]> code.delx.au - gnu-emacs/blob - src/coding.c
* test/lisp/help-fns-tests.el: Add several tests for 'describe-function'.
[gnu-emacs] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
7 Copyright (C) 2003
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
10
11 This file is part of GNU Emacs.
12
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or (at
16 your option) any later version.
17
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25
26 /*** TABLE OF CONTENTS ***
27
28 0. General comments
29 1. Preamble
30 2. Emacs' internal format (emacs-utf-8) handlers
31 3. UTF-8 handlers
32 4. UTF-16 handlers
33 5. Charset-base coding systems handlers
34 6. emacs-mule (old Emacs' internal format) handlers
35 7. ISO2022 handlers
36 8. Shift-JIS and BIG5 handlers
37 9. CCL handlers
38 10. C library functions
39 11. Emacs Lisp library functions
40 12. Postamble
41
42 */
43
44 /*** 0. General comments ***
45
46
47 CODING SYSTEM
48
49 A coding system is an object for an encoding mechanism that contains
50 information about how to convert byte sequences to character
51 sequences and vice versa. When we say "decode", it means converting
52 a byte sequence of a specific coding system into a character
53 sequence that is represented by Emacs' internal coding system
54 `emacs-utf-8', and when we say "encode", it means converting a
55 character sequence of emacs-utf-8 to a byte sequence of a specific
56 coding system.
57
58 In Emacs Lisp, a coding system is represented by a Lisp symbol. On
59 the C level, a coding system is represented by a vector of attributes
60 stored in the hash table Vcharset_hash_table. The conversion from
61 coding system symbol to attributes vector is done by looking up
62 Vcharset_hash_table by the symbol.
63
64 Coding systems are classified into the following types depending on
65 the encoding mechanism. Here's a brief description of the types.
66
67 o UTF-8
68
69 o UTF-16
70
71 o Charset-base coding system
72
73 A coding system defined by one or more (coded) character sets.
74 Decoding and encoding are done by a code converter defined for each
75 character set.
76
77 o Old Emacs internal format (emacs-mule)
78
79 The coding system adopted by old versions of Emacs (20 and 21).
80
81 o ISO2022-base coding system
82
83 The most famous coding system for multiple character sets. X's
84 Compound Text, various EUCs (Extended Unix Code), and coding systems
85 used in the Internet communication such as ISO-2022-JP are all
86 variants of ISO2022.
87
88 o SJIS (or Shift-JIS or MS-Kanji-Code)
89
90 A coding system to encode character sets: ASCII, JISX0201, and
91 JISX0208. Widely used for PC's in Japan. Details are described in
92 section 8.
93
94 o BIG5
95
96 A coding system to encode character sets: ASCII and Big5. Widely
97 used for Chinese (mainly in Taiwan and Hong Kong). Details are
98 described in section 8. In this file, when we write "big5" (all
99 lowercase), we mean the coding system, and when we write "Big5"
100 (capitalized), we mean the character set.
101
102 o CCL
103
104 If a user wants to decode/encode text encoded in a coding system
105 not listed above, he can supply a decoder and an encoder for it in
106 CCL (Code Conversion Language) programs. Emacs executes the CCL
107 program while decoding/encoding.
108
109 o Raw-text
110
111 A coding system for text containing raw eight-bit data. Emacs
112 treats each byte of source text as a character (except for
113 end-of-line conversion).
114
115 o No-conversion
116
117 Like raw text, but don't do end-of-line conversion.
118
119
120 END-OF-LINE FORMAT
121
122 How text end-of-line is encoded depends on operating system. For
123 instance, Unix's format is just one byte of LF (line-feed) code,
124 whereas DOS's format is two-byte sequence of `carriage-return' and
125 `line-feed' codes. MacOS's format is usually one byte of
126 `carriage-return'.
127
128 Since text character encoding and end-of-line encoding are
129 independent, any coding system described above can take any format
130 of end-of-line (except for no-conversion).
131
132 STRUCT CODING_SYSTEM
133
134 Before using a coding system for code conversion (i.e. decoding and
135 encoding), we setup a structure of type `struct coding_system'.
136 This structure keeps various information about a specific code
137 conversion (e.g. the location of source and destination data).
138
139 */
140
141 /* COMMON MACROS */
142
143
144 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
145
146 These functions check if a byte sequence specified as a source in
147 CODING conforms to the format of XXX, and update the members of
148 DETECT_INFO.
149
150 Return true if the byte sequence conforms to XXX.
151
152 Below is the template of these functions. */
153
154 #if 0
155 static bool
156 detect_coding_XXX (struct coding_system *coding,
157 struct coding_detection_info *detect_info)
158 {
159 const unsigned char *src = coding->source;
160 const unsigned char *src_end = coding->source + coding->src_bytes;
161 bool multibytep = coding->src_multibyte;
162 ptrdiff_t consumed_chars = 0;
163 int found = 0;
164 ...;
165
166 while (1)
167 {
168 /* Get one byte from the source. If the source is exhausted, jump
169 to no_more_source:. */
170 ONE_MORE_BYTE (c);
171
172 if (! __C_conforms_to_XXX___ (c))
173 break;
174 if (! __C_strongly_suggests_XXX__ (c))
175 found = CATEGORY_MASK_XXX;
176 }
177 /* The byte sequence is invalid for XXX. */
178 detect_info->rejected |= CATEGORY_MASK_XXX;
179 return 0;
180
181 no_more_source:
182 /* The source exhausted successfully. */
183 detect_info->found |= found;
184 return 1;
185 }
186 #endif
187
188 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
189
190 These functions decode a byte sequence specified as a source by
191 CODING. The resulting multibyte text goes to a place pointed to by
192 CODING->charbuf, the length of which should not exceed
193 CODING->charbuf_size;
194
195 These functions set the information of original and decoded texts in
196 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
197 They also set CODING->result to one of CODING_RESULT_XXX indicating
198 how the decoding is finished.
199
200 Below is the template of these functions. */
201
202 #if 0
203 static void
204 decode_coding_XXXX (struct coding_system *coding)
205 {
206 const unsigned char *src = coding->source + coding->consumed;
207 const unsigned char *src_end = coding->source + coding->src_bytes;
208 /* SRC_BASE remembers the start position in source in each loop.
209 The loop will be exited when there's not enough source code, or
210 when there's no room in CHARBUF for a decoded character. */
211 const unsigned char *src_base;
212 /* A buffer to produce decoded characters. */
213 int *charbuf = coding->charbuf + coding->charbuf_used;
214 int *charbuf_end = coding->charbuf + coding->charbuf_size;
215 bool multibytep = coding->src_multibyte;
216
217 while (1)
218 {
219 src_base = src;
220 if (charbuf < charbuf_end)
221 /* No more room to produce a decoded character. */
222 break;
223 ONE_MORE_BYTE (c);
224 /* Decode it. */
225 }
226
227 no_more_source:
228 if (src_base < src_end
229 && coding->mode & CODING_MODE_LAST_BLOCK)
230 /* If the source ends by partial bytes to construct a character,
231 treat them as eight-bit raw data. */
232 while (src_base < src_end && charbuf < charbuf_end)
233 *charbuf++ = *src_base++;
234 /* Remember how many bytes and characters we consumed. If the
235 source is multibyte, the bytes and chars are not identical. */
236 coding->consumed = coding->consumed_char = src_base - coding->source;
237 /* Remember how many characters we produced. */
238 coding->charbuf_used = charbuf - coding->charbuf;
239 }
240 #endif
241
242 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
243
244 These functions encode SRC_BYTES length text at SOURCE of Emacs'
245 internal multibyte format by CODING. The resulting byte sequence
246 goes to a place pointed to by DESTINATION, the length of which
247 should not exceed DST_BYTES.
248
249 These functions set the information of original and encoded texts in
250 the members produced, produced_char, consumed, and consumed_char of
251 the structure *CODING. They also set the member result to one of
252 CODING_RESULT_XXX indicating how the encoding finished.
253
254 DST_BYTES zero means that source area and destination area are
255 overlapped, which means that we can produce a encoded text until it
256 reaches at the head of not-yet-encoded source text.
257
258 Below is a template of these functions. */
259 #if 0
260 static void
261 encode_coding_XXX (struct coding_system *coding)
262 {
263 bool multibytep = coding->dst_multibyte;
264 int *charbuf = coding->charbuf;
265 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
266 unsigned char *dst = coding->destination + coding->produced;
267 unsigned char *dst_end = coding->destination + coding->dst_bytes;
268 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
269 ptrdiff_t produced_chars = 0;
270
271 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
272 {
273 int c = *charbuf;
274 /* Encode C into DST, and increment DST. */
275 }
276 label_no_more_destination:
277 /* How many chars and bytes we produced. */
278 coding->produced_char += produced_chars;
279 coding->produced = dst - coding->destination;
280 }
281 #endif
282
283 \f
284 /*** 1. Preamble ***/
285
286 #include <config.h>
287 #include <stdio.h>
288
289 #ifdef HAVE_WCHAR_H
290 #include <wchar.h>
291 #endif /* HAVE_WCHAR_H */
292
293 #include "lisp.h"
294 #include "character.h"
295 #include "buffer.h"
296 #include "charset.h"
297 #include "ccl.h"
298 #include "composite.h"
299 #include "coding.h"
300 #include "termhooks.h"
301
302 Lisp_Object Vcoding_system_hash_table;
303
304 /* Format of end-of-line decided by system. This is Qunix on
305 Unix and Mac, Qdos on DOS/Windows.
306 This has an effect only for external encoding (i.e. for output to
307 file and process), not for in-buffer or Lisp string encoding. */
308 static Lisp_Object system_eol_type;
309
310 #ifdef emacs
311
312 /* Coding-systems are handed between Emacs Lisp programs and C internal
313 routines by the following three variables. */
314 /* Coding system to be used to encode text for terminal display when
315 terminal coding system is nil. */
316 struct coding_system safe_terminal_coding;
317
318 #endif /* emacs */
319
320 /* Two special coding systems. */
321 static Lisp_Object Vsjis_coding_system;
322 static Lisp_Object Vbig5_coding_system;
323
324 /* ISO2022 section */
325
326 #define CODING_ISO_INITIAL(coding, reg) \
327 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
328 coding_attr_iso_initial), \
329 reg)))
330
331
332 #define CODING_ISO_REQUEST(coding, charset_id) \
333 (((charset_id) <= (coding)->max_charset_id \
334 ? ((coding)->safe_charsets[charset_id] != 255 \
335 ? (coding)->safe_charsets[charset_id] \
336 : -1) \
337 : -1))
338
339
340 #define CODING_ISO_FLAGS(coding) \
341 ((coding)->spec.iso_2022.flags)
342 #define CODING_ISO_DESIGNATION(coding, reg) \
343 ((coding)->spec.iso_2022.current_designation[reg])
344 #define CODING_ISO_INVOCATION(coding, plane) \
345 ((coding)->spec.iso_2022.current_invocation[plane])
346 #define CODING_ISO_SINGLE_SHIFTING(coding) \
347 ((coding)->spec.iso_2022.single_shifting)
348 #define CODING_ISO_BOL(coding) \
349 ((coding)->spec.iso_2022.bol)
350 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
351 (CODING_ISO_INVOCATION (coding, plane) < 0 ? -1 \
352 : CODING_ISO_DESIGNATION (coding, CODING_ISO_INVOCATION (coding, plane)))
353 #define CODING_ISO_CMP_STATUS(coding) \
354 (&(coding)->spec.iso_2022.cmp_status)
355 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
356 ((coding)->spec.iso_2022.ctext_extended_segment_len)
357 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
358 ((coding)->spec.iso_2022.embedded_utf_8)
359
360 /* Control characters of ISO2022. */
361 /* code */ /* function */
362 #define ISO_CODE_SO 0x0E /* shift-out */
363 #define ISO_CODE_SI 0x0F /* shift-in */
364 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
365 #define ISO_CODE_ESC 0x1B /* escape */
366 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
367 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
368 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
369
370 /* All code (1-byte) of ISO2022 is classified into one of the
371 followings. */
372 enum iso_code_class_type
373 {
374 ISO_control_0, /* Control codes in the range
375 0x00..0x1F and 0x7F, except for the
376 following 5 codes. */
377 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
378 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
379 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
380 ISO_escape, /* ISO_CODE_ESC (0x1B) */
381 ISO_control_1, /* Control codes in the range
382 0x80..0x9F, except for the
383 following 3 codes. */
384 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
385 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
386 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
387 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
388 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
389 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
390 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
391 };
392
393 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
394 `iso-flags' attribute of an iso2022 coding system. */
395
396 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
397 instead of the correct short-form sequence (e.g. ESC $ A). */
398 #define CODING_ISO_FLAG_LONG_FORM 0x0001
399
400 /* If set, reset graphic planes and registers at end-of-line to the
401 initial state. */
402 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
403
404 /* If set, reset graphic planes and registers before any control
405 characters to the initial state. */
406 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
407
408 /* If set, encode by 7-bit environment. */
409 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
410
411 /* If set, use locking-shift function. */
412 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
413
414 /* If set, use single-shift function. Overwrite
415 CODING_ISO_FLAG_LOCKING_SHIFT. */
416 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
417
418 /* If set, use designation escape sequence. */
419 #define CODING_ISO_FLAG_DESIGNATION 0x0040
420
421 /* If set, produce revision number sequence. */
422 #define CODING_ISO_FLAG_REVISION 0x0080
423
424 /* If set, produce ISO6429's direction specifying sequence. */
425 #define CODING_ISO_FLAG_DIRECTION 0x0100
426
427 /* If set, assume designation states are reset at beginning of line on
428 output. */
429 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
430
431 /* If set, designation sequence should be placed at beginning of line
432 on output. */
433 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
434
435 /* If set, do not encode unsafe characters on output. */
436 #define CODING_ISO_FLAG_SAFE 0x0800
437
438 /* If set, extra latin codes (128..159) are accepted as a valid code
439 on input. */
440 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
441
442 #define CODING_ISO_FLAG_COMPOSITION 0x2000
443
444 /* #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000 */
445
446 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
447
448 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
449
450 #define CODING_ISO_FLAG_LEVEL_4 0x20000
451
452 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
453
454 /* A character to be produced on output if encoding of the original
455 character is prohibited by CODING_ISO_FLAG_SAFE. */
456 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
457
458 /* UTF-8 section */
459 #define CODING_UTF_8_BOM(coding) \
460 ((coding)->spec.utf_8_bom)
461
462 /* UTF-16 section */
463 #define CODING_UTF_16_BOM(coding) \
464 ((coding)->spec.utf_16.bom)
465
466 #define CODING_UTF_16_ENDIAN(coding) \
467 ((coding)->spec.utf_16.endian)
468
469 #define CODING_UTF_16_SURROGATE(coding) \
470 ((coding)->spec.utf_16.surrogate)
471
472
473 /* CCL section */
474 #define CODING_CCL_DECODER(coding) \
475 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
476 #define CODING_CCL_ENCODER(coding) \
477 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
478 #define CODING_CCL_VALIDS(coding) \
479 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
480
481 /* Index for each coding category in `coding_categories' */
482
483 enum coding_category
484 {
485 coding_category_iso_7,
486 coding_category_iso_7_tight,
487 coding_category_iso_8_1,
488 coding_category_iso_8_2,
489 coding_category_iso_7_else,
490 coding_category_iso_8_else,
491 coding_category_utf_8_auto,
492 coding_category_utf_8_nosig,
493 coding_category_utf_8_sig,
494 coding_category_utf_16_auto,
495 coding_category_utf_16_be,
496 coding_category_utf_16_le,
497 coding_category_utf_16_be_nosig,
498 coding_category_utf_16_le_nosig,
499 coding_category_charset,
500 coding_category_sjis,
501 coding_category_big5,
502 coding_category_ccl,
503 coding_category_emacs_mule,
504 /* All above are targets of code detection. */
505 coding_category_raw_text,
506 coding_category_undecided,
507 coding_category_max
508 };
509
510 /* Definitions of flag bits used in detect_coding_XXXX. */
511 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
512 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
513 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
514 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
515 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
516 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
517 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
518 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
519 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
520 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
521 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
522 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
523 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
524 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
525 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
526 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
527 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
528 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
529 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
530 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
531
532 /* This value is returned if detect_coding_mask () find nothing other
533 than ASCII characters. */
534 #define CATEGORY_MASK_ANY \
535 (CATEGORY_MASK_ISO_7 \
536 | CATEGORY_MASK_ISO_7_TIGHT \
537 | CATEGORY_MASK_ISO_8_1 \
538 | CATEGORY_MASK_ISO_8_2 \
539 | CATEGORY_MASK_ISO_7_ELSE \
540 | CATEGORY_MASK_ISO_8_ELSE \
541 | CATEGORY_MASK_UTF_8_AUTO \
542 | CATEGORY_MASK_UTF_8_NOSIG \
543 | CATEGORY_MASK_UTF_8_SIG \
544 | CATEGORY_MASK_UTF_16_AUTO \
545 | CATEGORY_MASK_UTF_16_BE \
546 | CATEGORY_MASK_UTF_16_LE \
547 | CATEGORY_MASK_UTF_16_BE_NOSIG \
548 | CATEGORY_MASK_UTF_16_LE_NOSIG \
549 | CATEGORY_MASK_CHARSET \
550 | CATEGORY_MASK_SJIS \
551 | CATEGORY_MASK_BIG5 \
552 | CATEGORY_MASK_CCL \
553 | CATEGORY_MASK_EMACS_MULE)
554
555
556 #define CATEGORY_MASK_ISO_7BIT \
557 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
558
559 #define CATEGORY_MASK_ISO_8BIT \
560 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
561
562 #define CATEGORY_MASK_ISO_ELSE \
563 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
564
565 #define CATEGORY_MASK_ISO_ESCAPE \
566 (CATEGORY_MASK_ISO_7 \
567 | CATEGORY_MASK_ISO_7_TIGHT \
568 | CATEGORY_MASK_ISO_7_ELSE \
569 | CATEGORY_MASK_ISO_8_ELSE)
570
571 #define CATEGORY_MASK_ISO \
572 ( CATEGORY_MASK_ISO_7BIT \
573 | CATEGORY_MASK_ISO_8BIT \
574 | CATEGORY_MASK_ISO_ELSE)
575
576 #define CATEGORY_MASK_UTF_16 \
577 (CATEGORY_MASK_UTF_16_AUTO \
578 | CATEGORY_MASK_UTF_16_BE \
579 | CATEGORY_MASK_UTF_16_LE \
580 | CATEGORY_MASK_UTF_16_BE_NOSIG \
581 | CATEGORY_MASK_UTF_16_LE_NOSIG)
582
583 #define CATEGORY_MASK_UTF_8 \
584 (CATEGORY_MASK_UTF_8_AUTO \
585 | CATEGORY_MASK_UTF_8_NOSIG \
586 | CATEGORY_MASK_UTF_8_SIG)
587
588 /* Table of coding categories (Lisp symbols). This variable is for
589 internal use only. */
590 static Lisp_Object Vcoding_category_table;
591
592 /* Table of coding-categories ordered by priority. */
593 static enum coding_category coding_priorities[coding_category_max];
594
595 /* Nth element is a coding context for the coding system bound to the
596 Nth coding category. */
597 static struct coding_system coding_categories[coding_category_max];
598
599 /* Encode a flag that can be nil, something else, or t as -1, 0, 1. */
600
601 static int
602 encode_inhibit_flag (Lisp_Object flag)
603 {
604 return NILP (flag) ? -1 : EQ (flag, Qt);
605 }
606
607 /* True if the value of ENCODED_FLAG says a flag should be treated as set.
608 1 means yes, -1 means no, 0 means ask the user variable VAR. */
609
610 static bool
611 inhibit_flag (int encoded_flag, bool var)
612 {
613 return 0 < encoded_flag + var;
614 }
615
616 #define CODING_GET_INFO(coding, attrs, charset_list) \
617 do { \
618 (attrs) = CODING_ID_ATTRS ((coding)->id); \
619 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
620 } while (0)
621
622 static void
623 CHECK_NATNUM_CAR (Lisp_Object x)
624 {
625 Lisp_Object tmp = XCAR (x);
626 CHECK_NATNUM (tmp);
627 XSETCAR (x, tmp);
628 }
629
630 static void
631 CHECK_NATNUM_CDR (Lisp_Object x)
632 {
633 Lisp_Object tmp = XCDR (x);
634 CHECK_NATNUM (tmp);
635 XSETCDR (x, tmp);
636 }
637
638 /* True if CODING's destination can be grown. */
639
640 static bool
641 growable_destination (struct coding_system *coding)
642 {
643 return STRINGP (coding->dst_object) || BUFFERP (coding->dst_object);
644 }
645
646
647 /* Safely get one byte from the source text pointed by SRC which ends
648 at SRC_END, and set C to that byte. If there are not enough bytes
649 in the source, it jumps to 'no_more_source'. If MULTIBYTEP,
650 and a multibyte character is found at SRC, set C to the
651 negative value of the character code. The caller should declare
652 and set these variables appropriately in advance:
653 src, src_end, multibytep */
654
655 #define ONE_MORE_BYTE(c) \
656 do { \
657 if (src == src_end) \
658 { \
659 if (src_base < src) \
660 record_conversion_result \
661 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
662 goto no_more_source; \
663 } \
664 c = *src++; \
665 if (multibytep && (c & 0x80)) \
666 { \
667 if ((c & 0xFE) == 0xC0) \
668 c = ((c & 1) << 6) | *src++; \
669 else \
670 { \
671 src--; \
672 c = - string_char (src, &src, NULL); \
673 record_conversion_result \
674 (coding, CODING_RESULT_INVALID_SRC); \
675 } \
676 } \
677 consumed_chars++; \
678 } while (0)
679
680 /* Safely get two bytes from the source text pointed by SRC which ends
681 at SRC_END, and set C1 and C2 to those bytes while skipping the
682 heading multibyte characters. If there are not enough bytes in the
683 source, it jumps to 'no_more_source'. If MULTIBYTEP and
684 a multibyte character is found for C2, set C2 to the negative value
685 of the character code. The caller should declare and set these
686 variables appropriately in advance:
687 src, src_end, multibytep
688 It is intended that this macro is used in detect_coding_utf_16. */
689
690 #define TWO_MORE_BYTES(c1, c2) \
691 do { \
692 do { \
693 if (src == src_end) \
694 goto no_more_source; \
695 c1 = *src++; \
696 if (multibytep && (c1 & 0x80)) \
697 { \
698 if ((c1 & 0xFE) == 0xC0) \
699 c1 = ((c1 & 1) << 6) | *src++; \
700 else \
701 { \
702 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
703 c1 = -1; \
704 } \
705 } \
706 } while (c1 < 0); \
707 if (src == src_end) \
708 goto no_more_source; \
709 c2 = *src++; \
710 if (multibytep && (c2 & 0x80)) \
711 { \
712 if ((c2 & 0xFE) == 0xC0) \
713 c2 = ((c2 & 1) << 6) | *src++; \
714 else \
715 c2 = -1; \
716 } \
717 } while (0)
718
719
720 /* Store a byte C in the place pointed by DST and increment DST to the
721 next free point, and increment PRODUCED_CHARS. The caller should
722 assure that C is 0..127, and declare and set the variable `dst'
723 appropriately in advance.
724 */
725
726
727 #define EMIT_ONE_ASCII_BYTE(c) \
728 do { \
729 produced_chars++; \
730 *dst++ = (c); \
731 } while (0)
732
733
734 /* Like EMIT_ONE_ASCII_BYTE but store two bytes; C1 and C2. */
735
736 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
737 do { \
738 produced_chars += 2; \
739 *dst++ = (c1), *dst++ = (c2); \
740 } while (0)
741
742
743 /* Store a byte C in the place pointed by DST and increment DST to the
744 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP,
745 store in an appropriate multibyte form. The caller should
746 declare and set the variables `dst' and `multibytep' appropriately
747 in advance. */
748
749 #define EMIT_ONE_BYTE(c) \
750 do { \
751 produced_chars++; \
752 if (multibytep) \
753 { \
754 unsigned ch = (c); \
755 if (ch >= 0x80) \
756 ch = BYTE8_TO_CHAR (ch); \
757 CHAR_STRING_ADVANCE (ch, dst); \
758 } \
759 else \
760 *dst++ = (c); \
761 } while (0)
762
763
764 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
765
766 #define EMIT_TWO_BYTES(c1, c2) \
767 do { \
768 produced_chars += 2; \
769 if (multibytep) \
770 { \
771 unsigned ch; \
772 \
773 ch = (c1); \
774 if (ch >= 0x80) \
775 ch = BYTE8_TO_CHAR (ch); \
776 CHAR_STRING_ADVANCE (ch, dst); \
777 ch = (c2); \
778 if (ch >= 0x80) \
779 ch = BYTE8_TO_CHAR (ch); \
780 CHAR_STRING_ADVANCE (ch, dst); \
781 } \
782 else \
783 { \
784 *dst++ = (c1); \
785 *dst++ = (c2); \
786 } \
787 } while (0)
788
789
790 #define EMIT_THREE_BYTES(c1, c2, c3) \
791 do { \
792 EMIT_ONE_BYTE (c1); \
793 EMIT_TWO_BYTES (c2, c3); \
794 } while (0)
795
796
797 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
798 do { \
799 EMIT_TWO_BYTES (c1, c2); \
800 EMIT_TWO_BYTES (c3, c4); \
801 } while (0)
802
803
804 static void
805 record_conversion_result (struct coding_system *coding,
806 enum coding_result_code result)
807 {
808 coding->result = result;
809 switch (result)
810 {
811 case CODING_RESULT_INSUFFICIENT_SRC:
812 Vlast_code_conversion_error = Qinsufficient_source;
813 break;
814 case CODING_RESULT_INVALID_SRC:
815 Vlast_code_conversion_error = Qinvalid_source;
816 break;
817 case CODING_RESULT_INTERRUPT:
818 Vlast_code_conversion_error = Qinterrupted;
819 break;
820 case CODING_RESULT_INSUFFICIENT_DST:
821 /* Don't record this error in Vlast_code_conversion_error
822 because it happens just temporarily and is resolved when the
823 whole conversion is finished. */
824 break;
825 case CODING_RESULT_SUCCESS:
826 break;
827 default:
828 Vlast_code_conversion_error = intern ("Unknown error");
829 }
830 }
831
832 /* These wrapper macros are used to preserve validity of pointers into
833 buffer text across calls to decode_char, encode_char, etc, which
834 could cause relocation of buffers if it loads a charset map,
835 because loading a charset map allocates large structures. */
836
837 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
838 do { \
839 ptrdiff_t offset; \
840 \
841 charset_map_loaded = 0; \
842 c = DECODE_CHAR (charset, code); \
843 if (charset_map_loaded \
844 && (offset = coding_change_source (coding))) \
845 { \
846 src += offset; \
847 src_base += offset; \
848 src_end += offset; \
849 } \
850 } while (0)
851
852 #define CODING_ENCODE_CHAR(coding, dst, dst_end, charset, c, code) \
853 do { \
854 ptrdiff_t offset; \
855 \
856 charset_map_loaded = 0; \
857 code = ENCODE_CHAR (charset, c); \
858 if (charset_map_loaded \
859 && (offset = coding_change_destination (coding))) \
860 { \
861 dst += offset; \
862 dst_end += offset; \
863 } \
864 } while (0)
865
866 #define CODING_CHAR_CHARSET(coding, dst, dst_end, c, charset_list, code_return, charset) \
867 do { \
868 ptrdiff_t offset; \
869 \
870 charset_map_loaded = 0; \
871 charset = char_charset (c, charset_list, code_return); \
872 if (charset_map_loaded \
873 && (offset = coding_change_destination (coding))) \
874 { \
875 dst += offset; \
876 dst_end += offset; \
877 } \
878 } while (0)
879
880 #define CODING_CHAR_CHARSET_P(coding, dst, dst_end, c, charset, result) \
881 do { \
882 ptrdiff_t offset; \
883 \
884 charset_map_loaded = 0; \
885 result = CHAR_CHARSET_P (c, charset); \
886 if (charset_map_loaded \
887 && (offset = coding_change_destination (coding))) \
888 { \
889 dst += offset; \
890 dst_end += offset; \
891 } \
892 } while (0)
893
894
895 /* If there are at least BYTES length of room at dst, allocate memory
896 for coding->destination and update dst and dst_end. We don't have
897 to take care of coding->source which will be relocated. It is
898 handled by calling coding_set_source in encode_coding. */
899
900 #define ASSURE_DESTINATION(bytes) \
901 do { \
902 if (dst + (bytes) >= dst_end) \
903 { \
904 ptrdiff_t more_bytes = charbuf_end - charbuf + (bytes); \
905 \
906 dst = alloc_destination (coding, more_bytes, dst); \
907 dst_end = coding->destination + coding->dst_bytes; \
908 } \
909 } while (0)
910
911
912 /* Store multibyte form of the character C in P, and advance P to the
913 end of the multibyte form. This used to be like CHAR_STRING_ADVANCE
914 without ever calling MAYBE_UNIFY_CHAR, but nowadays we don't call
915 MAYBE_UNIFY_CHAR in CHAR_STRING_ADVANCE. */
916
917 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) CHAR_STRING_ADVANCE(c, p)
918
919 /* Return the character code of character whose multibyte form is at
920 P, and advance P to the end of the multibyte form. This used to be
921 like STRING_CHAR_ADVANCE without ever calling MAYBE_UNIFY_CHAR, but
922 nowadays STRING_CHAR_ADVANCE doesn't call MAYBE_UNIFY_CHAR. */
923
924 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) STRING_CHAR_ADVANCE(p)
925
926 /* Set coding->source from coding->src_object. */
927
928 static void
929 coding_set_source (struct coding_system *coding)
930 {
931 if (BUFFERP (coding->src_object))
932 {
933 struct buffer *buf = XBUFFER (coding->src_object);
934
935 if (coding->src_pos < 0)
936 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
937 else
938 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
939 }
940 else if (STRINGP (coding->src_object))
941 {
942 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
943 }
944 else
945 {
946 /* Otherwise, the source is C string and is never relocated
947 automatically. Thus we don't have to update anything. */
948 }
949 }
950
951
952 /* Set coding->source from coding->src_object, and return how many
953 bytes coding->source was changed. */
954
955 static ptrdiff_t
956 coding_change_source (struct coding_system *coding)
957 {
958 const unsigned char *orig = coding->source;
959 coding_set_source (coding);
960 return coding->source - orig;
961 }
962
963
964 /* Set coding->destination from coding->dst_object. */
965
966 static void
967 coding_set_destination (struct coding_system *coding)
968 {
969 if (BUFFERP (coding->dst_object))
970 {
971 if (BUFFERP (coding->src_object) && coding->src_pos < 0)
972 {
973 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
974 coding->dst_bytes = (GAP_END_ADDR
975 - (coding->src_bytes - coding->consumed)
976 - coding->destination);
977 }
978 else
979 {
980 /* We are sure that coding->dst_pos_byte is before the gap
981 of the buffer. */
982 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
983 + coding->dst_pos_byte - BEG_BYTE);
984 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
985 - coding->destination);
986 }
987 }
988 else
989 {
990 /* Otherwise, the destination is C string and is never relocated
991 automatically. Thus we don't have to update anything. */
992 }
993 }
994
995
996 /* Set coding->destination from coding->dst_object, and return how
997 many bytes coding->destination was changed. */
998
999 static ptrdiff_t
1000 coding_change_destination (struct coding_system *coding)
1001 {
1002 const unsigned char *orig = coding->destination;
1003 coding_set_destination (coding);
1004 return coding->destination - orig;
1005 }
1006
1007
1008 static void
1009 coding_alloc_by_realloc (struct coding_system *coding, ptrdiff_t bytes)
1010 {
1011 ptrdiff_t newbytes;
1012 if (INT_ADD_WRAPV (coding->dst_bytes, bytes, &newbytes)
1013 || SIZE_MAX < newbytes)
1014 string_overflow ();
1015 coding->destination = xrealloc (coding->destination, newbytes);
1016 coding->dst_bytes = newbytes;
1017 }
1018
1019 static void
1020 coding_alloc_by_making_gap (struct coding_system *coding,
1021 ptrdiff_t gap_head_used, ptrdiff_t bytes)
1022 {
1023 if (EQ (coding->src_object, coding->dst_object))
1024 {
1025 /* The gap may contain the produced data at the head and not-yet
1026 consumed data at the tail. To preserve those data, we at
1027 first make the gap size to zero, then increase the gap
1028 size. */
1029 ptrdiff_t add = GAP_SIZE;
1030
1031 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1032 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1033 make_gap (bytes);
1034 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1035 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1036 }
1037 else
1038 make_gap_1 (XBUFFER (coding->dst_object), bytes);
1039 }
1040
1041
1042 static unsigned char *
1043 alloc_destination (struct coding_system *coding, ptrdiff_t nbytes,
1044 unsigned char *dst)
1045 {
1046 ptrdiff_t offset = dst - coding->destination;
1047
1048 if (BUFFERP (coding->dst_object))
1049 {
1050 struct buffer *buf = XBUFFER (coding->dst_object);
1051
1052 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1053 }
1054 else
1055 coding_alloc_by_realloc (coding, nbytes);
1056 coding_set_destination (coding);
1057 dst = coding->destination + offset;
1058 return dst;
1059 }
1060
1061 /** Macros for annotations. */
1062
1063 /* An annotation data is stored in the array coding->charbuf in this
1064 format:
1065 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1066 LENGTH is the number of elements in the annotation.
1067 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1068 NCHARS is the number of characters in the text annotated.
1069
1070 The format of the following elements depend on ANNOTATION_MASK.
1071
1072 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1073 follows:
1074 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1075
1076 NBYTES is the number of bytes specified in the header part of
1077 old-style emacs-mule encoding, or 0 for the other kind of
1078 composition.
1079
1080 METHOD is one of enum composition_method.
1081
1082 Optional COMPOSITION-COMPONENTS are characters and composition
1083 rules.
1084
1085 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1086 follows.
1087
1088 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1089 recover from an invalid annotation, and should be skipped by
1090 produce_annotation. */
1091
1092 /* Maximum length of the header of annotation data. */
1093 #define MAX_ANNOTATION_LENGTH 5
1094
1095 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1096 do { \
1097 *(buf)++ = -(len); \
1098 *(buf)++ = (mask); \
1099 *(buf)++ = (nchars); \
1100 coding->annotated = 1; \
1101 } while (0);
1102
1103 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1104 do { \
1105 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1106 *buf++ = nbytes; \
1107 *buf++ = method; \
1108 } while (0)
1109
1110
1111 #define ADD_CHARSET_DATA(buf, nchars, id) \
1112 do { \
1113 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1114 *buf++ = id; \
1115 } while (0)
1116
1117
1118 /* Bitmasks for coding->eol_seen. */
1119
1120 #define EOL_SEEN_NONE 0
1121 #define EOL_SEEN_LF 1
1122 #define EOL_SEEN_CR 2
1123 #define EOL_SEEN_CRLF 4
1124
1125 \f
1126 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1127
1128
1129
1130 \f
1131 /*** 3. UTF-8 ***/
1132
1133 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1134 Return true if a text is encoded in UTF-8. */
1135
1136 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1137 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1138 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1139 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1140 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1141 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1142
1143 #define UTF_8_BOM_1 0xEF
1144 #define UTF_8_BOM_2 0xBB
1145 #define UTF_8_BOM_3 0xBF
1146
1147 /* Unlike the other detect_coding_XXX, this function counts the number
1148 of characters and checks the EOL format. */
1149
1150 static bool
1151 detect_coding_utf_8 (struct coding_system *coding,
1152 struct coding_detection_info *detect_info)
1153 {
1154 const unsigned char *src = coding->source, *src_base;
1155 const unsigned char *src_end = coding->source + coding->src_bytes;
1156 bool multibytep = coding->src_multibyte;
1157 ptrdiff_t consumed_chars = 0;
1158 bool bom_found = 0;
1159 ptrdiff_t nchars = coding->head_ascii;
1160 int eol_seen = coding->eol_seen;
1161
1162 detect_info->checked |= CATEGORY_MASK_UTF_8;
1163 /* A coding system of this category is always ASCII compatible. */
1164 src += nchars;
1165
1166 if (src == coding->source /* BOM should be at the head. */
1167 && src + 3 < src_end /* BOM is 3-byte long. */
1168 && src[0] == UTF_8_BOM_1
1169 && src[1] == UTF_8_BOM_2
1170 && src[2] == UTF_8_BOM_3)
1171 {
1172 bom_found = 1;
1173 src += 3;
1174 nchars++;
1175 }
1176
1177 while (1)
1178 {
1179 int c, c1, c2, c3, c4;
1180
1181 src_base = src;
1182 ONE_MORE_BYTE (c);
1183 if (c < 0 || UTF_8_1_OCTET_P (c))
1184 {
1185 nchars++;
1186 if (c == '\r')
1187 {
1188 if (src < src_end && *src == '\n')
1189 {
1190 eol_seen |= EOL_SEEN_CRLF;
1191 src++;
1192 nchars++;
1193 }
1194 else
1195 eol_seen |= EOL_SEEN_CR;
1196 }
1197 else if (c == '\n')
1198 eol_seen |= EOL_SEEN_LF;
1199 continue;
1200 }
1201 ONE_MORE_BYTE (c1);
1202 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1203 break;
1204 if (UTF_8_2_OCTET_LEADING_P (c))
1205 {
1206 nchars++;
1207 continue;
1208 }
1209 ONE_MORE_BYTE (c2);
1210 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1211 break;
1212 if (UTF_8_3_OCTET_LEADING_P (c))
1213 {
1214 nchars++;
1215 continue;
1216 }
1217 ONE_MORE_BYTE (c3);
1218 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1219 break;
1220 if (UTF_8_4_OCTET_LEADING_P (c))
1221 {
1222 nchars++;
1223 continue;
1224 }
1225 ONE_MORE_BYTE (c4);
1226 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1227 break;
1228 if (UTF_8_5_OCTET_LEADING_P (c))
1229 {
1230 nchars++;
1231 continue;
1232 }
1233 break;
1234 }
1235 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1236 return 0;
1237
1238 no_more_source:
1239 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1240 {
1241 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1242 return 0;
1243 }
1244 if (bom_found)
1245 {
1246 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1247 detect_info->found |= CATEGORY_MASK_UTF_8_AUTO | CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1248 }
1249 else
1250 {
1251 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1252 if (nchars < src_end - coding->source)
1253 /* The found characters are less than source bytes, which
1254 means that we found a valid non-ASCII characters. */
1255 detect_info->found |= CATEGORY_MASK_UTF_8_AUTO | CATEGORY_MASK_UTF_8_NOSIG;
1256 }
1257 coding->detected_utf8_bytes = src_base - coding->source;
1258 coding->detected_utf8_chars = nchars;
1259 return 1;
1260 }
1261
1262
1263 static void
1264 decode_coding_utf_8 (struct coding_system *coding)
1265 {
1266 const unsigned char *src = coding->source + coding->consumed;
1267 const unsigned char *src_end = coding->source + coding->src_bytes;
1268 const unsigned char *src_base;
1269 int *charbuf = coding->charbuf + coding->charbuf_used;
1270 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1271 ptrdiff_t consumed_chars = 0, consumed_chars_base = 0;
1272 bool multibytep = coding->src_multibyte;
1273 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1274 bool eol_dos
1275 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1276 int byte_after_cr = -1;
1277
1278 if (bom != utf_without_bom)
1279 {
1280 int c1, c2, c3;
1281
1282 src_base = src;
1283 ONE_MORE_BYTE (c1);
1284 if (! UTF_8_3_OCTET_LEADING_P (c1))
1285 src = src_base;
1286 else
1287 {
1288 ONE_MORE_BYTE (c2);
1289 if (! UTF_8_EXTRA_OCTET_P (c2))
1290 src = src_base;
1291 else
1292 {
1293 ONE_MORE_BYTE (c3);
1294 if (! UTF_8_EXTRA_OCTET_P (c3))
1295 src = src_base;
1296 else
1297 {
1298 if ((c1 != UTF_8_BOM_1)
1299 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1300 src = src_base;
1301 else
1302 CODING_UTF_8_BOM (coding) = utf_without_bom;
1303 }
1304 }
1305 }
1306 }
1307 CODING_UTF_8_BOM (coding) = utf_without_bom;
1308
1309 while (1)
1310 {
1311 int c, c1, c2, c3, c4, c5;
1312
1313 src_base = src;
1314 consumed_chars_base = consumed_chars;
1315
1316 if (charbuf >= charbuf_end)
1317 {
1318 if (byte_after_cr >= 0)
1319 src_base--;
1320 break;
1321 }
1322
1323 /* In the simple case, rapidly handle ordinary characters */
1324 if (multibytep && ! eol_dos
1325 && charbuf < charbuf_end - 6 && src < src_end - 6)
1326 {
1327 while (charbuf < charbuf_end - 6 && src < src_end - 6)
1328 {
1329 c1 = *src;
1330 if (c1 & 0x80)
1331 break;
1332 src++;
1333 consumed_chars++;
1334 *charbuf++ = c1;
1335
1336 c1 = *src;
1337 if (c1 & 0x80)
1338 break;
1339 src++;
1340 consumed_chars++;
1341 *charbuf++ = c1;
1342
1343 c1 = *src;
1344 if (c1 & 0x80)
1345 break;
1346 src++;
1347 consumed_chars++;
1348 *charbuf++ = c1;
1349
1350 c1 = *src;
1351 if (c1 & 0x80)
1352 break;
1353 src++;
1354 consumed_chars++;
1355 *charbuf++ = c1;
1356 }
1357 /* If we handled at least one character, restart the main loop. */
1358 if (src != src_base)
1359 continue;
1360 }
1361
1362 if (byte_after_cr >= 0)
1363 c1 = byte_after_cr, byte_after_cr = -1;
1364 else
1365 ONE_MORE_BYTE (c1);
1366 if (c1 < 0)
1367 {
1368 c = - c1;
1369 }
1370 else if (UTF_8_1_OCTET_P (c1))
1371 {
1372 if (eol_dos && c1 == '\r')
1373 ONE_MORE_BYTE (byte_after_cr);
1374 c = c1;
1375 }
1376 else
1377 {
1378 ONE_MORE_BYTE (c2);
1379 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1380 goto invalid_code;
1381 if (UTF_8_2_OCTET_LEADING_P (c1))
1382 {
1383 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1384 /* Reject overlong sequences here and below. Encoders
1385 producing them are incorrect, they can be misleading,
1386 and they mess up read/write invariance. */
1387 if (c < 128)
1388 goto invalid_code;
1389 }
1390 else
1391 {
1392 ONE_MORE_BYTE (c3);
1393 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1394 goto invalid_code;
1395 if (UTF_8_3_OCTET_LEADING_P (c1))
1396 {
1397 c = (((c1 & 0xF) << 12)
1398 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1399 if (c < 0x800
1400 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1401 goto invalid_code;
1402 }
1403 else
1404 {
1405 ONE_MORE_BYTE (c4);
1406 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1407 goto invalid_code;
1408 if (UTF_8_4_OCTET_LEADING_P (c1))
1409 {
1410 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1411 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1412 if (c < 0x10000)
1413 goto invalid_code;
1414 }
1415 else
1416 {
1417 ONE_MORE_BYTE (c5);
1418 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1419 goto invalid_code;
1420 if (UTF_8_5_OCTET_LEADING_P (c1))
1421 {
1422 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1423 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1424 | (c5 & 0x3F));
1425 if ((c > MAX_CHAR) || (c < 0x200000))
1426 goto invalid_code;
1427 }
1428 else
1429 goto invalid_code;
1430 }
1431 }
1432 }
1433 }
1434
1435 *charbuf++ = c;
1436 continue;
1437
1438 invalid_code:
1439 src = src_base;
1440 consumed_chars = consumed_chars_base;
1441 ONE_MORE_BYTE (c);
1442 *charbuf++ = ASCII_CHAR_P (c) ? c : BYTE8_TO_CHAR (c);
1443 }
1444
1445 no_more_source:
1446 coding->consumed_char += consumed_chars_base;
1447 coding->consumed = src_base - coding->source;
1448 coding->charbuf_used = charbuf - coding->charbuf;
1449 }
1450
1451
1452 static bool
1453 encode_coding_utf_8 (struct coding_system *coding)
1454 {
1455 bool multibytep = coding->dst_multibyte;
1456 int *charbuf = coding->charbuf;
1457 int *charbuf_end = charbuf + coding->charbuf_used;
1458 unsigned char *dst = coding->destination + coding->produced;
1459 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1460 ptrdiff_t produced_chars = 0;
1461 int c;
1462
1463 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1464 {
1465 ASSURE_DESTINATION (3);
1466 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1467 CODING_UTF_8_BOM (coding) = utf_without_bom;
1468 }
1469
1470 if (multibytep)
1471 {
1472 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1473
1474 while (charbuf < charbuf_end)
1475 {
1476 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1477
1478 ASSURE_DESTINATION (safe_room);
1479 c = *charbuf++;
1480 if (CHAR_BYTE8_P (c))
1481 {
1482 c = CHAR_TO_BYTE8 (c);
1483 EMIT_ONE_BYTE (c);
1484 }
1485 else
1486 {
1487 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1488 for (p = str; p < pend; p++)
1489 EMIT_ONE_BYTE (*p);
1490 }
1491 }
1492 }
1493 else
1494 {
1495 int safe_room = MAX_MULTIBYTE_LENGTH;
1496
1497 while (charbuf < charbuf_end)
1498 {
1499 ASSURE_DESTINATION (safe_room);
1500 c = *charbuf++;
1501 if (CHAR_BYTE8_P (c))
1502 *dst++ = CHAR_TO_BYTE8 (c);
1503 else
1504 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1505 }
1506 produced_chars = dst - (coding->destination + coding->produced);
1507 }
1508 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1509 coding->produced_char += produced_chars;
1510 coding->produced = dst - coding->destination;
1511 return 0;
1512 }
1513
1514
1515 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1516 Return true if a text is encoded in one of UTF-16 based coding systems. */
1517
1518 #define UTF_16_HIGH_SURROGATE_P(val) \
1519 (((val) & 0xFC00) == 0xD800)
1520
1521 #define UTF_16_LOW_SURROGATE_P(val) \
1522 (((val) & 0xFC00) == 0xDC00)
1523
1524
1525 static bool
1526 detect_coding_utf_16 (struct coding_system *coding,
1527 struct coding_detection_info *detect_info)
1528 {
1529 const unsigned char *src = coding->source;
1530 const unsigned char *src_end = coding->source + coding->src_bytes;
1531 bool multibytep = coding->src_multibyte;
1532 int c1, c2;
1533
1534 detect_info->checked |= CATEGORY_MASK_UTF_16;
1535 if (coding->mode & CODING_MODE_LAST_BLOCK
1536 && (coding->src_chars & 1))
1537 {
1538 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1539 return 0;
1540 }
1541
1542 TWO_MORE_BYTES (c1, c2);
1543 if ((c1 == 0xFF) && (c2 == 0xFE))
1544 {
1545 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1546 | CATEGORY_MASK_UTF_16_AUTO);
1547 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1548 | CATEGORY_MASK_UTF_16_BE_NOSIG
1549 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1550 }
1551 else if ((c1 == 0xFE) && (c2 == 0xFF))
1552 {
1553 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1554 | CATEGORY_MASK_UTF_16_AUTO);
1555 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1556 | CATEGORY_MASK_UTF_16_BE_NOSIG
1557 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1558 }
1559 else if (c2 < 0)
1560 {
1561 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1562 return 0;
1563 }
1564 else
1565 {
1566 /* We check the dispersion of Eth and Oth bytes where E is even and
1567 O is odd. If both are high, we assume binary data.*/
1568 unsigned char e[256], o[256];
1569 unsigned e_num = 1, o_num = 1;
1570
1571 memset (e, 0, 256);
1572 memset (o, 0, 256);
1573 e[c1] = 1;
1574 o[c2] = 1;
1575
1576 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1577 |CATEGORY_MASK_UTF_16_BE
1578 | CATEGORY_MASK_UTF_16_LE);
1579
1580 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1581 != CATEGORY_MASK_UTF_16)
1582 {
1583 TWO_MORE_BYTES (c1, c2);
1584 if (c2 < 0)
1585 break;
1586 if (! e[c1])
1587 {
1588 e[c1] = 1;
1589 e_num++;
1590 if (e_num >= 128)
1591 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1592 }
1593 if (! o[c2])
1594 {
1595 o[c2] = 1;
1596 o_num++;
1597 if (o_num >= 128)
1598 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1599 }
1600 }
1601 return 0;
1602 }
1603
1604 no_more_source:
1605 return 1;
1606 }
1607
1608 static void
1609 decode_coding_utf_16 (struct coding_system *coding)
1610 {
1611 const unsigned char *src = coding->source + coding->consumed;
1612 const unsigned char *src_end = coding->source + coding->src_bytes;
1613 const unsigned char *src_base;
1614 int *charbuf = coding->charbuf + coding->charbuf_used;
1615 /* We may produces at most 3 chars in one loop. */
1616 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1617 ptrdiff_t consumed_chars = 0, consumed_chars_base = 0;
1618 bool multibytep = coding->src_multibyte;
1619 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1620 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1621 int surrogate = CODING_UTF_16_SURROGATE (coding);
1622 bool eol_dos
1623 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1624 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1625
1626 if (bom == utf_with_bom)
1627 {
1628 int c, c1, c2;
1629
1630 src_base = src;
1631 ONE_MORE_BYTE (c1);
1632 ONE_MORE_BYTE (c2);
1633 c = (c1 << 8) | c2;
1634
1635 if (endian == utf_16_big_endian
1636 ? c != 0xFEFF : c != 0xFFFE)
1637 {
1638 /* The first two bytes are not BOM. Treat them as bytes
1639 for a normal character. */
1640 src = src_base;
1641 }
1642 CODING_UTF_16_BOM (coding) = utf_without_bom;
1643 }
1644 else if (bom == utf_detect_bom)
1645 {
1646 /* We have already tried to detect BOM and failed in
1647 detect_coding. */
1648 CODING_UTF_16_BOM (coding) = utf_without_bom;
1649 }
1650
1651 while (1)
1652 {
1653 int c, c1, c2;
1654
1655 src_base = src;
1656 consumed_chars_base = consumed_chars;
1657
1658 if (charbuf >= charbuf_end)
1659 {
1660 if (byte_after_cr1 >= 0)
1661 src_base -= 2;
1662 break;
1663 }
1664
1665 if (byte_after_cr1 >= 0)
1666 c1 = byte_after_cr1, byte_after_cr1 = -1;
1667 else
1668 ONE_MORE_BYTE (c1);
1669 if (c1 < 0)
1670 {
1671 *charbuf++ = -c1;
1672 continue;
1673 }
1674 if (byte_after_cr2 >= 0)
1675 c2 = byte_after_cr2, byte_after_cr2 = -1;
1676 else
1677 ONE_MORE_BYTE (c2);
1678 if (c2 < 0)
1679 {
1680 *charbuf++ = ASCII_CHAR_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1681 *charbuf++ = -c2;
1682 continue;
1683 }
1684 c = (endian == utf_16_big_endian
1685 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1686
1687 if (surrogate)
1688 {
1689 if (! UTF_16_LOW_SURROGATE_P (c))
1690 {
1691 if (endian == utf_16_big_endian)
1692 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1693 else
1694 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1695 *charbuf++ = c1;
1696 *charbuf++ = c2;
1697 if (UTF_16_HIGH_SURROGATE_P (c))
1698 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1699 else
1700 *charbuf++ = c;
1701 }
1702 else
1703 {
1704 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1705 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1706 *charbuf++ = 0x10000 + c;
1707 }
1708 }
1709 else
1710 {
1711 if (UTF_16_HIGH_SURROGATE_P (c))
1712 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1713 else
1714 {
1715 if (eol_dos && c == '\r')
1716 {
1717 ONE_MORE_BYTE (byte_after_cr1);
1718 ONE_MORE_BYTE (byte_after_cr2);
1719 }
1720 *charbuf++ = c;
1721 }
1722 }
1723 }
1724
1725 no_more_source:
1726 coding->consumed_char += consumed_chars_base;
1727 coding->consumed = src_base - coding->source;
1728 coding->charbuf_used = charbuf - coding->charbuf;
1729 }
1730
1731 static bool
1732 encode_coding_utf_16 (struct coding_system *coding)
1733 {
1734 bool multibytep = coding->dst_multibyte;
1735 int *charbuf = coding->charbuf;
1736 int *charbuf_end = charbuf + coding->charbuf_used;
1737 unsigned char *dst = coding->destination + coding->produced;
1738 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1739 int safe_room = 8;
1740 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1741 bool big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1742 ptrdiff_t produced_chars = 0;
1743 int c;
1744
1745 if (bom != utf_without_bom)
1746 {
1747 ASSURE_DESTINATION (safe_room);
1748 if (big_endian)
1749 EMIT_TWO_BYTES (0xFE, 0xFF);
1750 else
1751 EMIT_TWO_BYTES (0xFF, 0xFE);
1752 CODING_UTF_16_BOM (coding) = utf_without_bom;
1753 }
1754
1755 while (charbuf < charbuf_end)
1756 {
1757 ASSURE_DESTINATION (safe_room);
1758 c = *charbuf++;
1759 if (c > MAX_UNICODE_CHAR)
1760 c = coding->default_char;
1761
1762 if (c < 0x10000)
1763 {
1764 if (big_endian)
1765 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1766 else
1767 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1768 }
1769 else
1770 {
1771 int c1, c2;
1772
1773 c -= 0x10000;
1774 c1 = (c >> 10) + 0xD800;
1775 c2 = (c & 0x3FF) + 0xDC00;
1776 if (big_endian)
1777 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1778 else
1779 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1780 }
1781 }
1782 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1783 coding->produced = dst - coding->destination;
1784 coding->produced_char += produced_chars;
1785 return 0;
1786 }
1787
1788 \f
1789 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1790
1791 /* Emacs' internal format for representation of multiple character
1792 sets is a kind of multi-byte encoding, i.e. characters are
1793 represented by variable-length sequences of one-byte codes.
