]> code.delx.au - gnu-emacs/blob - lisp/emacs-lisp/byte-opt.el
*** empty log message ***
[gnu-emacs] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
2
3 ;;; Copyright (c) 1991, 1994, 2000, 2001 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Maintainer: FSF
8 ;; Keywords: internal
9
10 ;; This file is part of GNU Emacs.
11
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 2, or (at your option)
15 ;; any later version.
16
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
21
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
25 ;; Boston, MA 02111-1307, USA.
26
27 ;;; Commentary:
28
29 ;; ========================================================================
30 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
31 ;; You can, however, make a faster pig."
32 ;;
33 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
34 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35 ;; still not going to make it go faster than 70 mph, but it might be easier
36 ;; to get it there.
37 ;;
38
39 ;; TO DO:
40 ;;
41 ;; (apply (lambda (x &rest y) ...) 1 (foo))
42 ;;
43 ;; maintain a list of functions known not to access any global variables
44 ;; (actually, give them a 'dynamically-safe property) and then
45 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;; by recursing on this, we might be able to eliminate the entire let.
48 ;; However certain variables should never have their bindings optimized
49 ;; away, because they affect everything.
50 ;; (put 'debug-on-error 'binding-is-magic t)
51 ;; (put 'debug-on-abort 'binding-is-magic t)
52 ;; (put 'debug-on-next-call 'binding-is-magic t)
53 ;; (put 'inhibit-quit 'binding-is-magic t)
54 ;; (put 'quit-flag 'binding-is-magic t)
55 ;; (put 't 'binding-is-magic t)
56 ;; (put 'nil 'binding-is-magic t)
57 ;; possibly also
58 ;; (put 'gc-cons-threshold 'binding-is-magic t)
59 ;; (put 'track-mouse 'binding-is-magic t)
60 ;; others?
61 ;;
62 ;; Simple defsubsts often produce forms like
63 ;; (let ((v1 (f1)) (v2 (f2)) ...)
64 ;; (FN v1 v2 ...))
65 ;; It would be nice if we could optimize this to
66 ;; (FN (f1) (f2) ...)
67 ;; but we can't unless FN is dynamically-safe (it might be dynamically
68 ;; referring to the bindings that the lambda arglist established.)
69 ;; One of the uncountable lossages introduced by dynamic scope...
70 ;;
71 ;; Maybe there should be a control-structure that says "turn on
72 ;; fast-and-loose type-assumptive optimizations here." Then when
73 ;; we see a form like (car foo) we can from then on assume that
74 ;; the variable foo is of type cons, and optimize based on that.
75 ;; But, this won't win much because of (you guessed it) dynamic
76 ;; scope. Anything down the stack could change the value.
77 ;; (Another reason it doesn't work is that it is perfectly valid
78 ;; to call car with a null argument.) A better approach might
79 ;; be to allow type-specification of the form
80 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
81 ;; (put 'foo 'result-type 'bool)
82 ;; It should be possible to have these types checked to a certain
83 ;; degree.
84 ;;
85 ;; collapse common subexpressions
86 ;;
87 ;; It would be nice if redundant sequences could be factored out as well,
88 ;; when they are known to have no side-effects:
89 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
90 ;; but beware of traps like
91 ;; (cons (list x y) (list x y))
92 ;;
93 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
94 ;; Tail-recursion elimination is almost always impossible when all variables
95 ;; have dynamic scope, but given that the "return" byteop requires the
96 ;; binding stack to be empty (rather than emptying it itself), there can be
97 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
98 ;; make any bindings.
99 ;;
100 ;; Here is an example of an Emacs Lisp function which could safely be
101 ;; byte-compiled tail-recursively:
102 ;;
103 ;; (defun tail-map (fn list)
104 ;; (cond (list
105 ;; (funcall fn (car list))
106 ;; (tail-map fn (cdr list)))))
107 ;;
108 ;; However, if there was even a single let-binding around the COND,
109 ;; it could not be byte-compiled, because there would be an "unbind"
110 ;; byte-op between the final "call" and "return." Adding a
111 ;; Bunbind_all byteop would fix this.
112 ;;
113 ;; (defun foo (x y z) ... (foo a b c))
114 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
115 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
116 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
117 ;;
118 ;; this also can be considered tail recursion:
119 ;;
120 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
121 ;; could generalize this by doing the optimization
122 ;; (goto X) ... X: (return) --> (return)
123 ;;
124 ;; But this doesn't solve all of the problems: although by doing tail-
125 ;; recursion elimination in this way, the call-stack does not grow, the
126 ;; binding-stack would grow with each recursive step, and would eventually
127 ;; overflow. I don't believe there is any way around this without lexical
128 ;; scope.
129 ;;
130 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
131 ;;
132 ;; Idea: the form (lexical-scope) in a file means that the file may be
133 ;; compiled lexically. This proclamation is file-local. Then, within
134 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
135 ;; would do things the old way. (Or we could use CL "declare" forms.)
136 ;; We'd have to notice defvars and defconsts, since those variables should
137 ;; always be dynamic, and attempting to do a lexical binding of them
138 ;; should simply do a dynamic binding instead.
139 ;; But! We need to know about variables that were not necessarily defvarred
140 ;; in the file being compiled (doing a boundp check isn't good enough.)
141 ;; Fdefvar() would have to be modified to add something to the plist.
142 ;;
143 ;; A major disadvantage of this scheme is that the interpreter and compiler
144 ;; would have different semantics for files compiled with (dynamic-scope).
145 ;; Since this would be a file-local optimization, there would be no way to
146 ;; modify the interpreter to obey this (unless the loader was hacked
147 ;; in some grody way, but that's a really bad idea.)
148
149 ;; Other things to consider:
150
151 ;;;;; Associative math should recognize subcalls to identical function:
152 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
153 ;;;;; This should generate the same as (1+ x) and (1- x)
154
155 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
156 ;;;;; An awful lot of functions always return a non-nil value. If they're
157 ;;;;; error free also they may act as true-constants.
158
159 ;;;(disassemble (lambda (x) (and (point) (foo))))
160 ;;;;; When
161 ;;;;; - all but one arguments to a function are constant
162 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
163 ;;;;; then the outer function can be distributed. If the guarding
164 ;;;;; condition is side-effect-free [assignment-free] then the other
165 ;;;;; arguments may be any expressions. Since, however, the code size
166 ;;;;; can increase this way they should be "simple". Compare:
167
168 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
169 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
170
171 ;;;;; (car (cons A B)) -> (progn B A)
172 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
173
174 ;;;;; (cdr (cons A B)) -> (progn A B)
175 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
176
177 ;;;;; (car (list A B ...)) -> (progn B ... A)
178 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
179
180 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
181 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
182
183
184 ;;; Code:
185
186 (require 'bytecomp)
187
188 (defun byte-compile-log-lap-1 (format &rest args)
189 (if (aref byte-code-vector 0)
190 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
194 (mapcar (lambda (arg)
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
215 c
216 (format "(%s %s)" c a))))
217 args)))))
218
219 (defmacro byte-compile-log-lap (format-string &rest args)
220 (list 'and
221 '(memq byte-optimize-log '(t byte))
222 (cons 'byte-compile-log-lap-1
223 (cons format-string args))))
224
225 \f
226 ;;; byte-compile optimizers to support inlining
227
228 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
229
230 (defun byte-optimize-inline-handler (form)
231 "byte-optimize-handler for the `inline' special-form."
232 (cons 'progn
233 (mapcar
234 (lambda (sexp)
235 (let ((fn (car-safe sexp)))
236 (if (and (symbolp fn)
237 (or (cdr (assq fn byte-compile-function-environment))
238 (and (fboundp fn)
239 (not (or (cdr (assq fn byte-compile-macro-environment))
240 (and (consp (setq fn (symbol-function fn)))
241 (eq (car fn) 'macro))
242 (subrp fn))))))
243 (byte-compile-inline-expand sexp)
244 sexp)))
245 (cdr form))))
246
247
248 ;; Splice the given lap code into the current instruction stream.
249 ;; If it has any labels in it, you're responsible for making sure there
250 ;; are no collisions, and that byte-compile-tag-number is reasonable
251 ;; after this is spliced in. The provided list is destroyed.
252 (defun byte-inline-lapcode (lap)
253 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
254
255
256 (defun byte-compile-inline-expand (form)
257 (let* ((name (car form))
258 (fn (or (cdr (assq name byte-compile-function-environment))
259 (and (fboundp name) (symbol-function name)))))
260 (if (null fn)
261 (progn
262 (byte-compile-warn "attempt to inline `%s' before it was defined"
263 name)
264 form)
265 ;; else
266 (when (and (consp fn) (eq (car fn) 'autoload))
267 (load (nth 1 fn))
268 (setq fn (or (and (fboundp name) (symbol-function name))
269 (cdr (assq name byte-compile-function-environment)))))
270 (if (and (consp fn) (eq (car fn) 'autoload))
271 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
272 (if (symbolp fn)
273 (byte-compile-inline-expand (cons fn (cdr form)))
274 (if (byte-code-function-p fn)
275 (let (string)
276 (fetch-bytecode fn)
277 (setq string (aref fn 1))
278 (if (fboundp 'string-as-unibyte)
279 (setq string (string-as-unibyte string)))
280 (cons (list 'lambda (aref fn 0)
281 (list 'byte-code string (aref fn 2) (aref fn 3)))
282 (cdr form)))
283 (if (eq (car-safe fn) 'lambda)
284 (cons fn (cdr form))
285 ;; Give up on inlining.
