]> code.delx.au - gnu-emacs/blob - src/fns.c
Auto-commit of loaddefs files.
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24
25 #include <intprops.h>
26
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
43
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
54 \f
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
58 {
59 return arg;
60 }
61
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
66
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
71
72 See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
74 {
75 EMACS_INT val;
76
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
81
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
86 }
87 \f
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
91
92 /* Random data-structure functions. */
93
94 DEFUN ("length", Flength, Slength, 1, 1, 0,
95 doc: /* Return the length of vector, list or string SEQUENCE.
96 A byte-code function object is also allowed.
97 If the string contains multibyte characters, this is not necessarily
98 the number of bytes in the string; it is the number of characters.
99 To get the number of bytes, use `string-bytes'. */)
100 (register Lisp_Object sequence)
101 {
102 register Lisp_Object val;
103
104 if (STRINGP (sequence))
105 XSETFASTINT (val, SCHARS (sequence));
106 else if (VECTORP (sequence))
107 XSETFASTINT (val, ASIZE (sequence));
108 else if (CHAR_TABLE_P (sequence))
109 XSETFASTINT (val, MAX_CHAR);
110 else if (BOOL_VECTOR_P (sequence))
111 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
112 else if (COMPILEDP (sequence))
113 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
114 else if (CONSP (sequence))
115 {
116 EMACS_INT i = 0;
117
118 do
119 {
120 ++i;
121 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
122 {
123 if (MOST_POSITIVE_FIXNUM < i)
124 error ("List too long");
125 QUIT;
126 }
127 sequence = XCDR (sequence);
128 }
129 while (CONSP (sequence));
130
131 CHECK_LIST_END (sequence, sequence);
132
133 val = make_number (i);
134 }
135 else if (NILP (sequence))
136 XSETFASTINT (val, 0);
137 else
138 wrong_type_argument (Qsequencep, sequence);
139
140 return val;
141 }
142
143 /* This does not check for quits. That is safe since it must terminate. */
144
145 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
146 doc: /* Return the length of a list, but avoid error or infinite loop.
147 This function never gets an error. If LIST is not really a list,
148 it returns 0. If LIST is circular, it returns a finite value
149 which is at least the number of distinct elements. */)
150 (Lisp_Object list)
151 {
152 Lisp_Object tail, halftail;
153 double hilen = 0;
154 uintmax_t lolen = 1;
155
156 if (! CONSP (list))
157 return make_number (0);
158
159 /* halftail is used to detect circular lists. */
160 for (tail = halftail = list; ; )
161 {
162 tail = XCDR (tail);
163 if (! CONSP (tail))
164 break;
165 if (EQ (tail, halftail))
166 break;
167 lolen++;
168 if ((lolen & 1) == 0)
169 {
170 halftail = XCDR (halftail);
171 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
172 {
173 QUIT;
174 if (lolen == 0)
175 hilen += UINTMAX_MAX + 1.0;
176 }
177 }
178 }
179
180 /* If the length does not fit into a fixnum, return a float.
181 On all known practical machines this returns an upper bound on
182 the true length. */
183 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
184 }
185
186 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
187 doc: /* Return the number of bytes in STRING.
188 If STRING is multibyte, this may be greater than the length of STRING. */)
189 (Lisp_Object string)
190 {
191 CHECK_STRING (string);
192 return make_number (SBYTES (string));
193 }
194
195 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
196 doc: /* Return t if two strings have identical contents.
197 Case is significant, but text properties are ignored.
198 Symbols are also allowed; their print names are used instead. */)
199 (register Lisp_Object s1, Lisp_Object s2)
200 {
201 if (SYMBOLP (s1))
202 s1 = SYMBOL_NAME (s1);
203 if (SYMBOLP (s2))
204 s2 = SYMBOL_NAME (s2);
205 CHECK_STRING (s1);
206 CHECK_STRING (s2);
207
208 if (SCHARS (s1) != SCHARS (s2)
209 || SBYTES (s1) != SBYTES (s2)
210 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
211 return Qnil;
212 return Qt;
213 }
214
215 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
216 doc: /* Compare the contents of two strings, converting to multibyte if needed.
217 The arguments START1, END1, START2, and END2, if non-nil, are
218 positions specifying which parts of STR1 or STR2 to compare. In
219 string STR1, compare the part between START1 (inclusive) and END1
220 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
221 the string; if END1 is nil, it defaults to the length of the string.
222 Likewise, in string STR2, compare the part between START2 and END2.
223
224 The strings are compared by the numeric values of their characters.
225 For instance, STR1 is "less than" STR2 if its first differing
226 character has a smaller numeric value. If IGNORE-CASE is non-nil,
227 characters are converted to lower-case before comparing them. Unibyte
228 strings are converted to multibyte for comparison.
229
230 The value is t if the strings (or specified portions) match.
231 If string STR1 is less, the value is a negative number N;
232 - 1 - N is the number of characters that match at the beginning.
233 If string STR1 is greater, the value is a positive number N;
234 N - 1 is the number of characters that match at the beginning. */)
235 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
236 {
237 register ptrdiff_t end1_char, end2_char;
238 register ptrdiff_t i1, i1_byte, i2, i2_byte;
239
240 CHECK_STRING (str1);
241 CHECK_STRING (str2);
242 if (NILP (start1))
243 start1 = make_number (0);
244 if (NILP (start2))
245 start2 = make_number (0);
246 CHECK_NATNUM (start1);
247 CHECK_NATNUM (start2);
248 if (! NILP (end1))
249 CHECK_NATNUM (end1);
250 if (! NILP (end2))
251 CHECK_NATNUM (end2);
252
253 end1_char = SCHARS (str1);
254 if (! NILP (end1) && end1_char > XINT (end1))
255 end1_char = XINT (end1);
256 if (end1_char < XINT (start1))
257 args_out_of_range (str1, start1);
258
259 end2_char = SCHARS (str2);
260 if (! NILP (end2) && end2_char > XINT (end2))
261 end2_char = XINT (end2);
262 if (end2_char < XINT (start2))
263 args_out_of_range (str2, start2);
264
265 i1 = XINT (start1);
266 i2 = XINT (start2);
267
268 i1_byte = string_char_to_byte (str1, i1);
269 i2_byte = string_char_to_byte (str2, i2);
270
271 while (i1 < end1_char && i2 < end2_char)
272 {
273 /* When we find a mismatch, we must compare the
274 characters, not just the bytes. */
275 int c1, c2;
276
277 if (STRING_MULTIBYTE (str1))
278 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
279 else
280 {
281 c1 = SREF (str1, i1++);
282 MAKE_CHAR_MULTIBYTE (c1);
283 }
284
285 if (STRING_MULTIBYTE (str2))
286 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
287 else
288 {
289 c2 = SREF (str2, i2++);
290 MAKE_CHAR_MULTIBYTE (c2);
291 }
292
293 if (c1 == c2)
294 continue;
295
296 if (! NILP (ignore_case))
297 {
298 Lisp_Object tem;
299
300 tem = Fupcase (make_number (c1));
301 c1 = XINT (tem);
302 tem = Fupcase (make_number (c2));
303 c2 = XINT (tem);
304 }
305
306 if (c1 == c2)
307 continue;
308
309 /* Note that I1 has already been incremented
310 past the character that we are comparing;
311 hence we don't add or subtract 1 here. */
312 if (c1 < c2)
313 return make_number (- i1 + XINT (start1));
314 else
315 return make_number (i1 - XINT (start1));
316 }
317
318 if (i1 < end1_char)
319 return make_number (i1 - XINT (start1) + 1);
320 if (i2 < end2_char)
321 return make_number (- i1 + XINT (start1) - 1);
322
323 return Qt;
324 }
325
326 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
327 doc: /* Return t if first arg string is less than second in lexicographic order.
328 Case is significant.
329 Symbols are also allowed; their print names are used instead. */)
330 (register Lisp_Object s1, Lisp_Object s2)
331 {
332 register ptrdiff_t end;
333 register ptrdiff_t i1, i1_byte, i2, i2_byte;
334
335 if (SYMBOLP (s1))
336 s1 = SYMBOL_NAME (s1);
337 if (SYMBOLP (s2))
338 s2 = SYMBOL_NAME (s2);
339 CHECK_STRING (s1);
340 CHECK_STRING (s2);
341
342 i1 = i1_byte = i2 = i2_byte = 0;
343
344 end = SCHARS (s1);
345 if (end > SCHARS (s2))
346 end = SCHARS (s2);
347
348 while (i1 < end)
349 {
350 /* When we find a mismatch, we must compare the
351 characters, not just the bytes. */
352 int c1, c2;
353
354 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
355 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
356
357 if (c1 != c2)
358 return c1 < c2 ? Qt : Qnil;
359 }
360 return i1 < SCHARS (s2) ? Qt : Qnil;
361 }
362 \f
363 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
364 enum Lisp_Type target_type, bool last_special);
365
366 /* ARGSUSED */
367 Lisp_Object
368 concat2 (Lisp_Object s1, Lisp_Object s2)
369 {
370 Lisp_Object args[2];
371 args[0] = s1;
372 args[1] = s2;
373 return concat (2, args, Lisp_String, 0);
374 }
375
376 /* ARGSUSED */
377 Lisp_Object
378 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
379 {
380 Lisp_Object args[3];
381 args[0] = s1;
382 args[1] = s2;
383 args[2] = s3;
384 return concat (3, args, Lisp_String, 0);
385 }
386
387 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
388 doc: /* Concatenate all the arguments and make the result a list.
389 The result is a list whose elements are the elements of all the arguments.
390 Each argument may be a list, vector or string.
391 The last argument is not copied, just used as the tail of the new list.
392 usage: (append &rest SEQUENCES) */)
393 (ptrdiff_t nargs, Lisp_Object *args)
394 {
395 return concat (nargs, args, Lisp_Cons, 1);
396 }
397
398 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
399 doc: /* Concatenate all the arguments and make the result a string.
400 The result is a string whose elements are the elements of all the arguments.
401 Each argument may be a string or a list or vector of characters (integers).
402 usage: (concat &rest SEQUENCES) */)
403 (ptrdiff_t nargs, Lisp_Object *args)
404 {
405 return concat (nargs, args, Lisp_String, 0);
406 }
407
408 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
409 doc: /* Concatenate all the arguments and make the result a vector.
410 The result is a vector whose elements are the elements of all the arguments.
411 Each argument may be a list, vector or string.
412 usage: (vconcat &rest SEQUENCES) */)
413 (ptrdiff_t nargs, Lisp_Object *args)
414 {
415 return concat (nargs, args, Lisp_Vectorlike, 0);
416 }
417
418
419 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
420 doc: /* Return a copy of a list, vector, string or char-table.
421 The elements of a list or vector are not copied; they are shared
422 with the original. */)
423 (Lisp_Object arg)
424 {
425 if (NILP (arg)) return arg;
426
427 if (CHAR_TABLE_P (arg))
428 {
429 return copy_char_table (arg);
430 }
431
432 if (BOOL_VECTOR_P (arg))
433 {
434 Lisp_Object val;
435 ptrdiff_t size_in_chars
436 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
437 / BOOL_VECTOR_BITS_PER_CHAR);
438
439 val = Fmake_bool_vector (Flength (arg), Qnil);
440 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
441 size_in_chars);
442 return val;
443 }
444
445 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
446 wrong_type_argument (Qsequencep, arg);
447
448 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
449 }
450
451 /* This structure holds information of an argument of `concat' that is
452 a string and has text properties to be copied. */
453 struct textprop_rec
454 {
455 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
456 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
457 ptrdiff_t to; /* refer to VAL (the target string) */
458 };
459
460 static Lisp_Object
461 concat (ptrdiff_t nargs, Lisp_Object *args,
462 enum Lisp_Type target_type, bool last_special)
463 {
464 Lisp_Object val;
465 Lisp_Object tail;
466 Lisp_Object this;
467 ptrdiff_t toindex;
468 ptrdiff_t toindex_byte = 0;
469 EMACS_INT result_len;
470 EMACS_INT result_len_byte;
471 ptrdiff_t argnum;
472 Lisp_Object last_tail;
473 Lisp_Object prev;
474 bool some_multibyte;
475 /* When we make a multibyte string, we can't copy text properties
476 while concatenating each string because the length of resulting
477 string can't be decided until we finish the whole concatenation.
478 So, we record strings that have text properties to be copied
479 here, and copy the text properties after the concatenation. */
480 struct textprop_rec *textprops = NULL;
481 /* Number of elements in textprops. */
482 ptrdiff_t num_textprops = 0;
483 USE_SAFE_ALLOCA;
484
485 tail = Qnil;
486
487 /* In append, the last arg isn't treated like the others */
488 if (last_special && nargs > 0)
489 {
490 nargs--;
491 last_tail = args[nargs];
492 }
493 else
494 last_tail = Qnil;
495
496 /* Check each argument. */
497 for (argnum = 0; argnum < nargs; argnum++)
498 {
499 this = args[argnum];
500 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
501 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
502 wrong_type_argument (Qsequencep, this);
503 }
504
505 /* Compute total length in chars of arguments in RESULT_LEN.
