCAR (XCAR (list)), key)))
1529 break;
1530
1531 list = XCDR (list);
1532 if (!CONSP (list)
1533 || (CONSP (XCAR (list))
1534 && EQ (XCAR (XCAR (list)), key)))
1535 break;
1536
1537 list = XCDR (list);
1538 if (!CONSP (list)
1539 || (CONSP (XCAR (list))
1540 && EQ (XCAR (XCAR (list)), key)))
1541 break;
1542
1543 list = XCDR (list);
1544 QUIT;
1545 }
1546
1547 return CAR (list);
1548 }
1549
1550 /* Like Fassq but never report an error and do not allow quits.
1551 Use only on lists known never to be circular. */
1552
1553 Lisp_Object
1554 assq_no_quit (key, list)
1555 Lisp_Object key, list;
1556 {
1557 while (CONSP (list)
1558 && (!CONSP (XCAR (list))
1559 || !EQ (XCAR (XCAR (list)), key)))
1560 list = XCDR (list);
1561
1562 return CAR_SAFE (list);
1563 }
1564
1565 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1566 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1567 The value is actually the first element of LIST whose car equals KEY. */)
1568 (key, list)
1569 Lisp_Object key, list;
1570 {
1571 Lisp_Object car;
1572
1573 while (1)
1574 {
1575 if (!CONSP (list)
1576 || (CONSP (XCAR (list))
1577 && (car = XCAR (XCAR (list)),
1578 EQ (car, key) || !NILP (Fequal (car, key)))))
1579 break;
1580
1581 list = XCDR (list);
1582 if (!CONSP (list)
1583 || (CONSP (XCAR (list))
1584 && (car = XCAR (XCAR (list)),
1585 EQ (car, key) || !NILP (Fequal (car, key)))))
1586 break;
1587
1588 list = XCDR (list);
1589 if (!CONSP (list)
1590 || (CONSP (XCAR (list))
1591 && (car = XCAR (XCAR (list)),
1592 EQ (car, key) || !NILP (Fequal (car, key)))))
1593 break;
1594
1595 list = XCDR (list);
1596 QUIT;
1597 }
1598
1599 return CAR (list);
1600 }
1601
1602 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1603 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1604 The value is actually the first element of LIST whose cdr is KEY. */)
1605 (key, list)
1606 register Lisp_Object key;
1607 Lisp_Object list;
1608 {
1609 while (1)
1610 {
1611 if (!CONSP (list)
1612 || (CONSP (XCAR (list))
1613 && EQ (XCDR (XCAR (list)), key)))
1614 break;
1615
1616 list = XCDR (list);
1617 if (!CONSP (list)
1618 || (CONSP (XCAR (list))
1619 && EQ (XCDR (XCAR (list)), key)))
1620 break;
1621
1622 list = XCDR (list);
1623 if (!CONSP (list)
1624 || (CONSP (XCAR (list))
1625 && EQ (XCDR (XCAR (list)), key)))
1626 break;
1627
1628 list = XCDR (list);
1629 QUIT;
1630 }
1631
1632 return CAR (list);
1633 }
1634
1635 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1636 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1637 The value is actually the first element of LIST whose cdr equals KEY. */)
1638 (key, list)
1639 Lisp_Object key, list;
1640 {
1641 Lisp_Object cdr;
1642
1643 while (1)
1644 {
1645 if (!CONSP (list)
1646 || (CONSP (XCAR (list))
1647 && (cdr = XCDR (XCAR (list)),
1648 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1649 break;
1650
1651 list = XCDR (list);
1652 if (!CONSP (list)
1653 || (CONSP (XCAR (list))
1654 && (cdr = XCDR (XCAR (list)),
1655 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1656 break;
1657
1658 list = XCDR (list);
1659 if (!CONSP (list)
1660 || (CONSP (XCAR (list))
1661 && (cdr = XCDR (XCAR (list)),
1662 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1663 break;
1664
1665 list = XCDR (list);
1666 QUIT;
1667 }
1668
1669 return CAR (list);
1670 }
1671 \f
1672 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1673 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1674 The modified LIST is returned. Comparison is done with `eq'.
1675 If the first member of LIST is ELT, there is no way to remove it by side effect;
1676 therefore, write `(setq foo (delq element foo))'
1677 to be sure of changing the value of `foo'. */)
1678 (elt, list)
1679 register Lisp_Object elt;
1680 Lisp_Object list;
1681 {
1682 register Lisp_Object tail, prev;
1683 register Lisp_Object tem;
1684
1685 tail = list;
1686 prev = Qnil;
1687 while (!NILP (tail))
1688 {
1689 CHECK_LIST_CONS (tail, list);
1690 tem = XCAR (tail);
1691 if (EQ (elt, tem))
1692 {
1693 if (NILP (prev))
1694 list = XCDR (tail);
1695 else
1696 Fsetcdr (prev, XCDR (tail));
1697 }
1698 else
1699 prev = tail;
1700 tail = XCDR (tail);
1701 QUIT;
1702 }
1703 return list;
1704 }
1705
1706 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1707 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1708 SEQ must be a list, a vector, or a string.
1709 The modified SEQ is returned. Comparison is done with `equal'.
1710 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1711 is not a side effect; it is simply using a different sequence.
1712 Therefore, write `(setq foo (delete element foo))'
1713 to be sure of changing the value of `foo'. */)
1714 (elt, seq)
1715 Lisp_Object elt, seq;
1716 {
1717 if (VECTORP (seq))
1718 {
1719 EMACS_INT i, n;
1720
1721 for (i = n = 0; i < ASIZE (seq); ++i)
1722 if (NILP (Fequal (AREF (seq, i), elt)))
1723 ++n;
1724
1725 if (n != ASIZE (seq))
1726 {
1727 struct Lisp_Vector *p = allocate_vector (n);
1728
1729 for (i = n = 0; i < ASIZE (seq); ++i)
1730 if (NILP (Fequal (AREF (seq, i), elt)))
1731 p->contents[n++] = AREF (seq, i);
1732
1733 XSETVECTOR (seq, p);
1734 }
1735 }
1736 else if (STRINGP (seq))
1737 {
1738 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1739 int c;
1740
1741 for (i = nchars = nbytes = ibyte = 0;
1742 i < SCHARS (seq);
1743 ++i, ibyte += cbytes)
1744 {
1745 if (STRING_MULTIBYTE (seq))
1746 {
1747 c = STRING_CHAR (SDATA (seq) + ibyte,
1748 SBYTES (seq) - ibyte);
1749 cbytes = CHAR_BYTES (c);
1750 }
1751 else
1752 {
1753 c = SREF (seq, i);
1754 cbytes = 1;
1755 }
1756
1757 if (!INTEGERP (elt) || c != XINT (elt))
1758 {
1759 ++nchars;
1760 nbytes += cbytes;
1761 }
1762 }
1763
1764 if (nchars != SCHARS (seq))
1765 {
1766 Lisp_Object tem;
1767
1768 tem = make_uninit_multibyte_string (nchars, nbytes);
1769 if (!STRING_MULTIBYTE (seq))
1770 STRING_SET_UNIBYTE (tem);
1771
1772 for (i = nchars = nbytes = ibyte = 0;
1773 i < SCHARS (seq);
1774 ++i, ibyte += cbytes)
1775 {
1776 if (STRING_MULTIBYTE (seq))
1777 {
1778 c = STRING_CHAR (SDATA (seq) + ibyte,
1779 SBYTES (seq) - ibyte);
1780 cbytes = CHAR_BYTES (c);
1781 }
1782 else
1783 {
1784 c = SREF (seq, i);
1785 cbytes = 1;
1786 }
1787
1788 if (!INTEGERP (elt) || c != XINT (elt))
1789 {
1790 unsigned char *from = SDATA (seq) + ibyte;
1791 unsigned char *to = SDATA (tem) + nbytes;
1792 EMACS_INT n;
1793
1794 ++nchars;
1795 nbytes += cbytes;
1796
1797 for (n = cbytes; n--; )
1798 *to++ = *from++;
1799 }
1800 }
1801
1802 seq = tem;
1803 }
1804 }
1805 else
1806 {
1807 Lisp_Object tail, prev;
1808
1809 for (tail = seq, prev = Qnil; !NILP (tail); tail = XCDR (tail))
1810 {
1811 CHECK_LIST_CONS (tail, seq);
1812
1813 if (!NILP (Fequal (elt, XCAR (tail))))
1814 {
1815 if (NILP (prev))
1816 seq = XCDR (tail);
1817 else
1818 Fsetcdr (prev, XCDR (tail));
1819 }
1820 else
1821 prev = tail;
1822 QUIT;
1823 }
1824 }
1825
1826 return seq;
1827 }
1828
1829 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1830 doc: /* Reverse LIST by modifying cdr pointers.
1831 Return the reversed list. */)
1832 (list)
1833 Lisp_Object list;
1834 {
1835 register Lisp_Object prev, tail, next;
1836
1837 if (NILP (list)) return list;
1838 prev = Qnil;
1839 tail = list;
1840 while (!NILP (tail))
1841 {
1842 QUIT;
1843 CHECK_LIST_CONS (tail, list);
1844 next = XCDR (tail);
1845 Fsetcdr (tail, prev);
1846 prev = tail;
1847 tail = next;
1848 }
1849 return prev;
1850 }
1851
1852 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1853 doc: /* Reverse LIST, copying. Return the reversed list.
1854 See also the function `nreverse', which is used more often. */)
1855 (list)
1856 Lisp_Object list;
1857 {
1858 Lisp_Object new;
1859
1860 for (new = Qnil; CONSP (list); list = XCDR (list))
1861 {
1862 QUIT;
1863 new = Fcons (XCAR (list), new);
1864 }
1865 CHECK_LIST_END (list, list);
1866 return new;
1867 }
1868 \f
1869 Lisp_Object merge ();
1870
1871 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1872 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1873 Returns the sorted list. LIST is modified by side effects.
1874 PREDICATE is called with two elements of LIST, and should return non-nil
1875 if the first element should sort before the second. */)
1876 (list, predicate)
1877 Lisp_Object list, predicate;
1878 {
1879 Lisp_Object front, back;
1880 register Lisp_Object len, tem;
1881 struct gcpro gcpro1, gcpro2;
1882 register int length;
1883
1884 front = list;
1885 len = Flength (list);
1886 length = XINT (len);
1887 if (length < 2)
1888 return list;
1889
1890 XSETINT (len, (length / 2) - 1);
1891 tem = Fnthcdr (len, list);
1892 back = Fcdr (tem);
1893 Fsetcdr (tem, Qnil);
1894
1895 GCPRO2 (front, back);
1896 front = Fsort (front, predicate);
1897 back = Fsort (back, predicate);
1898 UNGCPRO;
1899 return merge (front, back, predicate);
1900 }
1901
1902 Lisp_Object
1903 merge (org_l1, org_l2, pred)
1904 Lisp_Object org_l1, org_l2;
1905 Lisp_Object pred;
1906 {
1907 Lisp_Object value;
1908 register Lisp_Object tail;
1909 Lisp_Object tem;
1910 register Lisp_Object l1, l2;
1911 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1912
1913 l1 = org_l1;
1914 l2 = org_l2;
1915 tail = Qnil;
1916 value = Qnil;
1917
1918 /* It is sufficient to protect org_l1 and org_l2.
1919 When l1 and l2 are updated, we copy the new values
1920 back into the org_ vars. */
1921 GCPRO4 (org_l1, org_l2, pred, value);
1922
1923 while (1)
1924 {
1925 if (NILP (l1))
1926 {
1927 UNGCPRO;
1928 if (NILP (tail))
1929 return l2;
1930 Fsetcdr (tail, l2);
1931 return value;
1932 }
1933 if (NILP (l2))
1934 {
1935 UNGCPRO;
1936 if (NILP (tail))
1937 return l1;
1938 Fsetcdr (tail, l1);
1939 return value;
1940 }
1941 tem = call2 (pred, Fcar (l2), Fcar (l1));
1942 if (NILP (tem))
1943 {
1944 tem = l1;
1945 l1 = Fcdr (l1);
1946 org_l1 = l1;
1947 }
1948 else
1949 {
1950 tem = l2;
1951 l2 = Fcdr (l2);
1952 org_l2 = l2;
1953 }
1954 if (NILP (tail))
1955 value = tem;
1956 else
1957 Fsetcdr (tail, tem);
1958 tail = tem;
1959 }
1960 }
1961
1962 \f
1963 #if 0 /* Unsafe version. */
1964 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1965 doc: /* Extract a value from a property list.
1966 PLIST is a property list, which is a list of the form
1967 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1968 corresponding to the given PROP, or nil if PROP is not
1969 one of the properties on the list. */)
1970 (plist, prop)
1971 Lisp_Object plist;
1972 Lisp_Object prop;
1973 {
1974 Lisp_Object tail;
1975
1976 for (tail = plist;
1977 CONSP (tail) && CONSP (XCDR (tail));
1978 tail = XCDR (XCDR (tail)))
1979 {
1980 if (EQ (prop, XCAR (tail)))
1981 return XCAR (XCDR (tail));
1982
1983 /* This function can be called asynchronously
1984 (setup_coding_system). Don't QUIT in that case. */
1985 if (!interrupt_input_blocked)
1986 QUIT;
1987 }
1988
1989 CHECK_LIST_END (tail, prop);
1990
1991 return Qnil;
1992 }
1993 #endif
1994
1995 /* This does not check for quits. That is safe since it must terminate. */
1996
1997 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1998 doc: /* Extract a value from a property list.
1999 PLIST is a property list, which is a list of the form
2000 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2001 corresponding to the given PROP, or nil if PROP is not one of the
2002 properties on the list. This function never signals an error. */)
2003 (plist, prop)
2004 Lisp_Object plist;
2005 Lisp_Object prop;
2006 {
2007 Lisp_Object tail, halftail;
2008
2009 /* halftail is used to detect circular lists. */
2010 tail = halftail = plist;
2011 while (CONSP (tail) && CONSP (XCDR (tail)))
2012 {
2013 if (EQ (prop, XCAR (tail)))
2014 return XCAR (XCDR (tail));
2015
2016 tail = XCDR (XCDR (tail));
2017 halftail = XCDR (halftail);
2018 if (EQ (tail, halftail))
2019 break;
2020 }
2021
2022 return Qnil;
2023 }
2024
2025 DEFUN ("get", Fget, Sget, 2, 2, 0,
2026 doc: /* Return the value of SYMBOL's PROPNAME property.
2027 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
2028 (symbol, propname)
2029 Lisp_Object symbol, propname;
2030 {
2031 CHECK_SYMBOL (symbol);
2032 return Fplist_get (XSYMBOL (symbol)->plist, propname);
2033 }
2034
2035 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
2036 doc: /* Change value in PLIST of PROP to VAL.
2037 PLIST is a property list, which is a list of the form
2038 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
2039 If PROP is already a property on the list, its value is set to VAL,
2040 otherwise the new PROP VAL pair is added. The new plist is returned;
2041 use `(setq x (plist-put x prop val))' to be sure to use the new value.
2042 The PLIST is modified by side effects. */)
2043 (plist, prop, val)
2044 Lisp_Object plist;
2045 register Lisp_Object prop;
2046 Lisp_Object val;
2047 {
2048 register Lisp_Object tail, prev;
2049 Lisp_Object newcell;
2050 prev = Qnil;
2051 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2052 tail = XCDR (XCDR (tail)))
2053 {
2054 if (EQ (prop, XCAR (tail)))
2055 {
2056 Fsetcar (XCDR (tail), val);
2057 return plist;
2058 }
2059
2060 prev = tail;
2061 QUIT;
2062 }
2063 newcell = Fcons (prop, Fcons (val, Qnil));
2064 if (NILP (prev))
2065 return newcell;
2066 else
2067 Fsetcdr (XCDR (prev), newcell);
2068 return plist;
2069 }
2070
2071 DEFUN ("put", Fput, Sput, 3, 3, 0,
2072 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2073 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2074 (symbol, propname, value)
2075 Lisp_Object symbol, propname, value;
2076 {
2077 CHECK_SYMBOL (symbol);
2078 XSYMBOL (symbol)->plist
2079 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2080 return value;
2081 }
2082 \f
2083 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2084 doc: /* Extract a value from a property list, comparing with `equal'.
2085 PLIST is a property list, which is a list of the form
2086 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2087 corresponding to the given PROP, or nil if PROP is not
2088 one of the properties on the list. */)
2089 (plist, prop)
2090 Lisp_Object plist;
2091 Lisp_Object prop;
2092 {
2093 Lisp_Object tail;
2094
2095 for (tail = plist;
2096 CONSP (tail) && CONSP (XCDR (tail));
2097 tail = XCDR (XCDR (tail)))
2098 {
2099 if (! NILP (Fequal (prop, XCAR (tail))))
2100 return XCAR (XCDR (tail));
2101
2102 QUIT;
2103 }
2104
2105 CHECK_LIST_END (tail, prop);
2106
2107 return Qnil;
2108 }
2109
2110 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2111 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2112 PLIST is a property list, which is a list of the form
2113 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2114 If PROP is already a property on the list, its value is set to VAL,
2115 otherwise the new PROP VAL pair is added. The new plist is returned;
2116 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2117 The PLIST is modified by side effects. */)
2118 (plist, prop, val)
2119 Lisp_Object plist;
2120 register Lisp_Object prop;
2121 Lisp_Object val;
2122 {
2123 register Lisp_Object tail, prev;
2124 Lisp_Object newcell;
2125 prev = Qnil;
2126 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2127 tail = XCDR (XCDR (tail)))
2128 {
2129 if (! NILP (Fequal (prop, XCAR (tail))))
2130 {
2131 Fsetcar (XCDR (tail), val);
2132 return plist;
2133 }
2134
2135 prev = tail;
2136 QUIT;
2137 }
2138 newcell = Fcons (prop, Fcons (val, Qnil));
2139 if (NILP (prev))
2140 return newcell;
2141 else
2142 Fsetcdr (XCDR (prev), newcell);
2143 return plist;
2144 }
2145 \f
2146 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2147 doc: /* Return t if the two args are the same Lisp object.
