]> code.delx.au - gnu-emacs/blob - src/editfns.c
(Fpropertize): Don't insist that properties be symbols.
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985, 1986, 1987, 1989, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include <config.h>
25 #include <sys/types.h>
26 #include <stdio.h>
27
28 #ifdef HAVE_PWD_H
29 #include <pwd.h>
30 #endif
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 #ifdef HAVE_SYS_UTSNAME_H
37 #include <sys/utsname.h>
38 #endif
39
40 /* systime.h includes <sys/time.h> which, on some systems, is required
41 for <sys/resource.h>; thus systime.h must be included before
42 <sys/resource.h> */
43 #include "systime.h"
44
45 #if defined HAVE_SYS_RESOURCE_H
46 #include <sys/resource.h>
47 #endif
48
49 #include <ctype.h>
50
51 #include "lisp.h"
52 #include "intervals.h"
53 #include "buffer.h"
54 #include "charset.h"
55 #include "coding.h"
56 #include "frame.h"
57 #include "window.h"
58
59 #ifdef STDC_HEADERS
60 #include <float.h>
61 #define MAX_10_EXP DBL_MAX_10_EXP
62 #else
63 #define MAX_10_EXP 310
64 #endif
65
66 #ifndef NULL
67 #define NULL 0
68 #endif
69
70 #ifndef USE_CRT_DLL
71 extern char **environ;
72 #endif
73
74 extern Lisp_Object make_time P_ ((time_t));
75 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
76 const struct tm *, int));
77 static int tm_diff P_ ((struct tm *, struct tm *));
78 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
79 static void update_buffer_properties P_ ((int, int));
80 static Lisp_Object region_limit P_ ((int));
81 int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
82 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
83 size_t, const struct tm *, int));
84 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
85 void (*) (Lisp_Object, int, int, int,
86 int, int),
87 int, int, Lisp_Object *));
88 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
89 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
90 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
91
92 #ifdef HAVE_INDEX
93 extern char *index P_ ((const char *, int));
94 #endif
95
96 Lisp_Object Vbuffer_access_fontify_functions;
97 Lisp_Object Qbuffer_access_fontify_functions;
98 Lisp_Object Vbuffer_access_fontified_property;
99
100 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
101
102 /* Non-nil means don't stop at field boundary in text motion commands. */
103
104 Lisp_Object Vinhibit_field_text_motion;
105
106 /* Some static data, and a function to initialize it for each run */
107
108 Lisp_Object Vsystem_name;
109 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
110 Lisp_Object Vuser_full_name; /* full name of current user */
111 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
112 Lisp_Object Voperating_system_release; /* Operating System Release */
113
114 /* Symbol for the text property used to mark fields. */
115
116 Lisp_Object Qfield;
117
118 /* A special value for Qfield properties. */
119
120 Lisp_Object Qboundary;
121
122
123 void
124 init_editfns ()
125 {
126 char *user_name;
127 register unsigned char *p;
128 struct passwd *pw; /* password entry for the current user */
129 Lisp_Object tem;
130
131 /* Set up system_name even when dumping. */
132 init_system_name ();
133
134 #ifndef CANNOT_DUMP
135 /* Don't bother with this on initial start when just dumping out */
136 if (!initialized)
137 return;
138 #endif /* not CANNOT_DUMP */
139
140 pw = (struct passwd *) getpwuid (getuid ());
141 #ifdef MSDOS
142 /* We let the real user name default to "root" because that's quite
143 accurate on MSDOG and because it lets Emacs find the init file.
144 (The DVX libraries override the Djgpp libraries here.) */
145 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
146 #else
147 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
148 #endif
149
150 /* Get the effective user name, by consulting environment variables,
151 or the effective uid if those are unset. */
152 user_name = (char *) getenv ("LOGNAME");
153 if (!user_name)
154 #ifdef WINDOWSNT
155 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
156 #else /* WINDOWSNT */
157 user_name = (char *) getenv ("USER");
158 #endif /* WINDOWSNT */
159 if (!user_name)
160 {
161 pw = (struct passwd *) getpwuid (geteuid ());
162 user_name = (char *) (pw ? pw->pw_name : "unknown");
163 }
164 Vuser_login_name = build_string (user_name);
165
166 /* If the user name claimed in the environment vars differs from
167 the real uid, use the claimed name to find the full name. */
168 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
169 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
170 : Vuser_login_name);
171
172 p = (unsigned char *) getenv ("NAME");
173 if (p)
174 Vuser_full_name = build_string (p);
175 else if (NILP (Vuser_full_name))
176 Vuser_full_name = build_string ("unknown");
177
178 #ifdef HAVE_SYS_UTSNAME_H
179 {
180 struct utsname uts;
181 uname (&uts);
182 Voperating_system_release = build_string (uts.release);
183 }
184 #else
185 Voperating_system_release = Qnil;
186 #endif
187 }
188 \f
189 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
190 doc: /* Convert arg CHAR to a string containing that character.
191 usage: (char-to-string CHAR) */)
192 (character)
193 Lisp_Object character;
194 {
195 int len;
196 unsigned char str[MAX_MULTIBYTE_LENGTH];
197
198 CHECK_NUMBER (character);
199
200 len = (SINGLE_BYTE_CHAR_P (XFASTINT (character))
201 ? (*str = (unsigned char)(XFASTINT (character)), 1)
202 : char_to_string (XFASTINT (character), str));
203 return make_string_from_bytes (str, 1, len);
204 }
205
206 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
207 doc: /* Convert arg STRING to a character, the first character of that string.
208 A multibyte character is handled correctly. */)
209 (string)
210 register Lisp_Object string;
211 {
212 register Lisp_Object val;
213 CHECK_STRING (string);
214 if (SCHARS (string))
215 {
216 if (STRING_MULTIBYTE (string))
217 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
218 else
219 XSETFASTINT (val, SREF (string, 0));
220 }
221 else
222 XSETFASTINT (val, 0);
223 return val;
224 }
225 \f
226 static Lisp_Object
227 buildmark (charpos, bytepos)
228 int charpos, bytepos;
229 {
230 register Lisp_Object mark;
231 mark = Fmake_marker ();
232 set_marker_both (mark, Qnil, charpos, bytepos);
233 return mark;
234 }
235
236 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
237 doc: /* Return value of point, as an integer.
238 Beginning of buffer is position (point-min). */)
239 ()
240 {
241 Lisp_Object temp;
242 XSETFASTINT (temp, PT);
243 return temp;
244 }
245
246 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
247 doc: /* Return value of point, as a marker object. */)
248 ()
249 {
250 return buildmark (PT, PT_BYTE);
251 }
252
253 int
254 clip_to_bounds (lower, num, upper)
255 int lower, num, upper;
256 {
257 if (num < lower)
258 return lower;
259 else if (num > upper)
260 return upper;
261 else
262 return num;
263 }
264
265 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
266 doc: /* Set point to POSITION, a number or marker.
267 Beginning of buffer is position (point-min), end is (point-max). */)
268 (position)
269 register Lisp_Object position;
270 {
271 int pos;
272
273 if (MARKERP (position)
274 && current_buffer == XMARKER (position)->buffer)
275 {
276 pos = marker_position (position);
277 if (pos < BEGV)
278 SET_PT_BOTH (BEGV, BEGV_BYTE);
279 else if (pos > ZV)
280 SET_PT_BOTH (ZV, ZV_BYTE);
281 else
282 SET_PT_BOTH (pos, marker_byte_position (position));
283
284 return position;
285 }
286
287 CHECK_NUMBER_COERCE_MARKER (position);
288
289 pos = clip_to_bounds (BEGV, XINT (position), ZV);
290 SET_PT (pos);
291 return position;
292 }
293
294
295 /* Return the start or end position of the region.
296 BEGINNINGP non-zero means return the start.
297 If there is no region active, signal an error. */
298
299 static Lisp_Object
300 region_limit (beginningp)
301 int beginningp;
302 {
303 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
304 Lisp_Object m;
305
306 if (!NILP (Vtransient_mark_mode)
307 && NILP (Vmark_even_if_inactive)
308 && NILP (current_buffer->mark_active))
309 Fsignal (Qmark_inactive, Qnil);
310
311 m = Fmarker_position (current_buffer->mark);
312 if (NILP (m))
313 error ("The mark is not set now, so there is no region");
314
315 if ((PT < XFASTINT (m)) == (beginningp != 0))
316 m = make_number (PT);
317 return m;
318 }
319
320 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
321 doc: /* Return position of beginning of region, as an integer. */)
322 ()
323 {
324 return region_limit (1);
325 }
326
327 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
328 doc: /* Return position of end of region, as an integer. */)
329 ()
330 {
331 return region_limit (0);
332 }
333
334 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
335 doc: /* Return this buffer's mark, as a marker object.
336 Watch out! Moving this marker changes the mark position.
337 If you set the marker not to point anywhere, the buffer will have no mark. */)
338 ()
339 {
340 return current_buffer->mark;
341 }
342
343 \f
344 /* Find all the overlays in the current buffer that touch position POS.
345 Return the number found, and store them in a vector in VEC
346 of length LEN. */
347
348 static int
349 overlays_around (pos, vec, len)
350 int pos;
351 Lisp_Object *vec;
352 int len;
353 {
354 Lisp_Object overlay, start, end;
355 struct Lisp_Overlay *tail;
356 int startpos, endpos;
357 int idx = 0;
358
359 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
360 {
361 XSETMISC (overlay, tail);
362
363 end = OVERLAY_END (overlay);
364 endpos = OVERLAY_POSITION (end);
365 if (endpos < pos)
366 break;
367 start = OVERLAY_START (overlay);
368 startpos = OVERLAY_POSITION (start);
369 if (startpos <= pos)
370 {
371 if (idx < len)
372 vec[idx] = overlay;
373 /* Keep counting overlays even if we can't return them all. */
374 idx++;
375 }
376 }
377
378 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
379 {
380 XSETMISC (overlay, tail);
381
382 start = OVERLAY_START (overlay);
383 startpos = OVERLAY_POSITION (start);
384 if (pos < startpos)
385 break;
386 end = OVERLAY_END (overlay);
387 endpos = OVERLAY_POSITION (end);
388 if (pos <= endpos)
389 {
390 if (idx < len)
391 vec[idx] = overlay;
392 idx++;
393 }
394 }
395
396 return idx;
397 }
398
399 /* Return the value of property PROP, in OBJECT at POSITION.
400 It's the value of PROP that a char inserted at POSITION would get.
401 OBJECT is optional and defaults to the current buffer.
402 If OBJECT is a buffer, then overlay properties are considered as well as
403 text properties.
404 If OBJECT is a window, then that window's buffer is used, but
405 window-specific overlays are considered only if they are associated
406 with OBJECT. */
407 Lisp_Object
408 get_pos_property (position, prop, object)
409 Lisp_Object position, object;
410 register Lisp_Object prop;
411 {
412 CHECK_NUMBER_COERCE_MARKER (position);
413
414 if (NILP (object))
415 XSETBUFFER (object, current_buffer);
416 else if (WINDOWP (object))
417 object = XWINDOW (object)->buffer;
418
419 if (!BUFFERP (object))
420 /* pos-property only makes sense in buffers right now, since strings
421 have no overlays and no notion of insertion for which stickiness
422 could be obeyed. */
423 return Fget_text_property (position, prop, object);
424 else
425 {
426 int posn = XINT (position);
427 int noverlays;
428 Lisp_Object *overlay_vec, tem;
429 struct buffer *obuf = current_buffer;
430
431 set_buffer_temp (XBUFFER (object));
432
433 /* First try with room for 40 overlays. */
434 noverlays = 40;
435 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
436 noverlays = overlays_around (posn, overlay_vec, noverlays);
437
438 /* If there are more than 40,
439 make enough space for all, and try again. */
440 if (noverlays > 40)
441 {
442 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
443 noverlays = overlays_around (posn, overlay_vec, noverlays);
444 }
445 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
446
447 set_buffer_temp (obuf);
448
449 /* Now check the overlays in order of decreasing priority. */
450 while (--noverlays >= 0)
451 {
452 Lisp_Object ol = overlay_vec[noverlays];
453 tem = Foverlay_get (ol, prop);
454 if (!NILP (tem))
455 {
456 /* Check the overlay is indeed active at point. */
457 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
458 if ((OVERLAY_POSITION (start) == posn
459 && XMARKER (start)->insertion_type == 1)
460 || (OVERLAY_POSITION (finish) == posn
461 && XMARKER (finish)->insertion_type == 0))
462 ; /* The overlay will not cover a char inserted at point. */
463 else
464 {
465 return tem;
466 }
467 }
468 }
469
470 { /* Now check the text-properties. */
471 int stickiness = text_property_stickiness (prop, position, object);
472 if (stickiness > 0)
473 return Fget_text_property (position, prop, object);
474 else if (stickiness < 0
475 && XINT (position) > BUF_BEGV (XBUFFER (object)))
476 return Fget_text_property (make_number (XINT (position) - 1),
477 prop, object);
478 else
479 return Qnil;
480 }
481 }
482 }
483
484 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
485 the value of point is used instead. If BEG or END null,
486 means don't store the beginning or end of the field.
487
488 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
489 results; they do not effect boundary behavior.
490
491 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
492 position of a field, then the beginning of the previous field is
493 returned instead of the beginning of POS's field (since the end of a
494 field is actually also the beginning of the next input field, this
495 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
496 true case, if two fields are separated by a field with the special
497 value `boundary', and POS lies within it, then the two separated
498 fields are considered to be adjacent, and POS between them, when
499 finding the beginning and ending of the "merged" field.
500
501 Either BEG or END may be 0, in which case the corresponding value
502 is not stored. */
503
504 static void
505 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
506 Lisp_Object pos;
507 Lisp_Object merge_at_boundary;
508 Lisp_Object beg_limit, end_limit;
509 int *beg, *end;
510 {
511 /* Fields right before and after the point. */
512 Lisp_Object before_field, after_field;
513 /* 1 if POS counts as the start of a field. */
514 int at_field_start = 0;
515 /* 1 if POS counts as the end of a field. */
516 int at_field_end = 0;
517
518 if (NILP (pos))
519 XSETFASTINT (pos, PT);
520 else
521 CHECK_NUMBER_COERCE_MARKER (pos);
522
523 after_field
524 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
525 before_field
526 = (XFASTINT (pos) > BEGV
527 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
528 Qfield, Qnil, NULL)
529 : Qnil);
530
531 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
532 and POS is at beginning of a field, which can also be interpreted
533 as the end of the previous field. Note that the case where if
534 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
535 more natural one; then we avoid treating the beginning of a field
536 specially. */
537 if (NILP (merge_at_boundary))
538 {
539 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
540 if (!EQ (field, after_field))
541 at_field_end = 1;
542 if (!EQ (field, before_field))
543 at_field_start = 1;
544 if (NILP (field) && at_field_start && at_field_end)
545 /* If an inserted char would have a nil field while the surrounding
546 text is non-nil, we're probably not looking at a
547 zero-length field, but instead at a non-nil field that's
548 not intended for editing (such as comint's prompts). */
549 at_field_end = at_field_start = 0;
550 }
551
552 /* Note about special `boundary' fields:
553
554 Consider the case where the point (`.') is between the fields `x' and `y':
555
556 xxxx.yyyy
557
558 In this situation, if merge_at_boundary is true, we consider the
559 `x' and `y' fields as forming one big merged field, and so the end
560 of the field is the end of `y'.
561
562 However, if `x' and `y' are separated by a special `boundary' field
563 (a field with a `field' char-property of 'boundary), then we ignore
564 this special field when merging adjacent fields. Here's the same
565 situation, but with a `boundary' field between the `x' and `y' fields:
566
567 xxx.BBBByyyy
568
569 Here, if point is at the end of `x', the beginning of `y', or
570 anywhere in-between (within the `boundary' field), we merge all
571 three fields and consider the beginning as being the beginning of
572 the `x' field, and the end as being the end of the `y' field. */
573
574 if (beg)
575 {
576 if (at_field_start)
577 /* POS is at the edge of a field, and we should consider it as
578 the beginning of the following field. */
579 *beg = XFASTINT (pos);
580 else
581 /* Find the previous field boundary. */
582 {
583 Lisp_Object p = pos;
584 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
585 /* Skip a `boundary' field. */
586 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
587 beg_limit);
588
589 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
590 beg_limit);
591 *beg = NILP (p) ? BEGV : XFASTINT (p);
592 }
593 }
594
595 if (end)
596 {
597 if (at_field_end)
598 /* POS is at the edge of a field, and we should consider it as
599 the end of the previous field. */
600 *end = XFASTINT (pos);
601 else
602 /* Find the next field boundary. */
603 {
604 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
605 /* Skip a `boundary' field. */
606 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
607 end_limit);
608
609 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
610 end_limit);
611 *end = NILP (pos) ? ZV : XFASTINT (pos);
612 }
613 }
614 }
615
616 \f
617 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
618 doc: /* Delete the field surrounding POS.
619 A field is a region of text with the same `field' property.
620 If POS is nil, the value of point is used for POS. */)
621 (pos)
622 Lisp_Object pos;
623 {
624 int beg, end;
625 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
626 if (beg != end)
627 del_range (beg, end);
628 return Qnil;
629 }
630
631 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
632 doc: /* Return the contents of the field surrounding POS as a string.