1794
1795 ASCII characters and control characters (e.g. `tab', `newline') are
1796 represented by one-byte sequences which are their ASCII codes, in
1797 the range 0x00 through 0x7F.
1798
1799 8-bit characters of the range 0x80..0x9F are represented by
1800 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1801 code + 0x20).
1802
1803 8-bit characters of the range 0xA0..0xFF are represented by
1804 one-byte sequences which are their 8-bit code.
1805
1806 The other characters are represented by a sequence of `base
1807 leading-code', optional `extended leading-code', and one or two
1808 `position-code's. The length of the sequence is determined by the
1809 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1810 whereas extended leading-code and position-code take the range 0xA0
1811 through 0xFF. See `charset.h' for more details about leading-code
1812 and position-code.
1813
1814 --- CODE RANGE of Emacs' internal format ---
1815 character set range
1816 ------------- -----
1817 ascii 0x00..0x7F
1818 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1819 eight-bit-graphic 0xA0..0xBF
1820 ELSE 0x81..0x9D + [0xA0..0xFF]+
1821 ---------------------------------------------
1822
1823 As this is the internal character representation, the format is
1824 usually not used externally (i.e. in a file or in a data sent to a
1825 process). But, it is possible to have a text externally in this
1826 format (i.e. by encoding by the coding system `emacs-mule').
1827
1828 In that case, a sequence of one-byte codes has a slightly different
1829 form.
1830
1831 At first, all characters in eight-bit-control are represented by
1832 one-byte sequences which are their 8-bit code.
1833
1834 Next, character composition data are represented by the byte
1835 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1836 where,
1837 METHOD is 0xF2 plus one of composition method (enum
1838 composition_method),
1839
1840 BYTES is 0xA0 plus a byte length of this composition data,
1841
1842 CHARS is 0xA0 plus a number of characters composed by this
1843 data,
1844
1845 COMPONENTs are characters of multibyte form or composition
1846 rules encoded by two-byte of ASCII codes.
1847
1848 In addition, for backward compatibility, the following formats are
1849 also recognized as composition data on decoding.
1850
1851 0x80 MSEQ ...
1852 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1853
1854 Here,
1855 MSEQ is a multibyte form but in these special format:
1856 ASCII: 0xA0 ASCII_CODE+0x80,
1857 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1858 RULE is a one byte code of the range 0xA0..0xF0 that
1859 represents a composition rule.
1860 */
1861
1862 char emacs_mule_bytes[256];
1863
1864
1865 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1866 Return true if a text is encoded in 'emacs-mule'. */
1867
1868 static bool
1869 detect_coding_emacs_mule (struct coding_system *coding,
1870 struct coding_detection_info *detect_info)
1871 {
1872 const unsigned char *src = coding->source, *src_base;
1873 const unsigned char *src_end = coding->source + coding->src_bytes;
1874 bool multibytep = coding->src_multibyte;
1875 ptrdiff_t consumed_chars = 0;
1876 int c;
1877 int found = 0;
1878
1879 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1880 /* A coding system of this category is always ASCII compatible. */
1881 src += coding->head_ascii;
1882
1883 while (1)
1884 {
1885 src_base = src;
1886 ONE_MORE_BYTE (c);
1887 if (c < 0)
1888 continue;
1889 if (c == 0x80)
1890 {
1891 /* Perhaps the start of composite character. We simply skip
1892 it because analyzing it is too heavy for detecting. But,
1893 at least, we check that the composite character
1894 constitutes of more than 4 bytes. */
1895 const unsigned char *src_start;
1896
1897 repeat:
1898 src_start = src;
1899 do
1900 {
1901 ONE_MORE_BYTE (c);
1902 }
1903 while (c >= 0xA0);
1904
1905 if (src - src_start <= 4)
1906 break;
1907 found = CATEGORY_MASK_EMACS_MULE;
1908 if (c == 0x80)
1909 goto repeat;
1910 }
1911
1912 if (c < 0x80)
1913 {
1914 if (c < 0x20
1915 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
1916 break;
1917 }
1918 else
1919 {
1920 int more_bytes = emacs_mule_bytes[c] - 1;
1921
1922 while (more_bytes > 0)
1923 {
1924 ONE_MORE_BYTE (c);
1925 if (c < 0xA0)
1926 {
1927 src--; /* Unread the last byte. */
1928 break;
1929 }
1930 more_bytes--;
1931 }
1932 if (more_bytes != 0)
1933 break;
1934 found = CATEGORY_MASK_EMACS_MULE;
1935 }
1936 }
1937 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1938 return 0;
1939
1940 no_more_source:
1941 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1942 {
1943 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1944 return 0;
1945 }
1946 detect_info->found |= found;
1947 return 1;
1948 }
1949
1950
1951 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
1952 character. If CMP_STATUS indicates that we must expect MSEQ or
1953 RULE described above, decode it and return the negative value of
1954 the decoded character or rule. If an invalid byte is found, return
1955 -1. If SRC is too short, return -2. */
1956
1957 static int
1958 emacs_mule_char (struct coding_system *coding, const unsigned char *src,
1959 int *nbytes, int *nchars, int *id,
1960 struct composition_status *cmp_status)
1961 {
1962 const unsigned char *src_end = coding->source + coding->src_bytes;
1963 const unsigned char *src_base = src;
1964 bool multibytep = coding->src_multibyte;
1965 int charset_ID;
1966 unsigned code;
1967 int c;
1968 ptrdiff_t consumed_chars = 0;
1969 bool mseq_found = 0;
1970
1971 ONE_MORE_BYTE (c);
1972 if (c < 0)
1973 {
1974 c = -c;
1975 charset_ID = emacs_mule_charset[0];
1976 }
1977 else
1978 {
1979 if (c >= 0xA0)
1980 {
1981 if (cmp_status->state != COMPOSING_NO
1982 && cmp_status->old_form)
1983 {
1984 if (cmp_status->state == COMPOSING_CHAR)
1985 {
1986 if (c == 0xA0)
1987 {
1988 ONE_MORE_BYTE (c);
1989 c -= 0x80;
1990 if (c < 0)
1991 goto invalid_code;
1992 }
1993 else
1994 c -= 0x20;
1995 mseq_found = 1;
1996 }
1997 else
1998 {
1999 *nbytes = src - src_base;
2000 *nchars = consumed_chars;
2001 return -c;
2002 }
2003 }
2004 else
2005 goto invalid_code;
2006 }
2007
2008 switch (emacs_mule_bytes[c])
2009 {
2010 case 2:
2011 if ((charset_ID = emacs_mule_charset[c]) < 0)
2012 goto invalid_code;
2013 ONE_MORE_BYTE (c);
2014 if (c < 0xA0)
2015 goto invalid_code;
2016 code = c & 0x7F;
2017 break;
2018
2019 case 3:
2020 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2021 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2022 {
2023 ONE_MORE_BYTE (c);
2024 if (c < 0xA0 || (charset_ID = emacs_mule_charset[c]) < 0)
2025 goto invalid_code;
2026 ONE_MORE_BYTE (c);
2027 if (c < 0xA0)
2028 goto invalid_code;
2029 code = c & 0x7F;
2030 }
2031 else
2032 {
2033 if ((charset_ID = emacs_mule_charset[c]) < 0)
2034 goto invalid_code;
2035 ONE_MORE_BYTE (c);
2036 if (c < 0xA0)
2037 goto invalid_code;
2038 code = (c & 0x7F) << 8;
2039 ONE_MORE_BYTE (c);
2040 if (c < 0xA0)
2041 goto invalid_code;
2042 code |= c & 0x7F;
2043 }
2044 break;
2045
2046 case 4:
2047 ONE_MORE_BYTE (c);
2048 if (c < 0 || (charset_ID = emacs_mule_charset[c]) < 0)
2049 goto invalid_code;
2050 ONE_MORE_BYTE (c);
2051 if (c < 0xA0)
2052 goto invalid_code;
2053 code = (c & 0x7F) << 8;
2054 ONE_MORE_BYTE (c);
2055 if (c < 0xA0)
2056 goto invalid_code;
2057 code |= c & 0x7F;
2058 break;
2059
2060 case 1:
2061 code = c;
2062 charset_ID = ASCII_CHAR_P (code) ? charset_ascii : charset_eight_bit;
2063 break;
2064
2065 default:
2066 emacs_abort ();
2067 }
2068 CODING_DECODE_CHAR (coding, src, src_base, src_end,
2069 CHARSET_FROM_ID (charset_ID), code, c);
2070 if (c < 0)
2071 goto invalid_code;
2072 }
2073 *nbytes = src - src_base;
2074 *nchars = consumed_chars;
2075 if (id)
2076 *id = charset_ID;
2077 return (mseq_found ? -c : c);
2078
2079 no_more_source:
2080 return -2;
2081
2082 invalid_code:
2083 return -1;
2084 }
2085
2086
2087 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2088
2089 /* Handle these composition sequence ('|': the end of header elements,
2090 BYTES and CHARS >= 0xA0):
2091
2092 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2093 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2094 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2095
2096 and these old form:
2097
2098 (4) relative composition: 0x80 | MSEQ ... MSEQ
2099 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2100
2101 When the starter 0x80 and the following header elements are found,
2102 this annotation header is produced.
2103
2104 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2105
2106 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2107 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2108
2109 Then, upon reading the following elements, these codes are produced
2110 until the composition end is found:
2111
2112 (1) CHAR ... CHAR
2113 (2) ALT ... ALT CHAR ... CHAR
2114 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2115 (4) CHAR ... CHAR
2116 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2117
2118 When the composition end is found, LENGTH and NCHARS in the
2119 annotation header is updated as below:
2120
2121 (1) LENGTH: unchanged, NCHARS: unchanged
2122 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2123 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2124 (4) LENGTH: unchanged, NCHARS: number of CHARs
2125 (5) LENGTH: unchanged, NCHARS: number of CHARs
2126
2127 If an error is found while composing, the annotation header is
2128 changed to the original composition header (plus filler -1s) as
2129 below:
2130
2131 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2132 (5) [ 0x80 0xFF -1 -1- -1 ]
2133
2134 and the sequence [ -2 DECODED-RULE ] is changed to the original
2135 byte sequence as below:
2136 o the original byte sequence is B: [ B -1 ]
2137 o the original byte sequence is B1 B2: [ B1 B2 ]
2138
2139 Most of the routines are implemented by macros because many
2140 variables and labels in the caller decode_coding_emacs_mule must be
2141 accessible, and they are usually called just once (thus doesn't
2142 increase the size of compiled object). */
2143
2144 /* Decode a composition rule represented by C as a component of
2145 composition sequence of Emacs 20 style. Set RULE to the decoded
2146 rule. */
2147
2148 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2149 do { \
2150 int gref, nref; \
2151 \
2152 c -= 0xA0; \
2153 if (c < 0 || c >= 81) \
2154 goto invalid_code; \
2155 gref = c / 9, nref = c % 9; \
2156 if (gref == 4) gref = 10; \
2157 if (nref == 4) nref = 10; \
2158 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2159 } while (0)
2160
2161
2162 /* Decode a composition rule represented by C and the following byte
2163 at SRC as a component of composition sequence of Emacs 21 style.
2164 Set RULE to the decoded rule. */
2165
2166 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2167 do { \
2168 int gref, nref; \
2169 \
2170 gref = c - 0x20; \
2171 if (gref < 0 || gref >= 81) \
2172 goto invalid_code; \
2173 ONE_MORE_BYTE (c); \
2174 nref = c - 0x20; \
2175 if (nref < 0 || nref >= 81) \
2176 goto invalid_code; \
2177 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2178 } while (0)
2179
2180
2181 /* Start of Emacs 21 style format. The first three bytes at SRC are
2182 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2183 byte length of this composition information, CHARS is the number of
2184 characters composed by this composition. */
2185
2186 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2187 do { \
2188 enum composition_method method = c - 0xF2; \
2189 int nbytes, nchars; \
2190 \
2191 ONE_MORE_BYTE (c); \
2192 if (c < 0) \
2193 goto invalid_code; \
2194 nbytes = c - 0xA0; \
2195 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2196 goto invalid_code; \
2197 ONE_MORE_BYTE (c); \
2198 nchars = c - 0xA0; \
2199 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2200 goto invalid_code; \
2201 cmp_status->old_form = 0; \
2202 cmp_status->method = method; \
2203 if (method == COMPOSITION_RELATIVE) \
2204 cmp_status->state = COMPOSING_CHAR; \
2205 else \
2206 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2207 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2208 cmp_status->nchars = nchars; \
2209 cmp_status->ncomps = nbytes - 4; \
2210 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2211 } while (0)
2212
2213
2214 /* Start of Emacs 20 style format for relative composition. */
2215
2216 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2217 do { \
2218 cmp_status->old_form = 1; \
2219 cmp_status->method = COMPOSITION_RELATIVE; \
2220 cmp_status->state = COMPOSING_CHAR; \
2221 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2222 cmp_status->nchars = cmp_status->ncomps = 0; \
2223 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2224 } while (0)
2225
2226
2227 /* Start of Emacs 20 style format for rule-base composition. */
2228
2229 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2230 do { \
2231 cmp_status->old_form = 1; \
2232 cmp_status->method = COMPOSITION_WITH_RULE; \
2233 cmp_status->state = COMPOSING_CHAR; \
2234 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2235 cmp_status->nchars = cmp_status->ncomps = 0; \
2236 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2237 } while (0)
2238
2239
2240 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2241 do { \
2242 const unsigned char *current_src = src; \
2243 \
2244 ONE_MORE_BYTE (c); \
2245 if (c < 0) \
2246 goto invalid_code; \
2247 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2248 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2249 DECODE_EMACS_MULE_21_COMPOSITION (); \
2250 else if (c < 0xA0) \
2251 goto invalid_code; \
2252 else if (c < 0xC0) \
2253 { \
2254 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2255 /* Re-read C as a composition component. */ \
2256 src = current_src; \
2257 } \
2258 else if (c == 0xFF) \
2259 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2260 else \
2261 goto invalid_code; \
2262 } while (0)
2263
2264 #define EMACS_MULE_COMPOSITION_END() \
2265 do { \
2266 int idx = - cmp_status->length; \
2267 \
2268 if (cmp_status->old_form) \
2269 charbuf[idx + 2] = cmp_status->nchars; \
2270 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2271 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2272 cmp_status->state = COMPOSING_NO; \
2273 } while (0)
2274
2275
2276 static int
2277 emacs_mule_finish_composition (int *charbuf,
2278 struct composition_status *cmp_status)
2279 {
2280 int idx = - cmp_status->length;
2281 int new_chars;
2282
2283 if (cmp_status->old_form && cmp_status->nchars > 0)
2284 {
2285 charbuf[idx + 2] = cmp_status->nchars;
2286 new_chars = 0;
2287 if (cmp_status->method == COMPOSITION_WITH_RULE
2288 && cmp_status->state == COMPOSING_CHAR)
2289 {
2290 /* The last rule was invalid. */
2291 int rule = charbuf[-1] + 0xA0;
2292
2293 charbuf[-2] = BYTE8_TO_CHAR (rule);
2294 charbuf[-1] = -1;
2295 new_chars = 1;
2296 }
2297 }
2298 else
2299 {
2300 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2301
2302 if (cmp_status->method == COMPOSITION_WITH_RULE)
2303 {
2304 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2305 charbuf[idx++] = -3;
2306 charbuf[idx++] = 0;
2307 new_chars = 1;
2308 }
2309 else
2310 {
2311 int nchars = charbuf[idx + 1] + 0xA0;
2312 int nbytes = charbuf[idx + 2] + 0xA0;
2313
2314 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2315 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2316 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2317 charbuf[idx++] = -1;
2318 new_chars = 4;
2319 }
2320 }
2321 cmp_status->state = COMPOSING_NO;
2322 return new_chars;
2323 }
2324
2325 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2326 do { \
2327 if (cmp_status->state != COMPOSING_NO) \
2328 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2329 } while (0)
2330
2331
2332 static void
2333 decode_coding_emacs_mule (struct coding_system *coding)
2334 {
2335 const unsigned char *src = coding->source + coding->consumed;
2336 const unsigned char *src_end = coding->source + coding->src_bytes;
2337 const unsigned char *src_base;
2338 int *charbuf = coding->charbuf + coding->charbuf_used;
2339 /* We may produce two annotations (charset and composition) in one
2340 loop and one more charset annotation at the end. */
2341 int *charbuf_end
2342 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3)
2343 /* We can produce up to 2 characters in a loop. */
2344 - 1;
2345 ptrdiff_t consumed_chars = 0, consumed_chars_base;
2346 bool multibytep = coding->src_multibyte;
2347 ptrdiff_t char_offset = coding->produced_char;
2348 ptrdiff_t last_offset = char_offset;
2349 int last_id = charset_ascii;
2350 bool eol_dos
2351 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2352 int byte_after_cr = -1;
2353 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2354
2355 if (cmp_status->state != COMPOSING_NO)
2356 {
2357 int i;
2358
2359 if (charbuf_end - charbuf < cmp_status->length)
2360 emacs_abort ();
2361 for (i = 0; i < cmp_status->length; i++)
2362 *charbuf++ = cmp_status->carryover[i];
2363 coding->annotated = 1;
2364 }
2365
2366 while (1)
2367 {
2368 int c;
2369 int id UNINIT;
2370
2371 src_base = src;
2372 consumed_chars_base = consumed_chars;
2373
2374 if (charbuf >= charbuf_end)
2375 {
2376 if (byte_after_cr >= 0)
2377 src_base--;
2378 break;
2379 }
2380
2381 if (byte_after_cr >= 0)
2382 c = byte_after_cr, byte_after_cr = -1;
2383 else
2384 ONE_MORE_BYTE (c);
2385
2386 if (c < 0 || c == 0x80)
2387 {
2388 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2389 if (c < 0)
2390 {
2391 *charbuf++ = -c;
2392 char_offset++;
2393 }
2394 else
2395 DECODE_EMACS_MULE_COMPOSITION_START ();
2396 continue;
2397 }
2398
2399 if (c < 0x80)
2400 {
2401 if (eol_dos && c == '\r')
2402 ONE_MORE_BYTE (byte_after_cr);
2403 id = charset_ascii;
2404 if (cmp_status->state != COMPOSING_NO)
2405 {
2406 if (cmp_status->old_form)
2407 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2408 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2409 cmp_status->ncomps--;
2410 }
2411 }
2412 else
2413 {
2414 int nchars UNINIT, nbytes UNINIT;
2415 /* emacs_mule_char can load a charset map from a file, which
2416 allocates a large structure and might cause buffer text
2417 to be relocated as result. Thus, we need to remember the
2418 original pointer to buffer text, and fix up all related
2419 pointers after the call. */
2420 const unsigned char *orig = coding->source;
2421 ptrdiff_t offset;
2422
2423 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2424 cmp_status);
2425 offset = coding->source - orig;
2426 if (offset)
2427 {
2428 src += offset;
2429 src_base += offset;
2430 src_end += offset;
2431 }
2432 if (c < 0)
2433 {
2434 if (c == -1)
2435 goto invalid_code;
2436 if (c == -2)
2437 break;
2438 }
2439 src = src_base + nbytes;
2440 consumed_chars = consumed_chars_base + nchars;
2441 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2442 cmp_status->ncomps -= nchars;
2443 }
2444
2445 /* Now if C >= 0, we found a normally encoded character, if C <
2446 0, we found an old-style composition component character or
2447 rule. */
2448
2449 if (cmp_status->state == COMPOSING_NO)
2450 {
2451 if (last_id != id)
2452 {
2453 if (last_id != charset_ascii)
2454 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2455 last_id);
2456 last_id = id;
2457 last_offset = char_offset;
2458 }
2459 *charbuf++ = c;
2460 char_offset++;
2461 }
2462 else if (cmp_status->state == COMPOSING_CHAR)
2463 {
2464 if (cmp_status->old_form)
2465 {
2466 if (c >= 0)
2467 {
2468 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2469 *charbuf++ = c;
2470 char_offset++;
2471 }
2472 else
2473 {
2474 *charbuf++ = -c;
2475 cmp_status->nchars++;
2476 cmp_status->length++;
2477 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2478 EMACS_MULE_COMPOSITION_END ();
2479 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2480 cmp_status->state = COMPOSING_RULE;
2481 }
2482 }
2483 else
2484 {
2485 *charbuf++ = c;
2486 cmp_status->length++;
2487 cmp_status->nchars--;
2488 if (cmp_status->nchars == 0)
2489 EMACS_MULE_COMPOSITION_END ();
2490 }
2491 }
2492 else if (cmp_status->state == COMPOSING_RULE)
2493 {
2494 int rule;
2495
2496 if (c >= 0)
2497 {
2498 EMACS_MULE_COMPOSITION_END ();
2499 *charbuf++ = c;
2500 char_offset++;
2501 }
2502 else
2503 {
2504 c = -c;
2505 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2506 if (rule < 0)
2507 goto invalid_code;
2508 *charbuf++ = -2;
2509 *charbuf++ = rule;
2510 cmp_status->length += 2;
2511 cmp_status->state = COMPOSING_CHAR;
2512 }
2513 }
2514 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2515 {
2516 *charbuf++ = c;
2517 cmp_status->length++;
2518 if (cmp_status->ncomps == 0)
2519 cmp_status->state = COMPOSING_CHAR;
2520 else if (cmp_status->ncomps > 0)
2521 {
2522 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2523 cmp_status->state = COMPOSING_COMPONENT_RULE;
2524 }
2525 else
2526 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2527 }
2528 else /* COMPOSING_COMPONENT_RULE */
2529 {
2530 int rule;
2531
2532 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2533 if (rule < 0)
2534 goto invalid_code;
2535 *charbuf++ = -2;
2536 *charbuf++ = rule;
2537 cmp_status->length += 2;
2538 cmp_status->ncomps--;
2539 if (cmp_status->ncomps > 0)
2540 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2541 else
2542 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2543 }
2544 continue;
2545
2546 invalid_code:
2547 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2548 src = src_base;
2549 consumed_chars = consumed_chars_base;
2550 ONE_MORE_BYTE (c);
2551 *charbuf++ = ASCII_CHAR_P (c) ? c : BYTE8_TO_CHAR (c);
2552 char_offset++;
2553 }
2554
2555 no_more_source:
2556 if (cmp_status->state != COMPOSING_NO)
2557 {
2558 if (coding->mode & CODING_MODE_LAST_BLOCK)
2559 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2560 else
2561 {
2562 int i;
2563
2564 charbuf -= cmp_status->length;
2565 for (i = 0; i < cmp_status->length; i++)
2566 cmp_status->carryover[i] = charbuf[i];
2567 }
2568 }
2569 if (last_id != charset_ascii)
2570 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2571 coding->consumed_char += consumed_chars_base;
2572 coding->consumed = src_base - coding->source;
2573 coding->charbuf_used = charbuf - coding->charbuf;
2574 }
2575
2576
2577 #define EMACS_MULE_LEADING_CODES(id, codes) \
2578 do { \
2579 if (id < 0xA0) \
2580 codes[0] = id, codes[1] = 0; \
2581 else if (id < 0xE0) \
2582 codes[0] = 0x9A, codes[1] = id; \
2583 else if (id < 0xF0) \
2584 codes[0] = 0x9B, codes[1] = id; \
2585 else if (id < 0xF5) \
2586 codes[0] = 0x9C, codes[1] = id; \
2587 else \
2588 codes[0] = 0x9D, codes[1] = id; \
2589 } while (0);
2590
2591
2592 static bool
2593 encode_coding_emacs_mule (struct coding_system *coding)
2594 {
2595 bool multibytep = coding->dst_multibyte;
2596 int *charbuf = coding->charbuf;
2597 int *charbuf_end = charbuf + coding->charbuf_used;
2598 unsigned char *dst = coding->destination + coding->produced;
2599 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2600 int safe_room = 8;
2601 ptrdiff_t produced_chars = 0;
2602 Lisp_Object attrs, charset_list;
2603 int c;
2604 int preferred_charset_id = -1;
2605
2606 CODING_GET_INFO (coding, attrs, charset_list);
2607 if (! EQ (charset_list, Vemacs_mule_charset_list))
2608 {
2609 charset_list = Vemacs_mule_charset_list;
2610 ASET (attrs, coding_attr_charset_list, charset_list);
2611 }
2612
2613 while (charbuf < charbuf_end)
2614 {
2615 ASSURE_DESTINATION (safe_room);
2616 c = *charbuf++;
2617
2618 if (c < 0)
2619 {
2620 /* Handle an annotation. */
2621 switch (*charbuf)
2622 {
2623 case CODING_ANNOTATE_COMPOSITION_MASK:
2624 /* Not yet implemented. */
2625 break;
2626 case CODING_ANNOTATE_CHARSET_MASK:
2627 preferred_charset_id = charbuf[3];
2628 if (preferred_charset_id >= 0
2629 && NILP (Fmemq (make_number (preferred_charset_id),
2630 charset_list)))
2631 preferred_charset_id = -1;
2632 break;
2633 default:
2634 emacs_abort ();
2635 }
2636 charbuf += -c - 1;
2637 continue;
2638 }
2639
2640 if (ASCII_CHAR_P (c))
2641 EMIT_ONE_ASCII_BYTE (c);
2642 else if (CHAR_BYTE8_P (c))
2643 {
2644 c = CHAR_TO_BYTE8 (c);
2645 EMIT_ONE_BYTE (c);
2646 }
2647 else
2648 {
2649 struct charset *charset;
2650 unsigned code;
2651 int dimension;
2652 int emacs_mule_id;
2653 unsigned char leading_codes[2];
2654
2655 if (preferred_charset_id >= 0)
2656 {
2657 bool result;
2658
2659 charset = CHARSET_FROM_ID (preferred_charset_id);
2660 CODING_CHAR_CHARSET_P (coding, dst, dst_end, c, charset, result);
2661 if (result)
2662 code = ENCODE_CHAR (charset, c);
2663 else
2664 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2665 &code, charset);
2666 }
2667 else
2668 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2669 &code, charset);
2670 if (! charset)
2671 {
2672 c = coding->default_char;
2673 if (ASCII_CHAR_P (c))
2674 {
2675 EMIT_ONE_ASCII_BYTE (c);
2676 continue;
2677 }
2678 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2679 &code, charset);
2680 }
2681 dimension = CHARSET_DIMENSION (charset);
2682 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2683 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2684 EMIT_ONE_BYTE (leading_codes[0]);
2685 if (leading_codes[1])
2686 EMIT_ONE_BYTE (leading_codes[1]);
2687 if (dimension == 1)
2688 EMIT_ONE_BYTE (code | 0x80);
2689 else
2690 {
2691 code |= 0x8080;
2692 EMIT_ONE_BYTE (code >> 8);
2693 EMIT_ONE_BYTE (code & 0xFF);
2694 }
2695 }
2696 }
2697 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2698 coding->produced_char += produced_chars;
2699 coding->produced = dst - coding->destination;
2700 return 0;
2701 }
2702
2703 \f
2704 /*** 7. ISO2022 handlers ***/
2705
2706 /* The following note describes the coding system ISO2022 briefly.
2707 Since the intention of this note is to help understand the
2708 functions in this file, some parts are NOT ACCURATE or are OVERLY
2709 SIMPLIFIED. For thorough understanding, please refer to the
2710 original document of ISO2022. This is equivalent to the standard
2711 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2712
2713 ISO2022 provides many mechanisms to encode several character sets
2714 in 7-bit and 8-bit environments. For 7-bit environments, all text
2715 is encoded using bytes less than 128. This may make the encoded
2716 text a little bit longer, but the text passes more easily through
2717 several types of gateway, some of which strip off the MSB (Most
2718 Significant Bit).
2719
2720 There are two kinds of character sets: control character sets and
2721 graphic character sets. The former contain control characters such
2722 as `newline' and `escape' to provide control functions (control
2723 functions are also provided by escape sequences). The latter
2724 contain graphic characters such as 'A' and '-'. Emacs recognizes
2725 two control character sets and many graphic character sets.
2726
2727 Graphic character sets are classified into one of the following
2728 four classes, according to the number of bytes (DIMENSION) and
2729 number of characters in one dimension (CHARS) of the set:
2730 - DIMENSION1_CHARS94
2731 - DIMENSION1_CHARS96
2732 - DIMENSION2_CHARS94
2733 - DIMENSION2_CHARS96
2734
2735 In addition, each character set is assigned an identification tag,
2736 unique for each set, called the "final character" (denoted as <F>
2737 hereafter). The <F> of each character set is decided by ECMA(*)
2738 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2739 (0x30..0x3F are for private use only).
2740
2741 Note (*): ECMA = European Computer Manufacturers Association
2742
2743 Here are examples of graphic character sets [NAME(<F>)]:
2744 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2745 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2746 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2747 o DIMENSION2_CHARS96 -- none for the moment
2748
2749 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2750 C0 [0x00..0x1F] -- control character plane 0
2751 GL [0x20..0x7F] -- graphic character plane 0
2752 C1 [0x80..0x9F] -- control character plane 1
2753 GR [0xA0..0xFF] -- graphic character plane 1
2754
2755 A control character set is directly designated and invoked to C0 or
2756 C1 by an escape sequence. The most common case is that:
2757 - ISO646's control character set is designated/invoked to C0, and
2758 - ISO6429's control character set is designated/invoked to C1,
2759 and usually these designations/invocations are omitted in encoded
2760 text. In a 7-bit environment, only C0 can be used, and a control
2761 character for C1 is encoded by an appropriate escape sequence to
2762 fit into the environment. All control characters for C1 are
2763 defined to have corresponding escape sequences.
2764
2765 A graphic character set is at first designated to one of four
2766 graphic registers (G0 through G3), then these graphic registers are
2767 invoked to GL or GR. These designations and invocations can be
2768 done independently. The most common case is that G0 is invoked to
2769 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2770 these invocations and designations are omitted in encoded text.
2771 In a 7-bit environment, only GL can be used.
2772
2773 When a graphic character set of CHARS94 is invoked to GL, codes
2774 0x20 and 0x7F of the GL area work as control characters SPACE and
2775 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2776 be used.
2777
2778 There are two ways of invocation: locking-shift and single-shift.
2779 With locking-shift, the invocation lasts until the next different
2780 invocation, whereas with single-shift, the invocation affects the
2781 following character only and doesn't affect the locking-shift
2782 state. Invocations are done by the following control characters or
2783 escape sequences:
2784
2785 ----------------------------------------------------------------------
2786 abbrev function cntrl escape seq description
2787 ----------------------------------------------------------------------
2788 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2789 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2790 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2791 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2792 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2793 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2794 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2795 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2796 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2797 ----------------------------------------------------------------------
2798 (*) These are not used by any known coding system.
2799
2800 Control characters for these functions are defined by macros
2801 ISO_CODE_XXX in `coding.h'.
2802
2803 Designations are done by the following escape sequences:
2804 ----------------------------------------------------------------------
2805 escape sequence description
2806 ----------------------------------------------------------------------
2807 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2808 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2809 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2810 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2811 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2812 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2813 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2814 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2815 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2816 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2817 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2818 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2819 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2820 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2821 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2822 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2823 ----------------------------------------------------------------------
2824
2825 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2826 of dimension 1, chars 94, and final character <F>, etc...
2827
2828 Note (*): Although these designations are not allowed in ISO2022,
2829 Emacs accepts them on decoding, and produces them on encoding
2830 CHARS96 character sets in a coding system which is characterized as
2831 7-bit environment, non-locking-shift, and non-single-shift.
2832
2833 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2834 '(' must be omitted. We refer to this as "short-form" hereafter.
2835
2836 Now you may notice that there are a lot of ways of encoding the
2837 same multilingual text in ISO2022. Actually, there exist many
2838 coding systems such as Compound Text (used in X11's inter client
2839 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2840 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2841 localized platforms), and all of these are variants of ISO2022.
2842
2843 In addition to the above, Emacs handles two more kinds of escape
2844 sequences: ISO6429's direction specification and Emacs' private
2845 sequence for specifying character composition.
2846
2847 ISO6429's direction specification takes the following form:
2848 o CSI ']' -- end of the current direction
2849 o CSI '0' ']' -- end of the current direction
2850 o CSI '1' ']' -- start of left-to-right text
2851 o CSI '2' ']' -- start of right-to-left text
2852 The control character CSI (0x9B: control sequence introducer) is
2853 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2854
2855 Character composition specification takes the following form:
2856 o ESC '0' -- start relative composition
2857 o ESC '1' -- end composition
2858 o ESC '2' -- start rule-base composition (*)
2859 o ESC '3' -- start relative composition with alternate chars (**)
2860 o ESC '4' -- start rule-base composition with alternate chars (**)
2861 Since these are not standard escape sequences of any ISO standard,
2862 the use of them with these meanings is restricted to Emacs only.
2863
2864 (*) This form is used only in Emacs 20.7 and older versions,
2865 but newer versions can safely decode it.
2866 (**) This form is used only in Emacs 21.1 and newer versions,
2867 and older versions can't decode it.
2868
2869 Here's a list of example usages of these composition escape
2870 sequences (categorized by `enum composition_method').