2148 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2149 (obj1, obj2)
2150 Lisp_Object obj1, obj2;
2151 {
2152 if (FLOATP (obj1))
2153 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2154 else
2155 return EQ (obj1, obj2) ? Qt : Qnil;
2156 }
2157
2158 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2159 doc: /* Return t if two Lisp objects have similar structure and contents.
2160 They must have the same data type.
2161 Conses are compared by comparing the cars and the cdrs.
2162 Vectors and strings are compared element by element.
2163 Numbers are compared by value, but integers cannot equal floats.
2164 (Use `=' if you want integers and floats to be able to be equal.)
2165 Symbols must match exactly. */)
2166 (o1, o2)
2167 register Lisp_Object o1, o2;
2168 {
2169 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2170 }
2171
2172 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2173 doc: /* Return t if two Lisp objects have similar structure and contents.
2174 This is like `equal' except that it compares the text properties
2175 of strings. (`equal' ignores text properties.) */)
2176 (o1, o2)
2177 register Lisp_Object o1, o2;
2178 {
2179 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2180 }
2181
2182 /* DEPTH is current depth of recursion. Signal an error if it
2183 gets too deep.
2184 PROPS, if non-nil, means compare string text properties too. */
2185
2186 static int
2187 internal_equal (o1, o2, depth, props)
2188 register Lisp_Object o1, o2;
2189 int depth, props;
2190 {
2191 if (depth > 200)
2192 error ("Stack overflow in equal");
2193
2194 tail_recurse:
2195 QUIT;
2196 if (EQ (o1, o2))
2197 return 1;
2198 if (XTYPE (o1) != XTYPE (o2))
2199 return 0;
2200
2201 switch (XTYPE (o1))
2202 {
2203 case Lisp_Float:
2204 {
2205 double d1, d2;
2206
2207 d1 = extract_float (o1);
2208 d2 = extract_float (o2);
2209 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2210 though they are not =. */
2211 return d1 == d2 || (d1 != d1 && d2 != d2);
2212 }
2213
2214 case Lisp_Cons:
2215 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2216 return 0;
2217 o1 = XCDR (o1);
2218 o2 = XCDR (o2);
2219 goto tail_recurse;
2220
2221 case Lisp_Misc:
2222 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2223 return 0;
2224 if (OVERLAYP (o1))
2225 {
2226 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2227 depth + 1, props)
2228 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2229 depth + 1, props))
2230 return 0;
2231 o1 = XOVERLAY (o1)->plist;
2232 o2 = XOVERLAY (o2)->plist;
2233 goto tail_recurse;
2234 }
2235 if (MARKERP (o1))
2236 {
2237 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2238 && (XMARKER (o1)->buffer == 0
2239 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2240 }
2241 break;
2242
2243 case Lisp_Vectorlike:
2244 {
2245 register int i;
2246 EMACS_INT size = ASIZE (o1);
2247 /* Pseudovectors have the type encoded in the size field, so this test
2248 actually checks that the objects have the same type as well as the
2249 same size. */
2250 if (ASIZE (o2) != size)
2251 return 0;
2252 /* Boolvectors are compared much like strings. */
2253 if (BOOL_VECTOR_P (o1))
2254 {
2255 int size_in_chars
2256 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2257 / BOOL_VECTOR_BITS_PER_CHAR);
2258
2259 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2260 return 0;
2261 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2262 size_in_chars))
2263 return 0;
2264 return 1;
2265 }
2266 if (WINDOW_CONFIGURATIONP (o1))
2267 return compare_window_configurations (o1, o2, 0);
2268
2269 /* Aside from them, only true vectors, char-tables, and compiled
2270 functions are sensible to compare, so eliminate the others now. */
2271 if (size & PSEUDOVECTOR_FLAG)
2272 {
2273 if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
2274 return 0;
2275 size &= PSEUDOVECTOR_SIZE_MASK;
2276 }
2277 for (i = 0; i < size; i++)
2278 {
2279 Lisp_Object v1, v2;
2280 v1 = AREF (o1, i);
2281 v2 = AREF (o2, i);
2282 if (!internal_equal (v1, v2, depth + 1, props))
2283 return 0;
2284 }
2285 return 1;
2286 }
2287 break;
2288
2289 case Lisp_String:
2290 if (SCHARS (o1) != SCHARS (o2))
2291 return 0;
2292 if (SBYTES (o1) != SBYTES (o2))
2293 return 0;
2294 if (bcmp (SDATA (o1), SDATA (o2),
2295 SBYTES (o1)))
2296 return 0;
2297 if (props && !compare_string_intervals (o1, o2))
2298 return 0;
2299 return 1;
2300
2301 case Lisp_Int:
2302 case Lisp_Symbol:
2303 case Lisp_Type_Limit:
2304 break;
2305 }
2306
2307 return 0;
2308 }
2309 \f
2310 extern Lisp_Object Fmake_char_internal ();
2311
2312 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2313 doc: /* Store each element of ARRAY with ITEM.
2314 ARRAY is a vector, string, char-table, or bool-vector. */)
2315 (array, item)
2316 Lisp_Object array, item;
2317 {
2318 register int size, index, charval;
2319 if (VECTORP (array))
2320 {
2321 register Lisp_Object *p = XVECTOR (array)->contents;
2322 size = ASIZE (array);
2323 for (index = 0; index < size; index++)
2324 p[index] = item;
2325 }
2326 else if (CHAR_TABLE_P (array))
2327 {
2328 register Lisp_Object *p = XCHAR_TABLE (array)->contents;
2329 size = CHAR_TABLE_ORDINARY_SLOTS;
2330 for (index = 0; index < size; index++)
2331 p[index] = item;
2332 XCHAR_TABLE (array)->defalt = Qnil;
2333 }
2334 else if (STRINGP (array))
2335 {
2336 register unsigned char *p = SDATA (array);
2337 CHECK_NUMBER (item);
2338 charval = XINT (item);
2339 size = SCHARS (array);
2340 if (STRING_MULTIBYTE (array))
2341 {
2342 unsigned char str[MAX_MULTIBYTE_LENGTH];
2343 int len = CHAR_STRING (charval, str);
2344 int size_byte = SBYTES (array);
2345 unsigned char *p1 = p, *endp = p + size_byte;
2346 int i;
2347
2348 if (size != size_byte)
2349 while (p1 < endp)
2350 {
2351 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2352 if (len != this_len)
2353 error ("Attempt to change byte length of a string");
2354 p1 += this_len;
2355 }
2356 for (i = 0; i < size_byte; i++)
2357 *p++ = str[i % len];
2358 }
2359 else
2360 for (index = 0; index < size; index++)
2361 p[index] = charval;
2362 }
2363 else if (BOOL_VECTOR_P (array))
2364 {
2365 register unsigned char *p = XBOOL_VECTOR (array)->data;
2366 int size_in_chars
2367 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2368 / BOOL_VECTOR_BITS_PER_CHAR);
2369
2370 charval = (! NILP (item) ? -1 : 0);
2371 for (index = 0; index < size_in_chars - 1; index++)
2372 p[index] = charval;
2373 if (index < size_in_chars)
2374 {
2375 /* Mask out bits beyond the vector size. */
2376 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2377 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2378 p[index] = charval;
2379 }
2380 }
2381 else
2382 wrong_type_argument (Qarrayp, array);
2383 return array;
2384 }
2385
2386 DEFUN ("clear-string", Fclear_string, Sclear_string,
2387 1, 1, 0,
2388 doc: /* Clear the contents of STRING.
2389 This makes STRING unibyte and may change its length. */)
2390 (string)
2391 Lisp_Object string;
2392 {
2393 int len;
2394 CHECK_STRING (string);
2395 len = SBYTES (string);
2396 bzero (SDATA (string), len);
2397 STRING_SET_CHARS (string, len);
2398 STRING_SET_UNIBYTE (string);
2399 return Qnil;
2400 }
2401 \f
2402 DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
2403 1, 1, 0,
2404 doc: /* Return the subtype of char-table CHAR-TABLE. The value is a symbol. */)
2405 (char_table)
2406 Lisp_Object char_table;
2407 {
2408 CHECK_CHAR_TABLE (char_table);
2409
2410 return XCHAR_TABLE (char_table)->purpose;
2411 }
2412
2413 DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
2414 1, 1, 0,
2415 doc: /* Return the parent char-table of CHAR-TABLE.
2416 The value is either nil or another char-table.
2417 If CHAR-TABLE holds nil for a given character,
2418 then the actual applicable value is inherited from the parent char-table
2419 \(or from its parents, if necessary). */)
2420 (char_table)
2421 Lisp_Object char_table;
2422 {
2423 CHECK_CHAR_TABLE (char_table);
2424
2425 return XCHAR_TABLE (char_table)->parent;
2426 }
2427
2428 DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
2429 2, 2, 0,
2430 doc: /* Set the parent char-table of CHAR-TABLE to PARENT.
2431 Return PARENT. PARENT must be either nil or another char-table. */)
2432 (char_table, parent)
2433 Lisp_Object char_table, parent;
2434 {
2435 Lisp_Object temp;
2436
2437 CHECK_CHAR_TABLE (char_table);
2438
2439 if (!NILP (parent))
2440 {
2441 CHECK_CHAR_TABLE (parent);
2442
2443 for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
2444 if (EQ (temp, char_table))
2445 error ("Attempt to make a chartable be its own parent");
2446 }
2447
2448 XCHAR_TABLE (char_table)->parent = parent;
2449
2450 return parent;
2451 }
2452
2453 DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
2454 2, 2, 0,
2455 doc: /* Return the value of CHAR-TABLE's extra-slot number N. */)
2456 (char_table, n)
2457 Lisp_Object char_table, n;
2458 {
2459 CHECK_CHAR_TABLE (char_table);
2460 CHECK_NUMBER (n);
2461 if (XINT (n) < 0
2462 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2463 args_out_of_range (char_table, n);
2464
2465 return XCHAR_TABLE (char_table)->extras[XINT (n)];
2466 }
2467
2468 DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
2469 Sset_char_table_extra_slot,
2470 3, 3, 0,
2471 doc: /* Set CHAR-TABLE's extra-slot number N to VALUE. */)
2472 (char_table, n, value)
2473 Lisp_Object char_table, n, value;
2474 {
2475 CHECK_CHAR_TABLE (char_table);
2476 CHECK_NUMBER (n);
2477 if (XINT (n) < 0
2478 || XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (char_table)))
2479 args_out_of_range (char_table, n);
2480
2481 return XCHAR_TABLE (char_table)->extras[XINT (n)] = value;
2482 }
2483 \f
2484 static Lisp_Object
2485 char_table_range (table, from, to, defalt)
2486 Lisp_Object table;
2487 int from, to;
2488 Lisp_Object defalt;
2489 {
2490 Lisp_Object val;
2491
2492 if (! NILP (XCHAR_TABLE (table)->defalt))
2493 defalt = XCHAR_TABLE (table)->defalt;
2494 val = XCHAR_TABLE (table)->contents[from];
2495 if (SUB_CHAR_TABLE_P (val))
2496 val = char_table_range (val, 32, 127, defalt);
2497 else if (NILP (val))
2498 val = defalt;
2499 for (from++; from <= to; from++)
2500 {
2501 Lisp_Object this_val;
2502
2503 this_val = XCHAR_TABLE (table)->contents[from];
2504 if (SUB_CHAR_TABLE_P (this_val))
2505 this_val = char_table_range (this_val, 32, 127, defalt);
2506 else if (NILP (this_val))
2507 this_val = defalt;
2508 if (! EQ (val, this_val))
2509 error ("Characters in the range have inconsistent values");
2510 }
2511 return val;
2512 }
2513
2514
2515 DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
2516 2, 2, 0,
2517 doc: /* Return the value in CHAR-TABLE for a range of characters RANGE.
2518 RANGE should be nil (for the default value),
2519 a vector which identifies a character set or a row of a character set,
2520 a character set name, or a character code.
2521 If the characters in the specified range have different values,
2522 an error is signaled.
2523
2524 Note that this function doesn't check the parent of CHAR-TABLE. */)
2525 (char_table, range)
2526 Lisp_Object char_table, range;
2527 {
2528 int charset_id, c1 = 0, c2 = 0;
2529 int size;
2530 Lisp_Object ch, val, current_default;
2531
2532 CHECK_CHAR_TABLE (char_table);
2533
2534 if (EQ (range, Qnil))
2535 return XCHAR_TABLE (char_table)->defalt;
2536 if (INTEGERP (range))
2537 {
2538 int c = XINT (range);
2539 if (! CHAR_VALID_P (c, 0))
2540 error ("Invalid character code: %d", c);
2541 ch = range;
2542 SPLIT_CHAR (c, charset_id, c1, c2);
2543 }
2544 else if (SYMBOLP (range))
2545 {
2546 Lisp_Object charset_info;
2547
2548 charset_info = Fget (range, Qcharset);
2549 CHECK_VECTOR (charset_info);
2550 charset_id = XINT (AREF (charset_info, 0));
2551 ch = Fmake_char_internal (make_number (charset_id),
2552 make_number (0), make_number (0));
2553 }
2554 else if (VECTORP (range))
2555 {
2556 size = ASIZE (range);
2557 if (size == 0)
2558 args_out_of_range (range, make_number (0));
2559 CHECK_NUMBER (AREF (range, 0));
2560 charset_id = XINT (AREF (range, 0));
2561 if (size > 1)
2562 {
2563 CHECK_NUMBER (AREF (range, 1));
2564 c1 = XINT (AREF (range, 1));
2565 if (size > 2)
2566 {
2567 CHECK_NUMBER (AREF (range, 2));
2568 c2 = XINT (AREF (range, 2));
2569 }
2570 }
2571
2572 /* This checks if charset_id, c0, and c1 are all valid or not. */
2573 ch = Fmake_char_internal (make_number (charset_id),
2574 make_number (c1), make_number (c2));
2575 }
2576 else
2577 error ("Invalid RANGE argument to `char-table-range'");
2578
2579 if (c1 > 0 && (CHARSET_DIMENSION (charset_id) == 1 || c2 > 0))
2580 {
2581 /* Fully specified character. */
2582 Lisp_Object parent = XCHAR_TABLE (char_table)->parent;
2583
2584 XCHAR_TABLE (char_table)->parent = Qnil;
2585 val = Faref (char_table, ch);
2586 XCHAR_TABLE (char_table)->parent = parent;
2587 return val;
2588 }
2589
2590 current_default = XCHAR_TABLE (char_table)->defalt;
2591 if (charset_id == CHARSET_ASCII
2592 || charset_id == CHARSET_8_BIT_CONTROL
2593 || charset_id == CHARSET_8_BIT_GRAPHIC)
2594 {
2595 int from, to, defalt;
2596
2597 if (charset_id == CHARSET_ASCII)
2598 from = 0, to = 127, defalt = CHAR_TABLE_DEFAULT_SLOT_ASCII;
2599 else if (charset_id == CHARSET_8_BIT_CONTROL)
2600 from = 128, to = 159, defalt = CHAR_TABLE_DEFAULT_SLOT_8_BIT_CONTROL;
2601 else
2602 from = 160, to = 255, defalt = CHAR_TABLE_DEFAULT_SLOT_8_BIT_GRAPHIC;
2603 if (! NILP (XCHAR_TABLE (char_table)->contents[defalt]))
2604 current_default = XCHAR_TABLE (char_table)->contents[defalt];
2605 return char_table_range (char_table, from, to, current_default);
2606 }
2607
2608 val = XCHAR_TABLE (char_table)->contents[128 + charset_id];
2609 if (! SUB_CHAR_TABLE_P (val))
2610 return (NILP (val) ? current_default : val);
2611 if (! NILP (XCHAR_TABLE (val)->defalt))
2612 current_default = XCHAR_TABLE (val)->defalt;
2613 if (c1 == 0)
2614 return char_table_range (val, 32, 127, current_default);
2615 val = XCHAR_TABLE (val)->contents[c1];
2616 if (! SUB_CHAR_TABLE_P (val))
2617 return (NILP (val) ? current_default : val);
2618 if (! NILP (XCHAR_TABLE (val)->defalt))
2619 current_default = XCHAR_TABLE (val)->defalt;
2620 return char_table_range (val, 32, 127, current_default);
2621 }
2622
2623 DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
2624 3, 3, 0,
2625 doc: /* Set the value in CHAR-TABLE for a range of characters RANGE to VALUE.