633 A field is a region of text with the same `field' property.
634 If POS is nil, the value of point is used for POS. */)
635 (pos)
636 Lisp_Object pos;
637 {
638 int beg, end;
639 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
640 return make_buffer_string (beg, end, 1);
641 }
642
643 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
644 doc: /* Return the contents of the field around POS, without text-properties.
645 A field is a region of text with the same `field' property.
646 If POS is nil, the value of point is used for POS. */)
647 (pos)
648 Lisp_Object pos;
649 {
650 int beg, end;
651 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
652 return make_buffer_string (beg, end, 0);
653 }
654
655 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
656 doc: /* Return the beginning of the field surrounding POS.
657 A field is a region of text with the same `field' property.
658 If POS is nil, the value of point is used for POS.
659 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
660 field, then the beginning of the *previous* field is returned.
661 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
662 is before LIMIT, then LIMIT will be returned instead. */)
663 (pos, escape_from_edge, limit)
664 Lisp_Object pos, escape_from_edge, limit;
665 {
666 int beg;
667 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
668 return make_number (beg);
669 }
670
671 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
672 doc: /* Return the end of the field surrounding POS.
673 A field is a region of text with the same `field' property.
674 If POS is nil, the value of point is used for POS.
675 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
676 then the end of the *following* field is returned.
677 If LIMIT is non-nil, it is a buffer position; if the end of the field
678 is after LIMIT, then LIMIT will be returned instead. */)
679 (pos, escape_from_edge, limit)
680 Lisp_Object pos, escape_from_edge, limit;
681 {
682 int end;
683 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
684 return make_number (end);
685 }
686
687 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
688 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
689
690 A field is a region of text with the same `field' property.
691 If NEW-POS is nil, then the current point is used instead, and set to the
692 constrained position if that is different.
693
694 If OLD-POS is at the boundary of two fields, then the allowable
695 positions for NEW-POS depends on the value of the optional argument
696 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
697 constrained to the field that has the same `field' char-property
698 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
699 is non-nil, NEW-POS is constrained to the union of the two adjacent
700 fields. Additionally, if two fields are separated by another field with
701 the special value `boundary', then any point within this special field is
702 also considered to be `on the boundary'.
703
704 If the optional argument ONLY-IN-LINE is non-nil and constraining
705 NEW-POS would move it to a different line, NEW-POS is returned
706 unconstrained. This useful for commands that move by line, like
707 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
708 only in the case where they can still move to the right line.
709
710 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
711 a non-nil property of that name, then any field boundaries are ignored.
712
713 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
714 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
715 Lisp_Object new_pos, old_pos;
716 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
717 {
718 /* If non-zero, then the original point, before re-positioning. */
719 int orig_point = 0;
720
721 if (NILP (new_pos))
722 /* Use the current point, and afterwards, set it. */
723 {
724 orig_point = PT;
725 XSETFASTINT (new_pos, PT);
726 }
727
728 if (NILP (Vinhibit_field_text_motion)
729 && !EQ (new_pos, old_pos)
730 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
731 || !NILP (Fget_char_property (old_pos, Qfield, Qnil)))
732 && (NILP (inhibit_capture_property)
733 || NILP (Fget_char_property(old_pos, inhibit_capture_property, Qnil))))
734 /* NEW_POS is not within the same field as OLD_POS; try to
735 move NEW_POS so that it is. */
736 {
737 int fwd, shortage;
738 Lisp_Object field_bound;
739
740 CHECK_NUMBER_COERCE_MARKER (new_pos);
741 CHECK_NUMBER_COERCE_MARKER (old_pos);
742
743 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
744
745 if (fwd)
746 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
747 else
748 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
749
750 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
751 other side of NEW_POS, which would mean that NEW_POS is
752 already acceptable, and it's not necessary to constrain it
753 to FIELD_BOUND. */
754 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
755 /* NEW_POS should be constrained, but only if either
756 ONLY_IN_LINE is nil (in which case any constraint is OK),
757 or NEW_POS and FIELD_BOUND are on the same line (in which
758 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
759 && (NILP (only_in_line)
760 /* This is the ONLY_IN_LINE case, check that NEW_POS and
761 FIELD_BOUND are on the same line by seeing whether
762 there's an intervening newline or not. */
763 || (scan_buffer ('\n',
764 XFASTINT (new_pos), XFASTINT (field_bound),
765 fwd ? -1 : 1, &shortage, 1),
766 shortage != 0)))
767 /* Constrain NEW_POS to FIELD_BOUND. */
768 new_pos = field_bound;
769
770 if (orig_point && XFASTINT (new_pos) != orig_point)
771 /* The NEW_POS argument was originally nil, so automatically set PT. */
772 SET_PT (XFASTINT (new_pos));
773 }
774
775 return new_pos;
776 }
777
778 \f
779 DEFUN ("line-beginning-position",
780 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
781 doc: /* Return the character position of the first character on the current line.
782 With argument N not nil or 1, move forward N - 1 lines first.
783 If scan reaches end of buffer, return that position.
784
785 The scan does not cross a field boundary unless doing so would move
786 beyond there to a different line; if N is nil or 1, and scan starts at a
787 field boundary, the scan stops as soon as it starts. To ignore field
788 boundaries bind `inhibit-field-text-motion' to t.
789
790 This function does not move point. */)
791 (n)
792 Lisp_Object n;
793 {
794 int orig, orig_byte, end;
795
796 if (NILP (n))
797 XSETFASTINT (n, 1);
798 else
799 CHECK_NUMBER (n);
800
801 orig = PT;
802 orig_byte = PT_BYTE;
803 Fforward_line (make_number (XINT (n) - 1));
804 end = PT;
805
806 SET_PT_BOTH (orig, orig_byte);
807
808 /* Return END constrained to the current input field. */
809 return Fconstrain_to_field (make_number (end), make_number (orig),
810 XINT (n) != 1 ? Qt : Qnil,
811 Qt, Qnil);
812 }
813
814 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
815 doc: /* Return the character position of the last character on the current line.
816 With argument N not nil or 1, move forward N - 1 lines first.
817 If scan reaches end of buffer, return that position.
818
819 The scan does not cross a field boundary unless doing so would move
820 beyond there to a different line; if N is nil or 1, and scan starts at a
821 field boundary, the scan stops as soon as it starts. To ignore field
822 boundaries bind `inhibit-field-text-motion' to t.
823
824 This function does not move point. */)
825 (n)
826 Lisp_Object n;
827 {
828 int end_pos;
829 int orig = PT;
830
831 if (NILP (n))
832 XSETFASTINT (n, 1);
833 else
834 CHECK_NUMBER (n);
835
836 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
837
838 /* Return END_POS constrained to the current input field. */
839 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
840 Qnil, Qt, Qnil);
841 }
842
843 \f
844 Lisp_Object
845 save_excursion_save ()
846 {
847 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
848 == current_buffer);
849
850 return Fcons (Fpoint_marker (),
851 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
852 Fcons (visible ? Qt : Qnil,
853 Fcons (current_buffer->mark_active,
854 selected_window))));
855 }
856
857 Lisp_Object
858 save_excursion_restore (info)
859 Lisp_Object info;
860 {
861 Lisp_Object tem, tem1, omark, nmark;
862 struct gcpro gcpro1, gcpro2, gcpro3;
863 int visible_p;
864
865 tem = Fmarker_buffer (XCAR (info));
866 /* If buffer being returned to is now deleted, avoid error */
867 /* Otherwise could get error here while unwinding to top level
868 and crash */
869 /* In that case, Fmarker_buffer returns nil now. */
870 if (NILP (tem))
871 return Qnil;
872
873 omark = nmark = Qnil;
874 GCPRO3 (info, omark, nmark);
875
876 Fset_buffer (tem);
877
878 /* Point marker. */
879 tem = XCAR (info);
880 Fgoto_char (tem);
881 unchain_marker (XMARKER (tem));
882
883 /* Mark marker. */
884 info = XCDR (info);
885 tem = XCAR (info);
886 omark = Fmarker_position (current_buffer->mark);
887 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
888 nmark = Fmarker_position (tem);
889 unchain_marker (XMARKER (tem));
890
891 /* visible */
892 info = XCDR (info);
893 visible_p = !NILP (XCAR (info));
894
895 #if 0 /* We used to make the current buffer visible in the selected window
896 if that was true previously. That avoids some anomalies.
897 But it creates others, and it wasn't documented, and it is simpler
898 and cleaner never to alter the window/buffer connections. */
899 tem1 = Fcar (tem);
900 if (!NILP (tem1)
901 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
902 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
903 #endif /* 0 */
904
905 /* Mark active */
906 info = XCDR (info);
907 tem = XCAR (info);
908 tem1 = current_buffer->mark_active;
909 current_buffer->mark_active = tem;
910
911 if (!NILP (Vrun_hooks))
912 {
913 /* If mark is active now, and either was not active
914 or was at a different place, run the activate hook. */
915 if (! NILP (current_buffer->mark_active))
916 {
917 if (! EQ (omark, nmark))
918 call1 (Vrun_hooks, intern ("activate-mark-hook"));
919 }
920 /* If mark has ceased to be active, run deactivate hook. */
921 else if (! NILP (tem1))
922 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
923 }
924
925 /* If buffer was visible in a window, and a different window was
926 selected, and the old selected window is still showing this
927 buffer, restore point in that window. */
928 tem = XCDR (info);
929 if (visible_p
930 && !EQ (tem, selected_window)
931 && (tem1 = XWINDOW (tem)->buffer,
932 (/* Window is live... */
933 BUFFERP (tem1)
934 /* ...and it shows the current buffer. */
935 && XBUFFER (tem1) == current_buffer)))
936 Fset_window_point (tem, make_number (PT));
937
938 UNGCPRO;
939 return Qnil;
940 }
941
942 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
943 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
944 Executes BODY just like `progn'.
945 The values of point, mark and the current buffer are restored
946 even in case of abnormal exit (throw or error).
947 The state of activation of the mark is also restored.
948
949 This construct does not save `deactivate-mark', and therefore
950 functions that change the buffer will still cause deactivation
951 of the mark at the end of the command. To prevent that, bind
952 `deactivate-mark' with `let'.
953
954 usage: (save-excursion &rest BODY) */)
955 (args)
956 Lisp_Object args;
957 {
958 register Lisp_Object val;
959 int count = SPECPDL_INDEX ();
960
961 record_unwind_protect (save_excursion_restore, save_excursion_save ());
962
963 val = Fprogn (args);
964 return unbind_to (count, val);
965 }
966
967 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
968 doc: /* Save the current buffer; execute BODY; restore the current buffer.
969 Executes BODY just like `progn'.
970 usage: (save-current-buffer &rest BODY) */)
971 (args)
972 Lisp_Object args;
973 {
974 Lisp_Object val;
975 int count = SPECPDL_INDEX ();
976
977 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
978
979 val = Fprogn (args);
980 return unbind_to (count, val);
981 }
982 \f
983 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
984 doc: /* Return the number of characters in the current buffer.
985 If BUFFER, return the number of characters in that buffer instead. */)
986 (buffer)
987 Lisp_Object buffer;
988 {
989 if (NILP (buffer))
990 return make_number (Z - BEG);
991 else
992 {
993 CHECK_BUFFER (buffer);
994 return make_number (BUF_Z (XBUFFER (buffer))
995 - BUF_BEG (XBUFFER (buffer)));
996 }
997 }
998
999 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1000 doc: /* Return the minimum permissible value of point in the current buffer.
1001 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1002 ()
1003 {
1004 Lisp_Object temp;
1005 XSETFASTINT (temp, BEGV);
1006 return temp;
1007 }
1008
1009 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1010 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1011 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1012 ()
1013 {
1014 return buildmark (BEGV, BEGV_BYTE);
1015 }
1016
1017 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1018 doc: /* Return the maximum permissible value of point in the current buffer.
1019 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1020 is in effect, in which case it is less. */)
1021 ()
1022 {
1023 Lisp_Object temp;
1024 XSETFASTINT (temp, ZV);
1025 return temp;
1026 }
1027
1028 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1029 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1030 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1031 is in effect, in which case it is less. */)
1032 ()
1033 {
1034 return buildmark (ZV, ZV_BYTE);
1035 }
1036
1037 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1038 doc: /* Return the position of the gap, in the current buffer.
1039 See also `gap-size'. */)
1040 ()
1041 {
1042 Lisp_Object temp;
1043 XSETFASTINT (temp, GPT);
1044 return temp;
1045 }
1046
1047 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1048 doc: /* Return the size of the current buffer's gap.
1049 See also `gap-position'. */)
1050 ()
1051 {
1052 Lisp_Object temp;
1053 XSETFASTINT (temp, GAP_SIZE);
1054 return temp;
1055 }
1056
1057 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1058 doc: /* Return the byte position for character position POSITION.
1059 If POSITION is out of range, the value is nil. */)
1060 (position)
1061 Lisp_Object position;
1062 {
1063 CHECK_NUMBER_COERCE_MARKER (position);
1064 if (XINT (position) < BEG || XINT (position) > Z)
1065 return Qnil;
1066 return make_number (CHAR_TO_BYTE (XINT (position)));
1067 }
1068
1069 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1070 doc: /* Return the character position for byte position BYTEPOS.
1071 If BYTEPOS is out of range, the value is nil. */)
1072 (bytepos)
1073 Lisp_Object bytepos;
1074 {
1075 CHECK_NUMBER (bytepos);
1076 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1077 return Qnil;
1078 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1079 }
1080 \f
1081 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1082 doc: /* Return the character following point, as a number.
1083 At the end of the buffer or accessible region, return 0. */)
1084 ()
1085 {
1086 Lisp_Object temp;
1087 if (PT >= ZV)
1088 XSETFASTINT (temp, 0);
1089 else
1090 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1091 return temp;
1092 }
1093
1094 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1095 doc: /* Return the character preceding point, as a number.
1096 At the beginning of the buffer or accessible region, return 0. */)
1097 ()
1098 {
1099 Lisp_Object temp;
1100 if (PT <= BEGV)
1101 XSETFASTINT (temp, 0);
1102 else if (!NILP (current_buffer->enable_multibyte_characters))
1103 {
1104 int pos = PT_BYTE;
1105 DEC_POS (pos);
1106 XSETFASTINT (temp, FETCH_CHAR (pos));
1107 }
1108 else
1109 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1110 return temp;
1111 }
1112
1113 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1114 doc: /* Return t if point is at the beginning of the buffer.
1115 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1116 ()
1117 {
1118 if (PT == BEGV)
1119 return Qt;
1120 return Qnil;
1121 }
1122
1123 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1124 doc: /* Return t if point is at the end of the buffer.
1125 If the buffer is narrowed, this means the end of the narrowed part. */)
1126 ()
1127 {
1128 if (PT == ZV)
1129 return Qt;
1130 return Qnil;
1131 }
1132
1133 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1134 doc: /* Return t if point is at the beginning of a line. */)
1135 ()
1136 {
1137 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1138 return Qt;
1139 return Qnil;
1140 }
1141
1142 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1143 doc: /* Return t if point is at the end of a line.
1144 `End of a line' includes point being at the end of the buffer. */)
1145 ()
1146 {
1147 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1148 return Qt;
1149 return Qnil;
1150 }
1151
1152 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1153 doc: /* Return character in current buffer at position POS.
1154 POS is an integer or a marker and defaults to point.
1155 If POS is out of range, the value is nil. */)
1156 (pos)
1157 Lisp_Object pos;
1158 {
1159 register int pos_byte;
1160
1161 if (NILP (pos))
1162 {
1163 pos_byte = PT_BYTE;
1164 XSETFASTINT (pos, PT);
1165 }
1166
1167 if (MARKERP (pos))
1168 {
1169 pos_byte = marker_byte_position (pos);
1170 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1171 return Qnil;
1172 }
1173 else
1174 {
1175 CHECK_NUMBER_COERCE_MARKER (pos);
1176 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1177 return Qnil;
1178
1179 pos_byte = CHAR_TO_BYTE (XINT (pos));
1180 }
1181
1182 return make_number (FETCH_CHAR (pos_byte));
1183 }
1184
1185 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1186 doc: /* Return character in current buffer preceding position POS.
1187 POS is an integer or a marker and defaults to point.
1188 If POS is out of range, the value is nil. */)
1189 (pos)
1190 Lisp_Object pos;
1191 {
1192 register Lisp_Object val;
1193 register int pos_byte;
1194
1195 if (NILP (pos))
1196 {
1197 pos_byte = PT_BYTE;
1198 XSETFASTINT (pos, PT);
1199 }
1200
1201 if (MARKERP (pos))
1202 {
1203 pos_byte = marker_byte_position (pos);
1204
1205 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1206 return Qnil;
1207 }
1208 else
1209 {
1210 CHECK_NUMBER_COERCE_MARKER (pos);
1211
1212 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1213 return Qnil;
1214
1215 pos_byte = CHAR_TO_BYTE (XINT (pos));
1216 }
1217
1218 if (!NILP (current_buffer->enable_multibyte_characters))
1219 {
1220 DEC_POS (pos_byte);
1221 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1222 }
1223 else
1224 {
1225 pos_byte--;
1226 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1227 }
1228 return val;
1229 }
1230 \f
1231 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1232 doc: /* Return the name under which the user logged in, as a string.