2871
2872 COMPOSITION_RELATIVE:
2873 ESC 0 CHAR [ CHAR ] ESC 1
2874 COMPOSITION_WITH_RULE:
2875 ESC 2 CHAR [ RULE CHAR ] ESC 1
2876 COMPOSITION_WITH_ALTCHARS:
2877 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2878 COMPOSITION_WITH_RULE_ALTCHARS:
2879 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2880
2881 static enum iso_code_class_type iso_code_class[256];
2882
2883 #define SAFE_CHARSET_P(coding, id) \
2884 ((id) <= (coding)->max_charset_id \
2885 && (coding)->safe_charsets[id] != 255)
2886
2887 static void
2888 setup_iso_safe_charsets (Lisp_Object attrs)
2889 {
2890 Lisp_Object charset_list, safe_charsets;
2891 Lisp_Object request;
2892 Lisp_Object reg_usage;
2893 Lisp_Object tail;
2894 EMACS_INT reg94, reg96;
2895 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2896 int max_charset_id;
2897
2898 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2899 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2900 && ! EQ (charset_list, Viso_2022_charset_list))
2901 {
2902 charset_list = Viso_2022_charset_list;
2903 ASET (attrs, coding_attr_charset_list, charset_list);
2904 ASET (attrs, coding_attr_safe_charsets, Qnil);
2905 }
2906
2907 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
2908 return;
2909
2910 max_charset_id = 0;
2911 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2912 {
2913 int id = XINT (XCAR (tail));
2914 if (max_charset_id < id)
2915 max_charset_id = id;
2916 }
2917
2918 safe_charsets = make_uninit_string (max_charset_id + 1);
2919 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
2920 request = AREF (attrs, coding_attr_iso_request);
2921 reg_usage = AREF (attrs, coding_attr_iso_usage);
2922 reg94 = XINT (XCAR (reg_usage));
2923 reg96 = XINT (XCDR (reg_usage));
2924
2925 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2926 {
2927 Lisp_Object id;
2928 Lisp_Object reg;
2929 struct charset *charset;
2930
2931 id = XCAR (tail);
2932 charset = CHARSET_FROM_ID (XINT (id));
2933 reg = Fcdr (Fassq (id, request));
2934 if (! NILP (reg))
2935 SSET (safe_charsets, XINT (id), XINT (reg));
2936 else if (charset->iso_chars_96)
2937 {
2938 if (reg96 < 4)
2939 SSET (safe_charsets, XINT (id), reg96);
2940 }
2941 else
2942 {
2943 if (reg94 < 4)
2944 SSET (safe_charsets, XINT (id), reg94);
2945 }
2946 }
2947 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
2948 }
2949
2950
2951 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2952 Return true if a text is encoded in one of ISO-2022 based coding
2953 systems. */
2954
2955 static bool
2956 detect_coding_iso_2022 (struct coding_system *coding,
2957 struct coding_detection_info *detect_info)
2958 {
2959 const unsigned char *src = coding->source, *src_base = src;
2960 const unsigned char *src_end = coding->source + coding->src_bytes;
2961 bool multibytep = coding->src_multibyte;
2962 bool single_shifting = 0;
2963 int id;
2964 int c, c1;
2965 ptrdiff_t consumed_chars = 0;
2966 int i;
2967 int rejected = 0;
2968 int found = 0;
2969 int composition_count = -1;
2970
2971 detect_info->checked |= CATEGORY_MASK_ISO;
2972
2973 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
2974 {
2975 struct coding_system *this = &(coding_categories[i]);
2976 Lisp_Object attrs, val;
2977
2978 if (this->id < 0)
2979 continue;
2980 attrs = CODING_ID_ATTRS (this->id);
2981 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
2982 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
2983 setup_iso_safe_charsets (attrs);
2984 val = CODING_ATTR_SAFE_CHARSETS (attrs);
2985 this->max_charset_id = SCHARS (val) - 1;
2986 this->safe_charsets = SDATA (val);
2987 }
2988
2989 /* A coding system of this category is always ASCII compatible. */
2990 src += coding->head_ascii;
2991
2992 while (rejected != CATEGORY_MASK_ISO)
2993 {
2994 src_base = src;
2995 ONE_MORE_BYTE (c);
2996 switch (c)
2997 {
2998 case ISO_CODE_ESC:
2999 if (inhibit_iso_escape_detection)
3000 break;
3001 single_shifting = 0;
3002 ONE_MORE_BYTE (c);
3003 if (c == 'N' || c == 'O')
3004 {
3005 /* ESC <Fe> for SS2 or SS3. */
3006 single_shifting = 1;
3007 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3008 }
3009 else if (c == '1')
3010 {
3011 /* End of composition. */
3012 if (composition_count < 0
3013 || composition_count > MAX_COMPOSITION_COMPONENTS)
3014 /* Invalid */
3015 break;
3016 composition_count = -1;
3017 found |= CATEGORY_MASK_ISO;
3018 }
3019 else if (c >= '0' && c <= '4')
3020 {
3021 /* ESC <Fp> for start/end composition. */
3022 composition_count = 0;
3023 }
3024 else
3025 {
3026 if (c >= '(' && c <= '/')
3027 {
3028 /* Designation sequence for a charset of dimension 1. */
3029 ONE_MORE_BYTE (c1);
3030 if (c1 < ' ' || c1 >= 0x80
3031 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3032 {
3033 /* Invalid designation sequence. Just ignore. */
3034 if (c1 >= 0x80)
3035 rejected |= (CATEGORY_MASK_ISO_7BIT
3036 | CATEGORY_MASK_ISO_7_ELSE);
3037 break;
3038 }
3039 }
3040 else if (c == '$')
3041 {
3042 /* Designation sequence for a charset of dimension 2. */
3043 ONE_MORE_BYTE (c);
3044 if (c >= '@' && c <= 'B')
3045 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3046 id = iso_charset_table[1][0][c];
3047 else if (c >= '(' && c <= '/')
3048 {
3049 ONE_MORE_BYTE (c1);
3050 if (c1 < ' ' || c1 >= 0x80
3051 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3052 {
3053 /* Invalid designation sequence. Just ignore. */
3054 if (c1 >= 0x80)
3055 rejected |= (CATEGORY_MASK_ISO_7BIT
3056 | CATEGORY_MASK_ISO_7_ELSE);
3057 break;
3058 }
3059 }
3060 else
3061 {
3062 /* Invalid designation sequence. Just ignore it. */
3063 if (c >= 0x80)
3064 rejected |= (CATEGORY_MASK_ISO_7BIT
3065 | CATEGORY_MASK_ISO_7_ELSE);
3066 break;
3067 }
3068 }
3069 else
3070 {
3071 /* Invalid escape sequence. Just ignore it. */
3072 if (c >= 0x80)
3073 rejected |= (CATEGORY_MASK_ISO_7BIT
3074 | CATEGORY_MASK_ISO_7_ELSE);
3075 break;
3076 }
3077
3078 /* We found a valid designation sequence for CHARSET. */
3079 rejected |= CATEGORY_MASK_ISO_8BIT;
3080 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3081 id))
3082 found |= CATEGORY_MASK_ISO_7;
3083 else
3084 rejected |= CATEGORY_MASK_ISO_7;
3085 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3086 id))
3087 found |= CATEGORY_MASK_ISO_7_TIGHT;
3088 else
3089 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3090 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3091 id))
3092 found |= CATEGORY_MASK_ISO_7_ELSE;
3093 else
3094 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3095 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3096 id))
3097 found |= CATEGORY_MASK_ISO_8_ELSE;
3098 else
3099 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3100 }
3101 break;
3102
3103 case ISO_CODE_SO:
3104 case ISO_CODE_SI:
3105 /* Locking shift out/in. */
3106 if (inhibit_iso_escape_detection)
3107 break;
3108 single_shifting = 0;
3109 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3110 break;
3111
3112 case ISO_CODE_CSI:
3113 /* Control sequence introducer. */
3114 single_shifting = 0;
3115 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3116 found |= CATEGORY_MASK_ISO_8_ELSE;
3117 goto check_extra_latin;
3118
3119 case ISO_CODE_SS2:
3120 case ISO_CODE_SS3:
3121 /* Single shift. */
3122 if (inhibit_iso_escape_detection)
3123 break;
3124 single_shifting = 0;
3125 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3126 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3127 & CODING_ISO_FLAG_SINGLE_SHIFT)
3128 {
3129 found |= CATEGORY_MASK_ISO_8_1;
3130 single_shifting = 1;
3131 }
3132 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3133 & CODING_ISO_FLAG_SINGLE_SHIFT)
3134 {
3135 found |= CATEGORY_MASK_ISO_8_2;
3136 single_shifting = 1;
3137 }
3138 if (single_shifting)
3139 break;
3140 goto check_extra_latin;
3141
3142 default:
3143 if (c < 0)
3144 continue;
3145 if (c < 0x80)
3146 {
3147 if (composition_count >= 0)
3148 composition_count++;
3149 single_shifting = 0;
3150 break;
3151 }
3152 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3153 if (c >= 0xA0)
3154 {
3155 found |= CATEGORY_MASK_ISO_8_1;
3156 /* Check the length of succeeding codes of the range
3157 0xA0..0FF. If the byte length is even, we include
3158 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3159 only when we are not single shifting. */
3160 if (! single_shifting
3161 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3162 {
3163 ptrdiff_t len = 1;
3164 while (src < src_end)
3165 {
3166 src_base = src;
3167 ONE_MORE_BYTE (c);
3168 if (c < 0xA0)
3169 {
3170 src = src_base;
3171 break;
3172 }
3173 len++;
3174 }
3175
3176 if (len & 1 && src < src_end)
3177 {
3178 rejected |= CATEGORY_MASK_ISO_8_2;
3179 if (composition_count >= 0)
3180 composition_count += len;
3181 }
3182 else
3183 {
3184 found |= CATEGORY_MASK_ISO_8_2;
3185 if (composition_count >= 0)
3186 composition_count += len / 2;
3187 }
3188 }
3189 break;
3190 }
3191 check_extra_latin:
3192 if (! VECTORP (Vlatin_extra_code_table)
3193 || NILP (AREF (Vlatin_extra_code_table, c)))
3194 {
3195 rejected = CATEGORY_MASK_ISO;
3196 break;
3197 }
3198 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3199 & CODING_ISO_FLAG_LATIN_EXTRA)
3200 found |= CATEGORY_MASK_ISO_8_1;
3201 else
3202 rejected |= CATEGORY_MASK_ISO_8_1;
3203 rejected |= CATEGORY_MASK_ISO_8_2;
3204 break;
3205 }
3206 }
3207 detect_info->rejected |= CATEGORY_MASK_ISO;
3208 return 0;
3209
3210 no_more_source:
3211 detect_info->rejected |= rejected;
3212 detect_info->found |= (found & ~rejected);
3213 return 1;
3214 }
3215
3216
3217 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3218 escape sequence should be kept. */
3219 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3220 do { \
3221 int id, prev; \
3222 \
3223 if (final < '0' || final >= 128 \
3224 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3225 || !SAFE_CHARSET_P (coding, id)) \
3226 { \
3227 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3228 chars_96 = -1; \
3229 break; \
3230 } \
3231 prev = CODING_ISO_DESIGNATION (coding, reg); \
3232 if (id == charset_jisx0201_roman) \
3233 { \
3234 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3235 id = charset_ascii; \
3236 } \
3237 else if (id == charset_jisx0208_1978) \
3238 { \
3239 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3240 id = charset_jisx0208; \
3241 } \
3242 CODING_ISO_DESIGNATION (coding, reg) = id; \
3243 /* If there was an invalid designation to REG previously, and this \
3244 designation is ASCII to REG, we should keep this designation \
3245 sequence. */ \
3246 if (prev == -2 && id == charset_ascii) \
3247 chars_96 = -1; \
3248 } while (0)
3249
3250
3251 /* Handle these composition sequence (ALT: alternate char):
3252
3253 (1) relative composition: ESC 0 CHAR ... ESC 1
3254 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3255 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3256 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3257
3258 When the start sequence (ESC 0/2/3/4) is found, this annotation
3259 header is produced.
3260
3261 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3262
3263 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3264 produced until the end sequence (ESC 1) is found:
3265
3266 (1) CHAR ... CHAR
3267 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3268 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3269 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3270
3271 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3272 annotation header is updated as below:
3273
3274 (1) LENGTH: unchanged, NCHARS: number of CHARs
3275 (2) LENGTH: unchanged, NCHARS: number of CHARs
3276 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3277 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3278
3279 If an error is found while composing, the annotation header is
3280 changed to:
3281
3282 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3283
3284 and the sequence [ -2 DECODED-RULE ] is changed to the original
3285 byte sequence as below:
3286 o the original byte sequence is B: [ B -1 ]
3287 o the original byte sequence is B1 B2: [ B1 B2 ]
3288 and the sequence [ -1 -1 ] is changed to the original byte
3289 sequence:
3290 [ ESC '0' ]
3291 */
3292
3293 /* Decode a composition rule C1 and maybe one more byte from the
3294 source, and set RULE to the encoded composition rule. If the rule
3295 is invalid, goto invalid_code. */
3296
3297 #define DECODE_COMPOSITION_RULE(rule) \
3298 do { \
3299 rule = c1 - 32; \
3300 if (rule < 0) \
3301 goto invalid_code; \
3302 if (rule < 81) /* old format (before ver.21) */ \
3303 { \
3304 int gref = (rule) / 9; \
3305 int nref = (rule) % 9; \
3306 if (gref == 4) gref = 10; \
3307 if (nref == 4) nref = 10; \
3308 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3309 } \
3310 else /* new format (after ver.21) */ \
3311 { \
3312 int b; \
3313 \
3314 ONE_MORE_BYTE (b); \
3315 if (! COMPOSITION_ENCODE_RULE_VALID (rule - 81, b - 32)) \
3316 goto invalid_code; \
3317 rule = COMPOSITION_ENCODE_RULE (rule - 81, b - 32); \
3318 rule += 0x100; /* Distinguish it from the old format. */ \
3319 } \
3320 } while (0)
3321
3322 #define ENCODE_COMPOSITION_RULE(rule) \
3323 do { \
3324 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3325 \
3326 if (rule < 0x100) /* old format */ \
3327 { \
3328 if (gref == 10) gref = 4; \
3329 if (nref == 10) nref = 4; \
3330 charbuf[idx] = 32 + gref * 9 + nref; \
3331 charbuf[idx + 1] = -1; \
3332 new_chars++; \
3333 } \
3334 else /* new format */ \
3335 { \
3336 charbuf[idx] = 32 + 81 + gref; \
3337 charbuf[idx + 1] = 32 + nref; \
3338 new_chars += 2; \
3339 } \
3340 } while (0)
3341
3342 /* Finish the current composition as invalid. */
3343
3344 static int
3345 finish_composition (int *charbuf, struct composition_status *cmp_status)
3346 {
3347 int idx = - cmp_status->length;
3348 int new_chars;
3349
3350 /* Recover the original ESC sequence */
3351 charbuf[idx++] = ISO_CODE_ESC;
3352 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3353 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3354 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3355 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3356 : '4');
3357 charbuf[idx++] = -2;
3358 charbuf[idx++] = 0;
3359 charbuf[idx++] = -1;
3360 new_chars = cmp_status->nchars;
3361 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3362 for (; idx < 0; idx++)
3363 {
3364 int elt = charbuf[idx];
3365
3366 if (elt == -2)
3367 {
3368 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3369 idx++;
3370 }
3371 else if (elt == -1)
3372 {
3373 charbuf[idx++] = ISO_CODE_ESC;
3374 charbuf[idx] = '0';
3375 new_chars += 2;
3376 }
3377 }
3378 cmp_status->state = COMPOSING_NO;
3379 return new_chars;
3380 }
3381
3382 /* If characters are under composition, finish the composition. */
3383 #define MAYBE_FINISH_COMPOSITION() \
3384 do { \
3385 if (cmp_status->state != COMPOSING_NO) \
3386 char_offset += finish_composition (charbuf, cmp_status); \
3387 } while (0)
3388
3389 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3390
3391 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3392 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3393 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3394 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3395
3396 Produce this annotation sequence now:
3397
3398 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3399 */
3400
3401 #define DECODE_COMPOSITION_START(c1) \
3402 do { \
3403 if (c1 == '0' \
3404 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3405 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3406 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3407 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3408 { \
3409 *charbuf++ = -1; \
3410 *charbuf++= -1; \
3411 cmp_status->state = COMPOSING_CHAR; \
3412 cmp_status->length += 2; \
3413 } \
3414 else \
3415 { \
3416 MAYBE_FINISH_COMPOSITION (); \
3417 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3418 : c1 == '2' ? COMPOSITION_WITH_RULE \
3419 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3420 : COMPOSITION_WITH_RULE_ALTCHARS); \
3421 cmp_status->state \
3422 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3423 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3424 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3425 cmp_status->nchars = cmp_status->ncomps = 0; \
3426 coding->annotated = 1; \
3427 } \
3428 } while (0)
3429
3430
3431 /* Handle composition end sequence ESC 1. */
3432
3433 #define DECODE_COMPOSITION_END() \
3434 do { \
3435 if (cmp_status->nchars == 0 \
3436 || ((cmp_status->state == COMPOSING_CHAR) \
3437 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3438 { \
3439 MAYBE_FINISH_COMPOSITION (); \
3440 goto invalid_code; \
3441 } \
3442 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3443 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3444 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3445 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3446 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3447 char_offset += cmp_status->nchars; \
3448 cmp_status->state = COMPOSING_NO; \
3449 } while (0)
3450
3451 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3452
3453 #define STORE_COMPOSITION_RULE(rule) \
3454 do { \
3455 *charbuf++ = -2; \
3456 *charbuf++ = rule; \
3457 cmp_status->length += 2; \
3458 cmp_status->state--; \
3459 } while (0)
3460
3461 /* Store a composed char or a component char C in charbuf, and update
3462 cmp_status. */
3463
3464 #define STORE_COMPOSITION_CHAR(c) \
3465 do { \
3466 *charbuf++ = (c); \
3467 cmp_status->length++; \
3468 if (cmp_status->state == COMPOSING_CHAR) \
3469 cmp_status->nchars++; \
3470 else \
3471 cmp_status->ncomps++; \
3472 if (cmp_status->method == COMPOSITION_WITH_RULE \
3473 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3474 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3475 cmp_status->state++; \
3476 } while (0)
3477
3478
3479 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3480
3481 static void
3482 decode_coding_iso_2022 (struct coding_system *coding)
3483 {
3484 const unsigned char *src = coding->source + coding->consumed;
3485 const unsigned char *src_end = coding->source + coding->src_bytes;
3486 const unsigned char *src_base;
3487 int *charbuf = coding->charbuf + coding->charbuf_used;
3488 /* We may produce two annotations (charset and composition) in one
3489 loop and one more charset annotation at the end. */
3490 int *charbuf_end
3491 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3492 ptrdiff_t consumed_chars = 0, consumed_chars_base;
3493 bool multibytep = coding->src_multibyte;
3494 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3495 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3496 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3497 int charset_id_2, charset_id_3;
3498 struct charset *charset;
3499 int c;
3500 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3501 Lisp_Object attrs = CODING_ID_ATTRS (coding->id);
3502 ptrdiff_t char_offset = coding->produced_char;
3503 ptrdiff_t last_offset = char_offset;
3504 int last_id = charset_ascii;
3505 bool eol_dos
3506 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3507 int byte_after_cr = -1;
3508 int i;
3509
3510 setup_iso_safe_charsets (attrs);
3511 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3512
3513 if (cmp_status->state != COMPOSING_NO)
3514 {
3515 if (charbuf_end - charbuf < cmp_status->length)
3516 emacs_abort ();
3517 for (i = 0; i < cmp_status->length; i++)
3518 *charbuf++ = cmp_status->carryover[i];
3519 coding->annotated = 1;
3520 }
3521
3522 while (1)
3523 {
3524 int c1, c2, c3;
3525
3526 src_base = src;
3527 consumed_chars_base = consumed_chars;
3528
3529 if (charbuf >= charbuf_end)
3530 {
3531 if (byte_after_cr >= 0)
3532 src_base--;
3533 break;
3534 }
3535
3536 if (byte_after_cr >= 0)
3537 c1 = byte_after_cr, byte_after_cr = -1;
3538 else
3539 ONE_MORE_BYTE (c1);
3540 if (c1 < 0)
3541 goto invalid_code;
3542
3543 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3544 {
3545 *charbuf++ = ASCII_CHAR_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3546 char_offset++;
3547 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3548 continue;
3549 }
3550
3551 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3552 {
3553 if (c1 == ISO_CODE_ESC)
3554 {
3555 if (src + 1 >= src_end)
3556 goto no_more_source;
3557 *charbuf++ = ISO_CODE_ESC;
3558 char_offset++;
3559 if (src[0] == '%' && src[1] == '@')
3560 {
3561 src += 2;
3562 consumed_chars += 2;
3563 char_offset += 2;
3564 /* We are sure charbuf can contain two more chars. */
3565 *charbuf++ = '%';
3566 *charbuf++ = '@';
3567 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3568 }
3569 }
3570 else
3571 {
3572 *charbuf++ = ASCII_CHAR_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3573 char_offset++;
3574 }
3575 continue;
3576 }
3577
3578 if ((cmp_status->state == COMPOSING_RULE
3579 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3580 && c1 != ISO_CODE_ESC)
3581 {
3582 int rule;
3583
3584 DECODE_COMPOSITION_RULE (rule);
3585 STORE_COMPOSITION_RULE (rule);
3586 continue;
3587 }
3588
3589 /* We produce at most one character. */
3590 switch (iso_code_class [c1])
3591 {
3592 case ISO_0x20_or_0x7F:
3593 if (charset_id_0 < 0
3594 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3595 /* This is SPACE or DEL. */
3596 charset = CHARSET_FROM_ID (charset_ascii);
3597 else
3598 charset = CHARSET_FROM_ID (charset_id_0);
3599 break;
3600
3601 case ISO_graphic_plane_0:
3602 if (charset_id_0 < 0)
3603 charset = CHARSET_FROM_ID (charset_ascii);
3604 else
3605 charset = CHARSET_FROM_ID (charset_id_0);
3606 break;
3607
3608 case ISO_0xA0_or_0xFF:
3609 if (charset_id_1 < 0
3610 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3611 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3612 goto invalid_code;
3613 /* This is a graphic character, we fall down ... */
3614
3615 case ISO_graphic_plane_1:
3616 if (charset_id_1 < 0)
3617 goto invalid_code;
3618 charset = CHARSET_FROM_ID (charset_id_1);
3619 break;
3620
3621 case ISO_control_0:
3622 if (eol_dos && c1 == '\r')
3623 ONE_MORE_BYTE (byte_after_cr);
3624 MAYBE_FINISH_COMPOSITION ();
3625 charset = CHARSET_FROM_ID (charset_ascii);
3626 break;
3627
3628 case ISO_control_1:
3629 goto invalid_code;
3630
3631 case ISO_shift_out:
3632 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3633 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3634 goto invalid_code;
3635 CODING_ISO_INVOCATION (coding, 0) = 1;
3636 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3637 continue;
3638
3639 case ISO_shift_in:
3640 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3641 goto invalid_code;
3642 CODING_ISO_INVOCATION (coding, 0) = 0;
3643 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3644 continue;
3645
3646 case ISO_single_shift_2_7:
3647 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS))
3648 goto invalid_code;
3649 case ISO_single_shift_2:
3650 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3651 goto invalid_code;
3652 /* SS2 is handled as an escape sequence of ESC 'N' */
3653 c1 = 'N';
3654 goto label_escape_sequence;
3655
3656 case ISO_single_shift_3:
3657 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3658 goto invalid_code;
3659 /* SS2 is handled as an escape sequence of ESC 'O' */
3660 c1 = 'O';
3661 goto label_escape_sequence;
3662
3663 case ISO_control_sequence_introducer:
3664 /* CSI is handled as an escape sequence of ESC '[' ... */
3665 c1 = '[';
3666 goto label_escape_sequence;
3667
3668 case ISO_escape:
3669 ONE_MORE_BYTE (c1);
3670 label_escape_sequence:
3671 /* Escape sequences handled here are invocation,
3672 designation, direction specification, and character
3673 composition specification. */
3674 switch (c1)
3675 {
3676 case '&': /* revision of following character set */
3677 ONE_MORE_BYTE (c1);
3678 if (!(c1 >= '@' && c1 <= '~'))
3679 goto invalid_code;
3680 ONE_MORE_BYTE (c1);
3681 if (c1 != ISO_CODE_ESC)
3682 goto invalid_code;
3683 ONE_MORE_BYTE (c1);
3684 goto label_escape_sequence;
3685
3686 case '$': /* designation of 2-byte character set */
3687 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3688 goto invalid_code;
3689 {
3690 int reg, chars96;
3691
3692 ONE_MORE_BYTE (c1);
3693 if (c1 >= '@' && c1 <= 'B')
3694 { /* designation of JISX0208.1978, GB2312.1980,
3695 or JISX0208.1980 */
3696 reg = 0, chars96 = 0;
3697 }
3698 else if (c1 >= 0x28 && c1 <= 0x2B)
3699 { /* designation of DIMENSION2_CHARS94 character set */
3700 reg = c1 - 0x28, chars96 = 0;
3701 ONE_MORE_BYTE (c1);
3702 }
3703 else if (c1 >= 0x2C && c1 <= 0x2F)
3704 { /* designation of DIMENSION2_CHARS96 character set */
3705 reg = c1 - 0x2C, chars96 = 1;
3706 ONE_MORE_BYTE (c1);
3707 }
3708 else
3709 goto invalid_code;
3710 DECODE_DESIGNATION (reg, 2, chars96, c1);
3711 /* We must update these variables now. */
3712 if (reg == 0)
3713 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3714 else if (reg == 1)
3715 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3716 if (chars96 < 0)
3717 goto invalid_code;
3718 }
3719 continue;
3720
3721 case 'n': /* invocation of locking-shift-2 */
3722 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3723 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3724 goto invalid_code;
3725 CODING_ISO_INVOCATION (coding, 0) = 2;
3726 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3727 continue;
3728
3729 case 'o': /* invocation of locking-shift-3 */
3730 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3731 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3732 goto invalid_code;
3733 CODING_ISO_INVOCATION (coding, 0) = 3;
3734 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3735 continue;
3736
3737 case 'N': /* invocation of single-shift-2 */
3738 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3739 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3740 goto invalid_code;
3741 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3742 if (charset_id_2 < 0)
3743 charset = CHARSET_FROM_ID (charset_ascii);
3744 else
3745 charset = CHARSET_FROM_ID (charset_id_2);
3746 ONE_MORE_BYTE (c1);
3747 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0)
3748 || (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3749 && ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LEVEL_4)
3750 ? c1 >= 0x80 : c1 < 0x80)))
3751 goto invalid_code;
3752 break;
3753
3754 case 'O': /* invocation of single-shift-3 */
3755 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3756 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3757 goto invalid_code;
3758 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3759 if (charset_id_3 < 0)
3760 charset = CHARSET_FROM_ID (charset_ascii);
3761 else
3762 charset = CHARSET_FROM_ID (charset_id_3);
3763 ONE_MORE_BYTE (c1);
3764 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0)
3765 || (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3766 && ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LEVEL_4)
3767 ? c1 >= 0x80 : c1 < 0x80)))
3768 goto invalid_code;
3769 break;
3770
3771 case '0': case '2': case '3': case '4': /* start composition */
3772 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3773 goto invalid_code;
3774 if (last_id != charset_ascii)
3775 {
3776 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3777 last_id = charset_ascii;
3778 last_offset = char_offset;
3779 }
3780 DECODE_COMPOSITION_START (c1);
3781 continue;
3782
3783 case '1': /* end composition */
3784 if (cmp_status->state == COMPOSING_NO)
3785 goto invalid_code;
3786 DECODE_COMPOSITION_END ();
3787 continue;
3788
3789 case '[': /* specification of direction */
3790 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION))
3791 goto invalid_code;
3792 /* For the moment, nested direction is not supported.
3793 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3794 left-to-right, and nonzero means right-to-left. */
3795 ONE_MORE_BYTE (c1);
3796 switch (c1)
3797 {
3798 case ']': /* end of the current direction */
3799 coding->mode &= ~CODING_MODE_DIRECTION;
3800
3801 case '0': /* end of the current direction */
3802 case '1': /* start of left-to-right direction */
3803 ONE_MORE_BYTE (c1);
3804 if (c1 == ']')
3805 coding->mode &= ~CODING_MODE_DIRECTION;
3806 else
3807 goto invalid_code;
3808 break;
3809
3810 case '2': /* start of right-to-left direction */
3811 ONE_MORE_BYTE (c1);
3812 if (c1 == ']')
3813 coding->mode |= CODING_MODE_DIRECTION;
3814 else
3815 goto invalid_code;
3816 break;
3817
3818 default:
3819 goto invalid_code;
3820 }
3821 continue;
3822
3823 case '%':
3824 ONE_MORE_BYTE (c1);
3825 if (c1 == '/')
3826 {
3827 /* CTEXT extended segment:
3828 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3829 We keep these bytes as is for the moment.
3830 They may be decoded by post-read-conversion. */
3831 int dim, M, L;
3832 int size;
3833
3834 ONE_MORE_BYTE (dim);
3835 if (dim < '0' || dim > '4')
3836 goto invalid_code;
3837 ONE_MORE_BYTE (M);
3838 if (M < 128)
3839 goto invalid_code;
3840 ONE_MORE_BYTE (L);
3841 if (L < 128)
3842 goto invalid_code;
3843 size = ((M - 128) * 128) + (L - 128);
3844 if (charbuf + 6 > charbuf_end)
3845 goto break_loop;
3846 *charbuf++ = ISO_CODE_ESC;
3847 *charbuf++ = '%';
3848 *charbuf++ = '/';
3849 *charbuf++ = dim;
3850 *charbuf++ = BYTE8_TO_CHAR (M);
3851 *charbuf++ = BYTE8_TO_CHAR (L);
3852 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3853 }
3854 else if (c1 == 'G')
3855 {
3856 /* XFree86 extension for embedding UTF-8 in CTEXT:
3857 ESC % G --UTF-8-BYTES-- ESC % @
3858 We keep these bytes as is for the moment.
3859 They may be decoded by post-read-conversion. */
3860 if (charbuf + 3 > charbuf_end)
3861 goto break_loop;
3862 *charbuf++ = ISO_CODE_ESC;
3863 *charbuf++ = '%';
3864 *charbuf++ = 'G';
3865 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3866 }
3867 else
3868 goto invalid_code;
3869 continue;
3870 break;
3871
3872 default:
3873 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3874 goto invalid_code;
3875 {
3876 int reg, chars96;
3877
3878 if (c1 >= 0x28 && c1 <= 0x2B)
3879 { /* designation of DIMENSION1_CHARS94 character set */
3880 reg = c1 - 0x28, chars96 = 0;
3881 ONE_MORE_BYTE (c1);
3882 }
3883 else if (c1 >= 0x2C && c1 <= 0x2F)
3884 { /* designation of DIMENSION1_CHARS96 character set */
3885 reg = c1 - 0x2C, chars96 = 1;
3886 ONE_MORE_BYTE (c1);
3887 }
3888 else
3889 goto invalid_code;
3890 DECODE_DESIGNATION (reg, 1, chars96, c1);
3891 /* We must update these variables now. */
3892 if (reg == 0)
3893 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3894 else if (reg == 1)
3895 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3896 if (chars96 < 0)
3897 goto invalid_code;
3898 }
3899 continue;
3900 }
3901 break;
3902
3903 default:
3904 emacs_abort ();
3905 }
3906
3907 if (cmp_status->state == COMPOSING_NO
3908 && charset->id != charset_ascii
3909 && last_id != charset->id)
3910 {
3911 if (last_id != charset_ascii)
3912 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3913 last_id = charset->id;
3914 last_offset = char_offset;
3915 }
3916
3917 /* Now we know CHARSET and 1st position code C1 of a character.
3918 Produce a decoded character while getting 2nd and 3rd
3919 position codes C2, C3 if necessary. */
3920 if (CHARSET_DIMENSION (charset) > 1)
3921 {
3922 ONE_MORE_BYTE (c2);
3923 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3924 || ((c1 & 0x80) != (c2 & 0x80)))
3925 /* C2 is not in a valid range. */
3926 goto invalid_code;
3927 if (CHARSET_DIMENSION (charset) == 2)
3928 c1 = (c1 << 8) | c2;
3929 else
3930 {
3931 ONE_MORE_BYTE (c3);
3932 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
3933 || ((c1 & 0x80) != (c3 & 0x80)))
3934 /* C3 is not in a valid range. */
3935 goto invalid_code;
3936 c1 = (c1 << 16) | (c2 << 8) | c2;
3937 }
3938 }
3939 c1 &= 0x7F7F7F;
3940 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
3941 if (c < 0)
3942 {
3943 MAYBE_FINISH_COMPOSITION ();
3944 for (; src_base < src; src_base++, char_offset++)
3945 {
3946 if (ASCII_CHAR_P (*src_base))
3947 *charbuf++ = *src_base;
3948 else
3949 *charbuf++ = BYTE8_TO_CHAR (*src_base);
3950 }
3951 }
3952 else if (cmp_status->state == COMPOSING_NO)
3953 {
3954 *charbuf++ = c;
3955 char_offset++;
3956 }
3957 else if ((cmp_status->state == COMPOSING_CHAR
3958 ? cmp_status->nchars
3959 : cmp_status->ncomps)
3960 >= MAX_COMPOSITION_COMPONENTS)
3961 {
3962 /* Too long composition. */
3963 MAYBE_FINISH_COMPOSITION ();
3964 *charbuf++ = c;
3965 char_offset++;
3966 }
3967 else
3968 STORE_COMPOSITION_CHAR (c);
3969 continue;
3970
3971 invalid_code:
3972 MAYBE_FINISH_COMPOSITION ();
3973 src = src_base;
3974 consumed_chars = consumed_chars_base;
3975 ONE_MORE_BYTE (c);
3976 *charbuf++ = c < 0 ? -c : ASCII_CHAR_P (c) ? c : BYTE8_TO_CHAR (c);
3977 char_offset++;
3978 /* Reset the invocation and designation status to the safest
3979 one; i.e. designate ASCII to the graphic register 0, and
3980 invoke that register to the graphic plane 0. This typically
3981 helps the case that an designation sequence for ASCII "ESC (
3982 B" is somehow broken (e.g. broken by a newline). */
3983 CODING_ISO_INVOCATION (coding, 0) = 0;
3984 CODING_ISO_DESIGNATION (coding, 0) = charset_ascii;
3985 charset_id_0 = charset_ascii;
3986 continue;
3987
3988 break_loop:
3989 break;
3990 }
3991
3992 no_more_source:
3993 if (cmp_status->state != COMPOSING_NO)
3994 {
3995 if (coding->mode & CODING_MODE_LAST_BLOCK)
3996 MAYBE_FINISH_COMPOSITION ();
3997 else
3998 {
3999 charbuf -= cmp_status->length;
4000 for (i = 0; i < cmp_status->length; i++)
4001 cmp_status->carryover[i] = charbuf[i];
4002 }
4003 }
4004 else if (last_id != charset_ascii)
4005 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4006 coding->consumed_char += consumed_chars_base;
4007 coding->consumed = src_base - coding->source;
4008 coding->charbuf_used = charbuf - coding->charbuf;
4009 }
4010
4011
4012 /* ISO2022 encoding stuff. */
4013
4014 /*
4015 It is not enough to say just "ISO2022" on encoding, we have to
4016 specify more details. In Emacs, each coding system of ISO2022
4017 variant has the following specifications:
4018 1. Initial designation to G0 thru G3.
4019 2. Allows short-form designation?
4020 3. ASCII should be designated to G0 before control characters?
4021 4. ASCII should be designated to G0 at end of line?
4022 5. 7-bit environment or 8-bit environment?
4023 6. Use locking-shift?
4024 7. Use Single-shift?
4025 And the following two are only for Japanese:
4026 8. Use ASCII in place of JIS0201-1976-Roman?
4027 9. Use JISX0208-1983 in place of JISX0208-1978?
4028 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
4029 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
4030 details.
4031 */
4032
4033 /* Produce codes (escape sequence) for designating CHARSET to graphic
4034 register REG at DST, and increment DST. If <final-char> of CHARSET is
4035 '@', 'A', or 'B' and the coding system CODING allows, produce
4036 designation sequence of short-form. */
4037
4038 #define ENCODE_DESIGNATION(charset, reg, coding) \
4039 do { \
4040 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4041 const char *intermediate_char_94 = "()*+"; \
4042 const char *intermediate_char_96 = ",-./"; \
4043 int revision = -1; \
4044 \
4045 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4046 revision = CHARSET_ISO_REVISION (charset); \
4047 \
4048 if (revision >= 0) \
4049 { \
4050 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4051 EMIT_ONE_BYTE ('@' + revision); \
4052 } \
4053 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4054 if (CHARSET_DIMENSION (charset) == 1) \
4055 { \
4056 int b; \
4057 if (! CHARSET_ISO_CHARS_96 (charset)) \
4058 b = intermediate_char_94[reg]; \
4059 else \
4060 b = intermediate_char_96[reg]; \
4061 EMIT_ONE_ASCII_BYTE (b); \
4062 } \
4063 else \
4064 { \
4065 EMIT_ONE_ASCII_BYTE ('$'); \
4066 if (! CHARSET_ISO_CHARS_96 (charset)) \
4067 { \
4068 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4069 || reg != 0 \
4070 || final_char < '@' || final_char > 'B') \
4071 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4072 } \
4073 else \
4074 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4075 } \
4076 EMIT_ONE_ASCII_BYTE (final_char); \
4077 \
4078 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4079 } while (0)
4080
4081
4082 /* The following two macros produce codes (control character or escape
4083 sequence) for ISO2022 single-shift functions (single-shift-2 and
4084 single-shift-3). */
4085
4086 #define ENCODE_SINGLE_SHIFT_2 \
4087 do { \
4088 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4089 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4090 else \
4091 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4092 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4093 } while (0)
4094
4095
4096 #define ENCODE_SINGLE_SHIFT_3 \
4097 do { \
4098 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4099 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4100 else \
4101 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4102 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4103 } while (0)
4104
4105
4106 /* The following four macros produce codes (control character or
4107 escape sequence) for ISO2022 locking-shift functions (shift-in,
4108 shift-out, locking-shift-2, and locking-shift-3). */
4109
4110 #define ENCODE_SHIFT_IN \
4111 do { \
4112 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4113 CODING_ISO_INVOCATION (coding, 0) = 0; \
4114 } while (0)
4115
4116
4117 #define ENCODE_SHIFT_OUT \
4118 do { \
4119 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4120 CODING_ISO_INVOCATION (coding, 0) = 1; \
4121 } while (0)
4122
4123
4124 #define ENCODE_LOCKING_SHIFT_2 \
4125 do { \
4126 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4127 CODING_ISO_INVOCATION (coding, 0) = 2; \
4128 } while (0)
4129
4130
4131 #define ENCODE_LOCKING_SHIFT_3 \
4132 do { \
4133 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4134 CODING_ISO_INVOCATION (coding, 0) = 3; \
4135 } while (0)
4136
4137
4138 /* Produce codes for a DIMENSION1 character whose character set is
4139 CHARSET and whose position-code is C1. Designation and invocation
4140 sequences are also produced in advance if necessary. */
4141
4142 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4143 do { \
4144 int id = CHARSET_ID (charset); \
4145 \
4146 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4147 && id == charset_ascii) \
4148 { \
4149 id = charset_jisx0201_roman; \
4150 charset = CHARSET_FROM_ID (id); \
4151 } \
4152 \
4153 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4154 { \
4155 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4156 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4157 else \
4158 EMIT_ONE_BYTE (c1 | 0x80); \
4159 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4160 break; \
4161 } \
4162 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4163 { \
4164 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4165 break; \
4166 } \
4167 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4168 { \
4169 EMIT_ONE_BYTE (c1 | 0x80); \
4170 break; \
4171 } \
4172 else \
4173 /* Since CHARSET is not yet invoked to any graphic planes, we \
4174 must invoke it, or, at first, designate it to some graphic \
4175 register. Then repeat the loop to actually produce the \
4176 character. */ \
4177 dst = encode_invocation_designation (charset, coding, dst, \
4178 &produced_chars); \
4179 } while (1)
4180
4181
4182 /* Produce codes for a DIMENSION2 character whose character set is
4183 CHARSET and whose position-codes are C1 and C2. Designation and
4184 invocation codes are also produced in advance if necessary. */
4185
4186 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4187 do { \
4188 int id = CHARSET_ID (charset); \
4189 \
4190 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4191 && id == charset_jisx0208) \
4192 { \
4193 id = charset_jisx0208_1978; \
4194 charset = CHARSET_FROM_ID (id); \
4195 } \
4196 \
4197 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4198 { \
4199 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4200 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4201 else \
4202 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4203 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4204 break; \
4205 } \
4206 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4207 { \
4208 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4209 break; \
4210 } \
4211 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4212 { \
4213 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4214 break; \
4215 } \
4216 else \
4217 /* Since CHARSET is not yet invoked to any graphic planes, we \
4218 must invoke it, or, at first, designate it to some graphic \
4219 register. Then repeat the loop to actually produce the \
4220 character. */ \
4221 dst = encode_invocation_designation (charset, coding, dst, \
4222 &produced_chars); \
4223 } while (1)
4224
4225
4226 #define ENCODE_ISO_CHARACTER(charset, c) \
4227 do { \
4228 unsigned code; \
4229 CODING_ENCODE_CHAR (coding, dst, dst_end, (charset), (c), code); \
4230 \
4231 if (CHARSET_DIMENSION (charset) == 1) \
4232 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4233 else \
4234 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4235 } while (0)
4236
4237
4238 /* Produce designation and invocation codes at a place pointed by DST
4239 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4240 Return new DST. */
4241
4242 static unsigned char *
4243 encode_invocation_designation (struct charset *charset,
4244 struct coding_system *coding,
4245 unsigned char *dst, ptrdiff_t *p_nchars)
4246 {
4247 bool multibytep = coding->dst_multibyte;
4248 ptrdiff_t produced_chars = *p_nchars;
4249 int reg; /* graphic register number */
4250 int id = CHARSET_ID (charset);
4251
4252 /* At first, check designations. */
4253 for (reg = 0; reg < 4; reg++)
4254 if (id == CODING_ISO_DESIGNATION (coding, reg))
4255 break;
4256
4257 if (reg >= 4)
4258 {
4259 /* CHARSET is not yet designated to any graphic registers. */
4260 /* At first check the requested designation. */
4261 reg = CODING_ISO_REQUEST (coding, id);
4262 if (reg < 0)
4263 /* Since CHARSET requests no special designation, designate it
4264 to graphic register 0. */
4265 reg = 0;
4266
4267 ENCODE_DESIGNATION (charset, reg, coding);
4268 }
4269
4270 if (CODING_ISO_INVOCATION (coding, 0) != reg
4271 && CODING_ISO_INVOCATION (coding, 1) != reg)
4272 {
4273 /* Since the graphic register REG is not invoked to any graphic
4274 planes, invoke it to graphic plane 0. */
4275 switch (reg)
4276 {
4277 case 0: /* graphic register 0 */
4278 ENCODE_SHIFT_IN;
4279 break;
4280
4281 case 1: /* graphic register 1 */
4282 ENCODE_SHIFT_OUT;
4283 break;
4284
4285 case 2: /* graphic register 2 */
4286 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4287 ENCODE_SINGLE_SHIFT_2;
4288 else
4289 ENCODE_LOCKING_SHIFT_2;
4290 break;
4291
4292 case 3: /* graphic register 3 */
4293 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4294 ENCODE_SINGLE_SHIFT_3;
4295 else
4296 ENCODE_LOCKING_SHIFT_3;
4297 break;
4298
4299 default:
4300 break;
4301 }
4302 }
4303
4304 *p_nchars = produced_chars;
4305 return dst;
4306 }
4307
4308
4309 /* Produce codes for designation and invocation to reset the graphic
4310 planes and registers to initial state. */
4311 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4312 do { \
4313 int reg; \
4314 struct charset *charset; \
4315 \
4316 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4317 ENCODE_SHIFT_IN; \
4318 for (reg = 0; reg < 4; reg++) \
4319 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4320 && (CODING_ISO_DESIGNATION (coding, reg) \
4321 != CODING_ISO_INITIAL (coding, reg))) \
4322 { \
4323 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4324 ENCODE_DESIGNATION (charset, reg, coding); \
4325 } \
4326 } while (0)
4327
4328
4329 /* Produce designation sequences of charsets in the line started from
4330 CHARBUF to a place pointed by DST, and return the number of
4331 produced bytes. DST should not directly point a buffer text area
4332 which may be relocated by char_charset call.
4333
4334 If the current block ends before any end-of-line, we may fail to
4335 find all the necessary designations. */
4336
4337 static ptrdiff_t
4338 encode_designation_at_bol (struct coding_system *coding,
4339 int *charbuf, int *charbuf_end,
4340 unsigned char *dst)
4341 {
4342 unsigned char *orig = dst;
4343 struct charset *charset;
4344 /* Table of charsets to be designated to each graphic register. */
4345 int r[4];
4346 int c, found = 0, reg;
4347 ptrdiff_t produced_chars = 0;
4348 bool multibytep = coding->dst_multibyte;
4349 Lisp_Object attrs;
4350 Lisp_Object charset_list;
4351
4352 attrs = CODING_ID_ATTRS (coding->id);
4353 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4354 if (EQ (charset_list, Qiso_2022))
4355 charset_list = Viso_2022_charset_list;
4356
4357 for (reg = 0; reg < 4; reg++)
4358 r[reg] = -1;
4359
4360 while (charbuf < charbuf_end && found < 4)
4361 {
4362 int id;
4363
4364 c = *charbuf++;
4365 if (c == '\n')
4366 break;
4367 charset = char_charset (c, charset_list, NULL);
4368 id = CHARSET_ID (charset);
4369 reg = CODING_ISO_REQUEST (coding, id);
4370 if (reg >= 0 && r[reg] < 0)
4371 {
4372 found++;
4373 r[reg] = id;
4374 }
4375 }
4376
4377 if (found)
4378 {
4379 for (reg = 0; reg < 4; reg++)
4380 if (r[reg] >= 0
4381 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4382 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4383 }
4384
4385 return dst - orig;
4386 }
4387
4388 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4389
4390 static bool
4391 encode_coding_iso_2022 (struct coding_system *coding)
4392 {
4393 bool multibytep = coding->dst_multibyte;
4394 int *charbuf = coding->charbuf;
4395 int *charbuf_end = charbuf + coding->charbuf_used;
4396 unsigned char *dst = coding->destination + coding->produced;
4397 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4398 int safe_room = 16;
4399 bool bol_designation
4400 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4401 && CODING_ISO_BOL (coding));
4402 ptrdiff_t produced_chars = 0;
4403 Lisp_Object attrs, eol_type, charset_list;
4404 bool ascii_compatible;
4405 int c;
4406 int preferred_charset_id = -1;
4407
4408 CODING_GET_INFO (coding, attrs, charset_list);
4409 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4410 if (VECTORP (eol_type))
4411 eol_type = Qunix;
4412
4413 setup_iso_safe_charsets (attrs);
4414 /* Charset list may have been changed. */
4415 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4416 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4417
4418 ascii_compatible
4419 = (! NILP (CODING_ATTR_ASCII_COMPAT (attrs))
4420 && ! (CODING_ISO_FLAGS (coding) & (CODING_ISO_FLAG_DESIGNATION
4421 | CODING_ISO_FLAG_LOCKING_SHIFT)));
4422
4423 while (charbuf < charbuf_end)
4424 {
4425 ASSURE_DESTINATION (safe_room);
4426
4427 if (bol_designation)
4428 {
4429 /* We have to produce designation sequences if any now. */
4430 unsigned char desig_buf[16];
4431 ptrdiff_t nbytes;
4432 ptrdiff_t offset;
4433
4434 charset_map_loaded = 0;
4435 nbytes = encode_designation_at_bol (coding, charbuf, charbuf_end,
4436 desig_buf);
4437 if (charset_map_loaded
4438 && (offset = coding_change_destination (coding)))
4439 {
4440 dst += offset;
4441 dst_end += offset;
4442 }
4443 memcpy (dst, desig_buf, nbytes);
4444 dst += nbytes;
4445 /* We are sure that designation sequences are all ASCII bytes. */
4446 produced_chars += nbytes;
4447 bol_designation = 0;
4448 ASSURE_DESTINATION (safe_room);
4449 }
4450
4451 c = *charbuf++;
4452
4453 if (c < 0)
4454 {
4455 /* Handle an annotation. */
4456 switch (*charbuf)
4457 {
4458 case CODING_ANNOTATE_COMPOSITION_MASK:
4459 /* Not yet implemented. */
4460 break;
4461 case CODING_ANNOTATE_CHARSET_MASK:
4462 preferred_charset_id = charbuf[2];
4463 if (preferred_charset_id >= 0
4464 && NILP (Fmemq (make_number (preferred_charset_id),
4465 charset_list)))
4466 preferred_charset_id = -1;
4467 break;
4468 default:
4469 emacs_abort ();
4470 }
4471 charbuf += -c - 1;
4472 continue;
4473 }
4474
4475 /* Now encode the character C. */
4476 if (c < 0x20 || c == 0x7F)
4477 {
4478 if (c == '\n'
4479 || (c == '\r' && EQ (eol_type, Qmac)))
4480 {
4481 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4482 ENCODE_RESET_PLANE_AND_REGISTER ();
4483 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4484 {
4485 int i;
4486
4487 for (i = 0; i < 4; i++)
4488 CODING_ISO_DESIGNATION (coding, i)
4489 = CODING_ISO_INITIAL (coding, i);
4490 }
4491 bol_designation = ((CODING_ISO_FLAGS (coding)
4492 & CODING_ISO_FLAG_DESIGNATE_AT_BOL)
4493 != 0);
4494 }
4495 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4496 ENCODE_RESET_PLANE_AND_REGISTER ();
4497 EMIT_ONE_ASCII_BYTE (c);
4498 }
4499 else if (ASCII_CHAR_P (c))
4500 {
4501 if (ascii_compatible)
4502 EMIT_ONE_ASCII_BYTE (c);
4503 else
4504 {
4505 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4506 ENCODE_ISO_CHARACTER (charset, c);
4507 }
4508 }
4509 else if (CHAR_BYTE8_P (c))
4510 {
4511 c = CHAR_TO_BYTE8 (c);
4512 EMIT_ONE_BYTE (c);
4513 }
4514 else
4515 {
4516 struct charset *charset;
4517
4518 if (preferred_charset_id >= 0)
4519 {
4520 bool result;
4521
4522 charset = CHARSET_FROM_ID (preferred_charset_id);
4523 CODING_CHAR_CHARSET_P (coding, dst, dst_end, c, charset, result);
4524 if (! result)
4525 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4526 NULL, charset);
4527 }
4528 else
4529 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4530 NULL, charset);
4531 if (!charset)
4532 {
4533 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4534 {
4535 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4536 charset = CHARSET_FROM_ID (charset_ascii);
4537 }
4538 else
4539 {
4540 c = coding->default_char;
4541 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
4542 charset_list, NULL, charset);
4543 }
4544 }
4545 ENCODE_ISO_CHARACTER (charset, c);
4546 }
4547 }
4548
4549 if (coding->mode & CODING_MODE_LAST_BLOCK
4550 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4551 {
4552 ASSURE_DESTINATION (safe_room);
4553 ENCODE_RESET_PLANE_AND_REGISTER ();
4554 }
4555 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4556 CODING_ISO_BOL (coding) = bol_designation;
4557 coding->produced_char += produced_chars;
4558 coding->produced = dst - coding->destination;
4559 return 0;
4560 }
4561
4562 \f
4563 /*** 8,9. SJIS and BIG5 handlers ***/
4564
4565 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4566 quite widely. So, for the moment, Emacs supports them in the bare
4567 C code. But, in the future, they may be supported only by CCL. */
4568
4569 /* SJIS is a coding system encoding three character sets: ASCII, right
4570 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4571 as is. A character of charset katakana-jisx0201 is encoded by
4572 "position-code + 0x80". A character of charset japanese-jisx0208
4573 is encoded in 2-byte but two position-codes are divided and shifted
4574 so that it fit in the range below.