2626 RANGE should be t (for all characters), nil (for the default value),
2627 a character set, a vector which identifies a character set, a row of a
2628 character set, or a character code. Return VALUE. */)
2629 (char_table, range, value)
2630 Lisp_Object char_table, range, value;
2631 {
2632 int i;
2633
2634 CHECK_CHAR_TABLE (char_table);
2635
2636 if (EQ (range, Qt))
2637 for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2638 {
2639 /* Don't set these special slots used for default values of
2640 ascii, eight-bit-control, and eight-bit-graphic. */
2641 if (i != CHAR_TABLE_DEFAULT_SLOT_ASCII
2642 && i != CHAR_TABLE_DEFAULT_SLOT_8_BIT_CONTROL
2643 && i != CHAR_TABLE_DEFAULT_SLOT_8_BIT_GRAPHIC)
2644 XCHAR_TABLE (char_table)->contents[i] = value;
2645 }
2646 else if (EQ (range, Qnil))
2647 XCHAR_TABLE (char_table)->defalt = value;
2648 else if (SYMBOLP (range))
2649 {
2650 Lisp_Object charset_info;
2651 int charset_id;
2652
2653 charset_info = Fget (range, Qcharset);
2654 if (! VECTORP (charset_info)
2655 || ! NATNUMP (AREF (charset_info, 0))
2656 || (charset_id = XINT (AREF (charset_info, 0)),
2657 ! CHARSET_DEFINED_P (charset_id)))
2658 error ("Invalid charset: %s", SDATA (SYMBOL_NAME (range)));
2659
2660 if (charset_id == CHARSET_ASCII)
2661 for (i = 0; i < 128; i++)
2662 XCHAR_TABLE (char_table)->contents[i] = value;
2663 else if (charset_id == CHARSET_8_BIT_CONTROL)
2664 for (i = 128; i < 160; i++)
2665 XCHAR_TABLE (char_table)->contents[i] = value;
2666 else if (charset_id == CHARSET_8_BIT_GRAPHIC)
2667 for (i = 160; i < 256; i++)
2668 XCHAR_TABLE (char_table)->contents[i] = value;
2669 else
2670 XCHAR_TABLE (char_table)->contents[charset_id + 128] = value;
2671 }
2672 else if (INTEGERP (range))
2673 Faset (char_table, range, value);
2674 else if (VECTORP (range))
2675 {
2676 int size = ASIZE (range);
2677 Lisp_Object *val = XVECTOR (range)->contents;
2678 Lisp_Object ch = Fmake_char_internal (size <= 0 ? Qnil : val[0],
2679 size <= 1 ? Qnil : val[1],
2680 size <= 2 ? Qnil : val[2]);
2681 Faset (char_table, ch, value);
2682 }
2683 else
2684 error ("Invalid RANGE argument to `set-char-table-range'");
2685
2686 return value;
2687 }
2688
2689 DEFUN ("set-char-table-default", Fset_char_table_default,
2690 Sset_char_table_default, 3, 3, 0,
2691 doc: /* Set the default value in CHAR-TABLE for generic character CH to VALUE.
2692 The generic character specifies the group of characters.
2693 If CH is a normal character, set the default value for a group of
2694 characters to which CH belongs.
2695 See also the documentation of `make-char'. */)
2696 (char_table, ch, value)
2697 Lisp_Object char_table, ch, value;
2698 {
2699 int c, charset, code1, code2;
2700 Lisp_Object temp;
2701
2702 CHECK_CHAR_TABLE (char_table);
2703 CHECK_NUMBER (ch);
2704
2705 c = XINT (ch);
2706 SPLIT_CHAR (c, charset, code1, code2);
2707
2708 /* Since we may want to set the default value for a character set
2709 not yet defined, we check only if the character set is in the
2710 valid range or not, instead of it is already defined or not. */
2711 if (! CHARSET_VALID_P (charset))
2712 invalid_character (c);
2713
2714 if (SINGLE_BYTE_CHAR_P (c))
2715 {
2716 /* We use special slots for the default values of single byte
2717 characters. */
2718 int default_slot
2719 = (c < 0x80 ? CHAR_TABLE_DEFAULT_SLOT_ASCII
2720 : c < 0xA0 ? CHAR_TABLE_DEFAULT_SLOT_8_BIT_CONTROL
2721 : CHAR_TABLE_DEFAULT_SLOT_8_BIT_GRAPHIC);
2722
2723 return (XCHAR_TABLE (char_table)->contents[default_slot] = value);
2724 }
2725
2726 /* Even if C is not a generic char, we had better behave as if a
2727 generic char is specified. */
2728 if (!CHARSET_DEFINED_P (charset) || CHARSET_DIMENSION (charset) == 1)
2729 code1 = 0;
2730 temp = XCHAR_TABLE (char_table)->contents[charset + 128];
2731 if (! SUB_CHAR_TABLE_P (temp))
2732 {
2733 temp = make_sub_char_table (temp);
2734 XCHAR_TABLE (char_table)->contents[charset + 128] = temp;
2735 }
2736 if (!code1)
2737 {
2738 XCHAR_TABLE (temp)->defalt = value;
2739 return value;
2740 }
2741 char_table = temp;
2742 temp = XCHAR_TABLE (char_table)->contents[code1];
2743 if (SUB_CHAR_TABLE_P (temp))
2744 XCHAR_TABLE (temp)->defalt = value;
2745 else
2746 XCHAR_TABLE (char_table)->contents[code1] = value;
2747 return value;
2748 }
2749
2750 /* Look up the element in TABLE at index CH,
2751 and return it as an integer.
2752 If the element is nil, return CH itself.
2753 (Actually we do that for any non-integer.) */
2754
2755 int
2756 char_table_translate (table, ch)
2757 Lisp_Object table;
2758 int ch;
2759 {
2760 Lisp_Object value;
2761 value = Faref (table, make_number (ch));
2762 if (! INTEGERP (value))
2763 return ch;
2764 return XINT (value);
2765 }
2766
2767 static void
2768 optimize_sub_char_table (table, chars)
2769 Lisp_Object *table;
2770 int chars;
2771 {
2772 Lisp_Object elt;
2773 int from, to;
2774
2775 if (chars == 94)
2776 from = 33, to = 127;
2777 else
2778 from = 32, to = 128;
2779
2780 if (!SUB_CHAR_TABLE_P (*table)
2781 || ! NILP (XCHAR_TABLE (*table)->defalt))
2782 return;
2783 elt = XCHAR_TABLE (*table)->contents[from++];
2784 for (; from < to; from++)
2785 if (NILP (Fequal (elt, XCHAR_TABLE (*table)->contents[from])))
2786 return;
2787 *table = elt;
2788 }
2789
2790 DEFUN ("optimize-char-table", Foptimize_char_table, Soptimize_char_table,
2791 1, 1, 0, doc: /* Optimize char table TABLE. */)
2792 (table)
2793 Lisp_Object table;
2794 {
2795 Lisp_Object elt;
2796 int dim, chars;
2797 int i, j;
2798
2799 CHECK_CHAR_TABLE (table);
2800
2801 for (i = CHAR_TABLE_SINGLE_BYTE_SLOTS; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
2802 {
2803 elt = XCHAR_TABLE (table)->contents[i];
2804 if (!SUB_CHAR_TABLE_P (elt))
2805 continue;
2806 dim = CHARSET_DIMENSION (i - 128);
2807 chars = CHARSET_CHARS (i - 128);
2808 if (dim == 2)
2809 for (j = 32; j < SUB_CHAR_TABLE_ORDINARY_SLOTS; j++)
2810 optimize_sub_char_table (XCHAR_TABLE (elt)->contents + j, chars);
2811 optimize_sub_char_table (XCHAR_TABLE (table)->contents + i, chars);
2812 }
2813 return Qnil;
2814 }
2815
2816 \f
2817 /* Map C_FUNCTION or FUNCTION over SUBTABLE, calling it for each
2818 character or group of characters that share a value.
2819 DEPTH is the current depth in the originally specified
2820 chartable, and INDICES contains the vector indices
2821 for the levels our callers have descended.
2822
2823 ARG is passed to C_FUNCTION when that is called. */
2824
2825 void
2826 map_char_table (c_function, function, table, subtable, arg, depth, indices)
2827 void (*c_function) P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
2828 Lisp_Object function, table, subtable, arg;
2829 int depth, *indices;
2830 {
2831 int i, to;
2832 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2833
2834 GCPRO4 (arg, table, subtable, function);
2835
2836 if (depth == 0)
2837 {
2838 /* At first, handle ASCII and 8-bit European characters. */
2839 for (i = 0; i < CHAR_TABLE_SINGLE_BYTE_SLOTS; i++)
2840 {
2841 Lisp_Object elt= XCHAR_TABLE (subtable)->contents[i];
2842 if (NILP (elt))
2843 elt = XCHAR_TABLE (subtable)->defalt;
2844 if (NILP (elt))
2845 elt = Faref (subtable, make_number (i));
2846 if (c_function)
2847 (*c_function) (arg, make_number (i), elt);
2848 else
2849 call2 (function, make_number (i), elt);
2850 }
2851 #if 0 /* If the char table has entries for higher characters,
2852 we should report them. */
2853 if (NILP (current_buffer->enable_multibyte_characters))
2854 {
2855 UNGCPRO;
2856 return;
2857 }
2858 #endif
2859 to = CHAR_TABLE_ORDINARY_SLOTS;
2860 }
2861 else
2862 {
2863 int charset = indices[0] - 128;
2864
2865 i = 32;
2866 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2867 if (CHARSET_CHARS (charset) == 94)
2868 i++, to--;
2869 }
2870
2871 for (; i < to; i++)
2872 {
2873 Lisp_Object elt;
2874 int charset;
2875
2876 elt = XCHAR_TABLE (subtable)->contents[i];
2877 indices[depth] = i;
2878 charset = indices[0] - 128;
2879 if (depth == 0
2880 && (!CHARSET_DEFINED_P (charset)
2881 || charset == CHARSET_8_BIT_CONTROL
2882 || charset == CHARSET_8_BIT_GRAPHIC))
2883 continue;
2884
2885 if (SUB_CHAR_TABLE_P (elt))
2886 {
2887 if (depth >= 3)
2888 error ("Too deep char table");
2889 map_char_table (c_function, function, table, elt, arg, depth + 1, indices);
2890 }
2891 else
2892 {
2893 int c1, c2, c;
2894
2895 c1 = depth >= 1 ? indices[1] : 0;
2896 c2 = depth >= 2 ? indices[2] : 0;
2897 c = MAKE_CHAR (charset, c1, c2);
2898
2899 if (NILP (elt))
2900 elt = XCHAR_TABLE (subtable)->defalt;
2901 if (NILP (elt))
2902 elt = Faref (table, make_number (c));
2903
2904 if (c_function)
2905 (*c_function) (arg, make_number (c), elt);
2906 else
2907 call2 (function, make_number (c), elt);
2908 }
2909 }
2910 UNGCPRO;
2911 }
2912
2913 static void void_call2 P_ ((Lisp_Object a, Lisp_Object b, Lisp_Object c));
2914 static void
2915 void_call2 (a, b, c)
2916 Lisp_Object a, b, c;
2917 {
2918 call2 (a, b, c);
2919 }
2920
2921 DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
2922 2, 2, 0,
2923 doc: /* Call FUNCTION for each (normal and generic) characters in CHAR-TABLE.
2924 FUNCTION is called with two arguments--a key and a value.
2925 The key is always a possible IDX argument to `aref'. */)
2926 (function, char_table)
2927 Lisp_Object function, char_table;
2928 {
2929 /* The depth of char table is at most 3. */
2930 int indices[3];
2931
2932 CHECK_CHAR_TABLE (char_table);
2933
2934 /* When Lisp_Object is represented as a union, `call2' cannot directly
2935 be passed to map_char_table because it returns a Lisp_Object rather
2936 than returning nothing.
2937 Casting leads to crashes on some architectures. --Stef */
2938 map_char_table (void_call2, Qnil, char_table, char_table, function, 0, indices);
2939 return Qnil;
2940 }
2941
2942 /* Return a value for character C in char-table TABLE. Store the
2943 actual index for that value in *IDX. Ignore the default value of
2944 TABLE. */
2945
2946 Lisp_Object
2947 char_table_ref_and_index (table, c, idx)
2948 Lisp_Object table;
2949 int c, *idx;
2950 {
2951 int charset, c1, c2;
2952 Lisp_Object elt;
2953
2954 if (SINGLE_BYTE_CHAR_P (c))
2955 {
2956 *idx = c;
2957 return XCHAR_TABLE (table)->contents[c];
2958 }
2959 SPLIT_CHAR (c, charset, c1, c2);
2960 elt = XCHAR_TABLE (table)->contents[charset + 128];
2961 *idx = MAKE_CHAR (charset, 0, 0);
2962 if (!SUB_CHAR_TABLE_P (elt))
2963 return elt;
2964 if (c1 < 32 || NILP (XCHAR_TABLE (elt)->contents[c1]))
2965 return XCHAR_TABLE (elt)->defalt;
2966 elt = XCHAR_TABLE (elt)->contents[c1];
2967 *idx = MAKE_CHAR (charset, c1, 0);
2968 if (!SUB_CHAR_TABLE_P (elt))
2969 return elt;
2970 if (c2 < 32 || NILP (XCHAR_TABLE (elt)->contents[c2]))
2971 return XCHAR_TABLE (elt)->defalt;
2972 *idx = c;
2973 return XCHAR_TABLE (elt)->contents[c2];
2974 }
2975
2976 \f
2977 /* ARGSUSED */
2978 Lisp_Object
2979 nconc2 (s1, s2)
2980 Lisp_Object s1, s2;
2981 {
2982 #ifdef NO_ARG_ARRAY
2983 Lisp_Object args[2];
2984 args[0] = s1;
2985 args[1] = s2;
2986 return Fnconc (2, args);
2987 #else
2988 return Fnconc (2, &s1);
2989 #endif /* NO_ARG_ARRAY */
2990 }
2991
2992 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2993 doc: /* Concatenate any number of lists by altering them.
2994 Only the last argument is not altered, and need not be a list.
2995 usage: (nconc &rest LISTS) */)
2996 (nargs, args)
2997 int nargs;
2998 Lisp_Object *args;
2999 {
3000 register int argnum;
3001 register Lisp_Object tail, tem, val;
3002
3003 val = tail = Qnil;
3004
3005 for (argnum = 0; argnum < nargs; argnum++)
3006 {
3007 tem = args[argnum];
3008 if (NILP (tem)) continue;
3009
3010 if (NILP (val))
3011 val = tem;
3012
3013 if (argnum + 1 == nargs) break;
3014
3015 CHECK_LIST_CONS (tem, tem);
3016
3017 while (CONSP (tem))
3018 {
3019 tail = tem;
3020 tem = XCDR (tail);
3021 QUIT;
3022 }
3023
3024 tem = args[argnum + 1];
3025 Fsetcdr (tail, tem);
3026 if (NILP (tem))
3027 args[argnum + 1] = tail;
3028 }
3029
3030 return val;
3031 }
3032 \f
3033 /* This is the guts of all mapping functions.
3034 Apply FN to each element of SEQ, one by one,
3035 storing the results into elements of VALS, a C vector of Lisp_Objects.