1233 This is based on the effective uid, not the real uid.
1234 Also, if the environment variables LOGNAME or USER are set,
1235 that determines the value of this function.
1236
1237 If optional argument UID is an integer, return the login name of the user
1238 with that uid, or nil if there is no such user. */)
1239 (uid)
1240 Lisp_Object uid;
1241 {
1242 struct passwd *pw;
1243
1244 /* Set up the user name info if we didn't do it before.
1245 (That can happen if Emacs is dumpable
1246 but you decide to run `temacs -l loadup' and not dump. */
1247 if (INTEGERP (Vuser_login_name))
1248 init_editfns ();
1249
1250 if (NILP (uid))
1251 return Vuser_login_name;
1252
1253 CHECK_NUMBER (uid);
1254 pw = (struct passwd *) getpwuid (XINT (uid));
1255 return (pw ? build_string (pw->pw_name) : Qnil);
1256 }
1257
1258 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1259 0, 0, 0,
1260 doc: /* Return the name of the user's real uid, as a string.
1261 This ignores the environment variables LOGNAME and USER, so it differs from
1262 `user-login-name' when running under `su'. */)
1263 ()
1264 {
1265 /* Set up the user name info if we didn't do it before.
1266 (That can happen if Emacs is dumpable
1267 but you decide to run `temacs -l loadup' and not dump. */
1268 if (INTEGERP (Vuser_login_name))
1269 init_editfns ();
1270 return Vuser_real_login_name;
1271 }
1272
1273 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1274 doc: /* Return the effective uid of Emacs.
1275 Value is an integer or float, depending on the value. */)
1276 ()
1277 {
1278 return make_fixnum_or_float (geteuid ());
1279 }
1280
1281 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1282 doc: /* Return the real uid of Emacs.
1283 Value is an integer or float, depending on the value. */)
1284 ()
1285 {
1286 return make_fixnum_or_float (getuid ());
1287 }
1288
1289 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1290 doc: /* Return the full name of the user logged in, as a string.
1291 If the full name corresponding to Emacs's userid is not known,
1292 return "unknown".
1293
1294 If optional argument UID is an integer or float, return the full name
1295 of the user with that uid, or nil if there is no such user.
1296 If UID is a string, return the full name of the user with that login
1297 name, or nil if there is no such user. */)
1298 (uid)
1299 Lisp_Object uid;
1300 {
1301 struct passwd *pw;
1302 register unsigned char *p, *q;
1303 Lisp_Object full;
1304
1305 if (NILP (uid))
1306 return Vuser_full_name;
1307 else if (NUMBERP (uid))
1308 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1309 else if (STRINGP (uid))
1310 pw = (struct passwd *) getpwnam (SDATA (uid));
1311 else
1312 error ("Invalid UID specification");
1313
1314 if (!pw)
1315 return Qnil;
1316
1317 p = (unsigned char *) USER_FULL_NAME;
1318 /* Chop off everything after the first comma. */
1319 q = (unsigned char *) index (p, ',');
1320 full = make_string (p, q ? q - p : strlen (p));
1321
1322 #ifdef AMPERSAND_FULL_NAME
1323 p = SDATA (full);
1324 q = (unsigned char *) index (p, '&');
1325 /* Substitute the login name for the &, upcasing the first character. */
1326 if (q)
1327 {
1328 register unsigned char *r;
1329 Lisp_Object login;
1330
1331 login = Fuser_login_name (make_number (pw->pw_uid));
1332 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1333 bcopy (p, r, q - p);
1334 r[q - p] = 0;
1335 strcat (r, SDATA (login));
1336 r[q - p] = UPCASE (r[q - p]);
1337 strcat (r, q + 1);
1338 full = build_string (r);
1339 }
1340 #endif /* AMPERSAND_FULL_NAME */
1341
1342 return full;
1343 }
1344
1345 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1346 doc: /* Return the name of the machine you are running on, as a string. */)
1347 ()
1348 {
1349 return Vsystem_name;
1350 }
1351
1352 /* For the benefit of callers who don't want to include lisp.h */
1353
1354 char *
1355 get_system_name ()
1356 {
1357 if (STRINGP (Vsystem_name))
1358 return (char *) SDATA (Vsystem_name);
1359 else
1360 return "";
1361 }
1362
1363 char *
1364 get_operating_system_release()
1365 {
1366 if (STRINGP (Voperating_system_release))
1367 return (char *) SDATA (Voperating_system_release);
1368 else
1369 return "";
1370 }
1371
1372 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1373 doc: /* Return the process ID of Emacs, as an integer. */)
1374 ()
1375 {
1376 return make_number (getpid ());
1377 }
1378
1379 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1380 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1381 The time is returned as a list of three integers. The first has the
1382 most significant 16 bits of the seconds, while the second has the
1383 least significant 16 bits. The third integer gives the microsecond
1384 count.
1385
1386 The microsecond count is zero on systems that do not provide
1387 resolution finer than a second. */)
1388 ()
1389 {
1390 EMACS_TIME t;
1391 Lisp_Object result[3];
1392
1393 EMACS_GET_TIME (t);
1394 XSETINT (result[0], (EMACS_SECS (t) >> 16) & 0xffff);
1395 XSETINT (result[1], (EMACS_SECS (t) >> 0) & 0xffff);
1396 XSETINT (result[2], EMACS_USECS (t));
1397
1398 return Flist (3, result);
1399 }
1400
1401 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1402 0, 0, 0,
1403 doc: /* Return the current run time used by Emacs.
1404 The time is returned as a list of three integers. The first has the
1405 most significant 16 bits of the seconds, while the second has the
1406 least significant 16 bits. The third integer gives the microsecond
1407 count.
1408
1409 On systems that can't determine the run time, get-internal-run-time
1410 does the same thing as current-time. The microsecond count is zero on
1411 systems that do not provide resolution finer than a second. */)
1412 ()
1413 {
1414 #ifdef HAVE_GETRUSAGE
1415 struct rusage usage;
1416 Lisp_Object result[3];
1417 int secs, usecs;
1418
1419 if (getrusage (RUSAGE_SELF, &usage) < 0)
1420 /* This shouldn't happen. What action is appropriate? */
1421 Fsignal (Qerror, Qnil);
1422
1423 /* Sum up user time and system time. */
1424 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1425 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1426 if (usecs >= 1000000)
1427 {
1428 usecs -= 1000000;
1429 secs++;
1430 }
1431
1432 XSETINT (result[0], (secs >> 16) & 0xffff);
1433 XSETINT (result[1], (secs >> 0) & 0xffff);
1434 XSETINT (result[2], usecs);
1435
1436 return Flist (3, result);
1437 #else
1438 return Fcurrent_time ();
1439 #endif
1440 }
1441 \f
1442
1443 int
1444 lisp_time_argument (specified_time, result, usec)
1445 Lisp_Object specified_time;
1446 time_t *result;
1447 int *usec;
1448 {
1449 if (NILP (specified_time))
1450 {
1451 if (usec)
1452 {
1453 EMACS_TIME t;
1454
1455 EMACS_GET_TIME (t);
1456 *usec = EMACS_USECS (t);
1457 *result = EMACS_SECS (t);
1458 return 1;
1459 }
1460 else
1461 return time (result) != -1;
1462 }
1463 else
1464 {
1465 Lisp_Object high, low;
1466 high = Fcar (specified_time);
1467 CHECK_NUMBER (high);
1468 low = Fcdr (specified_time);
1469 if (CONSP (low))
1470 {
1471 if (usec)
1472 {
1473 Lisp_Object usec_l = Fcdr (low);
1474 if (CONSP (usec_l))
1475 usec_l = Fcar (usec_l);
1476 if (NILP (usec_l))
1477 *usec = 0;
1478 else
1479 {
1480 CHECK_NUMBER (usec_l);
1481 *usec = XINT (usec_l);
1482 }
1483 }
1484 low = Fcar (low);
1485 }
1486 else if (usec)
1487 *usec = 0;
1488 CHECK_NUMBER (low);
1489 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1490 return *result >> 16 == XINT (high);
1491 }
1492 }
1493
1494 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1495 doc: /* Return the current time, as a float number of seconds since the epoch.
1496 If SPECIFIED-TIME is given, it is the time to convert to float
1497 instead of the current time. The argument should have the form
1498 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1499 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1500 have the form (HIGH . LOW), but this is considered obsolete.
1501
1502 WARNING: Since the result is floating point, it may not be exact.
1503 Do not use this function if precise time stamps are required. */)
1504 (specified_time)
1505 Lisp_Object specified_time;
1506 {
1507 time_t sec;
1508 int usec;
1509
1510 if (! lisp_time_argument (specified_time, &sec, &usec))
1511 error ("Invalid time specification");
1512
1513 return make_float ((sec * 1e6 + usec) / 1e6);
1514 }
1515
1516 /* Write information into buffer S of size MAXSIZE, according to the
1517 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1518 Default to Universal Time if UT is nonzero, local time otherwise.
1519 Return the number of bytes written, not including the terminating
1520 '\0'. If S is NULL, nothing will be written anywhere; so to
1521 determine how many bytes would be written, use NULL for S and
1522 ((size_t) -1) for MAXSIZE.
1523
1524 This function behaves like emacs_strftimeu, except it allows null
1525 bytes in FORMAT. */
1526 static size_t
1527 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1528 char *s;
1529 size_t maxsize;
1530 const char *format;
1531 size_t format_len;
1532 const struct tm *tp;
1533 int ut;
1534 {
1535 size_t total = 0;
1536
1537 /* Loop through all the null-terminated strings in the format
1538 argument. Normally there's just one null-terminated string, but
1539 there can be arbitrarily many, concatenated together, if the
1540 format contains '\0' bytes. emacs_strftimeu stops at the first
1541 '\0' byte so we must invoke it separately for each such string. */
1542 for (;;)
1543 {
1544 size_t len;
1545 size_t result;
1546
1547 if (s)
1548 s[0] = '\1';
1549
1550 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1551
1552 if (s)
1553 {
1554 if (result == 0 && s[0] != '\0')
1555 return 0;
1556 s += result + 1;
1557 }
1558
1559 maxsize -= result + 1;
1560 total += result;
1561 len = strlen (format);
1562 if (len == format_len)
1563 return total;
1564 total++;
1565 format += len + 1;
1566 format_len -= len + 1;
1567 }
1568 }
1569
1570 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1571 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1572 TIME is specified as (HIGH LOW . IGNORED), as returned by
1573 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1574 is also still accepted.
1575 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1576 as Universal Time; nil means describe TIME in the local time zone.
1577 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1578 by text that describes the specified date and time in TIME:
1579
1580 %Y is the year, %y within the century, %C the century.
1581 %G is the year corresponding to the ISO week, %g within the century.
1582 %m is the numeric month.
1583 %b and %h are the locale's abbreviated month name, %B the full name.
1584 %d is the day of the month, zero-padded, %e is blank-padded.
1585 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1586 %a is the locale's abbreviated name of the day of week, %A the full name.
1587 %U is the week number starting on Sunday, %W starting on Monday,
1588 %V according to ISO 8601.
1589 %j is the day of the year.
1590
1591 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1592 only blank-padded, %l is like %I blank-padded.
1593 %p is the locale's equivalent of either AM or PM.
1594 %M is the minute.
1595 %S is the second.
1596 %Z is the time zone name, %z is the numeric form.
1597 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1598
1599 %c is the locale's date and time format.
1600 %x is the locale's "preferred" date format.
1601 %D is like "%m/%d/%y".
1602
1603 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1604 %X is the locale's "preferred" time format.
1605
1606 Finally, %n is a newline, %t is a tab, %% is a literal %.
1607
1608 Certain flags and modifiers are available with some format controls.
1609 The flags are `_', `-', `^' and `#'. For certain characters X,
1610 %_X is like %X, but padded with blanks; %-X is like %X,
1611 but without padding. %^X is like %X, but with all textual
1612 characters up-cased; %#X is like %X, but with letter-case of
1613 all textual characters reversed.
1614 %NX (where N stands for an integer) is like %X,
1615 but takes up at least N (a number) positions.
1616 The modifiers are `E' and `O'. For certain characters X,
1617 %EX is a locale's alternative version of %X;
1618 %OX is like %X, but uses the locale's number symbols.
1619
1620 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1621 (format_string, time, universal)
1622 Lisp_Object format_string, time, universal;
1623 {
1624 time_t value;
1625 int size;
1626 struct tm *tm;
1627 int ut = ! NILP (universal);
1628
1629 CHECK_STRING (format_string);
1630
1631 if (! lisp_time_argument (time, &value, NULL))
1632 error ("Invalid time specification");
1633
1634 format_string = code_convert_string_norecord (format_string,
1635 Vlocale_coding_system, 1);
1636
1637 /* This is probably enough. */
1638 size = SBYTES (format_string) * 6 + 50;
1639
1640 tm = ut ? gmtime (&value) : localtime (&value);
1641 if (! tm)
1642 error ("Specified time is not representable");
1643
1644 synchronize_system_time_locale ();
1645
1646 while (1)
1647 {
1648 char *buf = (char *) alloca (size + 1);
1649 int result;
1650
1651 buf[0] = '\1';
1652 result = emacs_memftimeu (buf, size, SDATA (format_string),
1653 SBYTES (format_string),
1654 tm, ut);
1655 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1656 return code_convert_string_norecord (make_string (buf, result),
1657 Vlocale_coding_system, 0);
1658
1659 /* If buffer was too small, make it bigger and try again. */
1660 result = emacs_memftimeu (NULL, (size_t) -1,
1661 SDATA (format_string),
1662 SBYTES (format_string),
1663 tm, ut);
1664 size = result + 1;
1665 }
1666 }
1667
1668 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1669 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1670 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1671 as from `current-time' and `file-attributes', or `nil' to use the
1672 current time. The obsolete form (HIGH . LOW) is also still accepted.
1673 The list has the following nine members: SEC is an integer between 0
1674 and 60; SEC is 60 for a leap second, which only some operating systems
1675 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1676 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1677 integer between 1 and 12. YEAR is an integer indicating the
1678 four-digit year. DOW is the day of week, an integer between 0 and 6,
1679 where 0 is Sunday. DST is t if daylight savings time is effect,
1680 otherwise nil. ZONE is an integer indicating the number of seconds
1681 east of Greenwich. (Note that Common Lisp has different meanings for
1682 DOW and ZONE.) */)
1683 (specified_time)
1684 Lisp_Object specified_time;
1685 {
1686 time_t time_spec;
1687 struct tm save_tm;
1688 struct tm *decoded_time;
1689 Lisp_Object list_args[9];
1690
1691 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1692 error ("Invalid time specification");
1693
1694 decoded_time = localtime (&time_spec);
1695 if (! decoded_time)
1696 error ("Specified time is not representable");
1697 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1698 XSETFASTINT (list_args[1], decoded_time->tm_min);
1699 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1700 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1701 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1702 XSETINT (list_args[5], decoded_time->tm_year + 1900);
1703 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1704 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1705
1706 /* Make a copy, in case gmtime modifies the struct. */
1707 save_tm = *decoded_time;
1708 decoded_time = gmtime (&time_spec);
1709 if (decoded_time == 0)
1710 list_args[8] = Qnil;
1711 else
1712 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1713 return Flist (9, list_args);
1714 }
1715
1716 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1717 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1718 This is the reverse operation of `decode-time', which see.
1719 ZONE defaults to the current time zone rule. This can
1720 be a string or t (as from `set-time-zone-rule'), or it can be a list
1721 \(as from `current-time-zone') or an integer (as from `decode-time')
1722 applied without consideration for daylight savings time.
1723
1724 You can pass more than 7 arguments; then the first six arguments
1725 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1726 The intervening arguments are ignored.
1727 This feature lets (apply 'encode-time (decode-time ...)) work.
1728
1729 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1730 for example, a DAY of 0 means the day preceding the given month.
1731 Year numbers less than 100 are treated just like other year numbers.
1732 If you want them to stand for years in this century, you must do that yourself.
1733
1734 Years before 1970 are not guaranteed to work. On some systems,
1735 year values as low as 1901 do work.