506 If desired output is a string, also compute length in bytes
507 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
508 whether the result should be a multibyte string. */
509 result_len_byte = 0;
510 result_len = 0;
511 some_multibyte = 0;
512 for (argnum = 0; argnum < nargs; argnum++)
513 {
514 EMACS_INT len;
515 this = args[argnum];
516 len = XFASTINT (Flength (this));
517 if (target_type == Lisp_String)
518 {
519 /* We must count the number of bytes needed in the string
520 as well as the number of characters. */
521 ptrdiff_t i;
522 Lisp_Object ch;
523 int c;
524 ptrdiff_t this_len_byte;
525
526 if (VECTORP (this) || COMPILEDP (this))
527 for (i = 0; i < len; i++)
528 {
529 ch = AREF (this, i);
530 CHECK_CHARACTER (ch);
531 c = XFASTINT (ch);
532 this_len_byte = CHAR_BYTES (c);
533 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
534 string_overflow ();
535 result_len_byte += this_len_byte;
536 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
537 some_multibyte = 1;
538 }
539 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
540 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
541 else if (CONSP (this))
542 for (; CONSP (this); this = XCDR (this))
543 {
544 ch = XCAR (this);
545 CHECK_CHARACTER (ch);
546 c = XFASTINT (ch);
547 this_len_byte = CHAR_BYTES (c);
548 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
549 string_overflow ();
550 result_len_byte += this_len_byte;
551 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
552 some_multibyte = 1;
553 }
554 else if (STRINGP (this))
555 {
556 if (STRING_MULTIBYTE (this))
557 {
558 some_multibyte = 1;
559 this_len_byte = SBYTES (this);
560 }
561 else
562 this_len_byte = count_size_as_multibyte (SDATA (this),
563 SCHARS (this));
564 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
565 string_overflow ();
566 result_len_byte += this_len_byte;
567 }
568 }
569
570 result_len += len;
571 if (MOST_POSITIVE_FIXNUM < result_len)
572 memory_full (SIZE_MAX);
573 }
574
575 if (! some_multibyte)
576 result_len_byte = result_len;
577
578 /* Create the output object. */
579 if (target_type == Lisp_Cons)
580 val = Fmake_list (make_number (result_len), Qnil);
581 else if (target_type == Lisp_Vectorlike)
582 val = Fmake_vector (make_number (result_len), Qnil);
583 else if (some_multibyte)
584 val = make_uninit_multibyte_string (result_len, result_len_byte);
585 else
586 val = make_uninit_string (result_len);
587
588 /* In `append', if all but last arg are nil, return last arg. */
589 if (target_type == Lisp_Cons && EQ (val, Qnil))
590 return last_tail;
591
592 /* Copy the contents of the args into the result. */
593 if (CONSP (val))
594 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
595 else
596 toindex = 0, toindex_byte = 0;
597
598 prev = Qnil;
599 if (STRINGP (val))
600 SAFE_NALLOCA (textprops, 1, nargs);
601
602 for (argnum = 0; argnum < nargs; argnum++)
603 {
604 Lisp_Object thislen;
605 ptrdiff_t thisleni = 0;
606 register ptrdiff_t thisindex = 0;
607 register ptrdiff_t thisindex_byte = 0;
608
609 this = args[argnum];
610 if (!CONSP (this))
611 thislen = Flength (this), thisleni = XINT (thislen);
612
613 /* Between strings of the same kind, copy fast. */
614 if (STRINGP (this) && STRINGP (val)
615 && STRING_MULTIBYTE (this) == some_multibyte)
616 {
617 ptrdiff_t thislen_byte = SBYTES (this);
618
619 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
620 if (string_intervals (this))
621 {
622 textprops[num_textprops].argnum = argnum;
623 textprops[num_textprops].from = 0;
624 textprops[num_textprops++].to = toindex;
625 }
626 toindex_byte += thislen_byte;
627 toindex += thisleni;
628 }
629 /* Copy a single-byte string to a multibyte string. */
630 else if (STRINGP (this) && STRINGP (val))
631 {
632 if (string_intervals (this))
633 {
634 textprops[num_textprops].argnum = argnum;
635 textprops[num_textprops].from = 0;
636 textprops[num_textprops++].to = toindex;
637 }
638 toindex_byte += copy_text (SDATA (this),
639 SDATA (val) + toindex_byte,
640 SCHARS (this), 0, 1);
641 toindex += thisleni;
642 }
643 else
644 /* Copy element by element. */
645 while (1)
646 {
647 register Lisp_Object elt;
648
649 /* Fetch next element of `this' arg into `elt', or break if
650 `this' is exhausted. */
651 if (NILP (this)) break;
652 if (CONSP (this))
653 elt = XCAR (this), this = XCDR (this);
654 else if (thisindex >= thisleni)
655 break;
656 else if (STRINGP (this))
657 {
658 int c;
659 if (STRING_MULTIBYTE (this))
660 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
661 thisindex,
662 thisindex_byte);
663 else
664 {
665 c = SREF (this, thisindex); thisindex++;
666 if (some_multibyte && !ASCII_CHAR_P (c))
667 c = BYTE8_TO_CHAR (c);
668 }
669 XSETFASTINT (elt, c);
670 }
671 else if (BOOL_VECTOR_P (this))
672 {
673 int byte;
674 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
675 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
676 elt = Qt;
677 else
678 elt = Qnil;
679 thisindex++;
680 }
681 else
682 {
683 elt = AREF (this, thisindex);
684 thisindex++;
685 }
686
687 /* Store this element into the result. */
688 if (toindex < 0)
689 {
690 XSETCAR (tail, elt);
691 prev = tail;
692 tail = XCDR (tail);
693 }
694 else if (VECTORP (val))
695 {
696 ASET (val, toindex, elt);
697 toindex++;
698 }
699 else
700 {
701 int c;
702 CHECK_CHARACTER (elt);
703 c = XFASTINT (elt);
704 if (some_multibyte)
705 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
706 else
707 SSET (val, toindex_byte++, c);
708 toindex++;
709 }
710 }
711 }
712 if (!NILP (prev))
713 XSETCDR (prev, last_tail);
714
715 if (num_textprops > 0)
716 {
717 Lisp_Object props;
718 ptrdiff_t last_to_end = -1;
719
720 for (argnum = 0; argnum < num_textprops; argnum++)
721 {
722 this = args[textprops[argnum].argnum];
723 props = text_property_list (this,
724 make_number (0),
725 make_number (SCHARS (this)),
726 Qnil);
727 /* If successive arguments have properties, be sure that the
728 value of `composition' property be the copy. */
729 if (last_to_end == textprops[argnum].to)
730 make_composition_value_copy (props);
731 add_text_properties_from_list (val, props,
732 make_number (textprops[argnum].to));
733 last_to_end = textprops[argnum].to + SCHARS (this);
734 }
735 }
736
737 SAFE_FREE ();
738 return val;
739 }
740 \f
741 static Lisp_Object string_char_byte_cache_string;
742 static ptrdiff_t string_char_byte_cache_charpos;
743 static ptrdiff_t string_char_byte_cache_bytepos;
744
745 void
746 clear_string_char_byte_cache (void)
747 {
748 string_char_byte_cache_string = Qnil;
749 }
750
751 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
752
753 ptrdiff_t
754 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
755 {
756 ptrdiff_t i_byte;
757 ptrdiff_t best_below, best_below_byte;
758 ptrdiff_t best_above, best_above_byte;
759
760 best_below = best_below_byte = 0;
761 best_above = SCHARS (string);
762 best_above_byte = SBYTES (string);
763 if (best_above == best_above_byte)
764 return char_index;
765
766 if (EQ (string, string_char_byte_cache_string))
767 {
768 if (string_char_byte_cache_charpos < char_index)
769 {
770 best_below = string_char_byte_cache_charpos;
771 best_below_byte = string_char_byte_cache_bytepos;
772 }
773 else
774 {
775 best_above = string_char_byte_cache_charpos;
776 best_above_byte = string_char_byte_cache_bytepos;
777 }
778 }
779
780 if (char_index - best_below < best_above - char_index)
781 {
782 unsigned char *p = SDATA (string) + best_below_byte;
783
784 while (best_below < char_index)
785 {
786 p += BYTES_BY_CHAR_HEAD (*p);
787 best_below++;
788 }
789 i_byte = p - SDATA (string);
790 }
791 else
792 {
793 unsigned char *p = SDATA (string) + best_above_byte;
794
795 while (best_above > char_index)
796 {
797 p--;
798 while (!CHAR_HEAD_P (*p)) p--;
799 best_above--;
800 }
801 i_byte = p - SDATA (string);
802 }
803
804 string_char_byte_cache_bytepos = i_byte;
805 string_char_byte_cache_charpos = char_index;
806 string_char_byte_cache_string = string;
807
808 return i_byte;
809 }
810 \f
811 /* Return the character index corresponding to BYTE_INDEX in STRING. */
812
813 ptrdiff_t
814 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
815 {
816 ptrdiff_t i, i_byte;
817 ptrdiff_t best_below, best_below_byte;
818 ptrdiff_t best_above, best_above_byte;
819
820 best_below = best_below_byte = 0;
821 best_above = SCHARS (string);
822 best_above_byte = SBYTES (string);
823 if (best_above == best_above_byte)
824 return byte_index;
825
826 if (EQ (string, string_char_byte_cache_string))
827 {
828 if (string_char_byte_cache_bytepos < byte_index)
829 {
830 best_below = string_char_byte_cache_charpos;
831 best_below_byte = string_char_byte_cache_bytepos;
832 }
833 else
834 {
835 best_above = string_char_byte_cache_charpos;
836 best_above_byte = string_char_byte_cache_bytepos;
837 }
838 }
839
840 if (byte_index - best_below_byte < best_above_byte - byte_index)
841 {
842 unsigned char *p = SDATA (string) + best_below_byte;
843 unsigned char *pend = SDATA (string) + byte_index;
844
845 while (p < pend)
846 {
847 p += BYTES_BY_CHAR_HEAD (*p);
848 best_below++;
849 }
850 i = best_below;
851 i_byte = p - SDATA (string);
852 }
853 else
854 {
855 unsigned char *p = SDATA (string) + best_above_byte;
856 unsigned char *pbeg = SDATA (string) + byte_index;
857
858 while (p > pbeg)
859 {
860 p--;
861 while (!CHAR_HEAD_P (*p)) p--;
862 best_above--;
863 }
864 i = best_above;
865 i_byte = p - SDATA (string);
866 }
867
868 string_char_byte_cache_bytepos = i_byte;
869 string_char_byte_cache_charpos = i;
870 string_char_byte_cache_string = string;
871
872 return i;
873 }
874 \f
875 /* Convert STRING to a multibyte string. */
876
877 static Lisp_Object
878 string_make_multibyte (Lisp_Object string)
879 {
880 unsigned char *buf;
881 ptrdiff_t nbytes;
882 Lisp_Object ret;
883 USE_SAFE_ALLOCA;
884
885 if (STRING_MULTIBYTE (string))
886 return string;
887
888 nbytes = count_size_as_multibyte (SDATA (string),
889 SCHARS (string));
890 /* If all the chars are ASCII, they won't need any more bytes
891 once converted. In that case, we can return STRING itself. */
892 if (nbytes == SBYTES (string))
893 return string;
894
895 buf = SAFE_ALLOCA (nbytes);
896 copy_text (SDATA (string), buf, SBYTES (string),
897 0, 1);
898
899 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
900 SAFE_FREE ();
901
902 return ret;
903 }
904
905
906 /* Convert STRING (if unibyte) to a multibyte string without changing
907 the number of characters. Characters 0200 trough 0237 are
908 converted to eight-bit characters. */
909
910 Lisp_Object
911 string_to_multibyte (Lisp_Object string)
912 {
913 unsigned char *buf;
914 ptrdiff_t nbytes;
915 Lisp_Object ret;
916 USE_SAFE_ALLOCA;
917
918 if (STRING_MULTIBYTE (string))
919 return string;
920
921 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
922 /* If all the chars are ASCII, they won't need any more bytes once
923 converted. */
924 if (nbytes == SBYTES (string))
925 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
926
927 buf = SAFE_ALLOCA (nbytes);
928 memcpy (buf, SDATA (string), SBYTES (string));
929 str_to_multibyte (buf, nbytes, SBYTES (string));
930
931 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
932 SAFE_FREE ();
933
934 return ret;
935 }
936
937
938 /* Convert STRING to a single-byte string. */
939
940 Lisp_Object
941 string_make_unibyte (Lisp_Object string)
942 {
943 ptrdiff_t nchars;
944 unsigned char *buf;
945 Lisp_Object ret;
946 USE_SAFE_ALLOCA;
947
948 if (! STRING_MULTIBYTE (string))
949 return string;
950
951 nchars = SCHARS (string);
952
953 buf = SAFE_ALLOCA (nchars);
954 copy_text (SDATA (string), buf, SBYTES (string),
955 1, 0);
956
957 ret = make_unibyte_string ((char *) buf, nchars);
958 SAFE_FREE ();
959
960 return ret;
961 }
962
963 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
964 1, 1, 0,
965 doc: /* Return the multibyte equivalent of STRING.
966 If STRING is unibyte and contains non-ASCII characters, the function
967 `unibyte-char-to-multibyte' is used to convert each unibyte character
968 to a multibyte character. In this case, the returned string is a
969 newly created string with no text properties. If STRING is multibyte
970 or entirely ASCII, it is returned unchanged. In particular, when
971 STRING is unibyte and entirely ASCII, the returned string is unibyte.
972 \(When the characters are all ASCII, Emacs primitives will treat the
973 string the same way whether it is unibyte or multibyte.) */)
974 (Lisp_Object string)
975 {
976 CHECK_STRING (string);
977
978 return string_make_multibyte (string);
979 }
980
981 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
982 1, 1, 0,
983 doc: /* Return the unibyte equivalent of STRING.
984 Multibyte character codes are converted to unibyte according to
985 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
986 If the lookup in the translation table fails, this function takes just
987 the low 8 bits of each character. */)
988 (Lisp_Object string)
989 {
990 CHECK_STRING (string);
991
992 return string_make_unibyte (string);
993 }
994
995 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
996 1, 1, 0,
997 doc: /* Return a unibyte string with the same individual bytes as STRING.
998 If STRING is unibyte, the result is STRING itself.
999 Otherwise it is a newly created string, with no text properties.
1000 If STRING is multibyte and contains a character of charset
1001 `eight-bit', it is converted to the corresponding single byte. */)
1002 (Lisp_Object string)
1003 {
1004 CHECK_STRING (string);
1005
1006 if (STRING_MULTIBYTE (string))
1007 {
1008 ptrdiff_t bytes = SBYTES (string);
1009 unsigned char *str = xmalloc (bytes);
1010
1011 memcpy (str, SDATA (string), bytes);
1012 bytes = str_as_unibyte (str, bytes);
1013 string = make_unibyte_string ((char *) str, bytes);
1014 xfree (str);
1015 }
1016 return string;
1017 }
1018
1019 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1020 1, 1, 0,
1021 doc: /* Return a multibyte string with the same individual bytes as STRING.
1022 If STRING is multibyte, the result is STRING itself.
1023 Otherwise it is a newly created string, with no text properties.
1024
1025 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1026 part of a correct utf-8 sequence), it is converted to the corresponding
1027 multibyte character of charset `eight-bit'.
1028 See also `string-to-multibyte'.
1029
1030 Beware, this often doesn't really do what you think it does.
1031 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1032 If you're not sure, whether to use `string-as-multibyte' or
1033 `string-to-multibyte', use `string-to-multibyte'. */)
1034 (Lisp_Object string)
1035 {
1036 CHECK_STRING (string);
1037
1038 if (! STRING_MULTIBYTE (string))
1039 {
1040 Lisp_Object new_string;
1041 ptrdiff_t nchars, nbytes;
1042
1043 parse_str_as_multibyte (SDATA (string),
1044 SBYTES (string),
1045 &nchars, &nbytes);
1046 new_string = make_uninit_multibyte_string (nchars, nbytes);
1047 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1048 if (nbytes != SBYTES (string))
1049 str_as_multibyte (SDATA (new_string), nbytes,
1050 SBYTES (string), NULL);
1051 string = new_string;
1052 set_string_intervals (string, NULL);
1053 }
1054 return string;
1055 }
1056
1057 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1058 1, 1, 0,
1059 doc: /* Return a multibyte string with the same individual chars as STRING.
1060 If STRING is multibyte, the result is STRING itself.
1061 Otherwise it is a newly created string, with no text properties.
1062
1063 If STRING is unibyte and contains an 8-bit byte, it is converted to
1064 the corresponding multibyte character of charset `eight-bit'.
1065
1066 This differs from `string-as-multibyte' by converting each byte of a correct
1067 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1068 correct sequence. */)
1069 (Lisp_Object string)
1070 {
1071 CHECK_STRING (string);
1072
1073 return string_to_multibyte (string);
1074 }
1075
1076 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1077 1, 1, 0,
1078 doc: /* Return a unibyte string with the same individual chars as STRING.
1079 If STRING is unibyte, the result is STRING itself.
1080 Otherwise it is a newly created string, with no text properties,
1081 where each `eight-bit' character is converted to the corresponding byte.
1082 If STRING contains a non-ASCII, non-`eight-bit' character,
1083 an error is signaled. */)
1084 (Lisp_Object string)
1085 {
1086 CHECK_STRING (string);
1087
1088 if (STRING_MULTIBYTE (string))
1089 {
1090 ptrdiff_t chars = SCHARS (string);
1091 unsigned char *str = xmalloc (chars);
1092 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1093
1094 if (converted < chars)
1095 error ("Can't convert the %"pD"dth character to unibyte", converted);
1096 string = make_unibyte_string ((char *) str, chars);
1097 xfree (str);
1098 }
1099 return string;
1100 }
1101
1102 \f
1103 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1104 doc: /* Return a copy of ALIST.
1105 This is an alist which represents the same mapping from objects to objects,
1106 but does not share the alist structure with ALIST.
1107 The objects mapped (cars and cdrs of elements of the alist)
1108 are shared, however.
1109 Elements of ALIST that are not conses are also shared. */)
1110 (Lisp_Object alist)
1111 {
1112 register Lisp_Object tem;
1113
1114 CHECK_LIST (alist);
1115 if (NILP (alist))
1116 return alist;
1117 alist = concat (1, &alist, Lisp_Cons, 0);
1118 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1119 {
1120 register Lisp_Object car;
1121 car = XCAR (tem);
1122
1123 if (CONSP (car))
1124 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1125 }
1126 return alist;
1127 }
1128
1129 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1130 doc: /* Return a new string whose contents are a substring of STRING.