286 form))))))
287
288 ;;; ((lambda ...) ...)
289 ;;;
290 (defun byte-compile-unfold-lambda (form &optional name)
291 (or name (setq name "anonymous lambda"))
292 (let ((lambda (car form))
293 (values (cdr form)))
294 (if (byte-code-function-p lambda)
295 (setq lambda (list 'lambda (aref lambda 0)
296 (list 'byte-code (aref lambda 1)
297 (aref lambda 2) (aref lambda 3)))))
298 (let ((arglist (nth 1 lambda))
299 (body (cdr (cdr lambda)))
300 optionalp restp
301 bindings)
302 (if (and (stringp (car body)) (cdr body))
303 (setq body (cdr body)))
304 (if (and (consp (car body)) (eq 'interactive (car (car body))))
305 (setq body (cdr body)))
306 (while arglist
307 (cond ((eq (car arglist) '&optional)
308 ;; ok, I'll let this slide because funcall_lambda() does...
309 ;; (if optionalp (error "multiple &optional keywords in %s" name))
310 (if restp (error "&optional found after &rest in %s" name))
311 (if (null (cdr arglist))
312 (error "nothing after &optional in %s" name))
313 (setq optionalp t))
314 ((eq (car arglist) '&rest)
315 ;; ...but it is by no stretch of the imagination a reasonable
316 ;; thing that funcall_lambda() allows (&rest x y) and
317 ;; (&rest x &optional y) in arglists.
318 (if (null (cdr arglist))
319 (error "nothing after &rest in %s" name))
320 (if (cdr (cdr arglist))
321 (error "multiple vars after &rest in %s" name))
322 (setq restp t))
323 (restp
324 (setq bindings (cons (list (car arglist)
325 (and values (cons 'list values)))
326 bindings)
327 values nil))
328 ((and (not optionalp) (null values))
329 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
330 (setq arglist nil values 'too-few))
331 (t
332 (setq bindings (cons (list (car arglist) (car values))
333 bindings)
334 values (cdr values))))
335 (setq arglist (cdr arglist)))
336 (if values
337 (progn
338 (or (eq values 'too-few)
339 (byte-compile-warn
340 "attempt to open-code `%s' with too many arguments" name))
341 form)
342
343 ;; The following leads to infinite recursion when loading a
344 ;; file containing `(defsubst f () (f))', and then trying to
345 ;; byte-compile that file.
346 ;(setq body (mapcar 'byte-optimize-form body)))
347
348 (let ((newform
349 (if bindings
350 (cons 'let (cons (nreverse bindings) body))
351 (cons 'progn body))))
352 (byte-compile-log " %s\t==>\t%s" form newform)
353 newform)))))
354
355 \f
356 ;;; implementing source-level optimizers
357
358 (defun byte-optimize-form-code-walker (form for-effect)
359 ;;
360 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
361 ;; we need to have special knowledge of the syntax of the special forms
362 ;; like let and defun (that's why they're special forms :-). (Actually,
363 ;; the important aspect is that they are subrs that don't evaluate all of
364 ;; their args.)
365 ;;
366 (let ((fn (car-safe form))
367 tmp)
368 (cond ((not (consp form))
369 (if (not (and for-effect
370 (or byte-compile-delete-errors
371 (not (symbolp form))
372 (eq form t))))
373 form))
374 ((eq fn 'quote)
375 (if (cdr (cdr form))
376 (byte-compile-warn "malformed quote form: `%s'"
377 (prin1-to-string form)))
378 ;; map (quote nil) to nil to simplify optimizer logic.
379 ;; map quoted constants to nil if for-effect (just because).
380 (and (nth 1 form)
381 (not for-effect)
382 form))
383 ((or (byte-code-function-p fn)
384 (eq 'lambda (car-safe fn)))
385 (byte-compile-unfold-lambda form))
386 ((memq fn '(let let*))
387 ;; recursively enter the optimizer for the bindings and body
388 ;; of a let or let*. This for depth-firstness: forms that
389 ;; are more deeply nested are optimized first.
390 (cons fn
391 (cons
392 (mapcar (lambda (binding)
393 (if (symbolp binding)
394 binding
395 (if (cdr (cdr binding))
396 (byte-compile-warn "malformed let binding: `%s'"
397 (prin1-to-string binding)))
398 (list (car binding)
399 (byte-optimize-form (nth 1 binding) nil))))
400 (nth 1 form))
401 (byte-optimize-body (cdr (cdr form)) for-effect))))
402 ((eq fn 'cond)
403 (cons fn
404 (mapcar (lambda (clause)
405 (if (consp clause)
406 (cons
407 (byte-optimize-form (car clause) nil)
408 (byte-optimize-body (cdr clause) for-effect))
409 (byte-compile-warn "malformed cond form: `%s'"
410 (prin1-to-string clause))
411 clause))
412 (cdr form))))
413 ((eq fn 'progn)
414 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
415 (if (cdr (cdr form))
416 (progn
417 (setq tmp (byte-optimize-body (cdr form) for-effect))
418 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
419 (byte-optimize-form (nth 1 form) for-effect)))
420 ((eq fn 'prog1)
421 (if (cdr (cdr form))
422 (cons 'prog1
423 (cons (byte-optimize-form (nth 1 form) for-effect)
424 (byte-optimize-body (cdr (cdr form)) t)))
425 (byte-optimize-form (nth 1 form) for-effect)))
426 ((eq fn 'prog2)
427 (cons 'prog2
428 (cons (byte-optimize-form (nth 1 form) t)
429 (cons (byte-optimize-form (nth 2 form) for-effect)
430 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
431
432 ((memq fn '(save-excursion save-restriction save-current-buffer))
433 ;; those subrs which have an implicit progn; it's not quite good
434 ;; enough to treat these like normal function calls.
435 ;; This can turn (save-excursion ...) into (save-excursion) which
436 ;; will be optimized away in the lap-optimize pass.
437 (cons fn (byte-optimize-body (cdr form) for-effect)))
438
439 ((eq fn 'with-output-to-temp-buffer)
440 ;; this is just like the above, except for the first argument.
441 (cons fn
442 (cons
443 (byte-optimize-form (nth 1 form) nil)
444 (byte-optimize-body (cdr (cdr form)) for-effect))))
445
446 ((eq fn 'if)
447 (when (< (length form) 3)
448 (byte-compile-warn "too few arguments for `if'"))
449 (cons fn
450 (cons (byte-optimize-form (nth 1 form) nil)
451 (cons
452 (byte-optimize-form (nth 2 form) for-effect)
453 (byte-optimize-body (nthcdr 3 form) for-effect)))))
454
455 ((memq fn '(and or)) ; remember, and/or are control structures.
456 ;; take forms off the back until we can't any more.
457 ;; In the future it could conceivably be a problem that the
458 ;; subexpressions of these forms are optimized in the reverse
459 ;; order, but it's ok for now.
460 (if for-effect
461 (let ((backwards (reverse (cdr form))))
462 (while (and backwards
463 (null (setcar backwards
464 (byte-optimize-form (car backwards)
465 for-effect))))
466 (setq backwards (cdr backwards)))
467 (if (and (cdr form) (null backwards))
468 (byte-compile-log
469 " all subforms of %s called for effect; deleted" form))
470 (and backwards
471 (cons fn (nreverse backwards))))
472 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
473
474 ((eq fn 'interactive)
475 (byte-compile-warn "misplaced interactive spec: `%s'"
476 (prin1-to-string form))
477 nil)
478
479 ((memq fn '(defun defmacro function
480 condition-case save-window-excursion))
481 ;; These forms are compiled as constants or by breaking out
482 ;; all the subexpressions and compiling them separately.
483 form)
484
485 ((eq fn 'unwind-protect)
486 ;; the "protected" part of an unwind-protect is compiled (and thus
487 ;; optimized) as a top-level form, so don't do it here. But the
488 ;; non-protected part has the same for-effect status as the
489 ;; unwind-protect itself. (The protected part is always for effect,
490 ;; but that isn't handled properly yet.)
491 (cons fn
492 (cons (byte-optimize-form (nth 1 form) for-effect)
493 (cdr (cdr form)))))
494
495 ((eq fn 'catch)
496 ;; the body of a catch is compiled (and thus optimized) as a
497 ;; top-level form, so don't do it here. The tag is never
498 ;; for-effect. The body should have the same for-effect status
499 ;; as the catch form itself, but that isn't handled properly yet.
500 (cons fn
501 (cons (byte-optimize-form (nth 1 form) nil)
502 (cdr (cdr form)))))
503
504 ;; If optimization is on, this is the only place that macros are
505 ;; expanded. If optimization is off, then macroexpansion happens
506 ;; in byte-compile-form. Otherwise, the macros are already expanded
507 ;; by the time that is reached.
508 ((not (eq form
509 (setq form (macroexpand form
510 byte-compile-macro-environment))))
511 (byte-optimize-form form for-effect))
512
513 ;; Support compiler macros as in cl.el.