4575
4576 --- CODE RANGE of SJIS ---
4577 (character set) (range)
4578 ASCII 0x00 .. 0x7F
4579 KATAKANA-JISX0201 0xA0 .. 0xDF
4580 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4581 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4582 -------------------------------
4583
4584 */
4585
4586 /* BIG5 is a coding system encoding two character sets: ASCII and
4587 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4588 character set and is encoded in two-byte.
4589
4590 --- CODE RANGE of BIG5 ---
4591 (character set) (range)
4592 ASCII 0x00 .. 0x7F
4593 Big5 (1st byte) 0xA1 .. 0xFE
4594 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4595 --------------------------
4596
4597 */
4598
4599 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4600 Return true if a text is encoded in SJIS. */
4601
4602 static bool
4603 detect_coding_sjis (struct coding_system *coding,
4604 struct coding_detection_info *detect_info)
4605 {
4606 const unsigned char *src = coding->source, *src_base;
4607 const unsigned char *src_end = coding->source + coding->src_bytes;
4608 bool multibytep = coding->src_multibyte;
4609 ptrdiff_t consumed_chars = 0;
4610 int found = 0;
4611 int c;
4612 Lisp_Object attrs, charset_list;
4613 int max_first_byte_of_2_byte_code;
4614
4615 CODING_GET_INFO (coding, attrs, charset_list);
4616 max_first_byte_of_2_byte_code
4617 = (XINT (Flength (charset_list)) > 3 ? 0xFC : 0xEF);
4618
4619 detect_info->checked |= CATEGORY_MASK_SJIS;
4620 /* A coding system of this category is always ASCII compatible. */
4621 src += coding->head_ascii;
4622
4623 while (1)
4624 {
4625 src_base = src;
4626 ONE_MORE_BYTE (c);
4627 if (c < 0x80)
4628 continue;
4629 if ((c >= 0x81 && c <= 0x9F)
4630 || (c >= 0xE0 && c <= max_first_byte_of_2_byte_code))
4631 {
4632 ONE_MORE_BYTE (c);
4633 if (c < 0x40 || c == 0x7F || c > 0xFC)
4634 break;
4635 found = CATEGORY_MASK_SJIS;
4636 }
4637 else if (c >= 0xA0 && c < 0xE0)
4638 found = CATEGORY_MASK_SJIS;
4639 else
4640 break;
4641 }
4642 detect_info->rejected |= CATEGORY_MASK_SJIS;
4643 return 0;
4644
4645 no_more_source:
4646 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4647 {
4648 detect_info->rejected |= CATEGORY_MASK_SJIS;
4649 return 0;
4650 }
4651 detect_info->found |= found;
4652 return 1;
4653 }
4654
4655 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4656 Return true if a text is encoded in BIG5. */
4657
4658 static bool
4659 detect_coding_big5 (struct coding_system *coding,
4660 struct coding_detection_info *detect_info)
4661 {
4662 const unsigned char *src = coding->source, *src_base;
4663 const unsigned char *src_end = coding->source + coding->src_bytes;
4664 bool multibytep = coding->src_multibyte;
4665 ptrdiff_t consumed_chars = 0;
4666 int found = 0;
4667 int c;
4668
4669 detect_info->checked |= CATEGORY_MASK_BIG5;
4670 /* A coding system of this category is always ASCII compatible. */
4671 src += coding->head_ascii;
4672
4673 while (1)
4674 {
4675 src_base = src;
4676 ONE_MORE_BYTE (c);
4677 if (c < 0x80)
4678 continue;
4679 if (c >= 0xA1)
4680 {
4681 ONE_MORE_BYTE (c);
4682 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4683 return 0;
4684 found = CATEGORY_MASK_BIG5;
4685 }
4686 else
4687 break;
4688 }
4689 detect_info->rejected |= CATEGORY_MASK_BIG5;
4690 return 0;
4691
4692 no_more_source:
4693 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4694 {
4695 detect_info->rejected |= CATEGORY_MASK_BIG5;
4696 return 0;
4697 }
4698 detect_info->found |= found;
4699 return 1;
4700 }
4701
4702 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
4703
4704 static void
4705 decode_coding_sjis (struct coding_system *coding)
4706 {
4707 const unsigned char *src = coding->source + coding->consumed;
4708 const unsigned char *src_end = coding->source + coding->src_bytes;
4709 const unsigned char *src_base;
4710 int *charbuf = coding->charbuf + coding->charbuf_used;
4711 /* We may produce one charset annotation in one loop and one more at
4712 the end. */
4713 int *charbuf_end
4714 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4715 ptrdiff_t consumed_chars = 0, consumed_chars_base;
4716 bool multibytep = coding->src_multibyte;
4717 struct charset *charset_roman, *charset_kanji, *charset_kana;
4718 struct charset *charset_kanji2;
4719 Lisp_Object attrs, charset_list, val;
4720 ptrdiff_t char_offset = coding->produced_char;
4721 ptrdiff_t last_offset = char_offset;
4722 int last_id = charset_ascii;
4723 bool eol_dos
4724 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4725 int byte_after_cr = -1;
4726
4727 CODING_GET_INFO (coding, attrs, charset_list);
4728
4729 val = charset_list;
4730 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4731 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4732 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4733 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4734
4735 while (1)
4736 {
4737 int c, c1;
4738 struct charset *charset;
4739
4740 src_base = src;
4741 consumed_chars_base = consumed_chars;
4742
4743 if (charbuf >= charbuf_end)
4744 {
4745 if (byte_after_cr >= 0)
4746 src_base--;
4747 break;
4748 }
4749
4750 if (byte_after_cr >= 0)
4751 c = byte_after_cr, byte_after_cr = -1;
4752 else
4753 ONE_MORE_BYTE (c);
4754 if (c < 0)
4755 goto invalid_code;
4756 if (c < 0x80)
4757 {
4758 if (eol_dos && c == '\r')
4759 ONE_MORE_BYTE (byte_after_cr);
4760 charset = charset_roman;
4761 }
4762 else if (c == 0x80 || c == 0xA0)
4763 goto invalid_code;
4764 else if (c >= 0xA1 && c <= 0xDF)
4765 {
4766 /* SJIS -> JISX0201-Kana */
4767 c &= 0x7F;
4768 charset = charset_kana;
4769 }
4770 else if (c <= 0xEF)
4771 {
4772 /* SJIS -> JISX0208 */
4773 ONE_MORE_BYTE (c1);
4774 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4775 goto invalid_code;
4776 c = (c << 8) | c1;
4777 SJIS_TO_JIS (c);
4778 charset = charset_kanji;
4779 }
4780 else if (c <= 0xFC && charset_kanji2)
4781 {
4782 /* SJIS -> JISX0213-2 */
4783 ONE_MORE_BYTE (c1);
4784 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4785 goto invalid_code;
4786 c = (c << 8) | c1;
4787 SJIS_TO_JIS2 (c);
4788 charset = charset_kanji2;
4789 }
4790 else
4791 goto invalid_code;
4792 if (charset->id != charset_ascii
4793 && last_id != charset->id)
4794 {
4795 if (last_id != charset_ascii)
4796 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4797 last_id = charset->id;
4798 last_offset = char_offset;
4799 }
4800 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4801 *charbuf++ = c;
4802 char_offset++;
4803 continue;
4804
4805 invalid_code:
4806 src = src_base;
4807 consumed_chars = consumed_chars_base;
4808 ONE_MORE_BYTE (c);
4809 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4810 char_offset++;
4811 }
4812
4813 no_more_source:
4814 if (last_id != charset_ascii)
4815 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4816 coding->consumed_char += consumed_chars_base;
4817 coding->consumed = src_base - coding->source;
4818 coding->charbuf_used = charbuf - coding->charbuf;
4819 }
4820
4821 static void
4822 decode_coding_big5 (struct coding_system *coding)
4823 {
4824 const unsigned char *src = coding->source + coding->consumed;
4825 const unsigned char *src_end = coding->source + coding->src_bytes;
4826 const unsigned char *src_base;
4827 int *charbuf = coding->charbuf + coding->charbuf_used;
4828 /* We may produce one charset annotation in one loop and one more at
4829 the end. */
4830 int *charbuf_end
4831 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4832 ptrdiff_t consumed_chars = 0, consumed_chars_base;
4833 bool multibytep = coding->src_multibyte;
4834 struct charset *charset_roman, *charset_big5;
4835 Lisp_Object attrs, charset_list, val;
4836 ptrdiff_t char_offset = coding->produced_char;
4837 ptrdiff_t last_offset = char_offset;
4838 int last_id = charset_ascii;
4839 bool eol_dos
4840 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4841 int byte_after_cr = -1;
4842
4843 CODING_GET_INFO (coding, attrs, charset_list);
4844 val = charset_list;
4845 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4846 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4847
4848 while (1)
4849 {
4850 int c, c1;
4851 struct charset *charset;
4852
4853 src_base = src;
4854 consumed_chars_base = consumed_chars;
4855
4856 if (charbuf >= charbuf_end)
4857 {
4858 if (byte_after_cr >= 0)
4859 src_base--;
4860 break;
4861 }
4862
4863 if (byte_after_cr >= 0)
4864 c = byte_after_cr, byte_after_cr = -1;
4865 else
4866 ONE_MORE_BYTE (c);
4867
4868 if (c < 0)
4869 goto invalid_code;
4870 if (c < 0x80)
4871 {
4872 if (eol_dos && c == '\r')
4873 ONE_MORE_BYTE (byte_after_cr);
4874 charset = charset_roman;
4875 }
4876 else
4877 {
4878 /* BIG5 -> Big5 */
4879 if (c < 0xA1 || c > 0xFE)
4880 goto invalid_code;
4881 ONE_MORE_BYTE (c1);
4882 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4883 goto invalid_code;
4884 c = c << 8 | c1;
4885 charset = charset_big5;
4886 }
4887 if (charset->id != charset_ascii
4888 && last_id != charset->id)
4889 {
4890 if (last_id != charset_ascii)
4891 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4892 last_id = charset->id;
4893 last_offset = char_offset;
4894 }
4895 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4896 *charbuf++ = c;
4897 char_offset++;
4898 continue;
4899
4900 invalid_code:
4901 src = src_base;
4902 consumed_chars = consumed_chars_base;
4903 ONE_MORE_BYTE (c);
4904 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4905 char_offset++;
4906 }
4907
4908 no_more_source:
4909 if (last_id != charset_ascii)
4910 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4911 coding->consumed_char += consumed_chars_base;
4912 coding->consumed = src_base - coding->source;
4913 coding->charbuf_used = charbuf - coding->charbuf;
4914 }
4915
4916 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4917 This function can encode charsets `ascii', `katakana-jisx0201',
4918 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4919 are sure that all these charsets are registered as official charset
4920 (i.e. do not have extended leading-codes). Characters of other
4921 charsets are produced without any encoding. */
4922
4923 static bool
4924 encode_coding_sjis (struct coding_system *coding)
4925 {
4926 bool multibytep = coding->dst_multibyte;
4927 int *charbuf = coding->charbuf;
4928 int *charbuf_end = charbuf + coding->charbuf_used;
4929 unsigned char *dst = coding->destination + coding->produced;
4930 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4931 int safe_room = 4;
4932 ptrdiff_t produced_chars = 0;
4933 Lisp_Object attrs, charset_list, val;
4934 bool ascii_compatible;
4935 struct charset *charset_kanji, *charset_kana;
4936 struct charset *charset_kanji2;
4937 int c;
4938
4939 CODING_GET_INFO (coding, attrs, charset_list);
4940 val = XCDR (charset_list);
4941 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4942 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4943 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4944
4945 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4946
4947 while (charbuf < charbuf_end)
4948 {
4949 ASSURE_DESTINATION (safe_room);
4950 c = *charbuf++;
4951 /* Now encode the character C. */
4952 if (ASCII_CHAR_P (c) && ascii_compatible)
4953 EMIT_ONE_ASCII_BYTE (c);
4954 else if (CHAR_BYTE8_P (c))
4955 {
4956 c = CHAR_TO_BYTE8 (c);
4957 EMIT_ONE_BYTE (c);
4958 }
4959 else
4960 {
4961 unsigned code;
4962 struct charset *charset;
4963 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4964 &code, charset);
4965
4966 if (!charset)
4967 {
4968 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4969 {
4970 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4971 charset = CHARSET_FROM_ID (charset_ascii);
4972 }
4973 else
4974 {
4975 c = coding->default_char;
4976 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
4977 charset_list, &code, charset);
4978 }
4979 }
4980 if (code == CHARSET_INVALID_CODE (charset))
4981 emacs_abort ();
4982 if (charset == charset_kanji)
4983 {
4984 int c1, c2;
4985 JIS_TO_SJIS (code);
4986 c1 = code >> 8, c2 = code & 0xFF;
4987 EMIT_TWO_BYTES (c1, c2);
4988 }
4989 else if (charset == charset_kana)
4990 EMIT_ONE_BYTE (code | 0x80);
4991 else if (charset_kanji2 && charset == charset_kanji2)
4992 {
4993 int c1, c2;
4994
4995 c1 = code >> 8;
4996 if (c1 == 0x21 || (c1 >= 0x23 && c1 <= 0x25)
4997 || c1 == 0x28
4998 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
4999 {
5000 JIS_TO_SJIS2 (code);
5001 c1 = code >> 8, c2 = code & 0xFF;
5002 EMIT_TWO_BYTES (c1, c2);
5003 }
5004 else
5005 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5006 }
5007 else
5008 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5009 }
5010 }
5011 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5012 coding->produced_char += produced_chars;
5013 coding->produced = dst - coding->destination;
5014 return 0;
5015 }
5016
5017 static bool
5018 encode_coding_big5 (struct coding_system *coding)
5019 {
5020 bool multibytep = coding->dst_multibyte;
5021 int *charbuf = coding->charbuf;
5022 int *charbuf_end = charbuf + coding->charbuf_used;
5023 unsigned char *dst = coding->destination + coding->produced;
5024 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5025 int safe_room = 4;
5026 ptrdiff_t produced_chars = 0;
5027 Lisp_Object attrs, charset_list, val;
5028 bool ascii_compatible;
5029 struct charset *charset_big5;
5030 int c;
5031
5032 CODING_GET_INFO (coding, attrs, charset_list);
5033 val = XCDR (charset_list);
5034 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
5035 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5036
5037 while (charbuf < charbuf_end)
5038 {
5039 ASSURE_DESTINATION (safe_room);
5040 c = *charbuf++;
5041 /* Now encode the character C. */
5042 if (ASCII_CHAR_P (c) && ascii_compatible)
5043 EMIT_ONE_ASCII_BYTE (c);
5044 else if (CHAR_BYTE8_P (c))
5045 {
5046 c = CHAR_TO_BYTE8 (c);
5047 EMIT_ONE_BYTE (c);
5048 }
5049 else
5050 {
5051 unsigned code;
5052 struct charset *charset;
5053 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
5054 &code, charset);
5055
5056 if (! charset)
5057 {
5058 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5059 {
5060 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5061 charset = CHARSET_FROM_ID (charset_ascii);
5062 }
5063 else
5064 {
5065 c = coding->default_char;
5066 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
5067 charset_list, &code, charset);
5068 }
5069 }
5070 if (code == CHARSET_INVALID_CODE (charset))
5071 emacs_abort ();
5072 if (charset == charset_big5)
5073 {
5074 int c1, c2;
5075
5076 c1 = code >> 8, c2 = code & 0xFF;
5077 EMIT_TWO_BYTES (c1, c2);
5078 }
5079 else
5080 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5081 }
5082 }
5083 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5084 coding->produced_char += produced_chars;
5085 coding->produced = dst - coding->destination;
5086 return 0;
5087 }
5088
5089 \f
5090 /*** 10. CCL handlers ***/
5091
5092 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5093 Return true if a text is encoded in a coding system of which
5094 encoder/decoder are written in CCL program. */
5095
5096 static bool
5097 detect_coding_ccl (struct coding_system *coding,
5098 struct coding_detection_info *detect_info)
5099 {
5100 const unsigned char *src = coding->source, *src_base;
5101 const unsigned char *src_end = coding->source + coding->src_bytes;
5102 bool multibytep = coding->src_multibyte;
5103 ptrdiff_t consumed_chars = 0;
5104 int found = 0;
5105 unsigned char *valids;
5106 ptrdiff_t head_ascii = coding->head_ascii;
5107 Lisp_Object attrs;
5108
5109 detect_info->checked |= CATEGORY_MASK_CCL;
5110
5111 coding = &coding_categories[coding_category_ccl];
5112 valids = CODING_CCL_VALIDS (coding);
5113 attrs = CODING_ID_ATTRS (coding->id);
5114 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5115 src += head_ascii;
5116
5117 while (1)
5118 {
5119 int c;
5120
5121 src_base = src;
5122 ONE_MORE_BYTE (c);
5123 if (c < 0 || ! valids[c])
5124 break;
5125 if ((valids[c] > 1))
5126 found = CATEGORY_MASK_CCL;
5127 }
5128 detect_info->rejected |= CATEGORY_MASK_CCL;
5129 return 0;
5130
5131 no_more_source:
5132 detect_info->found |= found;
5133 return 1;
5134 }
5135
5136 static void
5137 decode_coding_ccl (struct coding_system *coding)
5138 {
5139 const unsigned char *src = coding->source + coding->consumed;
5140 const unsigned char *src_end = coding->source + coding->src_bytes;
5141 int *charbuf = coding->charbuf + coding->charbuf_used;
5142 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5143 ptrdiff_t consumed_chars = 0;
5144 bool multibytep = coding->src_multibyte;
5145 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5146 int source_charbuf[1024];
5147 int source_byteidx[1025];
5148 Lisp_Object attrs, charset_list;
5149
5150 CODING_GET_INFO (coding, attrs, charset_list);
5151
5152 while (1)
5153 {
5154 const unsigned char *p = src;
5155 ptrdiff_t offset;
5156 int i = 0;
5157
5158 if (multibytep)
5159 {
5160 while (i < 1024 && p < src_end)
5161 {
5162 source_byteidx[i] = p - src;
5163 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5164 }
5165 source_byteidx[i] = p - src;
5166 }
5167 else
5168 while (i < 1024 && p < src_end)
5169 source_charbuf[i++] = *p++;
5170
5171 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5172 ccl->last_block = true;
5173 /* As ccl_driver calls DECODE_CHAR, buffer may be relocated. */
5174 charset_map_loaded = 0;
5175 ccl_driver (ccl, source_charbuf, charbuf, i, charbuf_end - charbuf,
5176 charset_list);
5177 if (charset_map_loaded
5178 && (offset = coding_change_source (coding)))
5179 {
5180 p += offset;
5181 src += offset;
5182 src_end += offset;
5183 }
5184 charbuf += ccl->produced;
5185 if (multibytep)
5186 src += source_byteidx[ccl->consumed];
5187 else
5188 src += ccl->consumed;
5189 consumed_chars += ccl->consumed;
5190 if (p == src_end || ccl->status != CCL_STAT_SUSPEND_BY_SRC)
5191 break;
5192 }
5193
5194 switch (ccl->status)
5195 {
5196 case CCL_STAT_SUSPEND_BY_SRC:
5197 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5198 break;
5199 case CCL_STAT_SUSPEND_BY_DST:
5200 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5201 break;
5202 case CCL_STAT_QUIT:
5203 case CCL_STAT_INVALID_CMD:
5204 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5205 break;
5206 default:
5207 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5208 break;
5209 }
5210 coding->consumed_char += consumed_chars;
5211 coding->consumed = src - coding->source;
5212 coding->charbuf_used = charbuf - coding->charbuf;
5213 }
5214
5215 static bool
5216 encode_coding_ccl (struct coding_system *coding)
5217 {
5218 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5219 bool multibytep = coding->dst_multibyte;
5220 int *charbuf = coding->charbuf;
5221 int *charbuf_end = charbuf + coding->charbuf_used;
5222 unsigned char *dst = coding->destination + coding->produced;
5223 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5224 int destination_charbuf[1024];
5225 ptrdiff_t produced_chars = 0;
5226 int i;
5227 Lisp_Object attrs, charset_list;
5228
5229 CODING_GET_INFO (coding, attrs, charset_list);
5230 if (coding->consumed_char == coding->src_chars
5231 && coding->mode & CODING_MODE_LAST_BLOCK)
5232 ccl->last_block = true;
5233
5234 do
5235 {
5236 ptrdiff_t offset;
5237
5238 /* As ccl_driver calls DECODE_CHAR, buffer may be relocated. */
5239 charset_map_loaded = 0;
5240 ccl_driver (ccl, charbuf, destination_charbuf,
5241 charbuf_end - charbuf, 1024, charset_list);
5242 if (charset_map_loaded
5243 && (offset = coding_change_destination (coding)))
5244 dst += offset;
5245 if (multibytep)
5246 {
5247 ASSURE_DESTINATION (ccl->produced * 2);
5248 for (i = 0; i < ccl->produced; i++)
5249 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5250 }
5251 else
5252 {
5253 ASSURE_DESTINATION (ccl->produced);
5254 for (i = 0; i < ccl->produced; i++)
5255 *dst++ = destination_charbuf[i] & 0xFF;
5256 produced_chars += ccl->produced;
5257 }
5258 charbuf += ccl->consumed;
5259 if (ccl->status == CCL_STAT_QUIT
5260 || ccl->status == CCL_STAT_INVALID_CMD)
5261 break;
5262 }
5263 while (charbuf < charbuf_end);
5264
5265 switch (ccl->status)
5266 {
5267 case CCL_STAT_SUSPEND_BY_SRC:
5268 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5269 break;
5270 case CCL_STAT_SUSPEND_BY_DST:
5271 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5272 break;
5273 case CCL_STAT_QUIT:
5274 case CCL_STAT_INVALID_CMD:
5275 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5276 break;
5277 default:
5278 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5279 break;
5280 }
5281
5282 coding->produced_char += produced_chars;
5283 coding->produced = dst - coding->destination;
5284 return 0;
5285 }
5286
5287 \f
5288 /*** 10, 11. no-conversion handlers ***/
5289
5290 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5291
5292 static void
5293 decode_coding_raw_text (struct coding_system *coding)
5294 {
5295 bool eol_dos
5296 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5297
5298 coding->chars_at_source = 1;
5299 coding->consumed_char = coding->src_chars;
5300 coding->consumed = coding->src_bytes;
5301 if (eol_dos && coding->source[coding->src_bytes - 1] == '\r')
5302 {
5303 coding->consumed_char--;
5304 coding->consumed--;
5305 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5306 }
5307 else
5308 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5309 }
5310
5311 static bool
5312 encode_coding_raw_text (struct coding_system *coding)
5313 {
5314 bool multibytep = coding->dst_multibyte;
5315 int *charbuf = coding->charbuf;
5316 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5317 unsigned char *dst = coding->destination + coding->produced;
5318 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5319 ptrdiff_t produced_chars = 0;
5320 int c;
5321
5322 if (multibytep)
5323 {
5324 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5325
5326 if (coding->src_multibyte)
5327 while (charbuf < charbuf_end)
5328 {
5329 ASSURE_DESTINATION (safe_room);
5330 c = *charbuf++;
5331 if (ASCII_CHAR_P (c))
5332 EMIT_ONE_ASCII_BYTE (c);
5333 else if (CHAR_BYTE8_P (c))
5334 {
5335 c = CHAR_TO_BYTE8 (c);
5336 EMIT_ONE_BYTE (c);
5337 }
5338 else
5339 {
5340 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5341
5342 CHAR_STRING_ADVANCE (c, p1);
5343 do
5344 {
5345 EMIT_ONE_BYTE (*p0);
5346 p0++;
5347 }
5348 while (p0 < p1);
5349 }
5350 }
5351 else
5352 while (charbuf < charbuf_end)
5353 {
5354 ASSURE_DESTINATION (safe_room);
5355 c = *charbuf++;
5356 EMIT_ONE_BYTE (c);
5357 }
5358 }
5359 else
5360 {
5361 if (coding->src_multibyte)
5362 {
5363 int safe_room = MAX_MULTIBYTE_LENGTH;
5364
5365 while (charbuf < charbuf_end)
5366 {
5367 ASSURE_DESTINATION (safe_room);
5368 c = *charbuf++;
5369 if (ASCII_CHAR_P (c))
5370 *dst++ = c;
5371 else if (CHAR_BYTE8_P (c))
5372 *dst++ = CHAR_TO_BYTE8 (c);
5373 else
5374 CHAR_STRING_ADVANCE (c, dst);
5375 }
5376 }
5377 else
5378 {
5379 ASSURE_DESTINATION (charbuf_end - charbuf);
5380 while (charbuf < charbuf_end && dst < dst_end)
5381 *dst++ = *charbuf++;
5382 }
5383 produced_chars = dst - (coding->destination + coding->produced);
5384 }
5385 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5386 coding->produced_char += produced_chars;
5387 coding->produced = dst - coding->destination;
5388 return 0;
5389 }
5390
5391 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5392 Return true if a text is encoded in a charset-based coding system. */
5393
5394 static bool
5395 detect_coding_charset (struct coding_system *coding,
5396 struct coding_detection_info *detect_info)
5397 {
5398 const unsigned char *src = coding->source, *src_base;
5399 const unsigned char *src_end = coding->source + coding->src_bytes;
5400 bool multibytep = coding->src_multibyte;
5401 ptrdiff_t consumed_chars = 0;
5402 Lisp_Object attrs, valids, name;
5403 int found = 0;
5404 ptrdiff_t head_ascii = coding->head_ascii;
5405 bool check_latin_extra = 0;
5406
5407 detect_info->checked |= CATEGORY_MASK_CHARSET;
5408
5409 coding = &coding_categories[coding_category_charset];
5410 attrs = CODING_ID_ATTRS (coding->id);
5411 valids = AREF (attrs, coding_attr_charset_valids);
5412 name = CODING_ID_NAME (coding->id);
5413 if (strncmp (SSDATA (SYMBOL_NAME (name)),
5414 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5415 || strncmp (SSDATA (SYMBOL_NAME (name)),
5416 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5417 check_latin_extra = 1;
5418
5419 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5420 src += head_ascii;
5421
5422 while (1)
5423 {
5424 int c;
5425 Lisp_Object val;
5426 struct charset *charset;
5427 int dim, idx;
5428
5429 src_base = src;
5430 ONE_MORE_BYTE (c);
5431 if (c < 0)
5432 continue;
5433 val = AREF (valids, c);
5434 if (NILP (val))
5435 break;
5436 if (c >= 0x80)
5437 {
5438 if (c < 0xA0
5439 && check_latin_extra
5440 && (!VECTORP (Vlatin_extra_code_table)
5441 || NILP (AREF (Vlatin_extra_code_table, c))))
5442 break;
5443 found = CATEGORY_MASK_CHARSET;
5444 }
5445 if (INTEGERP (val))
5446 {
5447 charset = CHARSET_FROM_ID (XFASTINT (val));
5448 dim = CHARSET_DIMENSION (charset);
5449 for (idx = 1; idx < dim; idx++)
5450 {
5451 if (src == src_end)
5452 goto too_short;
5453 ONE_MORE_BYTE (c);
5454 if (c < charset->code_space[(dim - 1 - idx) * 4]
5455 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5456 break;
5457 }
5458 if (idx < dim)
5459 break;
5460 }
5461 else
5462 {
5463 idx = 1;
5464 for (; CONSP (val); val = XCDR (val))
5465 {
5466 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5467 dim = CHARSET_DIMENSION (charset);
5468 while (idx < dim)
5469 {
5470 if (src == src_end)
5471 goto too_short;
5472 ONE_MORE_BYTE (c);
5473 if (c < charset->code_space[(dim - 1 - idx) * 4]
5474 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5475 break;
5476 idx++;
5477 }
5478 if (idx == dim)
5479 {
5480 val = Qnil;
5481 break;
5482 }
5483 }
5484 if (CONSP (val))
5485 break;
5486 }
5487 }
5488 too_short:
5489 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5490 return 0;
5491
5492 no_more_source:
5493 detect_info->found |= found;
5494 return 1;
5495 }
5496
5497 static void
5498 decode_coding_charset (struct coding_system *coding)
5499 {
5500 const unsigned char *src = coding->source + coding->consumed;
5501 const unsigned char *src_end = coding->source + coding->src_bytes;
5502 const unsigned char *src_base;
5503 int *charbuf = coding->charbuf + coding->charbuf_used;
5504 /* We may produce one charset annotation in one loop and one more at
5505 the end. */
5506 int *charbuf_end
5507 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5508 ptrdiff_t consumed_chars = 0, consumed_chars_base;
5509 bool multibytep = coding->src_multibyte;
5510 Lisp_Object attrs = CODING_ID_ATTRS (coding->id);
5511 Lisp_Object valids;
5512 ptrdiff_t char_offset = coding->produced_char;
5513 ptrdiff_t last_offset = char_offset;
5514 int last_id = charset_ascii;
5515 bool eol_dos
5516 = !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5517 int byte_after_cr = -1;
5518
5519 valids = AREF (attrs, coding_attr_charset_valids);
5520
5521 while (1)
5522 {
5523 int c;
5524 Lisp_Object val;
5525 struct charset *charset;
5526 int dim;
5527 int len = 1;
5528 unsigned code;
5529
5530 src_base = src;
5531 consumed_chars_base = consumed_chars;
5532
5533 if (charbuf >= charbuf_end)
5534 {
5535 if (byte_after_cr >= 0)
5536 src_base--;
5537 break;
5538 }
5539
5540 if (byte_after_cr >= 0)
5541 {
5542 c = byte_after_cr;
5543 byte_after_cr = -1;
5544 }
5545 else
5546 {
5547 ONE_MORE_BYTE (c);
5548 if (eol_dos && c == '\r')
5549 ONE_MORE_BYTE (byte_after_cr);
5550 }
5551 if (c < 0)
5552 goto invalid_code;
5553 code = c;
5554
5555 val = AREF (valids, c);
5556 if (! INTEGERP (val) && ! CONSP (val))
5557 goto invalid_code;
5558 if (INTEGERP (val))
5559 {
5560 charset = CHARSET_FROM_ID (XFASTINT (val));
5561 dim = CHARSET_DIMENSION (charset);
5562 while (len < dim)
5563 {
5564 ONE_MORE_BYTE (c);
5565 code = (code << 8) | c;
5566 len++;
5567 }
5568 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5569 charset, code, c);
5570 }
5571 else
5572 {
5573 /* VAL is a list of charset IDs. It is assured that the
5574 list is sorted by charset dimensions (smaller one
5575 comes first). */
5576 while (CONSP (val))
5577 {
5578 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5579 dim = CHARSET_DIMENSION (charset);
5580 while (len < dim)
5581 {
5582 ONE_MORE_BYTE (c);
5583 code = (code << 8) | c;
5584 len++;
5585 }
5586 CODING_DECODE_CHAR (coding, src, src_base,
5587 src_end, charset, code, c);
5588 if (c >= 0)
5589 break;
5590 val = XCDR (val);
5591 }
5592 }
5593 if (c < 0)
5594 goto invalid_code;
5595 if (charset->id != charset_ascii
5596 && last_id != charset->id)
5597 {
5598 if (last_id != charset_ascii)
5599 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5600 last_id = charset->id;
5601 last_offset = char_offset;
5602 }
5603
5604 *charbuf++ = c;
5605 char_offset++;
5606 continue;
5607
5608 invalid_code:
5609 src = src_base;
5610 consumed_chars = consumed_chars_base;
5611 ONE_MORE_BYTE (c);
5612 *charbuf++ = c < 0 ? -c : ASCII_CHAR_P (c) ? c : BYTE8_TO_CHAR (c);
5613 char_offset++;
5614 }
5615
5616 no_more_source:
5617 if (last_id != charset_ascii)
5618 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5619 coding->consumed_char += consumed_chars_base;
5620 coding->consumed = src_base - coding->source;
5621 coding->charbuf_used = charbuf - coding->charbuf;
5622 }
5623
5624 static bool
5625 encode_coding_charset (struct coding_system *coding)
5626 {
5627 bool multibytep = coding->dst_multibyte;
5628 int *charbuf = coding->charbuf;
5629 int *charbuf_end = charbuf + coding->charbuf_used;
5630 unsigned char *dst = coding->destination + coding->produced;
5631 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5632 int safe_room = MAX_MULTIBYTE_LENGTH;
5633 ptrdiff_t produced_chars = 0;
5634 Lisp_Object attrs, charset_list;
5635 bool ascii_compatible;
5636 int c;
5637
5638 CODING_GET_INFO (coding, attrs, charset_list);
5639 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5640
5641 while (charbuf < charbuf_end)
5642 {
5643 struct charset *charset;
5644 unsigned code;
5645
5646 ASSURE_DESTINATION (safe_room);
5647 c = *charbuf++;
5648 if (ascii_compatible && ASCII_CHAR_P (c))
5649 EMIT_ONE_ASCII_BYTE (c);
5650 else if (CHAR_BYTE8_P (c))
5651 {
5652 c = CHAR_TO_BYTE8 (c);
5653 EMIT_ONE_BYTE (c);
5654 }
5655 else
5656 {
5657 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
5658 &code, charset);
5659
5660 if (charset)
5661 {
5662 if (CHARSET_DIMENSION (charset) == 1)
5663 EMIT_ONE_BYTE (code);
5664 else if (CHARSET_DIMENSION (charset) == 2)
5665 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5666 else if (CHARSET_DIMENSION (charset) == 3)
5667 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5668 else
5669 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5670 (code >> 8) & 0xFF, code & 0xFF);
5671 }
5672 else
5673 {
5674 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5675 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5676 else
5677 c = coding->default_char;
5678 EMIT_ONE_BYTE (c);
5679 }
5680 }
5681 }
5682
5683 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5684 coding->produced_char += produced_chars;
5685 coding->produced = dst - coding->destination;
5686 return 0;
5687 }
5688
5689 \f
5690 /*** 7. C library functions ***/
5691
5692 /* Setup coding context CODING from information about CODING_SYSTEM.
5693 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5694 CODING_SYSTEM is invalid, signal an error. */
5695
5696 void
5697 setup_coding_system (Lisp_Object coding_system, struct coding_system *coding)
5698 {
5699 Lisp_Object attrs;
5700 Lisp_Object eol_type;
5701 Lisp_Object coding_type;
5702 Lisp_Object val;
5703
5704 if (NILP (coding_system))
5705 coding_system = Qundecided;
5706
5707 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5708
5709 attrs = CODING_ID_ATTRS (coding->id);
5710 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5711
5712 coding->mode = 0;
5713 if (VECTORP (eol_type))
5714 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5715 | CODING_REQUIRE_DETECTION_MASK);
5716 else if (! EQ (eol_type, Qunix))
5717 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5718 | CODING_REQUIRE_ENCODING_MASK);
5719 else
5720 coding->common_flags = 0;
5721 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5722 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5723 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5724 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5725 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5726 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5727
5728 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5729 coding->max_charset_id = SCHARS (val) - 1;
5730 coding->safe_charsets = SDATA (val);
5731 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5732 coding->carryover_bytes = 0;
5733 coding->raw_destination = 0;
5734
5735 coding_type = CODING_ATTR_TYPE (attrs);
5736 if (EQ (coding_type, Qundecided))
5737 {
5738 coding->detector = NULL;
5739 coding->decoder = decode_coding_raw_text;
5740 coding->encoder = encode_coding_raw_text;
5741 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5742 coding->spec.undecided.inhibit_nbd
5743 = (encode_inhibit_flag
5744 (AREF (attrs, coding_attr_undecided_inhibit_null_byte_detection)));
5745 coding->spec.undecided.inhibit_ied
5746 = (encode_inhibit_flag
5747 (AREF (attrs, coding_attr_undecided_inhibit_iso_escape_detection)));
5748 coding->spec.undecided.prefer_utf_8
5749 = ! NILP (AREF (attrs, coding_attr_undecided_prefer_utf_8));
5750 }
5751 else if (EQ (coding_type, Qiso_2022))
5752 {
5753 int i;
5754 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5755
5756 /* Invoke graphic register 0 to plane 0. */
5757 CODING_ISO_INVOCATION (coding, 0) = 0;
5758 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5759 CODING_ISO_INVOCATION (coding, 1)
5760 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5761 /* Setup the initial status of designation. */
5762 for (i = 0; i < 4; i++)
5763 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5764 /* Not single shifting initially. */
5765 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5766 /* Beginning of buffer should also be regarded as bol. */
5767 CODING_ISO_BOL (coding) = 1;
5768 coding->detector = detect_coding_iso_2022;
5769 coding->decoder = decode_coding_iso_2022;
5770 coding->encoder = encode_coding_iso_2022;
5771 if (flags & CODING_ISO_FLAG_SAFE)
5772 coding->mode |= CODING_MODE_SAFE_ENCODING;
5773 coding->common_flags
5774 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5775 | CODING_REQUIRE_FLUSHING_MASK);
5776 if (flags & CODING_ISO_FLAG_COMPOSITION)
5777 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5778 if (flags & CODING_ISO_FLAG_DESIGNATION)
5779 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5780 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5781 {
5782 setup_iso_safe_charsets (attrs);
5783 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5784 coding->max_charset_id = SCHARS (val) - 1;
5785 coding->safe_charsets = SDATA (val);
5786 }
5787 CODING_ISO_FLAGS (coding) = flags;
5788 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5789 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5790 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5791 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5792 }
5793 else if (EQ (coding_type, Qcharset))
5794 {
5795 coding->detector = detect_coding_charset;
5796 coding->decoder = decode_coding_charset;
5797 coding->encoder = encode_coding_charset;
5798 coding->common_flags
5799 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5800 }
5801 else if (EQ (coding_type, Qutf_8))
5802 {
5803 val = AREF (attrs, coding_attr_utf_bom);
5804 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5805 : EQ (val, Qt) ? utf_with_bom
5806 : utf_without_bom);
5807 coding->detector = detect_coding_utf_8;
5808 coding->decoder = decode_coding_utf_8;
5809 coding->encoder = encode_coding_utf_8;
5810 coding->common_flags
5811 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5812 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5813 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5814 }
5815 else if (EQ (coding_type, Qutf_16))
5816 {
5817 val = AREF (attrs, coding_attr_utf_bom);
5818 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5819 : EQ (val, Qt) ? utf_with_bom
5820 : utf_without_bom);
5821 val = AREF (attrs, coding_attr_utf_16_endian);
5822 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5823 : utf_16_little_endian);
5824 CODING_UTF_16_SURROGATE (coding) = 0;
5825 coding->detector = detect_coding_utf_16;
5826 coding->decoder = decode_coding_utf_16;
5827 coding->encoder = encode_coding_utf_16;
5828 coding->common_flags
5829 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5830 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5831 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5832 }
5833 else if (EQ (coding_type, Qccl))
5834 {
5835 coding->detector = detect_coding_ccl;
5836 coding->decoder = decode_coding_ccl;
5837 coding->encoder = encode_coding_ccl;
5838 coding->common_flags
5839 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5840 | CODING_REQUIRE_FLUSHING_MASK);
5841 }
5842 else if (EQ (coding_type, Qemacs_mule))
5843 {
5844 coding->detector = detect_coding_emacs_mule;
5845 coding->decoder = decode_coding_emacs_mule;
5846 coding->encoder = encode_coding_emacs_mule;
5847 coding->common_flags
5848 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5849 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5850 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5851 {
5852 Lisp_Object tail, safe_charsets;
5853 int max_charset_id = 0;
5854
5855 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5856 tail = XCDR (tail))
5857 if (max_charset_id < XFASTINT (XCAR (tail)))
5858 max_charset_id = XFASTINT (XCAR (tail));
5859 safe_charsets = make_uninit_string (max_charset_id + 1);
5860 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5861 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5862 tail = XCDR (tail))
5863 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5864 coding->max_charset_id = max_charset_id;
5865 coding->safe_charsets = SDATA (safe_charsets);
5866 }
5867 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5868 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5869 }
5870 else if (EQ (coding_type, Qshift_jis))
5871 {
5872 coding->detector = detect_coding_sjis;
5873 coding->decoder = decode_coding_sjis;
5874 coding->encoder = encode_coding_sjis;
5875 coding->common_flags
5876 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5877 }
5878 else if (EQ (coding_type, Qbig5))
5879 {
5880 coding->detector = detect_coding_big5;
5881 coding->decoder = decode_coding_big5;
5882 coding->encoder = encode_coding_big5;
5883 coding->common_flags
5884 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5885 }
5886 else /* EQ (coding_type, Qraw_text) */
5887 {
5888 coding->detector = NULL;
5889 coding->decoder = decode_coding_raw_text;
5890 coding->encoder = encode_coding_raw_text;
5891 if (! EQ (eol_type, Qunix))
5892 {
5893 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5894 if (! VECTORP (eol_type))
5895 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5896 }
5897
5898 }
5899
5900 return;
5901 }
5902
5903 /* Return a list of charsets supported by CODING. */
5904
5905 Lisp_Object
5906 coding_charset_list (struct coding_system *coding)
5907 {
5908 Lisp_Object attrs, charset_list;
5909
5910 CODING_GET_INFO (coding, attrs, charset_list);
5911 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5912 {
5913 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5914
5915 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5916 charset_list = Viso_2022_charset_list;
5917 }
5918 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5919 {
5920 charset_list = Vemacs_mule_charset_list;
5921 }
5922 return charset_list;
5923 }
5924
5925
5926 /* Return a list of charsets supported by CODING-SYSTEM. */
5927
5928 Lisp_Object
5929 coding_system_charset_list (Lisp_Object coding_system)
5930 {
5931 ptrdiff_t id;
5932 Lisp_Object attrs, charset_list;
5933
5934 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5935 attrs = CODING_ID_ATTRS (id);
5936
5937 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5938 {
5939 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5940
5941 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5942 charset_list = Viso_2022_charset_list;
5943 else
5944 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5945 }
5946 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5947 {
5948 charset_list = Vemacs_mule_charset_list;
5949 }
5950 else
5951 {
5952 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5953 }
5954 return charset_list;
5955 }
5956
5957
5958 /* Return raw-text or one of its subsidiaries that has the same
5959 eol_type as CODING-SYSTEM. */
5960
5961 Lisp_Object
5962 raw_text_coding_system (Lisp_Object coding_system)
5963 {
5964 Lisp_Object spec, attrs;
5965 Lisp_Object eol_type, raw_text_eol_type;
5966
5967 if (NILP (coding_system))
5968 return Qraw_text;
5969 spec = CODING_SYSTEM_SPEC (coding_system);
5970 attrs = AREF (spec, 0);
5971
5972 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
5973 return coding_system;
5974
5975 eol_type = AREF (spec, 2);
5976 if (VECTORP (eol_type))
5977 return Qraw_text;
5978 spec = CODING_SYSTEM_SPEC (Qraw_text);
5979 raw_text_eol_type = AREF (spec, 2);
5980 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
5981 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
5982 : AREF (raw_text_eol_type, 2));
5983 }
5984
5985 /* Return true if CODING corresponds to raw-text coding-system. */
5986
5987 bool
5988 raw_text_coding_system_p (struct coding_system *coding)
5989 {
5990 return (coding->decoder == decode_coding_raw_text
5991 && coding->encoder == encode_coding_raw_text) ? true : false;
5992 }
5993
5994
5995 /* If CODING_SYSTEM doesn't specify end-of-line format, return one of
5996 the subsidiary that has the same eol-spec as PARENT (if it is not
5997 nil and specifies end-of-line format) or the system's setting
5998 (system_eol_type). */
5999
6000 Lisp_Object
6001 coding_inherit_eol_type (Lisp_Object coding_system, Lisp_Object parent)
6002 {
6003 Lisp_Object spec, eol_type;
6004
6005 if (NILP (coding_system))
6006 coding_system = Qraw_text;
6007 else
6008 CHECK_CODING_SYSTEM (coding_system);
6009 spec = CODING_SYSTEM_SPEC (coding_system);
6010 eol_type = AREF (spec, 2);
6011 if (VECTORP (eol_type))
6012 {
6013 Lisp_Object parent_eol_type;
6014
6015 if (! NILP (parent))
6016 {
6017 Lisp_Object parent_spec;
6018
6019 CHECK_CODING_SYSTEM (parent);
6020 parent_spec = CODING_SYSTEM_SPEC (parent);
6021 parent_eol_type = AREF (parent_spec, 2);
6022 if (VECTORP (parent_eol_type))
6023 parent_eol_type = system_eol_type;
6024 }
6025 else
6026 parent_eol_type = system_eol_type;
6027 if (EQ (parent_eol_type, Qunix))
6028 coding_system = AREF (eol_type, 0);
6029 else if (EQ (parent_eol_type, Qdos))
6030 coding_system = AREF (eol_type, 1);
6031 else if (EQ (parent_eol_type, Qmac))
6032 coding_system = AREF (eol_type, 2);
6033 }
6034 return coding_system;
6035 }
6036
6037
6038 /* Check if text-conversion and eol-conversion of CODING_SYSTEM are
6039 decided for writing to a process. If not, complement them, and
6040 return a new coding system. */
6041
6042 Lisp_Object
6043 complement_process_encoding_system (Lisp_Object coding_system)
6044 {
6045 Lisp_Object coding_base = Qnil, eol_base = Qnil;
6046 Lisp_Object spec, attrs;
6047 int i;
6048
6049 for (i = 0; i < 3; i++)
6050 {
6051 if (i == 1)
6052 coding_system = CDR_SAFE (Vdefault_process_coding_system);
6053 else if (i == 2)
6054 coding_system = preferred_coding_system ();
6055 spec = CODING_SYSTEM_SPEC (coding_system);
6056 if (NILP (spec))
6057 continue;
6058 attrs = AREF (spec, 0);
6059 if (NILP (coding_base) && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
6060 coding_base = CODING_ATTR_BASE_NAME (attrs);
6061 if (NILP (eol_base) && ! VECTORP (AREF (spec, 2)))
6062 eol_base = coding_system;
6063 if (! NILP (coding_base) && ! NILP (eol_base))
6064 break;
6065 }
6066
6067 if (i > 0)
6068 /* The original CODING_SYSTEM didn't specify text-conversion or
6069 eol-conversion. Be sure that we return a fully complemented
6070 coding system. */
6071 coding_system = coding_inherit_eol_type (coding_base, eol_base);
6072 return coding_system;
6073 }
6074
6075
6076 /* Emacs has a mechanism to automatically detect a coding system if it
6077 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
6078 it's impossible to distinguish some coding systems accurately
6079 because they use the same range of codes. So, at first, coding
6080 systems are categorized into 7, those are:
6081
6082 o coding-category-emacs-mule
6083
6084 The category for a coding system which has the same code range
6085 as Emacs' internal format. Assigned the coding-system (Lisp
6086 symbol) `emacs-mule' by default.