1131 The returned string consists of the characters between index FROM
1132 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1133 zero-indexed: 0 means the first character of STRING. Negative values
1134 are counted from the end of STRING. If TO is nil, the substring runs
1135 to the end of STRING.
1136
1137 The STRING argument may also be a vector. In that case, the return
1138 value is a new vector that contains the elements between index FROM
1139 \(inclusive) and index TO (exclusive) of that vector argument. */)
1140 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1141 {
1142 Lisp_Object res;
1143 ptrdiff_t size;
1144 EMACS_INT from_char, to_char;
1145
1146 CHECK_VECTOR_OR_STRING (string);
1147 CHECK_NUMBER (from);
1148
1149 if (STRINGP (string))
1150 size = SCHARS (string);
1151 else
1152 size = ASIZE (string);
1153
1154 if (NILP (to))
1155 to_char = size;
1156 else
1157 {
1158 CHECK_NUMBER (to);
1159
1160 to_char = XINT (to);
1161 if (to_char < 0)
1162 to_char += size;
1163 }
1164
1165 from_char = XINT (from);
1166 if (from_char < 0)
1167 from_char += size;
1168 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1169 args_out_of_range_3 (string, make_number (from_char),
1170 make_number (to_char));
1171
1172 if (STRINGP (string))
1173 {
1174 ptrdiff_t to_byte =
1175 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1176 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1177 res = make_specified_string (SSDATA (string) + from_byte,
1178 to_char - from_char, to_byte - from_byte,
1179 STRING_MULTIBYTE (string));
1180 copy_text_properties (make_number (from_char), make_number (to_char),
1181 string, make_number (0), res, Qnil);
1182 }
1183 else
1184 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1185
1186 return res;
1187 }
1188
1189
1190 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1191 doc: /* Return a substring of STRING, without text properties.
1192 It starts at index FROM and ends before TO.
1193 TO may be nil or omitted; then the substring runs to the end of STRING.
1194 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1195 If FROM or TO is negative, it counts from the end.
1196
1197 With one argument, just copy STRING without its properties. */)
1198 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1199 {
1200 ptrdiff_t size;
1201 EMACS_INT from_char, to_char;
1202 ptrdiff_t from_byte, to_byte;
1203
1204 CHECK_STRING (string);
1205
1206 size = SCHARS (string);
1207
1208 if (NILP (from))
1209 from_char = 0;
1210 else
1211 {
1212 CHECK_NUMBER (from);
1213 from_char = XINT (from);
1214 if (from_char < 0)
1215 from_char += size;
1216 }
1217
1218 if (NILP (to))
1219 to_char = size;
1220 else
1221 {
1222 CHECK_NUMBER (to);
1223 to_char = XINT (to);
1224 if (to_char < 0)
1225 to_char += size;
1226 }
1227
1228 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1229 args_out_of_range_3 (string, make_number (from_char),
1230 make_number (to_char));
1231
1232 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1233 to_byte =
1234 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1235 return make_specified_string (SSDATA (string) + from_byte,
1236 to_char - from_char, to_byte - from_byte,
1237 STRING_MULTIBYTE (string));
1238 }
1239
1240 /* Extract a substring of STRING, giving start and end positions
1241 both in characters and in bytes. */
1242
1243 Lisp_Object
1244 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1245 ptrdiff_t to, ptrdiff_t to_byte)
1246 {
1247 Lisp_Object res;
1248 ptrdiff_t size;
1249
1250 CHECK_VECTOR_OR_STRING (string);
1251
1252 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1253
1254 if (!(0 <= from && from <= to && to <= size))
1255 args_out_of_range_3 (string, make_number (from), make_number (to));
1256
1257 if (STRINGP (string))
1258 {
1259 res = make_specified_string (SSDATA (string) + from_byte,
1260 to - from, to_byte - from_byte,
1261 STRING_MULTIBYTE (string));
1262 copy_text_properties (make_number (from), make_number (to),
1263 string, make_number (0), res, Qnil);
1264 }
1265 else
1266 res = Fvector (to - from, aref_addr (string, from));
1267
1268 return res;
1269 }
1270 \f
1271 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1272 doc: /* Take cdr N times on LIST, return the result. */)
1273 (Lisp_Object n, Lisp_Object list)
1274 {
1275 EMACS_INT i, num;
1276 CHECK_NUMBER (n);
1277 num = XINT (n);
1278 for (i = 0; i < num && !NILP (list); i++)
1279 {
1280 QUIT;
1281 CHECK_LIST_CONS (list, list);
1282 list = XCDR (list);
1283 }
1284 return list;
1285 }
1286
1287 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1288 doc: /* Return the Nth element of LIST.
1289 N counts from zero. If LIST is not that long, nil is returned. */)
1290 (Lisp_Object n, Lisp_Object list)
1291 {
1292 return Fcar (Fnthcdr (n, list));
1293 }
1294
1295 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1296 doc: /* Return element of SEQUENCE at index N. */)
1297 (register Lisp_Object sequence, Lisp_Object n)
1298 {
1299 CHECK_NUMBER (n);
1300 if (CONSP (sequence) || NILP (sequence))
1301 return Fcar (Fnthcdr (n, sequence));
1302
1303 /* Faref signals a "not array" error, so check here. */
1304 CHECK_ARRAY (sequence, Qsequencep);
1305 return Faref (sequence, n);
1306 }
1307
1308 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1309 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1310 The value is actually the tail of LIST whose car is ELT. */)
1311 (register Lisp_Object elt, Lisp_Object list)
1312 {
1313 register Lisp_Object tail;
1314 for (tail = list; CONSP (tail); tail = XCDR (tail))
1315 {
1316 register Lisp_Object tem;
1317 CHECK_LIST_CONS (tail, list);
1318 tem = XCAR (tail);
1319 if (! NILP (Fequal (elt, tem)))
1320 return tail;
1321 QUIT;
1322 }
1323 return Qnil;
1324 }
1325
1326 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1327 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1328 The value is actually the tail of LIST whose car is ELT. */)
1329 (register Lisp_Object elt, Lisp_Object list)
1330 {
1331 while (1)
1332 {
1333 if (!CONSP (list) || EQ (XCAR (list), elt))
1334 break;
1335
1336 list = XCDR (list);
1337 if (!CONSP (list) || EQ (XCAR (list), elt))
1338 break;
1339
1340 list = XCDR (list);
1341 if (!CONSP (list) || EQ (XCAR (list), elt))
1342 break;
1343
1344 list = XCDR (list);
1345 QUIT;
1346 }
1347
1348 CHECK_LIST (list);
1349 return list;
1350 }
1351
1352 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1353 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1354 The value is actually the tail of LIST whose car is ELT. */)
1355 (register Lisp_Object elt, Lisp_Object list)
1356 {
1357 register Lisp_Object tail;
1358
1359 if (!FLOATP (elt))
1360 return Fmemq (elt, list);
1361
1362 for (tail = list; CONSP (tail); tail = XCDR (tail))
1363 {
1364 register Lisp_Object tem;
1365 CHECK_LIST_CONS (tail, list);
1366 tem = XCAR (tail);
1367 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1368 return tail;
1369 QUIT;
1370 }
1371 return Qnil;
1372 }
1373
1374 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1375 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1376 The value is actually the first element of LIST whose car is KEY.
1377 Elements of LIST that are not conses are ignored. */)
1378 (Lisp_Object key, Lisp_Object list)
1379 {
1380 while (1)
1381 {
1382 if (!CONSP (list)
1383 || (CONSP (XCAR (list))
1384 && EQ (XCAR (XCAR (list)), key)))
1385 break;
1386
1387 list = XCDR (list);
1388 if (!CONSP (list)
1389 || (CONSP (XCAR (list))
1390 && EQ (XCAR (XCAR (list)), key)))
1391 break;
1392
1393 list = XCDR (list);
1394 if (!CONSP (list)
1395 || (CONSP (XCAR (list))
1396 && EQ (XCAR (XCAR (list)), key)))
1397 break;
1398
1399 list = XCDR (list);
1400 QUIT;
1401 }
1402
1403 return CAR (list);
1404 }
1405
1406 /* Like Fassq but never report an error and do not allow quits.
1407 Use only on lists known never to be circular. */
1408
1409 Lisp_Object
1410 assq_no_quit (Lisp_Object key, Lisp_Object list)
1411 {
1412 while (CONSP (list)
1413 && (!CONSP (XCAR (list))
1414 || !EQ (XCAR (XCAR (list)), key)))
1415 list = XCDR (list);
1416
1417 return CAR_SAFE (list);
1418 }
1419
1420 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1421 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1422 The value is actually the first element of LIST whose car equals KEY. */)
1423 (Lisp_Object key, Lisp_Object list)
1424 {
1425 Lisp_Object car;
1426
1427 while (1)
1428 {
1429 if (!CONSP (list)
1430 || (CONSP (XCAR (list))
1431 && (car = XCAR (XCAR (list)),
1432 EQ (car, key) || !NILP (Fequal (car, key)))))
1433 break;
1434
1435 list = XCDR (list);
1436 if (!CONSP (list)
1437 || (CONSP (XCAR (list))
1438 && (car = XCAR (XCAR (list)),
1439 EQ (car, key) || !NILP (Fequal (car, key)))))
1440 break;
1441
1442 list = XCDR (list);
1443 if (!CONSP (list)
1444 || (CONSP (XCAR (list))
1445 && (car = XCAR (XCAR (list)),
1446 EQ (car, key) || !NILP (Fequal (car, key)))))
1447 break;
1448
1449 list = XCDR (list);
1450 QUIT;
1451 }
1452
1453 return CAR (list);
1454 }
1455
1456 /* Like Fassoc but never report an error and do not allow quits.
1457 Use only on lists known never to be circular. */
1458
1459 Lisp_Object
1460 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1461 {
1462 while (CONSP (list)
1463 && (!CONSP (XCAR (list))
1464 || (!EQ (XCAR (XCAR (list)), key)
1465 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1466 list = XCDR (list);
1467
1468 return CONSP (list) ? XCAR (list) : Qnil;
1469 }
1470
1471 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1472 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1473 The value is actually the first element of LIST whose cdr is KEY. */)
1474 (register Lisp_Object key, Lisp_Object list)
1475 {
1476 while (1)
1477 {
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCDR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCDR (XCAR (list)), key)))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCDR (XCAR (list)), key)))
1493 break;
1494
1495 list = XCDR (list);
1496 QUIT;
1497 }
1498
1499 return CAR (list);
1500 }
1501
1502 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1503 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1504 The value is actually the first element of LIST whose cdr equals KEY. */)
1505 (Lisp_Object key, Lisp_Object list)
1506 {
1507 Lisp_Object cdr;
1508
1509 while (1)
1510 {
1511 if (!CONSP (list)
1512 || (CONSP (XCAR (list))
1513 && (cdr = XCDR (XCAR (list)),
1514 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && (cdr = XCDR (XCAR (list)),
1521 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1522 break;
1523
1524 list = XCDR (list);
1525 if (!CONSP (list)
1526 || (CONSP (XCAR (list))
1527 && (cdr = XCDR (XCAR (list)),
1528 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 return CAR (list);
1536 }
1537 \f
1538 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1539 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1540 More precisely, this function skips any members `eq' to ELT at the
1541 front of LIST, then removes members `eq' to ELT from the remaining
1542 sublist by modifying its list structure, then returns the resulting
1543 list.
1544
1545 Write `(setq foo (delq element foo))' to be sure of correctly changing
1546 the value of a list `foo'. */)
1547 (register Lisp_Object elt, Lisp_Object list)
1548 {
1549 register Lisp_Object tail, prev;
1550 register Lisp_Object tem;
1551
1552 tail = list;
1553 prev = Qnil;
1554 while (!NILP (tail))
1555 {
1556 CHECK_LIST_CONS (tail, list);
1557 tem = XCAR (tail);
1558 if (EQ (elt, tem))
1559 {
1560 if (NILP (prev))
1561 list = XCDR (tail);
1562 else
1563 Fsetcdr (prev, XCDR (tail));
1564 }
1565 else
1566 prev = tail;
1567 tail = XCDR (tail);
1568 QUIT;
1569 }
1570 return list;
1571 }
1572
1573 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1574 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1575 SEQ must be a sequence (i.e. a list, a vector, or a string).
1576 The return value is a sequence of the same type.
1577
1578 If SEQ is a list, this behaves like `delq', except that it compares
1579 with `equal' instead of `eq'. In particular, it may remove elements
1580 by altering the list structure.
1581
1582 If SEQ is not a list, deletion is never performed destructively;
1583 instead this function creates and returns a new vector or string.
1584
1585 Write `(setq foo (delete element foo))' to be sure of correctly
1586 changing the value of a sequence `foo'. */)
1587 (Lisp_Object elt, Lisp_Object seq)
1588 {
1589 if (VECTORP (seq))
1590 {
1591 ptrdiff_t i, n;
1592
1593 for (i = n = 0; i < ASIZE (seq); ++i)
1594 if (NILP (Fequal (AREF (seq, i), elt)))
1595 ++n;
1596
1597 if (n != ASIZE (seq))
1598 {
1599 struct Lisp_Vector *p = allocate_vector (n);
1600
1601 for (i = n = 0; i < ASIZE (seq); ++i)
1602 if (NILP (Fequal (AREF (seq, i), elt)))
1603 p->contents[n++] = AREF (seq, i);
1604
1605 XSETVECTOR (seq, p);
1606 }
1607 }
1608 else if (STRINGP (seq))
1609 {
1610 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1611 int c;
1612
1613 for (i = nchars = nbytes = ibyte = 0;
1614 i < SCHARS (seq);
1615 ++i, ibyte += cbytes)
1616 {
1617 if (STRING_MULTIBYTE (seq))
1618 {
1619 c = STRING_CHAR (SDATA (seq) + ibyte);
1620 cbytes = CHAR_BYTES (c);
1621 }
1622 else
1623 {
1624 c = SREF (seq, i);
1625 cbytes = 1;
1626 }
1627
1628 if (!INTEGERP (elt) || c != XINT (elt))
1629 {
1630 ++nchars;
1631 nbytes += cbytes;
1632 }
1633 }
1634
1635 if (nchars != SCHARS (seq))
1636 {
1637 Lisp_Object tem;
1638
1639 tem = make_uninit_multibyte_string (nchars, nbytes);
1640 if (!STRING_MULTIBYTE (seq))
1641 STRING_SET_UNIBYTE (tem);
1642
1643 for (i = nchars = nbytes = ibyte = 0;
1644 i < SCHARS (seq);
1645 ++i, ibyte += cbytes)
1646 {
1647 if (STRING_MULTIBYTE (seq))
1648 {
1649 c = STRING_CHAR (SDATA (seq) + ibyte);
1650 cbytes = CHAR_BYTES (c);
1651 }
1652 else
1653 {
1654 c = SREF (seq, i);
1655 cbytes = 1;
1656 }
1657
1658 if (!INTEGERP (elt) || c != XINT (elt))
1659 {
1660 unsigned char *from = SDATA (seq) + ibyte;
1661 unsigned char *to = SDATA (tem) + nbytes;
1662 ptrdiff_t n;
1663
1664 ++nchars;
1665 nbytes += cbytes;
1666
1667 for (n = cbytes; n--; )
1668 *to++ = *from++;
1669 }
1670 }
1671
1672 seq = tem;
1673 }
1674 }
1675 else
1676 {
1677 Lisp_Object tail, prev;
1678
1679 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1680 {
1681 CHECK_LIST_CONS (tail, seq);
1682
1683 if (!NILP (Fequal (elt, XCAR (tail))))
1684 {
1685 if (NILP (prev))
1686 seq = XCDR (tail);
1687 else
1688 Fsetcdr (prev, XCDR (tail));
1689 }
1690 else
1691 prev = tail;
1692 QUIT;
1693 }
1694 }
1695
1696 return seq;
1697 }
1698
1699 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1700 doc: /* Reverse LIST by modifying cdr pointers.