514 ((and (fboundp 'compiler-macroexpand)
515 (symbolp (car-safe form))
516 (get (car-safe form) 'cl-compiler-macro)
517 (not (eq form
518 (setq form (compiler-macroexpand form)))))
519 (byte-optimize-form form for-effect))
520
521 ((not (symbolp fn))
522 (byte-compile-warn "`%s' is a malformed function"
523 (prin1-to-string fn))
524 form)
525
526 ((and for-effect (setq tmp (get fn 'side-effect-free))
527 (or byte-compile-delete-errors
528 (eq tmp 'error-free)
529 (progn
530 (byte-compile-warn "`%s' called for effect"
531 (prin1-to-string form))
532 nil)))
533 (byte-compile-log " %s called for effect; deleted" fn)
534 ;; appending a nil here might not be necessary, but it can't hurt.
535 (byte-optimize-form
536 (cons 'progn (append (cdr form) '(nil))) t))
537
538 (t
539 ;; Otherwise, no args can be considered to be for-effect,
540 ;; even if the called function is for-effect, because we
541 ;; don't know anything about that function.
542 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
543
544
545 (defun byte-optimize-form (form &optional for-effect)
546 "The source-level pass of the optimizer."
547 ;;
548 ;; First, optimize all sub-forms of this one.
549 (setq form (byte-optimize-form-code-walker form for-effect))
550 ;;
551 ;; after optimizing all subforms, optimize this form until it doesn't
552 ;; optimize any further. This means that some forms will be passed through
553 ;; the optimizer many times, but that's necessary to make the for-effect
554 ;; processing do as much as possible.
555 ;;
556 (let (opt new)
557 (if (and (consp form)
558 (symbolp (car form))
559 (or (and for-effect
560 ;; we don't have any of these yet, but we might.
561 (setq opt (get (car form) 'byte-for-effect-optimizer)))
562 (setq opt (get (car form) 'byte-optimizer)))
563 (not (eq form (setq new (funcall opt form)))))
564 (progn
565 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
566 (byte-compile-log " %s\t==>\t%s" form new)
567 (setq new (byte-optimize-form new for-effect))
568 new)
569 form)))
570
571
572 (defun byte-optimize-body (forms all-for-effect)
573 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
574 ;; forms, all but the last of which are optimized with the assumption that
575 ;; they are being called for effect. the last is for-effect as well if
576 ;; all-for-effect is true. returns a new list of forms.
577 (let ((rest forms)
578 (result nil)
579 fe new)
580 (while rest
581 (setq fe (or all-for-effect (cdr rest)))
582 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
583 (if (or new (not fe))
584 (setq result (cons new result)))
585 (setq rest (cdr rest)))
586 (nreverse result)))
587
588 \f
589 ;;; some source-level optimizers
590 ;;;
591 ;;; when writing optimizers, be VERY careful that the optimizer returns
592 ;;; something not EQ to its argument if and ONLY if it has made a change.
593 ;;; This implies that you cannot simply destructively modify the list;
594 ;;; you must return something not EQ to it if you make an optimization.
595 ;;;
596 ;;; It is now safe to optimize code such that it introduces new bindings.
597
598 ;; I'd like this to be a defsubst, but let's not be self-referential...
599 (defmacro byte-compile-trueconstp (form)
600 ;; Returns non-nil if FORM is a non-nil constant.
601 `(cond ((consp ,form) (eq (car ,form) 'quote))
602 ((not (symbolp ,form)))
603 ((eq ,form t))
604 ((keywordp ,form))))
605
606 ;; If the function is being called with constant numeric args,
607 ;; evaluate as much as possible at compile-time. This optimizer
608 ;; assumes that the function is associative, like + or *.
609 (defun byte-optimize-associative-math (form)
610 (let ((args nil)
611 (constants nil)
612 (rest (cdr form)))
613 (while rest
614 (if (numberp (car rest))
615 (setq constants (cons (car rest) constants))
616 (setq args (cons (car rest) args)))
617 (setq rest (cdr rest)))
618 (if (cdr constants)
619 (if args
620 (list (car form)
621 (apply (car form) constants)
622 (if (cdr args)
623 (cons (car form) (nreverse args))
624 (car args)))
625 (apply (car form) constants))
626 form)))
627
628 ;; If the function is being called with constant numeric args,
629 ;; evaluate as much as possible at compile-time. This optimizer
630 ;; assumes that the function satisfies
631 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
632 ;; like - and /.
633 (defun byte-optimize-nonassociative-math (form)
634 (if (or (not (numberp (car (cdr form))))
635 (not (numberp (car (cdr (cdr form))))))
636 form
637 (let ((constant (car (cdr form)))
638 (rest (cdr (cdr form))))
639 (while (numberp (car rest))
640 (setq constant (funcall (car form) constant (car rest))
641 rest (cdr rest)))
642 (if rest
643 (cons (car form) (cons constant rest))
644 constant))))
645
646 ;;(defun byte-optimize-associative-two-args-math (form)
647 ;; (setq form (byte-optimize-associative-math form))
648 ;; (if (consp form)
649 ;; (byte-optimize-two-args-left form)
650 ;; form))
651
652 ;;(defun byte-optimize-nonassociative-two-args-math (form)
653 ;; (setq form (byte-optimize-nonassociative-math form))
654 ;; (if (consp form)
655 ;; (byte-optimize-two-args-right form)
656 ;; form))
657
658 (defun byte-optimize-approx-equal (x y)
659 (<= (* (abs (- x y)) 100) (abs (+ x y))))
660
661 ;; Collect all the constants from FORM, after the STARTth arg,
662 ;; and apply FUN to them to make one argument at the end.
663 ;; For functions that can handle floats, that optimization
664 ;; can be incorrect because reordering can cause an overflow
665 ;; that would otherwise be avoided by encountering an arg that is a float.
666 ;; We avoid this problem by (1) not moving float constants and
667 ;; (2) not moving anything if it would cause an overflow.
668 (defun byte-optimize-delay-constants-math (form start fun)
669 ;; Merge all FORM's constants from number START, call FUN on them
670 ;; and put the result at the end.
671 (let ((rest (nthcdr (1- start) form))
672 (orig form)
673 ;; t means we must check for overflow.
674 (overflow (memq fun '(+ *))))
675 (while (cdr (setq rest (cdr rest)))
676 (if (integerp (car rest))
677 (let (constants)
678 (setq form (copy-sequence form)
679 rest (nthcdr (1- start) form))
680 (while (setq rest (cdr rest))
681 (cond ((integerp (car rest))
682 (setq constants (cons (car rest) constants))
683 (setcar rest nil))))
684 ;; If necessary, check now for overflow
685 ;; that might be caused by reordering.
686 (if (and overflow
687 ;; We have overflow if the result of doing the arithmetic
688 ;; on floats is not even close to the result
689 ;; of doing it on integers.
690 (not (byte-optimize-approx-equal
691 (apply fun (mapcar 'float constants))
692 (float (apply fun constants)))))
693 (setq form orig)
694 (setq form (nconc (delq nil form)
695 (list (apply fun (nreverse constants)))))))))
696 form))
697
698 (defun byte-optimize-plus (form)
699 (setq form (byte-optimize-delay-constants-math form 1 '+))
700 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
701 ;;(setq form (byte-optimize-associative-two-args-math form))
702 (cond ((null (cdr form))
703 (condition-case ()
704 (eval form)
705 (error form)))
706 ;;; It is not safe to delete the function entirely
707 ;;; (actually, it would be safe if we know the sole arg
708 ;;; is not a marker).
709 ;; ((null (cdr (cdr form))) (nth 1 form))
710 ((null (cddr form))
711 (if (numberp (nth 1 form))
712 (nth 1 form)
713 form))
714 ((and (null (nthcdr 3 form))
715 (or (memq (nth 1 form) '(1 -1))
716 (memq (nth 2 form) '(1 -1))))
717 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
718 (let ((integer
719 (if (memq (nth 1 form) '(1 -1))
720 (nth 1 form)
721 (nth 2 form)))
722 (other
723 (if (memq (nth 1 form) '(1 -1))
724 (nth 2 form)
725 (nth 1 form))))
726 (list (if (eq integer 1) '1+ '1-)
727 other)))
728 (t form)))
729
730 (defun byte-optimize-minus (form)
731 ;; Put constants at the end, except the last constant.
732 (setq form (byte-optimize-delay-constants-math form 2 '+))
733 ;; Now only first and last element can be a number.
734 (let ((last (car (reverse (nthcdr 3 form)))))
735 (cond ((eq 0 last)
736 ;; (- x y ... 0) --> (- x y ...)
737 (setq form (copy-sequence form))
738 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
739 ((equal (nthcdr 2 form) '(1))
740 (setq form (list '1- (nth 1 form))))
741 ((equal (nthcdr 2 form) '(-1))
742 (setq form (list '1+ (nth 1 form))))
743 ;; If form is (- CONST foo... CONST), merge first and last.
744 ((and (numberp (nth 1 form))
745 (numberp last))
746 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
747 (delq last (copy-sequence (nthcdr 3 form))))))))
748 ;;; It is not safe to delete the function entirely
749 ;;; (actually, it would be safe if we know the sole arg
750 ;;; is not a marker).