6087
6088 o coding-category-sjis
6089
6090 The category for a coding system which has the same code range
6091 as SJIS. Assigned the coding-system (Lisp
6092 symbol) `japanese-shift-jis' by default.
6093
6094 o coding-category-iso-7
6095
6096 The category for a coding system which has the same code range
6097 as ISO2022 of 7-bit environment. This doesn't use any locking
6098 shift and single shift functions. This can encode/decode all
6099 charsets. Assigned the coding-system (Lisp symbol)
6100 `iso-2022-7bit' by default.
6101
6102 o coding-category-iso-7-tight
6103
6104 Same as coding-category-iso-7 except that this can
6105 encode/decode only the specified charsets.
6106
6107 o coding-category-iso-8-1
6108
6109 The category for a coding system which has the same code range
6110 as ISO2022 of 8-bit environment and graphic plane 1 used only
6111 for DIMENSION1 charset. This doesn't use any locking shift
6112 and single shift functions. Assigned the coding-system (Lisp
6113 symbol) `iso-latin-1' by default.
6114
6115 o coding-category-iso-8-2
6116
6117 The category for a coding system which has the same code range
6118 as ISO2022 of 8-bit environment and graphic plane 1 used only
6119 for DIMENSION2 charset. This doesn't use any locking shift
6120 and single shift functions. Assigned the coding-system (Lisp
6121 symbol) `japanese-iso-8bit' by default.
6122
6123 o coding-category-iso-7-else
6124
6125 The category for a coding system which has the same code range
6126 as ISO2022 of 7-bit environment but uses locking shift or
6127 single shift functions. Assigned the coding-system (Lisp
6128 symbol) `iso-2022-7bit-lock' by default.
6129
6130 o coding-category-iso-8-else
6131
6132 The category for a coding system which has the same code range
6133 as ISO2022 of 8-bit environment but uses locking shift or
6134 single shift functions. Assigned the coding-system (Lisp
6135 symbol) `iso-2022-8bit-ss2' by default.
6136
6137 o coding-category-big5
6138
6139 The category for a coding system which has the same code range
6140 as BIG5. Assigned the coding-system (Lisp symbol)
6141 `cn-big5' by default.
6142
6143 o coding-category-utf-8
6144
6145 The category for a coding system which has the same code range
6146 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6147 symbol) `utf-8' by default.
6148
6149 o coding-category-utf-16-be
6150
6151 The category for a coding system in which a text has an
6152 Unicode signature (cf. Unicode Standard) in the order of BIG
6153 endian at the head. Assigned the coding-system (Lisp symbol)
6154 `utf-16-be' by default.
6155
6156 o coding-category-utf-16-le
6157
6158 The category for a coding system in which a text has an
6159 Unicode signature (cf. Unicode Standard) in the order of
6160 LITTLE endian at the head. Assigned the coding-system (Lisp
6161 symbol) `utf-16-le' by default.
6162
6163 o coding-category-ccl
6164
6165 The category for a coding system of which encoder/decoder is
6166 written in CCL programs. The default value is nil, i.e., no
6167 coding system is assigned.
6168
6169 o coding-category-binary
6170
6171 The category for a coding system not categorized in any of the
6172 above. Assigned the coding-system (Lisp symbol)
6173 `no-conversion' by default.
6174
6175 Each of them is a Lisp symbol and the value is an actual
6176 `coding-system's (this is also a Lisp symbol) assigned by a user.
6177 What Emacs does actually is to detect a category of coding system.
6178 Then, it uses a `coding-system' assigned to it. If Emacs can't
6179 decide only one possible category, it selects a category of the
6180 highest priority. Priorities of categories are also specified by a
6181 user in a Lisp variable `coding-category-list'.
6182
6183 */
6184
6185 static Lisp_Object adjust_coding_eol_type (struct coding_system *coding,
6186 int eol_seen);
6187
6188
6189 /* Return the number of ASCII characters at the head of the source.
6190 By side effects, set coding->head_ascii and update
6191 coding->eol_seen. The value of coding->eol_seen is "logical or" of
6192 EOL_SEEN_LF, EOL_SEEN_CR, and EOL_SEEN_CRLF, but the value is
6193 reliable only when all the source bytes are ASCII. */
6194
6195 static ptrdiff_t
6196 check_ascii (struct coding_system *coding)
6197 {
6198 const unsigned char *src, *end;
6199 Lisp_Object eol_type = CODING_ID_EOL_TYPE (coding->id);
6200 int eol_seen = coding->eol_seen;
6201
6202 coding_set_source (coding);
6203 src = coding->source;
6204 end = src + coding->src_bytes;
6205
6206 if (inhibit_eol_conversion
6207 || SYMBOLP (eol_type))
6208 {
6209 /* We don't have to check EOL format. */
6210 while (src < end && !( *src & 0x80))
6211 {
6212 if (*src++ == '\n')
6213 eol_seen |= EOL_SEEN_LF;
6214 }
6215 }
6216 else
6217 {
6218 end--; /* We look ahead one byte for "CR LF". */
6219 while (src < end)
6220 {
6221 int c = *src;
6222
6223 if (c & 0x80)
6224 break;
6225 src++;
6226 if (c == '\r')
6227 {
6228 if (*src == '\n')
6229 {
6230 eol_seen |= EOL_SEEN_CRLF;
6231 src++;
6232 }
6233 else
6234 eol_seen |= EOL_SEEN_CR;
6235 }
6236 else if (c == '\n')
6237 eol_seen |= EOL_SEEN_LF;
6238 }
6239 if (src == end)
6240 {
6241 int c = *src;
6242
6243 /* All bytes but the last one C are ASCII. */
6244 if (! (c & 0x80))
6245 {
6246 if (c == '\r')
6247 eol_seen |= EOL_SEEN_CR;
6248 else if (c == '\n')
6249 eol_seen |= EOL_SEEN_LF;
6250 src++;
6251 }
6252 }
6253 }
6254 coding->head_ascii = src - coding->source;
6255 coding->eol_seen = eol_seen;
6256 return (coding->head_ascii);
6257 }
6258
6259
6260 /* Return the number of characters at the source if all the bytes are
6261 valid UTF-8 (of Unicode range). Otherwise, return -1. By side
6262 effects, update coding->eol_seen. The value of coding->eol_seen is
6263 "logical or" of EOL_SEEN_LF, EOL_SEEN_CR, and EOL_SEEN_CRLF, but
6264 the value is reliable only when all the source bytes are valid
6265 UTF-8. */
6266
6267 static ptrdiff_t
6268 check_utf_8 (struct coding_system *coding)
6269 {
6270 const unsigned char *src, *end;
6271 int eol_seen;
6272 ptrdiff_t nchars = coding->head_ascii;
6273
6274 if (coding->head_ascii < 0)
6275 check_ascii (coding);
6276 else
6277 coding_set_source (coding);
6278 src = coding->source + coding->head_ascii;
6279 /* We look ahead one byte for CR LF. */
6280 end = coding->source + coding->src_bytes - 1;
6281 eol_seen = coding->eol_seen;
6282 while (src < end)
6283 {
6284 int c = *src;
6285
6286 if (UTF_8_1_OCTET_P (*src))
6287 {
6288 src++;
6289 if (c < 0x20)
6290 {
6291 if (c == '\r')
6292 {
6293 if (*src == '\n')
6294 {
6295 eol_seen |= EOL_SEEN_CRLF;
6296 src++;
6297 nchars++;
6298 }
6299 else
6300 eol_seen |= EOL_SEEN_CR;
6301 }
6302 else if (c == '\n')
6303 eol_seen |= EOL_SEEN_LF;
6304 }
6305 }
6306 else if (UTF_8_2_OCTET_LEADING_P (c))
6307 {
6308 if (c < 0xC2 /* overlong sequence */
6309 || src + 1 >= end
6310 || ! UTF_8_EXTRA_OCTET_P (src[1]))
6311 return -1;
6312 src += 2;
6313 }
6314 else if (UTF_8_3_OCTET_LEADING_P (c))
6315 {
6316 if (src + 2 >= end
6317 || ! (UTF_8_EXTRA_OCTET_P (src[1])
6318 && UTF_8_EXTRA_OCTET_P (src[2])))
6319 return -1;
6320 c = (((c & 0xF) << 12)
6321 | ((src[1] & 0x3F) << 6) | (src[2] & 0x3F));
6322 if (c < 0x800 /* overlong sequence */
6323 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
6324 return -1;
6325 src += 3;
6326 }
6327 else if (UTF_8_4_OCTET_LEADING_P (c))
6328 {
6329 if (src + 3 >= end
6330 || ! (UTF_8_EXTRA_OCTET_P (src[1])
6331 && UTF_8_EXTRA_OCTET_P (src[2])
6332 && UTF_8_EXTRA_OCTET_P (src[3])))
6333 return -1;
6334 c = (((c & 0x7) << 18) | ((src[1] & 0x3F) << 12)
6335 | ((src[2] & 0x3F) << 6) | (src[3] & 0x3F));
6336 if (c < 0x10000 /* overlong sequence */
6337 || c >= 0x110000) /* non-Unicode character */
6338 return -1;
6339 src += 4;
6340 }
6341 else
6342 return -1;
6343 nchars++;
6344 }
6345
6346 if (src == end)
6347 {
6348 if (! UTF_8_1_OCTET_P (*src))
6349 return -1;
6350 nchars++;
6351 if (*src == '\r')
6352 eol_seen |= EOL_SEEN_CR;
6353 else if (*src == '\n')
6354 eol_seen |= EOL_SEEN_LF;
6355 }
6356 coding->eol_seen = eol_seen;
6357 return nchars;
6358 }
6359
6360
6361 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6362 SOURCE is encoded. If CATEGORY is one of
6363 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6364 two-byte, else they are encoded by one-byte.
6365
6366 Return one of EOL_SEEN_XXX. */
6367
6368 #define MAX_EOL_CHECK_COUNT 3
6369
6370 static int
6371 detect_eol (const unsigned char *source, ptrdiff_t src_bytes,
6372 enum coding_category category)
6373 {
6374 const unsigned char *src = source, *src_end = src + src_bytes;
6375 unsigned char c;
6376 int total = 0;
6377 int eol_seen = EOL_SEEN_NONE;
6378
6379 if ((1 << category) & CATEGORY_MASK_UTF_16)
6380 {
6381 bool msb = category == (coding_category_utf_16_le
6382 | coding_category_utf_16_le_nosig);
6383 bool lsb = !msb;
6384
6385 while (src + 1 < src_end)
6386 {
6387 c = src[lsb];
6388 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6389 {
6390 int this_eol;
6391
6392 if (c == '\n')
6393 this_eol = EOL_SEEN_LF;
6394 else if (src + 3 >= src_end
6395 || src[msb + 2] != 0
6396 || src[lsb + 2] != '\n')
6397 this_eol = EOL_SEEN_CR;
6398 else
6399 {
6400 this_eol = EOL_SEEN_CRLF;
6401 src += 2;
6402 }
6403
6404 if (eol_seen == EOL_SEEN_NONE)
6405 /* This is the first end-of-line. */
6406 eol_seen = this_eol;
6407 else if (eol_seen != this_eol)
6408 {
6409 /* The found type is different from what found before.
6410 Allow for stray ^M characters in DOS EOL files. */
6411 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6412 || (eol_seen == EOL_SEEN_CRLF
6413 && this_eol == EOL_SEEN_CR))
6414 eol_seen = EOL_SEEN_CRLF;
6415 else
6416 {
6417 eol_seen = EOL_SEEN_LF;
6418 break;
6419 }
6420 }
6421 if (++total == MAX_EOL_CHECK_COUNT)
6422 break;
6423 }
6424 src += 2;
6425 }
6426 }
6427 else
6428 while (src < src_end)
6429 {
6430 c = *src++;
6431 if (c == '\n' || c == '\r')
6432 {
6433 int this_eol;
6434
6435 if (c == '\n')
6436 this_eol = EOL_SEEN_LF;
6437 else if (src >= src_end || *src != '\n')
6438 this_eol = EOL_SEEN_CR;
6439 else
6440 this_eol = EOL_SEEN_CRLF, src++;
6441
6442 if (eol_seen == EOL_SEEN_NONE)
6443 /* This is the first end-of-line. */
6444 eol_seen = this_eol;
6445 else if (eol_seen != this_eol)
6446 {
6447 /* The found type is different from what found before.
6448 Allow for stray ^M characters in DOS EOL files. */
6449 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6450 || (eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR))
6451 eol_seen = EOL_SEEN_CRLF;
6452 else
6453 {
6454 eol_seen = EOL_SEEN_LF;
6455 break;
6456 }
6457 }
6458 if (++total == MAX_EOL_CHECK_COUNT)
6459 break;
6460 }
6461 }
6462 return eol_seen;
6463 }
6464
6465
6466 static Lisp_Object
6467 adjust_coding_eol_type (struct coding_system *coding, int eol_seen)
6468 {
6469 Lisp_Object eol_type;
6470
6471 eol_type = CODING_ID_EOL_TYPE (coding->id);
6472 if (! VECTORP (eol_type))
6473 /* Already adjusted. */
6474 return eol_type;
6475 if (eol_seen & EOL_SEEN_LF)
6476 {
6477 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6478 eol_type = Qunix;
6479 }
6480 else if (eol_seen & EOL_SEEN_CRLF)
6481 {
6482 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6483 eol_type = Qdos;
6484 }
6485 else if (eol_seen & EOL_SEEN_CR)
6486 {
6487 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6488 eol_type = Qmac;
6489 }
6490 return eol_type;
6491 }
6492
6493 /* Detect how a text specified in CODING is encoded. If a coding
6494 system is detected, update fields of CODING by the detected coding
6495 system. */
6496
6497 static void
6498 detect_coding (struct coding_system *coding)
6499 {
6500 const unsigned char *src, *src_end;
6501 unsigned int saved_mode = coding->mode;
6502 Lisp_Object found = Qnil;
6503 Lisp_Object eol_type = CODING_ID_EOL_TYPE (coding->id);
6504
6505 coding->consumed = coding->consumed_char = 0;
6506 coding->produced = coding->produced_char = 0;
6507 coding_set_source (coding);
6508
6509 src_end = coding->source + coding->src_bytes;
6510
6511 coding->eol_seen = EOL_SEEN_NONE;
6512 /* If we have not yet decided the text encoding type, detect it
6513 now. */
6514 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6515 {
6516 int c, i;
6517 struct coding_detection_info detect_info;
6518 bool null_byte_found = 0, eight_bit_found = 0;
6519 bool inhibit_nbd = inhibit_flag (coding->spec.undecided.inhibit_nbd,
6520 inhibit_null_byte_detection);
6521 bool inhibit_ied = inhibit_flag (coding->spec.undecided.inhibit_ied,
6522 inhibit_iso_escape_detection);
6523 bool prefer_utf_8 = coding->spec.undecided.prefer_utf_8;
6524
6525 coding->head_ascii = 0;
6526 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6527 for (src = coding->source; src < src_end; src++)
6528 {
6529 c = *src;
6530 if (c & 0x80)
6531 {
6532 eight_bit_found = 1;
6533 if (null_byte_found)
6534 break;
6535 }
6536 else if (c < 0x20)
6537 {
6538 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6539 && ! inhibit_ied
6540 && ! detect_info.checked)
6541 {
6542 if (detect_coding_iso_2022 (coding, &detect_info))
6543 {
6544 /* We have scanned the whole data. */
6545 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6546 {
6547 /* We didn't find an 8-bit code. We may
6548 have found a null-byte, but it's very
6549 rare that a binary file conforms to
6550 ISO-2022. */
6551 src = src_end;
6552 coding->head_ascii = src - coding->source;
6553 }
6554 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6555 break;
6556 }
6557 }
6558 else if (! c && !inhibit_nbd)
6559 {
6560 null_byte_found = 1;
6561 if (eight_bit_found)
6562 break;
6563 }
6564 else if (! disable_ascii_optimization
6565 && ! inhibit_eol_conversion)
6566 {
6567 if (c == '\r')
6568 {
6569 if (src < src_end && src[1] == '\n')
6570 {
6571 coding->eol_seen |= EOL_SEEN_CRLF;
6572 src++;
6573 if (! eight_bit_found)
6574 coding->head_ascii++;
6575 }
6576 else
6577 coding->eol_seen |= EOL_SEEN_CR;
6578 }
6579 else if (c == '\n')
6580 {
6581 coding->eol_seen |= EOL_SEEN_LF;
6582 }
6583 }
6584
6585 if (! eight_bit_found)
6586 coding->head_ascii++;
6587 }
6588 else if (! eight_bit_found)
6589 coding->head_ascii++;
6590 }
6591
6592 if (null_byte_found || eight_bit_found
6593 || coding->head_ascii < coding->src_bytes
6594 || detect_info.found)
6595 {
6596 enum coding_category category;
6597 struct coding_system *this;
6598
6599 if (coding->head_ascii == coding->src_bytes)
6600 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6601 for (i = 0; i < coding_category_raw_text; i++)
6602 {
6603 category = coding_priorities[i];
6604 this = coding_categories + category;
6605 if (detect_info.found & (1 << category))
6606 break;
6607 }
6608 else
6609 {
6610 if (null_byte_found)
6611 {
6612 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6613 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6614 }
6615 else if (prefer_utf_8
6616 && detect_coding_utf_8 (coding, &detect_info))
6617 {
6618 detect_info.checked |= ~CATEGORY_MASK_UTF_8;
6619 detect_info.rejected |= ~CATEGORY_MASK_UTF_8;
6620 }
6621 for (i = 0; i < coding_category_raw_text; i++)
6622 {
6623 category = coding_priorities[i];
6624 this = coding_categories + category;
6625 /* Some of this->detector (e.g. detect_coding_sjis)
6626 require this information. */
6627 coding->id = this->id;
6628 if (this->id < 0)
6629 {
6630 /* No coding system of this category is defined. */
6631 detect_info.rejected |= (1 << category);
6632 }
6633 else if (category >= coding_category_raw_text)
6634 continue;
6635 else if (detect_info.checked & (1 << category))
6636 {
6637 if (detect_info.found & (1 << category))
6638 break;
6639 }
6640 else if ((*(this->detector)) (coding, &detect_info)
6641 && detect_info.found & (1 << category))
6642 break;
6643 }
6644 }
6645
6646 if (i < coding_category_raw_text)
6647 {
6648 if (category == coding_category_utf_8_auto)
6649 {
6650 Lisp_Object coding_systems;
6651
6652 coding_systems = AREF (CODING_ID_ATTRS (this->id),
6653 coding_attr_utf_bom);
6654 if (CONSP (coding_systems))
6655 {
6656 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6657 found = XCAR (coding_systems);
6658 else
6659 found = XCDR (coding_systems);
6660 }
6661 else
6662 found = CODING_ID_NAME (this->id);
6663 }
6664 else if (category == coding_category_utf_16_auto)
6665 {
6666 Lisp_Object coding_systems;
6667
6668 coding_systems = AREF (CODING_ID_ATTRS (this->id),
6669 coding_attr_utf_bom);
6670 if (CONSP (coding_systems))
6671 {
6672 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6673 found = XCAR (coding_systems);
6674 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6675 found = XCDR (coding_systems);
6676 }
6677 else
6678 found = CODING_ID_NAME (this->id);
6679 }
6680 else
6681 found = CODING_ID_NAME (this->id);
6682 }
6683 else if (null_byte_found)
6684 found = Qno_conversion;
6685 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6686 == CATEGORY_MASK_ANY)
6687 found = Qraw_text;
6688 else if (detect_info.rejected)
6689 for (i = 0; i < coding_category_raw_text; i++)
6690 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6691 {
6692 this = coding_categories + coding_priorities[i];
6693 found = CODING_ID_NAME (this->id);
6694 break;
6695 }
6696 }
6697 }
6698 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6699 == coding_category_utf_8_auto)
6700 {
6701 Lisp_Object coding_systems;
6702 struct coding_detection_info detect_info;
6703
6704 coding_systems
6705 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6706 detect_info.found = detect_info.rejected = 0;
6707 if (check_ascii (coding) == coding->src_bytes)
6708 {
6709 if (CONSP (coding_systems))
6710 found = XCDR (coding_systems);
6711 }
6712 else
6713 {
6714 if (CONSP (coding_systems)
6715 && detect_coding_utf_8 (coding, &detect_info))
6716 {
6717 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6718 found = XCAR (coding_systems);
6719 else
6720 found = XCDR (coding_systems);
6721 }
6722 }
6723 }
6724 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6725 == coding_category_utf_16_auto)
6726 {
6727 Lisp_Object coding_systems;
6728 struct coding_detection_info detect_info;
6729
6730 coding_systems
6731 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6732 detect_info.found = detect_info.rejected = 0;
6733 coding->head_ascii = 0;
6734 if (CONSP (coding_systems)
6735 && detect_coding_utf_16 (coding, &detect_info))
6736 {
6737 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6738 found = XCAR (coding_systems);
6739 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6740 found = XCDR (coding_systems);
6741 }
6742 }
6743
6744 if (! NILP (found))
6745 {
6746 int specified_eol = (VECTORP (eol_type) ? EOL_SEEN_NONE
6747 : EQ (eol_type, Qdos) ? EOL_SEEN_CRLF
6748 : EQ (eol_type, Qmac) ? EOL_SEEN_CR
6749 : EOL_SEEN_LF);
6750
6751 setup_coding_system (found, coding);
6752 if (specified_eol != EOL_SEEN_NONE)
6753 adjust_coding_eol_type (coding, specified_eol);
6754 }
6755
6756 coding->mode = saved_mode;
6757 }
6758
6759
6760 static void
6761 decode_eol (struct coding_system *coding)
6762 {
6763 Lisp_Object eol_type;
6764 unsigned char *p, *pbeg, *pend;
6765
6766 eol_type = CODING_ID_EOL_TYPE (coding->id);
6767 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6768 return;
6769
6770 if (NILP (coding->dst_object))
6771 pbeg = coding->destination;
6772 else
6773 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6774 pend = pbeg + coding->produced;
6775
6776 if (VECTORP (eol_type))
6777 {
6778 int eol_seen = EOL_SEEN_NONE;
6779
6780 for (p = pbeg; p < pend; p++)
6781 {
6782 if (*p == '\n')
6783 eol_seen |= EOL_SEEN_LF;
6784 else if (*p == '\r')
6785 {
6786 if (p + 1 < pend && *(p + 1) == '\n')
6787 {
6788 eol_seen |= EOL_SEEN_CRLF;
6789 p++;
6790 }
6791 else
6792 eol_seen |= EOL_SEEN_CR;
6793 }
6794 }
6795 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6796 if ((eol_seen & EOL_SEEN_CRLF) != 0
6797 && (eol_seen & EOL_SEEN_CR) != 0
6798 && (eol_seen & EOL_SEEN_LF) == 0)
6799 eol_seen = EOL_SEEN_CRLF;
6800 else if (eol_seen != EOL_SEEN_NONE
6801 && eol_seen != EOL_SEEN_LF
6802 && eol_seen != EOL_SEEN_CRLF
6803 && eol_seen != EOL_SEEN_CR)
6804 eol_seen = EOL_SEEN_LF;
6805 if (eol_seen != EOL_SEEN_NONE)
6806 eol_type = adjust_coding_eol_type (coding, eol_seen);
6807 }
6808
6809 if (EQ (eol_type, Qmac))
6810 {
6811 for (p = pbeg; p < pend; p++)
6812 if (*p == '\r')
6813 *p = '\n';
6814 }
6815 else if (EQ (eol_type, Qdos))
6816 {
6817 ptrdiff_t n = 0;
6818 ptrdiff_t pos = coding->dst_pos;
6819 ptrdiff_t pos_byte = coding->dst_pos_byte;
6820 ptrdiff_t pos_end = pos_byte + coding->produced - 1;
6821
6822 /* This assertion is here instead of code, now deleted, that
6823 handled the NILP case, which no longer happens with the
6824 current codebase. */
6825 eassert (!NILP (coding->dst_object));
6826
6827 while (pos_byte < pos_end)
6828 {
6829 int incr;
6830
6831 p = BYTE_POS_ADDR (pos_byte);
6832 if (coding->dst_multibyte)
6833 incr = BYTES_BY_CHAR_HEAD (*p);
6834 else
6835 incr = 1;
6836
6837 if (*p == '\r' && p[1] == '\n')
6838 {
6839 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6840 n++;
6841 pos_end--;
6842 }
6843 pos++;
6844 pos_byte += incr;
6845 }
6846 coding->produced -= n;
6847 coding->produced_char -= n;
6848 }
6849 }
6850
6851
6852 /* MAX_LOOKUP's maximum value. MAX_LOOKUP is an int and so cannot
6853 exceed INT_MAX. Also, MAX_LOOKUP is multiplied by sizeof (int) for
6854 alloca, so it cannot exceed MAX_ALLOCA / sizeof (int). */
6855 enum { MAX_LOOKUP_MAX = min (INT_MAX, MAX_ALLOCA / sizeof (int)) };
6856
6857 /* Return a translation table (or list of them) from coding system
6858 attribute vector ATTRS for encoding (if ENCODEP) or decoding (if
6859 not ENCODEP). */
6860
6861 static Lisp_Object
6862 get_translation_table (Lisp_Object attrs, bool encodep, int *max_lookup)
6863 {
6864 Lisp_Object standard, translation_table;
6865 Lisp_Object val;
6866
6867 if (NILP (Venable_character_translation))
6868 {
6869 if (max_lookup)
6870 *max_lookup = 0;
6871 return Qnil;
6872 }
6873 if (encodep)
6874 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6875 standard = Vstandard_translation_table_for_encode;
6876 else
6877 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6878 standard = Vstandard_translation_table_for_decode;
6879 if (NILP (translation_table))
6880 translation_table = standard;
6881 else
6882 {
6883 if (SYMBOLP (translation_table))
6884 translation_table = Fget (translation_table, Qtranslation_table);
6885 else if (CONSP (translation_table))
6886 {
6887 translation_table = Fcopy_sequence (translation_table);
6888 for (val = translation_table; CONSP (val); val = XCDR (val))
6889 if (SYMBOLP (XCAR (val)))
6890 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6891 }
6892 if (CHAR_TABLE_P (standard))
6893 {
6894 if (CONSP (translation_table))
6895 translation_table = nconc2 (translation_table, list1 (standard));
6896 else
6897 translation_table = list2 (translation_table, standard);
6898 }
6899 }
6900
6901 if (max_lookup)
6902 {
6903 *max_lookup = 1;
6904 if (CHAR_TABLE_P (translation_table)
6905 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6906 {
6907 val = XCHAR_TABLE (translation_table)->extras[1];
6908 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6909 *max_lookup = min (XFASTINT (val), MAX_LOOKUP_MAX);
6910 }
6911 else if (CONSP (translation_table))
6912 {
6913 Lisp_Object tail;
6914
6915 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6916 if (CHAR_TABLE_P (XCAR (tail))
6917 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6918 {
6919 Lisp_Object tailval = XCHAR_TABLE (XCAR (tail))->extras[1];
6920 if (NATNUMP (tailval) && *max_lookup < XFASTINT (tailval))
6921 *max_lookup = min (XFASTINT (tailval), MAX_LOOKUP_MAX);
6922 }
6923 }
6924 }
6925 return translation_table;
6926 }
6927
6928 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6929 do { \
6930 trans = Qnil; \
6931 if (CHAR_TABLE_P (table)) \
6932 { \
6933 trans = CHAR_TABLE_REF (table, c); \
6934 if (CHARACTERP (trans)) \
6935 c = XFASTINT (trans), trans = Qnil; \
6936 } \
6937 else if (CONSP (table)) \
6938 { \
6939 Lisp_Object tail; \
6940 \
6941 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6942 if (CHAR_TABLE_P (XCAR (tail))) \
6943 { \
6944 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6945 if (CHARACTERP (trans)) \
6946 c = XFASTINT (trans), trans = Qnil; \
6947 else if (! NILP (trans)) \
6948 break; \
6949 } \
6950 } \
6951 } while (0)
6952
6953
6954 /* Return a translation of character(s) at BUF according to TRANS.
6955 TRANS is TO-CHAR, [TO-CHAR ...], or ((FROM . TO) ...) where FROM =
6956 [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...]. The return value
6957 is TO-CHAR or [TO-CHAR ...] if a translation is found, Qnil if not
6958 found, or Qt if BUF is too short to lookup characters in FROM. As
6959 a side effect, if a translation is found, *NCHARS is set to the
6960 number of characters being translated. */
6961
6962 static Lisp_Object
6963 get_translation (Lisp_Object trans, int *buf, int *buf_end, ptrdiff_t *nchars)
6964 {
6965 if (INTEGERP (trans) || VECTORP (trans))
6966 {
6967 *nchars = 1;
6968 return trans;
6969 }
6970 for (; CONSP (trans); trans = XCDR (trans))
6971 {
6972 Lisp_Object val = XCAR (trans);
6973 Lisp_Object from = XCAR (val);
6974 ptrdiff_t len = ASIZE (from);
6975 ptrdiff_t i;
6976
6977 for (i = 0; i < len; i++)
6978 {
6979 if (buf + i == buf_end)
6980 return Qt;
6981 if (XINT (AREF (from, i)) != buf[i])
6982 break;
6983 }
6984 if (i == len)
6985 {
6986 *nchars = len;
6987 return XCDR (val);
6988 }
6989 }
6990 return Qnil;
6991 }
6992
6993
6994 static int
6995 produce_chars (struct coding_system *coding, Lisp_Object translation_table,
6996 bool last_block)
6997 {
6998 unsigned char *dst = coding->destination + coding->produced;
6999 unsigned char *dst_end = coding->destination + coding->dst_bytes;
7000 ptrdiff_t produced;
7001 ptrdiff_t produced_chars = 0;
7002 int carryover = 0;
7003
7004 if (! coding->chars_at_source)
7005 {
7006 /* Source characters are in coding->charbuf. */
7007 int *buf = coding->charbuf;
7008 int *buf_end = buf + coding->charbuf_used;
7009
7010 if (EQ (coding->src_object, coding->dst_object)
7011 && ! NILP (coding->dst_object))
7012 {
7013 eassert (growable_destination (coding));
7014 coding_set_source (coding);
7015 dst_end = ((unsigned char *) coding->source) + coding->consumed;
7016 }
7017
7018 while (buf < buf_end)
7019 {
7020 int c = *buf;
7021 ptrdiff_t i;
7022
7023 if (c >= 0)
7024 {
7025 ptrdiff_t from_nchars = 1, to_nchars = 1;
7026 Lisp_Object trans = Qnil;
7027
7028 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7029 if (! NILP (trans))
7030 {
7031 trans = get_translation (trans, buf, buf_end, &from_nchars);
7032 if (INTEGERP (trans))
7033 c = XINT (trans);
7034 else if (VECTORP (trans))
7035 {
7036 to_nchars = ASIZE (trans);
7037 c = XINT (AREF (trans, 0));
7038 }
7039 else if (EQ (trans, Qt) && ! last_block)
7040 break;
7041 }
7042
7043 if ((dst_end - dst) / MAX_MULTIBYTE_LENGTH < to_nchars)
7044 {
7045 eassert (growable_destination (coding));
7046 ptrdiff_t dst_size;
7047 if (INT_MULTIPLY_WRAPV (to_nchars, MAX_MULTIBYTE_LENGTH,
7048 &dst_size)
7049 || INT_ADD_WRAPV (buf_end - buf, dst_size, &dst_size))
7050 memory_full (SIZE_MAX);
7051 dst = alloc_destination (coding, dst_size, dst);
7052 if (EQ (coding->src_object, coding->dst_object))
7053 {
7054 coding_set_source (coding);
7055 dst_end = (((unsigned char *) coding->source)
7056 + coding->consumed);
7057 }
7058 else
7059 dst_end = coding->destination + coding->dst_bytes;
7060 }
7061
7062 for (i = 0; i < to_nchars; i++)
7063 {
7064 if (i > 0)
7065 c = XINT (AREF (trans, i));
7066 if (coding->dst_multibyte
7067 || ! CHAR_BYTE8_P (c))
7068 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
7069 else
7070 *dst++ = CHAR_TO_BYTE8 (c);
7071 }
7072 produced_chars += to_nchars;
7073 buf += from_nchars;
7074 }
7075 else
7076 /* This is an annotation datum. (-C) is the length. */
7077 buf += -c;
7078 }
7079 carryover = buf_end - buf;
7080 }
7081 else
7082 {
7083 /* Source characters are at coding->source. */
7084 const unsigned char *src = coding->source;
7085 const unsigned char *src_end = src + coding->consumed;
7086
7087 if (EQ (coding->dst_object, coding->src_object))
7088 {
7089 eassert (growable_destination (coding));
7090 dst_end = (unsigned char *) src;
7091 }
7092 if (coding->src_multibyte != coding->dst_multibyte)
7093 {
7094 if (coding->src_multibyte)
7095 {
7096 bool multibytep = 1;
7097 ptrdiff_t consumed_chars = 0;
7098
7099 while (1)
7100 {
7101 const unsigned char *src_base = src;
7102 int c;
7103
7104 ONE_MORE_BYTE (c);
7105 if (dst == dst_end)
7106 {
7107 eassert (growable_destination (coding));
7108 if (EQ (coding->src_object, coding->dst_object))
7109 dst_end = (unsigned char *) src;
7110 if (dst == dst_end)
7111 {
7112 ptrdiff_t offset = src - coding->source;
7113
7114 dst = alloc_destination (coding, src_end - src + 1,
7115 dst);
7116 dst_end = coding->destination + coding->dst_bytes;
7117 coding_set_source (coding);
7118 src = coding->source + offset;
7119 src_end = coding->source + coding->consumed;
7120 if (EQ (coding->src_object, coding->dst_object))
7121 dst_end = (unsigned char *) src;
7122 }
7123 }
7124 *dst++ = c;
7125 produced_chars++;
7126 }
7127 no_more_source:
7128 ;
7129 }
7130 else
7131 while (src < src_end)
7132 {
7133 bool multibytep = 1;
7134 int c = *src++;
7135
7136 if (dst >= dst_end - 1)
7137 {
7138 eassert (growable_destination (coding));
7139 if (EQ (coding->src_object, coding->dst_object))
7140 dst_end = (unsigned char *) src;
7141 if (dst >= dst_end - 1)
7142 {
7143 ptrdiff_t offset = src - coding->source;
7144 ptrdiff_t more_bytes;
7145
7146 if (EQ (coding->src_object, coding->dst_object))
7147 more_bytes = ((src_end - src) / 2) + 2;
7148 else
7149 more_bytes = src_end - src + 2;
7150 dst = alloc_destination (coding, more_bytes, dst);
7151 dst_end = coding->destination + coding->dst_bytes;
7152 coding_set_source (coding);
7153 src = coding->source + offset;
7154 src_end = coding->source + coding->consumed;
7155 if (EQ (coding->src_object, coding->dst_object))
7156 dst_end = (unsigned char *) src;
7157 }
7158 }
7159 EMIT_ONE_BYTE (c);
7160 }
7161 }
7162 else
7163 {
7164 if (!EQ (coding->src_object, coding->dst_object))
7165 {
7166 ptrdiff_t require = coding->src_bytes - coding->dst_bytes;
7167
7168 if (require > 0)
7169 {
7170 ptrdiff_t offset = src - coding->source;
7171
7172 dst = alloc_destination (coding, require, dst);
7173 coding_set_source (coding);
7174 src = coding->source + offset;
7175 src_end = coding->source + coding->consumed;
7176 }
7177 }
7178 produced_chars = coding->consumed_char;
7179 while (src < src_end)
7180 *dst++ = *src++;
7181 }
7182 }
7183
7184 produced = dst - (coding->destination + coding->produced);
7185 if (BUFFERP (coding->dst_object) && produced_chars > 0)
7186 insert_from_gap (produced_chars, produced, 0);
7187 coding->produced += produced;
7188 coding->produced_char += produced_chars;
7189 return carryover;
7190 }
7191
7192 /* Compose text in CODING->object according to the annotation data at
7193 CHARBUF. CHARBUF is an array:
7194 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
7195 */
7196
7197 static void
7198 produce_composition (struct coding_system *coding, int *charbuf, ptrdiff_t pos)
7199 {
7200 int len;
7201 ptrdiff_t to;
7202 enum composition_method method;
7203 Lisp_Object components;
7204
7205 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
7206 to = pos + charbuf[2];
7207 method = (enum composition_method) (charbuf[4]);
7208
7209 if (method == COMPOSITION_RELATIVE)
7210 components = Qnil;
7211 else
7212 {
7213 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
7214 int i, j;
7215
7216 if (method == COMPOSITION_WITH_RULE)
7217 len = charbuf[2] * 3 - 2;
7218 charbuf += MAX_ANNOTATION_LENGTH;
7219 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
7220 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
7221 {
7222 if (charbuf[i] >= 0)
7223 args[j] = make_number (charbuf[i]);
7224 else
7225 {
7226 i++;
7227 args[j] = make_number (charbuf[i] % 0x100);
7228 }
7229 }
7230 components = (i == j ? Fstring (j, args) : Fvector (j, args));
7231 }
7232 compose_text (pos, to, components, Qnil, coding->dst_object);
7233 }
7234
7235
7236 /* Put `charset' property on text in CODING->object according to
7237 the annotation data at CHARBUF. CHARBUF is an array:
7238 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
7239 */
7240
7241 static void
7242 produce_charset (struct coding_system *coding, int *charbuf, ptrdiff_t pos)
7243 {
7244 ptrdiff_t from = pos - charbuf[2];
7245 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
7246
7247 Fput_text_property (make_number (from), make_number (pos),
7248 Qcharset, CHARSET_NAME (charset),
7249 coding->dst_object);
7250 }
7251
7252 #define MAX_CHARBUF_SIZE 0x4000
7253 /* How many units decoding functions expect in coding->charbuf at
7254 most. Currently, decode_coding_emacs_mule expects the following
7255 size, and that is the largest value. */
7256 #define MAX_CHARBUF_EXTRA_SIZE ((MAX_ANNOTATION_LENGTH * 3) + 1)
7257
7258 #define ALLOC_CONVERSION_WORK_AREA(coding, size) \
7259 do { \
7260 ptrdiff_t units = min ((size) + MAX_CHARBUF_EXTRA_SIZE, \
7261 MAX_CHARBUF_SIZE); \
7262 coding->charbuf = SAFE_ALLOCA (units * sizeof (int)); \
7263 coding->charbuf_size = units; \
7264 } while (0)
7265
7266 static void
7267 produce_annotation (struct coding_system *coding, ptrdiff_t pos)
7268 {
7269 int *charbuf = coding->charbuf;
7270 int *charbuf_end = charbuf + coding->charbuf_used;
7271
7272 if (NILP (coding->dst_object))
7273 return;
7274
7275 while (charbuf < charbuf_end)
7276 {
7277 if (*charbuf >= 0)
7278 pos++, charbuf++;
7279 else
7280 {
7281 int len = -*charbuf;
7282
7283 if (len > 2)
7284 switch (charbuf[1])
7285 {
7286 case CODING_ANNOTATE_COMPOSITION_MASK:
7287 produce_composition (coding, charbuf, pos);
7288 break;
7289 case CODING_ANNOTATE_CHARSET_MASK:
7290 produce_charset (coding, charbuf, pos);
7291 break;
7292 default:
7293 break;
7294 }
7295 charbuf += len;
7296 }
7297 }
7298 }
7299
7300 /* Decode the data at CODING->src_object into CODING->dst_object.
7301 CODING->src_object is a buffer, a string, or nil.
7302 CODING->dst_object is a buffer.
7303
7304 If CODING->src_object is a buffer, it must be the current buffer.
7305 In this case, if CODING->src_pos is positive, it is a position of
7306 the source text in the buffer, otherwise, the source text is in the
7307 gap area of the buffer, and CODING->src_pos specifies the offset of
7308 the text from GPT (which must be the same as PT). If this is the
7309 same buffer as CODING->dst_object, CODING->src_pos must be
7310 negative.
7311
7312 If CODING->src_object is a string, CODING->src_pos is an index to
7313 that string.
7314
7315 If CODING->src_object is nil, CODING->source must already point to
7316 the non-relocatable memory area. In this case, CODING->src_pos is
7317 an offset from CODING->source.
7318
7319 The decoded data is inserted at the current point of the buffer
7320 CODING->dst_object.
7321 */
7322
7323 static void
7324 decode_coding (struct coding_system *coding)
7325 {
7326 Lisp_Object attrs;
7327 Lisp_Object undo_list;
7328 Lisp_Object translation_table;
7329 struct ccl_spec cclspec;
7330 int carryover;
7331 int i;
7332
7333 USE_SAFE_ALLOCA;
7334
7335 if (BUFFERP (coding->src_object)
7336 && coding->src_pos > 0
7337 && coding->src_pos < GPT
7338 && coding->src_pos + coding->src_chars > GPT)
7339 move_gap_both (coding->src_pos, coding->src_pos_byte);
7340
7341 undo_list = Qt;
7342 if (BUFFERP (coding->dst_object))
7343 {
7344 set_buffer_internal (XBUFFER (coding->dst_object));
7345 if (GPT != PT)
7346 move_gap_both (PT, PT_BYTE);
7347
7348 /* We must disable undo_list in order to record the whole insert
7349 transaction via record_insert at the end. But doing so also
7350 disables the recording of the first change to the undo_list.