1701 Return the reversed list. Expects a properly nil-terminated list. */)
1702 (Lisp_Object list)
1703 {
1704 register Lisp_Object prev, tail, next;
1705
1706 if (NILP (list)) return list;
1707 prev = Qnil;
1708 tail = list;
1709 while (!NILP (tail))
1710 {
1711 QUIT;
1712 CHECK_LIST_CONS (tail, tail);
1713 next = XCDR (tail);
1714 Fsetcdr (tail, prev);
1715 prev = tail;
1716 tail = next;
1717 }
1718 return prev;
1719 }
1720
1721 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1722 doc: /* Reverse LIST, copying. Return the reversed list.
1723 See also the function `nreverse', which is used more often. */)
1724 (Lisp_Object list)
1725 {
1726 Lisp_Object new;
1727
1728 for (new = Qnil; CONSP (list); list = XCDR (list))
1729 {
1730 QUIT;
1731 new = Fcons (XCAR (list), new);
1732 }
1733 CHECK_LIST_END (list, list);
1734 return new;
1735 }
1736 \f
1737 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1738
1739 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1740 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1741 Returns the sorted list. LIST is modified by side effects.
1742 PREDICATE is called with two elements of LIST, and should return non-nil
1743 if the first element should sort before the second. */)
1744 (Lisp_Object list, Lisp_Object predicate)
1745 {
1746 Lisp_Object front, back;
1747 register Lisp_Object len, tem;
1748 struct gcpro gcpro1, gcpro2;
1749 EMACS_INT length;
1750
1751 front = list;
1752 len = Flength (list);
1753 length = XINT (len);
1754 if (length < 2)
1755 return list;
1756
1757 XSETINT (len, (length / 2) - 1);
1758 tem = Fnthcdr (len, list);
1759 back = Fcdr (tem);
1760 Fsetcdr (tem, Qnil);
1761
1762 GCPRO2 (front, back);
1763 front = Fsort (front, predicate);
1764 back = Fsort (back, predicate);
1765 UNGCPRO;
1766 return merge (front, back, predicate);
1767 }
1768
1769 Lisp_Object
1770 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1771 {
1772 Lisp_Object value;
1773 register Lisp_Object tail;
1774 Lisp_Object tem;
1775 register Lisp_Object l1, l2;
1776 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1777
1778 l1 = org_l1;
1779 l2 = org_l2;
1780 tail = Qnil;
1781 value = Qnil;
1782
1783 /* It is sufficient to protect org_l1 and org_l2.
1784 When l1 and l2 are updated, we copy the new values
1785 back into the org_ vars. */
1786 GCPRO4 (org_l1, org_l2, pred, value);
1787
1788 while (1)
1789 {
1790 if (NILP (l1))
1791 {
1792 UNGCPRO;
1793 if (NILP (tail))
1794 return l2;
1795 Fsetcdr (tail, l2);
1796 return value;
1797 }
1798 if (NILP (l2))
1799 {
1800 UNGCPRO;
1801 if (NILP (tail))
1802 return l1;
1803 Fsetcdr (tail, l1);
1804 return value;
1805 }
1806 tem = call2 (pred, Fcar (l2), Fcar (l1));
1807 if (NILP (tem))
1808 {
1809 tem = l1;
1810 l1 = Fcdr (l1);
1811 org_l1 = l1;
1812 }
1813 else
1814 {
1815 tem = l2;
1816 l2 = Fcdr (l2);
1817 org_l2 = l2;
1818 }
1819 if (NILP (tail))
1820 value = tem;
1821 else
1822 Fsetcdr (tail, tem);
1823 tail = tem;
1824 }
1825 }
1826
1827 \f
1828 /* This does not check for quits. That is safe since it must terminate. */
1829
1830 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1831 doc: /* Extract a value from a property list.
1832 PLIST is a property list, which is a list of the form
1833 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1834 corresponding to the given PROP, or nil if PROP is not one of the
1835 properties on the list. This function never signals an error. */)
1836 (Lisp_Object plist, Lisp_Object prop)
1837 {
1838 Lisp_Object tail, halftail;
1839
1840 /* halftail is used to detect circular lists. */
1841 tail = halftail = plist;
1842 while (CONSP (tail) && CONSP (XCDR (tail)))
1843 {
1844 if (EQ (prop, XCAR (tail)))
1845 return XCAR (XCDR (tail));
1846
1847 tail = XCDR (XCDR (tail));
1848 halftail = XCDR (halftail);
1849 if (EQ (tail, halftail))
1850 break;
1851 }
1852
1853 return Qnil;
1854 }
1855
1856 DEFUN ("get", Fget, Sget, 2, 2, 0,
1857 doc: /* Return the value of SYMBOL's PROPNAME property.
1858 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1859 (Lisp_Object symbol, Lisp_Object propname)
1860 {
1861 CHECK_SYMBOL (symbol);
1862 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1863 }
1864
1865 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1866 doc: /* Change value in PLIST of PROP to VAL.
1867 PLIST is a property list, which is a list of the form
1868 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1869 If PROP is already a property on the list, its value is set to VAL,
1870 otherwise the new PROP VAL pair is added. The new plist is returned;
1871 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1872 The PLIST is modified by side effects. */)
1873 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1874 {
1875 register Lisp_Object tail, prev;
1876 Lisp_Object newcell;
1877 prev = Qnil;
1878 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1879 tail = XCDR (XCDR (tail)))
1880 {
1881 if (EQ (prop, XCAR (tail)))
1882 {
1883 Fsetcar (XCDR (tail), val);
1884 return plist;
1885 }
1886
1887 prev = tail;
1888 QUIT;
1889 }
1890 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1891 if (NILP (prev))
1892 return newcell;
1893 else
1894 Fsetcdr (XCDR (prev), newcell);
1895 return plist;
1896 }
1897
1898 DEFUN ("put", Fput, Sput, 3, 3, 0,
1899 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1900 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1901 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1902 {
1903 CHECK_SYMBOL (symbol);
1904 set_symbol_plist
1905 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1906 return value;
1907 }
1908 \f
1909 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1910 doc: /* Extract a value from a property list, comparing with `equal'.
1911 PLIST is a property list, which is a list of the form
1912 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1913 corresponding to the given PROP, or nil if PROP is not
1914 one of the properties on the list. */)
1915 (Lisp_Object plist, Lisp_Object prop)
1916 {
1917 Lisp_Object tail;
1918
1919 for (tail = plist;
1920 CONSP (tail) && CONSP (XCDR (tail));
1921 tail = XCDR (XCDR (tail)))
1922 {
1923 if (! NILP (Fequal (prop, XCAR (tail))))
1924 return XCAR (XCDR (tail));
1925
1926 QUIT;
1927 }
1928
1929 CHECK_LIST_END (tail, prop);
1930
1931 return Qnil;
1932 }
1933
1934 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1935 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1936 PLIST is a property list, which is a list of the form
1937 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1938 If PROP is already a property on the list, its value is set to VAL,
1939 otherwise the new PROP VAL pair is added. The new plist is returned;
1940 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1941 The PLIST is modified by side effects. */)
1942 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1943 {
1944 register Lisp_Object tail, prev;
1945 Lisp_Object newcell;
1946 prev = Qnil;
1947 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1948 tail = XCDR (XCDR (tail)))
1949 {
1950 if (! NILP (Fequal (prop, XCAR (tail))))
1951 {
1952 Fsetcar (XCDR (tail), val);
1953 return plist;
1954 }
1955
1956 prev = tail;
1957 QUIT;
1958 }
1959 newcell = Fcons (prop, Fcons (val, Qnil));
1960 if (NILP (prev))
1961 return newcell;
1962 else
1963 Fsetcdr (XCDR (prev), newcell);
1964 return plist;
1965 }
1966 \f
1967 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1968 doc: /* Return t if the two args are the same Lisp object.
1969 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1970 (Lisp_Object obj1, Lisp_Object obj2)
1971 {
1972 if (FLOATP (obj1))
1973 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1974 else
1975 return EQ (obj1, obj2) ? Qt : Qnil;
1976 }
1977
1978 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1979 doc: /* Return t if two Lisp objects have similar structure and contents.
1980 They must have the same data type.
1981 Conses are compared by comparing the cars and the cdrs.
1982 Vectors and strings are compared element by element.
1983 Numbers are compared by value, but integers cannot equal floats.
1984 (Use `=' if you want integers and floats to be able to be equal.)
1985 Symbols must match exactly. */)
1986 (register Lisp_Object o1, Lisp_Object o2)
1987 {
1988 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1989 }
1990
1991 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1992 doc: /* Return t if two Lisp objects have similar structure and contents.
1993 This is like `equal' except that it compares the text properties
1994 of strings. (`equal' ignores text properties.) */)
1995 (register Lisp_Object o1, Lisp_Object o2)
1996 {
1997 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1998 }
1999
2000 /* DEPTH is current depth of recursion. Signal an error if it
2001 gets too deep.
2002 PROPS means compare string text properties too. */
2003
2004 static bool
2005 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2006 {
2007 if (depth > 200)
2008 error ("Stack overflow in equal");
2009
2010 tail_recurse:
2011 QUIT;
2012 if (EQ (o1, o2))
2013 return 1;
2014 if (XTYPE (o1) != XTYPE (o2))
2015 return 0;
2016
2017 switch (XTYPE (o1))
2018 {
2019 case Lisp_Float:
2020 {
2021 double d1, d2;
2022
2023 d1 = extract_float (o1);
2024 d2 = extract_float (o2);
2025 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2026 though they are not =. */
2027 return d1 == d2 || (d1 != d1 && d2 != d2);
2028 }
2029
2030 case Lisp_Cons:
2031 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2032 return 0;
2033 o1 = XCDR (o1);
2034 o2 = XCDR (o2);
2035 goto tail_recurse;
2036
2037 case Lisp_Misc:
2038 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2039 return 0;
2040 if (OVERLAYP (o1))
2041 {
2042 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2043 depth + 1, props)
2044 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2045 depth + 1, props))
2046 return 0;
2047 o1 = XOVERLAY (o1)->plist;
2048 o2 = XOVERLAY (o2)->plist;
2049 goto tail_recurse;
2050 }
2051 if (MARKERP (o1))
2052 {
2053 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2054 && (XMARKER (o1)->buffer == 0
2055 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2056 }
2057 break;
2058
2059 case Lisp_Vectorlike:
2060 {
2061 register int i;
2062 ptrdiff_t size = ASIZE (o1);
2063 /* Pseudovectors have the type encoded in the size field, so this test
2064 actually checks that the objects have the same type as well as the
2065 same size. */
2066 if (ASIZE (o2) != size)
2067 return 0;
2068 /* Boolvectors are compared much like strings. */
2069 if (BOOL_VECTOR_P (o1))
2070 {
2071 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2072 return 0;
2073 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2074 ((XBOOL_VECTOR (o1)->size
2075 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2076 / BOOL_VECTOR_BITS_PER_CHAR)))
2077 return 0;
2078 return 1;
2079 }
2080 if (WINDOW_CONFIGURATIONP (o1))
2081 return compare_window_configurations (o1, o2, 0);
2082
2083 /* Aside from them, only true vectors, char-tables, compiled
2084 functions, and fonts (font-spec, font-entity, font-object)
2085 are sensible to compare, so eliminate the others now. */
2086 if (size & PSEUDOVECTOR_FLAG)
2087 {
2088 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2089 < PVEC_COMPILED)
2090 return 0;
2091 size &= PSEUDOVECTOR_SIZE_MASK;
2092 }
2093 for (i = 0; i < size; i++)
2094 {
2095 Lisp_Object v1, v2;
2096 v1 = AREF (o1, i);
2097 v2 = AREF (o2, i);
2098 if (!internal_equal (v1, v2, depth + 1, props))
2099 return 0;
2100 }
2101 return 1;
2102 }
2103 break;
2104
2105 case Lisp_String:
2106 if (SCHARS (o1) != SCHARS (o2))
2107 return 0;
2108 if (SBYTES (o1) != SBYTES (o2))
2109 return 0;
2110 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2111 return 0;
2112 if (props && !compare_string_intervals (o1, o2))
2113 return 0;
2114 return 1;
2115
2116 default:
2117 break;
2118 }
2119
2120 return 0;
2121 }
2122 \f
2123
2124 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2125 doc: /* Store each element of ARRAY with ITEM.
2126 ARRAY is a vector, string, char-table, or bool-vector. */)
2127 (Lisp_Object array, Lisp_Object item)
2128 {
2129 register ptrdiff_t size, idx;
2130
2131 if (VECTORP (array))
2132 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2133 ASET (array, idx, item);
2134 else if (CHAR_TABLE_P (array))
2135 {
2136 int i;
2137
2138 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2139 set_char_table_contents (array, i, item);
2140 set_char_table_defalt (array, item);
2141 }
2142 else if (STRINGP (array))
2143 {
2144 register unsigned char *p = SDATA (array);
2145 int charval;
2146 CHECK_CHARACTER (item);
2147 charval = XFASTINT (item);
2148 size = SCHARS (array);
2149 if (STRING_MULTIBYTE (array))
2150 {
2151 unsigned char str[MAX_MULTIBYTE_LENGTH];
2152 int len = CHAR_STRING (charval, str);
2153 ptrdiff_t size_byte = SBYTES (array);
2154
2155 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2156 || SCHARS (array) * len != size_byte)
2157 error ("Attempt to change byte length of a string");
2158 for (idx = 0; idx < size_byte; idx++)
2159 *p++ = str[idx % len];
2160 }
2161 else
2162 for (idx = 0; idx < size; idx++)
2163 p[idx] = charval;
2164 }
2165 else if (BOOL_VECTOR_P (array))
2166 {
2167 register unsigned char *p = XBOOL_VECTOR (array)->data;
2168 size =
2169 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2170 / BOOL_VECTOR_BITS_PER_CHAR);
2171
2172 if (size)
2173 {
2174 memset (p, ! NILP (item) ? -1 : 0, size);
2175
2176 /* Clear any extraneous bits in the last byte. */
2177 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2178 }
2179 }
2180 else
2181 wrong_type_argument (Qarrayp, array);
2182 return array;
2183 }
2184
2185 DEFUN ("clear-string", Fclear_string, Sclear_string,
2186 1, 1, 0,
2187 doc: /* Clear the contents of STRING.
2188 This makes STRING unibyte and may change its length. */)
2189 (Lisp_Object string)
2190 {
2191 ptrdiff_t len;
2192 CHECK_STRING (string);
2193 len = SBYTES (string);
2194 memset (SDATA (string), 0, len);
2195 STRING_SET_CHARS (string, len);
2196 STRING_SET_UNIBYTE (string);
2197 return Qnil;
2198 }
2199 \f
2200 /* ARGSUSED */
2201 Lisp_Object
2202 nconc2 (Lisp_Object s1, Lisp_Object s2)
2203 {
2204 Lisp_Object args[2];
2205 args[0] = s1;
2206 args[1] = s2;
2207 return Fnconc (2, args);
2208 }
2209
2210 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2211 doc: /* Concatenate any number of lists by altering them.