751 ;;; (if (eq (nth 2 form) 0)
752 ;;; (nth 1 form) ; (- x 0) --> x
753 (byte-optimize-predicate
754 (if (and (null (cdr (cdr (cdr form))))
755 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
756 (cons (car form) (cdr (cdr form)))
757 form))
758 ;;; )
759 )
760
761 (defun byte-optimize-multiply (form)
762 (setq form (byte-optimize-delay-constants-math form 1 '*))
763 ;; If there is a constant in FORM, it is now the last element.
764 (cond ((null (cdr form)) 1)
765 ;;; It is not safe to delete the function entirely
766 ;;; (actually, it would be safe if we know the sole arg
767 ;;; is not a marker or if it appears in other arithmetic).
768 ;;; ((null (cdr (cdr form))) (nth 1 form))
769 ((let ((last (car (reverse form))))
770 (cond ((eq 0 last) (cons 'progn (cdr form)))
771 ((eq 1 last) (delq 1 (copy-sequence form)))
772 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
773 ((and (eq 2 last)
774 (memq t (mapcar 'symbolp (cdr form))))
775 (prog1 (setq form (delq 2 (copy-sequence form)))
776 (while (not (symbolp (car (setq form (cdr form))))))
777 (setcar form (list '+ (car form) (car form)))))
778 (form))))))
779
780 (defsubst byte-compile-butlast (form)
781 (nreverse (cdr (reverse form))))
782
783 (defun byte-optimize-divide (form)
784 (setq form (byte-optimize-delay-constants-math form 2 '*))
785 (let ((last (car (reverse (cdr (cdr form))))))
786 (if (numberp last)
787 (cond ((= (length form) 3)
788 (if (and (numberp (nth 1 form))
789 (not (zerop last))
790 (condition-case nil
791 (/ (nth 1 form) last)
792 (error nil)))
793 (setq form (list 'progn (/ (nth 1 form) last)))))
794 ((= last 1)
795 (setq form (byte-compile-butlast form)))
796 ((numberp (nth 1 form))
797 (setq form (cons (car form)
798 (cons (/ (nth 1 form) last)
799 (byte-compile-butlast (cdr (cdr form)))))
800 last nil))))
801 (cond
802 ;;; ((null (cdr (cdr form)))
803 ;;; (nth 1 form))
804 ((eq (nth 1 form) 0)
805 (append '(progn) (cdr (cdr form)) '(0)))
806 ((eq last -1)
807 (list '- (if (nthcdr 3 form)
808 (byte-compile-butlast form)
809 (nth 1 form))))
810 (form))))
811
812 (defun byte-optimize-logmumble (form)
813 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
814 (byte-optimize-predicate
815 (cond ((memq 0 form)
816 (setq form (if (eq (car form) 'logand)
817 (cons 'progn (cdr form))
818 (delq 0 (copy-sequence form)))))
819 ((and (eq (car-safe form) 'logior)
820 (memq -1 form))
821 (cons 'progn (cdr form)))
822 (form))))
823
824
825 (defun byte-optimize-binary-predicate (form)
826 (if (byte-compile-constp (nth 1 form))
827 (if (byte-compile-constp (nth 2 form))
828 (condition-case ()
829 (list 'quote (eval form))
830 (error form))
831 ;; This can enable some lapcode optimizations.
832 (list (car form) (nth 2 form) (nth 1 form)))
833 form))
834
835 (defun byte-optimize-predicate (form)
836 (let ((ok t)
837 (rest (cdr form)))
838 (while (and rest ok)
839 (setq ok (byte-compile-constp (car rest))
840 rest (cdr rest)))
841 (if ok
842 (condition-case ()
843 (list 'quote (eval form))
844 (error form))
845 form)))
846
847 (defun byte-optimize-identity (form)
848 (if (and (cdr form) (null (cdr (cdr form))))
849 (nth 1 form)
850 (byte-compile-warn "identity called with %d arg%s, but requires 1"
851 (length (cdr form))
852 (if (= 1 (length (cdr form))) "" "s"))
853 form))
854
855 (put 'identity 'byte-optimizer 'byte-optimize-identity)
856
857 (put '+ 'byte-optimizer 'byte-optimize-plus)
858 (put '* 'byte-optimizer 'byte-optimize-multiply)
859 (put '- 'byte-optimizer 'byte-optimize-minus)
860 (put '/ 'byte-optimizer 'byte-optimize-divide)
861 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
862 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
863
864 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
865 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
866 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
867 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
868 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
869
870 (put '< 'byte-optimizer 'byte-optimize-predicate)
871 (put '> 'byte-optimizer 'byte-optimize-predicate)
872 (put '<= 'byte-optimizer 'byte-optimize-predicate)
873 (put '>= 'byte-optimizer 'byte-optimize-predicate)
874 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
875 (put '1- 'byte-optimizer 'byte-optimize-predicate)
876 (put 'not 'byte-optimizer 'byte-optimize-predicate)
877 (put 'null 'byte-optimizer 'byte-optimize-predicate)
878 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
879 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
880 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
881 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
882 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
883 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
884 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
885
886 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
887 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
888 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
889 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
890
891 (put 'car 'byte-optimizer 'byte-optimize-predicate)
892 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
893 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
894 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
895
896
897 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
898 ;; take care of this? - Jamie
899 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
900 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
901 (put 'quote 'byte-optimizer 'byte-optimize-quote)
902 (defun byte-optimize-quote (form)
903 (if (or (consp (nth 1 form))
904 (and (symbolp (nth 1 form))
905 (not (byte-compile-const-symbol-p form))))
906 form
907 (nth 1 form)))
908
909 (defun byte-optimize-zerop (form)
910 (cond ((numberp (nth 1 form))
911 (eval form))
912 (byte-compile-delete-errors
913 (list '= (nth 1 form) 0))
914 (form)))
915
916 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
917
918 (defun byte-optimize-and (form)
919 ;; Simplify if less than 2 args.
920 ;; if there is a literal nil in the args to `and', throw it and following
921 ;; forms away, and surround the `and' with (progn ... nil).
922 (cond ((null (cdr form)))
923 ((memq nil form)
924 (list 'progn
925 (byte-optimize-and
926 (prog1 (setq form (copy-sequence form))
927 (while (nth 1 form)
928 (setq form (cdr form)))
929 (setcdr form nil)))
930 nil))
931 ((null (cdr (cdr form)))
932 (nth 1 form))
933 ((byte-optimize-predicate form))))
934
935 (defun byte-optimize-or (form)
936 ;; Throw away nil's, and simplify if less than 2 args.
937 ;; If there is a literal non-nil constant in the args to `or', throw away all
938 ;; following forms.
939 (if (memq nil form)
940 (setq form (delq nil (copy-sequence form))))
941 (let ((rest form))
942 (while (cdr (setq rest (cdr rest)))
943 (if (byte-compile-trueconstp (car rest))
944 (setq form (copy-sequence form)
945 rest (setcdr (memq (car rest) form) nil))))
946 (if (cdr (cdr form))
947 (byte-optimize-predicate form)
948 (nth 1 form))))
949
950 (defun byte-optimize-cond (form)
951 ;; if any clauses have a literal nil as their test, throw them away.
952 ;; if any clause has a literal non-nil constant as its test, throw
953 ;; away all following clauses.
954 (let (rest)
955 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
956 (while (setq rest (assq nil (cdr form)))
957 (setq form (delq rest (copy-sequence form))))
958 (if (memq nil (cdr form))
959 (setq form (delq nil (copy-sequence form))))
960 (setq rest form)
961 (while (setq rest (cdr rest))
962 (cond ((byte-compile-trueconstp (car-safe (car rest)))
963 (cond ((eq rest (cdr form))
964 (setq form
965 (if (cdr (car rest))
966 (if (cdr (cdr (car rest)))
967 (cons 'progn (cdr (car rest)))
968 (nth 1 (car rest)))
969 (car (car rest)))))
970 ((cdr rest)
971 (setq form (copy-sequence form))
972 (setcdr (memq (car rest) form) nil)))
973 (setq rest nil)))))
974 ;;
975 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
976 (if (eq 'cond (car-safe form))
977 (let ((clauses (cdr form)))
978 (if (and (consp (car clauses))
979 (null (cdr (car clauses))))
980 (list 'or (car (car clauses))
981 (byte-optimize-cond
982 (cons (car form) (cdr (cdr form)))))
983 form))
984 form))
985
986 (defun byte-optimize-if (form)
987 ;; (if <true-constant> <then> <else...>) ==> <then>
988 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
989 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
990 ;; (if <test> <then> nil) ==> (if <test> <then>)
991 (let ((clause (nth 1 form)))
992 (cond ((byte-compile-trueconstp clause)
993 (nth 2 form))
994 ((null clause)
995 (if (nthcdr 4 form)
996 (cons 'progn (nthcdr 3 form))
997 (nth 3 form)))
998 ((nth 2 form)
999 (if (equal '(nil) (nthcdr 3 form))
1000 (list 'if clause (nth 2 form))
1001 form))
1002 ((or (nth 3 form) (nthcdr 4 form))
1003 (list 'if
1004 ;; Don't make a double negative;
1005 ;; instead, take away the one that is there.