3036 LENI is the length of VALS, which should also be the length of SEQ. */
3037
3038 static void
3039 mapcar1 (leni, vals, fn, seq)
3040 int leni;
3041 Lisp_Object *vals;
3042 Lisp_Object fn, seq;
3043 {
3044 register Lisp_Object tail;
3045 Lisp_Object dummy;
3046 register int i;
3047 struct gcpro gcpro1, gcpro2, gcpro3;
3048
3049 if (vals)
3050 {
3051 /* Don't let vals contain any garbage when GC happens. */
3052 for (i = 0; i < leni; i++)
3053 vals[i] = Qnil;
3054
3055 GCPRO3 (dummy, fn, seq);
3056 gcpro1.var = vals;
3057 gcpro1.nvars = leni;
3058 }
3059 else
3060 GCPRO2 (fn, seq);
3061 /* We need not explicitly protect `tail' because it is used only on lists, and
3062 1) lists are not relocated and 2) the list is marked via `seq' so will not
3063 be freed */
3064
3065 if (VECTORP (seq))
3066 {
3067 for (i = 0; i < leni; i++)
3068 {
3069 dummy = call1 (fn, AREF (seq, i));
3070 if (vals)
3071 vals[i] = dummy;
3072 }
3073 }
3074 else if (BOOL_VECTOR_P (seq))
3075 {
3076 for (i = 0; i < leni; i++)
3077 {
3078 int byte;
3079 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
3080 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
3081 dummy = call1 (fn, dummy);
3082 if (vals)
3083 vals[i] = dummy;
3084 }
3085 }
3086 else if (STRINGP (seq))
3087 {
3088 int i_byte;
3089
3090 for (i = 0, i_byte = 0; i < leni;)
3091 {
3092 int c;
3093 int i_before = i;
3094
3095 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
3096 XSETFASTINT (dummy, c);
3097 dummy = call1 (fn, dummy);
3098 if (vals)
3099 vals[i_before] = dummy;
3100 }
3101 }
3102 else /* Must be a list, since Flength did not get an error */
3103 {
3104 tail = seq;
3105 for (i = 0; i < leni && CONSP (tail); i++)
3106 {
3107 dummy = call1 (fn, XCAR (tail));
3108 if (vals)
3109 vals[i] = dummy;
3110 tail = XCDR (tail);
3111 }
3112 }
3113
3114 UNGCPRO;
3115 }
3116
3117 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
3118 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
3119 In between each pair of results, stick in SEPARATOR. Thus, " " as
3120 SEPARATOR results in spaces between the values returned by FUNCTION.
3121 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3122 (function, sequence, separator)
3123 Lisp_Object function, sequence, separator;
3124 {
3125 Lisp_Object len;
3126 register int leni;
3127 int nargs;
3128 register Lisp_Object *args;
3129 register int i;
3130 struct gcpro gcpro1;
3131 Lisp_Object ret;
3132 USE_SAFE_ALLOCA;
3133
3134 len = Flength (sequence);
3135 leni = XINT (len);
3136 nargs = leni + leni - 1;
3137 if (nargs < 0) return empty_unibyte_string;
3138
3139 SAFE_ALLOCA_LISP (args, nargs);
3140
3141 GCPRO1 (separator);
3142 mapcar1 (leni, args, function, sequence);
3143 UNGCPRO;
3144
3145 for (i = leni - 1; i > 0; i--)
3146 args[i + i] = args[i];
3147
3148 for (i = 1; i < nargs; i += 2)
3149 args[i] = separator;
3150
3151 ret = Fconcat (nargs, args);
3152 SAFE_FREE ();
3153
3154 return ret;
3155 }
3156
3157 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
3158 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
3159 The result is a list just as long as SEQUENCE.
3160 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3161 (function, sequence)
3162 Lisp_Object function, sequence;
3163 {
3164 register Lisp_Object len;
3165 register int leni;
3166 register Lisp_Object *args;
3167 Lisp_Object ret;
3168 USE_SAFE_ALLOCA;
3169
3170 len = Flength (sequence);
3171 leni = XFASTINT (len);
3172
3173 SAFE_ALLOCA_LISP (args, leni);
3174
3175 mapcar1 (leni, args, function, sequence);
3176
3177 ret = Flist (leni, args);
3178 SAFE_FREE ();
3179
3180 return ret;
3181 }
3182
3183 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
3184 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
3185 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
3186 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
3187 (function, sequence)
3188 Lisp_Object function, sequence;
3189 {
3190 register int leni;
3191
3192 leni = XFASTINT (Flength (sequence));
3193 mapcar1 (leni, 0, function, sequence);
3194
3195 return sequence;
3196 }
3197 \f
3198 /* Anything that calls this function must protect from GC! */
3199
3200 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
3201 doc: /* Ask user a "y or n" question. Return t if answer is "y".
3202 Takes one argument, which is the string to display to ask the question.
3203 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
3204 No confirmation of the answer is requested; a single character is enough.
3205 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
3206 the bindings in `query-replace-map'; see the documentation of that variable
3207 for more information. In this case, the useful bindings are `act', `skip',
3208 `recenter', and `quit'.\)
3209
3210 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3211 is nil and `use-dialog-box' is non-nil. */)
3212 (prompt)
3213 Lisp_Object prompt;
3214 {
3215 register Lisp_Object obj, key, def, map;
3216 register int answer;
3217 Lisp_Object xprompt;
3218 Lisp_Object args[2];
3219 struct gcpro gcpro1, gcpro2;
3220 int count = SPECPDL_INDEX ();
3221
3222 specbind (Qcursor_in_echo_area, Qt);
3223
3224 map = Fsymbol_value (intern ("query-replace-map"));
3225
3226 CHECK_STRING (prompt);
3227 xprompt = prompt;
3228 GCPRO2 (prompt, xprompt);
3229
3230 #ifdef HAVE_X_WINDOWS
3231 if (display_hourglass_p)
3232 cancel_hourglass ();
3233 #endif
3234
3235 while (1)
3236 {
3237
3238 #ifdef HAVE_MENUS
3239 if (FRAME_WINDOW_P (SELECTED_FRAME ())
3240 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3241 && use_dialog_box
3242 && have_menus_p ())
3243 {
3244 Lisp_Object pane, menu;
3245 redisplay_preserve_echo_area (3);
3246 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3247 Fcons (Fcons (build_string ("No"), Qnil),
3248 Qnil));
3249 menu = Fcons (prompt, pane);
3250 obj = Fx_popup_dialog (Qt, menu, Qnil);
3251 answer = !NILP (obj);
3252 break;
3253 }
3254 #endif /* HAVE_MENUS */
3255 cursor_in_echo_area = 1;
3256 choose_minibuf_frame ();
3257
3258 {
3259 Lisp_Object pargs[3];
3260
3261 /* Colorize prompt according to `minibuffer-prompt' face. */
3262 pargs[0] = build_string ("%s(y or n) ");
3263 pargs[1] = intern ("face");
3264 pargs[2] = intern ("minibuffer-prompt");
3265 args[0] = Fpropertize (3, pargs);
3266 args[1] = xprompt;
3267 Fmessage (2, args);
3268 }
3269
3270 if (minibuffer_auto_raise)
3271 {
3272 Lisp_Object mini_frame;
3273
3274 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
3275
3276 Fraise_frame (mini_frame);
3277 }
3278
3279 temporarily_switch_to_single_kboard (SELECTED_FRAME ());
3280 obj = read_filtered_event (1, 0, 0, 0, Qnil);
3281 cursor_in_echo_area = 0;
3282 /* If we need to quit, quit with cursor_in_echo_area = 0. */
3283 QUIT;
3284
3285 key = Fmake_vector (make_number (1), obj);
3286 def = Flookup_key (map, key, Qt);
3287
3288 if (EQ (def, intern ("skip")))
3289 {
3290 answer = 0;
3291 break;
3292 }
3293 else if (EQ (def, intern ("act")))
3294 {
3295 answer = 1;
3296 break;
3297 }
3298 else if (EQ (def, intern ("recenter")))
3299 {
3300 Frecenter (Qnil);
3301 xprompt = prompt;
3302 continue;
3303 }
3304 else if (EQ (def, intern ("quit")))
3305 Vquit_flag = Qt;
3306 /* We want to exit this command for exit-prefix,
3307 and this is the only way to do it. */
3308 else if (EQ (def, intern ("exit-prefix")))
3309 Vquit_flag = Qt;
3310
3311 QUIT;
3312
3313 /* If we don't clear this, then the next call to read_char will
3314 return quit_char again, and we'll enter an infinite loop. */
3315 Vquit_flag = Qnil;
3316
3317 Fding (Qnil);
3318 Fdiscard_input ();
3319 if (EQ (xprompt, prompt))
3320 {
3321 args[0] = build_string ("Please answer y or n. ");
3322 args[1] = prompt;
3323 xprompt = Fconcat (2, args);
3324 }
3325 }
3326 UNGCPRO;
3327
3328 if (! noninteractive)
3329 {
3330 cursor_in_echo_area = -1;
3331 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
3332 xprompt, 0);
3333 }
3334
3335 unbind_to (count, Qnil);
3336 return answer ? Qt : Qnil;
3337 }
3338 \f
3339 /* This is how C code calls `yes-or-no-p' and allows the user
3340 to redefined it.
3341
3342 Anything that calls this function must protect from GC! */
3343
3344 Lisp_Object
3345 do_yes_or_no_p (prompt)
3346 Lisp_Object prompt;
3347 {
3348 return call1 (intern ("yes-or-no-p"), prompt);
3349 }
3350
3351 /* Anything that calls this function must protect from GC! */
3352
3353 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
3354 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
3355 Takes one argument, which is the string to display to ask the question.
3356 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
3357 The user must confirm the answer with RET,
3358 and can edit it until it has been confirmed.
3359
3360 Under a windowing system a dialog box will be used if `last-nonmenu-event'
3361 is nil, and `use-dialog-box' is non-nil. */)
3362 (prompt)
3363 Lisp_Object prompt;
3364 {
3365 register Lisp_Object ans;
3366 Lisp_Object args[2];
3367 struct gcpro gcpro1;
3368
3369 CHECK_STRING (prompt);
3370
3371 #ifdef HAVE_MENUS
3372 if (FRAME_WINDOW_P (SELECTED_FRAME ())
3373 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3374 && use_dialog_box
3375 && have_menus_p ())
3376 {
3377 Lisp_Object pane, menu, obj;
3378 redisplay_preserve_echo_area (4);
3379 pane = Fcons (Fcons (build_string ("Yes"), Qt),
3380 Fcons (Fcons (build_string ("No"), Qnil),
3381 Qnil));
3382 GCPRO1 (pane);
3383 menu = Fcons (prompt, pane);
3384 obj = Fx_popup_dialog (Qt, menu, Qnil);
3385 UNGCPRO;
3386 return obj;
3387 }
3388 #endif /* HAVE_MENUS */
3389
3390 args[0] = prompt;
3391 args[1] = build_string ("(yes or no) ");
3392 prompt = Fconcat (2, args);
3393
3394 GCPRO1 (prompt);
3395
3396 while (1)
3397 {
3398 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
3399 Qyes_or_no_p_history, Qnil,
3400 Qnil));
3401 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
3402 {
3403 UNGCPRO;
3404 return Qt;
3405 }
3406 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
3407 {
3408 UNGCPRO;
3409 return Qnil;
3410 }
3411
3412 Fding (Qnil);
3413 Fdiscard_input ();
3414 message ("Please answer yes or no.");
3415 Fsleep_for (make_number (2), Qnil);
3416 }
3417 }
3418 \f
3419 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
3420 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
3421
3422 Each of the three load averages is multiplied by 100, then converted
3423 to integer.
3424
3425 When USE-FLOATS is non-nil, floats will be used instead of integers.
3426 These floats are not multiplied by 100.
3427
3428 If the 5-minute or 15-minute load averages are not available, return a
3429 shortened list, containing only those averages which are available.
3430
3431 An error is thrown if the load average can't be obtained. In some
3432 cases making it work would require Emacs being installed setuid or
3433 setgid so that it can read kernel information, and that usually isn't
3434 advisable. */)
3435 (use_floats)
3436 Lisp_Object use_floats;
3437 {
3438 double load_ave[3];
3439 int loads = getloadavg (load_ave, 3);
3440 Lisp_Object ret = Qnil;
3441
3442 if (loads < 0)
3443 error ("load-average not implemented for this operating system");
3444
3445 while (loads-- > 0)
3446 {
3447 Lisp_Object load = (NILP (use_floats) ?
3448 make_number ((int) (100.0 * load_ave[loads]))
3449 : make_float (load_ave[loads]));
3450 ret = Fcons (load, ret);
3451 }
3452
3453 return ret;
3454 }
3455 \f
3456 Lisp_Object Vfeatures, Qsubfeatures;
3457 extern Lisp_Object Vafter_load_alist;
3458
3459 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
3460 doc: /* Returns t if FEATURE is present in this Emacs.
3461
3462 Use this to conditionalize execution of lisp code based on the
3463 presence or absence of Emacs or environment extensions.
3464 Use `provide' to declare that a feature is available. This function
3465 looks at the value of the variable `features'. The optional argument
3466 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
3467 (feature, subfeature)
3468 Lisp_Object feature, subfeature;
3469 {
3470 register Lisp_Object tem;
3471 CHECK_SYMBOL (feature);
3472 tem = Fmemq (feature, Vfeatures);
3473 if (!NILP (tem) && !NILP (subfeature))
3474 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
3475 return (NILP (tem)) ? Qnil : Qt;
3476 }
3477
3478 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
3479 doc: /* Announce that FEATURE is a feature of the current Emacs.
3480 The optional argument SUBFEATURES should be a list of symbols listing
3481 particular subfeatures supported in this version of FEATURE. */)
3482 (feature, subfeatures)
3483 Lisp_Object feature, subfeatures;
3484 {
3485 register Lisp_Object tem;
3486 CHECK_SYMBOL (feature);
3487 CHECK_LIST (subfeatures);
3488 if (!NILP (Vautoload_queue))
3489 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
3490 Vautoload_queue);
3491 tem = Fmemq (feature, Vfeatures);
3492 if (NILP (tem))
3493 Vfeatures = Fcons (feature, Vfeatures);
3494 if (!NILP (subfeatures))
3495 Fput (feature, Qsubfeatures, subfeatures);
3496 LOADHIST_ATTACH (Fcons (Qprovide, feature));
3497
3498 /* Run any load-hooks for this file. */
3499 tem = Fassq (feature, Vafter_load_alist);
3500 if (CONSP (tem))
3501 Fprogn (XCDR (tem));
3502
3503 return feature;
3504 }
3505 \f
3506 /* `require' and its subroutines. */
3507
3508 /* List of features currently being require'd, innermost first. */
3509
3510 Lisp_Object require_nesting_list;
3511
3512 Lisp_Object
3513 require_unwind (old_value)
3514 Lisp_Object old_value;
3515 {
3516 return require_nesting_list = old_value;
3517 }
3518
3519 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
3520 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
3521 If FEATURE is not a member of the list `features', then the feature
3522 is not loaded; so load the file FILENAME.
3523 If FILENAME is omitted, the printname of FEATURE is used as the file name,
3524 and `load' will try to load this name appended with the suffix `.elc' or
3525 `.el', in that order. The name without appended suffix will not be used.
3526 If the optional third argument NOERROR is non-nil,
3527 then return nil if the file is not found instead of signaling an error.
3528 Normally the return value is FEATURE.
3529 The normal messages at start and end of loading FILENAME are suppressed. */)
3530 (feature, filename, noerror)
3531 Lisp_Object feature, filename, noerror;
3532 {
3533 register Lisp_Object tem;
3534 struct gcpro gcpro1, gcpro2;
3535 int from_file = load_in_progress;
3536
3537 CHECK_SYMBOL (feature);
3538
3539 /* Record the presence of `require' in this file
3540 even if the feature specified is already loaded.
3541 But not more than once in any file,
3542 and not when we aren't loading or reading from a file. */
3543 if (!from_file)
3544 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
3545 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
3546 from_file = 1;
3547
3548 if (from_file)
3549 {
3550 tem = Fcons (Qrequire, feature);
3551 if (NILP (Fmember (tem, Vcurrent_load_list)))
3552 LOADHIST_ATTACH (tem);
3553 }
3554 tem = Fmemq (feature, Vfeatures);
3555
3556 if (NILP (tem))
3557 {
3558 int count = SPECPDL_INDEX ();
3559 int nesting = 0;
3560
3561 /* This is to make sure that loadup.el gives a clear picture
3562 of what files are preloaded and when. */
3563 if (! NILP (Vpurify_flag))
3564 error ("(require %s) while preparing to dump",
3565 SDATA (SYMBOL_NAME (feature)));
3566
3567 /* A certain amount of recursive `require' is legitimate,
3568 but if we require the same feature recursively 3 times,
3569 signal an error. */
3570 tem = require_nesting_list;
3571 while (! NILP (tem))
3572 {
3573 if (! NILP (Fequal (feature, XCAR (tem))))
3574 nesting++;
3575 tem = XCDR (tem);
3576 }
3577 if (nesting > 3)
3578 error ("Recursive `require' for feature `%s'",
3579 SDATA (SYMBOL_NAME (feature)));
3580
3581 /* Update the list for any nested `require's that occur. */
3582 record_unwind_protect (require_unwind, require_nesting_list);
3583 require_nesting_list = Fcons (feature, require_nesting_list);
3584
3585 /* Value saved here is to be restored into Vautoload_queue */
3586 record_unwind_protect (un_autoload, Vautoload_queue);
3587 Vautoload_queue = Qt;
3588
3589 /* Load the file. */
3590 GCPRO2 (feature, filename);
3591 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
3592 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
3593 UNGCPRO;
3594
3595 /* If load failed entirely, return nil. */
3596 if (NILP (tem))
3597 return unbind_to (count, Qnil);
3598
3599 tem = Fmemq (feature, Vfeatures);
3600 if (NILP (tem))
3601 error ("Required feature `%s' was not provided",
3602 SDATA (SYMBOL_NAME (feature)));
3603
3604 /* Once loading finishes, don't undo it. */
3605 Vautoload_queue = Qt;
3606 feature = unbind_to (count, feature);
3607 }
3608
3609 return feature;
3610 }
3611 \f
3612 /* Primitives for work of the "widget" library.
3613 In an ideal world, this section would not have been necessary.
3614 However, lisp function calls being as slow as they are, it turns
3615 out that some functions in the widget library (wid-edit.el) are the
3616 bottleneck of Widget operation. Here is their translation to C,
3617 for the sole reason of efficiency. */
3618
3619 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
3620 doc: /* Return non-nil if PLIST has the property PROP.
3621 PLIST is a property list, which is a list of the form
3622 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
3623 Unlike `plist-get', this allows you to distinguish between a missing
3624 property and a property with the value nil.
3625 The value is actually the tail of PLIST whose car is PROP. */)
3626 (plist, prop)
3627 Lisp_Object plist, prop;
3628 {
3629 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3630 {
3631 QUIT;
3632 plist = XCDR (plist);
3633 plist = CDR (plist);
3634 }
3635 return plist;
3636 }
3637
3638 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3639 doc: /* In WIDGET, set PROPERTY to VALUE.
3640 The value can later be retrieved with `widget-get'. */)
3641 (widget, property, value)
3642 Lisp_Object widget, property, value;
3643 {
3644 CHECK_CONS (widget);
3645 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3646 return value;
3647 }
3648
3649 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3650 doc: /* In WIDGET, get the value of PROPERTY.