7351 Therefore we check for first change here and record it via
7352 record_first_change if needed. */
7353 if (MODIFF <= SAVE_MODIFF)
7354 record_first_change ();
7355
7356 undo_list = BVAR (current_buffer, undo_list);
7357 bset_undo_list (current_buffer, Qt);
7358 }
7359
7360 coding->consumed = coding->consumed_char = 0;
7361 coding->produced = coding->produced_char = 0;
7362 coding->chars_at_source = 0;
7363 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7364
7365 ALLOC_CONVERSION_WORK_AREA (coding, coding->src_bytes);
7366
7367 attrs = CODING_ID_ATTRS (coding->id);
7368 translation_table = get_translation_table (attrs, 0, NULL);
7369
7370 carryover = 0;
7371 if (coding->decoder == decode_coding_ccl)
7372 {
7373 coding->spec.ccl = &cclspec;
7374 setup_ccl_program (&cclspec.ccl, CODING_CCL_DECODER (coding));
7375 }
7376 do
7377 {
7378 ptrdiff_t pos = coding->dst_pos + coding->produced_char;
7379
7380 coding_set_source (coding);
7381 coding->annotated = 0;
7382 coding->charbuf_used = carryover;
7383 (*(coding->decoder)) (coding);
7384 coding_set_destination (coding);
7385 carryover = produce_chars (coding, translation_table, 0);
7386 if (coding->annotated)
7387 produce_annotation (coding, pos);
7388 for (i = 0; i < carryover; i++)
7389 coding->charbuf[i]
7390 = coding->charbuf[coding->charbuf_used - carryover + i];
7391 }
7392 while (coding->result == CODING_RESULT_INSUFFICIENT_DST
7393 || (coding->consumed < coding->src_bytes
7394 && (coding->result == CODING_RESULT_SUCCESS
7395 || coding->result == CODING_RESULT_INVALID_SRC)));
7396
7397 if (carryover > 0)
7398 {
7399 coding_set_destination (coding);
7400 coding->charbuf_used = carryover;
7401 produce_chars (coding, translation_table, 1);
7402 }
7403
7404 coding->carryover_bytes = 0;
7405 if (coding->consumed < coding->src_bytes)
7406 {
7407 ptrdiff_t nbytes = coding->src_bytes - coding->consumed;
7408 const unsigned char *src;
7409
7410 coding_set_source (coding);
7411 coding_set_destination (coding);
7412 src = coding->source + coding->consumed;
7413
7414 if (coding->mode & CODING_MODE_LAST_BLOCK)
7415 {
7416 /* Flush out unprocessed data as binary chars. We are sure
7417 that the number of data is less than the size of
7418 coding->charbuf. */
7419 coding->charbuf_used = 0;
7420 coding->chars_at_source = 0;
7421
7422 while (nbytes-- > 0)
7423 {
7424 int c = *src++;
7425
7426 if (c & 0x80)
7427 c = BYTE8_TO_CHAR (c);
7428 coding->charbuf[coding->charbuf_used++] = c;
7429 }
7430 produce_chars (coding, Qnil, 1);
7431 }
7432 else
7433 {
7434 /* Record unprocessed bytes in coding->carryover. We are
7435 sure that the number of data is less than the size of
7436 coding->carryover. */
7437 unsigned char *p = coding->carryover;
7438
7439 if (nbytes > sizeof coding->carryover)
7440 nbytes = sizeof coding->carryover;
7441 coding->carryover_bytes = nbytes;
7442 while (nbytes-- > 0)
7443 *p++ = *src++;
7444 }
7445 coding->consumed = coding->src_bytes;
7446 }
7447
7448 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7449 && !inhibit_eol_conversion)
7450 decode_eol (coding);
7451 if (BUFFERP (coding->dst_object))
7452 {
7453 bset_undo_list (current_buffer, undo_list);
7454 record_insert (coding->dst_pos, coding->produced_char);
7455 }
7456
7457 SAFE_FREE ();
7458 }
7459
7460
7461 /* Extract an annotation datum from a composition starting at POS and
7462 ending before LIMIT of CODING->src_object (buffer or string), store
7463 the data in BUF, set *STOP to a starting position of the next
7464 composition (if any) or to LIMIT, and return the address of the
7465 next element of BUF.
7466
7467 If such an annotation is not found, set *STOP to a starting
7468 position of a composition after POS (if any) or to LIMIT, and
7469 return BUF. */
7470
7471 static int *
7472 handle_composition_annotation (ptrdiff_t pos, ptrdiff_t limit,
7473 struct coding_system *coding, int *buf,
7474 ptrdiff_t *stop)
7475 {
7476 ptrdiff_t start, end;
7477 Lisp_Object prop;
7478
7479 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7480 || end > limit)
7481 *stop = limit;
7482 else if (start > pos)
7483 *stop = start;
7484 else
7485 {
7486 if (start == pos)
7487 {
7488 /* We found a composition. Store the corresponding
7489 annotation data in BUF. */
7490 int *head = buf;
7491 enum composition_method method = composition_method (prop);
7492 int nchars = COMPOSITION_LENGTH (prop);
7493
7494 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7495 if (method != COMPOSITION_RELATIVE)
7496 {
7497 Lisp_Object components;
7498 ptrdiff_t i, len, i_byte;
7499
7500 components = COMPOSITION_COMPONENTS (prop);
7501 if (VECTORP (components))
7502 {
7503 len = ASIZE (components);
7504 for (i = 0; i < len; i++)
7505 *buf++ = XINT (AREF (components, i));
7506 }
7507 else if (STRINGP (components))
7508 {
7509 len = SCHARS (components);
7510 i = i_byte = 0;
7511 while (i < len)
7512 {
7513 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7514 buf++;
7515 }
7516 }
7517 else if (INTEGERP (components))
7518 {
7519 len = 1;
7520 *buf++ = XINT (components);
7521 }
7522 else if (CONSP (components))
7523 {
7524 for (len = 0; CONSP (components);
7525 len++, components = XCDR (components))
7526 *buf++ = XINT (XCAR (components));
7527 }
7528 else
7529 emacs_abort ();
7530 *head -= len;
7531 }
7532 }
7533
7534 if (find_composition (end, limit, &start, &end, &prop,
7535 coding->src_object)
7536 && end <= limit)
7537 *stop = start;
7538 else
7539 *stop = limit;
7540 }
7541 return buf;
7542 }
7543
7544
7545 /* Extract an annotation datum from a text property `charset' at POS of
7546 CODING->src_object (buffer of string), store the data in BUF, set
7547 *STOP to the position where the value of `charset' property changes
7548 (limiting by LIMIT), and return the address of the next element of
7549 BUF.
7550
7551 If the property value is nil, set *STOP to the position where the
7552 property value is non-nil (limiting by LIMIT), and return BUF. */
7553
7554 static int *
7555 handle_charset_annotation (ptrdiff_t pos, ptrdiff_t limit,
7556 struct coding_system *coding, int *buf,
7557 ptrdiff_t *stop)
7558 {
7559 Lisp_Object val, next;
7560 int id;
7561
7562 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7563 if (! NILP (val) && CHARSETP (val))
7564 id = XINT (CHARSET_SYMBOL_ID (val));
7565 else
7566 id = -1;
7567 ADD_CHARSET_DATA (buf, 0, id);
7568 next = Fnext_single_property_change (make_number (pos), Qcharset,
7569 coding->src_object,
7570 make_number (limit));
7571 *stop = XINT (next);
7572 return buf;
7573 }
7574
7575
7576 static void
7577 consume_chars (struct coding_system *coding, Lisp_Object translation_table,
7578 int max_lookup)
7579 {
7580 int *buf = coding->charbuf;
7581 int *buf_end = coding->charbuf + coding->charbuf_size;
7582 const unsigned char *src = coding->source + coding->consumed;
7583 const unsigned char *src_end = coding->source + coding->src_bytes;
7584 ptrdiff_t pos = coding->src_pos + coding->consumed_char;
7585 ptrdiff_t end_pos = coding->src_pos + coding->src_chars;
7586 bool multibytep = coding->src_multibyte;
7587 Lisp_Object eol_type;
7588 int c;
7589 ptrdiff_t stop, stop_composition, stop_charset;
7590 int *lookup_buf = NULL;
7591
7592 if (! NILP (translation_table))
7593 lookup_buf = alloca (sizeof (int) * max_lookup);
7594
7595 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7596 if (VECTORP (eol_type))
7597 eol_type = Qunix;
7598
7599 /* Note: composition handling is not yet implemented. */
7600 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7601
7602 if (NILP (coding->src_object))
7603 stop = stop_composition = stop_charset = end_pos;
7604 else
7605 {
7606 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7607 stop = stop_composition = pos;
7608 else
7609 stop = stop_composition = end_pos;
7610 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7611 stop = stop_charset = pos;
7612 else
7613 stop_charset = end_pos;
7614 }
7615
7616 /* Compensate for CRLF and conversion. */
7617 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7618 while (buf < buf_end)
7619 {
7620 Lisp_Object trans;
7621
7622 if (pos == stop)
7623 {
7624 if (pos == end_pos)
7625 break;
7626 if (pos == stop_composition)
7627 buf = handle_composition_annotation (pos, end_pos, coding,
7628 buf, &stop_composition);
7629 if (pos == stop_charset)
7630 buf = handle_charset_annotation (pos, end_pos, coding,
7631 buf, &stop_charset);
7632 stop = (stop_composition < stop_charset
7633 ? stop_composition : stop_charset);
7634 }
7635
7636 if (! multibytep)
7637 {
7638 int bytes;
7639
7640 if (coding->encoder == encode_coding_raw_text
7641 || coding->encoder == encode_coding_ccl)
7642 c = *src++, pos++;
7643 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7644 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7645 else
7646 c = BYTE8_TO_CHAR (*src), src++, pos++;
7647 }
7648 else
7649 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7650 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7651 c = '\n';
7652 if (! EQ (eol_type, Qunix))
7653 {
7654 if (c == '\n')
7655 {
7656 if (EQ (eol_type, Qdos))
7657 *buf++ = '\r';
7658 else
7659 c = '\r';
7660 }
7661 }
7662
7663 trans = Qnil;
7664 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7665 if (NILP (trans))
7666 *buf++ = c;
7667 else
7668 {
7669 ptrdiff_t from_nchars = 1, to_nchars = 1;
7670 int *lookup_buf_end;
7671 const unsigned char *p = src;
7672 int i;
7673
7674 lookup_buf[0] = c;
7675 for (i = 1; i < max_lookup && p < src_end; i++)
7676 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7677 lookup_buf_end = lookup_buf + i;
7678 trans = get_translation (trans, lookup_buf, lookup_buf_end,
7679 &from_nchars);
7680 if (INTEGERP (trans))
7681 c = XINT (trans);
7682 else if (VECTORP (trans))
7683 {
7684 to_nchars = ASIZE (trans);
7685 if (buf_end - buf < to_nchars)
7686 break;
7687 c = XINT (AREF (trans, 0));
7688 }
7689 else
7690 break;
7691 *buf++ = c;
7692 for (i = 1; i < to_nchars; i++)
7693 *buf++ = XINT (AREF (trans, i));
7694 for (i = 1; i < from_nchars; i++, pos++)
7695 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7696 }
7697 }
7698
7699 coding->consumed = src - coding->source;
7700 coding->consumed_char = pos - coding->src_pos;
7701 coding->charbuf_used = buf - coding->charbuf;
7702 coding->chars_at_source = 0;
7703 }
7704
7705
7706 /* Encode the text at CODING->src_object into CODING->dst_object.
7707 CODING->src_object is a buffer or a string.
7708 CODING->dst_object is a buffer or nil.
7709
7710 If CODING->src_object is a buffer, it must be the current buffer.
7711 In this case, if CODING->src_pos is positive, it is a position of
7712 the source text in the buffer, otherwise. the source text is in the
7713 gap area of the buffer, and coding->src_pos specifies the offset of
7714 the text from GPT (which must be the same as PT). If this is the
7715 same buffer as CODING->dst_object, CODING->src_pos must be
7716 negative and CODING should not have `pre-write-conversion'.
7717
7718 If CODING->src_object is a string, CODING should not have
7719 `pre-write-conversion'.
7720
7721 If CODING->dst_object is a buffer, the encoded data is inserted at
7722 the current point of that buffer.
7723
7724 If CODING->dst_object is nil, the encoded data is placed at the
7725 memory area specified by CODING->destination. */
7726
7727 static void
7728 encode_coding (struct coding_system *coding)
7729 {
7730 Lisp_Object attrs;
7731 Lisp_Object translation_table;
7732 int max_lookup;
7733 struct ccl_spec cclspec;
7734
7735 USE_SAFE_ALLOCA;
7736
7737 attrs = CODING_ID_ATTRS (coding->id);
7738 if (coding->encoder == encode_coding_raw_text)
7739 translation_table = Qnil, max_lookup = 0;
7740 else
7741 translation_table = get_translation_table (attrs, 1, &max_lookup);
7742
7743 if (BUFFERP (coding->dst_object))
7744 {
7745 set_buffer_internal (XBUFFER (coding->dst_object));
7746 coding->dst_multibyte
7747 = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7748 }
7749
7750 coding->consumed = coding->consumed_char = 0;
7751 coding->produced = coding->produced_char = 0;
7752 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7753
7754 ALLOC_CONVERSION_WORK_AREA (coding, coding->src_chars);
7755
7756 if (coding->encoder == encode_coding_ccl)
7757 {
7758 coding->spec.ccl = &cclspec;
7759 setup_ccl_program (&cclspec.ccl, CODING_CCL_ENCODER (coding));
7760 }
7761 do {
7762 coding_set_source (coding);
7763 consume_chars (coding, translation_table, max_lookup);
7764 coding_set_destination (coding);
7765 (*(coding->encoder)) (coding);
7766 } while (coding->consumed_char < coding->src_chars);
7767
7768 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7769 insert_from_gap (coding->produced_char, coding->produced, 0);
7770
7771 SAFE_FREE ();
7772 }
7773
7774
7775 /* Name (or base name) of work buffer for code conversion. */
7776 static Lisp_Object Vcode_conversion_workbuf_name;
7777
7778 /* A working buffer used by the top level conversion. Once it is
7779 created, it is never destroyed. It has the name
7780 Vcode_conversion_workbuf_name. The other working buffers are
7781 destroyed after the use is finished, and their names are modified
7782 versions of Vcode_conversion_workbuf_name. */
7783 static Lisp_Object Vcode_conversion_reused_workbuf;
7784
7785 /* True iff Vcode_conversion_reused_workbuf is already in use. */
7786 static bool reused_workbuf_in_use;
7787
7788
7789 /* Return a working buffer of code conversion. MULTIBYTE specifies the
7790 multibyteness of returning buffer. */
7791
7792 static Lisp_Object
7793 make_conversion_work_buffer (bool multibyte)
7794 {
7795 Lisp_Object name, workbuf;
7796 struct buffer *current;
7797
7798 if (reused_workbuf_in_use)
7799 {
7800 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7801 workbuf = Fget_buffer_create (name);
7802 }
7803 else
7804 {
7805 reused_workbuf_in_use = 1;
7806 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7807 Vcode_conversion_reused_workbuf
7808 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7809 workbuf = Vcode_conversion_reused_workbuf;
7810 }
7811 current = current_buffer;
7812 set_buffer_internal (XBUFFER (workbuf));
7813 /* We can't allow modification hooks to run in the work buffer. For
7814 instance, directory_files_internal assumes that file decoding
7815 doesn't compile new regexps. */
7816 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7817 Ferase_buffer ();
7818 bset_undo_list (current_buffer, Qt);
7819 bset_enable_multibyte_characters (current_buffer, multibyte ? Qt : Qnil);
7820 set_buffer_internal (current);
7821 return workbuf;
7822 }
7823
7824
7825 static void
7826 code_conversion_restore (Lisp_Object arg)
7827 {
7828 Lisp_Object current, workbuf;
7829
7830 current = XCAR (arg);
7831 workbuf = XCDR (arg);
7832 if (! NILP (workbuf))
7833 {
7834 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7835 reused_workbuf_in_use = 0;
7836 else
7837 Fkill_buffer (workbuf);
7838 }
7839 set_buffer_internal (XBUFFER (current));
7840 }
7841
7842 Lisp_Object
7843 code_conversion_save (bool with_work_buf, bool multibyte)
7844 {
7845 Lisp_Object workbuf = Qnil;
7846
7847 if (with_work_buf)
7848 workbuf = make_conversion_work_buffer (multibyte);
7849 record_unwind_protect (code_conversion_restore,
7850 Fcons (Fcurrent_buffer (), workbuf));
7851 return workbuf;
7852 }
7853
7854 void
7855 decode_coding_gap (struct coding_system *coding,
7856 ptrdiff_t chars, ptrdiff_t bytes)
7857 {
7858 ptrdiff_t count = SPECPDL_INDEX ();
7859 Lisp_Object attrs;
7860
7861 coding->src_object = Fcurrent_buffer ();
7862 coding->src_chars = chars;
7863 coding->src_bytes = bytes;
7864 coding->src_pos = -chars;
7865 coding->src_pos_byte = -bytes;
7866 coding->src_multibyte = chars < bytes;
7867 coding->dst_object = coding->src_object;
7868 coding->dst_pos = PT;
7869 coding->dst_pos_byte = PT_BYTE;
7870 coding->dst_multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7871
7872 coding->head_ascii = -1;
7873 coding->detected_utf8_bytes = coding->detected_utf8_chars = -1;
7874 coding->eol_seen = EOL_SEEN_NONE;
7875 if (CODING_REQUIRE_DETECTION (coding))
7876 detect_coding (coding);
7877 attrs = CODING_ID_ATTRS (coding->id);
7878 if (! disable_ascii_optimization
7879 && ! coding->src_multibyte
7880 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs))
7881 && NILP (CODING_ATTR_POST_READ (attrs))
7882 && NILP (get_translation_table (attrs, 0, NULL)))
7883 {
7884 chars = coding->head_ascii;
7885 if (chars < 0)
7886 chars = check_ascii (coding);
7887 if (chars != bytes)
7888 {
7889 /* There exists a non-ASCII byte. */
7890 if (EQ (CODING_ATTR_TYPE (attrs), Qutf_8)
7891 && coding->detected_utf8_bytes == coding->src_bytes)
7892 {
7893 if (coding->detected_utf8_chars >= 0)
7894 chars = coding->detected_utf8_chars;
7895 else
7896 chars = check_utf_8 (coding);
7897 if (CODING_UTF_8_BOM (coding) != utf_without_bom
7898 && coding->head_ascii == 0
7899 && coding->source[0] == UTF_8_BOM_1
7900 && coding->source[1] == UTF_8_BOM_2
7901 && coding->source[2] == UTF_8_BOM_3)
7902 {
7903 chars--;
7904 bytes -= 3;
7905 coding->src_bytes -= 3;
7906 }
7907 }
7908 else
7909 chars = -1;
7910 }
7911 if (chars >= 0)
7912 {
7913 Lisp_Object eol_type;
7914
7915 eol_type = CODING_ID_EOL_TYPE (coding->id);
7916 if (VECTORP (eol_type))
7917 {
7918 if (coding->eol_seen != EOL_SEEN_NONE)
7919 eol_type = adjust_coding_eol_type (coding, coding->eol_seen);
7920 }
7921 if (EQ (eol_type, Qmac))
7922 {
7923 unsigned char *src_end = GAP_END_ADDR;
7924 unsigned char *src = src_end - coding->src_bytes;
7925
7926 while (src < src_end)
7927 {
7928 if (*src++ == '\r')
7929 src[-1] = '\n';
7930 }
7931 }
7932 else if (EQ (eol_type, Qdos))
7933 {
7934 unsigned char *src = GAP_END_ADDR;
7935 unsigned char *src_beg = src - coding->src_bytes;
7936 unsigned char *dst = src;
7937 ptrdiff_t diff;
7938
7939 while (src_beg < src)
7940 {
7941 *--dst = *--src;
7942 if (*src == '\n' && src > src_beg && src[-1] == '\r')
7943 src--;
7944 }
7945 diff = dst - src;
7946 bytes -= diff;
7947 chars -= diff;
7948 }
7949 coding->produced = bytes;
7950 coding->produced_char = chars;
7951 insert_from_gap (chars, bytes, 1);
7952 return;
7953 }
7954 }
7955 code_conversion_save (0, 0);
7956
7957 coding->mode |= CODING_MODE_LAST_BLOCK;
7958 current_buffer->text->inhibit_shrinking = 1;
7959 decode_coding (coding);
7960 current_buffer->text->inhibit_shrinking = 0;
7961
7962 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7963 {
7964 ptrdiff_t prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7965 Lisp_Object val;
7966
7967 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7968 val = call1 (CODING_ATTR_POST_READ (attrs),
7969 make_number (coding->produced_char));
7970 CHECK_NATNUM (val);
7971 coding->produced_char += Z - prev_Z;
7972 coding->produced += Z_BYTE - prev_Z_BYTE;
7973 }
7974
7975 unbind_to (count, Qnil);
7976 }
7977
7978
7979 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7980 SRC_OBJECT into DST_OBJECT by coding context CODING.
7981
7982 SRC_OBJECT is a buffer, a string, or Qnil.
7983
7984 If it is a buffer, the text is at point of the buffer. FROM and TO
7985 are positions in the buffer.
7986
7987 If it is a string, the text is at the beginning of the string.
7988 FROM and TO are indices to the string.
7989
7990 If it is nil, the text is at coding->source. FROM and TO are
7991 indices to coding->source.
7992
7993 DST_OBJECT is a buffer, Qt, or Qnil.
7994
7995 If it is a buffer, the decoded text is inserted at point of the
7996 buffer. If the buffer is the same as SRC_OBJECT, the source text
7997 is deleted.
7998
7999 If it is Qt, a string is made from the decoded text, and
8000 set in CODING->dst_object.
8001
8002 If it is Qnil, the decoded text is stored at CODING->destination.
8003 The caller must allocate CODING->dst_bytes bytes at
8004 CODING->destination by xmalloc. If the decoded text is longer than
8005 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
8006 */
8007
8008 void
8009 decode_coding_object (struct coding_system *coding,
8010 Lisp_Object src_object,
8011 ptrdiff_t from, ptrdiff_t from_byte,
8012 ptrdiff_t to, ptrdiff_t to_byte,
8013 Lisp_Object dst_object)
8014 {
8015 ptrdiff_t count = SPECPDL_INDEX ();
8016 unsigned char *destination;
8017 ptrdiff_t dst_bytes;
8018 ptrdiff_t chars = to - from;
8019 ptrdiff_t bytes = to_byte - from_byte;
8020 Lisp_Object attrs;
8021 ptrdiff_t saved_pt = -1, saved_pt_byte;
8022 bool need_marker_adjustment = 0;
8023 Lisp_Object old_deactivate_mark;
8024
8025 old_deactivate_mark = Vdeactivate_mark;
8026
8027 if (NILP (dst_object))
8028 {
8029 destination = coding->destination;
8030 dst_bytes = coding->dst_bytes;
8031 }
8032
8033 coding->src_object = src_object;
8034 coding->src_chars = chars;
8035 coding->src_bytes = bytes;
8036 coding->src_multibyte = chars < bytes;
8037
8038 if (STRINGP (src_object))
8039 {
8040 coding->src_pos = from;
8041 coding->src_pos_byte = from_byte;
8042 }
8043 else if (BUFFERP (src_object))
8044 {
8045 set_buffer_internal (XBUFFER (src_object));
8046 if (from != GPT)
8047 move_gap_both (from, from_byte);
8048 if (EQ (src_object, dst_object))
8049 {
8050 struct Lisp_Marker *tail;
8051
8052 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8053 {
8054 tail->need_adjustment
8055 = tail->charpos == (tail->insertion_type ? from : to);
8056 need_marker_adjustment |= tail->need_adjustment;
8057 }
8058 saved_pt = PT, saved_pt_byte = PT_BYTE;
8059 TEMP_SET_PT_BOTH (from, from_byte);
8060 current_buffer->text->inhibit_shrinking = 1;
8061 del_range_both (from, from_byte, to, to_byte, 1);
8062 coding->src_pos = -chars;
8063 coding->src_pos_byte = -bytes;
8064 }
8065 else
8066 {
8067 coding->src_pos = from;
8068 coding->src_pos_byte = from_byte;
8069 }
8070 }
8071
8072 if (CODING_REQUIRE_DETECTION (coding))
8073 detect_coding (coding);
8074 attrs = CODING_ID_ATTRS (coding->id);
8075
8076 if (EQ (dst_object, Qt)
8077 || (! NILP (CODING_ATTR_POST_READ (attrs))
8078 && NILP (dst_object)))
8079 {
8080 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
8081 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
8082 coding->dst_pos = BEG;
8083 coding->dst_pos_byte = BEG_BYTE;
8084 }
8085 else if (BUFFERP (dst_object))
8086 {
8087 code_conversion_save (0, 0);
8088 coding->dst_object = dst_object;
8089 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
8090 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
8091 coding->dst_multibyte
8092 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
8093 }
8094 else
8095 {
8096 code_conversion_save (0, 0);
8097 coding->dst_object = Qnil;
8098 /* Most callers presume this will return a multibyte result, and they
8099 won't use `binary' or `raw-text' anyway, so let's not worry about
8100 CODING_FOR_UNIBYTE. */
8101 coding->dst_multibyte = 1;
8102 }
8103
8104 decode_coding (coding);
8105
8106 if (BUFFERP (coding->dst_object))
8107 set_buffer_internal (XBUFFER (coding->dst_object));
8108
8109 if (! NILP (CODING_ATTR_POST_READ (attrs)))
8110 {
8111 ptrdiff_t prev_Z = Z, prev_Z_BYTE = Z_BYTE;
8112 Lisp_Object val;
8113
8114 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
8115 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
8116 make_number (coding->produced_char));
8117 CHECK_NATNUM (val);
8118 coding->produced_char += Z - prev_Z;
8119 coding->produced += Z_BYTE - prev_Z_BYTE;
8120 }
8121
8122 if (EQ (dst_object, Qt))
8123 {
8124 coding->dst_object = Fbuffer_string ();
8125 }
8126 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
8127 {
8128 set_buffer_internal (XBUFFER (coding->dst_object));
8129 if (dst_bytes < coding->produced)
8130 {
8131 eassert (coding->produced > 0);
8132 destination = xrealloc (destination, coding->produced);
8133 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
8134 move_gap_both (BEGV, BEGV_BYTE);
8135 memcpy (destination, BEGV_ADDR, coding->produced);
8136 coding->destination = destination;
8137 }
8138 }
8139
8140 if (saved_pt >= 0)
8141 {
8142 /* This is the case of:
8143 (BUFFERP (src_object) && EQ (src_object, dst_object))
8144 As we have moved PT while replacing the original buffer
8145 contents, we must recover it now. */
8146 set_buffer_internal (XBUFFER (src_object));
8147 current_buffer->text->inhibit_shrinking = 0;
8148 if (saved_pt < from)
8149 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8150 else if (saved_pt < from + chars)
8151 TEMP_SET_PT_BOTH (from, from_byte);
8152 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
8153 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8154 saved_pt_byte + (coding->produced - bytes));
8155 else
8156 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8157 saved_pt_byte + (coding->produced - bytes));
8158
8159 if (need_marker_adjustment)
8160 {
8161 struct Lisp_Marker *tail;
8162
8163 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8164 if (tail->need_adjustment)
8165 {
8166 tail->need_adjustment = 0;
8167 if (tail->insertion_type)
8168 {
8169 tail->bytepos = from_byte;
8170 tail->charpos = from;
8171 }
8172 else
8173 {
8174 tail->bytepos = from_byte + coding->produced;
8175 tail->charpos
8176 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
8177 ? tail->bytepos : from + coding->produced_char);
8178 }
8179 }
8180 }
8181 }
8182
8183 Vdeactivate_mark = old_deactivate_mark;
8184 unbind_to (count, coding->dst_object);
8185 }
8186
8187
8188 void
8189 encode_coding_object (struct coding_system *coding,
8190 Lisp_Object src_object,
8191 ptrdiff_t from, ptrdiff_t from_byte,
8192 ptrdiff_t to, ptrdiff_t to_byte,
8193 Lisp_Object dst_object)
8194 {
8195 ptrdiff_t count = SPECPDL_INDEX ();
8196 ptrdiff_t chars = to - from;
8197 ptrdiff_t bytes = to_byte - from_byte;
8198 Lisp_Object attrs;
8199 ptrdiff_t saved_pt = -1, saved_pt_byte;
8200 bool need_marker_adjustment = 0;
8201 bool kill_src_buffer = 0;
8202 Lisp_Object old_deactivate_mark;
8203
8204 old_deactivate_mark = Vdeactivate_mark;
8205
8206 coding->src_object = src_object;
8207 coding->src_chars = chars;
8208 coding->src_bytes = bytes;
8209 coding->src_multibyte = chars < bytes;
8210
8211 attrs = CODING_ID_ATTRS (coding->id);
8212
8213 if (EQ (src_object, dst_object))
8214 {
8215 struct Lisp_Marker *tail;
8216
8217 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8218 {
8219 tail->need_adjustment
8220 = tail->charpos == (tail->insertion_type ? from : to);
8221 need_marker_adjustment |= tail->need_adjustment;
8222 }
8223 }
8224
8225 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
8226 {
8227 coding->src_object = code_conversion_save (1, coding->src_multibyte);
8228 set_buffer_internal (XBUFFER (coding->src_object));
8229 if (STRINGP (src_object))
8230 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
8231 else if (BUFFERP (src_object))
8232 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
8233 else
8234 insert_1_both ((char *) coding->source + from, chars, bytes, 0, 0, 0);
8235
8236 if (EQ (src_object, dst_object))
8237 {
8238 set_buffer_internal (XBUFFER (src_object));
8239 saved_pt = PT, saved_pt_byte = PT_BYTE;
8240 del_range_both (from, from_byte, to, to_byte, 1);
8241 set_buffer_internal (XBUFFER (coding->src_object));
8242 }
8243
8244 safe_call2 (CODING_ATTR_PRE_WRITE (attrs),
8245 make_number (BEG), make_number (Z));
8246 if (XBUFFER (coding->src_object) != current_buffer)
8247 kill_src_buffer = 1;
8248 coding->src_object = Fcurrent_buffer ();
8249 if (BEG != GPT)
8250 move_gap_both (BEG, BEG_BYTE);
8251 coding->src_chars = Z - BEG;
8252 coding->src_bytes = Z_BYTE - BEG_BYTE;
8253 coding->src_pos = BEG;
8254 coding->src_pos_byte = BEG_BYTE;
8255 coding->src_multibyte = Z < Z_BYTE;
8256 }
8257 else if (STRINGP (src_object))
8258 {
8259 code_conversion_save (0, 0);
8260 coding->src_pos = from;
8261 coding->src_pos_byte = from_byte;
8262 }
8263 else if (BUFFERP (src_object))
8264 {
8265 code_conversion_save (0, 0);
8266 set_buffer_internal (XBUFFER (src_object));
8267 if (EQ (src_object, dst_object))
8268 {
8269 saved_pt = PT, saved_pt_byte = PT_BYTE;
8270 coding->src_object = del_range_1 (from, to, 1, 1);
8271 coding->src_pos = 0;
8272 coding->src_pos_byte = 0;
8273 }
8274 else
8275 {
8276 if (from < GPT && to >= GPT)
8277 move_gap_both (from, from_byte);
8278 coding->src_pos = from;
8279 coding->src_pos_byte = from_byte;
8280 }
8281 }
8282 else
8283 {
8284 code_conversion_save (0, 0);
8285 coding->src_pos = from;
8286 coding->src_pos_byte = from_byte;
8287 }
8288
8289 if (BUFFERP (dst_object))
8290 {
8291 coding->dst_object = dst_object;
8292 if (EQ (src_object, dst_object))
8293 {
8294 coding->dst_pos = from;
8295 coding->dst_pos_byte = from_byte;
8296 }
8297 else
8298 {
8299 struct buffer *current = current_buffer;
8300
8301 set_buffer_temp (XBUFFER (dst_object));
8302 coding->dst_pos = PT;
8303 coding->dst_pos_byte = PT_BYTE;
8304 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
8305 set_buffer_temp (current);
8306 }
8307 coding->dst_multibyte
8308 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
8309 }
8310 else if (EQ (dst_object, Qt))
8311 {
8312 ptrdiff_t dst_bytes = max (1, coding->src_chars);
8313 coding->dst_object = Qnil;
8314 coding->destination = xmalloc (dst_bytes);
8315 coding->dst_bytes = dst_bytes;
8316 coding->dst_multibyte = 0;
8317 }
8318 else
8319 {
8320 coding->dst_object = Qnil;
8321 coding->dst_multibyte = 0;
8322 }
8323
8324 encode_coding (coding);
8325
8326 if (EQ (dst_object, Qt))
8327 {
8328 if (BUFFERP (coding->dst_object))
8329 coding->dst_object = Fbuffer_string ();
8330 else if (coding->raw_destination)
8331 /* This is used to avoid creating huge Lisp string.
8332 NOTE: caller who sets `raw_destination' is also
8333 responsible for freeing `destination' buffer. */
8334 coding->dst_object = Qnil;
8335 else
8336 {
8337 coding->dst_object
8338 = make_unibyte_string ((char *) coding->destination,
8339 coding->produced);
8340 xfree (coding->destination);
8341 }
8342 }
8343
8344 if (saved_pt >= 0)
8345 {
8346 /* This is the case of:
8347 (BUFFERP (src_object) && EQ (src_object, dst_object))
8348 As we have moved PT while replacing the original buffer
8349 contents, we must recover it now. */
8350 set_buffer_internal (XBUFFER (src_object));
8351 if (saved_pt < from)
8352 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8353 else if (saved_pt < from + chars)
8354 TEMP_SET_PT_BOTH (from, from_byte);
8355 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
8356 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8357 saved_pt_byte + (coding->produced - bytes));
8358 else
8359 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8360 saved_pt_byte + (coding->produced - bytes));
8361
8362 if (need_marker_adjustment)
8363 {
8364 struct Lisp_Marker *tail;
8365
8366 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8367 if (tail->need_adjustment)
8368 {
8369 tail->need_adjustment = 0;
8370 if (tail->insertion_type)
8371 {
8372 tail->bytepos = from_byte;
8373 tail->charpos = from;
8374 }
8375 else
8376 {
8377 tail->bytepos = from_byte + coding->produced;
8378 tail->charpos
8379 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
8380 ? tail->bytepos : from + coding->produced_char);
8381 }
8382 }
8383 }
8384 }
8385
8386 if (kill_src_buffer)
8387 Fkill_buffer (coding->src_object);
8388
8389 Vdeactivate_mark = old_deactivate_mark;
8390 unbind_to (count, Qnil);
8391 }
8392
8393
8394 Lisp_Object
8395 preferred_coding_system (void)
8396 {
8397 int id = coding_categories[coding_priorities[0]].id;
8398
8399 return CODING_ID_NAME (id);
8400 }
8401
8402 #if defined (WINDOWSNT) || defined (CYGWIN)
8403
8404 Lisp_Object
8405 from_unicode (Lisp_Object str)
8406 {
8407 CHECK_STRING (str);
8408 if (!STRING_MULTIBYTE (str) &&
8409 SBYTES (str) & 1)
8410 {
8411 str = Fsubstring (str, make_number (0), make_number (-1));
8412 }
8413
8414 return code_convert_string_norecord (str, Qutf_16le, 0);
8415 }
8416
8417 Lisp_Object
8418 from_unicode_buffer (const wchar_t *wstr)
8419 {
8420 /* We get one of the two final null bytes for free. */
8421 ptrdiff_t len = 1 + sizeof (wchar_t) * wcslen (wstr);
8422 AUTO_STRING_WITH_LEN (str, (char *) wstr, len);
8423 return from_unicode (str);
8424 }
8425
8426 wchar_t *
8427 to_unicode (Lisp_Object str, Lisp_Object *buf)
8428 {
8429 *buf = code_convert_string_norecord (str, Qutf_16le, 1);
8430 /* We need to make another copy (in addition to the one made by
8431 code_convert_string_norecord) to ensure that the final string is
8432 _doubly_ zero terminated --- that is, that the string is
8433 terminated by two zero bytes and one utf-16le null character.
8434 Because strings are already terminated with a single zero byte,
8435 we just add one additional zero. */
8436 str = make_uninit_string (SBYTES (*buf) + 1);
8437 memcpy (SDATA (str), SDATA (*buf), SBYTES (*buf));
8438 SDATA (str) [SBYTES (*buf)] = '\0';
8439 *buf = str;
8440 return WCSDATA (*buf);
8441 }
8442
8443 #endif /* WINDOWSNT || CYGWIN */
8444
8445 \f
8446 #ifdef emacs
8447 /*** 8. Emacs Lisp library functions ***/
8448
8449 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8450 doc: /* Return t if OBJECT is nil or a coding-system.
8451 See the documentation of `define-coding-system' for information
8452 about coding-system objects. */)
8453 (Lisp_Object object)
8454 {
8455 if (NILP (object)
8456 || CODING_SYSTEM_ID (object) >= 0)
8457 return Qt;
8458 if (! SYMBOLP (object)
8459 || NILP (Fget (object, Qcoding_system_define_form)))
8460 return Qnil;
8461 return Qt;
8462 }
8463
8464 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8465 Sread_non_nil_coding_system, 1, 1, 0,
8466 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8467 (Lisp_Object prompt)
8468 {
8469 Lisp_Object val;
8470 do
8471 {
8472 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8473 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8474 }
8475 while (SCHARS (val) == 0);
8476 return (Fintern (val, Qnil));
8477 }
8478
8479 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8480 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8481 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8482 Ignores case when completing coding systems (all Emacs coding systems
8483 are lower-case). */)
8484 (Lisp_Object prompt, Lisp_Object default_coding_system)
8485 {
8486 Lisp_Object val;
8487 ptrdiff_t count = SPECPDL_INDEX ();
8488
8489 if (SYMBOLP (default_coding_system))
8490 default_coding_system = SYMBOL_NAME (default_coding_system);
8491 specbind (Qcompletion_ignore_case, Qt);
8492 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8493 Qt, Qnil, Qcoding_system_history,
8494 default_coding_system, Qnil);
8495 unbind_to (count, Qnil);
8496 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8497 }
8498
8499 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8500 1, 1, 0,
8501 doc: /* Check validity of CODING-SYSTEM.
8502 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8503 It is valid if it is nil or a symbol defined as a coding system by the
8504 function `define-coding-system'. */)
8505 (Lisp_Object coding_system)
8506 {
8507 Lisp_Object define_form;
8508
8509 define_form = Fget (coding_system, Qcoding_system_define_form);
8510 if (! NILP (define_form))
8511 {
8512 Fput (coding_system, Qcoding_system_define_form, Qnil);
8513 safe_eval (define_form);
8514 }
8515 if (!NILP (Fcoding_system_p (coding_system)))
8516 return coding_system;
8517 xsignal1 (Qcoding_system_error, coding_system);
8518 }
8519
8520 \f
8521 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8522 HIGHEST, return the coding system of the highest
8523 priority among the detected coding systems. Otherwise return a
8524 list of detected coding systems sorted by their priorities. If
8525 MULTIBYTEP, it is assumed that the bytes are in correct
8526 multibyte form but contains only ASCII and eight-bit chars.
8527 Otherwise, the bytes are raw bytes.
8528
8529 CODING-SYSTEM controls the detection as below:
8530
8531 If it is nil, detect both text-format and eol-format. If the
8532 text-format part of CODING-SYSTEM is already specified
8533 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8534 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8535 detect only text-format. */
8536
8537 Lisp_Object
8538 detect_coding_system (const unsigned char *src,
8539 ptrdiff_t src_chars, ptrdiff_t src_bytes,
8540 bool highest, bool multibytep,
8541 Lisp_Object coding_system)
8542 {
8543 const unsigned char *src_end = src + src_bytes;
8544 Lisp_Object attrs, eol_type;
8545 Lisp_Object val = Qnil;
8546 struct coding_system coding;
8547 ptrdiff_t id;
8548 struct coding_detection_info detect_info;
8549 enum coding_category base_category;
8550 bool null_byte_found = 0, eight_bit_found = 0;
8551
8552 if (NILP (coding_system))
8553 coding_system = Qundecided;
8554 setup_coding_system (coding_system, &coding);
8555 attrs = CODING_ID_ATTRS (coding.id);
8556 eol_type = CODING_ID_EOL_TYPE (coding.id);
8557 coding_system = CODING_ATTR_BASE_NAME (attrs);
8558
8559 coding.source = src;
8560 coding.src_chars = src_chars;
8561 coding.src_bytes = src_bytes;
8562 coding.src_multibyte = multibytep;
8563 coding.consumed = 0;
8564 coding.mode |= CODING_MODE_LAST_BLOCK;
8565 coding.head_ascii = 0;
8566
8567 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8568
8569 /* At first, detect text-format if necessary. */
8570 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8571 if (base_category == coding_category_undecided)
8572 {
8573 enum coding_category category UNINIT;
8574 struct coding_system *this UNINIT;
8575 int c, i;
8576 bool inhibit_nbd = inhibit_flag (coding.spec.undecided.inhibit_nbd,
8577 inhibit_null_byte_detection);
8578 bool inhibit_ied = inhibit_flag (coding.spec.undecided.inhibit_ied,
8579 inhibit_iso_escape_detection);
8580 bool prefer_utf_8 = coding.spec.undecided.prefer_utf_8;
8581
8582 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8583 for (; src < src_end; src++)
8584 {
8585 c = *src;
8586 if (c & 0x80)
8587 {
8588 eight_bit_found = 1;
8589 if (null_byte_found)
8590 break;
8591 }
8592 else if (c < 0x20)
8593 {
8594 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8595 && ! inhibit_ied
8596 && ! detect_info.checked)
8597 {
8598 if (detect_coding_iso_2022 (&coding, &detect_info))
8599 {
8600 /* We have scanned the whole data. */
8601 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8602 {
8603 /* We didn't find an 8-bit code. We may
8604 have found a null-byte, but it's very
8605 rare that a binary file confirm to
8606 ISO-2022. */
8607 src = src_end;
8608 coding.head_ascii = src - coding.source;
8609 }
8610 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8611 break;
8612 }
8613 }
8614 else if (! c && !inhibit_nbd)
8615 {
8616 null_byte_found = 1;
8617 if (eight_bit_found)
8618 break;
8619 }
8620 if (! eight_bit_found)
8621 coding.head_ascii++;
8622 }
8623 else if (! eight_bit_found)
8624 coding.head_ascii++;
8625 }
8626
8627 if (null_byte_found || eight_bit_found
8628 || coding.head_ascii < coding.src_bytes
8629 || detect_info.found)
8630 {
8631 if (coding.head_ascii == coding.src_bytes)
8632 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8633 for (i = 0; i < coding_category_raw_text; i++)
8634 {
8635 category = coding_priorities[i];
8636 this = coding_categories + category;
8637 if (detect_info.found & (1 << category))
8638 break;
8639 }
8640 else
8641 {
8642 if (null_byte_found)
8643 {
8644 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8645 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8646 }
8647 else if (prefer_utf_8
8648 && detect_coding_utf_8 (&coding, &detect_info))
8649 {
8650 detect_info.checked |= ~CATEGORY_MASK_UTF_8;
8651 detect_info.rejected |= ~CATEGORY_MASK_UTF_8;
8652 }
8653 for (i = 0; i < coding_category_raw_text; i++)
8654 {
8655 category = coding_priorities[i];
8656 this = coding_categories + category;
8657
8658 if (this->id < 0)
8659 {
8660 /* No coding system of this category is defined. */
8661 detect_info.rejected |= (1 << category);
8662 }
8663 else if (category >= coding_category_raw_text)
8664 continue;
8665 else if (detect_info.checked & (1 << category))
8666 {
8667 if (highest
8668 && (detect_info.found & (1 << category)))
8669 break;
8670 }
8671 else if ((*(this->detector)) (&coding, &detect_info)
8672 && highest
8673 && (detect_info.found & (1 << category)))
8674 {
8675 if (category == coding_category_utf_16_auto)
8676 {
8677 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8678 category = coding_category_utf_16_le;
8679 else
8680 category = coding_category_utf_16_be;
8681 }
8682 break;
8683 }
8684 }
8685 }
8686 }
8687
8688 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8689 || null_byte_found)
8690 {
8691 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8692 id = CODING_SYSTEM_ID (Qno_conversion);
8693 val = list1 (make_number (id));
8694 }
8695 else if (! detect_info.rejected && ! detect_info.found)
8696 {
8697 detect_info.found = CATEGORY_MASK_ANY;
8698 id = coding_categories[coding_category_undecided].id;
8699 val = list1 (make_number (id));
8700 }
8701 else if (highest)
8702 {
8703 if (detect_info.found)
8704 {
8705 detect_info.found = 1 << category;
8706 val = list1 (make_number (this->id));
8707 }
8708 else
8709 for (i = 0; i < coding_category_raw_text; i++)
8710 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8711 {
8712 detect_info.found = 1 << coding_priorities[i];
8713 id = coding_categories[coding_priorities[i]].id;
8714 val = list1 (make_number (id));
8715 break;
8716 }
8717 }
8718 else
8719 {
8720 int mask = detect_info.rejected | detect_info.found;
8721 int found = 0;
8722
8723 for (i = coding_category_raw_text - 1; i >= 0; i--)
8724 {
8725 category = coding_priorities[i];
8726 if (! (mask & (1 << category)))
8727 {
8728 found |= 1 << category;
8729 id = coding_categories[category].id;
8730 if (id >= 0)
8731 val = list1 (make_number (id));
8732 }
8733 }
8734 for (i = coding_category_raw_text - 1; i >= 0; i--)
8735 {
8736 category = coding_priorities[i];
8737 if (detect_info.found & (1 << category))
8738 {
8739 id = coding_categories[category].id;
8740 val = Fcons (make_number (id), val);
8741 }
8742 }
8743 detect_info.found |= found;
8744 }
8745 }
8746 else if (base_category == coding_category_utf_8_auto)
8747 {
8748 if (detect_coding_utf_8 (&coding, &detect_info))
8749 {
8750 struct coding_system *this;
8751
8752 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8753 this = coding_categories + coding_category_utf_8_sig;
8754 else
8755 this = coding_categories + coding_category_utf_8_nosig;
8756 val = list1 (make_number (this->id));
8757 }
8758 }
8759 else if (base_category == coding_category_utf_16_auto)
8760 {
8761 if (detect_coding_utf_16 (&coding, &detect_info))
8762 {
8763 struct coding_system *this;
8764
8765 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8766 this = coding_categories + coding_category_utf_16_le;
8767 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8768 this = coding_categories + coding_category_utf_16_be;
8769 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8770 this = coding_categories + coding_category_utf_16_be_nosig;
8771 else
8772 this = coding_categories + coding_category_utf_16_le_nosig;
8773 val = list1 (make_number (this->id));
8774 }
8775 }
8776 else
8777 {
8778 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8779 val = list1 (make_number (coding.id));
8780 }
8781
8782 /* Then, detect eol-format if necessary. */
8783 {
8784 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8785 Lisp_Object tail;
8786
8787 if (VECTORP (eol_type))
8788 {
8789 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8790 {
8791 if (null_byte_found)
8792 normal_eol = EOL_SEEN_LF;
8793 else
8794 normal_eol = detect_eol (coding.source, src_bytes,
8795 coding_category_raw_text);
8796 }
8797 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8798 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8799 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8800 coding_category_utf_16_be);
8801 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8802 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8803 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8804 coding_category_utf_16_le);
8805 }
8806 else
8807 {
8808 if (EQ (eol_type, Qunix))
8809 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8810 else if (EQ (eol_type, Qdos))
8811 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8812 else
8813 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8814 }
8815
8816 for (tail = val; CONSP (tail); tail = XCDR (tail))
8817 {
8818 enum coding_category category;
8819 int this_eol;
8820
8821 id = XINT (XCAR (tail));
8822 attrs = CODING_ID_ATTRS (id);
8823 category = XINT (CODING_ATTR_CATEGORY (attrs));
8824 eol_type = CODING_ID_EOL_TYPE (id);
8825 if (VECTORP (eol_type))
8826 {
8827 if (category == coding_category_utf_16_be
8828 || category == coding_category_utf_16_be_nosig)
8829 this_eol = utf_16_be_eol;
8830 else if (category == coding_category_utf_16_le
8831 || category == coding_category_utf_16_le_nosig)
8832 this_eol = utf_16_le_eol;
8833 else
8834 this_eol = normal_eol;
8835
8836 if (this_eol == EOL_SEEN_LF)
8837 XSETCAR (tail, AREF (eol_type, 0));
8838 else if (this_eol == EOL_SEEN_CRLF)
8839 XSETCAR (tail, AREF (eol_type, 1));
8840 else if (this_eol == EOL_SEEN_CR)
8841 XSETCAR (tail, AREF (eol_type, 2));
8842 else
8843 XSETCAR (tail, CODING_ID_NAME (id));
8844 }
8845 else
8846 XSETCAR (tail, CODING_ID_NAME (id));
8847 }
8848 }
8849
8850 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8851 }
8852
8853
8854 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8855 2, 3, 0,
8856 doc: /* Detect coding system of the text in the region between START and END.