1006 (if (and (consp clause) (memq (car clause) '(not null))
1007 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1008 (nth 1 clause)
1009 (list 'not clause))
1010 (if (nthcdr 4 form)
1011 (cons 'progn (nthcdr 3 form))
1012 (nth 3 form))))
1013 (t
1014 (list 'progn clause nil)))))
1015
1016 (defun byte-optimize-while (form)
1017 (when (< (length form) 2)
1018 (byte-compile-warn "too few arguments for `while'"))
1019 (if (nth 1 form)
1020 form))
1021
1022 (put 'and 'byte-optimizer 'byte-optimize-and)
1023 (put 'or 'byte-optimizer 'byte-optimize-or)
1024 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1025 (put 'if 'byte-optimizer 'byte-optimize-if)
1026 (put 'while 'byte-optimizer 'byte-optimize-while)
1027
1028 ;; byte-compile-negation-optimizer lives in bytecomp.el
1029 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1030 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1031 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1032
1033
1034 (defun byte-optimize-funcall (form)
1035 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1036 ;; (funcall foo ...) ==> (foo ...)
1037 (let ((fn (nth 1 form)))
1038 (if (memq (car-safe fn) '(quote function))
1039 (cons (nth 1 fn) (cdr (cdr form)))
1040 form)))
1041
1042 (defun byte-optimize-apply (form)
1043 ;; If the last arg is a literal constant, turn this into a funcall.
1044 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1045 (let ((fn (nth 1 form))
1046 (last (nth (1- (length form)) form))) ; I think this really is fastest
1047 (or (if (or (null last)
1048 (eq (car-safe last) 'quote))
1049 (if (listp (nth 1 last))
1050 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1051 (nconc (list 'funcall fn) butlast
1052 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1053 (byte-compile-warn
1054 "last arg to apply can't be a literal atom: `%s'"
1055 (prin1-to-string last))
1056 nil))
1057 form)))
1058
1059 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1060 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1061
1062
1063 (put 'let 'byte-optimizer 'byte-optimize-letX)
1064 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1065 (defun byte-optimize-letX (form)
1066 (cond ((null (nth 1 form))
1067 ;; No bindings
1068 (cons 'progn (cdr (cdr form))))
1069 ((or (nth 2 form) (nthcdr 3 form))
1070 form)
1071 ;; The body is nil
1072 ((eq (car form) 'let)
1073 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1074 '(nil)))
1075 (t
1076 (let ((binds (reverse (nth 1 form))))
1077 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1078
1079
1080 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1081 (defun byte-optimize-nth (form)
1082 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1083 (list 'car (if (zerop (nth 1 form))
1084 (nth 2 form)
1085 (list 'cdr (nth 2 form))))
1086 (byte-optimize-predicate form)))
1087
1088 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1089 (defun byte-optimize-nthcdr (form)
1090 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1091 (byte-optimize-predicate form)
1092 (let ((count (nth 1 form)))
1093 (setq form (nth 2 form))
1094 (while (>= (setq count (1- count)) 0)
1095 (setq form (list 'cdr form)))
1096 form)))
1097
1098 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1099 (defun byte-optimize-concat (form)
1100 (let ((args (cdr form))
1101 (constant t))
1102 (while (and args constant)
1103 (or (byte-compile-constp (car args))
1104 (setq constant nil))
1105 (setq args (cdr args)))
1106 (if constant
1107 (eval form)
1108 form)))
1109
1110 ;; Avoid having to write forward-... with a negative arg for speed.
1111 (put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1112 (defun byte-optimize-backward-char (form)
1113 (cond ((and (= 2 (safe-length form))
1114 (numberp (nth 1 form)))
1115 (list 'forward-char (eval (- (nth 1 form)))))
1116 ((= 1 (safe-length form))
1117 '(forward-char -1))
1118 (t form)))
1119
1120 (put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1121 (defun byte-optimize-backward-word (form)
1122 (cond ((and (= 2 (safe-length form))
1123 (numberp (nth 1 form)))
1124 (list 'forward-word (eval (- (nth 1 form)))))
1125 ((= 1 (safe-length form))
1126 '(forward-char -1))
1127 (t form)))
1128
1129 (put 'char-before 'byte-optimizer 'byte-optimize-char-before)
1130 (defun byte-optimize-char-before (form)
1131 (cond ((= 2 (safe-length form))
1132 `(char-after (1- ,(nth 1 form))))
1133 ((= 1 (safe-length form))
1134 '(char-after (1- (point))))
1135 (t form)))
1136 \f
1137 ;;; enumerating those functions which need not be called if the returned
1138 ;;; value is not used. That is, something like
1139 ;;; (progn (list (something-with-side-effects) (yow))
1140 ;;; (foo))
1141 ;;; may safely be turned into
1142 ;;; (progn (progn (something-with-side-effects) (yow))
1143 ;;; (foo))
1144 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1145
1146 ;;; I wonder if I missed any :-\)
1147 (let ((side-effect-free-fns
1148 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1149 assoc assq
1150 boundp buffer-file-name buffer-local-variables buffer-modified-p
1151 buffer-substring
1152 capitalize car-less-than-car car cdr ceiling char-after char-before
1153 concat coordinates-in-window-p
1154 char-width copy-marker cos count-lines
1155 decode-char default-boundp default-value documentation downcase
1156 elt encode-char exp expt fboundp featurep
1157 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1158 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1159 float floor format frame-visible-p
1160 get gethash get-buffer get-buffer-window getenv get-file-buffer
1161 hash-table-count
1162 int-to-string
1163 keymap-parent
1164 length local-variable-if-set-p local-variable-p log log10 logand
1165 logb logior lognot logxor lsh langinfo
1166 marker-buffer max member memq min mod multibyte-char-to-unibyte
1167 next-window nth nthcdr number-to-string
1168 parse-colon-path prefix-numeric-value previous-window propertize
1169 radians-to-degrees rassq regexp-quote reverse round
1170 sin sqrt string string< string= string-equal string-lessp string-to-char
1171 string-to-int string-to-number substring symbol-function symbol-plist
1172 symbol-value string-make-unibyte string-make-multibyte
1173 string-to-multibyte string-as-multibyte string-as-unibyte
1174 tan unibyte-char-to-multibyte upcase user-variable-p vconcat
1175 window-buffer window-dedicated-p window-edges window-height
1176 window-hscroll window-minibuffer-p window-width
1177 zerop))
1178 (side-effect-and-error-free-fns
1179 '(arrayp atom
1180 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1181 car-safe case-table-p cdr-safe char-or-string-p characterp
1182 charsetp commandp cons consp
1183 current-buffer current-global-map current-indentation
1184 current-local-map current-minor-mode-maps
1185 dot dot-marker eobp eolp eq equal eventp
1186 floatp following-char framep
1187 get-largest-window get-lru-window
1188 hash-table-p
1189 identity ignore integerp integer-or-marker-p interactive-p
1190 invocation-directory invocation-name
1191 keymapp
1192 line-beginning-position line-end-position list listp
1193 make-marker mark mark-marker markerp max-char memory-limit minibuffer-window
1194 mouse-movement-p
1195 natnump nlistp not null number-or-marker-p numberp
1196 one-window-p overlayp
1197 point point-marker point-min point-max preceding-char primary-charset
1198 processp
1199 recent-keys recursion-depth
1200 selected-frame selected-window sequencep stringp subrp symbolp
1201 standard-case-table standard-syntax-table syntax-table-p
1202 this-command-keys this-command-keys-vector this-single-command-keys
1203 this-single-command-raw-keys
1204 user-full-name user-login-name user-original-login-name
1205 user-real-login-name user-real-uid user-uid
1206 vector vectorp visible-frame-list
1207 window-configuration-p window-live-p windowp)))
1208 (while side-effect-free-fns
1209 (put (car side-effect-free-fns) 'side-effect-free t)
1210 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1211 (while side-effect-and-error-free-fns
1212 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1213 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1214 nil)
1215
1216
1217 (defun byte-compile-splice-in-already-compiled-code (form)
1218 ;; form is (byte-code "..." [...] n)
1219 (if (not (memq byte-optimize '(t lap)))
1220 (byte-compile-normal-call form)
1221 (byte-inline-lapcode
1222 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1223 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1224 byte-compile-maxdepth))
1225 (setq byte-compile-depth (1+ byte-compile-depth))))
1226
1227 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1228
1229 \f
1230 (defconst byte-constref-ops
1231 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1232
1233 ;;; This function extracts the bitfields from variable-length opcodes.
1234 ;;; Originally defined in disass.el (which no longer uses it.)
1235
1236 (defun disassemble-offset ()
1237 "Don't call this!"
1238 ;; fetch and return the offset for the current opcode.