1736
1737 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1738 (nargs, args)
1739 int nargs;
1740 register Lisp_Object *args;
1741 {
1742 time_t time;
1743 struct tm tm;
1744 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1745
1746 CHECK_NUMBER (args[0]); /* second */
1747 CHECK_NUMBER (args[1]); /* minute */
1748 CHECK_NUMBER (args[2]); /* hour */
1749 CHECK_NUMBER (args[3]); /* day */
1750 CHECK_NUMBER (args[4]); /* month */
1751 CHECK_NUMBER (args[5]); /* year */
1752
1753 tm.tm_sec = XINT (args[0]);
1754 tm.tm_min = XINT (args[1]);
1755 tm.tm_hour = XINT (args[2]);
1756 tm.tm_mday = XINT (args[3]);
1757 tm.tm_mon = XINT (args[4]) - 1;
1758 tm.tm_year = XINT (args[5]) - 1900;
1759 tm.tm_isdst = -1;
1760
1761 if (CONSP (zone))
1762 zone = Fcar (zone);
1763 if (NILP (zone))
1764 time = mktime (&tm);
1765 else
1766 {
1767 char tzbuf[100];
1768 char *tzstring;
1769 char **oldenv = environ, **newenv;
1770
1771 if (EQ (zone, Qt))
1772 tzstring = "UTC0";
1773 else if (STRINGP (zone))
1774 tzstring = (char *) SDATA (zone);
1775 else if (INTEGERP (zone))
1776 {
1777 int abszone = abs (XINT (zone));
1778 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1779 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1780 tzstring = tzbuf;
1781 }
1782 else
1783 error ("Invalid time zone specification");
1784
1785 /* Set TZ before calling mktime; merely adjusting mktime's returned
1786 value doesn't suffice, since that would mishandle leap seconds. */
1787 set_time_zone_rule (tzstring);
1788
1789 time = mktime (&tm);
1790
1791 /* Restore TZ to previous value. */
1792 newenv = environ;
1793 environ = oldenv;
1794 xfree (newenv);
1795 #ifdef LOCALTIME_CACHE
1796 tzset ();
1797 #endif
1798 }
1799
1800 if (time == (time_t) -1)
1801 error ("Specified time is not representable");
1802
1803 return make_time (time);
1804 }
1805
1806 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1807 doc: /* Return the current time, as a human-readable string.
1808 Programs can use this function to decode a time,
1809 since the number of columns in each field is fixed.
1810 The format is `Sun Sep 16 01:03:52 1973'.
1811 However, see also the functions `decode-time' and `format-time-string'
1812 which provide a much more powerful and general facility.
1813
1814 If SPECIFIED-TIME is given, it is a time to format instead of the
1815 current time. The argument should have the form (HIGH LOW . IGNORED).
1816 Thus, you can use times obtained from `current-time' and from
1817 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1818 but this is considered obsolete. */)
1819 (specified_time)
1820 Lisp_Object specified_time;
1821 {
1822 time_t value;
1823 char buf[30];
1824 register char *tem;
1825
1826 if (! lisp_time_argument (specified_time, &value, NULL))
1827 value = -1;
1828 tem = (char *) ctime (&value);
1829
1830 strncpy (buf, tem, 24);
1831 buf[24] = 0;
1832
1833 return build_string (buf);
1834 }
1835
1836 #define TM_YEAR_BASE 1900
1837
1838 /* Yield A - B, measured in seconds.
1839 This function is copied from the GNU C Library. */
1840 static int
1841 tm_diff (a, b)
1842 struct tm *a, *b;
1843 {
1844 /* Compute intervening leap days correctly even if year is negative.
1845 Take care to avoid int overflow in leap day calculations,
1846 but it's OK to assume that A and B are close to each other. */
1847 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1848 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1849 int a100 = a4 / 25 - (a4 % 25 < 0);
1850 int b100 = b4 / 25 - (b4 % 25 < 0);
1851 int a400 = a100 >> 2;
1852 int b400 = b100 >> 2;
1853 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1854 int years = a->tm_year - b->tm_year;
1855 int days = (365 * years + intervening_leap_days
1856 + (a->tm_yday - b->tm_yday));
1857 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1858 + (a->tm_min - b->tm_min))
1859 + (a->tm_sec - b->tm_sec));
1860 }
1861
1862 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1863 doc: /* Return the offset and name for the local time zone.
1864 This returns a list of the form (OFFSET NAME).
1865 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1866 A negative value means west of Greenwich.
1867 NAME is a string giving the name of the time zone.
1868 If SPECIFIED-TIME is given, the time zone offset is determined from it
1869 instead of using the current time. The argument should have the form
1870 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1871 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1872 have the form (HIGH . LOW), but this is considered obsolete.
1873
1874 Some operating systems cannot provide all this information to Emacs;
1875 in this case, `current-time-zone' returns a list containing nil for
1876 the data it can't find. */)
1877 (specified_time)
1878 Lisp_Object specified_time;
1879 {
1880 time_t value;
1881 struct tm *t;
1882 struct tm gmt;
1883
1884 if (lisp_time_argument (specified_time, &value, NULL)
1885 && (t = gmtime (&value)) != 0
1886 && (gmt = *t, t = localtime (&value)) != 0)
1887 {
1888 int offset = tm_diff (t, &gmt);
1889 char *s = 0;
1890 char buf[6];
1891 #ifdef HAVE_TM_ZONE
1892 if (t->tm_zone)
1893 s = (char *)t->tm_zone;
1894 #else /* not HAVE_TM_ZONE */
1895 #ifdef HAVE_TZNAME
1896 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1897 s = tzname[t->tm_isdst];
1898 #endif
1899 #endif /* not HAVE_TM_ZONE */
1900
1901 #if defined HAVE_TM_ZONE || defined HAVE_TZNAME
1902 if (s)
1903 {
1904 /* On Japanese w32, we can get a Japanese string as time
1905 zone name. Don't accept that. */
1906 char *p;
1907 for (p = s; *p && (isalnum ((unsigned char)*p) || *p == ' '); ++p)
1908 ;
1909 if (p == s || *p)
1910 s = NULL;
1911 }
1912 #endif
1913
1914 if (!s)
1915 {
1916 /* No local time zone name is available; use "+-NNNN" instead. */
1917 int am = (offset < 0 ? -offset : offset) / 60;
1918 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
1919 s = buf;
1920 }
1921 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
1922 }
1923 else
1924 return Fmake_list (make_number (2), Qnil);
1925 }
1926
1927 /* This holds the value of `environ' produced by the previous
1928 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
1929 has never been called. */
1930 static char **environbuf;
1931
1932 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
1933 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
1934 If TZ is nil, use implementation-defined default time zone information.
1935 If TZ is t, use Universal Time. */)
1936 (tz)
1937 Lisp_Object tz;
1938 {
1939 char *tzstring;
1940
1941 if (NILP (tz))
1942 tzstring = 0;
1943 else if (EQ (tz, Qt))
1944 tzstring = "UTC0";
1945 else
1946 {
1947 CHECK_STRING (tz);
1948 tzstring = (char *) SDATA (tz);
1949 }
1950
1951 set_time_zone_rule (tzstring);
1952 if (environbuf)
1953 free (environbuf);
1954 environbuf = environ;
1955
1956 return Qnil;
1957 }
1958
1959 #ifdef LOCALTIME_CACHE
1960
1961 /* These two values are known to load tz files in buggy implementations,
1962 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
1963 Their values shouldn't matter in non-buggy implementations.
1964 We don't use string literals for these strings,
1965 since if a string in the environment is in readonly
1966 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
1967 See Sun bugs 1113095 and 1114114, ``Timezone routines
1968 improperly modify environment''. */
1969
1970 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
1971 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
1972
1973 #endif
1974
1975 /* Set the local time zone rule to TZSTRING.
1976 This allocates memory into `environ', which it is the caller's
1977 responsibility to free. */
1978
1979 void
1980 set_time_zone_rule (tzstring)
1981 char *tzstring;
1982 {
1983 int envptrs;
1984 char **from, **to, **newenv;
1985
1986 /* Make the ENVIRON vector longer with room for TZSTRING. */
1987 for (from = environ; *from; from++)
1988 continue;
1989 envptrs = from - environ + 2;
1990 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
1991 + (tzstring ? strlen (tzstring) + 4 : 0));
1992
1993 /* Add TZSTRING to the end of environ, as a value for TZ. */
1994 if (tzstring)
1995 {
1996 char *t = (char *) (to + envptrs);
1997 strcpy (t, "TZ=");
1998 strcat (t, tzstring);
1999 *to++ = t;
2000 }
2001
2002 /* Copy the old environ vector elements into NEWENV,
2003 but don't copy the TZ variable.
2004 So we have only one definition of TZ, which came from TZSTRING. */
2005 for (from = environ; *from; from++)
2006 if (strncmp (*from, "TZ=", 3) != 0)
2007 *to++ = *from;
2008 *to = 0;
2009
2010 environ = newenv;
2011
2012 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2013 the TZ variable is stored. If we do not have a TZSTRING,
2014 TO points to the vector slot which has the terminating null. */
2015
2016 #ifdef LOCALTIME_CACHE
2017 {
2018 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2019 "US/Pacific" that loads a tz file, then changes to a value like
2020 "XXX0" that does not load a tz file, and then changes back to
2021 its original value, the last change is (incorrectly) ignored.
2022 Also, if TZ changes twice in succession to values that do
2023 not load a tz file, tzset can dump core (see Sun bug#1225179).
2024 The following code works around these bugs. */
2025
2026 if (tzstring)
2027 {
2028 /* Temporarily set TZ to a value that loads a tz file
2029 and that differs from tzstring. */
2030 char *tz = *newenv;
2031 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2032 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2033 tzset ();
2034 *newenv = tz;
2035 }
2036 else
2037 {
2038 /* The implied tzstring is unknown, so temporarily set TZ to
2039 two different values that each load a tz file. */
2040 *to = set_time_zone_rule_tz1;
2041 to[1] = 0;
2042 tzset ();
2043 *to = set_time_zone_rule_tz2;
2044 tzset ();
2045 *to = 0;
2046 }
2047
2048 /* Now TZ has the desired value, and tzset can be invoked safely. */
2049 }
2050
2051 tzset ();
2052 #endif
2053 }
2054 \f
2055 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2056 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2057 type of object is Lisp_String). INHERIT is passed to
2058 INSERT_FROM_STRING_FUNC as the last argument. */
2059
2060 static void
2061 general_insert_function (insert_func, insert_from_string_func,
2062 inherit, nargs, args)
2063 void (*insert_func) P_ ((const unsigned char *, int));
2064 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
2065 int inherit, nargs;
2066 register Lisp_Object *args;
2067 {
2068 register int argnum;
2069 register Lisp_Object val;
2070
2071 for (argnum = 0; argnum < nargs; argnum++)
2072 {
2073 val = args[argnum];
2074 retry:
2075 if (INTEGERP (val))
2076 {
2077 unsigned char str[MAX_MULTIBYTE_LENGTH];
2078 int len;
2079
2080 if (!NILP (current_buffer->enable_multibyte_characters))
2081 len = CHAR_STRING (XFASTINT (val), str);
2082 else
2083 {
2084 str[0] = (SINGLE_BYTE_CHAR_P (XINT (val))
2085 ? XINT (val)
2086 : multibyte_char_to_unibyte (XINT (val), Qnil));
2087 len = 1;
2088 }
2089 (*insert_func) (str, len);
2090 }
2091 else if (STRINGP (val))
2092 {
2093 (*insert_from_string_func) (val, 0, 0,
2094 SCHARS (val),
2095 SBYTES (val),
2096 inherit);
2097 }
2098 else
2099 {
2100 val = wrong_type_argument (Qchar_or_string_p, val);
2101 goto retry;
2102 }
2103 }
2104 }
2105
2106 void
2107 insert1 (arg)
2108 Lisp_Object arg;
2109 {
2110 Finsert (1, &arg);
2111 }
2112
2113
2114 /* Callers passing one argument to Finsert need not gcpro the
2115 argument "array", since the only element of the array will
2116 not be used after calling insert or insert_from_string, so
2117 we don't care if it gets trashed. */
2118
2119 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2120 doc: /* Insert the arguments, either strings or characters, at point.
2121 Point and before-insertion markers move forward to end up
2122 after the inserted text.
2123 Any other markers at the point of insertion remain before the text.
2124
2125 If the current buffer is multibyte, unibyte strings are converted
2126 to multibyte for insertion (see `string-make-multibyte').
2127 If the current buffer is unibyte, multibyte strings are converted
2128 to unibyte for insertion (see `string-make-unibyte').
2129
2130 When operating on binary data, it may be necessary to preserve the
2131 original bytes of a unibyte string when inserting it into a multibyte
2132 buffer; to accomplish this, apply `string-as-multibyte' to the string
2133 and insert the result.
2134
2135 usage: (insert &rest ARGS) */)
2136 (nargs, args)
2137 int nargs;
2138 register Lisp_Object *args;
2139 {
2140 general_insert_function (insert, insert_from_string, 0, nargs, args);
2141 return Qnil;
2142 }
2143
2144 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2145 0, MANY, 0,
2146 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2147 Point and before-insertion markers move forward to end up
2148 after the inserted text.
2149 Any other markers at the point of insertion remain before the text.
2150
2151 If the current buffer is multibyte, unibyte strings are converted
2152 to multibyte for insertion (see `unibyte-char-to-multibyte').
2153 If the current buffer is unibyte, multibyte strings are converted
2154 to unibyte for insertion.
2155
2156 usage: (insert-and-inherit &rest ARGS) */)
2157 (nargs, args)
2158 int nargs;
2159 register Lisp_Object *args;
2160 {
2161 general_insert_function (insert_and_inherit, insert_from_string, 1,
2162 nargs, args);
2163 return Qnil;
2164 }
2165
2166 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2167 doc: /* Insert strings or characters at point, relocating markers after the text.
2168 Point and markers move forward to end up after the inserted text.
2169
2170 If the current buffer is multibyte, unibyte strings are converted
2171 to multibyte for insertion (see `unibyte-char-to-multibyte').
2172 If the current buffer is unibyte, multibyte strings are converted
2173 to unibyte for insertion.
2174
2175 usage: (insert-before-markers &rest ARGS) */)
2176 (nargs, args)
2177 int nargs;
2178 register Lisp_Object *args;
2179 {
2180 general_insert_function (insert_before_markers,
2181 insert_from_string_before_markers, 0,
2182 nargs, args);
2183 return Qnil;
2184 }
2185
2186 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2187 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2188 doc: /* Insert text at point, relocating markers and inheriting properties.
2189 Point and markers move forward to end up after the inserted text.
2190
2191 If the current buffer is multibyte, unibyte strings are converted
2192 to multibyte for insertion (see `unibyte-char-to-multibyte').
2193 If the current buffer is unibyte, multibyte strings are converted
2194 to unibyte for insertion.
2195
2196 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2197 (nargs, args)
2198 int nargs;
2199 register Lisp_Object *args;
2200 {
2201 general_insert_function (insert_before_markers_and_inherit,
2202 insert_from_string_before_markers, 1,
2203 nargs, args);
2204 return Qnil;
2205 }
2206 \f
2207 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2208 doc: /* Insert COUNT (second arg) copies of CHARACTER (first arg).
2209 Both arguments are required.
2210 Point, and before-insertion markers, are relocated as in the function `insert'.
2211 The optional third arg INHERIT, if non-nil, says to inherit text properties
2212 from adjoining text, if those properties are sticky. */)
2213 (character, count, inherit)
2214 Lisp_Object character, count, inherit;
2215 {
2216 register unsigned char *string;
2217 register int strlen;
2218 register int i, n;
2219 int len;
2220 unsigned char str[MAX_MULTIBYTE_LENGTH];
2221
2222 CHECK_NUMBER (character);
2223 CHECK_NUMBER (count);
2224
2225 if (!NILP (current_buffer->enable_multibyte_characters))
2226 len = CHAR_STRING (XFASTINT (character), str);
2227 else
2228 str[0] = XFASTINT (character), len = 1;
2229 n = XINT (count) * len;
2230 if (n <= 0)
2231 return Qnil;
2232 strlen = min (n, 256 * len);
2233 string = (unsigned char *) alloca (strlen);
2234 for (i = 0; i < strlen; i++)
2235 string[i] = str[i % len];
2236 while (n >= strlen)
2237 {
2238 QUIT;
2239 if (!NILP (inherit))
2240 insert_and_inherit (string, strlen);
2241 else
2242 insert (string, strlen);
2243 n -= strlen;
2244 }
2245 if (n > 0)
2246 {
2247 if (!NILP (inherit))
2248 insert_and_inherit (string, n);
2249 else
2250 insert (string, n);
2251 }
2252 return Qnil;
2253 }
2254
2255 \f
2256 /* Making strings from buffer contents. */
2257
2258 /* Return a Lisp_String containing the text of the current buffer from
2259 START to END. If text properties are in use and the current buffer
2260 has properties in the range specified, the resulting string will also
2261 have them, if PROPS is nonzero.
2262
2263 We don't want to use plain old make_string here, because it calls
2264 make_uninit_string, which can cause the buffer arena to be
2265 compacted. make_string has no way of knowing that the data has
2266 been moved, and thus copies the wrong data into the string. This
2267 doesn't effect most of the other users of make_string, so it should
2268 be left as is. But we should use this function when conjuring
2269 buffer substrings. */
2270
2271 Lisp_Object
2272 make_buffer_string (start, end, props)
2273 int start, end;
2274 int props;
2275 {
2276 int start_byte = CHAR_TO_BYTE (start);
2277 int end_byte = CHAR_TO_BYTE (end);
2278
2279 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2280 }
2281
2282 /* Return a Lisp_String containing the text of the current buffer from
2283 START / START_BYTE to END / END_BYTE.
2284
2285 If text properties are in use and the current buffer
2286 has properties in the range specified, the resulting string will also
2287 have them, if PROPS is nonzero.