2212 Only the last argument is not altered, and need not be a list.
2213 usage: (nconc &rest LISTS) */)
2214 (ptrdiff_t nargs, Lisp_Object *args)
2215 {
2216 ptrdiff_t argnum;
2217 register Lisp_Object tail, tem, val;
2218
2219 val = tail = Qnil;
2220
2221 for (argnum = 0; argnum < nargs; argnum++)
2222 {
2223 tem = args[argnum];
2224 if (NILP (tem)) continue;
2225
2226 if (NILP (val))
2227 val = tem;
2228
2229 if (argnum + 1 == nargs) break;
2230
2231 CHECK_LIST_CONS (tem, tem);
2232
2233 while (CONSP (tem))
2234 {
2235 tail = tem;
2236 tem = XCDR (tail);
2237 QUIT;
2238 }
2239
2240 tem = args[argnum + 1];
2241 Fsetcdr (tail, tem);
2242 if (NILP (tem))
2243 args[argnum + 1] = tail;
2244 }
2245
2246 return val;
2247 }
2248 \f
2249 /* This is the guts of all mapping functions.
2250 Apply FN to each element of SEQ, one by one,
2251 storing the results into elements of VALS, a C vector of Lisp_Objects.
2252 LENI is the length of VALS, which should also be the length of SEQ. */
2253
2254 static void
2255 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2256 {
2257 register Lisp_Object tail;
2258 Lisp_Object dummy;
2259 register EMACS_INT i;
2260 struct gcpro gcpro1, gcpro2, gcpro3;
2261
2262 if (vals)
2263 {
2264 /* Don't let vals contain any garbage when GC happens. */
2265 for (i = 0; i < leni; i++)
2266 vals[i] = Qnil;
2267
2268 GCPRO3 (dummy, fn, seq);
2269 gcpro1.var = vals;
2270 gcpro1.nvars = leni;
2271 }
2272 else
2273 GCPRO2 (fn, seq);
2274 /* We need not explicitly protect `tail' because it is used only on lists, and
2275 1) lists are not relocated and 2) the list is marked via `seq' so will not
2276 be freed */
2277
2278 if (VECTORP (seq) || COMPILEDP (seq))
2279 {
2280 for (i = 0; i < leni; i++)
2281 {
2282 dummy = call1 (fn, AREF (seq, i));
2283 if (vals)
2284 vals[i] = dummy;
2285 }
2286 }
2287 else if (BOOL_VECTOR_P (seq))
2288 {
2289 for (i = 0; i < leni; i++)
2290 {
2291 unsigned char byte;
2292 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2293 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2294 dummy = call1 (fn, dummy);
2295 if (vals)
2296 vals[i] = dummy;
2297 }
2298 }
2299 else if (STRINGP (seq))
2300 {
2301 ptrdiff_t i_byte;
2302
2303 for (i = 0, i_byte = 0; i < leni;)
2304 {
2305 int c;
2306 ptrdiff_t i_before = i;
2307
2308 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2309 XSETFASTINT (dummy, c);
2310 dummy = call1 (fn, dummy);
2311 if (vals)
2312 vals[i_before] = dummy;
2313 }
2314 }
2315 else /* Must be a list, since Flength did not get an error */
2316 {
2317 tail = seq;
2318 for (i = 0; i < leni && CONSP (tail); i++)
2319 {
2320 dummy = call1 (fn, XCAR (tail));
2321 if (vals)
2322 vals[i] = dummy;
2323 tail = XCDR (tail);
2324 }
2325 }
2326
2327 UNGCPRO;
2328 }
2329
2330 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2331 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2332 In between each pair of results, stick in SEPARATOR. Thus, " " as
2333 SEPARATOR results in spaces between the values returned by FUNCTION.
2334 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2335 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2336 {
2337 Lisp_Object len;
2338 register EMACS_INT leni;
2339 EMACS_INT nargs;
2340 ptrdiff_t i;
2341 register Lisp_Object *args;
2342 struct gcpro gcpro1;
2343 Lisp_Object ret;
2344 USE_SAFE_ALLOCA;
2345
2346 len = Flength (sequence);
2347 if (CHAR_TABLE_P (sequence))
2348 wrong_type_argument (Qlistp, sequence);
2349 leni = XINT (len);
2350 nargs = leni + leni - 1;
2351 if (nargs < 0) return empty_unibyte_string;
2352
2353 SAFE_ALLOCA_LISP (args, nargs);
2354
2355 GCPRO1 (separator);
2356 mapcar1 (leni, args, function, sequence);
2357 UNGCPRO;
2358
2359 for (i = leni - 1; i > 0; i--)
2360 args[i + i] = args[i];
2361
2362 for (i = 1; i < nargs; i += 2)
2363 args[i] = separator;
2364
2365 ret = Fconcat (nargs, args);
2366 SAFE_FREE ();
2367
2368 return ret;
2369 }
2370
2371 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2372 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2373 The result is a list just as long as SEQUENCE.
2374 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2375 (Lisp_Object function, Lisp_Object sequence)
2376 {
2377 register Lisp_Object len;
2378 register EMACS_INT leni;
2379 register Lisp_Object *args;
2380 Lisp_Object ret;
2381 USE_SAFE_ALLOCA;
2382
2383 len = Flength (sequence);
2384 if (CHAR_TABLE_P (sequence))
2385 wrong_type_argument (Qlistp, sequence);
2386 leni = XFASTINT (len);
2387
2388 SAFE_ALLOCA_LISP (args, leni);
2389
2390 mapcar1 (leni, args, function, sequence);
2391
2392 ret = Flist (leni, args);
2393 SAFE_FREE ();
2394
2395 return ret;
2396 }
2397
2398 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2400 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2401 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2403 {
2404 register EMACS_INT leni;
2405
2406 leni = XFASTINT (Flength (sequence));
2407 if (CHAR_TABLE_P (sequence))
2408 wrong_type_argument (Qlistp, sequence);
2409 mapcar1 (leni, 0, function, sequence);
2410
2411 return sequence;
2412 }
2413 \f
2414 /* This is how C code calls `yes-or-no-p' and allows the user
2415 to redefined it.
2416
2417 Anything that calls this function must protect from GC! */
2418
2419 Lisp_Object
2420 do_yes_or_no_p (Lisp_Object prompt)
2421 {
2422 return call1 (intern ("yes-or-no-p"), prompt);
2423 }
2424
2425 /* Anything that calls this function must protect from GC! */
2426
2427 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2428 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2429 PROMPT is the string to display to ask the question. It should end in
2430 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2431
2432 The user must confirm the answer with RET, and can edit it until it
2433 has been confirmed.
2434
2435 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2436 is nil, and `use-dialog-box' is non-nil. */)
2437 (Lisp_Object prompt)
2438 {
2439 register Lisp_Object ans;
2440 Lisp_Object args[2];
2441 struct gcpro gcpro1;
2442
2443 CHECK_STRING (prompt);
2444
2445 #ifdef HAVE_MENUS
2446 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2447 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2448 && use_dialog_box
2449 && have_menus_p ())
2450 {
2451 Lisp_Object pane, menu, obj;
2452 redisplay_preserve_echo_area (4);
2453 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2454 Fcons (Fcons (build_string ("No"), Qnil),
2455 Qnil));
2456 GCPRO1 (pane);
2457 menu = Fcons (prompt, pane);
2458 obj = Fx_popup_dialog (Qt, menu, Qnil);
2459 UNGCPRO;
2460 return obj;
2461 }
2462 #endif /* HAVE_MENUS */
2463
2464 args[0] = prompt;
2465 args[1] = build_string ("(yes or no) ");
2466 prompt = Fconcat (2, args);
2467
2468 GCPRO1 (prompt);
2469
2470 while (1)
2471 {
2472 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2473 Qyes_or_no_p_history, Qnil,
2474 Qnil));
2475 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2476 {
2477 UNGCPRO;
2478 return Qt;
2479 }
2480 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2481 {
2482 UNGCPRO;
2483 return Qnil;
2484 }
2485
2486 Fding (Qnil);
2487 Fdiscard_input ();
2488 message1 ("Please answer yes or no.");
2489 Fsleep_for (make_number (2), Qnil);
2490 }
2491 }
2492 \f
2493 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2494 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2495
2496 Each of the three load averages is multiplied by 100, then converted
2497 to integer.
2498
2499 When USE-FLOATS is non-nil, floats will be used instead of integers.
2500 These floats are not multiplied by 100.
2501
2502 If the 5-minute or 15-minute load averages are not available, return a
2503 shortened list, containing only those averages which are available.
2504
2505 An error is thrown if the load average can't be obtained. In some
2506 cases making it work would require Emacs being installed setuid or
2507 setgid so that it can read kernel information, and that usually isn't
2508 advisable. */)
2509 (Lisp_Object use_floats)
2510 {
2511 double load_ave[3];
2512 int loads = getloadavg (load_ave, 3);
2513 Lisp_Object ret = Qnil;
2514
2515 if (loads < 0)
2516 error ("load-average not implemented for this operating system");
2517
2518 while (loads-- > 0)
2519 {
2520 Lisp_Object load = (NILP (use_floats)
2521 ? make_number (100.0 * load_ave[loads])
2522 : make_float (load_ave[loads]));
2523 ret = Fcons (load, ret);
2524 }
2525
2526 return ret;
2527 }
2528 \f
2529 static Lisp_Object Qsubfeatures;
2530
2531 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2532 doc: /* Return t if FEATURE is present in this Emacs.
2533
2534 Use this to conditionalize execution of lisp code based on the
2535 presence or absence of Emacs or environment extensions.
2536 Use `provide' to declare that a feature is available. This function
2537 looks at the value of the variable `features'. The optional argument
2538 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2539 (Lisp_Object feature, Lisp_Object subfeature)
2540 {
2541 register Lisp_Object tem;
2542 CHECK_SYMBOL (feature);
2543 tem = Fmemq (feature, Vfeatures);
2544 if (!NILP (tem) && !NILP (subfeature))
2545 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2546 return (NILP (tem)) ? Qnil : Qt;
2547 }
2548
2549 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2550 doc: /* Announce that FEATURE is a feature of the current Emacs.
2551 The optional argument SUBFEATURES should be a list of symbols listing
2552 particular subfeatures supported in this version of FEATURE. */)
2553 (Lisp_Object feature, Lisp_Object subfeatures)
2554 {
2555 register Lisp_Object tem;
2556 CHECK_SYMBOL (feature);
2557 CHECK_LIST (subfeatures);
2558 if (!NILP (Vautoload_queue))
2559 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2560 Vautoload_queue);
2561 tem = Fmemq (feature, Vfeatures);
2562 if (NILP (tem))
2563 Vfeatures = Fcons (feature, Vfeatures);
2564 if (!NILP (subfeatures))
2565 Fput (feature, Qsubfeatures, subfeatures);
2566 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2567
2568 /* Run any load-hooks for this file. */
2569 tem = Fassq (feature, Vafter_load_alist);
2570 if (CONSP (tem))
2571 Fprogn (XCDR (tem));
2572
2573 return feature;
2574 }
2575 \f
2576 /* `require' and its subroutines. */
2577
2578 /* List of features currently being require'd, innermost first. */
2579
2580 static Lisp_Object require_nesting_list;
2581
2582 static Lisp_Object
2583 require_unwind (Lisp_Object old_value)
2584 {
2585 return require_nesting_list = old_value;
2586 }
2587
2588 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2589 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2590 If FEATURE is not a member of the list `features', then the feature
2591 is not loaded; so load the file FILENAME.
2592 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2593 and `load' will try to load this name appended with the suffix `.elc' or
2594 `.el', in that order. The name without appended suffix will not be used.
2595 See `get-load-suffixes' for the complete list of suffixes.
2596 If the optional third argument NOERROR is non-nil,
2597 then return nil if the file is not found instead of signaling an error.
2598 Normally the return value is FEATURE.
2599 The normal messages at start and end of loading FILENAME are suppressed. */)
2600 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2601 {
2602 Lisp_Object tem;
2603 struct gcpro gcpro1, gcpro2;
2604 bool from_file = load_in_progress;
2605
2606 CHECK_SYMBOL (feature);
2607
2608 /* Record the presence of `require' in this file
2609 even if the feature specified is already loaded.
2610 But not more than once in any file,
2611 and not when we aren't loading or reading from a file. */
2612 if (!from_file)
2613 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2614 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2615 from_file = 1;
2616
2617 if (from_file)
2618 {
2619 tem = Fcons (Qrequire, feature);
2620 if (NILP (Fmember (tem, Vcurrent_load_list)))
2621 LOADHIST_ATTACH (tem);
2622 }
2623 tem = Fmemq (feature, Vfeatures);
2624
2625 if (NILP (tem))
2626 {
2627 ptrdiff_t count = SPECPDL_INDEX ();
2628 int nesting = 0;
2629
2630 /* This is to make sure that loadup.el gives a clear picture
2631 of what files are preloaded and when. */
2632 if (! NILP (Vpurify_flag))
2633 error ("(require %s) while preparing to dump",
2634 SDATA (SYMBOL_NAME (feature)));
2635
2636 /* A certain amount of recursive `require' is legitimate,
2637 but if we require the same feature recursively 3 times,
2638 signal an error. */
2639 tem = require_nesting_list;
2640 while (! NILP (tem))
2641 {
2642 if (! NILP (Fequal (feature, XCAR (tem))))
2643 nesting++;
2644 tem = XCDR (tem);
2645 }
2646 if (nesting > 3)
2647 error ("Recursive `require' for feature `%s'",
2648 SDATA (SYMBOL_NAME (feature)));
2649
2650 /* Update the list for any nested `require's that occur. */
2651 record_unwind_protect (require_unwind, require_nesting_list);
2652 require_nesting_list = Fcons (feature, require_nesting_list);
2653
2654 /* Value saved here is to be restored into Vautoload_queue */
2655 record_unwind_protect (un_autoload, Vautoload_queue);
2656 Vautoload_queue = Qt;
2657
2658 /* Load the file. */
2659 GCPRO2 (feature, filename);
2660 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2661 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2662 UNGCPRO;
2663
2664 /* If load failed entirely, return nil. */
2665 if (NILP (tem))
2666 return unbind_to (count, Qnil);
2667
2668 tem = Fmemq (feature, Vfeatures);
2669 if (NILP (tem))
2670 error ("Required feature `%s' was not provided",
2671 SDATA (SYMBOL_NAME (feature)));
2672
2673 /* Once loading finishes, don't undo it. */
2674 Vautoload_queue = Qt;
2675 feature = unbind_to (count, feature);
2676 }
2677
2678 return feature;
2679 }
2680 \f
2681 /* Primitives for work of the "widget" library.
2682 In an ideal world, this section would not have been necessary.
2683 However, lisp function calls being as slow as they are, it turns
2684 out that some functions in the widget library (wid-edit.el) are the
2685 bottleneck of Widget operation. Here is their translation to C,
2686 for the sole reason of efficiency. */
2687
2688 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2689 doc: /* Return non-nil if PLIST has the property PROP.
2690 PLIST is a property list, which is a list of the form
2691 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2692 Unlike `plist-get', this allows you to distinguish between a missing
2693 property and a property with the value nil.
2694 The value is actually the tail of PLIST whose car is PROP. */)
2695 (Lisp_Object plist, Lisp_Object prop)
2696 {
2697 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2698 {
2699 QUIT;
2700 plist = XCDR (plist);
2701 plist = CDR (plist);
2702 }
2703 return plist;
2704 }
2705
2706 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2707 doc: /* In WIDGET, set PROPERTY to VALUE.
2708 The value can later be retrieved with `widget-get'. */)
2709 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2710 {
2711 CHECK_CONS (widget);
2712 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2713 return value;
2714 }
2715
2716 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2717 doc: /* In WIDGET, get the value of PROPERTY.