1239 ;; return nil if this opcode has no offset
1240 ;; OP, PTR and BYTES are used and set dynamically
1241 (defvar op)
1242 (defvar ptr)
1243 (defvar bytes)
1244 (cond ((< op byte-nth)
1245 (let ((tem (logand op 7)))
1246 (setq op (logand op 248))
1247 (cond ((eq tem 6)
1248 (setq ptr (1+ ptr)) ;offset in next byte
1249 (aref bytes ptr))
1250 ((eq tem 7)
1251 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1252 (+ (aref bytes ptr)
1253 (progn (setq ptr (1+ ptr))
1254 (lsh (aref bytes ptr) 8))))
1255 (t tem)))) ;offset was in opcode
1256 ((>= op byte-constant)
1257 (prog1 (- op byte-constant) ;offset in opcode
1258 (setq op byte-constant)))
1259 ((and (>= op byte-constant2)
1260 (<= op byte-goto-if-not-nil-else-pop))
1261 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1262 (+ (aref bytes ptr)
1263 (progn (setq ptr (1+ ptr))
1264 (lsh (aref bytes ptr) 8))))
1265 ((and (>= op byte-listN)
1266 (<= op byte-insertN))
1267 (setq ptr (1+ ptr)) ;offset in next byte
1268 (aref bytes ptr))))
1269
1270
1271 ;;; This de-compiler is used for inline expansion of compiled functions,
1272 ;;; and by the disassembler.
1273 ;;;
1274 ;;; This list contains numbers, which are pc values,
1275 ;;; before each instruction.
1276 (defun byte-decompile-bytecode (bytes constvec)
1277 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1278 (let ((byte-compile-constants nil)
1279 (byte-compile-variables nil)
1280 (byte-compile-tag-number 0))
1281 (byte-decompile-bytecode-1 bytes constvec)))
1282
1283 ;; As byte-decompile-bytecode, but updates
1284 ;; byte-compile-{constants, variables, tag-number}.
1285 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1286 ;; with `goto's destined for the end of the code.
1287 ;; That is for use by the compiler.
1288 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1289 ;; In that case, we put a pc value into the list
1290 ;; before each insn (or its label).
1291 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1292 (let ((length (length bytes))
1293 (ptr 0) optr tag tags op offset
1294 lap tmp
1295 endtag
1296 (retcount 0))
1297 (while (not (= ptr length))
1298 (or make-spliceable
1299 (setq lap (cons ptr lap)))
1300 (setq op (aref bytes ptr)
1301 optr ptr
1302 offset (disassemble-offset)) ; this does dynamic-scope magic
1303 (setq op (aref byte-code-vector op))
1304 (cond ((memq op byte-goto-ops)
1305 ;; it's a pc
1306 (setq offset
1307 (cdr (or (assq offset tags)
1308 (car (setq tags
1309 (cons (cons offset
1310 (byte-compile-make-tag))
1311 tags)))))))
1312 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1313 ((memq op byte-constref-ops)))
1314 (setq tmp (if (>= offset (length constvec))
1315 (list 'out-of-range offset)
1316 (aref constvec offset))
1317 offset (if (eq op 'byte-constant)
1318 (byte-compile-get-constant tmp)
1319 (or (assq tmp byte-compile-variables)
1320 (car (setq byte-compile-variables
1321 (cons (list tmp)
1322 byte-compile-variables)))))))
1323 ((and make-spliceable
1324 (eq op 'byte-return))
1325 (if (= ptr (1- length))
1326 (setq op nil)
1327 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1328 op 'byte-goto))))
1329 ;; lap = ( [ (pc . (op . arg)) ]* )
1330 (setq lap (cons (cons optr (cons op (or offset 0)))
1331 lap))
1332 (setq ptr (1+ ptr)))
1333 ;; take off the dummy nil op that we replaced a trailing "return" with.
1334 (let ((rest lap))
1335 (while rest
1336 (cond ((numberp (car rest)))
1337 ((setq tmp (assq (car (car rest)) tags))
1338 ;; this addr is jumped to
1339 (setcdr rest (cons (cons nil (cdr tmp))
1340 (cdr rest)))
1341 (setq tags (delq tmp tags))
1342 (setq rest (cdr rest))))
1343 (setq rest (cdr rest))))
1344 (if tags (error "optimizer error: missed tags %s" tags))
1345 (if (null (car (cdr (car lap))))
1346 (setq lap (cdr lap)))
1347 (if endtag
1348 (setq lap (cons (cons nil endtag) lap)))
1349 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1350 (mapcar (function (lambda (elt)
1351 (if (numberp elt)
1352 elt
1353 (cdr elt))))
1354 (nreverse lap))))
1355
1356 \f
1357 ;;; peephole optimizer
1358
1359 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1360
1361 (defconst byte-conditional-ops
1362 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1363 byte-goto-if-not-nil-else-pop))
1364
1365 (defconst byte-after-unbind-ops
1366 '(byte-constant byte-dup
1367 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1368 byte-eq byte-not
1369 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1370 byte-interactive-p)
1371 ;; How about other side-effect-free-ops? Is it safe to move an
1372 ;; error invocation (such as from nth) out of an unwind-protect?
1373 ;; No, it is not, because the unwind-protect forms can alter
1374 ;; the inside of the object to which nth would apply.
1375 ;; For the same reason, byte-equal was deleted from this list.
1376 "Byte-codes that can be moved past an unbind.")
1377
1378 (defconst byte-compile-side-effect-and-error-free-ops
1379 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1380 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1381 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1382 byte-point-min byte-following-char byte-preceding-char
1383 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1384 byte-current-buffer byte-interactive-p))
1385
1386 (defconst byte-compile-side-effect-free-ops
1387 (nconc
1388 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1389 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1390 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1391 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1392 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1393 byte-member byte-assq byte-quo byte-rem)
1394 byte-compile-side-effect-and-error-free-ops))
1395
1396 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1397 ;;; Consider the code
1398 ;;;
1399 ;;; (defun foo (flag)
1400 ;;; (let ((old-pop-ups pop-up-windows)
1401 ;;; (pop-up-windows flag))
1402 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1403 ;;; (setq old-pop-ups pop-up-windows)
1404 ;;; ...))))
1405 ;;;
1406 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1407 ;;; something else. But if we optimize
1408 ;;;
1409 ;;; varref flag
1410 ;;; varbind pop-up-windows
1411 ;;; varref pop-up-windows
1412 ;;; not
1413 ;;; to
1414 ;;; varref flag
1415 ;;; dup
1416 ;;; varbind pop-up-windows
1417 ;;; not
1418 ;;;
1419 ;;; we break the program, because it will appear that pop-up-windows and
1420 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1421 ;;; the BOOL variables are, and not perform this optimization on them.
1422
1423 ;;; The variable `byte-boolean-vars' is now primitive and updated
1424 ;;; automatically by DEFVAR_BOOL.
1425
1426 (defun byte-optimize-lapcode (lap &optional for-effect)
1427 "Simple peephole optimizer. LAP is both modified and returned."
1428 (let (lap0
1429 lap1
1430 lap2
1431 (keep-going 'first-time)
1432 (add-depth 0)
1433 rest tmp tmp2 tmp3
1434 (side-effect-free (if byte-compile-delete-errors
1435 byte-compile-side-effect-free-ops
1436 byte-compile-side-effect-and-error-free-ops)))
1437 (while keep-going
1438 (or (eq keep-going 'first-time)
1439 (byte-compile-log-lap " ---- next pass"))
1440 (setq rest lap
1441 keep-going nil)
1442 (while rest
1443 (setq lap0 (car rest)
1444 lap1 (nth 1 rest)
1445 lap2 (nth 2 rest))
1446
1447 ;; You may notice that sequences like "dup varset discard" are
1448 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1449 ;; You may be tempted to change this; resist that temptation.
1450 (cond ;;
1451 ;; <side-effect-free> pop --> <deleted>
1452 ;; ...including:
1453 ;; const-X pop --> <deleted>
1454 ;; varref-X pop --> <deleted>
1455 ;; dup pop --> <deleted>
1456 ;;
1457 ((and (eq 'byte-discard (car lap1))
1458 (memq (car lap0) side-effect-free))
1459 (setq keep-going t)
1460 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1461 (setq rest (cdr rest))
1462 (cond ((= tmp 1)
1463 (byte-compile-log-lap
1464 " %s discard\t-->\t<deleted>" lap0)
1465 (setq lap (delq lap0 (delq lap1 lap))))
1466 ((= tmp 0)
1467 (byte-compile-log-lap
1468 " %s discard\t-->\t<deleted> discard" lap0)
1469 (setq lap (delq lap0 lap)))
1470 ((= tmp -1)
1471 (byte-compile-log-lap
1472 " %s discard\t-->\tdiscard discard" lap0)
1473 (setcar lap0 'byte-discard)
1474 (setcdr lap0 0))
1475 ((error "Optimizer error: too much on the stack"))))
1476 ;;
1477 ;; goto*-X X: --> X:
1478 ;;
1479 ((and (memq (car lap0) byte-goto-ops)
1480 (eq (cdr lap0) lap1))
1481 (cond ((eq (car lap0) 'byte-goto)
1482 (setq lap (delq lap0 lap))
1483 (setq tmp "<deleted>"))
1484 ((memq (car lap0) byte-goto-always-pop-ops)
1485 (setcar lap0 (setq tmp 'byte-discard))
1486 (setcdr lap0 0))
1487 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1488 (and (memq byte-optimize-log '(t byte))
1489 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1490 (nth 1 lap1) (nth 1 lap1)
1491 tmp (nth 1 lap1)))
1492 (setq keep-going t))
1493 ;;
1494 ;; varset-X varref-X --> dup varset-X
1495 ;; varbind-X varref-X --> dup varbind-X
1496 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1497 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1498 ;; The latter two can enable other optimizations.