8857 Return a list of possible coding systems ordered by priority.
8858 The coding systems to try and their priorities follows what
8859 the function `coding-system-priority-list' (which see) returns.
8860
8861 If only ASCII characters are found (except for such ISO-2022 control
8862 characters as ESC), it returns a list of single element `undecided'
8863 or its subsidiary coding system according to a detected end-of-line
8864 format.
8865
8866 If optional argument HIGHEST is non-nil, return the coding system of
8867 highest priority. */)
8868 (Lisp_Object start, Lisp_Object end, Lisp_Object highest)
8869 {
8870 ptrdiff_t from, to;
8871 ptrdiff_t from_byte, to_byte;
8872
8873 validate_region (&start, &end);
8874 from = XINT (start), to = XINT (end);
8875 from_byte = CHAR_TO_BYTE (from);
8876 to_byte = CHAR_TO_BYTE (to);
8877
8878 if (from < GPT && to >= GPT)
8879 move_gap_both (to, to_byte);
8880
8881 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8882 to - from, to_byte - from_byte,
8883 !NILP (highest),
8884 !NILP (BVAR (current_buffer
8885 , enable_multibyte_characters)),
8886 Qnil);
8887 }
8888
8889 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8890 1, 2, 0,
8891 doc: /* Detect coding system of the text in STRING.
8892 Return a list of possible coding systems ordered by priority.
8893 The coding systems to try and their priorities follows what
8894 the function `coding-system-priority-list' (which see) returns.
8895
8896 If only ASCII characters are found (except for such ISO-2022 control
8897 characters as ESC), it returns a list of single element `undecided'
8898 or its subsidiary coding system according to a detected end-of-line
8899 format.
8900
8901 If optional argument HIGHEST is non-nil, return the coding system of
8902 highest priority. */)
8903 (Lisp_Object string, Lisp_Object highest)
8904 {
8905 CHECK_STRING (string);
8906
8907 return detect_coding_system (SDATA (string),
8908 SCHARS (string), SBYTES (string),
8909 !NILP (highest), STRING_MULTIBYTE (string),
8910 Qnil);
8911 }
8912
8913
8914 static bool
8915 char_encodable_p (int c, Lisp_Object attrs)
8916 {
8917 Lisp_Object tail;
8918 struct charset *charset;
8919 Lisp_Object translation_table;
8920
8921 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8922 if (! NILP (translation_table))
8923 c = translate_char (translation_table, c);
8924 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8925 CONSP (tail); tail = XCDR (tail))
8926 {
8927 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8928 if (CHAR_CHARSET_P (c, charset))
8929 break;
8930 }
8931 return (! NILP (tail));
8932 }
8933
8934
8935 /* Return a list of coding systems that safely encode the text between
8936 START and END. If EXCLUDE is non-nil, it is a list of coding
8937 systems not to check. The returned list doesn't contain any such
8938 coding systems. In any case, if the text contains only ASCII or is
8939 unibyte, return t. */
8940
8941 DEFUN ("find-coding-systems-region-internal",
8942 Ffind_coding_systems_region_internal,
8943 Sfind_coding_systems_region_internal, 2, 3, 0,
8944 doc: /* Internal use only. */)
8945 (Lisp_Object start, Lisp_Object end, Lisp_Object exclude)
8946 {
8947 Lisp_Object coding_attrs_list, safe_codings;
8948 ptrdiff_t start_byte, end_byte;
8949 const unsigned char *p, *pbeg, *pend;
8950 int c;
8951 Lisp_Object tail, elt, work_table;
8952
8953 if (STRINGP (start))
8954 {
8955 if (!STRING_MULTIBYTE (start)
8956 || SCHARS (start) == SBYTES (start))
8957 return Qt;
8958 start_byte = 0;
8959 end_byte = SBYTES (start);
8960 }
8961 else
8962 {
8963 CHECK_NUMBER_COERCE_MARKER (start);
8964 CHECK_NUMBER_COERCE_MARKER (end);
8965 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8966 args_out_of_range (start, end);
8967 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
8968 return Qt;
8969 start_byte = CHAR_TO_BYTE (XINT (start));
8970 end_byte = CHAR_TO_BYTE (XINT (end));
8971 if (XINT (end) - XINT (start) == end_byte - start_byte)
8972 return Qt;
8973
8974 if (XINT (start) < GPT && XINT (end) > GPT)
8975 {
8976 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8977 move_gap_both (XINT (start), start_byte);
8978 else
8979 move_gap_both (XINT (end), end_byte);
8980 }
8981 }
8982
8983 coding_attrs_list = Qnil;
8984 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8985 if (NILP (exclude)
8986 || NILP (Fmemq (XCAR (tail), exclude)))
8987 {
8988 Lisp_Object attrs;
8989
8990 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8991 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs)))
8992 {
8993 ASET (attrs, coding_attr_trans_tbl,
8994 get_translation_table (attrs, 1, NULL));
8995 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8996 }
8997 }
8998
8999 if (STRINGP (start))
9000 p = pbeg = SDATA (start);
9001 else
9002 p = pbeg = BYTE_POS_ADDR (start_byte);
9003 pend = p + (end_byte - start_byte);
9004
9005 while (p < pend && ASCII_CHAR_P (*p)) p++;
9006 while (p < pend && ASCII_CHAR_P (*(pend - 1))) pend--;
9007
9008 work_table = Fmake_char_table (Qnil, Qnil);
9009 while (p < pend)
9010 {
9011 if (ASCII_CHAR_P (*p))
9012 p++;
9013 else
9014 {
9015 c = STRING_CHAR_ADVANCE (p);
9016 if (!NILP (char_table_ref (work_table, c)))
9017 /* This character was already checked. Ignore it. */
9018 continue;
9019
9020 charset_map_loaded = 0;
9021 for (tail = coding_attrs_list; CONSP (tail);)
9022 {
9023 elt = XCAR (tail);
9024 if (NILP (elt))
9025 tail = XCDR (tail);
9026 else if (char_encodable_p (c, elt))
9027 tail = XCDR (tail);
9028 else if (CONSP (XCDR (tail)))
9029 {
9030 XSETCAR (tail, XCAR (XCDR (tail)));
9031 XSETCDR (tail, XCDR (XCDR (tail)));
9032 }
9033 else
9034 {
9035 XSETCAR (tail, Qnil);
9036 tail = XCDR (tail);
9037 }
9038 }
9039 if (charset_map_loaded)
9040 {
9041 ptrdiff_t p_offset = p - pbeg, pend_offset = pend - pbeg;
9042
9043 if (STRINGP (start))
9044 pbeg = SDATA (start);
9045 else
9046 pbeg = BYTE_POS_ADDR (start_byte);
9047 p = pbeg + p_offset;
9048 pend = pbeg + pend_offset;
9049 }
9050 char_table_set (work_table, c, Qt);
9051 }
9052 }
9053
9054 safe_codings = list2 (Qraw_text, Qno_conversion);
9055 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
9056 if (! NILP (XCAR (tail)))
9057 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
9058
9059 return safe_codings;
9060 }
9061
9062
9063 DEFUN ("unencodable-char-position", Funencodable_char_position,
9064 Sunencodable_char_position, 3, 5, 0,
9065 doc: /* Return position of first un-encodable character in a region.
9066 START and END specify the region and CODING-SYSTEM specifies the
9067 encoding to check. Return nil if CODING-SYSTEM does encode the region.
9068
9069 If optional 4th argument COUNT is non-nil, it specifies at most how
9070 many un-encodable characters to search. In this case, the value is a
9071 list of positions.
9072
9073 If optional 5th argument STRING is non-nil, it is a string to search
9074 for un-encodable characters. In that case, START and END are indexes
9075 to the string and treated as in `substring'. */)
9076 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system,
9077 Lisp_Object count, Lisp_Object string)
9078 {
9079 EMACS_INT n;
9080 struct coding_system coding;
9081 Lisp_Object attrs, charset_list, translation_table;
9082 Lisp_Object positions;
9083 ptrdiff_t from, to;
9084 const unsigned char *p, *stop, *pend;
9085 bool ascii_compatible;
9086
9087 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
9088 attrs = CODING_ID_ATTRS (coding.id);
9089 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
9090 return Qnil;
9091 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
9092 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9093 translation_table = get_translation_table (attrs, 1, NULL);
9094
9095 if (NILP (string))
9096 {
9097 validate_region (&start, &end);
9098 from = XINT (start);
9099 to = XINT (end);
9100 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
9101 || (ascii_compatible
9102 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
9103 return Qnil;
9104 p = CHAR_POS_ADDR (from);
9105 pend = CHAR_POS_ADDR (to);
9106 if (from < GPT && to >= GPT)
9107 stop = GPT_ADDR;
9108 else
9109 stop = pend;
9110 }
9111 else
9112 {
9113 CHECK_STRING (string);
9114 validate_subarray (string, start, end, SCHARS (string), &from, &to);
9115 if (! STRING_MULTIBYTE (string))
9116 return Qnil;
9117 p = SDATA (string) + string_char_to_byte (string, from);
9118 stop = pend = SDATA (string) + string_char_to_byte (string, to);
9119 if (ascii_compatible && (to - from) == (pend - p))
9120 return Qnil;
9121 }
9122
9123 if (NILP (count))
9124 n = 1;
9125 else
9126 {
9127 CHECK_NATNUM (count);
9128 n = XINT (count);
9129 }
9130
9131 positions = Qnil;
9132 charset_map_loaded = 0;
9133 while (1)
9134 {
9135 int c;
9136
9137 if (ascii_compatible)
9138 while (p < stop && ASCII_CHAR_P (*p))
9139 p++, from++;
9140 if (p >= stop)
9141 {
9142 if (p >= pend)
9143 break;
9144 stop = pend;
9145 p = GAP_END_ADDR;
9146 }
9147
9148 c = STRING_CHAR_ADVANCE (p);
9149 if (! (ASCII_CHAR_P (c) && ascii_compatible)
9150 && ! char_charset (translate_char (translation_table, c),
9151 charset_list, NULL))
9152 {
9153 positions = Fcons (make_number (from), positions);
9154 n--;
9155 if (n == 0)
9156 break;
9157 }
9158
9159 from++;
9160 if (charset_map_loaded && NILP (string))
9161 {
9162 p = CHAR_POS_ADDR (from);
9163 pend = CHAR_POS_ADDR (to);
9164 if (from < GPT && to >= GPT)
9165 stop = GPT_ADDR;
9166 else
9167 stop = pend;
9168 charset_map_loaded = 0;
9169 }
9170 }
9171
9172 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
9173 }
9174
9175
9176 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
9177 Scheck_coding_systems_region, 3, 3, 0,
9178 doc: /* Check if the region is encodable by coding systems.
9179
9180 START and END are buffer positions specifying the region.
9181 CODING-SYSTEM-LIST is a list of coding systems to check.
9182
9183 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
9184 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
9185 whole region, POS0, POS1, ... are buffer positions where non-encodable
9186 characters are found.
9187
9188 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
9189 value is nil.
9190
9191 START may be a string. In that case, check if the string is
9192 encodable, and the value contains indices to the string instead of
9193 buffer positions. END is ignored.
9194
9195 If the current buffer (or START if it is a string) is unibyte, the value
9196 is nil. */)
9197 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system_list)
9198 {
9199 Lisp_Object list;
9200 ptrdiff_t start_byte, end_byte;
9201 ptrdiff_t pos;
9202 const unsigned char *p, *pbeg, *pend;
9203 int c;
9204 Lisp_Object tail, elt, attrs;
9205
9206 if (STRINGP (start))
9207 {
9208 if (!STRING_MULTIBYTE (start)
9209 || SCHARS (start) == SBYTES (start))
9210 return Qnil;
9211 start_byte = 0;
9212 end_byte = SBYTES (start);
9213 pos = 0;
9214 }
9215 else
9216 {
9217 CHECK_NUMBER_COERCE_MARKER (start);
9218 CHECK_NUMBER_COERCE_MARKER (end);
9219 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
9220 args_out_of_range (start, end);
9221 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
9222 return Qnil;
9223 start_byte = CHAR_TO_BYTE (XINT (start));
9224 end_byte = CHAR_TO_BYTE (XINT (end));
9225 if (XINT (end) - XINT (start) == end_byte - start_byte)
9226 return Qnil;
9227
9228 if (XINT (start) < GPT && XINT (end) > GPT)
9229 {
9230 if ((GPT - XINT (start)) < (XINT (end) - GPT))
9231 move_gap_both (XINT (start), start_byte);
9232 else
9233 move_gap_both (XINT (end), end_byte);
9234 }
9235 pos = XINT (start);
9236 }
9237
9238 list = Qnil;
9239 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
9240 {
9241 elt = XCAR (tail);
9242 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
9243 ASET (attrs, coding_attr_trans_tbl,
9244 get_translation_table (attrs, 1, NULL));
9245 list = Fcons (list2 (elt, attrs), list);
9246 }
9247
9248 if (STRINGP (start))
9249 p = pbeg = SDATA (start);
9250 else
9251 p = pbeg = BYTE_POS_ADDR (start_byte);
9252 pend = p + (end_byte - start_byte);
9253
9254 while (p < pend && ASCII_CHAR_P (*p)) p++, pos++;
9255 while (p < pend && ASCII_CHAR_P (*(pend - 1))) pend--;
9256
9257 while (p < pend)
9258 {
9259 if (ASCII_CHAR_P (*p))
9260 p++;
9261 else
9262 {
9263 c = STRING_CHAR_ADVANCE (p);
9264
9265 charset_map_loaded = 0;
9266 for (tail = list; CONSP (tail); tail = XCDR (tail))
9267 {
9268 elt = XCDR (XCAR (tail));
9269 if (! char_encodable_p (c, XCAR (elt)))
9270 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
9271 }
9272 if (charset_map_loaded)
9273 {
9274 ptrdiff_t p_offset = p - pbeg, pend_offset = pend - pbeg;
9275
9276 if (STRINGP (start))
9277 pbeg = SDATA (start);
9278 else
9279 pbeg = BYTE_POS_ADDR (start_byte);
9280 p = pbeg + p_offset;
9281 pend = pbeg + pend_offset;
9282 }
9283 }
9284 pos++;
9285 }
9286
9287 tail = list;
9288 list = Qnil;
9289 for (; CONSP (tail); tail = XCDR (tail))
9290 {
9291 elt = XCAR (tail);
9292 if (CONSP (XCDR (XCDR (elt))))
9293 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
9294 list);
9295 }
9296
9297 return list;
9298 }
9299
9300
9301 static Lisp_Object
9302 code_convert_region (Lisp_Object start, Lisp_Object end,
9303 Lisp_Object coding_system, Lisp_Object dst_object,
9304 bool encodep, bool norecord)
9305 {
9306 struct coding_system coding;
9307 ptrdiff_t from, from_byte, to, to_byte;
9308 Lisp_Object src_object;
9309
9310 if (NILP (coding_system))
9311 coding_system = Qno_conversion;
9312 else
9313 CHECK_CODING_SYSTEM (coding_system);
9314 src_object = Fcurrent_buffer ();
9315 if (NILP (dst_object))
9316 dst_object = src_object;
9317 else if (! EQ (dst_object, Qt))
9318 CHECK_BUFFER (dst_object);
9319
9320 validate_region (&start, &end);
9321 from = XFASTINT (start);
9322 from_byte = CHAR_TO_BYTE (from);
9323 to = XFASTINT (end);
9324 to_byte = CHAR_TO_BYTE (to);
9325
9326 setup_coding_system (coding_system, &coding);
9327 coding.mode |= CODING_MODE_LAST_BLOCK;
9328
9329 if (BUFFERP (dst_object) && !EQ (dst_object, src_object))
9330 {
9331 struct buffer *buf = XBUFFER (dst_object);
9332 ptrdiff_t buf_pt = BUF_PT (buf);
9333
9334 invalidate_buffer_caches (buf, buf_pt, buf_pt);
9335 }
9336
9337 if (encodep)
9338 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9339 dst_object);
9340 else
9341 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9342 dst_object);
9343 if (! norecord)
9344 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9345
9346 return (BUFFERP (dst_object)
9347 ? make_number (coding.produced_char)
9348 : coding.dst_object);
9349 }
9350
9351
9352 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
9353 3, 4, "r\nzCoding system: ",
9354 doc: /* Decode the current region from the specified coding system.
9355 When called from a program, takes four arguments:
9356 START, END, CODING-SYSTEM, and DESTINATION.
9357 START and END are buffer positions.
9358
9359 Optional 4th arguments DESTINATION specifies where the decoded text goes.
9360 If nil, the region between START and END is replaced by the decoded text.
9361 If buffer, the decoded text is inserted in that buffer after point (point
9362 does not move).
9363 In those cases, the length of the decoded text is returned.
9364 If DESTINATION is t, the decoded text is returned.
9365
9366 This function sets `last-coding-system-used' to the precise coding system
9367 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9368 not fully specified.) */)
9369 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
9370 {
9371 return code_convert_region (start, end, coding_system, destination, 0, 0);
9372 }
9373
9374 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
9375 3, 4, "r\nzCoding system: ",
9376 doc: /* Encode the current region by specified coding system.
9377 When called from a program, takes four arguments:
9378 START, END, CODING-SYSTEM and DESTINATION.
9379 START and END are buffer positions.
9380
9381 Optional 4th arguments DESTINATION specifies where the encoded text goes.
9382 If nil, the region between START and END is replace by the encoded text.
9383 If buffer, the encoded text is inserted in that buffer after point (point
9384 does not move).
9385 In those cases, the length of the encoded text is returned.
9386 If DESTINATION is t, the encoded text is returned.
9387
9388 This function sets `last-coding-system-used' to the precise coding system
9389 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9390 not fully specified.) */)
9391 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
9392 {
9393 return code_convert_region (start, end, coding_system, destination, 1, 0);
9394 }
9395
9396 Lisp_Object
9397 code_convert_string (Lisp_Object string, Lisp_Object coding_system,
9398 Lisp_Object dst_object, bool encodep, bool nocopy,
9399 bool norecord)
9400 {
9401 struct coding_system coding;
9402 ptrdiff_t chars, bytes;
9403
9404 CHECK_STRING (string);
9405 if (NILP (coding_system))
9406 {
9407 if (! norecord)
9408 Vlast_coding_system_used = Qno_conversion;
9409 if (NILP (dst_object))
9410 return (nocopy ? Fcopy_sequence (string) : string);
9411 }
9412
9413 if (NILP (coding_system))
9414 coding_system = Qno_conversion;
9415 else
9416 CHECK_CODING_SYSTEM (coding_system);
9417 if (NILP (dst_object))
9418 dst_object = Qt;
9419 else if (! EQ (dst_object, Qt))
9420 CHECK_BUFFER (dst_object);
9421
9422 setup_coding_system (coding_system, &coding);
9423 coding.mode |= CODING_MODE_LAST_BLOCK;
9424 chars = SCHARS (string);
9425 bytes = SBYTES (string);
9426
9427 if (BUFFERP (dst_object))
9428 {
9429 struct buffer *buf = XBUFFER (dst_object);
9430 ptrdiff_t buf_pt = BUF_PT (buf);
9431
9432 invalidate_buffer_caches (buf, buf_pt, buf_pt);
9433 }
9434
9435 if (encodep)
9436 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9437 else
9438 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9439 if (! norecord)
9440 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9441
9442 return (BUFFERP (dst_object)
9443 ? make_number (coding.produced_char)
9444 : coding.dst_object);
9445 }
9446
9447
9448 /* Encode or decode STRING according to CODING_SYSTEM.
9449 Do not set Vlast_coding_system_used.
9450
9451 This function is called only from macros DECODE_FILE and
9452 ENCODE_FILE, thus we ignore character composition. */
9453
9454 Lisp_Object
9455 code_convert_string_norecord (Lisp_Object string, Lisp_Object coding_system,
9456 bool encodep)
9457 {
9458 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
9459 }
9460
9461 /* Encode or decode a file name, to or from a unibyte string suitable
9462 for passing to C library functions. */
9463 Lisp_Object
9464 decode_file_name (Lisp_Object fname)
9465 {
9466 #ifdef WINDOWSNT
9467 /* The w32 build pretends to use UTF-8 for file-name encoding, and
9468 converts the file names either to UTF-16LE or to the system ANSI
9469 codepage internally, depending on the underlying OS; see w32.c. */
9470 if (! NILP (Fcoding_system_p (Qutf_8)))
9471 return code_convert_string_norecord (fname, Qutf_8, 0);
9472 return fname;
9473 #else /* !WINDOWSNT */
9474 if (! NILP (Vfile_name_coding_system))
9475 return code_convert_string_norecord (fname, Vfile_name_coding_system, 0);
9476 else if (! NILP (Vdefault_file_name_coding_system))
9477 return code_convert_string_norecord (fname,
9478 Vdefault_file_name_coding_system, 0);
9479 else
9480 return fname;
9481 #endif
9482 }
9483
9484 Lisp_Object
9485 encode_file_name (Lisp_Object fname)
9486 {
9487 /* This is especially important during bootstrap and dumping, when
9488 file-name encoding is not yet known, and therefore any non-ASCII
9489 file names are unibyte strings, and could only be thrashed if we
9490 try to encode them. */
9491 if (!STRING_MULTIBYTE (fname))
9492 return fname;
9493 #ifdef WINDOWSNT
9494 /* The w32 build pretends to use UTF-8 for file-name encoding, and
9495 converts the file names either to UTF-16LE or to the system ANSI
9496 codepage internally, depending on the underlying OS; see w32.c. */
9497 if (! NILP (Fcoding_system_p (Qutf_8)))
9498 return code_convert_string_norecord (fname, Qutf_8, 1);
9499 return fname;
9500 #else /* !WINDOWSNT */
9501 if (! NILP (Vfile_name_coding_system))
9502 return code_convert_string_norecord (fname, Vfile_name_coding_system, 1);
9503 else if (! NILP (Vdefault_file_name_coding_system))
9504 return code_convert_string_norecord (fname,
9505 Vdefault_file_name_coding_system, 1);
9506 else
9507 return fname;
9508 #endif
9509 }
9510
9511 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9512 2, 4, 0,
9513 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9514
9515 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9516 if the decoding operation is trivial.
9517
9518 Optional fourth arg BUFFER non-nil means that the decoded text is
9519 inserted in that buffer after point (point does not move). In this
9520 case, the return value is the length of the decoded text.
9521
9522 This function sets `last-coding-system-used' to the precise coding system
9523 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9524 not fully specified.) */)
9525 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9526 {
9527 return code_convert_string (string, coding_system, buffer,
9528 0, ! NILP (nocopy), 0);
9529 }
9530
9531 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9532 2, 4, 0,
9533 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9534
9535 Optional third arg NOCOPY non-nil means it is OK to return STRING
9536 itself if the encoding operation is trivial.
9537
9538 Optional fourth arg BUFFER non-nil means that the encoded text is
9539 inserted in that buffer after point (point does not move). In this
9540 case, the return value is the length of the encoded text.
9541
9542 This function sets `last-coding-system-used' to the precise coding system
9543 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9544 not fully specified.) */)
9545 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9546 {
9547 return code_convert_string (string, coding_system, buffer,
9548 1, ! NILP (nocopy), 0);
9549 }
9550
9551 \f
9552 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9553 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9554 Return the corresponding character. */)
9555 (Lisp_Object code)
9556 {
9557 Lisp_Object spec, attrs, val;
9558 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9559 EMACS_INT ch;
9560 int c;
9561
9562 CHECK_NATNUM (code);
9563 ch = XFASTINT (code);
9564 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9565 attrs = AREF (spec, 0);
9566
9567 if (ASCII_CHAR_P (ch)
9568 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9569 return code;
9570
9571 val = CODING_ATTR_CHARSET_LIST (attrs);
9572 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9573 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9574 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9575
9576 if (ch <= 0x7F)
9577 {
9578 c = ch;
9579 charset = charset_roman;
9580 }
9581 else if (ch >= 0xA0 && ch < 0xDF)
9582 {
9583 c = ch - 0x80;
9584 charset = charset_kana;
9585 }
9586 else
9587 {
9588 EMACS_INT c1 = ch >> 8;
9589 int c2 = ch & 0xFF;
9590
9591 if (c1 < 0x81 || (c1 > 0x9F && c1 < 0xE0) || c1 > 0xEF
9592 || c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
9593 error ("Invalid code: %"pI"d", ch);
9594 c = ch;
9595 SJIS_TO_JIS (c);
9596 charset = charset_kanji;
9597 }
9598 c = DECODE_CHAR (charset, c);
9599 if (c < 0)
9600 error ("Invalid code: %"pI"d", ch);
9601 return make_number (c);
9602 }
9603
9604
9605 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9606 doc: /* Encode a Japanese character CH to shift_jis encoding.
9607 Return the corresponding code in SJIS. */)
9608 (Lisp_Object ch)
9609 {
9610 Lisp_Object spec, attrs, charset_list;
9611 int c;
9612 struct charset *charset;
9613 unsigned code;
9614
9615 CHECK_CHARACTER (ch);
9616 c = XFASTINT (ch);
9617 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9618 attrs = AREF (spec, 0);
9619
9620 if (ASCII_CHAR_P (c)
9621 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9622 return ch;
9623
9624 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9625 charset = char_charset (c, charset_list, &code);
9626 if (code == CHARSET_INVALID_CODE (charset))
9627 error ("Can't encode by shift_jis encoding: %c", c);
9628 JIS_TO_SJIS (code);
9629
9630 return make_number (code);
9631 }
9632
9633 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9634 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9635 Return the corresponding character. */)
9636 (Lisp_Object code)
9637 {
9638 Lisp_Object spec, attrs, val;
9639 struct charset *charset_roman, *charset_big5, *charset;
9640 EMACS_INT ch;
9641 int c;
9642
9643 CHECK_NATNUM (code);
9644 ch = XFASTINT (code);
9645 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9646 attrs = AREF (spec, 0);
9647
9648 if (ASCII_CHAR_P (ch)
9649 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9650 return code;
9651
9652 val = CODING_ATTR_CHARSET_LIST (attrs);
9653 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9654 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9655
9656 if (ch <= 0x7F)
9657 {
9658 c = ch;
9659 charset = charset_roman;
9660 }
9661 else
9662 {
9663 EMACS_INT b1 = ch >> 8;
9664 int b2 = ch & 0x7F;
9665 if (b1 < 0xA1 || b1 > 0xFE
9666 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9667 error ("Invalid code: %"pI"d", ch);
9668 c = ch;
9669 charset = charset_big5;
9670 }
9671 c = DECODE_CHAR (charset, c);
9672 if (c < 0)
9673 error ("Invalid code: %"pI"d", ch);
9674 return make_number (c);
9675 }
9676
9677 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9678 doc: /* Encode the Big5 character CH to BIG5 coding system.
9679 Return the corresponding character code in Big5. */)
9680 (Lisp_Object ch)
9681 {
9682 Lisp_Object spec, attrs, charset_list;
9683 struct charset *charset;
9684 int c;
9685 unsigned code;
9686
9687 CHECK_CHARACTER (ch);
9688 c = XFASTINT (ch);
9689 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9690 attrs = AREF (spec, 0);
9691 if (ASCII_CHAR_P (c)
9692 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9693 return ch;
9694
9695 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9696 charset = char_charset (c, charset_list, &code);
9697 if (code == CHARSET_INVALID_CODE (charset))
9698 error ("Can't encode by Big5 encoding: %c", c);
9699
9700 return make_number (code);
9701 }
9702
9703 \f
9704 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9705 Sset_terminal_coding_system_internal, 1, 2, 0,
9706 doc: /* Internal use only. */)
9707 (Lisp_Object coding_system, Lisp_Object terminal)
9708 {
9709 struct terminal *term = decode_live_terminal (terminal);
9710 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (term);
9711 CHECK_SYMBOL (coding_system);
9712 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9713 /* We had better not send unsafe characters to terminal. */
9714 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9715 /* Character composition should be disabled. */
9716 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9717 terminal_coding->src_multibyte = 1;
9718 terminal_coding->dst_multibyte = 0;
9719 tset_charset_list
9720 (term, (terminal_coding->common_flags & CODING_REQUIRE_ENCODING_MASK
9721 ? coding_charset_list (terminal_coding)
9722 : list1 (make_number (charset_ascii))));
9723 return Qnil;
9724 }
9725
9726 DEFUN ("set-safe-terminal-coding-system-internal",
9727 Fset_safe_terminal_coding_system_internal,
9728 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9729 doc: /* Internal use only. */)
9730 (Lisp_Object coding_system)
9731 {
9732 CHECK_SYMBOL (coding_system);
9733 setup_coding_system (Fcheck_coding_system (coding_system),
9734 &safe_terminal_coding);
9735 /* Character composition should be disabled. */
9736 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9737 safe_terminal_coding.src_multibyte = 1;
9738 safe_terminal_coding.dst_multibyte = 0;
9739 return Qnil;
9740 }
9741
9742 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9743 Sterminal_coding_system, 0, 1, 0,
9744 doc: /* Return coding system specified for terminal output on the given terminal.
9745 TERMINAL may be a terminal object, a frame, or nil for the selected
9746 frame's terminal device. */)
9747 (Lisp_Object terminal)
9748 {
9749 struct coding_system *terminal_coding
9750 = TERMINAL_TERMINAL_CODING (decode_live_terminal (terminal));
9751 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9752
9753 /* For backward compatibility, return nil if it is `undecided'. */
9754 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9755 }
9756
9757 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9758 Sset_keyboard_coding_system_internal, 1, 2, 0,
9759 doc: /* Internal use only. */)
9760 (Lisp_Object coding_system, Lisp_Object terminal)
9761 {
9762 struct terminal *t = decode_live_terminal (terminal);
9763 CHECK_SYMBOL (coding_system);
9764 if (NILP (coding_system))
9765 coding_system = Qno_conversion;
9766 else
9767 Fcheck_coding_system (coding_system);
9768 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9769 /* Character composition should be disabled. */
9770 TERMINAL_KEYBOARD_CODING (t)->common_flags
9771 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9772 return Qnil;
9773 }
9774
9775 DEFUN ("keyboard-coding-system",
9776 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9777 doc: /* Return coding system specified for decoding keyboard input. */)
9778 (Lisp_Object terminal)
9779 {
9780 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9781 (decode_live_terminal (terminal))->id);
9782 }
9783
9784 \f
9785 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9786 Sfind_operation_coding_system, 1, MANY, 0,
9787 doc: /* Choose a coding system for an operation based on the target name.
9788 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9789 DECODING-SYSTEM is the coding system to use for decoding
9790 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9791 for encoding (in case OPERATION does encoding).
9792
9793 The first argument OPERATION specifies an I/O primitive:
9794 For file I/O, `insert-file-contents' or `write-region'.
9795 For process I/O, `call-process', `call-process-region', or `start-process'.
9796 For network I/O, `open-network-stream'.
9797
9798 The remaining arguments should be the same arguments that were passed
9799 to the primitive. Depending on which primitive, one of those arguments
9800 is selected as the TARGET. For example, if OPERATION does file I/O,
9801 whichever argument specifies the file name is TARGET.
9802
9803 TARGET has a meaning which depends on OPERATION:
9804 For file I/O, TARGET is a file name (except for the special case below).
9805 For process I/O, TARGET is a process name.
9806 For network I/O, TARGET is a service name or a port number.
9807
9808 This function looks up what is specified for TARGET in
9809 `file-coding-system-alist', `process-coding-system-alist',
9810 or `network-coding-system-alist' depending on OPERATION.
9811 They may specify a coding system, a cons of coding systems,
9812 or a function symbol to call.
9813 In the last case, we call the function with one argument,
9814 which is a list of all the arguments given to this function.
9815 If the function can't decide a coding system, it can return
9816 `undecided' so that the normal code-detection is performed.
9817
9818 If OPERATION is `insert-file-contents', the argument corresponding to
9819 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9820 file name to look up, and BUFFER is a buffer that contains the file's
9821 contents (not yet decoded). If `file-coding-system-alist' specifies a
9822 function to call for FILENAME, that function should examine the
9823 contents of BUFFER instead of reading the file.
9824
9825 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9826 (ptrdiff_t nargs, Lisp_Object *args)
9827 {
9828 Lisp_Object operation, target_idx, target, val;
9829 register Lisp_Object chain;
9830
9831 if (nargs < 2)
9832 error ("Too few arguments");
9833 operation = args[0];
9834 if (!SYMBOLP (operation)
9835 || (target_idx = Fget (operation, Qtarget_idx), !NATNUMP (target_idx)))
9836 error ("Invalid first argument");
9837 if (nargs <= 1 + XFASTINT (target_idx))
9838 error ("Too few arguments for operation `%s'",
9839 SDATA (SYMBOL_NAME (operation)));
9840 target = args[XFASTINT (target_idx) + 1];
9841 if (!(STRINGP (target)
9842 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9843 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9844 || (EQ (operation, Qopen_network_stream)
9845 && (INTEGERP (target) || EQ (target, Qt)))))
9846 error ("Invalid argument %"pI"d of operation `%s'",
9847 XFASTINT (target_idx) + 1, SDATA (SYMBOL_NAME (operation)));
9848 if (CONSP (target))
9849 target = XCAR (target);
9850
9851 chain = ((EQ (operation, Qinsert_file_contents)
9852 || EQ (operation, Qwrite_region))
9853 ? Vfile_coding_system_alist
9854 : (EQ (operation, Qopen_network_stream)
9855 ? Vnetwork_coding_system_alist
9856 : Vprocess_coding_system_alist));
9857 if (NILP (chain))
9858 return Qnil;
9859
9860 for (; CONSP (chain); chain = XCDR (chain))
9861 {
9862 Lisp_Object elt;
9863
9864 elt = XCAR (chain);
9865 if (CONSP (elt)
9866 && ((STRINGP (target)
9867 && STRINGP (XCAR (elt))
9868 && fast_string_match (XCAR (elt), target) >= 0)
9869 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9870 {
9871 val = XCDR (elt);
9872 /* Here, if VAL is both a valid coding system and a valid
9873 function symbol, we return VAL as a coding system. */
9874 if (CONSP (val))
9875 return val;
9876 if (! SYMBOLP (val))
9877 return Qnil;
9878 if (! NILP (Fcoding_system_p (val)))
9879 return Fcons (val, val);
9880 if (! NILP (Ffboundp (val)))
9881 {
9882 /* We use call1 rather than safe_call1
9883 so as to get bug reports about functions called here
9884 which don't handle the current interface. */
9885 val = call1 (val, Flist (nargs, args));
9886 if (CONSP (val))
9887 return val;
9888 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9889 return Fcons (val, val);
9890 }
9891 return Qnil;
9892 }
9893 }
9894 return Qnil;
9895 }
9896
9897 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9898 Sset_coding_system_priority, 0, MANY, 0,
9899 doc: /* Assign higher priority to the coding systems given as arguments.
9900 If multiple coding systems belong to the same category,
9901 all but the first one are ignored.
9902
9903 usage: (set-coding-system-priority &rest coding-systems) */)
9904 (ptrdiff_t nargs, Lisp_Object *args)
9905 {
9906 ptrdiff_t i, j;
9907 bool changed[coding_category_max];
9908 enum coding_category priorities[coding_category_max];
9909
9910 memset (changed, 0, sizeof changed);
9911
9912 for (i = j = 0; i < nargs; i++)
9913 {
9914 enum coding_category category;
9915 Lisp_Object spec, attrs;
9916
9917 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9918 attrs = AREF (spec, 0);
9919 category = XINT (CODING_ATTR_CATEGORY (attrs));
9920 if (changed[category])
9921 /* Ignore this coding system because a coding system of the
9922 same category already had a higher priority. */
9923 continue;
9924 changed[category] = 1;
9925 priorities[j++] = category;
9926 if (coding_categories[category].id >= 0
9927 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9928 setup_coding_system (args[i], &coding_categories[category]);
9929 Fset (AREF (Vcoding_category_table, category), args[i]);
9930 }
9931
9932 /* Now we have decided top J priorities. Reflect the order of the
9933 original priorities to the remaining priorities. */
9934
9935 for (i = j, j = 0; i < coding_category_max; i++, j++)
9936 {
9937 while (j < coding_category_max
9938 && changed[coding_priorities[j]])
9939 j++;
9940 if (j == coding_category_max)
9941 emacs_abort ();
9942 priorities[i] = coding_priorities[j];
9943 }
9944
9945 memcpy (coding_priorities, priorities, sizeof priorities);
9946
9947 /* Update `coding-category-list'. */
9948 Vcoding_category_list = Qnil;
9949 for (i = coding_category_max; i-- > 0; )
9950 Vcoding_category_list
9951 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9952 Vcoding_category_list);
9953
9954 return Qnil;
9955 }
9956
9957 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9958 Scoding_system_priority_list, 0, 1, 0,
9959 doc: /* Return a list of coding systems ordered by their priorities.
9960 The list contains a subset of coding systems; i.e. coding systems
9961 assigned to each coding category (see `coding-category-list').
9962
9963 HIGHESTP non-nil means just return the highest priority one. */)
9964 (Lisp_Object highestp)
9965 {
9966 int i;
9967 Lisp_Object val;
9968
9969 for (i = 0, val = Qnil; i < coding_category_max; i++)
9970 {
9971 enum coding_category category = coding_priorities[i];
9972 int id = coding_categories[category].id;
9973 Lisp_Object attrs;
9974
9975 if (id < 0)
9976 continue;
9977 attrs = CODING_ID_ATTRS (id);
9978 if (! NILP (highestp))
9979 return CODING_ATTR_BASE_NAME (attrs);
9980 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9981 }
9982 return Fnreverse (val);
9983 }
9984
9985 static const char *const suffixes[] = { "-unix", "-dos", "-mac" };
9986
9987 static Lisp_Object
9988 make_subsidiaries (Lisp_Object base)
9989 {
9990 Lisp_Object subsidiaries;
9991 ptrdiff_t base_name_len = SBYTES (SYMBOL_NAME (base));
9992 USE_SAFE_ALLOCA;
9993 char *buf = SAFE_ALLOCA (base_name_len + 6);
9994 int i;
9995
9996 memcpy (buf, SDATA (SYMBOL_NAME (base)), base_name_len);
9997 subsidiaries = make_uninit_vector (3);
9998 for (i = 0; i < 3; i++)
9999 {
10000 strcpy (buf + base_name_len, suffixes[i]);
10001 ASET (subsidiaries, i, intern (buf));
10002 }
10003 SAFE_FREE ();
10004 return subsidiaries;
10005 }
10006
10007
10008 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
10009 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
10010 doc: /* For internal use only.
10011 usage: (define-coding-system-internal ...) */)
10012 (ptrdiff_t nargs, Lisp_Object *args)
10013 {
10014 Lisp_Object name;
10015 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
10016 Lisp_Object attrs; /* Vector of attributes. */
10017 Lisp_Object eol_type;
10018 Lisp_Object aliases;
10019 Lisp_Object coding_type, charset_list, safe_charsets;
10020 enum coding_category category;
10021 Lisp_Object tail, val;
10022 int max_charset_id = 0;
10023 int i;
10024
10025 if (nargs < coding_arg_max)
10026 goto short_args;
10027
10028 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
10029
10030 name = args[coding_arg_name];
10031 CHECK_SYMBOL (name);
10032 ASET (attrs, coding_attr_base_name, name);
10033
10034 val = args[coding_arg_mnemonic];
10035 if (! STRINGP (val))
10036 CHECK_CHARACTER (val);
10037 ASET (attrs, coding_attr_mnemonic, val);
10038
10039 coding_type = args[coding_arg_coding_type];
10040 CHECK_SYMBOL (coding_type);
10041 ASET (attrs, coding_attr_type, coding_type);
10042
10043 charset_list = args[coding_arg_charset_list];
10044 if (SYMBOLP (charset_list))
10045 {
10046 if (EQ (charset_list, Qiso_2022))
10047 {
10048 if (! EQ (coding_type, Qiso_2022))
10049 error ("Invalid charset-list");
10050 charset_list = Viso_2022_charset_list;
10051 }
10052 else if (EQ (charset_list, Qemacs_mule))
10053 {
10054 if (! EQ (coding_type, Qemacs_mule))
10055 error ("Invalid charset-list");
10056 charset_list = Vemacs_mule_charset_list;
10057 }
10058 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
10059 {
10060 if (! RANGED_INTEGERP (0, XCAR (tail), INT_MAX - 1))
10061 error ("Invalid charset-list");
10062 if (max_charset_id < XFASTINT (XCAR (tail)))
10063 max_charset_id = XFASTINT (XCAR (tail));
10064 }
10065 }
10066 else
10067 {
10068 charset_list = Fcopy_sequence (charset_list);
10069 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
10070 {
10071 struct charset *charset;
10072
10073 val = XCAR (tail);
10074 CHECK_CHARSET_GET_CHARSET (val, charset);
10075 if (EQ (coding_type, Qiso_2022)
10076 ? CHARSET_ISO_FINAL (charset) < 0
10077 : EQ (coding_type, Qemacs_mule)
10078 ? CHARSET_EMACS_MULE_ID (charset) < 0
10079 : 0)
10080 error ("Can't handle charset `%s'",
10081 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10082
10083 XSETCAR (tail, make_number (charset->id));
10084 if (max_charset_id < charset->id)
10085 max_charset_id = charset->id;
10086 }
10087 }
10088 ASET (attrs, coding_attr_charset_list, charset_list);
10089
10090 safe_charsets = make_uninit_string (max_charset_id + 1);
10091 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
10092 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
10093 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
10094 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
10095
10096 ASET (attrs, coding_attr_ascii_compat, args[coding_arg_ascii_compatible_p]);
10097
10098 val = args[coding_arg_decode_translation_table];
10099 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10100 CHECK_SYMBOL (val);
10101 ASET (attrs, coding_attr_decode_tbl, val);
10102
10103 val = args[coding_arg_encode_translation_table];
10104 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10105 CHECK_SYMBOL (val);
10106 ASET (attrs, coding_attr_encode_tbl, val);
10107
10108 val = args[coding_arg_post_read_conversion];
10109 CHECK_SYMBOL (val);
10110 ASET (attrs, coding_attr_post_read, val);
10111
10112 val = args[coding_arg_pre_write_conversion];
10113 CHECK_SYMBOL (val);
10114 ASET (attrs, coding_attr_pre_write, val);
10115
10116 val = args[coding_arg_default_char];
10117 if (NILP (val))
10118 ASET (attrs, coding_attr_default_char, make_number (' '));
10119 else
10120 {
10121 CHECK_CHARACTER (val);
10122 ASET (attrs, coding_attr_default_char, val);
10123 }
10124
10125 val = args[coding_arg_for_unibyte];
10126 ASET (attrs, coding_attr_for_unibyte, NILP (val) ? Qnil : Qt);
10127
10128 val = args[coding_arg_plist];
10129 CHECK_LIST (val);
10130 ASET (attrs, coding_attr_plist, val);
10131
10132 if (EQ (coding_type, Qcharset))
10133 {
10134 /* Generate a lisp vector of 256 elements. Each element is nil,
10135 integer, or a list of charset IDs.