3651 The value could either be specified when the widget was created, or
3652 later with `widget-put'. */)
3653 (widget, property)
3654 Lisp_Object widget, property;
3655 {
3656 Lisp_Object tmp;
3657
3658 while (1)
3659 {
3660 if (NILP (widget))
3661 return Qnil;
3662 CHECK_CONS (widget);
3663 tmp = Fplist_member (XCDR (widget), property);
3664 if (CONSP (tmp))
3665 {
3666 tmp = XCDR (tmp);
3667 return CAR (tmp);
3668 }
3669 tmp = XCAR (widget);
3670 if (NILP (tmp))
3671 return Qnil;
3672 widget = Fget (tmp, Qwidget_type);
3673 }
3674 }
3675
3676 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3677 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3678 ARGS are passed as extra arguments to the function.
3679 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3680 (nargs, args)
3681 int nargs;
3682 Lisp_Object *args;
3683 {
3684 /* This function can GC. */
3685 Lisp_Object newargs[3];
3686 struct gcpro gcpro1, gcpro2;
3687 Lisp_Object result;
3688
3689 newargs[0] = Fwidget_get (args[0], args[1]);
3690 newargs[1] = args[0];
3691 newargs[2] = Flist (nargs - 2, args + 2);
3692 GCPRO2 (newargs[0], newargs[2]);
3693 result = Fapply (3, newargs);
3694 UNGCPRO;
3695 return result;
3696 }
3697
3698 #ifdef HAVE_LANGINFO_CODESET
3699 #include <langinfo.h>
3700 #endif
3701
3702 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3703 doc: /* Access locale data ITEM for the current C locale, if available.
3704 ITEM should be one of the following:
3705
3706 `codeset', returning the character set as a string (locale item CODESET);
3707
3708 `days', returning a 7-element vector of day names (locale items DAY_n);
3709
3710 `months', returning a 12-element vector of month names (locale items MON_n);
3711
3712 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3713 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3714
3715 If the system can't provide such information through a call to
3716 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3717
3718 See also Info node `(libc)Locales'.
3719
3720 The data read from the system are decoded using `locale-coding-system'. */)
3721 (item)
3722 Lisp_Object item;
3723 {
3724 char *str = NULL;
3725 #ifdef HAVE_LANGINFO_CODESET
3726 Lisp_Object val;
3727 if (EQ (item, Qcodeset))
3728 {
3729 str = nl_langinfo (CODESET);
3730 return build_string (str);
3731 }
3732 #ifdef DAY_1
3733 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3734 {
3735 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3736 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3737 int i;
3738 synchronize_system_time_locale ();
3739 for (i = 0; i < 7; i++)
3740 {
3741 str = nl_langinfo (days[i]);
3742 val = make_unibyte_string (str, strlen (str));
3743 /* Fixme: Is this coding system necessarily right, even if
3744 it is consistent with CODESET? If not, what to do? */
3745 Faset (v, make_number (i),
3746 code_convert_string_norecord (val, Vlocale_coding_system,
3747 0));
3748 }
3749 return v;
3750 }
3751 #endif /* DAY_1 */
3752 #ifdef MON_1
3753 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3754 {
3755 struct Lisp_Vector *p = allocate_vector (12);
3756 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3757 MON_8, MON_9, MON_10, MON_11, MON_12};
3758 int i;
3759 synchronize_system_time_locale ();
3760 for (i = 0; i < 12; i++)
3761 {
3762 str = nl_langinfo (months[i]);
3763 val = make_unibyte_string (str, strlen (str));
3764 p->contents[i] =
3765 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3766 }
3767 XSETVECTOR (val, p);
3768 return val;
3769 }
3770 #endif /* MON_1 */
3771 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3772 but is in the locale files. This could be used by ps-print. */
3773 #ifdef PAPER_WIDTH
3774 else if (EQ (item, Qpaper))
3775 {
3776 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3777 make_number (nl_langinfo (PAPER_HEIGHT)));
3778 }
3779 #endif /* PAPER_WIDTH */
3780 #endif /* HAVE_LANGINFO_CODESET*/
3781 return Qnil;
3782 }
3783 \f
3784 /* base64 encode/decode functions (RFC 2045).
3785 Based on code from GNU recode. */
3786
3787 #define MIME_LINE_LENGTH 76
3788
3789 #define IS_ASCII(Character) \
3790 ((Character) < 128)
3791 #define IS_BASE64(Character) \
3792 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3793 #define IS_BASE64_IGNORABLE(Character) \
3794 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3795 || (Character) == '\f' || (Character) == '\r')
3796
3797 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3798 character or return retval if there are no characters left to
3799 process. */
3800 #define READ_QUADRUPLET_BYTE(retval) \
3801 do \
3802 { \
3803 if (i == length) \
3804 { \
3805 if (nchars_return) \
3806 *nchars_return = nchars; \
3807 return (retval); \
3808 } \
3809 c = from[i++]; \
3810 } \
3811 while (IS_BASE64_IGNORABLE (c))
3812
3813 /* Table of characters coding the 64 values. */
3814 static char base64_value_to_char[64] =
3815 {
3816 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3817 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3818 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3819 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3820 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3821 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3822 '8', '9', '+', '/' /* 60-63 */
3823 };
3824
3825 /* Table of base64 values for first 128 characters. */
3826 static short base64_char_to_value[128] =
3827 {
3828 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3829 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3830 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3831 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3832 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3833 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3834 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3835 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3836 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3837 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3838 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3839 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3840 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3841 };
3842
3843 /* The following diagram shows the logical steps by which three octets
3844 get transformed into four base64 characters.
3845
3846 .--------. .--------. .--------.
3847 |aaaaaabb| |bbbbcccc| |ccdddddd|
3848 `--------' `--------' `--------'
3849 6 2 4 4 2 6
3850 .--------+--------+--------+--------.
3851 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3852 `--------+--------+--------+--------'
3853
3854 .--------+--------+--------+--------.
3855 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3856 `--------+--------+--------+--------'
3857
3858 The octets are divided into 6 bit chunks, which are then encoded into
3859 base64 characters. */
3860
3861
3862 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3863 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3864
3865 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3866 2, 3, "r",
3867 doc: /* Base64-encode the region between BEG and END.
3868 Return the length of the encoded text.
3869 Optional third argument NO-LINE-BREAK means do not break long lines
3870 into shorter lines. */)
3871 (beg, end, no_line_break)
3872 Lisp_Object beg, end, no_line_break;
3873 {
3874 char *encoded;
3875 int allength, length;
3876 int ibeg, iend, encoded_length;
3877 int old_pos = PT;
3878 USE_SAFE_ALLOCA;
3879
3880 validate_region (&beg, &end);
3881
3882 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3883 iend = CHAR_TO_BYTE (XFASTINT (end));
3884 move_gap_both (XFASTINT (beg), ibeg);
3885
3886 /* We need to allocate enough room for encoding the text.
3887 We need 33 1/3% more space, plus a newline every 76
3888 characters, and then we round up. */
3889 length = iend - ibeg;
3890 allength = length + length/3 + 1;
3891 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3892
3893 SAFE_ALLOCA (encoded, char *, allength);
3894 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3895 NILP (no_line_break),
3896 !NILP (current_buffer->enable_multibyte_characters));
3897 if (encoded_length > allength)
3898 abort ();
3899
3900 if (encoded_length < 0)
3901 {
3902 /* The encoding wasn't possible. */
3903 SAFE_FREE ();
3904 error ("Multibyte character in data for base64 encoding");
3905 }
3906
3907 /* Now we have encoded the region, so we insert the new contents
3908 and delete the old. (Insert first in order to preserve markers.) */
3909 SET_PT_BOTH (XFASTINT (beg), ibeg);
3910 insert (encoded, encoded_length);
3911 SAFE_FREE ();
3912 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3913
3914 /* If point was outside of the region, restore it exactly; else just
3915 move to the beginning of the region. */
3916 if (old_pos >= XFASTINT (end))
3917 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3918 else if (old_pos > XFASTINT (beg))
3919 old_pos = XFASTINT (beg);
3920 SET_PT (old_pos);
3921
3922 /* We return the length of the encoded text. */
3923 return make_number (encoded_length);
3924 }
3925
3926 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3927 1, 2, 0,
3928 doc: /* Base64-encode STRING and return the result.
3929 Optional second argument NO-LINE-BREAK means do not break long lines
3930 into shorter lines. */)
3931 (string, no_line_break)
3932 Lisp_Object string, no_line_break;
3933 {
3934 int allength, length, encoded_length;
3935 char *encoded;
3936 Lisp_Object encoded_string;
3937 USE_SAFE_ALLOCA;
3938
3939 CHECK_STRING (string);
3940
3941 /* We need to allocate enough room for encoding the text.
3942 We need 33 1/3% more space, plus a newline every 76
3943 characters, and then we round up. */
3944 length = SBYTES (string);
3945 allength = length + length/3 + 1;
3946 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3947
3948 /* We need to allocate enough room for decoding the text. */
3949 SAFE_ALLOCA (encoded, char *, allength);
3950
3951 encoded_length = base64_encode_1 (SDATA (string),
3952 encoded, length, NILP (no_line_break),
3953 STRING_MULTIBYTE (string));
3954 if (encoded_length > allength)
3955 abort ();
3956
3957 if (encoded_length < 0)
3958 {
3959 /* The encoding wasn't possible. */
3960 SAFE_FREE ();
3961 error ("Multibyte character in data for base64 encoding");
3962 }
3963
3964 encoded_string = make_unibyte_string (encoded, encoded_length);
3965 SAFE_FREE ();
3966
3967 return encoded_string;
3968 }
3969
3970 static int
3971 base64_encode_1 (from, to, length, line_break, multibyte)
3972 const char *from;
3973 char *to;
3974 int length;
3975 int line_break;
3976 int multibyte;
3977 {
3978 int counter = 0, i = 0;
3979 char *e = to;
3980 int c;
3981 unsigned int value;
3982 int bytes;
3983
3984 while (i < length)
3985 {
3986 if (multibyte)
3987 {
3988 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3989 if (c >= 256)
3990 return -1;
3991 i += bytes;
3992 }
3993 else
3994 c = from[i++];
3995
3996 /* Wrap line every 76 characters. */
3997
3998 if (line_break)
3999 {
4000 if (counter < MIME_LINE_LENGTH / 4)
4001 counter++;
4002 else
4003 {
4004 *e++ = '\n';
4005 counter = 1;
4006 }
4007 }
4008
4009 /* Process first byte of a triplet. */
4010
4011 *e++ = base64_value_to_char[0x3f & c >> 2];
4012 value = (0x03 & c) << 4;
4013
4014 /* Process second byte of a triplet. */
4015
4016 if (i == length)
4017 {
4018 *e++ = base64_value_to_char[value];
4019 *e++ = '=';
4020 *e++ = '=';
4021 break;
4022 }
4023
4024 if (multibyte)
4025 {
4026 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
4027 if (c >= 256)
4028 return -1;
4029 i += bytes;
4030 }
4031 else
4032 c = from[i++];
4033
4034 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
4035 value = (0x0f & c) << 2;
4036
4037 /* Process third byte of a triplet. */
4038
4039 if (i == length)
4040 {
4041 *e++ = base64_value_to_char[value];
4042 *e++ = '=';
4043 break;
4044 }
4045
4046 if (multibyte)
4047 {
4048 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
4049 if (c >= 256)
4050 return -1;
4051 i += bytes;
4052 }
4053 else
4054 c = from[i++];
4055
4056 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
4057 *e++ = base64_value_to_char[0x3f & c];
4058 }
4059
4060 return e - to;
4061 }
4062
4063
4064 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
4065 2, 2, "r",
4066 doc: /* Base64-decode the region between BEG and END.
4067 Return the length of the decoded text.
4068 If the region can't be decoded, signal an error and don't modify the buffer. */)
4069 (beg, end)
4070 Lisp_Object beg, end;
4071 {
4072 int ibeg, iend, length, allength;
4073 char *decoded;
4074 int old_pos = PT;
4075 int decoded_length;
4076 int inserted_chars;
4077 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
4078 USE_SAFE_ALLOCA;
4079
4080 validate_region (&beg, &end);
4081
4082 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
4083 iend = CHAR_TO_BYTE (XFASTINT (end));
4084
4085 length = iend - ibeg;
4086
4087 /* We need to allocate enough room for decoding the text. If we are
4088 working on a multibyte buffer, each decoded code may occupy at
4089 most two bytes. */
4090 allength = multibyte ? length * 2 : length;
4091 SAFE_ALLOCA (decoded, char *, allength);
4092
4093 move_gap_both (XFASTINT (beg), ibeg);
4094 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
4095 multibyte, &inserted_chars);
4096 if (decoded_length > allength)
4097 abort ();
4098
4099 if (decoded_length < 0)
4100 {
4101 /* The decoding wasn't possible. */
4102 SAFE_FREE ();
4103 error ("Invalid base64 data");
4104 }
4105
4106 /* Now we have decoded the region, so we insert the new contents
4107 and delete the old. (Insert first in order to preserve markers.) */
4108 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
4109 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
4110 SAFE_FREE ();
4111
4112 /* Delete the original text. */
4113 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
4114 iend + decoded_length, 1);
4115
4116 /* If point was outside of the region, restore it exactly; else just
4117 move to the beginning of the region. */
4118 if (old_pos >= XFASTINT (end))
4119 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
4120 else if (old_pos > XFASTINT (beg))
4121 old_pos = XFASTINT (beg);
4122 SET_PT (old_pos > ZV ? ZV : old_pos);
4123
4124 return make_number (inserted_chars);
4125 }
4126
4127 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
4128 1, 1, 0,
4129 doc: /* Base64-decode STRING and return the result. */)
4130 (string)
4131 Lisp_Object string;
4132 {
4133 char *decoded;
4134 int length, decoded_length;
4135 Lisp_Object decoded_string;
4136 USE_SAFE_ALLOCA;
4137
4138 CHECK_STRING (string);
4139
4140 length = SBYTES (string);
4141 /* We need to allocate enough room for decoding the text. */
4142 SAFE_ALLOCA (decoded, char *, length);
4143
4144 /* The decoded result should be unibyte. */
4145 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
4146 0, NULL);
4147 if (decoded_length > length)
4148 abort ();
4149 else if (decoded_length >= 0)
4150 decoded_string = make_unibyte_string (decoded, decoded_length);
4151 else
4152 decoded_string = Qnil;
4153
4154 SAFE_FREE ();
4155 if (!STRINGP (decoded_string))
4156 error ("Invalid base64 data");
4157
4158 return decoded_string;
4159 }
4160
4161 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
4162 MULTIBYTE is nonzero, the decoded result should be in multibyte
4163 form. If NCHARS_RETRUN is not NULL, store the number of produced
4164 characters in *NCHARS_RETURN. */
4165
4166 static int
4167 base64_decode_1 (from, to, length, multibyte, nchars_return)
4168 const char *from;
4169 char *to;
4170 int length;
4171 int multibyte;
4172 int *nchars_return;
4173 {
4174 int i = 0;
4175 char *e = to;
4176 unsigned char c;
4177 unsigned long value;
4178 int nchars = 0;
4179
4180 while (1)
4181 {
4182 /* Process first byte of a quadruplet. */
4183
4184 READ_QUADRUPLET_BYTE (e-to);
4185
4186 if (!IS_BASE64 (c))
4187 return -1;
4188 value = base64_char_to_value[c] << 18;
4189
4190 /* Process second byte of a quadruplet. */
4191
4192 READ_QUADRUPLET_BYTE (-1);
4193
4194 if (!IS_BASE64 (c))
4195 return -1;
4196 value |= base64_char_to_value[c] << 12;
4197
4198 c = (unsigned char) (value >> 16);
4199 if (multibyte)
4200 e += CHAR_STRING (c, e);
4201 else
4202 *e++ = c;
4203 nchars++;
4204
4205 /* Process third byte of a quadruplet. */
4206
4207 READ_QUADRUPLET_BYTE (-1);
4208
4209 if (c == '=')
4210 {
4211 READ_QUADRUPLET_BYTE (-1);
4212
4213 if (c != '=')
4214 return -1;
4215 continue;
4216 }
4217
4218 if (!IS_BASE64 (c))
4219 return -1;
4220 value |= base64_char_to_value[c] << 6;
4221
4222 c = (unsigned char) (0xff & value >> 8);
4223 if (multibyte)
4224 e += CHAR_STRING (c, e);
4225 else
4226 *e++ = c;
4227 nchars++;
4228
4229 /* Process fourth byte of a quadruplet. */
4230
4231 READ_QUADRUPLET_BYTE (-1);
4232
4233 if (c == '=')
4234 continue;
4235
4236 if (!IS_BASE64 (c))
4237 return -1;
4238 value |= base64_char_to_value[c];
4239
4240 c = (unsigned char) (0xff & value);
4241 if (multibyte)
4242 e += CHAR_STRING (c, e);
4243 else
4244 *e++ = c;
4245 nchars++;
4246 }
4247 }
4248
4249
4250 \f
4251 /***********************************************************************
4252 ***** *****
4253 ***** Hash Tables *****
4254 ***** *****
4255 ***********************************************************************/
4256
4257 /* Implemented by gerd@gnu.org. This hash table implementation was
4258 inspired by CMUCL hash tables. */
4259
4260 /* Ideas:
4261
4262 1. For small tables, association lists are probably faster than
4263 hash tables because they have lower overhead.