1499 ;;
1500 ((and (eq 'byte-varref (car lap2))
1501 (eq (cdr lap1) (cdr lap2))
1502 (memq (car lap1) '(byte-varset byte-varbind)))
1503 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1504 (not (eq (car lap0) 'byte-constant)))
1505 nil
1506 (setq keep-going t)
1507 (if (memq (car lap0) '(byte-constant byte-dup))
1508 (progn
1509 (setq tmp (if (or (not tmp)
1510 (byte-compile-const-symbol-p
1511 (car (cdr lap0))))
1512 (cdr lap0)
1513 (byte-compile-get-constant t)))
1514 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1515 lap0 lap1 lap2 lap0 lap1
1516 (cons (car lap0) tmp))
1517 (setcar lap2 (car lap0))
1518 (setcdr lap2 tmp))
1519 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1520 (setcar lap2 (car lap1))
1521 (setcar lap1 'byte-dup)
1522 (setcdr lap1 0)
1523 ;; The stack depth gets locally increased, so we will
1524 ;; increase maxdepth in case depth = maxdepth here.
1525 ;; This can cause the third argument to byte-code to
1526 ;; be larger than necessary.
1527 (setq add-depth 1))))
1528 ;;
1529 ;; dup varset-X discard --> varset-X
1530 ;; dup varbind-X discard --> varbind-X
1531 ;; (the varbind variant can emerge from other optimizations)
1532 ;;
1533 ((and (eq 'byte-dup (car lap0))
1534 (eq 'byte-discard (car lap2))
1535 (memq (car lap1) '(byte-varset byte-varbind)))
1536 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1537 (setq keep-going t
1538 rest (cdr rest))
1539 (setq lap (delq lap0 (delq lap2 lap))))
1540 ;;
1541 ;; not goto-X-if-nil --> goto-X-if-non-nil
1542 ;; not goto-X-if-non-nil --> goto-X-if-nil
1543 ;;
1544 ;; it is wrong to do the same thing for the -else-pop variants.
1545 ;;
1546 ((and (eq 'byte-not (car lap0))
1547 (or (eq 'byte-goto-if-nil (car lap1))
1548 (eq 'byte-goto-if-not-nil (car lap1))))
1549 (byte-compile-log-lap " not %s\t-->\t%s"
1550 lap1
1551 (cons
1552 (if (eq (car lap1) 'byte-goto-if-nil)
1553 'byte-goto-if-not-nil
1554 'byte-goto-if-nil)
1555 (cdr lap1)))
1556 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1557 'byte-goto-if-not-nil
1558 'byte-goto-if-nil))
1559 (setq lap (delq lap0 lap))
1560 (setq keep-going t))
1561 ;;
1562 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1563 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1564 ;;
1565 ;; it is wrong to do the same thing for the -else-pop variants.
1566 ;;
1567 ((and (or (eq 'byte-goto-if-nil (car lap0))
1568 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1569 (eq 'byte-goto (car lap1)) ; gotoY
1570 (eq (cdr lap0) lap2)) ; TAG X
1571 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1572 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1573 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1574 lap0 lap1 lap2
1575 (cons inverse (cdr lap1)) lap2)
1576 (setq lap (delq lap0 lap))
1577 (setcar lap1 inverse)
1578 (setq keep-going t)))
1579 ;;
1580 ;; const goto-if-* --> whatever
1581 ;;
1582 ((and (eq 'byte-constant (car lap0))
1583 (memq (car lap1) byte-conditional-ops))
1584 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1585 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1586 (car (cdr lap0))
1587 (not (car (cdr lap0))))
1588 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1589 lap0 lap1)
1590 (setq rest (cdr rest)
1591 lap (delq lap0 (delq lap1 lap))))
1592 (t
1593 (if (memq (car lap1) byte-goto-always-pop-ops)
1594 (progn
1595 (byte-compile-log-lap " %s %s\t-->\t%s"
1596 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1597 (setq lap (delq lap0 lap)))
1598 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1599 (cons 'byte-goto (cdr lap1))))
1600 (setcar lap1 'byte-goto)))
1601 (setq keep-going t))
1602 ;;
1603 ;; varref-X varref-X --> varref-X dup
1604 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1605 ;; We don't optimize the const-X variations on this here,
1606 ;; because that would inhibit some goto optimizations; we
1607 ;; optimize the const-X case after all other optimizations.
1608 ;;
1609 ((and (eq 'byte-varref (car lap0))
1610 (progn
1611 (setq tmp (cdr rest))
1612 (while (eq (car (car tmp)) 'byte-dup)
1613 (setq tmp (cdr tmp)))
1614 t)
1615 (eq (cdr lap0) (cdr (car tmp)))
1616 (eq 'byte-varref (car (car tmp))))
1617 (if (memq byte-optimize-log '(t byte))
1618 (let ((str ""))
1619 (setq tmp2 (cdr rest))
1620 (while (not (eq tmp tmp2))
1621 (setq tmp2 (cdr tmp2)
1622 str (concat str " dup")))
1623 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1624 lap0 str lap0 lap0 str)))
1625 (setq keep-going t)
1626 (setcar (car tmp) 'byte-dup)
1627 (setcdr (car tmp) 0)
1628 (setq rest tmp))
1629 ;;
1630 ;; TAG1: TAG2: --> TAG1: <deleted>
1631 ;; (and other references to TAG2 are replaced with TAG1)
1632 ;;
1633 ((and (eq (car lap0) 'TAG)
1634 (eq (car lap1) 'TAG))
1635 (and (memq byte-optimize-log '(t byte))
1636 (byte-compile-log " adjacent tags %d and %d merged"
1637 (nth 1 lap1) (nth 1 lap0)))
1638 (setq tmp3 lap)
1639 (while (setq tmp2 (rassq lap0 tmp3))
1640 (setcdr tmp2 lap1)
1641 (setq tmp3 (cdr (memq tmp2 tmp3))))
1642 (setq lap (delq lap0 lap)
1643 keep-going t))
1644 ;;
1645 ;; unused-TAG: --> <deleted>
1646 ;;
1647 ((and (eq 'TAG (car lap0))
1648 (not (rassq lap0 lap)))
1649 (and (memq byte-optimize-log '(t byte))
1650 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1651 (setq lap (delq lap0 lap)
1652 keep-going t))
1653 ;;
1654 ;; goto ... --> goto <delete until TAG or end>
1655 ;; return ... --> return <delete until TAG or end>
1656 ;;
1657 ((and (memq (car lap0) '(byte-goto byte-return))
1658 (not (memq (car lap1) '(TAG nil))))
1659 (setq tmp rest)
1660 (let ((i 0)
1661 (opt-p (memq byte-optimize-log '(t lap)))
1662 str deleted)
1663 (while (and (setq tmp (cdr tmp))
1664 (not (eq 'TAG (car (car tmp)))))
1665 (if opt-p (setq deleted (cons (car tmp) deleted)
1666 str (concat str " %s")
1667 i (1+ i))))
1668 (if opt-p
1669 (let ((tagstr
1670 (if (eq 'TAG (car (car tmp)))
1671 (format "%d:" (car (cdr (car tmp))))
1672 (or (car tmp) ""))))
1673 (if (< i 6)
1674 (apply 'byte-compile-log-lap-1
1675 (concat " %s" str
1676 " %s\t-->\t%s <deleted> %s")
1677 lap0
1678 (nconc (nreverse deleted)
1679 (list tagstr lap0 tagstr)))
1680 (byte-compile-log-lap
1681 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1682 lap0 i (if (= i 1) "" "s")
1683 tagstr lap0 tagstr))))
1684 (rplacd rest tmp))
1685 (setq keep-going t))
1686 ;;
1687 ;; <safe-op> unbind --> unbind <safe-op>
1688 ;; (this may enable other optimizations.)
1689 ;;
1690 ((and (eq 'byte-unbind (car lap1))
1691 (memq (car lap0) byte-after-unbind-ops))
1692 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1693 (setcar rest lap1)
1694 (setcar (cdr rest) lap0)
1695 (setq keep-going t))
1696 ;;
1697 ;; varbind-X unbind-N --> discard unbind-(N-1)
1698 ;; save-excursion unbind-N --> unbind-(N-1)
1699 ;; save-restriction unbind-N --> unbind-(N-1)
1700 ;;
1701 ((and (eq 'byte-unbind (car lap1))
1702 (memq (car lap0) '(byte-varbind byte-save-excursion
1703 byte-save-restriction))
1704 (< 0 (cdr lap1)))
1705 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1706 (delq lap1 rest))
1707 (if (eq (car lap0) 'byte-varbind)
1708 (setcar rest (cons 'byte-discard 0))
1709 (setq lap (delq lap0 lap)))
1710 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1711 lap0 (cons (car lap1) (1+ (cdr lap1)))
1712 (if (eq (car lap0) 'byte-varbind)
1713 (car rest)
1714 (car (cdr rest)))
1715 (if (and (/= 0 (cdr lap1))
1716 (eq (car lap0) 'byte-varbind))
1717 (car (cdr rest))
1718 ""))
1719 (setq keep-going t))
1720 ;;
1721 ;; goto*-X ... X: goto-Y --> goto*-Y
1722 ;; goto-X ... X: return --> return
1723 ;;
1724 ((and (memq (car lap0) byte-goto-ops)
1725 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1726 '(byte-goto byte-return)))
1727 (cond ((and (not (eq tmp lap0))
1728 (or (eq (car lap0) 'byte-goto)
1729 (eq (car tmp) 'byte-goto)))
1730 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1731 (car lap0) tmp tmp)
1732 (if (eq (car tmp) 'byte-return)
1733 (setcar lap0 'byte-return))
1734 (setcdr lap0 (cdr tmp))
1735 (setq keep-going t))))
1736 ;;
1737 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1738 ;; goto-*-else-pop X ... X: discard --> whatever
1739 ;;
1740 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1741 byte-goto-if-not-nil-else-pop))
1742 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1743 (eval-when-compile
1744 (cons 'byte-discard byte-conditional-ops)))
1745 (not (eq lap0 (car tmp))))
1746 (setq tmp2 (car tmp))
1747 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1748 byte-goto-if-nil)
1749 (byte-goto-if-not-nil-else-pop
1750 byte-goto-if-not-nil))))
1751 (if (memq (car tmp2) tmp3)
1752 (progn (setcar lap0 (car tmp2))
1753 (setcdr lap0 (cdr tmp2))
1754 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1755 (car lap0) tmp2 lap0))
1756 ;; Get rid of the -else-pop's and jump one step further.