10136
10137 If Nth element is nil, the byte code N is invalid in this
10138 coding system.
10139
10140 If Nth element is a number NUM, N is the first byte of a
10141 charset whose ID is NUM.
10142
10143 If Nth element is a list of charset IDs, N is the first byte
10144 of one of them. The list is sorted by dimensions of the
10145 charsets. A charset of smaller dimension comes first. */
10146 val = Fmake_vector (make_number (256), Qnil);
10147
10148 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
10149 {
10150 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
10151 int dim = CHARSET_DIMENSION (charset);
10152 int idx = (dim - 1) * 4;
10153
10154 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10155 ASET (attrs, coding_attr_ascii_compat, Qt);
10156
10157 for (i = charset->code_space[idx];
10158 i <= charset->code_space[idx + 1]; i++)
10159 {
10160 Lisp_Object tmp, tmp2;
10161 int dim2;
10162
10163 tmp = AREF (val, i);
10164 if (NILP (tmp))
10165 tmp = XCAR (tail);
10166 else if (NUMBERP (tmp))
10167 {
10168 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
10169 if (dim < dim2)
10170 tmp = list2 (XCAR (tail), tmp);
10171 else
10172 tmp = list2 (tmp, XCAR (tail));
10173 }
10174 else
10175 {
10176 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
10177 {
10178 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
10179 if (dim < dim2)
10180 break;
10181 }
10182 if (NILP (tmp2))
10183 tmp = nconc2 (tmp, list1 (XCAR (tail)));
10184 else
10185 {
10186 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
10187 XSETCAR (tmp2, XCAR (tail));
10188 }
10189 }
10190 ASET (val, i, tmp);
10191 }
10192 }
10193 ASET (attrs, coding_attr_charset_valids, val);
10194 category = coding_category_charset;
10195 }
10196 else if (EQ (coding_type, Qccl))
10197 {
10198 Lisp_Object valids;
10199
10200 if (nargs < coding_arg_ccl_max)
10201 goto short_args;
10202
10203 val = args[coding_arg_ccl_decoder];
10204 CHECK_CCL_PROGRAM (val);
10205 if (VECTORP (val))
10206 val = Fcopy_sequence (val);
10207 ASET (attrs, coding_attr_ccl_decoder, val);
10208
10209 val = args[coding_arg_ccl_encoder];
10210 CHECK_CCL_PROGRAM (val);
10211 if (VECTORP (val))
10212 val = Fcopy_sequence (val);
10213 ASET (attrs, coding_attr_ccl_encoder, val);
10214
10215 val = args[coding_arg_ccl_valids];
10216 valids = Fmake_string (make_number (256), make_number (0));
10217 for (tail = val; CONSP (tail); tail = XCDR (tail))
10218 {
10219 int from, to;
10220
10221 val = XCAR (tail);
10222 if (INTEGERP (val))
10223 {
10224 if (! (0 <= XINT (val) && XINT (val) <= 255))
10225 args_out_of_range_3 (val, make_number (0), make_number (255));
10226 from = to = XINT (val);
10227 }
10228 else
10229 {
10230 CHECK_CONS (val);
10231 CHECK_NATNUM_CAR (val);
10232 CHECK_NUMBER_CDR (val);
10233 if (XINT (XCAR (val)) > 255)
10234 args_out_of_range_3 (XCAR (val),
10235 make_number (0), make_number (255));
10236 from = XINT (XCAR (val));
10237 if (! (from <= XINT (XCDR (val)) && XINT (XCDR (val)) <= 255))
10238 args_out_of_range_3 (XCDR (val),
10239 XCAR (val), make_number (255));
10240 to = XINT (XCDR (val));
10241 }
10242 for (i = from; i <= to; i++)
10243 SSET (valids, i, 1);
10244 }
10245 ASET (attrs, coding_attr_ccl_valids, valids);
10246
10247 category = coding_category_ccl;
10248 }
10249 else if (EQ (coding_type, Qutf_16))
10250 {
10251 Lisp_Object bom, endian;
10252
10253 ASET (attrs, coding_attr_ascii_compat, Qnil);
10254
10255 if (nargs < coding_arg_utf16_max)
10256 goto short_args;
10257
10258 bom = args[coding_arg_utf16_bom];
10259 if (! NILP (bom) && ! EQ (bom, Qt))
10260 {
10261 CHECK_CONS (bom);
10262 val = XCAR (bom);
10263 CHECK_CODING_SYSTEM (val);
10264 val = XCDR (bom);
10265 CHECK_CODING_SYSTEM (val);
10266 }
10267 ASET (attrs, coding_attr_utf_bom, bom);
10268
10269 endian = args[coding_arg_utf16_endian];
10270 CHECK_SYMBOL (endian);
10271 if (NILP (endian))
10272 endian = Qbig;
10273 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
10274 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
10275 ASET (attrs, coding_attr_utf_16_endian, endian);
10276
10277 category = (CONSP (bom)
10278 ? coding_category_utf_16_auto
10279 : NILP (bom)
10280 ? (EQ (endian, Qbig)
10281 ? coding_category_utf_16_be_nosig
10282 : coding_category_utf_16_le_nosig)
10283 : (EQ (endian, Qbig)
10284 ? coding_category_utf_16_be
10285 : coding_category_utf_16_le));
10286 }
10287 else if (EQ (coding_type, Qiso_2022))
10288 {
10289 Lisp_Object initial, reg_usage, request, flags;
10290
10291 if (nargs < coding_arg_iso2022_max)
10292 goto short_args;
10293
10294 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
10295 CHECK_VECTOR (initial);
10296 for (i = 0; i < 4; i++)
10297 {
10298 val = AREF (initial, i);
10299 if (! NILP (val))
10300 {
10301 struct charset *charset;
10302
10303 CHECK_CHARSET_GET_CHARSET (val, charset);
10304 ASET (initial, i, make_number (CHARSET_ID (charset)));
10305 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
10306 ASET (attrs, coding_attr_ascii_compat, Qt);
10307 }
10308 else
10309 ASET (initial, i, make_number (-1));
10310 }
10311
10312 reg_usage = args[coding_arg_iso2022_reg_usage];
10313 CHECK_CONS (reg_usage);
10314 CHECK_NUMBER_CAR (reg_usage);
10315 CHECK_NUMBER_CDR (reg_usage);
10316
10317 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
10318 for (tail = request; CONSP (tail); tail = XCDR (tail))
10319 {
10320 int id;
10321 Lisp_Object tmp1;
10322
10323 val = XCAR (tail);
10324 CHECK_CONS (val);
10325 tmp1 = XCAR (val);
10326 CHECK_CHARSET_GET_ID (tmp1, id);
10327 CHECK_NATNUM_CDR (val);
10328 if (XINT (XCDR (val)) >= 4)
10329 error ("Invalid graphic register number: %"pI"d", XINT (XCDR (val)));
10330 XSETCAR (val, make_number (id));
10331 }
10332
10333 flags = args[coding_arg_iso2022_flags];
10334 CHECK_NATNUM (flags);
10335 i = XINT (flags) & INT_MAX;
10336 if (EQ (args[coding_arg_charset_list], Qiso_2022))
10337 i |= CODING_ISO_FLAG_FULL_SUPPORT;
10338 flags = make_number (i);
10339
10340 ASET (attrs, coding_attr_iso_initial, initial);
10341 ASET (attrs, coding_attr_iso_usage, reg_usage);
10342 ASET (attrs, coding_attr_iso_request, request);
10343 ASET (attrs, coding_attr_iso_flags, flags);
10344 setup_iso_safe_charsets (attrs);
10345
10346 if (i & CODING_ISO_FLAG_SEVEN_BITS)
10347 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
10348 | CODING_ISO_FLAG_SINGLE_SHIFT))
10349 ? coding_category_iso_7_else
10350 : EQ (args[coding_arg_charset_list], Qiso_2022)
10351 ? coding_category_iso_7
10352 : coding_category_iso_7_tight);
10353 else
10354 {
10355 int id = XINT (AREF (initial, 1));
10356
10357 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
10358 || EQ (args[coding_arg_charset_list], Qiso_2022)
10359 || id < 0)
10360 ? coding_category_iso_8_else
10361 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
10362 ? coding_category_iso_8_1
10363 : coding_category_iso_8_2);
10364 }
10365 if (category != coding_category_iso_8_1
10366 && category != coding_category_iso_8_2)
10367 ASET (attrs, coding_attr_ascii_compat, Qnil);
10368 }
10369 else if (EQ (coding_type, Qemacs_mule))
10370 {
10371 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
10372 ASET (attrs, coding_attr_emacs_mule_full, Qt);
10373 ASET (attrs, coding_attr_ascii_compat, Qt);
10374 category = coding_category_emacs_mule;
10375 }
10376 else if (EQ (coding_type, Qshift_jis))
10377 {
10378
10379 struct charset *charset;
10380
10381 if (XINT (Flength (charset_list)) != 3
10382 && XINT (Flength (charset_list)) != 4)
10383 error ("There should be three or four charsets");
10384
10385 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10386 if (CHARSET_DIMENSION (charset) != 1)
10387 error ("Dimension of charset %s is not one",
10388 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10389 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10390 ASET (attrs, coding_attr_ascii_compat, Qt);
10391
10392 charset_list = XCDR (charset_list);
10393 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10394 if (CHARSET_DIMENSION (charset) != 1)
10395 error ("Dimension of charset %s is not one",
10396 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10397
10398 charset_list = XCDR (charset_list);
10399 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10400 if (CHARSET_DIMENSION (charset) != 2)
10401 error ("Dimension of charset %s is not two",
10402 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10403
10404 charset_list = XCDR (charset_list);
10405 if (! NILP (charset_list))
10406 {
10407 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10408 if (CHARSET_DIMENSION (charset) != 2)
10409 error ("Dimension of charset %s is not two",
10410 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10411 }
10412
10413 category = coding_category_sjis;
10414 Vsjis_coding_system = name;
10415 }
10416 else if (EQ (coding_type, Qbig5))
10417 {
10418 struct charset *charset;
10419
10420 if (XINT (Flength (charset_list)) != 2)
10421 error ("There should be just two charsets");
10422
10423 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10424 if (CHARSET_DIMENSION (charset) != 1)
10425 error ("Dimension of charset %s is not one",
10426 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10427 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10428 ASET (attrs, coding_attr_ascii_compat, Qt);
10429
10430 charset_list = XCDR (charset_list);
10431 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10432 if (CHARSET_DIMENSION (charset) != 2)
10433 error ("Dimension of charset %s is not two",
10434 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10435
10436 category = coding_category_big5;
10437 Vbig5_coding_system = name;
10438 }
10439 else if (EQ (coding_type, Qraw_text))
10440 {
10441 category = coding_category_raw_text;
10442 ASET (attrs, coding_attr_ascii_compat, Qt);
10443 }
10444 else if (EQ (coding_type, Qutf_8))
10445 {
10446 Lisp_Object bom;
10447
10448 if (nargs < coding_arg_utf8_max)
10449 goto short_args;
10450
10451 bom = args[coding_arg_utf8_bom];
10452 if (! NILP (bom) && ! EQ (bom, Qt))
10453 {
10454 CHECK_CONS (bom);
10455 val = XCAR (bom);
10456 CHECK_CODING_SYSTEM (val);
10457 val = XCDR (bom);
10458 CHECK_CODING_SYSTEM (val);
10459 }
10460 ASET (attrs, coding_attr_utf_bom, bom);
10461 if (NILP (bom))
10462 ASET (attrs, coding_attr_ascii_compat, Qt);
10463
10464 category = (CONSP (bom) ? coding_category_utf_8_auto
10465 : NILP (bom) ? coding_category_utf_8_nosig
10466 : coding_category_utf_8_sig);
10467 }
10468 else if (EQ (coding_type, Qundecided))
10469 {
10470 if (nargs < coding_arg_undecided_max)
10471 goto short_args;
10472 ASET (attrs, coding_attr_undecided_inhibit_null_byte_detection,
10473 args[coding_arg_undecided_inhibit_null_byte_detection]);
10474 ASET (attrs, coding_attr_undecided_inhibit_iso_escape_detection,
10475 args[coding_arg_undecided_inhibit_iso_escape_detection]);
10476 ASET (attrs, coding_attr_undecided_prefer_utf_8,
10477 args[coding_arg_undecided_prefer_utf_8]);
10478 category = coding_category_undecided;
10479 }
10480 else
10481 error ("Invalid coding system type: %s",
10482 SDATA (SYMBOL_NAME (coding_type)));
10483
10484 ASET (attrs, coding_attr_category, make_number (category));
10485 ASET (attrs, coding_attr_plist,
10486 Fcons (QCcategory,
10487 Fcons (AREF (Vcoding_category_table, category),
10488 CODING_ATTR_PLIST (attrs))));
10489 ASET (attrs, coding_attr_plist,
10490 Fcons (QCascii_compatible_p,
10491 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
10492 CODING_ATTR_PLIST (attrs))));
10493
10494 eol_type = args[coding_arg_eol_type];
10495 if (! NILP (eol_type)
10496 && ! EQ (eol_type, Qunix)
10497 && ! EQ (eol_type, Qdos)
10498 && ! EQ (eol_type, Qmac))
10499 error ("Invalid eol-type");
10500
10501 aliases = list1 (name);
10502
10503 if (NILP (eol_type))
10504 {
10505 eol_type = make_subsidiaries (name);
10506 for (i = 0; i < 3; i++)
10507 {
10508 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
10509
10510 this_name = AREF (eol_type, i);
10511 this_aliases = list1 (this_name);
10512 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
10513 this_spec = make_uninit_vector (3);
10514 ASET (this_spec, 0, attrs);
10515 ASET (this_spec, 1, this_aliases);
10516 ASET (this_spec, 2, this_eol_type);
10517 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
10518 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
10519 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
10520 if (NILP (val))
10521 Vcoding_system_alist
10522 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
10523 Vcoding_system_alist);
10524 }
10525 }
10526
10527 spec_vec = make_uninit_vector (3);
10528 ASET (spec_vec, 0, attrs);
10529 ASET (spec_vec, 1, aliases);
10530 ASET (spec_vec, 2, eol_type);
10531
10532 Fputhash (name, spec_vec, Vcoding_system_hash_table);
10533 Vcoding_system_list = Fcons (name, Vcoding_system_list);
10534 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
10535 if (NILP (val))
10536 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
10537 Vcoding_system_alist);
10538
10539 {
10540 int id = coding_categories[category].id;
10541
10542 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
10543 setup_coding_system (name, &coding_categories[category]);
10544 }
10545
10546 return Qnil;
10547
10548 short_args:
10549 return Fsignal (Qwrong_number_of_arguments,
10550 Fcons (intern ("define-coding-system-internal"),
10551 make_number (nargs)));
10552 }
10553
10554
10555 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10556 3, 3, 0,
10557 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10558 (Lisp_Object coding_system, Lisp_Object prop, Lisp_Object val)
10559 {
10560 Lisp_Object spec, attrs;
10561
10562 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10563 attrs = AREF (spec, 0);
10564 if (EQ (prop, QCmnemonic))
10565 {
10566 if (! STRINGP (val))
10567 CHECK_CHARACTER (val);
10568 ASET (attrs, coding_attr_mnemonic, val);
10569 }
10570 else if (EQ (prop, QCdefault_char))
10571 {
10572 if (NILP (val))
10573 val = make_number (' ');
10574 else
10575 CHECK_CHARACTER (val);
10576 ASET (attrs, coding_attr_default_char, val);
10577 }
10578 else if (EQ (prop, QCdecode_translation_table))
10579 {
10580 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10581 CHECK_SYMBOL (val);
10582 ASET (attrs, coding_attr_decode_tbl, val);
10583 }
10584 else if (EQ (prop, QCencode_translation_table))
10585 {
10586 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10587 CHECK_SYMBOL (val);
10588 ASET (attrs, coding_attr_encode_tbl, val);
10589 }
10590 else if (EQ (prop, QCpost_read_conversion))
10591 {
10592 CHECK_SYMBOL (val);
10593 ASET (attrs, coding_attr_post_read, val);
10594 }
10595 else if (EQ (prop, QCpre_write_conversion))
10596 {
10597 CHECK_SYMBOL (val);
10598 ASET (attrs, coding_attr_pre_write, val);
10599 }
10600 else if (EQ (prop, QCascii_compatible_p))
10601 {
10602 ASET (attrs, coding_attr_ascii_compat, val);
10603 }
10604
10605 ASET (attrs, coding_attr_plist,
10606 Fplist_put (CODING_ATTR_PLIST (attrs), prop, val));
10607 return val;
10608 }
10609
10610
10611 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10612 Sdefine_coding_system_alias, 2, 2, 0,
10613 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10614 (Lisp_Object alias, Lisp_Object coding_system)
10615 {
10616 Lisp_Object spec, aliases, eol_type, val;
10617
10618 CHECK_SYMBOL (alias);
10619 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10620 aliases = AREF (spec, 1);
10621 /* ALIASES should be a list of length more than zero, and the first
10622 element is a base coding system. Append ALIAS at the tail of the
10623 list. */
10624 while (!NILP (XCDR (aliases)))
10625 aliases = XCDR (aliases);
10626 XSETCDR (aliases, list1 (alias));
10627
10628 eol_type = AREF (spec, 2);
10629 if (VECTORP (eol_type))
10630 {
10631 Lisp_Object subsidiaries;
10632 int i;
10633
10634 subsidiaries = make_subsidiaries (alias);
10635 for (i = 0; i < 3; i++)
10636 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10637 AREF (eol_type, i));
10638 }
10639
10640 Fputhash (alias, spec, Vcoding_system_hash_table);
10641 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10642 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10643 if (NILP (val))
10644 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10645 Vcoding_system_alist);
10646
10647 return Qnil;
10648 }
10649
10650 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10651 1, 1, 0,
10652 doc: /* Return the base of CODING-SYSTEM.
10653 Any alias or subsidiary coding system is not a base coding system. */)
10654 (Lisp_Object coding_system)
10655 {
10656 Lisp_Object spec, attrs;
10657
10658 if (NILP (coding_system))
10659 return (Qno_conversion);
10660 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10661 attrs = AREF (spec, 0);
10662 return CODING_ATTR_BASE_NAME (attrs);
10663 }
10664
10665 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10666 1, 1, 0,
10667 doc: /* Return the property list of CODING-SYSTEM. */)
10668 (Lisp_Object coding_system)
10669 {
10670 Lisp_Object spec, attrs;
10671
10672 if (NILP (coding_system))
10673 coding_system = Qno_conversion;
10674 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10675 attrs = AREF (spec, 0);
10676 return CODING_ATTR_PLIST (attrs);
10677 }
10678
10679
10680 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10681 1, 1, 0,
10682 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10683 (Lisp_Object coding_system)
10684 {
10685 Lisp_Object spec;
10686
10687 if (NILP (coding_system))
10688 coding_system = Qno_conversion;
10689 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10690 return AREF (spec, 1);
10691 }
10692
10693 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10694 Scoding_system_eol_type, 1, 1, 0,
10695 doc: /* Return eol-type of CODING-SYSTEM.
10696 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10697
10698 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10699 and CR respectively.
10700
10701 A vector value indicates that a format of end-of-line should be
10702 detected automatically. Nth element of the vector is the subsidiary
10703 coding system whose eol-type is N. */)
10704 (Lisp_Object coding_system)
10705 {
10706 Lisp_Object spec, eol_type;
10707 int n;
10708
10709 if (NILP (coding_system))
10710 coding_system = Qno_conversion;
10711 if (! CODING_SYSTEM_P (coding_system))
10712 return Qnil;
10713 spec = CODING_SYSTEM_SPEC (coding_system);
10714 eol_type = AREF (spec, 2);
10715 if (VECTORP (eol_type))
10716 return Fcopy_sequence (eol_type);
10717 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10718 return make_number (n);
10719 }
10720
10721 #endif /* emacs */
10722
10723 \f
10724 /*** 9. Post-amble ***/
10725
10726 void
10727 init_coding_once (void)
10728 {
10729 int i;
10730
10731 for (i = 0; i < coding_category_max; i++)
10732 {
10733 coding_categories[i].id = -1;
10734 coding_priorities[i] = i;
10735 }
10736
10737 /* ISO2022 specific initialize routine. */
10738 for (i = 0; i < 0x20; i++)
10739 iso_code_class[i] = ISO_control_0;
10740 for (i = 0x21; i < 0x7F; i++)
10741 iso_code_class[i] = ISO_graphic_plane_0;
10742 for (i = 0x80; i < 0xA0; i++)
10743 iso_code_class[i] = ISO_control_1;
10744 for (i = 0xA1; i < 0xFF; i++)
10745 iso_code_class[i] = ISO_graphic_plane_1;
10746 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10747 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10748 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10749 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10750 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10751 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10752 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10753 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10754 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10755
10756 for (i = 0; i < 256; i++)
10757 {
10758 emacs_mule_bytes[i] = 1;
10759 }
10760 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10761 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10762 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10763 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10764 }
10765
10766 #ifdef emacs
10767
10768 void
10769 syms_of_coding (void)
10770 {
10771 staticpro (&Vcoding_system_hash_table);
10772 Vcoding_system_hash_table = CALLN (Fmake_hash_table, QCtest, Qeq);
10773
10774 staticpro (&Vsjis_coding_system);
10775 Vsjis_coding_system = Qnil;
10776
10777 staticpro (&Vbig5_coding_system);
10778 Vbig5_coding_system = Qnil;
10779
10780 staticpro (&Vcode_conversion_reused_workbuf);
10781 Vcode_conversion_reused_workbuf = Qnil;
10782
10783 staticpro (&Vcode_conversion_workbuf_name);
10784 Vcode_conversion_workbuf_name = build_pure_c_string (" *code-conversion-work*");
10785
10786 reused_workbuf_in_use = 0;
10787
10788 DEFSYM (Qcharset, "charset");
10789 DEFSYM (Qtarget_idx, "target-idx");
10790 DEFSYM (Qcoding_system_history, "coding-system-history");
10791 Fset (Qcoding_system_history, Qnil);
10792
10793 /* Target FILENAME is the first argument. */
10794 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10795 /* Target FILENAME is the third argument. */
10796 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10797
10798 DEFSYM (Qcall_process, "call-process");
10799 /* Target PROGRAM is the first argument. */
10800 Fput (Qcall_process, Qtarget_idx, make_number (0));
10801
10802 DEFSYM (Qcall_process_region, "call-process-region");
10803 /* Target PROGRAM is the third argument. */
10804 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10805
10806 DEFSYM (Qstart_process, "start-process");
10807 /* Target PROGRAM is the third argument. */
10808 Fput (Qstart_process, Qtarget_idx, make_number (2));
10809
10810 DEFSYM (Qopen_network_stream, "open-network-stream");
10811 /* Target SERVICE is the fourth argument. */
10812 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10813
10814 DEFSYM (Qunix, "unix");
10815 DEFSYM (Qdos, "dos");
10816 DEFSYM (Qmac, "mac");
10817
10818 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10819 DEFSYM (Qundecided, "undecided");
10820 DEFSYM (Qno_conversion, "no-conversion");
10821 DEFSYM (Qraw_text, "raw-text");
10822
10823 DEFSYM (Qiso_2022, "iso-2022");
10824
10825 DEFSYM (Qutf_8, "utf-8");
10826 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10827
10828 #if defined (WINDOWSNT) || defined (CYGWIN)
10829 /* No, not utf-16-le: that one has a BOM. */
10830 DEFSYM (Qutf_16le, "utf-16le");
10831 #endif
10832
10833 DEFSYM (Qutf_16, "utf-16");
10834 DEFSYM (Qbig, "big");
10835 DEFSYM (Qlittle, "little");
10836
10837 DEFSYM (Qshift_jis, "shift-jis");
10838 DEFSYM (Qbig5, "big5");
10839
10840 DEFSYM (Qcoding_system_p, "coding-system-p");
10841
10842 /* Error signaled when there's a problem with detecting a coding system. */
10843 DEFSYM (Qcoding_system_error, "coding-system-error");
10844 Fput (Qcoding_system_error, Qerror_conditions,
10845 listn (CONSTYPE_PURE, 2, Qcoding_system_error, Qerror));
10846 Fput (Qcoding_system_error, Qerror_message,
10847 build_pure_c_string ("Invalid coding system"));
10848
10849 DEFSYM (Qtranslation_table, "translation-table");
10850 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10851 DEFSYM (Qtranslation_table_id, "translation-table-id");
10852
10853 /* Coding system emacs-mule and raw-text are for converting only
10854 end-of-line format. */
10855 DEFSYM (Qemacs_mule, "emacs-mule");
10856
10857 DEFSYM (QCcategory, ":category");
10858 DEFSYM (QCmnemonic, ":mnemonic");
10859 DEFSYM (QCdefault_char, ":default-char");
10860 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10861 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10862 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10863 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10864 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10865
10866 Vcoding_category_table
10867 = Fmake_vector (make_number (coding_category_max), Qnil);
10868 staticpro (&Vcoding_category_table);
10869 /* Followings are target of code detection. */
10870 ASET (Vcoding_category_table, coding_category_iso_7,
10871 intern_c_string ("coding-category-iso-7"));
10872 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10873 intern_c_string ("coding-category-iso-7-tight"));
10874 ASET (Vcoding_category_table, coding_category_iso_8_1,
10875 intern_c_string ("coding-category-iso-8-1"));
10876 ASET (Vcoding_category_table, coding_category_iso_8_2,
10877 intern_c_string ("coding-category-iso-8-2"));
10878 ASET (Vcoding_category_table, coding_category_iso_7_else,
10879 intern_c_string ("coding-category-iso-7-else"));
10880 ASET (Vcoding_category_table, coding_category_iso_8_else,
10881 intern_c_string ("coding-category-iso-8-else"));
10882 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10883 intern_c_string ("coding-category-utf-8-auto"));
10884 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10885 intern_c_string ("coding-category-utf-8"));
10886 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10887 intern_c_string ("coding-category-utf-8-sig"));
10888 ASET (Vcoding_category_table, coding_category_utf_16_be,
10889 intern_c_string ("coding-category-utf-16-be"));
10890 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10891 intern_c_string ("coding-category-utf-16-auto"));
10892 ASET (Vcoding_category_table, coding_category_utf_16_le,
10893 intern_c_string ("coding-category-utf-16-le"));
10894 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10895 intern_c_string ("coding-category-utf-16-be-nosig"));
10896 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10897 intern_c_string ("coding-category-utf-16-le-nosig"));
10898 ASET (Vcoding_category_table, coding_category_charset,
10899 intern_c_string ("coding-category-charset"));
10900 ASET (Vcoding_category_table, coding_category_sjis,
10901 intern_c_string ("coding-category-sjis"));
10902 ASET (Vcoding_category_table, coding_category_big5,
10903 intern_c_string ("coding-category-big5"));
10904 ASET (Vcoding_category_table, coding_category_ccl,
10905 intern_c_string ("coding-category-ccl"));
10906 ASET (Vcoding_category_table, coding_category_emacs_mule,
10907 intern_c_string ("coding-category-emacs-mule"));
10908 /* Followings are NOT target of code detection. */
10909 ASET (Vcoding_category_table, coding_category_raw_text,
10910 intern_c_string ("coding-category-raw-text"));
10911 ASET (Vcoding_category_table, coding_category_undecided,
10912 intern_c_string ("coding-category-undecided"));
10913
10914 DEFSYM (Qinsufficient_source, "insufficient-source");
10915 DEFSYM (Qinvalid_source, "invalid-source");
10916 DEFSYM (Qinterrupted, "interrupted");
10917
10918 /* If a symbol has this property, evaluate the value to define the
10919 symbol as a coding system. */
10920 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10921
10922 defsubr (&Scoding_system_p);
10923 defsubr (&Sread_coding_system);
10924 defsubr (&Sread_non_nil_coding_system);
10925 defsubr (&Scheck_coding_system);
10926 defsubr (&Sdetect_coding_region);
10927 defsubr (&Sdetect_coding_string);
10928 defsubr (&Sfind_coding_systems_region_internal);
10929 defsubr (&Sunencodable_char_position);
10930 defsubr (&Scheck_coding_systems_region);
10931 defsubr (&Sdecode_coding_region);
10932 defsubr (&Sencode_coding_region);
10933 defsubr (&Sdecode_coding_string);
10934 defsubr (&Sencode_coding_string);
10935 defsubr (&Sdecode_sjis_char);
10936 defsubr (&Sencode_sjis_char);
10937 defsubr (&Sdecode_big5_char);
10938 defsubr (&Sencode_big5_char);
10939 defsubr (&Sset_terminal_coding_system_internal);
10940 defsubr (&Sset_safe_terminal_coding_system_internal);
10941 defsubr (&Sterminal_coding_system);
10942 defsubr (&Sset_keyboard_coding_system_internal);
10943 defsubr (&Skeyboard_coding_system);
10944 defsubr (&Sfind_operation_coding_system);
10945 defsubr (&Sset_coding_system_priority);
10946 defsubr (&Sdefine_coding_system_internal);
10947 defsubr (&Sdefine_coding_system_alias);
10948 defsubr (&Scoding_system_put);
10949 defsubr (&Scoding_system_base);
10950 defsubr (&Scoding_system_plist);
10951 defsubr (&Scoding_system_aliases);
10952 defsubr (&Scoding_system_eol_type);
10953 defsubr (&Scoding_system_priority_list);
10954
10955 DEFVAR_LISP ("coding-system-list", Vcoding_system_list,
10956 doc: /* List of coding systems.
10957
10958 Do not alter the value of this variable manually. This variable should be
10959 updated by the functions `define-coding-system' and
10960 `define-coding-system-alias'. */);
10961 Vcoding_system_list = Qnil;
10962
10963 DEFVAR_LISP ("coding-system-alist", Vcoding_system_alist,
10964 doc: /* Alist of coding system names.
10965 Each element is one element list of coding system name.
10966 This variable is given to `completing-read' as COLLECTION argument.
10967
10968 Do not alter the value of this variable manually. This variable should be
10969 updated by the functions `make-coding-system' and
10970 `define-coding-system-alias'. */);
10971 Vcoding_system_alist = Qnil;
10972
10973 DEFVAR_LISP ("coding-category-list", Vcoding_category_list,
10974 doc: /* List of coding-categories (symbols) ordered by priority.
10975
10976 On detecting a coding system, Emacs tries code detection algorithms
10977 associated with each coding-category one by one in this order. When
10978 one algorithm agrees with a byte sequence of source text, the coding
10979 system bound to the corresponding coding-category is selected.
10980
10981 Don't modify this variable directly, but use `set-coding-system-priority'. */);
10982 {
10983 int i;
10984
10985 Vcoding_category_list = Qnil;
10986 for (i = coding_category_max - 1; i >= 0; i--)
10987 Vcoding_category_list
10988 = Fcons (AREF (Vcoding_category_table, i),
10989 Vcoding_category_list);
10990 }
10991
10992 DEFVAR_LISP ("coding-system-for-read", Vcoding_system_for_read,
10993 doc: /* Specify the coding system for read operations.
10994 It is useful to bind this variable with `let', but do not set it globally.
10995 If the value is a coding system, it is used for decoding on read operation.
10996 If not, an appropriate element is used from one of the coding system alists.
10997 There are three such tables: `file-coding-system-alist',
10998 `process-coding-system-alist', and `network-coding-system-alist'. */);
10999 Vcoding_system_for_read = Qnil;
11000
11001 DEFVAR_LISP ("coding-system-for-write", Vcoding_system_for_write,
11002 doc: /* Specify the coding system for write operations.
11003 Programs bind this variable with `let', but you should not set it globally.
11004 If the value is a coding system, it is used for encoding of output,
11005 when writing it to a file and when sending it to a file or subprocess.
11006
11007 If this does not specify a coding system, an appropriate element
11008 is used from one of the coding system alists.
11009 There are three such tables: `file-coding-system-alist',
11010 `process-coding-system-alist', and `network-coding-system-alist'.
11011 For output to files, if the above procedure does not specify a coding system,
11012 the value of `buffer-file-coding-system' is used. */);
11013 Vcoding_system_for_write = Qnil;
11014
11015 DEFVAR_LISP ("last-coding-system-used", Vlast_coding_system_used,
11016 doc: /*
11017 Coding system used in the latest file or process I/O. */);
11018 Vlast_coding_system_used = Qnil;
11019
11020 DEFVAR_LISP ("last-code-conversion-error", Vlast_code_conversion_error,
11021 doc: /*
11022 Error status of the last code conversion.
11023
11024 When an error was detected in the last code conversion, this variable
11025 is set to one of the following symbols.
11026 `insufficient-source'
11027 `inconsistent-eol'
11028 `invalid-source'
11029 `interrupted'
11030 `insufficient-memory'
11031 When no error was detected, the value doesn't change. So, to check
11032 the error status of a code conversion by this variable, you must
11033 explicitly set this variable to nil before performing code
11034 conversion. */);
11035 Vlast_code_conversion_error = Qnil;
11036
11037 DEFVAR_BOOL ("inhibit-eol-conversion", inhibit_eol_conversion,
11038 doc: /*
11039 Non-nil means always inhibit code conversion of end-of-line format.
11040 See info node `Coding Systems' and info node `Text and Binary' concerning
11041 such conversion. */);
11042 inhibit_eol_conversion = 0;
11043
11044 DEFVAR_BOOL ("inherit-process-coding-system", inherit_process_coding_system,
11045 doc: /*
11046 Non-nil means process buffer inherits coding system of process output.
11047 Bind it to t if the process output is to be treated as if it were a file
11048 read from some filesystem. */);
11049 inherit_process_coding_system = 0;
11050
11051 DEFVAR_LISP ("file-coding-system-alist", Vfile_coding_system_alist,
11052 doc: /*
11053 Alist to decide a coding system to use for a file I/O operation.
11054 The format is ((PATTERN . VAL) ...),
11055 where PATTERN is a regular expression matching a file name,
11056 VAL is a coding system, a cons of coding systems, or a function symbol.
11057 If VAL is a coding system, it is used for both decoding and encoding
11058 the file contents.
11059 If VAL is a cons of coding systems, the car part is used for decoding,
11060 and the cdr part is used for encoding.
11061 If VAL is a function symbol, the function must return a coding system
11062 or a cons of coding systems which are used as above. The function is
11063 called with an argument that is a list of the arguments with which
11064 `find-operation-coding-system' was called. If the function can't decide
11065 a coding system, it can return `undecided' so that the normal
11066 code-detection is performed.
11067
11068 See also the function `find-operation-coding-system'
11069 and the variable `auto-coding-alist'. */);
11070 Vfile_coding_system_alist = Qnil;
11071
11072 DEFVAR_LISP ("process-coding-system-alist", Vprocess_coding_system_alist,
11073 doc: /*
11074 Alist to decide a coding system to use for a process I/O operation.
11075 The format is ((PATTERN . VAL) ...),
11076 where PATTERN is a regular expression matching a program name,
11077 VAL is a coding system, a cons of coding systems, or a function symbol.
11078 If VAL is a coding system, it is used for both decoding what received
11079 from the program and encoding what sent to the program.
11080 If VAL is a cons of coding systems, the car part is used for decoding,
11081 and the cdr part is used for encoding.
11082 If VAL is a function symbol, the function must return a coding system
11083 or a cons of coding systems which are used as above.
11084
11085 See also the function `find-operation-coding-system'. */);
11086 Vprocess_coding_system_alist = Qnil;
11087
11088 DEFVAR_LISP ("network-coding-system-alist", Vnetwork_coding_system_alist,
11089 doc: /*
11090 Alist to decide a coding system to use for a network I/O operation.
11091 The format is ((PATTERN . VAL) ...),
11092 where PATTERN is a regular expression matching a network service name
11093 or is a port number to connect to,
11094 VAL is a coding system, a cons of coding systems, or a function symbol.
11095 If VAL is a coding system, it is used for both decoding what received
11096 from the network stream and encoding what sent to the network stream.
11097 If VAL is a cons of coding systems, the car part is used for decoding,
11098 and the cdr part is used for encoding.
11099 If VAL is a function symbol, the function must return a coding system
11100 or a cons of coding systems which are used as above.
11101
11102 See also the function `find-operation-coding-system'. */);
11103 Vnetwork_coding_system_alist = Qnil;
11104
11105 DEFVAR_LISP ("locale-coding-system", Vlocale_coding_system,
11106 doc: /* Coding system to use with system messages.
11107 Also used for decoding keyboard input on X Window system, and for
11108 encoding standard output and error streams. */);
11109 Vlocale_coding_system = Qnil;
11110
11111 /* The eol mnemonics are reset in startup.el system-dependently. */
11112 DEFVAR_LISP ("eol-mnemonic-unix", eol_mnemonic_unix,
11113 doc: /*
11114 String displayed in mode line for UNIX-like (LF) end-of-line format. */);
11115 eol_mnemonic_unix = build_pure_c_string (":");
11116
11117 DEFVAR_LISP ("eol-mnemonic-dos", eol_mnemonic_dos,
11118 doc: /*
11119 String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
11120 eol_mnemonic_dos = build_pure_c_string ("\\");
11121
11122 DEFVAR_LISP ("eol-mnemonic-mac", eol_mnemonic_mac,
11123 doc: /*
11124 String displayed in mode line for MAC-like (CR) end-of-line format. */);
11125 eol_mnemonic_mac = build_pure_c_string ("/");
11126
11127 DEFVAR_LISP ("eol-mnemonic-undecided", eol_mnemonic_undecided,
11128 doc: /*
11129 String displayed in mode line when end-of-line format is not yet determined. */);
11130 eol_mnemonic_undecided = build_pure_c_string (":");
11131
11132 DEFVAR_LISP ("enable-character-translation", Venable_character_translation,
11133 doc: /*
11134 Non-nil enables character translation while encoding and decoding. */);
11135 Venable_character_translation = Qt;
11136
11137 DEFVAR_LISP ("standard-translation-table-for-decode",
11138 Vstandard_translation_table_for_decode,
11139 doc: /* Table for translating characters while decoding. */);
11140 Vstandard_translation_table_for_decode = Qnil;
11141
11142 DEFVAR_LISP ("standard-translation-table-for-encode",
11143 Vstandard_translation_table_for_encode,
11144 doc: /* Table for translating characters while encoding. */);
11145 Vstandard_translation_table_for_encode = Qnil;
11146
11147 DEFVAR_LISP ("charset-revision-table", Vcharset_revision_table,
11148 doc: /* Alist of charsets vs revision numbers.
11149 While encoding, if a charset (car part of an element) is found,
11150 designate it with the escape sequence identifying revision (cdr part
11151 of the element). */);
11152 Vcharset_revision_table = Qnil;
11153
11154 DEFVAR_LISP ("default-process-coding-system",
11155 Vdefault_process_coding_system,
11156 doc: /* Cons of coding systems used for process I/O by default.
11157 The car part is used for decoding a process output,
11158 the cdr part is used for encoding a text to be sent to a process. */);
11159 Vdefault_process_coding_system = Qnil;
11160
11161 DEFVAR_LISP ("latin-extra-code-table", Vlatin_extra_code_table,
11162 doc: /*
11163 Table of extra Latin codes in the range 128..159 (inclusive).
11164 This is a vector of length 256.
11165 If Nth element is non-nil, the existence of code N in a file
11166 \(or output of subprocess) doesn't prevent it to be detected as
11167 a coding system of ISO 2022 variant which has a flag
11168 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
11169 or reading output of a subprocess.
11170 Only 128th through 159th elements have a meaning. */);
11171 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
11172
11173 DEFVAR_LISP ("select-safe-coding-system-function",
11174 Vselect_safe_coding_system_function,
11175 doc: /*
11176 Function to call to select safe coding system for encoding a text.
11177
11178 If set, this function is called to force a user to select a proper
11179 coding system which can encode the text in the case that a default
11180 coding system used in each operation can't encode the text. The
11181 function should take care that the buffer is not modified while
11182 the coding system is being selected.
11183
11184 The default value is `select-safe-coding-system' (which see). */);
11185 Vselect_safe_coding_system_function = Qnil;
11186
11187 DEFVAR_BOOL ("coding-system-require-warning",
11188 coding_system_require_warning,
11189 doc: /* Internal use only.
11190 If non-nil, on writing a file, `select-safe-coding-system-function' is
11191 called even if `coding-system-for-write' is non-nil. The command
11192 `universal-coding-system-argument' binds this variable to t temporarily. */);
11193 coding_system_require_warning = 0;
11194
11195
11196 DEFVAR_BOOL ("inhibit-iso-escape-detection",
11197 inhibit_iso_escape_detection,
11198 doc: /*
11199 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
11200
11201 When Emacs reads text, it tries to detect how the text is encoded.
11202 This code detection is sensitive to escape sequences. If Emacs sees
11203 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
11204 of the ISO2022 encodings, and decodes text by the corresponding coding
11205 system (e.g. `iso-2022-7bit').
11206
11207 However, there may be a case that you want to read escape sequences in
11208 a file as is. In such a case, you can set this variable to non-nil.
11209 Then the code detection will ignore any escape sequences, and no text is
11210 detected as encoded in some ISO-2022 encoding. The result is that all
11211 escape sequences become visible in a buffer.
11212
11213 The default value is nil, and it is strongly recommended not to change
11214 it. That is because many Emacs Lisp source files that contain
11215 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
11216 in Emacs's distribution, and they won't be decoded correctly on
11217 reading if you suppress escape sequence detection.
11218
11219 The other way to read escape sequences in a file without decoding is
11220 to explicitly specify some coding system that doesn't use ISO-2022
11221 escape sequence (e.g., `latin-1') on reading by \\[universal-coding-system-argument]. */);
11222 inhibit_iso_escape_detection = 0;
11223
11224 DEFVAR_BOOL ("inhibit-null-byte-detection",
11225 inhibit_null_byte_detection,
11226 doc: /* If non-nil, Emacs ignores null bytes on code detection.
11227 By default, Emacs treats it as binary data, and does not attempt to
11228 decode it. The effect is as if you specified `no-conversion' for
11229 reading that text.
11230
11231 Set this to non-nil when a regular text happens to include null bytes.
11232 Examples are Index nodes of Info files and null-byte delimited output
11233 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
11234 decode text as usual. */);
11235 inhibit_null_byte_detection = 0;
11236
11237 DEFVAR_BOOL ("disable-ascii-optimization", disable_ascii_optimization,
11238 doc: /* If non-nil, Emacs does not optimize code decoder for ASCII files.
11239 Internal use only. Remove after the experimental optimizer becomes stable. */);
11240 disable_ascii_optimization = 0;
11241
11242 DEFVAR_LISP ("translation-table-for-input", Vtranslation_table_for_input,
11243 doc: /* Char table for translating self-inserting characters.
11244 This is applied to the result of input methods, not their input.
11245 See also `keyboard-translate-table'.
11246
11247 Use of this variable for character code unification was rendered
11248 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
11249 internal character representation. */);
11250 Vtranslation_table_for_input = Qnil;
11251
11252 Lisp_Object args[coding_arg_undecided_max];
11253 memclear (args, sizeof args);
11254
11255 Lisp_Object plist[] =
11256 {
11257 QCname,
11258 args[coding_arg_name] = Qno_conversion,
11259 QCmnemonic,
11260 args[coding_arg_mnemonic] = make_number ('='),
11261 intern_c_string (":coding-type"),
11262 args[coding_arg_coding_type] = Qraw_text,
11263 QCascii_compatible_p,
11264 args[coding_arg_ascii_compatible_p] = Qt,
11265 QCdefault_char,
11266 args[coding_arg_default_char] = make_number (0),
11267 intern_c_string (":for-unibyte"),
11268 args[coding_arg_for_unibyte] = Qt,
11269 intern_c_string (":docstring"),
11270 (build_pure_c_string
11271 ("Do no conversion.\n"
11272 "\n"
11273 "When you visit a file with this coding, the file is read into a\n"
11274 "unibyte buffer as is, thus each byte of a file is treated as a\n"
11275 "character.")),
11276 intern_c_string (":eol-type"),
11277 args[coding_arg_eol_type] = Qunix,
11278 };
11279 args[coding_arg_plist] = CALLMANY (Flist, plist);
11280 Fdefine_coding_system_internal (coding_arg_max, args);
11281
11282 plist[1] = args[coding_arg_name] = Qundecided;
11283 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
11284 plist[5] = args[coding_arg_coding_type] = Qundecided;
11285 /* This is already set.
11286 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
11287 plist[8] = intern_c_string (":charset-list");
11288 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
11289 plist[11] = args[coding_arg_for_unibyte] = Qnil;
11290 plist[13] = build_pure_c_string ("No conversion on encoding, "
11291 "automatic conversion on decoding.");
11292 plist[15] = args[coding_arg_eol_type] = Qnil;
11293 args[coding_arg_plist] = CALLMANY (Flist, plist);
11294 args[coding_arg_undecided_inhibit_null_byte_detection] = make_number (0);
11295 args[coding_arg_undecided_inhibit_iso_escape_detection] = make_number (0);
11296 Fdefine_coding_system_internal (coding_arg_undecided_max, args);
11297
11298 setup_coding_system (Qno_conversion, &safe_terminal_coding);
11299
11300 for (int i = 0; i < coding_category_max; i++)
11301 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
11302
11303 #if defined (DOS_NT)
11304 system_eol_type = Qdos;
11305 #else
11306 system_eol_type = Qunix;
11307 #endif
11308 staticpro (&system_eol_type);
11309 }
11310 #endif /* emacs */