2288
2289 We don't want to use plain old make_string here, because it calls
2290 make_uninit_string, which can cause the buffer arena to be
2291 compacted. make_string has no way of knowing that the data has
2292 been moved, and thus copies the wrong data into the string. This
2293 doesn't effect most of the other users of make_string, so it should
2294 be left as is. But we should use this function when conjuring
2295 buffer substrings. */
2296
2297 Lisp_Object
2298 make_buffer_string_both (start, start_byte, end, end_byte, props)
2299 int start, start_byte, end, end_byte;
2300 int props;
2301 {
2302 Lisp_Object result, tem, tem1;
2303
2304 if (start < GPT && GPT < end)
2305 move_gap (start);
2306
2307 if (! NILP (current_buffer->enable_multibyte_characters))
2308 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2309 else
2310 result = make_uninit_string (end - start);
2311 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2312 end_byte - start_byte);
2313
2314 /* If desired, update and copy the text properties. */
2315 if (props)
2316 {
2317 update_buffer_properties (start, end);
2318
2319 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2320 tem1 = Ftext_properties_at (make_number (start), Qnil);
2321
2322 if (XINT (tem) != end || !NILP (tem1))
2323 copy_intervals_to_string (result, current_buffer, start,
2324 end - start);
2325 }
2326
2327 return result;
2328 }
2329
2330 /* Call Vbuffer_access_fontify_functions for the range START ... END
2331 in the current buffer, if necessary. */
2332
2333 static void
2334 update_buffer_properties (start, end)
2335 int start, end;
2336 {
2337 /* If this buffer has some access functions,
2338 call them, specifying the range of the buffer being accessed. */
2339 if (!NILP (Vbuffer_access_fontify_functions))
2340 {
2341 Lisp_Object args[3];
2342 Lisp_Object tem;
2343
2344 args[0] = Qbuffer_access_fontify_functions;
2345 XSETINT (args[1], start);
2346 XSETINT (args[2], end);
2347
2348 /* But don't call them if we can tell that the work
2349 has already been done. */
2350 if (!NILP (Vbuffer_access_fontified_property))
2351 {
2352 tem = Ftext_property_any (args[1], args[2],
2353 Vbuffer_access_fontified_property,
2354 Qnil, Qnil);
2355 if (! NILP (tem))
2356 Frun_hook_with_args (3, args);
2357 }
2358 else
2359 Frun_hook_with_args (3, args);
2360 }
2361 }
2362
2363 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2364 doc: /* Return the contents of part of the current buffer as a string.
2365 The two arguments START and END are character positions;
2366 they can be in either order.
2367 The string returned is multibyte if the buffer is multibyte.
2368
2369 This function copies the text properties of that part of the buffer
2370 into the result string; if you don't want the text properties,
2371 use `buffer-substring-no-properties' instead. */)
2372 (start, end)
2373 Lisp_Object start, end;
2374 {
2375 register int b, e;
2376
2377 validate_region (&start, &end);
2378 b = XINT (start);
2379 e = XINT (end);
2380
2381 return make_buffer_string (b, e, 1);
2382 }
2383
2384 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2385 Sbuffer_substring_no_properties, 2, 2, 0,
2386 doc: /* Return the characters of part of the buffer, without the text properties.
2387 The two arguments START and END are character positions;
2388 they can be in either order. */)
2389 (start, end)
2390 Lisp_Object start, end;
2391 {
2392 register int b, e;
2393
2394 validate_region (&start, &end);
2395 b = XINT (start);
2396 e = XINT (end);
2397
2398 return make_buffer_string (b, e, 0);
2399 }
2400
2401 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2402 doc: /* Return the contents of the current buffer as a string.
2403 If narrowing is in effect, this function returns only the visible part
2404 of the buffer. */)
2405 ()
2406 {
2407 return make_buffer_string (BEGV, ZV, 1);
2408 }
2409
2410 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2411 1, 3, 0,
2412 doc: /* Insert before point a substring of the contents of BUFFER.
2413 BUFFER may be a buffer or a buffer name.
2414 Arguments START and END are character positions specifying the substring.
2415 They default to the values of (point-min) and (point-max) in BUFFER. */)
2416 (buffer, start, end)
2417 Lisp_Object buffer, start, end;
2418 {
2419 register int b, e, temp;
2420 register struct buffer *bp, *obuf;
2421 Lisp_Object buf;
2422
2423 buf = Fget_buffer (buffer);
2424 if (NILP (buf))
2425 nsberror (buffer);
2426 bp = XBUFFER (buf);
2427 if (NILP (bp->name))
2428 error ("Selecting deleted buffer");
2429
2430 if (NILP (start))
2431 b = BUF_BEGV (bp);
2432 else
2433 {
2434 CHECK_NUMBER_COERCE_MARKER (start);
2435 b = XINT (start);
2436 }
2437 if (NILP (end))
2438 e = BUF_ZV (bp);
2439 else
2440 {
2441 CHECK_NUMBER_COERCE_MARKER (end);
2442 e = XINT (end);
2443 }
2444
2445 if (b > e)
2446 temp = b, b = e, e = temp;
2447
2448 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2449 args_out_of_range (start, end);
2450
2451 obuf = current_buffer;
2452 set_buffer_internal_1 (bp);
2453 update_buffer_properties (b, e);
2454 set_buffer_internal_1 (obuf);
2455
2456 insert_from_buffer (bp, b, e - b, 0);
2457 return Qnil;
2458 }
2459
2460 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2461 6, 6, 0,
2462 doc: /* Compare two substrings of two buffers; return result as number.
2463 the value is -N if first string is less after N-1 chars,
2464 +N if first string is greater after N-1 chars, or 0 if strings match.
2465 Each substring is represented as three arguments: BUFFER, START and END.
2466 That makes six args in all, three for each substring.
2467
2468 The value of `case-fold-search' in the current buffer
2469 determines whether case is significant or ignored. */)
2470 (buffer1, start1, end1, buffer2, start2, end2)
2471 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2472 {
2473 register int begp1, endp1, begp2, endp2, temp;
2474 register struct buffer *bp1, *bp2;
2475 register Lisp_Object *trt
2476 = (!NILP (current_buffer->case_fold_search)
2477 ? XCHAR_TABLE (current_buffer->case_canon_table)->contents : 0);
2478 int chars = 0;
2479 int i1, i2, i1_byte, i2_byte;
2480
2481 /* Find the first buffer and its substring. */
2482
2483 if (NILP (buffer1))
2484 bp1 = current_buffer;
2485 else
2486 {
2487 Lisp_Object buf1;
2488 buf1 = Fget_buffer (buffer1);
2489 if (NILP (buf1))
2490 nsberror (buffer1);
2491 bp1 = XBUFFER (buf1);
2492 if (NILP (bp1->name))
2493 error ("Selecting deleted buffer");
2494 }
2495
2496 if (NILP (start1))
2497 begp1 = BUF_BEGV (bp1);
2498 else
2499 {
2500 CHECK_NUMBER_COERCE_MARKER (start1);
2501 begp1 = XINT (start1);
2502 }
2503 if (NILP (end1))
2504 endp1 = BUF_ZV (bp1);
2505 else
2506 {
2507 CHECK_NUMBER_COERCE_MARKER (end1);
2508 endp1 = XINT (end1);
2509 }
2510
2511 if (begp1 > endp1)
2512 temp = begp1, begp1 = endp1, endp1 = temp;
2513
2514 if (!(BUF_BEGV (bp1) <= begp1
2515 && begp1 <= endp1
2516 && endp1 <= BUF_ZV (bp1)))
2517 args_out_of_range (start1, end1);
2518
2519 /* Likewise for second substring. */
2520
2521 if (NILP (buffer2))
2522 bp2 = current_buffer;
2523 else
2524 {
2525 Lisp_Object buf2;
2526 buf2 = Fget_buffer (buffer2);
2527 if (NILP (buf2))
2528 nsberror (buffer2);
2529 bp2 = XBUFFER (buf2);
2530 if (NILP (bp2->name))
2531 error ("Selecting deleted buffer");
2532 }
2533
2534 if (NILP (start2))
2535 begp2 = BUF_BEGV (bp2);
2536 else
2537 {
2538 CHECK_NUMBER_COERCE_MARKER (start2);
2539 begp2 = XINT (start2);
2540 }
2541 if (NILP (end2))
2542 endp2 = BUF_ZV (bp2);
2543 else
2544 {
2545 CHECK_NUMBER_COERCE_MARKER (end2);
2546 endp2 = XINT (end2);
2547 }
2548
2549 if (begp2 > endp2)
2550 temp = begp2, begp2 = endp2, endp2 = temp;
2551
2552 if (!(BUF_BEGV (bp2) <= begp2
2553 && begp2 <= endp2
2554 && endp2 <= BUF_ZV (bp2)))
2555 args_out_of_range (start2, end2);
2556
2557 i1 = begp1;
2558 i2 = begp2;
2559 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2560 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2561
2562 while (i1 < endp1 && i2 < endp2)
2563 {
2564 /* When we find a mismatch, we must compare the
2565 characters, not just the bytes. */
2566 int c1, c2;
2567
2568 QUIT;
2569
2570 if (! NILP (bp1->enable_multibyte_characters))
2571 {
2572 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2573 BUF_INC_POS (bp1, i1_byte);
2574 i1++;
2575 }
2576 else
2577 {
2578 c1 = BUF_FETCH_BYTE (bp1, i1);
2579 c1 = unibyte_char_to_multibyte (c1);
2580 i1++;
2581 }
2582
2583 if (! NILP (bp2->enable_multibyte_characters))
2584 {
2585 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2586 BUF_INC_POS (bp2, i2_byte);
2587 i2++;
2588 }
2589 else
2590 {
2591 c2 = BUF_FETCH_BYTE (bp2, i2);
2592 c2 = unibyte_char_to_multibyte (c2);
2593 i2++;
2594 }
2595
2596 if (trt)
2597 {
2598 c1 = XINT (trt[c1]);
2599 c2 = XINT (trt[c2]);
2600 }
2601 if (c1 < c2)
2602 return make_number (- 1 - chars);
2603 if (c1 > c2)
2604 return make_number (chars + 1);
2605
2606 chars++;
2607 }
2608
2609 /* The strings match as far as they go.
2610 If one is shorter, that one is less. */
2611 if (chars < endp1 - begp1)
2612 return make_number (chars + 1);
2613 else if (chars < endp2 - begp2)
2614 return make_number (- chars - 1);
2615
2616 /* Same length too => they are equal. */
2617 return make_number (0);
2618 }
2619 \f
2620 static Lisp_Object
2621 subst_char_in_region_unwind (arg)
2622 Lisp_Object arg;
2623 {
2624 return current_buffer->undo_list = arg;
2625 }
2626
2627 static Lisp_Object
2628 subst_char_in_region_unwind_1 (arg)
2629 Lisp_Object arg;
2630 {
2631 return current_buffer->filename = arg;
2632 }
2633
2634 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2635 Ssubst_char_in_region, 4, 5, 0,
2636 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2637 If optional arg NOUNDO is non-nil, don't record this change for undo
2638 and don't mark the buffer as really changed.
2639 Both characters must have the same length of multi-byte form. */)
2640 (start, end, fromchar, tochar, noundo)
2641 Lisp_Object start, end, fromchar, tochar, noundo;
2642 {
2643 register int pos, pos_byte, stop, i, len, end_byte;
2644 int changed = 0;
2645 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2646 unsigned char *p;
2647 int count = SPECPDL_INDEX ();
2648 #define COMBINING_NO 0
2649 #define COMBINING_BEFORE 1
2650 #define COMBINING_AFTER 2
2651 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2652 int maybe_byte_combining = COMBINING_NO;
2653 int last_changed = 0;
2654 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2655
2656 validate_region (&start, &end);
2657 CHECK_NUMBER (fromchar);
2658 CHECK_NUMBER (tochar);
2659
2660 if (multibyte_p)
2661 {
2662 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2663 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2664 error ("Characters in `subst-char-in-region' have different byte-lengths");
2665 if (!ASCII_BYTE_P (*tostr))
2666 {
2667 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2668 complete multibyte character, it may be combined with the
2669 after bytes. If it is in the range 0xA0..0xFF, it may be
2670 combined with the before and after bytes. */
2671 if (!CHAR_HEAD_P (*tostr))
2672 maybe_byte_combining = COMBINING_BOTH;
2673 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2674 maybe_byte_combining = COMBINING_AFTER;
2675 }
2676 }
2677 else
2678 {
2679 len = 1;
2680 fromstr[0] = XFASTINT (fromchar);
2681 tostr[0] = XFASTINT (tochar);
2682 }
2683
2684 pos = XINT (start);
2685 pos_byte = CHAR_TO_BYTE (pos);
2686 stop = CHAR_TO_BYTE (XINT (end));
2687 end_byte = stop;
2688
2689 /* If we don't want undo, turn off putting stuff on the list.
2690 That's faster than getting rid of things,
2691 and it prevents even the entry for a first change.
2692 Also inhibit locking the file. */
2693 if (!NILP (noundo))
2694 {
2695 record_unwind_protect (subst_char_in_region_unwind,
2696 current_buffer->undo_list);
2697 current_buffer->undo_list = Qt;
2698 /* Don't do file-locking. */
2699 record_unwind_protect (subst_char_in_region_unwind_1,
2700 current_buffer->filename);
2701 current_buffer->filename = Qnil;
2702 }
2703
2704 if (pos_byte < GPT_BYTE)
2705 stop = min (stop, GPT_BYTE);
2706 while (1)
2707 {
2708 int pos_byte_next = pos_byte;
2709
2710 if (pos_byte >= stop)
2711 {
2712 if (pos_byte >= end_byte) break;
2713 stop = end_byte;
2714 }
2715 p = BYTE_POS_ADDR (pos_byte);
2716 if (multibyte_p)
2717 INC_POS (pos_byte_next);
2718 else
2719 ++pos_byte_next;
2720 if (pos_byte_next - pos_byte == len
2721 && p[0] == fromstr[0]
2722 && (len == 1
2723 || (p[1] == fromstr[1]
2724 && (len == 2 || (p[2] == fromstr[2]
2725 && (len == 3 || p[3] == fromstr[3]))))))
2726 {
2727 if (! changed)
2728 {
2729 changed = pos;
2730 modify_region (current_buffer, changed, XINT (end));
2731
2732 if (! NILP (noundo))
2733 {
2734 if (MODIFF - 1 == SAVE_MODIFF)
2735 SAVE_MODIFF++;
2736 if (MODIFF - 1 == current_buffer->auto_save_modified)
2737 current_buffer->auto_save_modified++;
2738 }
2739 }
2740
2741 /* Take care of the case where the new character
2742 combines with neighboring bytes. */
2743 if (maybe_byte_combining
2744 && (maybe_byte_combining == COMBINING_AFTER
2745 ? (pos_byte_next < Z_BYTE
2746 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2747 : ((pos_byte_next < Z_BYTE
2748 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2749 || (pos_byte > BEG_BYTE
2750 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2751 {
2752 Lisp_Object tem, string;
2753
2754 struct gcpro gcpro1;
2755
2756 tem = current_buffer->undo_list;
2757 GCPRO1 (tem);
2758
2759 /* Make a multibyte string containing this single character. */
2760 string = make_multibyte_string (tostr, 1, len);
2761 /* replace_range is less efficient, because it moves the gap,
2762 but it handles combining correctly. */
2763 replace_range (pos, pos + 1, string,
2764 0, 0, 1);
2765 pos_byte_next = CHAR_TO_BYTE (pos);
2766 if (pos_byte_next > pos_byte)
2767 /* Before combining happened. We should not increment
2768 POS. So, to cancel the later increment of POS,
2769 decrease it now. */
2770 pos--;
2771 else
2772 INC_POS (pos_byte_next);
2773
2774 if (! NILP (noundo))
2775 current_buffer->undo_list = tem;
2776
2777 UNGCPRO;
2778 }
2779 else
2780 {
2781 if (NILP (noundo))
2782 record_change (pos, 1);
2783 for (i = 0; i < len; i++) *p++ = tostr[i];
2784 }
2785 last_changed = pos + 1;
2786 }
2787 pos_byte = pos_byte_next;
2788 pos++;
2789 }
2790
2791 if (changed)
2792 {
2793 signal_after_change (changed,
2794 last_changed - changed, last_changed - changed);
2795 update_compositions (changed, last_changed, CHECK_ALL);
2796 }
2797
2798 unbind_to (count, Qnil);
2799 return Qnil;
2800 }
2801
2802 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2803 Stranslate_region_internal, 3, 3, 0,
2804 doc: /* Internal use only.
2805 From START to END, translate characters according to TABLE.
2806 TABLE is a string; the Nth character in it is the mapping
2807 for the character with code N.