2718 The value could either be specified when the widget was created, or
2719 later with `widget-put'. */)
2720 (Lisp_Object widget, Lisp_Object property)
2721 {
2722 Lisp_Object tmp;
2723
2724 while (1)
2725 {
2726 if (NILP (widget))
2727 return Qnil;
2728 CHECK_CONS (widget);
2729 tmp = Fplist_member (XCDR (widget), property);
2730 if (CONSP (tmp))
2731 {
2732 tmp = XCDR (tmp);
2733 return CAR (tmp);
2734 }
2735 tmp = XCAR (widget);
2736 if (NILP (tmp))
2737 return Qnil;
2738 widget = Fget (tmp, Qwidget_type);
2739 }
2740 }
2741
2742 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2743 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2744 ARGS are passed as extra arguments to the function.
2745 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2746 (ptrdiff_t nargs, Lisp_Object *args)
2747 {
2748 /* This function can GC. */
2749 Lisp_Object newargs[3];
2750 struct gcpro gcpro1, gcpro2;
2751 Lisp_Object result;
2752
2753 newargs[0] = Fwidget_get (args[0], args[1]);
2754 newargs[1] = args[0];
2755 newargs[2] = Flist (nargs - 2, args + 2);
2756 GCPRO2 (newargs[0], newargs[2]);
2757 result = Fapply (3, newargs);
2758 UNGCPRO;
2759 return result;
2760 }
2761
2762 #ifdef HAVE_LANGINFO_CODESET
2763 #include <langinfo.h>
2764 #endif
2765
2766 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2767 doc: /* Access locale data ITEM for the current C locale, if available.
2768 ITEM should be one of the following:
2769
2770 `codeset', returning the character set as a string (locale item CODESET);
2771
2772 `days', returning a 7-element vector of day names (locale items DAY_n);
2773
2774 `months', returning a 12-element vector of month names (locale items MON_n);
2775
2776 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2777 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2778
2779 If the system can't provide such information through a call to
2780 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2781
2782 See also Info node `(libc)Locales'.
2783
2784 The data read from the system are decoded using `locale-coding-system'. */)
2785 (Lisp_Object item)
2786 {
2787 char *str = NULL;
2788 #ifdef HAVE_LANGINFO_CODESET
2789 Lisp_Object val;
2790 if (EQ (item, Qcodeset))
2791 {
2792 str = nl_langinfo (CODESET);
2793 return build_string (str);
2794 }
2795 #ifdef DAY_1
2796 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2797 {
2798 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2799 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2800 int i;
2801 struct gcpro gcpro1;
2802 GCPRO1 (v);
2803 synchronize_system_time_locale ();
2804 for (i = 0; i < 7; i++)
2805 {
2806 str = nl_langinfo (days[i]);
2807 val = build_unibyte_string (str);
2808 /* Fixme: Is this coding system necessarily right, even if
2809 it is consistent with CODESET? If not, what to do? */
2810 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2811 0));
2812 }
2813 UNGCPRO;
2814 return v;
2815 }
2816 #endif /* DAY_1 */
2817 #ifdef MON_1
2818 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2819 {
2820 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2821 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2822 MON_8, MON_9, MON_10, MON_11, MON_12};
2823 int i;
2824 struct gcpro gcpro1;
2825 GCPRO1 (v);
2826 synchronize_system_time_locale ();
2827 for (i = 0; i < 12; i++)
2828 {
2829 str = nl_langinfo (months[i]);
2830 val = build_unibyte_string (str);
2831 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2832 0));
2833 }
2834 UNGCPRO;
2835 return v;
2836 }
2837 #endif /* MON_1 */
2838 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2839 but is in the locale files. This could be used by ps-print. */
2840 #ifdef PAPER_WIDTH
2841 else if (EQ (item, Qpaper))
2842 {
2843 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2844 make_number (nl_langinfo (PAPER_HEIGHT)));
2845 }
2846 #endif /* PAPER_WIDTH */
2847 #endif /* HAVE_LANGINFO_CODESET*/
2848 return Qnil;
2849 }
2850 \f
2851 /* base64 encode/decode functions (RFC 2045).
2852 Based on code from GNU recode. */
2853
2854 #define MIME_LINE_LENGTH 76
2855
2856 #define IS_ASCII(Character) \
2857 ((Character) < 128)
2858 #define IS_BASE64(Character) \
2859 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2860 #define IS_BASE64_IGNORABLE(Character) \
2861 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2862 || (Character) == '\f' || (Character) == '\r')
2863
2864 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2865 character or return retval if there are no characters left to
2866 process. */
2867 #define READ_QUADRUPLET_BYTE(retval) \
2868 do \
2869 { \
2870 if (i == length) \
2871 { \
2872 if (nchars_return) \
2873 *nchars_return = nchars; \
2874 return (retval); \
2875 } \
2876 c = from[i++]; \
2877 } \
2878 while (IS_BASE64_IGNORABLE (c))
2879
2880 /* Table of characters coding the 64 values. */
2881 static const char base64_value_to_char[64] =
2882 {
2883 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2884 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2885 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2886 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2887 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2888 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2889 '8', '9', '+', '/' /* 60-63 */
2890 };
2891
2892 /* Table of base64 values for first 128 characters. */
2893 static const short base64_char_to_value[128] =
2894 {
2895 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2896 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2897 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2898 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2899 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2900 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2901 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2902 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2903 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2904 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2905 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2906 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2907 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2908 };
2909
2910 /* The following diagram shows the logical steps by which three octets
2911 get transformed into four base64 characters.
2912
2913 .--------. .--------. .--------.
2914 |aaaaaabb| |bbbbcccc| |ccdddddd|
2915 `--------' `--------' `--------'
2916 6 2 4 4 2 6
2917 .--------+--------+--------+--------.
2918 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2919 `--------+--------+--------+--------'
2920
2921 .--------+--------+--------+--------.
2922 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2923 `--------+--------+--------+--------'
2924
2925 The octets are divided into 6 bit chunks, which are then encoded into
2926 base64 characters. */
2927
2928
2929 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2930 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2931 ptrdiff_t *);
2932
2933 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2934 2, 3, "r",
2935 doc: /* Base64-encode the region between BEG and END.
2936 Return the length of the encoded text.
2937 Optional third argument NO-LINE-BREAK means do not break long lines
2938 into shorter lines. */)
2939 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2940 {
2941 char *encoded;
2942 ptrdiff_t allength, length;
2943 ptrdiff_t ibeg, iend, encoded_length;
2944 ptrdiff_t old_pos = PT;
2945 USE_SAFE_ALLOCA;
2946
2947 validate_region (&beg, &end);
2948
2949 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2950 iend = CHAR_TO_BYTE (XFASTINT (end));
2951 move_gap_both (XFASTINT (beg), ibeg);
2952
2953 /* We need to allocate enough room for encoding the text.
2954 We need 33 1/3% more space, plus a newline every 76
2955 characters, and then we round up. */
2956 length = iend - ibeg;
2957 allength = length + length/3 + 1;
2958 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2959
2960 encoded = SAFE_ALLOCA (allength);
2961 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2962 encoded, length, NILP (no_line_break),
2963 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2964 if (encoded_length > allength)
2965 emacs_abort ();
2966
2967 if (encoded_length < 0)
2968 {
2969 /* The encoding wasn't possible. */
2970 SAFE_FREE ();
2971 error ("Multibyte character in data for base64 encoding");
2972 }
2973
2974 /* Now we have encoded the region, so we insert the new contents
2975 and delete the old. (Insert first in order to preserve markers.) */
2976 SET_PT_BOTH (XFASTINT (beg), ibeg);
2977 insert (encoded, encoded_length);
2978 SAFE_FREE ();
2979 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2980
2981 /* If point was outside of the region, restore it exactly; else just
2982 move to the beginning of the region. */
2983 if (old_pos >= XFASTINT (end))
2984 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2985 else if (old_pos > XFASTINT (beg))
2986 old_pos = XFASTINT (beg);
2987 SET_PT (old_pos);
2988
2989 /* We return the length of the encoded text. */
2990 return make_number (encoded_length);
2991 }
2992
2993 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2994 1, 2, 0,
2995 doc: /* Base64-encode STRING and return the result.
2996 Optional second argument NO-LINE-BREAK means do not break long lines
2997 into shorter lines. */)
2998 (Lisp_Object string, Lisp_Object no_line_break)
2999 {
3000 ptrdiff_t allength, length, encoded_length;
3001 char *encoded;
3002 Lisp_Object encoded_string;
3003 USE_SAFE_ALLOCA;
3004
3005 CHECK_STRING (string);
3006
3007 /* We need to allocate enough room for encoding the text.
3008 We need 33 1/3% more space, plus a newline every 76
3009 characters, and then we round up. */
3010 length = SBYTES (string);
3011 allength = length + length/3 + 1;
3012 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3013
3014 /* We need to allocate enough room for decoding the text. */
3015 encoded = SAFE_ALLOCA (allength);
3016
3017 encoded_length = base64_encode_1 (SSDATA (string),
3018 encoded, length, NILP (no_line_break),
3019 STRING_MULTIBYTE (string));
3020 if (encoded_length > allength)
3021 emacs_abort ();
3022
3023 if (encoded_length < 0)
3024 {
3025 /* The encoding wasn't possible. */
3026 SAFE_FREE ();
3027 error ("Multibyte character in data for base64 encoding");
3028 }
3029
3030 encoded_string = make_unibyte_string (encoded, encoded_length);
3031 SAFE_FREE ();
3032
3033 return encoded_string;
3034 }
3035
3036 static ptrdiff_t
3037 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3038 bool line_break, bool multibyte)
3039 {
3040 int counter = 0;
3041 ptrdiff_t i = 0;
3042 char *e = to;
3043 int c;
3044 unsigned int value;
3045 int bytes;
3046
3047 while (i < length)
3048 {
3049 if (multibyte)
3050 {
3051 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3052 if (CHAR_BYTE8_P (c))
3053 c = CHAR_TO_BYTE8 (c);
3054 else if (c >= 256)
3055 return -1;
3056 i += bytes;
3057 }
3058 else
3059 c = from[i++];
3060
3061 /* Wrap line every 76 characters. */
3062
3063 if (line_break)
3064 {
3065 if (counter < MIME_LINE_LENGTH / 4)
3066 counter++;
3067 else
3068 {
3069 *e++ = '\n';
3070 counter = 1;
3071 }
3072 }
3073
3074 /* Process first byte of a triplet. */
3075
3076 *e++ = base64_value_to_char[0x3f & c >> 2];
3077 value = (0x03 & c) << 4;
3078
3079 /* Process second byte of a triplet. */
3080
3081 if (i == length)
3082 {
3083 *e++ = base64_value_to_char[value];
3084 *e++ = '=';
3085 *e++ = '=';
3086 break;
3087 }
3088
3089 if (multibyte)
3090 {
3091 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3092 if (CHAR_BYTE8_P (c))
3093 c = CHAR_TO_BYTE8 (c);
3094 else if (c >= 256)
3095 return -1;
3096 i += bytes;
3097 }
3098 else
3099 c = from[i++];
3100
3101 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3102 value = (0x0f & c) << 2;
3103
3104 /* Process third byte of a triplet. */
3105
3106 if (i == length)
3107 {
3108 *e++ = base64_value_to_char[value];
3109 *e++ = '=';
3110 break;
3111 }
3112
3113 if (multibyte)
3114 {
3115 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3116 if (CHAR_BYTE8_P (c))
3117 c = CHAR_TO_BYTE8 (c);
3118 else if (c >= 256)
3119 return -1;
3120 i += bytes;
3121 }
3122 else
3123 c = from[i++];
3124
3125 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3126 *e++ = base64_value_to_char[0x3f & c];
3127 }
3128
3129 return e - to;
3130 }
3131
3132
3133 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3134 2, 2, "r",
3135 doc: /* Base64-decode the region between BEG and END.
3136 Return the length of the decoded text.
3137 If the region can't be decoded, signal an error and don't modify the buffer. */)
3138 (Lisp_Object beg, Lisp_Object end)
3139 {
3140 ptrdiff_t ibeg, iend, length, allength;
3141 char *decoded;
3142 ptrdiff_t old_pos = PT;
3143 ptrdiff_t decoded_length;
3144 ptrdiff_t inserted_chars;
3145 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3146 USE_SAFE_ALLOCA;
3147
3148 validate_region (&beg, &end);
3149
3150 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3151 iend = CHAR_TO_BYTE (XFASTINT (end));
3152
3153 length = iend - ibeg;
3154
3155 /* We need to allocate enough room for decoding the text. If we are
3156 working on a multibyte buffer, each decoded code may occupy at
3157 most two bytes. */
3158 allength = multibyte ? length * 2 : length;
3159 decoded = SAFE_ALLOCA (allength);
3160
3161 move_gap_both (XFASTINT (beg), ibeg);
3162 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3163 decoded, length,
3164 multibyte, &inserted_chars);
3165 if (decoded_length > allength)
3166 emacs_abort ();
3167
3168 if (decoded_length < 0)
3169 {
3170 /* The decoding wasn't possible. */
3171 SAFE_FREE ();
3172 error ("Invalid base64 data");
3173 }
3174
3175 /* Now we have decoded the region, so we insert the new contents
3176 and delete the old. (Insert first in order to preserve markers.) */
3177 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3178 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3179 SAFE_FREE ();
3180
3181 /* Delete the original text. */
3182 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3183 iend + decoded_length, 1);
3184
3185 /* If point was outside of the region, restore it exactly; else just
3186 move to the beginning of the region. */
3187 if (old_pos >= XFASTINT (end))
3188 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3189 else if (old_pos > XFASTINT (beg))
3190 old_pos = XFASTINT (beg);
3191 SET_PT (old_pos > ZV ? ZV : old_pos);
3192
3193 return make_number (inserted_chars);
3194 }
3195
3196 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3197 1, 1, 0,
3198 doc: /* Base64-decode STRING and return the result. */)
3199 (Lisp_Object string)
3200 {
3201 char *decoded;
3202 ptrdiff_t length, decoded_length;
3203 Lisp_Object decoded_string;
3204 USE_SAFE_ALLOCA;
3205
3206 CHECK_STRING (string);
3207
3208 length = SBYTES (string);
3209 /* We need to allocate enough room for decoding the text. */
3210 decoded = SAFE_ALLOCA (length);
3211
3212 /* The decoded result should be unibyte. */
3213 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3214 0, NULL);
3215 if (decoded_length > length)
3216 emacs_abort ();
3217 else if (decoded_length >= 0)
3218 decoded_string = make_unibyte_string (decoded, decoded_length);
3219 else
3220 decoded_string = Qnil;
3221
3222 SAFE_FREE ();
3223 if (!STRINGP (decoded_string))
3224 error ("Invalid base64 data");
3225
3226 return decoded_string;
3227 }
3228
3229 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3230 MULTIBYTE, the decoded result should be in multibyte
3231 form. If NCHARS_RETURN is not NULL, store the number of produced
3232 characters in *NCHARS_RETURN. */
3233
3234 static ptrdiff_t
3235 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3236 bool multibyte, ptrdiff_t *nchars_return)
3237 {
3238 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3239 char *e = to;
3240 unsigned char c;
3241 unsigned long value;
3242 ptrdiff_t nchars = 0;
3243
3244 while (1)
3245 {
3246 /* Process first byte of a quadruplet. */
3247
3248 READ_QUADRUPLET_BYTE (e-to);
3249
3250 if (!IS_BASE64 (c))
3251 return -1;
3252 value = base64_char_to_value[c] << 18;
3253
3254 /* Process second byte of a quadruplet. */
3255
3256 READ_QUADRUPLET_BYTE (-1);
3257
3258 if (!IS_BASE64 (c))
3259 return -1;
3260 value |= base64_char_to_value[c] << 12;
3261
3262 c = (unsigned char) (value >> 16);
3263 if (multibyte && c >= 128)
3264 e += BYTE8_STRING (c, e);
3265 else
3266 *e++ = c;
3267 nchars++;
3268
3269 /* Process third byte of a quadruplet. */
3270
3271 READ_QUADRUPLET_BYTE (-1);
3272
3273 if (c == '=')
3274 {
3275 READ_QUADRUPLET_BYTE (-1);
3276
3277 if (c != '=')
3278 return -1;
3279 continue;
3280 }
3281
3282 if (!IS_BASE64 (c))
3283 return -1;
3284 value |= base64_char_to_value[c] << 6;
3285
3286 c = (unsigned char) (0xff & value >> 8);
3287 if (multibyte && c >= 128)
3288 e += BYTE8_STRING (c, e);
3289 else
3290 *e++ = c;
3291 nchars++;
3292
3293 /* Process fourth byte of a quadruplet. */
3294
3295 READ_QUADRUPLET_BYTE (-1);
3296
3297 if (c == '=')
3298 continue;
3299
3300 if (!IS_BASE64 (c))
3301 return -1;
3302 value |= base64_char_to_value[c];
3303
3304 c = (unsigned char) (0xff & value);
3305 if (multibyte && c >= 128)
3306 e += BYTE8_STRING (c, e);
3307 else
3308 *e++ = c;
3309 nchars++;
3310 }
3311 }
3312
3313
3314 \f
3315 /***********************************************************************
3316 ***** *****
3317 ***** Hash Tables *****
3318 ***** *****
3319 ***********************************************************************/
3320
3321 /* Implemented by gerd@gnu.org. This hash table implementation was
3322 inspired by CMUCL hash tables. */
3323
3324 /* Ideas:
3325
3326 1. For small tables, association lists are probably faster than
3327 hash tables because they have lower overhead.