4264
4265 For uses of hash tables where the O(1) behavior of table
4266 operations is not a requirement, it might therefore be a good idea
4267 not to hash. Instead, we could just do a linear search in the
4268 key_and_value vector of the hash table. This could be done
4269 if a `:linear-search t' argument is given to make-hash-table. */
4270
4271
4272 /* The list of all weak hash tables. Don't staticpro this one. */
4273
4274 struct Lisp_Hash_Table *weak_hash_tables;
4275
4276 /* Various symbols. */
4277
4278 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
4279 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
4280 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
4281
4282 /* Function prototypes. */
4283
4284 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
4285 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
4286 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
4287 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4288 Lisp_Object, unsigned));
4289 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
4290 Lisp_Object, unsigned));
4291 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
4292 unsigned, Lisp_Object, unsigned));
4293 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4294 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4295 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
4296 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
4297 Lisp_Object));
4298 static unsigned sxhash_string P_ ((unsigned char *, int));
4299 static unsigned sxhash_list P_ ((Lisp_Object, int));
4300 static unsigned sxhash_vector P_ ((Lisp_Object, int));
4301 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
4302 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
4303
4304
4305 \f
4306 /***********************************************************************
4307 Utilities
4308 ***********************************************************************/
4309
4310 /* If OBJ is a Lisp hash table, return a pointer to its struct
4311 Lisp_Hash_Table. Otherwise, signal an error. */
4312
4313 static struct Lisp_Hash_Table *
4314 check_hash_table (obj)
4315 Lisp_Object obj;
4316 {
4317 CHECK_HASH_TABLE (obj);
4318 return XHASH_TABLE (obj);
4319 }
4320
4321
4322 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
4323 number. */
4324
4325 int
4326 next_almost_prime (n)
4327 int n;
4328 {
4329 if (n % 2 == 0)
4330 n += 1;
4331 if (n % 3 == 0)
4332 n += 2;
4333 if (n % 7 == 0)
4334 n += 4;
4335 return n;
4336 }
4337
4338
4339 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
4340 which USED[I] is non-zero. If found at index I in ARGS, set
4341 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
4342 -1. This function is used to extract a keyword/argument pair from
4343 a DEFUN parameter list. */
4344
4345 static int
4346 get_key_arg (key, nargs, args, used)
4347 Lisp_Object key;
4348 int nargs;
4349 Lisp_Object *args;
4350 char *used;
4351 {
4352 int i;
4353
4354 for (i = 0; i < nargs - 1; ++i)
4355 if (!used[i] && EQ (args[i], key))
4356 break;
4357
4358 if (i >= nargs - 1)
4359 i = -1;
4360 else
4361 {
4362 used[i++] = 1;
4363 used[i] = 1;
4364 }
4365
4366 return i;
4367 }
4368
4369
4370 /* Return a Lisp vector which has the same contents as VEC but has
4371 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
4372 vector that are not copied from VEC are set to INIT. */
4373
4374 Lisp_Object
4375 larger_vector (vec, new_size, init)
4376 Lisp_Object vec;
4377 int new_size;
4378 Lisp_Object init;
4379 {
4380 struct Lisp_Vector *v;
4381 int i, old_size;
4382
4383 xassert (VECTORP (vec));
4384 old_size = ASIZE (vec);
4385 xassert (new_size >= old_size);
4386
4387 v = allocate_vector (new_size);
4388 bcopy (XVECTOR (vec)->contents, v->contents,
4389 old_size * sizeof *v->contents);
4390 for (i = old_size; i < new_size; ++i)
4391 v->contents[i] = init;
4392 XSETVECTOR (vec, v);
4393 return vec;
4394 }
4395
4396
4397 /***********************************************************************
4398 Low-level Functions
4399 ***********************************************************************/
4400
4401 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4402 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
4403 KEY2 are the same. */
4404
4405 static int
4406 cmpfn_eql (h, key1, hash1, key2, hash2)
4407 struct Lisp_Hash_Table *h;
4408 Lisp_Object key1, key2;
4409 unsigned hash1, hash2;
4410 {
4411 return (FLOATP (key1)
4412 && FLOATP (key2)
4413 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
4414 }
4415
4416
4417 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
4418 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
4419 KEY2 are the same. */
4420
4421 static int
4422 cmpfn_equal (h, key1, hash1, key2, hash2)
4423 struct Lisp_Hash_Table *h;
4424 Lisp_Object key1, key2;
4425 unsigned hash1, hash2;
4426 {
4427 return hash1 == hash2 && !NILP (Fequal (key1, key2));
4428 }
4429
4430
4431 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
4432 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
4433 if KEY1 and KEY2 are the same. */
4434
4435 static int
4436 cmpfn_user_defined (h, key1, hash1, key2, hash2)
4437 struct Lisp_Hash_Table *h;
4438 Lisp_Object key1, key2;
4439 unsigned hash1, hash2;
4440 {
4441 if (hash1 == hash2)
4442 {
4443 Lisp_Object args[3];
4444
4445 args[0] = h->user_cmp_function;
4446 args[1] = key1;
4447 args[2] = key2;
4448 return !NILP (Ffuncall (3, args));
4449 }
4450 else
4451 return 0;
4452 }
4453
4454
4455 /* Value is a hash code for KEY for use in hash table H which uses
4456 `eq' to compare keys. The hash code returned is guaranteed to fit
4457 in a Lisp integer. */
4458
4459 static unsigned
4460 hashfn_eq (h, key)
4461 struct Lisp_Hash_Table *h;
4462 Lisp_Object key;
4463 {
4464 unsigned hash = XUINT (key) ^ XGCTYPE (key);
4465 xassert ((hash & ~INTMASK) == 0);
4466 return hash;
4467 }
4468
4469
4470 /* Value is a hash code for KEY for use in hash table H which uses
4471 `eql' to compare keys. The hash code returned is guaranteed to fit
4472 in a Lisp integer. */
4473
4474 static unsigned
4475 hashfn_eql (h, key)
4476 struct Lisp_Hash_Table *h;
4477 Lisp_Object key;
4478 {
4479 unsigned hash;
4480 if (FLOATP (key))
4481 hash = sxhash (key, 0);
4482 else
4483 hash = XUINT (key) ^ XGCTYPE (key);
4484 xassert ((hash & ~INTMASK) == 0);
4485 return hash;
4486 }
4487
4488
4489 /* Value is a hash code for KEY for use in hash table H which uses
4490 `equal' to compare keys. The hash code returned is guaranteed to fit
4491 in a Lisp integer. */
4492
4493 static unsigned
4494 hashfn_equal (h, key)
4495 struct Lisp_Hash_Table *h;
4496 Lisp_Object key;
4497 {
4498 unsigned hash = sxhash (key, 0);
4499 xassert ((hash & ~INTMASK) == 0);
4500 return hash;
4501 }
4502
4503
4504 /* Value is a hash code for KEY for use in hash table H which uses as
4505 user-defined function to compare keys. The hash code returned is
4506 guaranteed to fit in a Lisp integer. */
4507
4508 static unsigned
4509 hashfn_user_defined (h, key)
4510 struct Lisp_Hash_Table *h;
4511 Lisp_Object key;
4512 {
4513 Lisp_Object args[2], hash;
4514
4515 args[0] = h->user_hash_function;
4516 args[1] = key;
4517 hash = Ffuncall (2, args);
4518 if (!INTEGERP (hash))
4519 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
4520 return XUINT (hash);
4521 }
4522
4523
4524 /* Create and initialize a new hash table.
4525
4526 TEST specifies the test the hash table will use to compare keys.
4527 It must be either one of the predefined tests `eq', `eql' or
4528 `equal' or a symbol denoting a user-defined test named TEST with
4529 test and hash functions USER_TEST and USER_HASH.
4530
4531 Give the table initial capacity SIZE, SIZE >= 0, an integer.
4532
4533 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
4534 new size when it becomes full is computed by adding REHASH_SIZE to
4535 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
4536 table's new size is computed by multiplying its old size with
4537 REHASH_SIZE.
4538
4539 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
4540 be resized when the ratio of (number of entries in the table) /
4541 (table size) is >= REHASH_THRESHOLD.
4542
4543 WEAK specifies the weakness of the table. If non-nil, it must be
4544 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
4545
4546 Lisp_Object
4547 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4548 user_test, user_hash)
4549 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4550 Lisp_Object user_test, user_hash;
4551 {
4552 struct Lisp_Hash_Table *h;
4553 Lisp_Object table;
4554 int index_size, i, sz;
4555
4556 /* Preconditions. */
4557 xassert (SYMBOLP (test));
4558 xassert (INTEGERP (size) && XINT (size) >= 0);
4559 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4560 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
4561 xassert (FLOATP (rehash_threshold)
4562 && XFLOATINT (rehash_threshold) > 0
4563 && XFLOATINT (rehash_threshold) <= 1.0);
4564
4565 if (XFASTINT (size) == 0)
4566 size = make_number (1);
4567
4568 /* Allocate a table and initialize it. */
4569 h = allocate_hash_table ();
4570
4571 /* Initialize hash table slots. */
4572 sz = XFASTINT (size);
4573
4574 h->test = test;
4575 if (EQ (test, Qeql))
4576 {
4577 h->cmpfn = cmpfn_eql;
4578 h->hashfn = hashfn_eql;
4579 }
4580 else if (EQ (test, Qeq))
4581 {
4582 h->cmpfn = NULL;
4583 h->hashfn = hashfn_eq;
4584 }
4585 else if (EQ (test, Qequal))
4586 {
4587 h->cmpfn = cmpfn_equal;
4588 h->hashfn = hashfn_equal;
4589 }
4590 else
4591 {
4592 h->user_cmp_function = user_test;
4593 h->user_hash_function = user_hash;
4594 h->cmpfn = cmpfn_user_defined;
4595 h->hashfn = hashfn_user_defined;
4596 }
4597
4598 h->weak = weak;
4599 h->rehash_threshold = rehash_threshold;
4600 h->rehash_size = rehash_size;
4601 h->count = make_number (0);
4602 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
4603 h->hash = Fmake_vector (size, Qnil);
4604 h->next = Fmake_vector (size, Qnil);
4605 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
4606 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
4607 h->index = Fmake_vector (make_number (index_size), Qnil);
4608
4609 /* Set up the free list. */
4610 for (i = 0; i < sz - 1; ++i)
4611 HASH_NEXT (h, i) = make_number (i + 1);
4612 h->next_free = make_number (0);
4613
4614 XSET_HASH_TABLE (table, h);
4615 xassert (HASH_TABLE_P (table));
4616 xassert (XHASH_TABLE (table) == h);
4617
4618 /* Maybe add this hash table to the list of all weak hash tables. */
4619 if (NILP (h->weak))
4620 h->next_weak = NULL;
4621 else
4622 {
4623 h->next_weak = weak_hash_tables;
4624 weak_hash_tables = h;
4625 }
4626
4627 return table;
4628 }
4629
4630
4631 /* Return a copy of hash table H1. Keys and values are not copied,
4632 only the table itself is. */
4633
4634 Lisp_Object
4635 copy_hash_table (h1)
4636 struct Lisp_Hash_Table *h1;
4637 {
4638 Lisp_Object table;
4639 struct Lisp_Hash_Table *h2;
4640 struct Lisp_Vector *next;
4641
4642 h2 = allocate_hash_table ();
4643 next = h2->vec_next;
4644 bcopy (h1, h2, sizeof *h2);
4645 h2->vec_next = next;
4646 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4647 h2->hash = Fcopy_sequence (h1->hash);
4648 h2->next = Fcopy_sequence (h1->next);
4649 h2->index = Fcopy_sequence (h1->index);
4650 XSET_HASH_TABLE (table, h2);
4651
4652 /* Maybe add this hash table to the list of all weak hash tables. */
4653 if (!NILP (h2->weak))
4654 {
4655 h2->next_weak = weak_hash_tables;
4656 weak_hash_tables = h2;
4657 }
4658
4659 return table;
4660 }
4661
4662
4663 /* Resize hash table H if it's too full. If H cannot be resized
4664 because it's already too large, throw an error. */
4665
4666 static INLINE void
4667 maybe_resize_hash_table (h)
4668 struct Lisp_Hash_Table *h;
4669 {
4670 if (NILP (h->next_free))
4671 {
4672 int old_size = HASH_TABLE_SIZE (h);
4673 int i, new_size, index_size;
4674 EMACS_INT nsize;
4675
4676 if (INTEGERP (h->rehash_size))
4677 new_size = old_size + XFASTINT (h->rehash_size);
4678 else
4679 new_size = old_size * XFLOATINT (h->rehash_size);
4680 new_size = max (old_size + 1, new_size);
4681 index_size = next_almost_prime ((int)
4682 (new_size
4683 / XFLOATINT (h->rehash_threshold)));
4684 /* Assignment to EMACS_INT stops GCC whining about limited range
4685 of data type. */
4686 nsize = max (index_size, 2 * new_size);
4687 if (nsize > MOST_POSITIVE_FIXNUM)
4688 error ("Hash table too large to resize");
4689
4690 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4691 h->next = larger_vector (h->next, new_size, Qnil);
4692 h->hash = larger_vector (h->hash, new_size, Qnil);
4693 h->index = Fmake_vector (make_number (index_size), Qnil);
4694
4695 /* Update the free list. Do it so that new entries are added at
4696 the end of the free list. This makes some operations like
4697 maphash faster. */
4698 for (i = old_size; i < new_size - 1; ++i)
4699 HASH_NEXT (h, i) = make_number (i + 1);
4700
4701 if (!NILP (h->next_free))
4702 {
4703 Lisp_Object last, next;
4704
4705 last = h->next_free;
4706 while (next = HASH_NEXT (h, XFASTINT (last)),
4707 !NILP (next))
4708 last = next;
4709
4710 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4711 }
4712 else
4713 XSETFASTINT (h->next_free, old_size);
4714
4715 /* Rehash. */
4716 for (i = 0; i < old_size; ++i)
4717 if (!NILP (HASH_HASH (h, i)))
4718 {
4719 unsigned hash_code = XUINT (HASH_HASH (h, i));
4720 int start_of_bucket = hash_code % ASIZE (h->index);
4721 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4722 HASH_INDEX (h, start_of_bucket) = make_number (i);
4723 }
4724 }
4725 }
4726
4727
4728 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4729 the hash code of KEY. Value is the index of the entry in H
4730 matching KEY, or -1 if not found. */
4731
4732 int
4733 hash_lookup (h, key, hash)
4734 struct Lisp_Hash_Table *h;
4735 Lisp_Object key;
4736 unsigned *hash;
4737 {
4738 unsigned hash_code;
4739 int start_of_bucket;
4740 Lisp_Object idx;
4741
4742 hash_code = h->hashfn (h, key);
4743 if (hash)
4744 *hash = hash_code;
4745
4746 start_of_bucket = hash_code % ASIZE (h->index);
4747 idx = HASH_INDEX (h, start_of_bucket);
4748
4749 /* We need not gcpro idx since it's either an integer or nil. */
4750 while (!NILP (idx))
4751 {
4752 int i = XFASTINT (idx);
4753 if (EQ (key, HASH_KEY (h, i))
4754 || (h->cmpfn
4755 && h->cmpfn (h, key, hash_code,
4756 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4757 break;
4758 idx = HASH_NEXT (h, i);
4759 }
4760
4761 return NILP (idx) ? -1 : XFASTINT (idx);
4762 }
4763
4764
4765 /* Put an entry into hash table H that associates KEY with VALUE.