2808 It returns the number of characters changed. */)
2809 (start, end, table)
2810 Lisp_Object start;
2811 Lisp_Object end;
2812 register Lisp_Object table;
2813 {
2814 register unsigned char *tt; /* Trans table. */
2815 register int nc; /* New character. */
2816 int cnt; /* Number of changes made. */
2817 int size; /* Size of translate table. */
2818 int pos, pos_byte, end_pos;
2819 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2820 int string_multibyte;
2821
2822 validate_region (&start, &end);
2823 if (CHAR_TABLE_P (table))
2824 {
2825 size = MAX_CHAR;
2826 tt = NULL;
2827 }
2828 else
2829 {
2830 CHECK_STRING (table);
2831
2832 if (! multibyte && (SCHARS (table) < SBYTES (table)))
2833 table = string_make_unibyte (table);
2834 string_multibyte = SCHARS (table) < SBYTES (table);
2835 size = SCHARS (table);
2836 tt = SDATA (table);
2837 }
2838
2839 pos = XINT (start);
2840 pos_byte = CHAR_TO_BYTE (pos);
2841 end_pos = XINT (end);
2842 modify_region (current_buffer, pos, XINT (end));
2843
2844 cnt = 0;
2845 for (; pos < end_pos; )
2846 {
2847 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
2848 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
2849 int len, str_len;
2850 int oc;
2851
2852 if (multibyte)
2853 oc = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
2854 else
2855 oc = *p, len = 1;
2856 if (oc < size)
2857 {
2858 if (tt)
2859 {
2860 if (string_multibyte)
2861 {
2862 str = tt + string_char_to_byte (table, oc);
2863 nc = STRING_CHAR_AND_LENGTH (str, MAX_MULTIBYTE_LENGTH,
2864 str_len);
2865 }
2866 else
2867 {
2868 nc = tt[oc];
2869 if (! ASCII_BYTE_P (nc) && multibyte)
2870 {
2871 str_len = CHAR_STRING (nc, buf);
2872 str = buf;
2873 }
2874 else
2875 {
2876 str_len = 1;
2877 str = tt + oc;
2878 }
2879 }
2880 }
2881 else
2882 {
2883 Lisp_Object val;
2884 int c;
2885
2886 nc = oc;
2887 val = CHAR_TABLE_REF (table, oc);
2888 if (INTEGERP (val)
2889 && (c = XINT (val), CHAR_VALID_P (c, 0)))
2890 {
2891 nc = c;
2892 str_len = CHAR_STRING (nc, buf);
2893 str = buf;
2894 }
2895 }
2896
2897 if (nc != oc)
2898 {
2899 if (len != str_len)
2900 {
2901 Lisp_Object string;
2902
2903 /* This is less efficient, because it moves the gap,
2904 but it should multibyte characters correctly. */
2905 string = make_multibyte_string (str, 1, str_len);
2906 replace_range (pos, pos + 1, string, 1, 0, 1);
2907 len = str_len;
2908 }
2909 else
2910 {
2911 record_change (pos, 1);
2912 while (str_len-- > 0)
2913 *p++ = *str++;
2914 signal_after_change (pos, 1, 1);
2915 update_compositions (pos, pos + 1, CHECK_BORDER);
2916 }
2917 ++cnt;
2918 }
2919 }
2920 pos_byte += len;
2921 pos++;
2922 }
2923
2924 return make_number (cnt);
2925 }
2926
2927 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
2928 doc: /* Delete the text between point and mark.
2929
2930 When called from a program, expects two arguments,
2931 positions (integers or markers) specifying the stretch to be deleted. */)
2932 (start, end)
2933 Lisp_Object start, end;
2934 {
2935 validate_region (&start, &end);
2936 del_range (XINT (start), XINT (end));
2937 return Qnil;
2938 }
2939
2940 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
2941 Sdelete_and_extract_region, 2, 2, 0,
2942 doc: /* Delete the text between START and END and return it. */)
2943 (start, end)
2944 Lisp_Object start, end;
2945 {
2946 validate_region (&start, &end);
2947 if (XINT (start) == XINT (end))
2948 return build_string ("");
2949 return del_range_1 (XINT (start), XINT (end), 1, 1);
2950 }
2951 \f
2952 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
2953 doc: /* Remove restrictions (narrowing) from current buffer.
2954 This allows the buffer's full text to be seen and edited. */)
2955 ()
2956 {
2957 if (BEG != BEGV || Z != ZV)
2958 current_buffer->clip_changed = 1;
2959 BEGV = BEG;
2960 BEGV_BYTE = BEG_BYTE;
2961 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
2962 /* Changing the buffer bounds invalidates any recorded current column. */
2963 invalidate_current_column ();
2964 return Qnil;
2965 }
2966
2967 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
2968 doc: /* Restrict editing in this buffer to the current region.
2969 The rest of the text becomes temporarily invisible and untouchable
2970 but is not deleted; if you save the buffer in a file, the invisible
2971 text is included in the file. \\[widen] makes all visible again.
2972 See also `save-restriction'.
2973
2974 When calling from a program, pass two arguments; positions (integers
2975 or markers) bounding the text that should remain visible. */)
2976 (start, end)
2977 register Lisp_Object start, end;
2978 {
2979 CHECK_NUMBER_COERCE_MARKER (start);
2980 CHECK_NUMBER_COERCE_MARKER (end);
2981
2982 if (XINT (start) > XINT (end))
2983 {
2984 Lisp_Object tem;
2985 tem = start; start = end; end = tem;
2986 }
2987
2988 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
2989 args_out_of_range (start, end);
2990
2991 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
2992 current_buffer->clip_changed = 1;
2993
2994 SET_BUF_BEGV (current_buffer, XFASTINT (start));
2995 SET_BUF_ZV (current_buffer, XFASTINT (end));
2996 if (PT < XFASTINT (start))
2997 SET_PT (XFASTINT (start));
2998 if (PT > XFASTINT (end))
2999 SET_PT (XFASTINT (end));
3000 /* Changing the buffer bounds invalidates any recorded current column. */
3001 invalidate_current_column ();
3002 return Qnil;
3003 }
3004
3005 Lisp_Object
3006 save_restriction_save ()
3007 {
3008 if (BEGV == BEG && ZV == Z)
3009 /* The common case that the buffer isn't narrowed.
3010 We return just the buffer object, which save_restriction_restore
3011 recognizes as meaning `no restriction'. */
3012 return Fcurrent_buffer ();
3013 else
3014 /* We have to save a restriction, so return a pair of markers, one
3015 for the beginning and one for the end. */
3016 {
3017 Lisp_Object beg, end;
3018
3019 beg = buildmark (BEGV, BEGV_BYTE);
3020 end = buildmark (ZV, ZV_BYTE);
3021
3022 /* END must move forward if text is inserted at its exact location. */
3023 XMARKER(end)->insertion_type = 1;
3024
3025 return Fcons (beg, end);
3026 }
3027 }
3028
3029 Lisp_Object
3030 save_restriction_restore (data)
3031 Lisp_Object data;
3032 {
3033 if (CONSP (data))
3034 /* A pair of marks bounding a saved restriction. */
3035 {
3036 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3037 struct Lisp_Marker *end = XMARKER (XCDR (data));
3038 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
3039
3040 if (buf /* Verify marker still points to a buffer. */
3041 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3042 /* The restriction has changed from the saved one, so restore
3043 the saved restriction. */
3044 {
3045 int pt = BUF_PT (buf);
3046
3047 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3048 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3049
3050 if (pt < beg->charpos || pt > end->charpos)
3051 /* The point is outside the new visible range, move it inside. */
3052 SET_BUF_PT_BOTH (buf,
3053 clip_to_bounds (beg->charpos, pt, end->charpos),
3054 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3055 end->bytepos));
3056
3057 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3058 }
3059 }
3060 else
3061 /* A buffer, which means that there was no old restriction. */
3062 {
3063 struct buffer *buf = XBUFFER (data);
3064
3065 if (buf /* Verify marker still points to a buffer. */
3066 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3067 /* The buffer has been narrowed, get rid of the narrowing. */
3068 {
3069 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3070 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3071
3072 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3073 }
3074 }
3075
3076 return Qnil;
3077 }
3078
3079 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3080 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3081 The buffer's restrictions make parts of the beginning and end invisible.
3082 (They are set up with `narrow-to-region' and eliminated with `widen'.)
3083 This special form, `save-restriction', saves the current buffer's restrictions
3084 when it is entered, and restores them when it is exited.
3085 So any `narrow-to-region' within BODY lasts only until the end of the form.
3086 The old restrictions settings are restored
3087 even in case of abnormal exit (throw or error).
3088
3089 The value returned is the value of the last form in BODY.
3090
3091 Note: if you are using both `save-excursion' and `save-restriction',
3092 use `save-excursion' outermost:
3093 (save-excursion (save-restriction ...))
3094
3095 usage: (save-restriction &rest BODY) */)
3096 (body)
3097 Lisp_Object body;
3098 {
3099 register Lisp_Object val;
3100 int count = SPECPDL_INDEX ();
3101
3102 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3103 val = Fprogn (body);
3104 return unbind_to (count, val);
3105 }
3106 \f
3107 /* Buffer for the most recent text displayed by Fmessage_box. */
3108 static char *message_text;
3109
3110 /* Allocated length of that buffer. */
3111 static int message_length;
3112
3113 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3114 doc: /* Print a one-line message at the bottom of the screen.
3115 The message also goes into the `*Messages*' buffer.
3116 \(In keyboard macros, that's all it does.)
3117
3118 The first argument is a format control string, and the rest are data
3119 to be formatted under control of the string. See `format' for details.
3120
3121 If the first argument is nil, the function clears any existing message;
3122 this lets the minibuffer contents show. See also `current-message'.
3123
3124 usage: (message STRING &rest ARGS) */)
3125 (nargs, args)
3126 int nargs;
3127 Lisp_Object *args;
3128 {
3129 if (NILP (args[0])
3130 || (STRINGP (args[0])
3131 && SBYTES (args[0]) == 0))
3132 {
3133 message (0);
3134 return args[0];
3135 }
3136 else
3137 {
3138 register Lisp_Object val;
3139 val = Fformat (nargs, args);
3140 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3141 return val;
3142 }
3143 }
3144
3145 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3146 doc: /* Display a message, in a dialog box if possible.
3147 If a dialog box is not available, use the echo area.
3148 The first argument is a format control string, and the rest are data
3149 to be formatted under control of the string. See `format' for details.
3150
3151 If the first argument is nil, clear any existing message; let the
3152 minibuffer contents show.
3153
3154 usage: (message-box STRING &rest ARGS) */)
3155 (nargs, args)
3156 int nargs;
3157 Lisp_Object *args;
3158 {
3159 if (NILP (args[0]))
3160 {
3161 message (0);
3162 return Qnil;
3163 }
3164 else
3165 {
3166 register Lisp_Object val;
3167 val = Fformat (nargs, args);
3168 #ifdef HAVE_MENUS
3169 /* The MS-DOS frames support popup menus even though they are
3170 not FRAME_WINDOW_P. */
3171 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3172 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3173 {
3174 Lisp_Object pane, menu, obj;
3175 struct gcpro gcpro1;
3176 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3177 GCPRO1 (pane);
3178 menu = Fcons (val, pane);
3179 obj = Fx_popup_dialog (Qt, menu, Qt);
3180 UNGCPRO;
3181 return val;
3182 }
3183 #endif /* HAVE_MENUS */
3184 /* Copy the data so that it won't move when we GC. */
3185 if (! message_text)
3186 {
3187 message_text = (char *)xmalloc (80);
3188 message_length = 80;
3189 }
3190 if (SBYTES (val) > message_length)
3191 {
3192 message_length = SBYTES (val);
3193 message_text = (char *)xrealloc (message_text, message_length);
3194 }
3195 bcopy (SDATA (val), message_text, SBYTES (val));
3196 message2 (message_text, SBYTES (val),
3197 STRING_MULTIBYTE (val));
3198 return val;
3199 }
3200 }
3201 #ifdef HAVE_MENUS
3202 extern Lisp_Object last_nonmenu_event;
3203 #endif
3204
3205 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3206 doc: /* Display a message in a dialog box or in the echo area.
3207 If this command was invoked with the mouse, use a dialog box if
3208 `use-dialog-box' is non-nil.
3209 Otherwise, use the echo area.
3210 The first argument is a format control string, and the rest are data
3211 to be formatted under control of the string. See `format' for details.
3212
3213 If the first argument is nil, clear any existing message; let the
3214 minibuffer contents show.
3215
3216 usage: (message-or-box STRING &rest ARGS) */)
3217 (nargs, args)
3218 int nargs;
3219 Lisp_Object *args;
3220 {
3221 #ifdef HAVE_MENUS
3222 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3223 && use_dialog_box)
3224 return Fmessage_box (nargs, args);
3225 #endif
3226 return Fmessage (nargs, args);
3227 }
3228
3229 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3230 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3231 ()
3232 {
3233 return current_message ();
3234 }
3235
3236
3237 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3238 doc: /* Return a copy of STRING with text properties added.
3239 First argument is the string to copy.
3240 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3241 properties to add to the result.
3242 usage: (propertize STRING &rest PROPERTIES) */)
3243 (nargs, args)
3244 int nargs;
3245 Lisp_Object *args;
3246 {
3247 Lisp_Object properties, string;
3248 struct gcpro gcpro1, gcpro2;
3249 int i;
3250
3251 /* Number of args must be odd. */
3252 if ((nargs & 1) == 0 || nargs < 1)
3253 error ("Wrong number of arguments");
3254
3255 properties = string = Qnil;
3256 GCPRO2 (properties, string);
3257
3258 /* First argument must be a string. */
3259 CHECK_STRING (args[0]);
3260 string = Fcopy_sequence (args[0]);
3261
3262 for (i = 1; i < nargs; i += 2)
3263 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3264
3265 Fadd_text_properties (make_number (0),
3266 make_number (SCHARS (string)),
3267 properties, string);
3268 RETURN_UNGCPRO (string);
3269 }
3270
3271
3272 /* Number of bytes that STRING will occupy when put into the result.
3273 MULTIBYTE is nonzero if the result should be multibyte. */
3274
3275 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3276 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3277 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3278 : SBYTES (STRING))
3279
3280 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3281 doc: /* Format a string out of a control-string and arguments.
3282 The first argument is a control string.
3283 The other arguments are substituted into it to make the result, a string.
3284 It may contain %-sequences meaning to substitute the next argument.
3285 %s means print a string argument. Actually, prints any object, with `princ'.
3286 %d means print as number in decimal (%o octal, %x hex).
3287 %X is like %x, but uses upper case.
3288 %e means print a number in exponential notation.
3289 %f means print a number in decimal-point notation.
3290 %g means print a number in exponential notation
3291 or decimal-point notation, whichever uses fewer characters.
3292 %c means print a number as a single character.
3293 %S means print any object as an s-expression (using `prin1').
3294 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3295 Use %% to put a single % into the output.
3296
3297 The basic structure of a %-sequence is
3298 % <flags> <width> <precision> character
3299 where flags is [- #0]+, width is [0-9]+, and precision is .[0-9]+
3300
3301 usage: (format STRING &rest OBJECTS) */)
3302 (nargs, args)
3303 int nargs;
3304 register Lisp_Object *args;
3305 {
3306 register int n; /* The number of the next arg to substitute */
3307 register int total; /* An estimate of the final length */
3308 char *buf, *p;
3309 register unsigned char *format, *end, *format_start;
3310 int nchars;
3311 /* Nonzero if the output should be a multibyte string,
3312 which is true if any of the inputs is one. */
3313 int multibyte = 0;
3314 /* When we make a multibyte string, we must pay attention to the
3315 byte combining problem, i.e., a byte may be combined with a
3316 multibyte charcter of the previous string. This flag tells if we
3317 must consider such a situation or not. */
3318 int maybe_combine_byte;
3319 unsigned char *this_format;
3320 /* Precision for each spec, or -1, a flag value meaning no precision
3321 was given in that spec. Element 0, corresonding to the format
3322 string itself, will not be used. Element NARGS, corresponding to
3323 no argument, *will* be assigned to in the case that a `%' and `.'
3324 occur after the final format specifier. */
3325 int *precision = (int *) (alloca((nargs + 1) * sizeof (int)));
3326 int longest_format;
3327 Lisp_Object val;
3328 int arg_intervals = 0;
3329 USE_SAFE_ALLOCA;
3330
3331 /* discarded[I] is 1 if byte I of the format
3332 string was not copied into the output.
3333 It is 2 if byte I was not the first byte of its character. */
3334 char *discarded = 0;
3335
3336 /* Each element records, for one argument,
3337 the start and end bytepos in the output string,
3338 and whether the argument is a string with intervals.
3339 info[0] is unused. Unused elements have -1 for start. */
3340 struct info
3341 {
3342 int start, end, intervals;
3343 } *info = 0;
3344
3345 /* It should not be necessary to GCPRO ARGS, because
3346 the caller in the interpreter should take care of that. */
3347
3348 /* Try to determine whether the result should be multibyte.
3349 This is not always right; sometimes the result needs to be multibyte
3350 because of an object that we will pass through prin1,
3351 and in that case, we won't know it here. */
3352 for (n = 0; n < nargs; n++)
3353 {
3354 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3355 multibyte = 1;
3356 /* Piggyback on this loop to initialize precision[N]. */
3357 precision[n] = -1;
3358 }
3359 precision[nargs] = -1;
3360
3361 CHECK_STRING (args[0]);
3362 /* We may have to change "%S" to "%s". */
3363 args[0] = Fcopy_sequence (args[0]);
3364
3365 /* GC should never happen here, so abort if it does. */
3366 abort_on_gc++;
3367
3368 /* If we start out planning a unibyte result,
3369 then discover it has to be multibyte, we jump back to retry.