3328
3329 For uses of hash tables where the O(1) behavior of table
3330 operations is not a requirement, it might therefore be a good idea
3331 not to hash. Instead, we could just do a linear search in the
3332 key_and_value vector of the hash table. This could be done
3333 if a `:linear-search t' argument is given to make-hash-table. */
3334
3335
3336 /* The list of all weak hash tables. Don't staticpro this one. */
3337
3338 static struct Lisp_Hash_Table *weak_hash_tables;
3339
3340 /* Various symbols. */
3341
3342 static Lisp_Object Qhash_table_p, Qkey, Qvalue, Qeql;
3343 Lisp_Object Qeq, Qequal;
3344 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3345 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3346
3347 \f
3348 /***********************************************************************
3349 Utilities
3350 ***********************************************************************/
3351
3352 /* If OBJ is a Lisp hash table, return a pointer to its struct
3353 Lisp_Hash_Table. Otherwise, signal an error. */
3354
3355 static struct Lisp_Hash_Table *
3356 check_hash_table (Lisp_Object obj)
3357 {
3358 CHECK_HASH_TABLE (obj);
3359 return XHASH_TABLE (obj);
3360 }
3361
3362
3363 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3364 number. A number is "almost" a prime number if it is not divisible
3365 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3366
3367 EMACS_INT
3368 next_almost_prime (EMACS_INT n)
3369 {
3370 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3371 for (n |= 1; ; n += 2)
3372 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3373 return n;
3374 }
3375
3376
3377 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3378 which USED[I] is non-zero. If found at index I in ARGS, set
3379 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3380 0. This function is used to extract a keyword/argument pair from
3381 a DEFUN parameter list. */
3382
3383 static ptrdiff_t
3384 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3385 {
3386 ptrdiff_t i;
3387
3388 for (i = 1; i < nargs; i++)
3389 if (!used[i - 1] && EQ (args[i - 1], key))
3390 {
3391 used[i - 1] = 1;
3392 used[i] = 1;
3393 return i;
3394 }
3395
3396 return 0;
3397 }
3398
3399
3400 /* Return a Lisp vector which has the same contents as VEC but has
3401 at least INCR_MIN more entries, where INCR_MIN is positive.
3402 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3403 than NITEMS_MAX. Entries in the resulting
3404 vector that are not copied from VEC are set to nil. */
3405
3406 Lisp_Object
3407 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3408 {
3409 struct Lisp_Vector *v;
3410 ptrdiff_t i, incr, incr_max, old_size, new_size;
3411 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3412 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3413 ? nitems_max : C_language_max);
3414 eassert (VECTORP (vec));
3415 eassert (0 < incr_min && -1 <= nitems_max);
3416 old_size = ASIZE (vec);
3417 incr_max = n_max - old_size;
3418 incr = max (incr_min, min (old_size >> 1, incr_max));
3419 if (incr_max < incr)
3420 memory_full (SIZE_MAX);
3421 new_size = old_size + incr;
3422 v = allocate_vector (new_size);
3423 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3424 for (i = old_size; i < new_size; ++i)
3425 v->contents[i] = Qnil;
3426 XSETVECTOR (vec, v);
3427 return vec;
3428 }
3429
3430
3431 /***********************************************************************
3432 Low-level Functions
3433 ***********************************************************************/
3434
3435 static struct hash_table_test hashtest_eq;
3436 struct hash_table_test hashtest_eql, hashtest_equal;
3437
3438 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3439 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3440 KEY2 are the same. */
3441
3442 static bool
3443 cmpfn_eql (struct hash_table_test *ht,
3444 Lisp_Object key1,
3445 Lisp_Object key2)
3446 {
3447 return (FLOATP (key1)
3448 && FLOATP (key2)
3449 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3450 }
3451
3452
3453 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3454 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3455 KEY2 are the same. */
3456
3457 static bool
3458 cmpfn_equal (struct hash_table_test *ht,
3459 Lisp_Object key1,
3460 Lisp_Object key2)
3461 {
3462 return !NILP (Fequal (key1, key2));
3463 }
3464
3465
3466 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3467 HASH2 in hash table H using H->user_cmp_function. Value is true
3468 if KEY1 and KEY2 are the same. */
3469
3470 static bool
3471 cmpfn_user_defined (struct hash_table_test *ht,
3472 Lisp_Object key1,
3473 Lisp_Object key2)
3474 {
3475 Lisp_Object args[3];
3476
3477 args[0] = ht->user_cmp_function;
3478 args[1] = key1;
3479 args[2] = key2;
3480 return !NILP (Ffuncall (3, args));
3481 }
3482
3483
3484 /* Value is a hash code for KEY for use in hash table H which uses
3485 `eq' to compare keys. The hash code returned is guaranteed to fit
3486 in a Lisp integer. */
3487
3488 static EMACS_UINT
3489 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3490 {
3491 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3492 return hash;
3493 }
3494
3495 /* Value is a hash code for KEY for use in hash table H which uses
3496 `eql' to compare keys. The hash code returned is guaranteed to fit
3497 in a Lisp integer. */
3498
3499 static EMACS_UINT
3500 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3501 {
3502 EMACS_UINT hash;
3503 if (FLOATP (key))
3504 hash = sxhash (key, 0);
3505 else
3506 hash = XHASH (key) ^ XTYPE (key);
3507 return hash;
3508 }
3509
3510 /* Value is a hash code for KEY for use in hash table H which uses
3511 `equal' to compare keys. The hash code returned is guaranteed to fit
3512 in a Lisp integer. */
3513
3514 static EMACS_UINT
3515 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3516 {
3517 EMACS_UINT hash = sxhash (key, 0);
3518 return hash;
3519 }
3520
3521 /* Value is a hash code for KEY for use in hash table H which uses as
3522 user-defined function to compare keys. The hash code returned is
3523 guaranteed to fit in a Lisp integer. */
3524
3525 static EMACS_UINT
3526 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3527 {
3528 Lisp_Object args[2], hash;
3529
3530 args[0] = ht->user_hash_function;
3531 args[1] = key;
3532 hash = Ffuncall (2, args);
3533 if (!INTEGERP (hash))
3534 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3535 return XUINT (hash);
3536 }
3537
3538 /* An upper bound on the size of a hash table index. It must fit in
3539 ptrdiff_t and be a valid Emacs fixnum. */
3540 #define INDEX_SIZE_BOUND \
3541 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3542
3543 /* Create and initialize a new hash table.
3544
3545 TEST specifies the test the hash table will use to compare keys.
3546 It must be either one of the predefined tests `eq', `eql' or
3547 `equal' or a symbol denoting a user-defined test named TEST with
3548 test and hash functions USER_TEST and USER_HASH.
3549
3550 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3551
3552 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3553 new size when it becomes full is computed by adding REHASH_SIZE to
3554 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3555 table's new size is computed by multiplying its old size with
3556 REHASH_SIZE.
3557
3558 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3559 be resized when the ratio of (number of entries in the table) /
3560 (table size) is >= REHASH_THRESHOLD.
3561
3562 WEAK specifies the weakness of the table. If non-nil, it must be
3563 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3564
3565 Lisp_Object
3566 make_hash_table (struct hash_table_test test,
3567 Lisp_Object size, Lisp_Object rehash_size,
3568 Lisp_Object rehash_threshold, Lisp_Object weak)
3569 {
3570 struct Lisp_Hash_Table *h;
3571 Lisp_Object table;
3572 EMACS_INT index_size, sz;
3573 ptrdiff_t i;
3574 double index_float;
3575
3576 /* Preconditions. */
3577 eassert (SYMBOLP (test.name));
3578 eassert (INTEGERP (size) && XINT (size) >= 0);
3579 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3580 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3581 eassert (FLOATP (rehash_threshold)
3582 && 0 < XFLOAT_DATA (rehash_threshold)
3583 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3584
3585 if (XFASTINT (size) == 0)
3586 size = make_number (1);
3587
3588 sz = XFASTINT (size);
3589 index_float = sz / XFLOAT_DATA (rehash_threshold);
3590 index_size = (index_float < INDEX_SIZE_BOUND + 1
3591 ? next_almost_prime (index_float)
3592 : INDEX_SIZE_BOUND + 1);
3593 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3594 error ("Hash table too large");
3595
3596 /* Allocate a table and initialize it. */
3597 h = allocate_hash_table ();
3598
3599 /* Initialize hash table slots. */
3600 h->test = test;
3601 h->weak = weak;
3602 h->rehash_threshold = rehash_threshold;
3603 h->rehash_size = rehash_size;
3604 h->count = 0;
3605 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3606 h->hash = Fmake_vector (size, Qnil);
3607 h->next = Fmake_vector (size, Qnil);
3608 h->index = Fmake_vector (make_number (index_size), Qnil);
3609
3610 /* Set up the free list. */
3611 for (i = 0; i < sz - 1; ++i)
3612 set_hash_next_slot (h, i, make_number (i + 1));
3613 h->next_free = make_number (0);
3614
3615 XSET_HASH_TABLE (table, h);
3616 eassert (HASH_TABLE_P (table));
3617 eassert (XHASH_TABLE (table) == h);
3618
3619 /* Maybe add this hash table to the list of all weak hash tables. */
3620 if (NILP (h->weak))
3621 h->next_weak = NULL;
3622 else
3623 {
3624 h->next_weak = weak_hash_tables;
3625 weak_hash_tables = h;
3626 }
3627
3628 return table;
3629 }
3630
3631
3632 /* Return a copy of hash table H1. Keys and values are not copied,
3633 only the table itself is. */
3634
3635 static Lisp_Object
3636 copy_hash_table (struct Lisp_Hash_Table *h1)
3637 {
3638 Lisp_Object table;
3639 struct Lisp_Hash_Table *h2;
3640
3641 h2 = allocate_hash_table ();
3642 *h2 = *h1;
3643 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3644 h2->hash = Fcopy_sequence (h1->hash);
3645 h2->next = Fcopy_sequence (h1->next);
3646 h2->index = Fcopy_sequence (h1->index);
3647 XSET_HASH_TABLE (table, h2);
3648
3649 /* Maybe add this hash table to the list of all weak hash tables. */
3650 if (!NILP (h2->weak))
3651 {
3652 h2->next_weak = weak_hash_tables;
3653 weak_hash_tables = h2;
3654 }
3655
3656 return table;
3657 }
3658
3659
3660 /* Resize hash table H if it's too full. If H cannot be resized
3661 because it's already too large, throw an error. */
3662
3663 static void
3664 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3665 {
3666 if (NILP (h->next_free))
3667 {
3668 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3669 EMACS_INT new_size, index_size, nsize;
3670 ptrdiff_t i;
3671 double index_float;
3672
3673 if (INTEGERP (h->rehash_size))
3674 new_size = old_size + XFASTINT (h->rehash_size);
3675 else
3676 {
3677 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3678 if (float_new_size < INDEX_SIZE_BOUND + 1)
3679 {
3680 new_size = float_new_size;
3681 if (new_size <= old_size)
3682 new_size = old_size + 1;
3683 }
3684 else
3685 new_size = INDEX_SIZE_BOUND + 1;
3686 }
3687 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3688 index_size = (index_float < INDEX_SIZE_BOUND + 1
3689 ? next_almost_prime (index_float)
3690 : INDEX_SIZE_BOUND + 1);
3691 nsize = max (index_size, 2 * new_size);
3692 if (INDEX_SIZE_BOUND < nsize)
3693 error ("Hash table too large to resize");
3694
3695 #ifdef ENABLE_CHECKING
3696 if (HASH_TABLE_P (Vpurify_flag)
3697 && XHASH_TABLE (Vpurify_flag) == h)
3698 {
3699 Lisp_Object args[2];
3700 args[0] = build_string ("Growing hash table to: %d");
3701 args[1] = make_number (new_size);
3702 Fmessage (2, args);
3703 }
3704 #endif
3705
3706 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3707 2 * (new_size - old_size), -1));
3708 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3709 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3710 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3711
3712 /* Update the free list. Do it so that new entries are added at
3713 the end of the free list. This makes some operations like
3714 maphash faster. */
3715 for (i = old_size; i < new_size - 1; ++i)
3716 set_hash_next_slot (h, i, make_number (i + 1));
3717
3718 if (!NILP (h->next_free))
3719 {
3720 Lisp_Object last, next;
3721
3722 last = h->next_free;
3723 while (next = HASH_NEXT (h, XFASTINT (last)),
3724 !NILP (next))
3725 last = next;
3726
3727 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3728 }
3729 else
3730 XSETFASTINT (h->next_free, old_size);
3731
3732 /* Rehash. */
3733 for (i = 0; i < old_size; ++i)
3734 if (!NILP (HASH_HASH (h, i)))
3735 {
3736 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3737 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3738 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3739 set_hash_index_slot (h, start_of_bucket, make_number (i));
3740 }
3741 }
3742 }
3743
3744
3745 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3746 the hash code of KEY. Value is the index of the entry in H
3747 matching KEY, or -1 if not found. */
3748
3749 ptrdiff_t
3750 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3751 {
3752 EMACS_UINT hash_code;
3753 ptrdiff_t start_of_bucket;
3754 Lisp_Object idx;
3755
3756 hash_code = h->test.hashfn (&h->test, key);
3757 eassert ((hash_code & ~INTMASK) == 0);
3758 if (hash)
3759 *hash = hash_code;
3760
3761 start_of_bucket = hash_code % ASIZE (h->index);
3762 idx = HASH_INDEX (h, start_of_bucket);
3763
3764 /* We need not gcpro idx since it's either an integer or nil. */
3765 while (!NILP (idx))
3766 {
3767 ptrdiff_t i = XFASTINT (idx);
3768 if (EQ (key, HASH_KEY (h, i))
3769 || (h->test.cmpfn
3770 && hash_code == XUINT (HASH_HASH (h, i))
3771 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3772 break;
3773 idx = HASH_NEXT (h, i);
3774 }
3775
3776 return NILP (idx) ? -1 : XFASTINT (idx);
3777 }
3778
3779
3780 /* Put an entry into hash table H that associates KEY with VALUE.