4766 HASH is a previously computed hash code of KEY.
4767 Value is the index of the entry in H matching KEY. */
4768
4769 int
4770 hash_put (h, key, value, hash)
4771 struct Lisp_Hash_Table *h;
4772 Lisp_Object key, value;
4773 unsigned hash;
4774 {
4775 int start_of_bucket, i;
4776
4777 xassert ((hash & ~INTMASK) == 0);
4778
4779 /* Increment count after resizing because resizing may fail. */
4780 maybe_resize_hash_table (h);
4781 h->count = make_number (XFASTINT (h->count) + 1);
4782
4783 /* Store key/value in the key_and_value vector. */
4784 i = XFASTINT (h->next_free);
4785 h->next_free = HASH_NEXT (h, i);
4786 HASH_KEY (h, i) = key;
4787 HASH_VALUE (h, i) = value;
4788
4789 /* Remember its hash code. */
4790 HASH_HASH (h, i) = make_number (hash);
4791
4792 /* Add new entry to its collision chain. */
4793 start_of_bucket = hash % ASIZE (h->index);
4794 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4795 HASH_INDEX (h, start_of_bucket) = make_number (i);
4796 return i;
4797 }
4798
4799
4800 /* Remove the entry matching KEY from hash table H, if there is one. */
4801
4802 void
4803 hash_remove (h, key)
4804 struct Lisp_Hash_Table *h;
4805 Lisp_Object key;
4806 {
4807 unsigned hash_code;
4808 int start_of_bucket;
4809 Lisp_Object idx, prev;
4810
4811 hash_code = h->hashfn (h, key);
4812 start_of_bucket = hash_code % ASIZE (h->index);
4813 idx = HASH_INDEX (h, start_of_bucket);
4814 prev = Qnil;
4815
4816 /* We need not gcpro idx, prev since they're either integers or nil. */
4817 while (!NILP (idx))
4818 {
4819 int i = XFASTINT (idx);
4820
4821 if (EQ (key, HASH_KEY (h, i))
4822 || (h->cmpfn
4823 && h->cmpfn (h, key, hash_code,
4824 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4825 {
4826 /* Take entry out of collision chain. */
4827 if (NILP (prev))
4828 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4829 else
4830 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4831
4832 /* Clear slots in key_and_value and add the slots to
4833 the free list. */
4834 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4835 HASH_NEXT (h, i) = h->next_free;
4836 h->next_free = make_number (i);
4837 h->count = make_number (XFASTINT (h->count) - 1);
4838 xassert (XINT (h->count) >= 0);
4839 break;
4840 }
4841 else
4842 {
4843 prev = idx;
4844 idx = HASH_NEXT (h, i);
4845 }
4846 }
4847 }
4848
4849
4850 /* Clear hash table H. */
4851
4852 void
4853 hash_clear (h)
4854 struct Lisp_Hash_Table *h;
4855 {
4856 if (XFASTINT (h->count) > 0)
4857 {
4858 int i, size = HASH_TABLE_SIZE (h);
4859
4860 for (i = 0; i < size; ++i)
4861 {
4862 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4863 HASH_KEY (h, i) = Qnil;
4864 HASH_VALUE (h, i) = Qnil;
4865 HASH_HASH (h, i) = Qnil;
4866 }
4867
4868 for (i = 0; i < ASIZE (h->index); ++i)
4869 AREF (h->index, i) = Qnil;
4870
4871 h->next_free = make_number (0);
4872 h->count = make_number (0);
4873 }
4874 }
4875
4876
4877 \f
4878 /************************************************************************
4879 Weak Hash Tables
4880 ************************************************************************/
4881
4882 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4883 entries from the table that don't survive the current GC.
4884 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4885 non-zero if anything was marked. */
4886
4887 static int
4888 sweep_weak_table (h, remove_entries_p)
4889 struct Lisp_Hash_Table *h;
4890 int remove_entries_p;
4891 {
4892 int bucket, n, marked;
4893
4894 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4895 marked = 0;
4896
4897 for (bucket = 0; bucket < n; ++bucket)
4898 {
4899 Lisp_Object idx, next, prev;
4900
4901 /* Follow collision chain, removing entries that
4902 don't survive this garbage collection. */
4903 prev = Qnil;
4904 for (idx = HASH_INDEX (h, bucket); !GC_NILP (idx); idx = next)
4905 {
4906 int i = XFASTINT (idx);
4907 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4908 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4909 int remove_p;
4910
4911 if (EQ (h->weak, Qkey))
4912 remove_p = !key_known_to_survive_p;
4913 else if (EQ (h->weak, Qvalue))
4914 remove_p = !value_known_to_survive_p;
4915 else if (EQ (h->weak, Qkey_or_value))
4916 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4917 else if (EQ (h->weak, Qkey_and_value))
4918 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4919 else
4920 abort ();
4921
4922 next = HASH_NEXT (h, i);
4923
4924 if (remove_entries_p)
4925 {
4926 if (remove_p)
4927 {
4928 /* Take out of collision chain. */
4929 if (GC_NILP (prev))
4930 HASH_INDEX (h, bucket) = next;
4931 else
4932 HASH_NEXT (h, XFASTINT (prev)) = next;
4933
4934 /* Add to free list. */
4935 HASH_NEXT (h, i) = h->next_free;
4936 h->next_free = idx;
4937
4938 /* Clear key, value, and hash. */
4939 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4940 HASH_HASH (h, i) = Qnil;
4941
4942 h->count = make_number (XFASTINT (h->count) - 1);
4943 }
4944 else
4945 {
4946 prev = idx;
4947 }
4948 }
4949 else
4950 {
4951 if (!remove_p)
4952 {
4953 /* Make sure key and value survive. */
4954 if (!key_known_to_survive_p)
4955 {
4956 mark_object (HASH_KEY (h, i));
4957 marked = 1;
4958 }
4959
4960 if (!value_known_to_survive_p)
4961 {
4962 mark_object (HASH_VALUE (h, i));
4963 marked = 1;
4964 }
4965 }
4966 }
4967 }
4968 }
4969
4970 return marked;
4971 }
4972
4973 /* Remove elements from weak hash tables that don't survive the
4974 current garbage collection. Remove weak tables that don't survive
4975 from weak_hash_tables. Called from gc_sweep. */
4976
4977 void
4978 sweep_weak_hash_tables ()
4979 {
4980 struct Lisp_Hash_Table *h, *used, *next;
4981 int marked;
4982
4983 /* Mark all keys and values that are in use. Keep on marking until
4984 there is no more change. This is necessary for cases like
4985 value-weak table A containing an entry X -> Y, where Y is used in a
4986 key-weak table B, Z -> Y. If B comes after A in the list of weak
4987 tables, X -> Y might be removed from A, although when looking at B
4988 one finds that it shouldn't. */
4989 do
4990 {
4991 marked = 0;
4992 for (h = weak_hash_tables; h; h = h->next_weak)
4993 {
4994 if (h->size & ARRAY_MARK_FLAG)
4995 marked |= sweep_weak_table (h, 0);
4996 }
4997 }
4998 while (marked);
4999
5000 /* Remove tables and entries that aren't used. */
5001 for (h = weak_hash_tables, used = NULL; h; h = next)
5002 {
5003 next = h->next_weak;
5004
5005 if (h->size & ARRAY_MARK_FLAG)
5006 {
5007 /* TABLE is marked as used. Sweep its contents. */
5008 if (XFASTINT (h->count) > 0)
5009 sweep_weak_table (h, 1);
5010
5011 /* Add table to the list of used weak hash tables. */
5012 h->next_weak = used;
5013 used = h;
5014 }
5015 }
5016
5017 weak_hash_tables = used;
5018 }
5019
5020
5021 \f
5022 /***********************************************************************
5023 Hash Code Computation
5024 ***********************************************************************/
5025
5026 /* Maximum depth up to which to dive into Lisp structures. */
5027
5028 #define SXHASH_MAX_DEPTH 3
5029
5030 /* Maximum length up to which to take list and vector elements into
5031 account. */
5032
5033 #define SXHASH_MAX_LEN 7
5034
5035 /* Combine two integers X and Y for hashing. */
5036
5037 #define SXHASH_COMBINE(X, Y) \
5038 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
5039 + (unsigned)(Y))
5040
5041
5042 /* Return a hash for string PTR which has length LEN. The hash
5043 code returned is guaranteed to fit in a Lisp integer. */
5044
5045 static unsigned
5046 sxhash_string (ptr, len)
5047 unsigned char *ptr;
5048 int len;
5049 {
5050 unsigned char *p = ptr;
5051 unsigned char *end = p + len;
5052 unsigned char c;
5053 unsigned hash = 0;
5054
5055 while (p != end)
5056 {
5057 c = *p++;
5058 if (c >= 0140)
5059 c -= 40;
5060 hash = ((hash << 4) + (hash >> 28) + c);
5061 }
5062
5063 return hash & INTMASK;
5064 }
5065
5066
5067 /* Return a hash for list LIST. DEPTH is the current depth in the
5068 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
5069
5070 static unsigned
5071 sxhash_list (list, depth)
5072 Lisp_Object list;
5073 int depth;
5074 {
5075 unsigned hash = 0;
5076 int i;
5077
5078 if (depth < SXHASH_MAX_DEPTH)
5079 for (i = 0;
5080 CONSP (list) && i < SXHASH_MAX_LEN;
5081 list = XCDR (list), ++i)
5082 {
5083 unsigned hash2 = sxhash (XCAR (list), depth + 1);
5084 hash = SXHASH_COMBINE (hash, hash2);
5085 }
5086
5087 if (!NILP (list))
5088 {
5089 unsigned hash2 = sxhash (list, depth + 1);
5090 hash = SXHASH_COMBINE (hash, hash2);
5091 }
5092
5093 return hash;
5094 }
5095
5096
5097 /* Return a hash for vector VECTOR. DEPTH is the current depth in
5098 the Lisp structure. */
5099
5100 static unsigned
5101 sxhash_vector (vec, depth)
5102 Lisp_Object vec;
5103 int depth;
5104 {
5105 unsigned hash = ASIZE (vec);
5106 int i, n;
5107
5108 n = min (SXHASH_MAX_LEN, ASIZE (vec));
5109 for (i = 0; i < n; ++i)
5110 {
5111 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
5112 hash = SXHASH_COMBINE (hash, hash2);
5113 }
5114
5115 return hash;
5116 }
5117
5118
5119 /* Return a hash for bool-vector VECTOR. */
5120
5121 static unsigned
5122 sxhash_bool_vector (vec)
5123 Lisp_Object vec;
5124 {
5125 unsigned hash = XBOOL_VECTOR (vec)->size;
5126 int i, n;
5127
5128 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
5129 for (i = 0; i < n; ++i)
5130 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
5131
5132 return hash;
5133 }
5134
5135
5136 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
5137 structure. Value is an unsigned integer clipped to INTMASK. */
5138
5139 unsigned
5140 sxhash (obj, depth)
5141 Lisp_Object obj;
5142 int depth;
5143 {
5144 unsigned hash;
5145
5146 if (depth > SXHASH_MAX_DEPTH)
5147 return 0;
5148
5149 switch (XTYPE (obj))
5150 {
5151 case Lisp_Int:
5152 hash = XUINT (obj);
5153 break;
5154
5155 case Lisp_Misc:
5156 hash = XUINT (obj);
5157 break;
5158
5159 case Lisp_Symbol:
5160 obj = SYMBOL_NAME (obj);
5161 /* Fall through. */
5162
5163 case Lisp_String:
5164 hash = sxhash_string (SDATA (obj), SCHARS (obj));
5165 break;
5166
5167 /* This can be everything from a vector to an overlay. */
5168 case Lisp_Vectorlike:
5169 if (VECTORP (obj))
5170 /* According to the CL HyperSpec, two arrays are equal only if
5171 they are `eq', except for strings and bit-vectors. In
5172 Emacs, this works differently. We have to compare element
5173 by element. */
5174 hash = sxhash_vector (obj, depth);
5175 else if (BOOL_VECTOR_P (obj))
5176 hash = sxhash_bool_vector (obj);
5177 else
5178 /* Others are `equal' if they are `eq', so let's take their
5179 address as hash. */
5180 hash = XUINT (obj);
5181 break;
5182
5183 case Lisp_Cons:
5184 hash = sxhash_list (obj, depth);
5185 break;
5186
5187 case Lisp_Float:
5188 {
5189 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
5190 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
5191 for (hash = 0; p < e; ++p)
5192 hash = SXHASH_COMBINE (hash, *p);
5193 break;
5194 }
5195
5196 default:
5197 abort ();
5198 }
5199
5200 return hash & INTMASK;
5201 }
5202
5203
5204 \f
5205 /***********************************************************************
5206 Lisp Interface
5207 ***********************************************************************/
5208
5209
5210 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
5211 doc: /* Compute a hash code for OBJ and return it as integer. */)
5212 (obj)
5213 Lisp_Object obj;
5214 {
5215 unsigned hash = sxhash (obj, 0);
5216 return make_number (hash);
5217 }
5218
5219
5220 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
5221 doc: /* Create and return a new hash table.
5222
5223 Arguments are specified as keyword/argument pairs. The following
5224 arguments are defined:
5225
5226 :test TEST -- TEST must be a symbol that specifies how to compare
5227 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
5228 `equal'. User-supplied test and hash functions can be specified via
5229 `define-hash-table-test'.
5230
5231 :size SIZE -- A hint as to how many elements will be put in the table.
5232 Default is 65.
5233
5234 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
5235 fills up. If REHASH-SIZE is an integer, add that many space. If it
5236 is a float, it must be > 1.0, and the new size is computed by
5237 multiplying the old size with that factor. Default is 1.5.
5238
5239 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
5240 Resize the hash table when ratio of the number of entries in the
5241 table. Default is 0.8.
5242
5243 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
5244 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
5245 returned is a weak table. Key/value pairs are removed from a weak
5246 hash table when there are no non-weak references pointing to their
5247 key, value, one of key or value, or both key and value, depending on
5248 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
5249 is nil.
5250
5251 usage: (make-hash-table &rest KEYWORD-ARGS) */)
5252 (nargs, args)
5253 int nargs;
5254 Lisp_Object *args;
5255 {
5256 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
5257 Lisp_Object user_test, user_hash;
5258 char *used;
5259 int i;
5260
5261 /* The vector `used' is used to keep track of arguments that
5262 have been consumed. */
5263 used = (char *) alloca (nargs * sizeof *used);
5264 bzero (used, nargs * sizeof *used);
5265
5266 /* See if there's a `:test TEST' among the arguments. */
5267 i = get_key_arg (QCtest, nargs, args, used);
5268 test = i < 0 ? Qeql : args[i];
5269 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
5270 {
5271 /* See if it is a user-defined test. */
5272 Lisp_Object prop;
5273
5274 prop = Fget (test, Qhash_table_test);
5275 if (!CONSP (prop) || !CONSP (XCDR (prop)))
5276 signal_error ("Invalid hash table test", test);
5277 user_test = XCAR (prop);
5278 user_hash = XCAR (XCDR (prop));
5279 }
5280 else
5281 user_test = user_hash = Qnil;
5282
5283 /* See if there's a `:size SIZE' argument. */
5284 i = get_key_arg (QCsize, nargs, args, used);
5285 size = i < 0 ? Qnil : args[i];
5286 if (NILP (size))
5287 size = make_number (DEFAULT_HASH_SIZE);
5288 else if (!INTEGERP (size) || XINT (size) < 0)
5289 signal_error ("Invalid hash table size", size);
5290
5291 /* Look for `:rehash-size SIZE'. */
5292 i = get_key_arg (QCrehash_size, nargs, args, used);
5293 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
5294 if (!NUMBERP (rehash_size)
5295 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
5296 || XFLOATINT (rehash_size) <= 1.0)
5297 signal_error ("Invalid hash table rehash size", rehash_size);
5298
5299 /* Look for `:rehash-threshold THRESHOLD'. */
5300 i = get_key_arg (QCrehash_threshold, nargs, args, used);
5301 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
5302 if (!FLOATP (rehash_threshold)
5303 || XFLOATINT (rehash_threshold) <= 0.0
5304 || XFLOATINT (rehash_threshold) > 1.0)
5305 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
5306
5307 /* Look for `:weakness WEAK'. */
5308 i = get_key_arg (QCweakness, nargs, args, used);
5309 weak = i < 0 ? Qnil : args[i];
5310 if (EQ (weak, Qt))
5311 weak = Qkey_and_value;
5312 if (!NILP (weak)
5313 && !EQ (weak, Qkey)
5314 && !EQ (weak, Qvalue)
5315 && !EQ (weak, Qkey_or_value)
5316 && !EQ (weak, Qkey_and_value))
5317 signal_error ("Invalid hash table weakness", weak);
5318
5319 /* Now, all args should have been used up, or there's a problem. */
5320 for (i = 0; i < nargs; ++i)
5321 if (!used[i])
5322 signal_error ("Invalid argument list", args[i]);
5323
5324 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
5325 user_test, user_hash);
5326 }
5327
5328
5329 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
5330 doc: /* Return a copy of hash table TABLE. */)
5331 (table)
5332 Lisp_Object table;
5333 {
5334 return copy_hash_table (check_hash_table (table));
5335 }
5336
5337
5338 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
5339 doc: /* Return the number of elements in TABLE. */)
5340 (table)
5341 Lisp_Object table;
5342 {
5343 return check_hash_table (table)->count;
5344 }
5345
5346
5347 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
5348 Shash_table_rehash_size, 1, 1, 0,
5349 doc: /* Return the current rehash size of TABLE. */)
5350 (table)
5351 Lisp_Object table;
5352 {
5353 return check_hash_table (table)->rehash_size;
5354 }
5355
5356
5357 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
5358 Shash_table_rehash_threshold, 1, 1, 0,
5359 doc: /* Return the current rehash threshold of TABLE. */)
5360 (table)
5361 Lisp_Object table;
5362 {
5363 return check_hash_table (table)->rehash_threshold;
5364 }
5365
5366
5367 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
5368 doc: /* Return the size of TABLE.
5369 The size can be used as an argument to `make-hash-table' to create
5370 a hash table than can hold as many elements of TABLE holds
5371 without need for resizing. */)
5372 (table)
5373 Lisp_Object table;
5374 {
5375 struct Lisp_Hash_Table *h = check_hash_table (table);
5376 return make_number (HASH_TABLE_SIZE (h));
5377 }
5378
5379
5380 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
5381 doc: /* Return the test TABLE uses. */)
5382 (table)
5383 Lisp_Object table;
5384 {
5385 return check_hash_table (table)->test;
5386 }
5387
5388
5389 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
5390 1, 1, 0,
5391 doc: /* Return the weakness of TABLE. */)
5392 (table)
5393 Lisp_Object table;
5394 {
5395 return check_hash_table (table)->weak;
5396 }
5397
5398
5399 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
5400 doc: /* Return t if OBJ is a Lisp hash table object. */)
5401 (obj)
5402 Lisp_Object obj;
5403 {
5404 return HASH_TABLE_P (obj) ? Qt : Qnil;
5405 }
5406
5407
5408 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
5409 doc: /* Clear hash table TABLE. */)
5410 (table)
5411 Lisp_Object table;
5412 {
5413 hash_clear (check_hash_table (table));
5414 return Qnil;
5415 }
5416
5417
5418 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
5419 doc: /* Look up KEY in TABLE and return its associated value.