3370 That can only happen from the first large while loop below. */
3371 retry:
3372
3373 format = SDATA (args[0]);
3374 format_start = format;
3375 end = format + SBYTES (args[0]);
3376 longest_format = 0;
3377
3378 /* Make room in result for all the non-%-codes in the control string. */
3379 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]) + 1;
3380
3381 /* Allocate the info and discarded tables. */
3382 {
3383 int nbytes = (nargs+1) * sizeof *info;
3384 int i;
3385 if (!info)
3386 info = (struct info *) alloca (nbytes);
3387 bzero (info, nbytes);
3388 for (i = 0; i <= nargs; i++)
3389 info[i].start = -1;
3390 if (!discarded)
3391 SAFE_ALLOCA (discarded, char *, SBYTES (args[0]));
3392 bzero (discarded, SBYTES (args[0]));
3393 }
3394
3395 /* Add to TOTAL enough space to hold the converted arguments. */
3396
3397 n = 0;
3398 while (format != end)
3399 if (*format++ == '%')
3400 {
3401 int thissize = 0;
3402 int actual_width = 0;
3403 unsigned char *this_format_start = format - 1;
3404 int field_width = 0;
3405
3406 /* General format specifications look like
3407
3408 '%' [flags] [field-width] [precision] format
3409
3410 where
3411
3412 flags ::= [- #0]+
3413 field-width ::= [0-9]+
3414 precision ::= '.' [0-9]*
3415
3416 If a field-width is specified, it specifies to which width
3417 the output should be padded with blanks, iff the output
3418 string is shorter than field-width.
3419
3420 If precision is specified, it specifies the number of
3421 digits to print after the '.' for floats, or the max.
3422 number of chars to print from a string. */
3423
3424 while (index ("-0# ", *format))
3425 ++format;
3426
3427 if (*format >= '0' && *format <= '9')
3428 {
3429 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3430 field_width = 10 * field_width + *format - '0';
3431 }
3432
3433 /* N is not incremented for another few lines below, so refer to
3434 element N+1 (which might be precision[NARGS]). */
3435 if (*format == '.')
3436 {
3437 ++format;
3438 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3439 precision[n+1] = 10 * precision[n+1] + *format - '0';
3440 }
3441
3442 if (format - this_format_start + 1 > longest_format)
3443 longest_format = format - this_format_start + 1;
3444
3445 if (format == end)
3446 error ("Format string ends in middle of format specifier");
3447 if (*format == '%')
3448 format++;
3449 else if (++n >= nargs)
3450 error ("Not enough arguments for format string");
3451 else if (*format == 'S')
3452 {
3453 /* For `S', prin1 the argument and then treat like a string. */
3454 register Lisp_Object tem;
3455 tem = Fprin1_to_string (args[n], Qnil);
3456 if (STRING_MULTIBYTE (tem) && ! multibyte)
3457 {
3458 multibyte = 1;
3459 goto retry;
3460 }
3461 args[n] = tem;
3462 /* If we restart the loop, we should not come here again
3463 because args[n] is now a string and calling
3464 Fprin1_to_string on it produces superflous double
3465 quotes. So, change "%S" to "%s" now. */
3466 *format = 's';
3467 goto string;
3468 }
3469 else if (SYMBOLP (args[n]))
3470 {
3471 args[n] = SYMBOL_NAME (args[n]);
3472 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3473 {
3474 multibyte = 1;
3475 goto retry;
3476 }
3477 goto string;
3478 }
3479 else if (STRINGP (args[n]))
3480 {
3481 string:
3482 if (*format != 's' && *format != 'S')
3483 error ("Format specifier doesn't match argument type");
3484 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3485 to be as large as is calculated here. Easy check for
3486 the case PRECISION = 0. */
3487 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3488 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3489 }
3490 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3491 else if (INTEGERP (args[n]) && *format != 's')
3492 {
3493 /* The following loop assumes the Lisp type indicates
3494 the proper way to pass the argument.
3495 So make sure we have a flonum if the argument should
3496 be a double. */
3497 if (*format == 'e' || *format == 'f' || *format == 'g')
3498 args[n] = Ffloat (args[n]);
3499 else
3500 if (*format != 'd' && *format != 'o' && *format != 'x'
3501 && *format != 'i' && *format != 'X' && *format != 'c')
3502 error ("Invalid format operation %%%c", *format);
3503
3504 thissize = 30;
3505 if (*format == 'c')
3506 {
3507 if (! SINGLE_BYTE_CHAR_P (XINT (args[n]))
3508 /* Note: No one can remember why we have to treat
3509 the character 0 as a multibyte character here.
3510 But, until it causes a real problem, let's
3511 don't change it. */
3512 || XINT (args[n]) == 0)
3513 {
3514 if (! multibyte)
3515 {
3516 multibyte = 1;
3517 goto retry;
3518 }
3519 args[n] = Fchar_to_string (args[n]);
3520 thissize = SBYTES (args[n]);
3521 }
3522 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3523 {
3524 args[n]
3525 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3526 thissize = SBYTES (args[n]);
3527 }
3528 }
3529 }
3530 else if (FLOATP (args[n]) && *format != 's')
3531 {
3532 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3533 {
3534 if (*format != 'd' && *format != 'o' && *format != 'x'
3535 && *format != 'i' && *format != 'X' && *format != 'c')
3536 error ("Invalid format operation %%%c", *format);
3537 args[n] = Ftruncate (args[n], Qnil);
3538 }
3539
3540 /* Note that we're using sprintf to print floats,
3541 so we have to take into account what that function
3542 prints. */
3543 /* Filter out flag value of -1. */
3544 thissize = (MAX_10_EXP + 100
3545 + (precision[n] > 0 ? precision[n] : 0));
3546 }
3547 else
3548 {
3549 /* Anything but a string, convert to a string using princ. */
3550 register Lisp_Object tem;
3551 tem = Fprin1_to_string (args[n], Qt);
3552 if (STRING_MULTIBYTE (tem) && ! multibyte)
3553 {
3554 multibyte = 1;
3555 goto retry;
3556 }
3557 args[n] = tem;
3558 goto string;
3559 }
3560
3561 thissize += max (0, field_width - actual_width);
3562 total += thissize + 4;
3563 }
3564
3565 abort_on_gc--;
3566
3567 /* Now we can no longer jump to retry.
3568 TOTAL and LONGEST_FORMAT are known for certain. */
3569
3570 this_format = (unsigned char *) alloca (longest_format + 1);
3571
3572 /* Allocate the space for the result.
3573 Note that TOTAL is an overestimate. */
3574 SAFE_ALLOCA (buf, char *, total);
3575
3576 p = buf;
3577 nchars = 0;
3578 n = 0;
3579
3580 /* Scan the format and store result in BUF. */
3581 format = SDATA (args[0]);
3582 format_start = format;
3583 end = format + SBYTES (args[0]);
3584 maybe_combine_byte = 0;
3585 while (format != end)
3586 {
3587 if (*format == '%')
3588 {
3589 int minlen;
3590 int negative = 0;
3591 unsigned char *this_format_start = format;
3592
3593 discarded[format - format_start] = 1;
3594 format++;
3595
3596 while (index("-0# ", *format))
3597 {
3598 if (*format == '-')
3599 {
3600 negative = 1;
3601 }
3602 discarded[format - format_start] = 1;
3603 ++format;
3604 }
3605
3606 minlen = atoi (format);
3607
3608 while ((*format >= '0' && *format <= '9') || *format == '.')
3609 {
3610 discarded[format - format_start] = 1;
3611 format++;
3612 }
3613
3614 if (*format++ == '%')
3615 {
3616 *p++ = '%';
3617 nchars++;
3618 continue;
3619 }
3620
3621 ++n;
3622
3623 discarded[format - format_start - 1] = 1;
3624 info[n].start = nchars;
3625
3626 if (STRINGP (args[n]))
3627 {
3628 /* handle case (precision[n] >= 0) */
3629
3630 int width, padding;
3631 int nbytes, start, end;
3632 int nchars_string;
3633
3634 /* lisp_string_width ignores a precision of 0, but GNU
3635 libc functions print 0 characters when the precision
3636 is 0. Imitate libc behavior here. Changing
3637 lisp_string_width is the right thing, and will be
3638 done, but meanwhile we work with it. */
3639
3640 if (precision[n] == 0)
3641 width = nchars_string = nbytes = 0;
3642 else if (precision[n] > 0)
3643 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3644 else
3645 { /* no precision spec given for this argument */
3646 width = lisp_string_width (args[n], -1, NULL, NULL);
3647 nbytes = SBYTES (args[n]);
3648 nchars_string = SCHARS (args[n]);
3649 }
3650
3651 /* If spec requires it, pad on right with spaces. */
3652 padding = minlen - width;
3653 if (! negative)
3654 while (padding-- > 0)
3655 {
3656 *p++ = ' ';
3657 ++nchars;
3658 }
3659
3660 start = nchars;
3661 nchars += nchars_string;
3662 end = nchars;
3663
3664 if (p > buf
3665 && multibyte
3666 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3667 && STRING_MULTIBYTE (args[n])
3668 && !CHAR_HEAD_P (SREF (args[n], 0)))
3669 maybe_combine_byte = 1;
3670
3671 p += copy_text (SDATA (args[n]), p,
3672 nbytes,
3673 STRING_MULTIBYTE (args[n]), multibyte);
3674
3675 if (negative)
3676 while (padding-- > 0)
3677 {
3678 *p++ = ' ';
3679 nchars++;
3680 }
3681
3682 /* If this argument has text properties, record where
3683 in the result string it appears. */
3684 if (STRING_INTERVALS (args[n]))
3685 info[n].intervals = arg_intervals = 1;
3686 }
3687 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3688 {
3689 int this_nchars;
3690
3691 bcopy (this_format_start, this_format,
3692 format - this_format_start);
3693 this_format[format - this_format_start] = 0;
3694
3695 if (INTEGERP (args[n]))
3696 sprintf (p, this_format, XINT (args[n]));
3697 else
3698 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3699
3700 if (p > buf
3701 && multibyte
3702 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3703 && !CHAR_HEAD_P (*((unsigned char *) p)))
3704 maybe_combine_byte = 1;
3705 this_nchars = strlen (p);
3706 if (multibyte)
3707 p += str_to_multibyte (p, buf + total - 1 - p, this_nchars);
3708 else
3709 p += this_nchars;
3710 nchars += this_nchars;
3711 }
3712
3713 info[n].end = nchars;
3714 }
3715 else if (STRING_MULTIBYTE (args[0]))
3716 {
3717 /* Copy a whole multibyte character. */
3718 if (p > buf
3719 && multibyte
3720 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3721 && !CHAR_HEAD_P (*format))
3722 maybe_combine_byte = 1;
3723 *p++ = *format++;
3724 while (! CHAR_HEAD_P (*format))
3725 {
3726 discarded[format - format_start] = 2;
3727 *p++ = *format++;
3728 }
3729 nchars++;
3730 }
3731 else if (multibyte)
3732 {
3733 /* Convert a single-byte character to multibyte. */
3734 int len = copy_text (format, p, 1, 0, 1);
3735
3736 p += len;
3737 format++;
3738 nchars++;
3739 }
3740 else
3741 *p++ = *format++, nchars++;
3742 }
3743
3744 if (p > buf + total)
3745 abort ();
3746
3747 if (maybe_combine_byte)
3748 nchars = multibyte_chars_in_text (buf, p - buf);
3749 val = make_specified_string (buf, nchars, p - buf, multibyte);
3750
3751 /* If we allocated BUF with malloc, free it too. */
3752 SAFE_FREE ();
3753
3754 /* If the format string has text properties, or any of the string
3755 arguments has text properties, set up text properties of the
3756 result string. */
3757
3758 if (STRING_INTERVALS (args[0]) || arg_intervals)
3759 {
3760 Lisp_Object len, new_len, props;
3761 struct gcpro gcpro1;
3762
3763 /* Add text properties from the format string. */
3764 len = make_number (SCHARS (args[0]));
3765 props = text_property_list (args[0], make_number (0), len, Qnil);
3766 GCPRO1 (props);
3767
3768 if (CONSP (props))
3769 {
3770 int bytepos = 0, position = 0, translated = 0, argn = 1;
3771 Lisp_Object list;
3772
3773 /* Adjust the bounds of each text property
3774 to the proper start and end in the output string. */
3775
3776 /* Put the positions in PROPS in increasing order, so that
3777 we can do (effectively) one scan through the position
3778 space of the format string. */
3779 props = Fnreverse (props);
3780
3781 /* BYTEPOS is the byte position in the format string,
3782 POSITION is the untranslated char position in it,
3783 TRANSLATED is the translated char position in BUF,
3784 and ARGN is the number of the next arg we will come to. */
3785 for (list = props; CONSP (list); list = XCDR (list))
3786 {
3787 Lisp_Object item;
3788 int pos;
3789
3790 item = XCAR (list);
3791
3792 /* First adjust the property start position. */
3793 pos = XINT (XCAR (item));
3794
3795 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
3796 up to this position. */
3797 for (; position < pos; bytepos++)
3798 {
3799 if (! discarded[bytepos])
3800 position++, translated++;
3801 else if (discarded[bytepos] == 1)
3802 {
3803 position++;
3804 if (translated == info[argn].start)
3805 {
3806 translated += info[argn].end - info[argn].start;
3807 argn++;
3808 }
3809 }
3810 }
3811
3812 XSETCAR (item, make_number (translated));
3813
3814 /* Likewise adjust the property end position. */
3815 pos = XINT (XCAR (XCDR (item)));
3816
3817 for (; bytepos < pos; bytepos++)
3818 {
3819 if (! discarded[bytepos])
3820 position++, translated++;
3821 else if (discarded[bytepos] == 1)
3822 {
3823 position++;
3824 if (translated == info[argn].start)
3825 {
3826 translated += info[argn].end - info[argn].start;
3827 argn++;
3828 }
3829 }
3830 }
3831
3832 XSETCAR (XCDR (item), make_number (translated));
3833 }
3834
3835 add_text_properties_from_list (val, props, make_number (0));
3836 }
3837
3838 /* Add text properties from arguments. */
3839 if (arg_intervals)
3840 for (n = 1; n < nargs; ++n)
3841 if (info[n].intervals)
3842 {
3843 len = make_number (SCHARS (args[n]));
3844 new_len = make_number (info[n].end - info[n].start);
3845 props = text_property_list (args[n], make_number (0), len, Qnil);
3846 extend_property_ranges (props, len, new_len);
3847 /* If successive arguments have properites, be sure that
3848 the value of `composition' property be the copy. */
3849 if (n > 1 && info[n - 1].end)
3850 make_composition_value_copy (props);
3851 add_text_properties_from_list (val, props,
3852 make_number (info[n].start));
3853 }
3854
3855 UNGCPRO;
3856 }
3857
3858 return val;
3859 }
3860
3861 Lisp_Object
3862 format2 (string1, arg0, arg1)
3863 char *string1;
3864 Lisp_Object arg0, arg1;
3865 {
3866 Lisp_Object args[3];
3867 args[0] = build_string (string1);
3868 args[1] = arg0;
3869 args[2] = arg1;
3870 return Fformat (3, args);
3871 }
3872 \f
3873 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
3874 doc: /* Return t if two characters match, optionally ignoring case.
3875 Both arguments must be characters (i.e. integers).
3876 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
3877 (c1, c2)
3878 register Lisp_Object c1, c2;
3879 {
3880 int i1, i2;
3881 CHECK_NUMBER (c1);
3882 CHECK_NUMBER (c2);
3883
3884 if (XINT (c1) == XINT (c2))
3885 return Qt;
3886 if (NILP (current_buffer->case_fold_search))
3887 return Qnil;
3888
3889 /* Do these in separate statements,
3890 then compare the variables.
3891 because of the way DOWNCASE uses temp variables. */
3892 i1 = DOWNCASE (XFASTINT (c1));
3893 i2 = DOWNCASE (XFASTINT (c2));
3894 return (i1 == i2 ? Qt : Qnil);
3895 }
3896 \f
3897 /* Transpose the markers in two regions of the current buffer, and
3898 adjust the ones between them if necessary (i.e.: if the regions
3899 differ in size).
3900
3901 START1, END1 are the character positions of the first region.
3902 START1_BYTE, END1_BYTE are the byte positions.
3903 START2, END2 are the character positions of the second region.
3904 START2_BYTE, END2_BYTE are the byte positions.
3905
3906 Traverses the entire marker list of the buffer to do so, adding an
3907 appropriate amount to some, subtracting from some, and leaving the
3908 rest untouched. Most of this is copied from adjust_markers in insdel.c.