1757 (or (eq 'TAG (car (nth 1 tmp)))
1758 (setcdr tmp (cons (byte-compile-make-tag)
1759 (cdr tmp))))
1760 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1761 (car lap0) tmp2 (nth 1 tmp3))
1762 (setcar lap0 (nth 1 tmp3))
1763 (setcdr lap0 (nth 1 tmp)))
1764 (setq keep-going t))
1765 ;;
1766 ;; const goto-X ... X: goto-if-* --> whatever
1767 ;; const goto-X ... X: discard --> whatever
1768 ;;
1769 ((and (eq (car lap0) 'byte-constant)
1770 (eq (car lap1) 'byte-goto)
1771 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1772 (eval-when-compile
1773 (cons 'byte-discard byte-conditional-ops)))
1774 (not (eq lap1 (car tmp))))
1775 (setq tmp2 (car tmp))
1776 (cond ((memq (car tmp2)
1777 (if (null (car (cdr lap0)))
1778 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1779 '(byte-goto-if-not-nil
1780 byte-goto-if-not-nil-else-pop)))
1781 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1782 lap0 tmp2 lap0 tmp2)
1783 (setcar lap1 (car tmp2))
1784 (setcdr lap1 (cdr tmp2))
1785 ;; Let next step fix the (const,goto-if*) sequence.
1786 (setq rest (cons nil rest)))
1787 (t
1788 ;; Jump one step further
1789 (byte-compile-log-lap
1790 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1791 lap0 tmp2)
1792 (or (eq 'TAG (car (nth 1 tmp)))
1793 (setcdr tmp (cons (byte-compile-make-tag)
1794 (cdr tmp))))
1795 (setcdr lap1 (car (cdr tmp)))
1796 (setq lap (delq lap0 lap))))
1797 (setq keep-going t))
1798 ;;
1799 ;; X: varref-Y ... varset-Y goto-X -->
1800 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1801 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1802 ;; (This is so usual for while loops that it is worth handling).
1803 ;;
1804 ((and (eq (car lap1) 'byte-varset)
1805 (eq (car lap2) 'byte-goto)
1806 (not (memq (cdr lap2) rest)) ;Backwards jump
1807 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1808 'byte-varref)
1809 (eq (cdr (car tmp)) (cdr lap1))
1810 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1811 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1812 (let ((newtag (byte-compile-make-tag)))
1813 (byte-compile-log-lap
1814 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1815 (nth 1 (cdr lap2)) (car tmp)
1816 lap1 lap2
1817 (nth 1 (cdr lap2)) (car tmp)
1818 (nth 1 newtag) 'byte-dup lap1
1819 (cons 'byte-goto newtag)
1820 )
1821 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1822 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1823 (setq add-depth 1)
1824 (setq keep-going t))
1825 ;;
1826 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1827 ;; (This can pull the loop test to the end of the loop)
1828 ;;
1829 ((and (eq (car lap0) 'byte-goto)
1830 (eq (car lap1) 'TAG)
1831 (eq lap1
1832 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1833 (memq (car (car tmp))
1834 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1835 byte-goto-if-nil-else-pop)))
1836 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1837 ;; lap0 lap1 (cdr lap0) (car tmp))
1838 (let ((newtag (byte-compile-make-tag)))
1839 (byte-compile-log-lap
1840 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1841 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1842 (cons (cdr (assq (car (car tmp))
1843 '((byte-goto-if-nil . byte-goto-if-not-nil)
1844 (byte-goto-if-not-nil . byte-goto-if-nil)
1845 (byte-goto-if-nil-else-pop .
1846 byte-goto-if-not-nil-else-pop)
1847 (byte-goto-if-not-nil-else-pop .
1848 byte-goto-if-nil-else-pop))))
1849 newtag)
1850
1851 (nth 1 newtag)
1852 )
1853 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1854 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1855 ;; We can handle this case but not the -if-not-nil case,
1856 ;; because we won't know which non-nil constant to push.
1857 (setcdr rest (cons (cons 'byte-constant
1858 (byte-compile-get-constant nil))
1859 (cdr rest))))
1860 (setcar lap0 (nth 1 (memq (car (car tmp))
1861 '(byte-goto-if-nil-else-pop
1862 byte-goto-if-not-nil
1863 byte-goto-if-nil
1864 byte-goto-if-not-nil
1865 byte-goto byte-goto))))
1866 )
1867 (setq keep-going t))
1868 )
1869 (setq rest (cdr rest)))
1870 )
1871 ;; Cleanup stage:
1872 ;; Rebuild byte-compile-constants / byte-compile-variables.
1873 ;; Simple optimizations that would inhibit other optimizations if they
1874 ;; were done in the optimizing loop, and optimizations which there is no
1875 ;; need to do more than once.
1876 (setq byte-compile-constants nil
1877 byte-compile-variables nil)
1878 (setq rest lap)
1879 (while rest
1880 (setq lap0 (car rest)
1881 lap1 (nth 1 rest))
1882 (if (memq (car lap0) byte-constref-ops)
1883 (if (or (eq (car lap0) 'byte-constant)
1884 (eq (car lap0) 'byte-constant2))
1885 (unless (memq (cdr lap0) byte-compile-constants)
1886 (setq byte-compile-constants (cons (cdr lap0)
1887 byte-compile-constants)))
1888 (unless (memq (cdr lap0) byte-compile-variables)
1889 (setq byte-compile-variables (cons (cdr lap0)
1890 byte-compile-variables)))))
1891 (cond (;;
1892 ;; const-C varset-X const-C --> const-C dup varset-X
1893 ;; const-C varbind-X const-C --> const-C dup varbind-X
1894 ;;
1895 (and (eq (car lap0) 'byte-constant)
1896 (eq (car (nth 2 rest)) 'byte-constant)
1897 (eq (cdr lap0) (cdr (nth 2 rest)))
1898 (memq (car lap1) '(byte-varbind byte-varset)))
1899 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1900 lap0 lap1 lap0 lap0 lap1)
1901 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1902 (setcar (cdr rest) (cons 'byte-dup 0))
1903 (setq add-depth 1))
1904 ;;
1905 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1906 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1907 ;;
1908 ((memq (car lap0) '(byte-constant byte-varref))
1909 (setq tmp rest
1910 tmp2 nil)
1911 (while (progn
1912 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1913 (and (eq (cdr lap0) (cdr (car tmp)))
1914 (eq (car lap0) (car (car tmp)))))
1915 (setcar tmp (cons 'byte-dup 0))
1916 (setq tmp2 t))
1917 (if tmp2
1918 (byte-compile-log-lap
1919 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1920 ;;
1921 ;; unbind-N unbind-M --> unbind-(N+M)
1922 ;;
1923 ((and (eq 'byte-unbind (car lap0))
1924 (eq 'byte-unbind (car lap1)))
1925 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1926 (cons 'byte-unbind
1927 (+ (cdr lap0) (cdr lap1))))
1928 (setq keep-going t)
1929 (setq lap (delq lap0 lap))
1930 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1931 )
1932 (setq rest (cdr rest)))
1933 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1934 lap)
1935
1936 (provide 'byte-opt)
1937
1938 \f
1939 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1940 ;; itself, compile some of its most used recursive functions (at load time).
1941 ;;
1942 (eval-when-compile
1943 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1944 (assq 'byte-code (symbol-function 'byte-optimize-form))
1945 (let ((byte-optimize nil)
1946 (byte-compile-warnings nil))
1947 (mapcar (lambda (x)
1948 (or noninteractive (message "compiling %s..." x))
1949 (byte-compile x)
1950 (or noninteractive (message "compiling %s...done" x)))
1951 '(byte-optimize-form
1952 byte-optimize-body
1953 byte-optimize-predicate
1954 byte-optimize-binary-predicate
1955 ;; Inserted some more than necessary, to speed it up.
1956 byte-optimize-form-code-walker
1957 byte-optimize-lapcode))))
1958 nil)
1959
1960 ;;; byte-opt.el ends here