5420 If KEY is not found, return DFLT which defaults to nil. */)
5421 (key, table, dflt)
5422 Lisp_Object key, table, dflt;
5423 {
5424 struct Lisp_Hash_Table *h = check_hash_table (table);
5425 int i = hash_lookup (h, key, NULL);
5426 return i >= 0 ? HASH_VALUE (h, i) : dflt;
5427 }
5428
5429
5430 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
5431 doc: /* Associate KEY with VALUE in hash table TABLE.
5432 If KEY is already present in table, replace its current value with
5433 VALUE. */)
5434 (key, value, table)
5435 Lisp_Object key, value, table;
5436 {
5437 struct Lisp_Hash_Table *h = check_hash_table (table);
5438 int i;
5439 unsigned hash;
5440
5441 i = hash_lookup (h, key, &hash);
5442 if (i >= 0)
5443 HASH_VALUE (h, i) = value;
5444 else
5445 hash_put (h, key, value, hash);
5446
5447 return value;
5448 }
5449
5450
5451 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
5452 doc: /* Remove KEY from TABLE. */)
5453 (key, table)
5454 Lisp_Object key, table;
5455 {
5456 struct Lisp_Hash_Table *h = check_hash_table (table);
5457 hash_remove (h, key);
5458 return Qnil;
5459 }
5460
5461
5462 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
5463 doc: /* Call FUNCTION for all entries in hash table TABLE.
5464 FUNCTION is called with two arguments, KEY and VALUE. */)
5465 (function, table)
5466 Lisp_Object function, table;
5467 {
5468 struct Lisp_Hash_Table *h = check_hash_table (table);
5469 Lisp_Object args[3];
5470 int i;
5471
5472 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
5473 if (!NILP (HASH_HASH (h, i)))
5474 {
5475 args[0] = function;
5476 args[1] = HASH_KEY (h, i);
5477 args[2] = HASH_VALUE (h, i);
5478 Ffuncall (3, args);
5479 }
5480
5481 return Qnil;
5482 }
5483
5484
5485 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
5486 Sdefine_hash_table_test, 3, 3, 0,
5487 doc: /* Define a new hash table test with name NAME, a symbol.
5488
5489 In hash tables created with NAME specified as test, use TEST to
5490 compare keys, and HASH for computing hash codes of keys.
5491
5492 TEST must be a function taking two arguments and returning non-nil if
5493 both arguments are the same. HASH must be a function taking one
5494 argument and return an integer that is the hash code of the argument.
5495 Hash code computation should use the whole value range of integers,
5496 including negative integers. */)
5497 (name, test, hash)
5498 Lisp_Object name, test, hash;
5499 {
5500 return Fput (name, Qhash_table_test, list2 (test, hash));
5501 }
5502
5503
5504 \f
5505 /************************************************************************
5506 MD5
5507 ************************************************************************/
5508
5509 #include "md5.h"
5510 #include "coding.h"
5511
5512 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
5513 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
5514
5515 A message digest is a cryptographic checksum of a document, and the
5516 algorithm to calculate it is defined in RFC 1321.
5517
5518 The two optional arguments START and END are character positions
5519 specifying for which part of OBJECT the message digest should be
5520 computed. If nil or omitted, the digest is computed for the whole
5521 OBJECT.
5522
5523 The MD5 message digest is computed from the result of encoding the
5524 text in a coding system, not directly from the internal Emacs form of
5525 the text. The optional fourth argument CODING-SYSTEM specifies which
5526 coding system to encode the text with. It should be the same coding
5527 system that you used or will use when actually writing the text into a
5528 file.
5529
5530 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
5531 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
5532 system would be chosen by default for writing this text into a file.
5533
5534 If OBJECT is a string, the most preferred coding system (see the
5535 command `prefer-coding-system') is used.
5536
5537 If NOERROR is non-nil, silently assume the `raw-text' coding if the
5538 guesswork fails. Normally, an error is signaled in such case. */)
5539 (object, start, end, coding_system, noerror)
5540 Lisp_Object object, start, end, coding_system, noerror;
5541 {
5542 unsigned char digest[16];
5543 unsigned char value[33];
5544 int i;
5545 int size;
5546 int size_byte = 0;
5547 int start_char = 0, end_char = 0;
5548 int start_byte = 0, end_byte = 0;
5549 register int b, e;
5550 register struct buffer *bp;
5551 int temp;
5552
5553 if (STRINGP (object))
5554 {
5555 if (NILP (coding_system))
5556 {
5557 /* Decide the coding-system to encode the data with. */
5558
5559 if (STRING_MULTIBYTE (object))
5560 /* use default, we can't guess correct value */
5561 coding_system = SYMBOL_VALUE (XCAR (Vcoding_category_list));
5562 else
5563 coding_system = Qraw_text;
5564 }
5565
5566 if (NILP (Fcoding_system_p (coding_system)))
5567 {
5568 /* Invalid coding system. */
5569
5570 if (!NILP (noerror))
5571 coding_system = Qraw_text;
5572 else
5573 xsignal1 (Qcoding_system_error, coding_system);
5574 }
5575
5576 if (STRING_MULTIBYTE (object))
5577 object = code_convert_string1 (object, coding_system, Qnil, 1);
5578
5579 size = SCHARS (object);
5580 size_byte = SBYTES (object);
5581
5582 if (!NILP (start))
5583 {
5584 CHECK_NUMBER (start);
5585
5586 start_char = XINT (start);
5587
5588 if (start_char < 0)
5589 start_char += size;
5590
5591 start_byte = string_char_to_byte (object, start_char);
5592 }
5593
5594 if (NILP (end))
5595 {
5596 end_char = size;
5597 end_byte = size_byte;
5598 }
5599 else
5600 {
5601 CHECK_NUMBER (end);
5602
5603 end_char = XINT (end);
5604
5605 if (end_char < 0)
5606 end_char += size;
5607
5608 end_byte = string_char_to_byte (object, end_char);
5609 }
5610
5611 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5612 args_out_of_range_3 (object, make_number (start_char),
5613 make_number (end_char));
5614 }
5615 else
5616 {
5617 struct buffer *prev = current_buffer;
5618
5619 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5620
5621 CHECK_BUFFER (object);
5622
5623 bp = XBUFFER (object);
5624 if (bp != current_buffer)
5625 set_buffer_internal (bp);
5626
5627 if (NILP (start))
5628 b = BEGV;
5629 else
5630 {
5631 CHECK_NUMBER_COERCE_MARKER (start);
5632 b = XINT (start);
5633 }
5634
5635 if (NILP (end))
5636 e = ZV;
5637 else
5638 {
5639 CHECK_NUMBER_COERCE_MARKER (end);
5640 e = XINT (end);
5641 }
5642
5643 if (b > e)
5644 temp = b, b = e, e = temp;
5645
5646 if (!(BEGV <= b && e <= ZV))
5647 args_out_of_range (start, end);
5648
5649 if (NILP (coding_system))
5650 {
5651 /* Decide the coding-system to encode the data with.
5652 See fileio.c:Fwrite-region */
5653
5654 if (!NILP (Vcoding_system_for_write))
5655 coding_system = Vcoding_system_for_write;
5656 else
5657 {
5658 int force_raw_text = 0;
5659
5660 coding_system = XBUFFER (object)->buffer_file_coding_system;
5661 if (NILP (coding_system)
5662 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5663 {
5664 coding_system = Qnil;
5665 if (NILP (current_buffer->enable_multibyte_characters))
5666 force_raw_text = 1;
5667 }
5668
5669 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5670 {
5671 /* Check file-coding-system-alist. */
5672 Lisp_Object args[4], val;
5673
5674 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5675 args[3] = Fbuffer_file_name(object);
5676 val = Ffind_operation_coding_system (4, args);
5677 if (CONSP (val) && !NILP (XCDR (val)))
5678 coding_system = XCDR (val);
5679 }
5680
5681 if (NILP (coding_system)
5682 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5683 {
5684 /* If we still have not decided a coding system, use the
5685 default value of buffer-file-coding-system. */
5686 coding_system = XBUFFER (object)->buffer_file_coding_system;
5687 }
5688
5689 if (!force_raw_text
5690 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5691 /* Confirm that VAL can surely encode the current region. */
5692 coding_system = call4 (Vselect_safe_coding_system_function,
5693 make_number (b), make_number (e),
5694 coding_system, Qnil);
5695
5696 if (force_raw_text)
5697 coding_system = Qraw_text;
5698 }
5699
5700 if (NILP (Fcoding_system_p (coding_system)))
5701 {
5702 /* Invalid coding system. */
5703
5704 if (!NILP (noerror))
5705 coding_system = Qraw_text;
5706 else
5707 xsignal1 (Qcoding_system_error, coding_system);
5708 }
5709 }
5710
5711 object = make_buffer_string (b, e, 0);
5712 if (prev != current_buffer)
5713 set_buffer_internal (prev);
5714 /* Discard the unwind protect for recovering the current
5715 buffer. */
5716 specpdl_ptr--;
5717
5718 if (STRING_MULTIBYTE (object))
5719 object = code_convert_string1 (object, coding_system, Qnil, 1);
5720 }
5721
5722 md5_buffer (SDATA (object) + start_byte,
5723 SBYTES (object) - (size_byte - end_byte),
5724 digest);
5725
5726 for (i = 0; i < 16; i++)
5727 sprintf (&value[2 * i], "%02x", digest[i]);
5728 value[32] = '\0';
5729
5730 return make_string (value, 32);
5731 }
5732
5733 \f
5734 void
5735 syms_of_fns ()
5736 {
5737 /* Hash table stuff. */
5738 Qhash_table_p = intern ("hash-table-p");
5739 staticpro (&Qhash_table_p);
5740 Qeq = intern ("eq");
5741 staticpro (&Qeq);
5742 Qeql = intern ("eql");
5743 staticpro (&Qeql);
5744 Qequal = intern ("equal");
5745 staticpro (&Qequal);
5746 QCtest = intern (":test");
5747 staticpro (&QCtest);
5748 QCsize = intern (":size");
5749 staticpro (&QCsize);
5750 QCrehash_size = intern (":rehash-size");
5751 staticpro (&QCrehash_size);
5752 QCrehash_threshold = intern (":rehash-threshold");
5753 staticpro (&QCrehash_threshold);
5754 QCweakness = intern (":weakness");
5755 staticpro (&QCweakness);
5756 Qkey = intern ("key");
5757 staticpro (&Qkey);
5758 Qvalue = intern ("value");
5759 staticpro (&Qvalue);
5760 Qhash_table_test = intern ("hash-table-test");
5761 staticpro (&Qhash_table_test);
5762 Qkey_or_value = intern ("key-or-value");
5763 staticpro (&Qkey_or_value);
5764 Qkey_and_value = intern ("key-and-value");
5765 staticpro (&Qkey_and_value);
5766
5767 defsubr (&Ssxhash);
5768 defsubr (&Smake_hash_table);
5769 defsubr (&Scopy_hash_table);
5770 defsubr (&Shash_table_count);
5771 defsubr (&Shash_table_rehash_size);
5772 defsubr (&Shash_table_rehash_threshold);
5773 defsubr (&Shash_table_size);
5774 defsubr (&Shash_table_test);
5775 defsubr (&Shash_table_weakness);
5776 defsubr (&Shash_table_p);
5777 defsubr (&Sclrhash);
5778 defsubr (&Sgethash);
5779 defsubr (&Sputhash);
5780 defsubr (&Sremhash);
5781 defsubr (&Smaphash);
5782 defsubr (&Sdefine_hash_table_test);
5783
5784 Qstring_lessp = intern ("string-lessp");
5785 staticpro (&Qstring_lessp);
5786 Qprovide = intern ("provide");
5787 staticpro (&Qprovide);
5788 Qrequire = intern ("require");
5789 staticpro (&Qrequire);
5790 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5791 staticpro (&Qyes_or_no_p_history);
5792 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5793 staticpro (&Qcursor_in_echo_area);
5794 Qwidget_type = intern ("widget-type");
5795 staticpro (&Qwidget_type);
5796
5797 staticpro (&string_char_byte_cache_string);
5798 string_char_byte_cache_string = Qnil;
5799
5800 require_nesting_list = Qnil;
5801 staticpro (&require_nesting_list);
5802
5803 Fset (Qyes_or_no_p_history, Qnil);
5804
5805 DEFVAR_LISP ("features", &Vfeatures,
5806 doc: /* A list of symbols which are the features of the executing Emacs.
5807 Used by `featurep' and `require', and altered by `provide'. */);
5808 Vfeatures = Fcons (intern ("emacs"), Qnil);
5809 Qsubfeatures = intern ("subfeatures");
5810 staticpro (&Qsubfeatures);
5811
5812 #ifdef HAVE_LANGINFO_CODESET
5813 Qcodeset = intern ("codeset");
5814 staticpro (&Qcodeset);
5815 Qdays = intern ("days");
5816 staticpro (&Qdays);
5817 Qmonths = intern ("months");
5818 staticpro (&Qmonths);
5819 Qpaper = intern ("paper");
5820 staticpro (&Qpaper);
5821 #endif /* HAVE_LANGINFO_CODESET */
5822
5823 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5824 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5825 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5826 invoked by mouse clicks and mouse menu items. */);
5827 use_dialog_box = 1;
5828
5829 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5830 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5831 This applies to commands from menus and tool bar buttons. The value of
5832 `use-dialog-box' takes precedence over this variable, so a file dialog is only
5833 used if both `use-dialog-box' and this variable are non-nil. */);
5834 use_file_dialog = 1;
5835
5836 defsubr (&Sidentity);
5837 defsubr (&Srandom);
5838 defsubr (&Slength);
5839 defsubr (&Ssafe_length);
5840 defsubr (&Sstring_bytes);
5841 defsubr (&Sstring_equal);
5842 defsubr (&Scompare_strings);
5843 defsubr (&Sstring_lessp);
5844 defsubr (&Sappend);
5845 defsubr (&Sconcat);
5846 defsubr (&Svconcat);
5847 defsubr (&Scopy_sequence);
5848 defsubr (&Sstring_make_multibyte);
5849 defsubr (&Sstring_make_unibyte);
5850 defsubr (&Sstring_as_multibyte);
5851 defsubr (&Sstring_as_unibyte);
5852 defsubr (&Sstring_to_multibyte);
5853 defsubr (&Scopy_alist);
5854 defsubr (&Ssubstring);
5855 defsubr (&Ssubstring_no_properties);
5856 defsubr (&Snthcdr);
5857 defsubr (&Snth);
5858 defsubr (&Selt);
5859 defsubr (&Smember);
5860 defsubr (&Smemq);
5861 defsubr (&Smemql);
5862 defsubr (&Sassq);
5863 defsubr (&Sassoc);
5864 defsubr (&Srassq);
5865 defsubr (&Srassoc);
5866 defsubr (&Sdelq);
5867 defsubr (&Sdelete);
5868 defsubr (&Snreverse);
5869 defsubr (&Sreverse);
5870 defsubr (&Ssort);
5871 defsubr (&Splist_get);
5872 defsubr (&Sget);
5873 defsubr (&Splist_put);
5874 defsubr (&Sput);
5875 defsubr (&Slax_plist_get);
5876 defsubr (&Slax_plist_put);
5877 defsubr (&Seql);
5878 defsubr (&Sequal);
5879 defsubr (&Sequal_including_properties);
5880 defsubr (&Sfillarray);
5881 defsubr (&Sclear_string);
5882 defsubr (&Schar_table_subtype);
5883 defsubr (&Schar_table_parent);
5884 defsubr (&Sset_char_table_parent);
5885 defsubr (&Schar_table_extra_slot);
5886 defsubr (&Sset_char_table_extra_slot);
5887 defsubr (&Schar_table_range);
5888 defsubr (&Sset_char_table_range);
5889 defsubr (&Sset_char_table_default);
5890 defsubr (&Soptimize_char_table);
5891 defsubr (&Smap_char_table);
5892 defsubr (&Snconc);
5893 defsubr (&Smapcar);
5894 defsubr (&Smapc);
5895 defsubr (&Smapconcat);
5896 defsubr (&Sy_or_n_p);
5897 defsubr (&Syes_or_no_p);
5898 defsubr (&Sload_average);
5899 defsubr (&Sfeaturep);
5900 defsubr (&Srequire);
5901 defsubr (&Sprovide);
5902 defsubr (&Splist_member);
5903 defsubr (&Swidget_put);
5904 defsubr (&Swidget_get);
5905 defsubr (&Swidget_apply);
5906 defsubr (&Sbase64_encode_region);
5907 defsubr (&Sbase64_decode_region);
5908 defsubr (&Sbase64_encode_string);
5909 defsubr (&Sbase64_decode_string);
5910 defsubr (&Smd5);
5911 defsubr (&Slocale_info);
5912 }
5913
5914
5915 void
5916 init_fns ()
5917 {
5918 weak_hash_tables = NULL;
5919 }
5920
5921 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5922 (do not change this comment) */