3909
3910 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
3911
3912 static void
3913 transpose_markers (start1, end1, start2, end2,
3914 start1_byte, end1_byte, start2_byte, end2_byte)
3915 register int start1, end1, start2, end2;
3916 register int start1_byte, end1_byte, start2_byte, end2_byte;
3917 {
3918 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
3919 register struct Lisp_Marker *marker;
3920
3921 /* Update point as if it were a marker. */
3922 if (PT < start1)
3923 ;
3924 else if (PT < end1)
3925 TEMP_SET_PT_BOTH (PT + (end2 - end1),
3926 PT_BYTE + (end2_byte - end1_byte));
3927 else if (PT < start2)
3928 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
3929 (PT_BYTE + (end2_byte - start2_byte)
3930 - (end1_byte - start1_byte)));
3931 else if (PT < end2)
3932 TEMP_SET_PT_BOTH (PT - (start2 - start1),
3933 PT_BYTE - (start2_byte - start1_byte));
3934
3935 /* We used to adjust the endpoints here to account for the gap, but that
3936 isn't good enough. Even if we assume the caller has tried to move the
3937 gap out of our way, it might still be at start1 exactly, for example;
3938 and that places it `inside' the interval, for our purposes. The amount
3939 of adjustment is nontrivial if there's a `denormalized' marker whose
3940 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
3941 the dirty work to Fmarker_position, below. */
3942
3943 /* The difference between the region's lengths */
3944 diff = (end2 - start2) - (end1 - start1);
3945 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
3946
3947 /* For shifting each marker in a region by the length of the other
3948 region plus the distance between the regions. */
3949 amt1 = (end2 - start2) + (start2 - end1);
3950 amt2 = (end1 - start1) + (start2 - end1);
3951 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
3952 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
3953
3954 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
3955 {
3956 mpos = marker->bytepos;
3957 if (mpos >= start1_byte && mpos < end2_byte)
3958 {
3959 if (mpos < end1_byte)
3960 mpos += amt1_byte;
3961 else if (mpos < start2_byte)
3962 mpos += diff_byte;
3963 else
3964 mpos -= amt2_byte;
3965 marker->bytepos = mpos;
3966 }
3967 mpos = marker->charpos;
3968 if (mpos >= start1 && mpos < end2)
3969 {
3970 if (mpos < end1)
3971 mpos += amt1;
3972 else if (mpos < start2)
3973 mpos += diff;
3974 else
3975 mpos -= amt2;
3976 }
3977 marker->charpos = mpos;
3978 }
3979 }
3980
3981 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
3982 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
3983 The regions may not be overlapping, because the size of the buffer is
3984 never changed in a transposition.
3985
3986 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
3987 any markers that happen to be located in the regions.
3988
3989 Transposing beyond buffer boundaries is an error. */)
3990 (startr1, endr1, startr2, endr2, leave_markers)
3991 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
3992 {
3993 register int start1, end1, start2, end2;
3994 int start1_byte, start2_byte, len1_byte, len2_byte;
3995 int gap, len1, len_mid, len2;
3996 unsigned char *start1_addr, *start2_addr, *temp;
3997
3998 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2;
3999 cur_intv = BUF_INTERVALS (current_buffer);
4000
4001 validate_region (&startr1, &endr1);
4002 validate_region (&startr2, &endr2);
4003
4004 start1 = XFASTINT (startr1);
4005 end1 = XFASTINT (endr1);
4006 start2 = XFASTINT (startr2);
4007 end2 = XFASTINT (endr2);
4008 gap = GPT;
4009
4010 /* Swap the regions if they're reversed. */
4011 if (start2 < end1)
4012 {
4013 register int glumph = start1;
4014 start1 = start2;
4015 start2 = glumph;
4016 glumph = end1;
4017 end1 = end2;
4018 end2 = glumph;
4019 }
4020
4021 len1 = end1 - start1;
4022 len2 = end2 - start2;
4023
4024 if (start2 < end1)
4025 error ("Transposed regions overlap");
4026 else if (start1 == end1 || start2 == end2)
4027 error ("Transposed region has length 0");
4028
4029 /* The possibilities are:
4030 1. Adjacent (contiguous) regions, or separate but equal regions
4031 (no, really equal, in this case!), or
4032 2. Separate regions of unequal size.
4033
4034 The worst case is usually No. 2. It means that (aside from
4035 potential need for getting the gap out of the way), there also
4036 needs to be a shifting of the text between the two regions. So
4037 if they are spread far apart, we are that much slower... sigh. */
4038
4039 /* It must be pointed out that the really studly thing to do would
4040 be not to move the gap at all, but to leave it in place and work
4041 around it if necessary. This would be extremely efficient,
4042 especially considering that people are likely to do
4043 transpositions near where they are working interactively, which
4044 is exactly where the gap would be found. However, such code
4045 would be much harder to write and to read. So, if you are
4046 reading this comment and are feeling squirrely, by all means have
4047 a go! I just didn't feel like doing it, so I will simply move
4048 the gap the minimum distance to get it out of the way, and then
4049 deal with an unbroken array. */
4050
4051 /* Make sure the gap won't interfere, by moving it out of the text
4052 we will operate on. */
4053 if (start1 < gap && gap < end2)
4054 {
4055 if (gap - start1 < end2 - gap)
4056 move_gap (start1);
4057 else
4058 move_gap (end2);
4059 }
4060
4061 start1_byte = CHAR_TO_BYTE (start1);
4062 start2_byte = CHAR_TO_BYTE (start2);
4063 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4064 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4065
4066 #ifdef BYTE_COMBINING_DEBUG
4067 if (end1 == start2)
4068 {
4069 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4070 len2_byte, start1, start1_byte)
4071 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4072 len1_byte, end2, start2_byte + len2_byte)
4073 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4074 len1_byte, end2, start2_byte + len2_byte))
4075 abort ();
4076 }
4077 else
4078 {
4079 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4080 len2_byte, start1, start1_byte)
4081 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4082 len1_byte, start2, start2_byte)
4083 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4084 len2_byte, end1, start1_byte + len1_byte)
4085 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4086 len1_byte, end2, start2_byte + len2_byte))
4087 abort ();
4088 }
4089 #endif
4090
4091 /* Hmmm... how about checking to see if the gap is large
4092 enough to use as the temporary storage? That would avoid an
4093 allocation... interesting. Later, don't fool with it now. */
4094
4095 /* Working without memmove, for portability (sigh), so must be
4096 careful of overlapping subsections of the array... */
4097
4098 if (end1 == start2) /* adjacent regions */
4099 {
4100 modify_region (current_buffer, start1, end2);
4101 record_change (start1, len1 + len2);
4102
4103 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4104 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4105 Fset_text_properties (make_number (start1), make_number (end2),
4106 Qnil, Qnil);
4107
4108 /* First region smaller than second. */
4109 if (len1_byte < len2_byte)
4110 {
4111 USE_SAFE_ALLOCA;
4112
4113 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4114
4115 /* Don't precompute these addresses. We have to compute them
4116 at the last minute, because the relocating allocator might
4117 have moved the buffer around during the xmalloc. */
4118 start1_addr = BYTE_POS_ADDR (start1_byte);
4119 start2_addr = BYTE_POS_ADDR (start2_byte);
4120
4121 bcopy (start2_addr, temp, len2_byte);
4122 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4123 bcopy (temp, start1_addr, len2_byte);
4124 SAFE_FREE ();
4125 }
4126 else
4127 /* First region not smaller than second. */
4128 {
4129 USE_SAFE_ALLOCA;
4130
4131 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4132 start1_addr = BYTE_POS_ADDR (start1_byte);
4133 start2_addr = BYTE_POS_ADDR (start2_byte);
4134 bcopy (start1_addr, temp, len1_byte);
4135 bcopy (start2_addr, start1_addr, len2_byte);
4136 bcopy (temp, start1_addr + len2_byte, len1_byte);
4137 SAFE_FREE ();
4138 }
4139 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4140 len1, current_buffer, 0);
4141 graft_intervals_into_buffer (tmp_interval2, start1,
4142 len2, current_buffer, 0);
4143 update_compositions (start1, start1 + len2, CHECK_BORDER);
4144 update_compositions (start1 + len2, end2, CHECK_TAIL);
4145 }
4146 /* Non-adjacent regions, because end1 != start2, bleagh... */
4147 else
4148 {
4149 len_mid = start2_byte - (start1_byte + len1_byte);
4150
4151 if (len1_byte == len2_byte)
4152 /* Regions are same size, though, how nice. */
4153 {
4154 USE_SAFE_ALLOCA;
4155
4156 modify_region (current_buffer, start1, end1);
4157 modify_region (current_buffer, start2, end2);
4158 record_change (start1, len1);
4159 record_change (start2, len2);
4160 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4161 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4162 Fset_text_properties (make_number (start1), make_number (end1),
4163 Qnil, Qnil);
4164 Fset_text_properties (make_number (start2), make_number (end2),
4165 Qnil, Qnil);
4166
4167 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4168 start1_addr = BYTE_POS_ADDR (start1_byte);
4169 start2_addr = BYTE_POS_ADDR (start2_byte);
4170 bcopy (start1_addr, temp, len1_byte);
4171 bcopy (start2_addr, start1_addr, len2_byte);
4172 bcopy (temp, start2_addr, len1_byte);
4173 SAFE_FREE ();
4174
4175 graft_intervals_into_buffer (tmp_interval1, start2,
4176 len1, current_buffer, 0);
4177 graft_intervals_into_buffer (tmp_interval2, start1,
4178 len2, current_buffer, 0);
4179 }
4180
4181 else if (len1_byte < len2_byte) /* Second region larger than first */
4182 /* Non-adjacent & unequal size, area between must also be shifted. */
4183 {
4184 USE_SAFE_ALLOCA;
4185
4186 modify_region (current_buffer, start1, end2);
4187 record_change (start1, (end2 - start1));
4188 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4189 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4190 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4191 Fset_text_properties (make_number (start1), make_number (end2),
4192 Qnil, Qnil);
4193
4194 /* holds region 2 */
4195 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4196 start1_addr = BYTE_POS_ADDR (start1_byte);
4197 start2_addr = BYTE_POS_ADDR (start2_byte);
4198 bcopy (start2_addr, temp, len2_byte);
4199 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4200 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4201 bcopy (temp, start1_addr, len2_byte);
4202 SAFE_FREE ();
4203
4204 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4205 len1, current_buffer, 0);
4206 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4207 len_mid, current_buffer, 0);
4208 graft_intervals_into_buffer (tmp_interval2, start1,
4209 len2, current_buffer, 0);
4210 }
4211 else
4212 /* Second region smaller than first. */
4213 {
4214 USE_SAFE_ALLOCA;
4215
4216 record_change (start1, (end2 - start1));
4217 modify_region (current_buffer, start1, end2);
4218
4219 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4220 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4221 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4222 Fset_text_properties (make_number (start1), make_number (end2),
4223 Qnil, Qnil);
4224
4225 /* holds region 1 */
4226 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4227 start1_addr = BYTE_POS_ADDR (start1_byte);
4228 start2_addr = BYTE_POS_ADDR (start2_byte);
4229 bcopy (start1_addr, temp, len1_byte);
4230 bcopy (start2_addr, start1_addr, len2_byte);
4231 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4232 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4233 SAFE_FREE ();
4234
4235 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4236 len1, current_buffer, 0);
4237 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4238 len_mid, current_buffer, 0);
4239 graft_intervals_into_buffer (tmp_interval2, start1,
4240 len2, current_buffer, 0);
4241 }
4242
4243 update_compositions (start1, start1 + len2, CHECK_BORDER);
4244 update_compositions (end2 - len1, end2, CHECK_BORDER);
4245 }
4246
4247 /* When doing multiple transpositions, it might be nice
4248 to optimize this. Perhaps the markers in any one buffer
4249 should be organized in some sorted data tree. */
4250 if (NILP (leave_markers))
4251 {
4252 transpose_markers (start1, end1, start2, end2,
4253 start1_byte, start1_byte + len1_byte,
4254 start2_byte, start2_byte + len2_byte);
4255 fix_start_end_in_overlays (start1, end2);
4256 }
4257
4258 return Qnil;
4259 }
4260
4261 \f
4262 void
4263 syms_of_editfns ()
4264 {
4265 environbuf = 0;
4266
4267 Qbuffer_access_fontify_functions
4268 = intern ("buffer-access-fontify-functions");
4269 staticpro (&Qbuffer_access_fontify_functions);
4270
4271 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4272 doc: /* Non-nil means text motion commands don't notice fields. */);
4273 Vinhibit_field_text_motion = Qnil;
4274
4275 DEFVAR_LISP ("buffer-access-fontify-functions",
4276 &Vbuffer_access_fontify_functions,
4277 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4278 Each function is called with two arguments which specify the range
4279 of the buffer being accessed. */);
4280 Vbuffer_access_fontify_functions = Qnil;
4281
4282 {
4283 Lisp_Object obuf;
4284 extern Lisp_Object Vprin1_to_string_buffer;
4285 obuf = Fcurrent_buffer ();
4286 /* Do this here, because init_buffer_once is too early--it won't work. */
4287 Fset_buffer (Vprin1_to_string_buffer);
4288 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4289 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4290 Qnil);
4291 Fset_buffer (obuf);
4292 }
4293
4294 DEFVAR_LISP ("buffer-access-fontified-property",
4295 &Vbuffer_access_fontified_property,
4296 doc: /* Property which (if non-nil) indicates text has been fontified.
4297 `buffer-substring' need not call the `buffer-access-fontify-functions'
4298 functions if all the text being accessed has this property. */);
4299 Vbuffer_access_fontified_property = Qnil;
4300
4301 DEFVAR_LISP ("system-name", &Vsystem_name,
4302 doc: /* The name of the machine Emacs is running on. */);
4303
4304 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4305 doc: /* The full name of the user logged in. */);
4306
4307 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4308 doc: /* The user's name, taken from environment variables if possible. */);
4309
4310 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4311 doc: /* The user's name, based upon the real uid only. */);
4312
4313 DEFVAR_LISP ("operating-system-release", &Voperating_system_release,
4314 doc: /* The release of the operating system Emacs is running on. */);
4315
4316 defsubr (&Spropertize);
4317 defsubr (&Schar_equal);
4318 defsubr (&Sgoto_char);
4319 defsubr (&Sstring_to_char);
4320 defsubr (&Schar_to_string);
4321 defsubr (&Sbuffer_substring);
4322 defsubr (&Sbuffer_substring_no_properties);
4323 defsubr (&Sbuffer_string);
4324
4325 defsubr (&Spoint_marker);
4326 defsubr (&Smark_marker);
4327 defsubr (&Spoint);
4328 defsubr (&Sregion_beginning);
4329 defsubr (&Sregion_end);
4330
4331 staticpro (&Qfield);
4332 Qfield = intern ("field");
4333 staticpro (&Qboundary);
4334 Qboundary = intern ("boundary");
4335 defsubr (&Sfield_beginning);
4336 defsubr (&Sfield_end);
4337 defsubr (&Sfield_string);
4338 defsubr (&Sfield_string_no_properties);
4339 defsubr (&Sdelete_field);
4340 defsubr (&Sconstrain_to_field);
4341
4342 defsubr (&Sline_beginning_position);
4343 defsubr (&Sline_end_position);
4344
4345 /* defsubr (&Smark); */
4346 /* defsubr (&Sset_mark); */
4347 defsubr (&Ssave_excursion);
4348 defsubr (&Ssave_current_buffer);
4349
4350 defsubr (&Sbufsize);
4351 defsubr (&Spoint_max);
4352 defsubr (&Spoint_min);
4353 defsubr (&Spoint_min_marker);
4354 defsubr (&Spoint_max_marker);
4355 defsubr (&Sgap_position);
4356 defsubr (&Sgap_size);
4357 defsubr (&Sposition_bytes);
4358 defsubr (&Sbyte_to_position);
4359
4360 defsubr (&Sbobp);
4361 defsubr (&Seobp);
4362 defsubr (&Sbolp);
4363 defsubr (&Seolp);
4364 defsubr (&Sfollowing_char);
4365 defsubr (&Sprevious_char);
4366 defsubr (&Schar_after);
4367 defsubr (&Schar_before);
4368 defsubr (&Sinsert);
4369 defsubr (&Sinsert_before_markers);
4370 defsubr (&Sinsert_and_inherit);
4371 defsubr (&Sinsert_and_inherit_before_markers);
4372 defsubr (&Sinsert_char);
4373
4374 defsubr (&Suser_login_name);
4375 defsubr (&Suser_real_login_name);
4376 defsubr (&Suser_uid);
4377 defsubr (&Suser_real_uid);
4378 defsubr (&Suser_full_name);
4379 defsubr (&Semacs_pid);
4380 defsubr (&Scurrent_time);
4381 defsubr (&Sget_internal_run_time);
4382 defsubr (&Sformat_time_string);
4383 defsubr (&Sfloat_time);
4384 defsubr (&Sdecode_time);
4385 defsubr (&Sencode_time);
4386 defsubr (&Scurrent_time_string);
4387 defsubr (&Scurrent_time_zone);
4388 defsubr (&Sset_time_zone_rule);
4389 defsubr (&Ssystem_name);
4390 defsubr (&Smessage);
4391 defsubr (&Smessage_box);
4392 defsubr (&Smessage_or_box);
4393 defsubr (&Scurrent_message);
4394 defsubr (&Sformat);
4395
4396 defsubr (&Sinsert_buffer_substring);
4397 defsubr (&Scompare_buffer_substrings);
4398 defsubr (&Ssubst_char_in_region);
4399 defsubr (&Stranslate_region_internal);
4400 defsubr (&Sdelete_region);
4401 defsubr (&Sdelete_and_extract_region);
4402 defsubr (&Swiden);
4403 defsubr (&Snarrow_to_region);
4404 defsubr (&Ssave_restriction);
4405 defsubr (&Stranspose_regions);
4406 }
4407
4408 /* arch-tag: fc3827d8-6f60-4067-b11e-c3218031b018
4409 (do not change this comment) */