3781 HASH is a previously computed hash code of KEY.
3782 Value is the index of the entry in H matching KEY. */
3783
3784 ptrdiff_t
3785 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3786 EMACS_UINT hash)
3787 {
3788 ptrdiff_t start_of_bucket, i;
3789
3790 eassert ((hash & ~INTMASK) == 0);
3791
3792 /* Increment count after resizing because resizing may fail. */
3793 maybe_resize_hash_table (h);
3794 h->count++;
3795
3796 /* Store key/value in the key_and_value vector. */
3797 i = XFASTINT (h->next_free);
3798 h->next_free = HASH_NEXT (h, i);
3799 set_hash_key_slot (h, i, key);
3800 set_hash_value_slot (h, i, value);
3801
3802 /* Remember its hash code. */
3803 set_hash_hash_slot (h, i, make_number (hash));
3804
3805 /* Add new entry to its collision chain. */
3806 start_of_bucket = hash % ASIZE (h->index);
3807 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3808 set_hash_index_slot (h, start_of_bucket, make_number (i));
3809 return i;
3810 }
3811
3812
3813 /* Remove the entry matching KEY from hash table H, if there is one. */
3814
3815 static void
3816 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3817 {
3818 EMACS_UINT hash_code;
3819 ptrdiff_t start_of_bucket;
3820 Lisp_Object idx, prev;
3821
3822 hash_code = h->test.hashfn (&h->test, key);
3823 eassert ((hash_code & ~INTMASK) == 0);
3824 start_of_bucket = hash_code % ASIZE (h->index);
3825 idx = HASH_INDEX (h, start_of_bucket);
3826 prev = Qnil;
3827
3828 /* We need not gcpro idx, prev since they're either integers or nil. */
3829 while (!NILP (idx))
3830 {
3831 ptrdiff_t i = XFASTINT (idx);
3832
3833 if (EQ (key, HASH_KEY (h, i))
3834 || (h->test.cmpfn
3835 && hash_code == XUINT (HASH_HASH (h, i))
3836 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3837 {
3838 /* Take entry out of collision chain. */
3839 if (NILP (prev))
3840 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3841 else
3842 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3843
3844 /* Clear slots in key_and_value and add the slots to
3845 the free list. */
3846 set_hash_key_slot (h, i, Qnil);
3847 set_hash_value_slot (h, i, Qnil);
3848 set_hash_hash_slot (h, i, Qnil);
3849 set_hash_next_slot (h, i, h->next_free);
3850 h->next_free = make_number (i);
3851 h->count--;
3852 eassert (h->count >= 0);
3853 break;
3854 }
3855 else
3856 {
3857 prev = idx;
3858 idx = HASH_NEXT (h, i);
3859 }
3860 }
3861 }
3862
3863
3864 /* Clear hash table H. */
3865
3866 static void
3867 hash_clear (struct Lisp_Hash_Table *h)
3868 {
3869 if (h->count > 0)
3870 {
3871 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3872
3873 for (i = 0; i < size; ++i)
3874 {
3875 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3876 set_hash_key_slot (h, i, Qnil);
3877 set_hash_value_slot (h, i, Qnil);
3878 set_hash_hash_slot (h, i, Qnil);
3879 }
3880
3881 for (i = 0; i < ASIZE (h->index); ++i)
3882 ASET (h->index, i, Qnil);
3883
3884 h->next_free = make_number (0);
3885 h->count = 0;
3886 }
3887 }
3888
3889
3890 \f
3891 /************************************************************************
3892 Weak Hash Tables
3893 ************************************************************************/
3894
3895 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3896 entries from the table that don't survive the current GC.
3897 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3898 true if anything was marked. */
3899
3900 static bool
3901 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3902 {
3903 ptrdiff_t bucket, n;
3904 bool marked;
3905
3906 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3907 marked = 0;
3908
3909 for (bucket = 0; bucket < n; ++bucket)
3910 {
3911 Lisp_Object idx, next, prev;
3912
3913 /* Follow collision chain, removing entries that
3914 don't survive this garbage collection. */
3915 prev = Qnil;
3916 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3917 {
3918 ptrdiff_t i = XFASTINT (idx);
3919 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3920 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3921 bool remove_p;
3922
3923 if (EQ (h->weak, Qkey))
3924 remove_p = !key_known_to_survive_p;
3925 else if (EQ (h->weak, Qvalue))
3926 remove_p = !value_known_to_survive_p;
3927 else if (EQ (h->weak, Qkey_or_value))
3928 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3929 else if (EQ (h->weak, Qkey_and_value))
3930 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3931 else
3932 emacs_abort ();
3933
3934 next = HASH_NEXT (h, i);
3935
3936 if (remove_entries_p)
3937 {
3938 if (remove_p)
3939 {
3940 /* Take out of collision chain. */
3941 if (NILP (prev))
3942 set_hash_index_slot (h, bucket, next);
3943 else
3944 set_hash_next_slot (h, XFASTINT (prev), next);
3945
3946 /* Add to free list. */
3947 set_hash_next_slot (h, i, h->next_free);
3948 h->next_free = idx;
3949
3950 /* Clear key, value, and hash. */
3951 set_hash_key_slot (h, i, Qnil);
3952 set_hash_value_slot (h, i, Qnil);
3953 set_hash_hash_slot (h, i, Qnil);
3954
3955 h->count--;
3956 }
3957 else
3958 {
3959 prev = idx;
3960 }
3961 }
3962 else
3963 {
3964 if (!remove_p)
3965 {
3966 /* Make sure key and value survive. */
3967 if (!key_known_to_survive_p)
3968 {
3969 mark_object (HASH_KEY (h, i));
3970 marked = 1;
3971 }
3972
3973 if (!value_known_to_survive_p)
3974 {
3975 mark_object (HASH_VALUE (h, i));
3976 marked = 1;
3977 }
3978 }
3979 }
3980 }
3981 }
3982
3983 return marked;
3984 }
3985
3986 /* Remove elements from weak hash tables that don't survive the
3987 current garbage collection. Remove weak tables that don't survive
3988 from Vweak_hash_tables. Called from gc_sweep. */
3989
3990 void
3991 sweep_weak_hash_tables (void)
3992 {
3993 struct Lisp_Hash_Table *h, *used, *next;
3994 bool marked;
3995
3996 /* Mark all keys and values that are in use. Keep on marking until
3997 there is no more change. This is necessary for cases like
3998 value-weak table A containing an entry X -> Y, where Y is used in a
3999 key-weak table B, Z -> Y. If B comes after A in the list of weak
4000 tables, X -> Y might be removed from A, although when looking at B
4001 one finds that it shouldn't. */
4002 do
4003 {
4004 marked = 0;
4005 for (h = weak_hash_tables; h; h = h->next_weak)
4006 {
4007 if (h->header.size & ARRAY_MARK_FLAG)
4008 marked |= sweep_weak_table (h, 0);
4009 }
4010 }
4011 while (marked);
4012
4013 /* Remove tables and entries that aren't used. */
4014 for (h = weak_hash_tables, used = NULL; h; h = next)
4015 {
4016 next = h->next_weak;
4017
4018 if (h->header.size & ARRAY_MARK_FLAG)
4019 {
4020 /* TABLE is marked as used. Sweep its contents. */
4021 if (h->count > 0)
4022 sweep_weak_table (h, 1);
4023
4024 /* Add table to the list of used weak hash tables. */
4025 h->next_weak = used;
4026 used = h;
4027 }
4028 }
4029
4030 weak_hash_tables = used;
4031 }
4032
4033
4034 \f
4035 /***********************************************************************
4036 Hash Code Computation
4037 ***********************************************************************/
4038
4039 /* Maximum depth up to which to dive into Lisp structures. */
4040
4041 #define SXHASH_MAX_DEPTH 3
4042
4043 /* Maximum length up to which to take list and vector elements into
4044 account. */
4045
4046 #define SXHASH_MAX_LEN 7
4047
4048 /* Return a hash for string PTR which has length LEN. The hash value
4049 can be any EMACS_UINT value. */
4050
4051 EMACS_UINT
4052 hash_string (char const *ptr, ptrdiff_t len)
4053 {
4054 char const *p = ptr;
4055 char const *end = p + len;
4056 unsigned char c;
4057 EMACS_UINT hash = 0;
4058
4059 while (p != end)
4060 {
4061 c = *p++;
4062 hash = sxhash_combine (hash, c);
4063 }
4064
4065 return hash;
4066 }
4067
4068 /* Return a hash for string PTR which has length LEN. The hash
4069 code returned is guaranteed to fit in a Lisp integer. */
4070
4071 static EMACS_UINT
4072 sxhash_string (char const *ptr, ptrdiff_t len)
4073 {
4074 EMACS_UINT hash = hash_string (ptr, len);
4075 return SXHASH_REDUCE (hash);
4076 }
4077
4078 /* Return a hash for the floating point value VAL. */
4079
4080 static EMACS_UINT
4081 sxhash_float (double val)
4082 {
4083 EMACS_UINT hash = 0;
4084 enum {
4085 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4086 + (sizeof val % sizeof hash != 0))
4087 };
4088 union {
4089 double val;
4090 EMACS_UINT word[WORDS_PER_DOUBLE];
4091 } u;
4092 int i;
4093 u.val = val;
4094 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4095 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4096 hash = sxhash_combine (hash, u.word[i]);
4097 return SXHASH_REDUCE (hash);
4098 }
4099
4100 /* Return a hash for list LIST. DEPTH is the current depth in the
4101 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4102
4103 static EMACS_UINT
4104 sxhash_list (Lisp_Object list, int depth)
4105 {
4106 EMACS_UINT hash = 0;
4107 int i;
4108
4109 if (depth < SXHASH_MAX_DEPTH)
4110 for (i = 0;
4111 CONSP (list) && i < SXHASH_MAX_LEN;
4112 list = XCDR (list), ++i)
4113 {
4114 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4115 hash = sxhash_combine (hash, hash2);
4116 }
4117
4118 if (!NILP (list))
4119 {
4120 EMACS_UINT hash2 = sxhash (list, depth + 1);
4121 hash = sxhash_combine (hash, hash2);
4122 }
4123
4124 return SXHASH_REDUCE (hash);
4125 }
4126
4127
4128 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4129 the Lisp structure. */
4130
4131 static EMACS_UINT
4132 sxhash_vector (Lisp_Object vec, int depth)
4133 {
4134 EMACS_UINT hash = ASIZE (vec);
4135 int i, n;
4136
4137 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4138 for (i = 0; i < n; ++i)
4139 {
4140 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4141 hash = sxhash_combine (hash, hash2);
4142 }
4143
4144 return SXHASH_REDUCE (hash);
4145 }
4146
4147 /* Return a hash for bool-vector VECTOR. */
4148
4149 static EMACS_UINT
4150 sxhash_bool_vector (Lisp_Object vec)
4151 {
4152 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4153 int i, n;
4154
4155 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4156 for (i = 0; i < n; ++i)
4157 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4158
4159 return SXHASH_REDUCE (hash);
4160 }
4161
4162
4163 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4164 structure. Value is an unsigned integer clipped to INTMASK. */
4165
4166 EMACS_UINT
4167 sxhash (Lisp_Object obj, int depth)
4168 {
4169 EMACS_UINT hash;
4170
4171 if (depth > SXHASH_MAX_DEPTH)
4172 return 0;
4173
4174 switch (XTYPE (obj))
4175 {
4176 case_Lisp_Int:
4177 hash = XUINT (obj);
4178 break;
4179
4180 case Lisp_Misc:
4181 hash = XHASH (obj);
4182 break;
4183
4184 case Lisp_Symbol:
4185 obj = SYMBOL_NAME (obj);
4186 /* Fall through. */
4187
4188 case Lisp_String:
4189 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4190 break;
4191
4192 /* This can be everything from a vector to an overlay. */
4193 case Lisp_Vectorlike:
4194 if (VECTORP (obj))
4195 /* According to the CL HyperSpec, two arrays are equal only if
4196 they are `eq', except for strings and bit-vectors. In
4197 Emacs, this works differently. We have to compare element
4198 by element. */
4199 hash = sxhash_vector (obj, depth);
4200 else if (BOOL_VECTOR_P (obj))
4201 hash = sxhash_bool_vector (obj);
4202 else
4203 /* Others are `equal' if they are `eq', so let's take their
4204 address as hash. */
4205 hash = XHASH (obj);
4206 break;
4207
4208 case Lisp_Cons:
4209 hash = sxhash_list (obj, depth);
4210 break;
4211
4212 case Lisp_Float:
4213 hash = sxhash_float (XFLOAT_DATA (obj));
4214 break;
4215
4216 default:
4217 emacs_abort ();
4218 }
4219
4220 return hash;
4221 }
4222
4223
4224 \f
4225 /***********************************************************************
4226 Lisp Interface
4227 ***********************************************************************/
4228
4229
4230 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4231 doc: /* Compute a hash code for OBJ and return it as integer. */)
4232 (Lisp_Object obj)
4233 {
4234 EMACS_UINT hash = sxhash (obj, 0);
4235 return make_number (hash);
4236 }
4237
4238
4239 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4240 doc: /* Create and return a new hash table.
4241
4242 Arguments are specified as keyword/argument pairs. The following
4243 arguments are defined:
4244
4245 :test TEST -- TEST must be a symbol that specifies how to compare
4246 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4247 `equal'. User-supplied test and hash functions can be specified via
4248 `define-hash-table-test'.
4249
4250 :size SIZE -- A hint as to how many elements will be put in the table.
4251 Default is 65.
4252
4253 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4254 fills up. If REHASH-SIZE is an integer, increase the size by that
4255 amount. If it is a float, it must be > 1.0, and the new size is the
4256 old size multiplied by that factor. Default is 1.5.
4257
4258 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4259 Resize the hash table when the ratio (number of entries / table size)
4260 is greater than or equal to THRESHOLD. Default is 0.8.
4261
4262 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4263 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4264 returned is a weak table. Key/value pairs are removed from a weak
4265 hash table when there are no non-weak references pointing to their
4266 key, value, one of key or value, or both key and value, depending on
4267 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4268 is nil.
4269
4270 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4271 (ptrdiff_t nargs, Lisp_Object *args)
4272 {
4273 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4274 struct hash_table_test testdesc;
4275 char *used;
4276 ptrdiff_t i;
4277
4278 /* The vector `used' is used to keep track of arguments that
4279 have been consumed. */
4280 used = alloca (nargs * sizeof *used);
4281 memset (used, 0, nargs * sizeof *used);
4282
4283 /* See if there's a `:test TEST' among the arguments. */
4284 i = get_key_arg (QCtest, nargs, args, used);
4285 test = i ? args[i] : Qeql;
4286 if (EQ (test, Qeq))
4287 testdesc = hashtest_eq;
4288 else if (EQ (test, Qeql))
4289 testdesc = hashtest_eql;
4290 else if (EQ (test, Qequal))
4291 testdesc = hashtest_equal;
4292 else
4293 {
4294 /* See if it is a user-defined test. */
4295 Lisp_Object prop;
4296
4297 prop = Fget (test, Qhash_table_test);
4298 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4299 signal_error ("Invalid hash table test", test);
4300 testdesc.name = test;
4301 testdesc.user_cmp_function = XCAR (prop);
4302 testdesc.user_hash_function = XCAR (XCDR (prop));
4303 testdesc.hashfn = hashfn_user_defined;
4304 testdesc.cmpfn = cmpfn_user_defined;
4305 }
4306
4307 /* See if there's a `:size SIZE' argument. */
4308 i = get_key_arg (QCsize, nargs, args, used);
4309 size = i ? args[i] : Qnil;
4310 if (NILP (size))
4311 size = make_number (DEFAULT_HASH_SIZE);
4312 else if (!INTEGERP (size) || XINT (size) < 0)
4313 signal_error ("Invalid hash table size", size);
4314
4315 /* Look for `:rehash-size SIZE'. */
4316 i = get_key_arg (QCrehash_size, nargs, args, used);
4317 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4318 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4319 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4320 signal_error ("Invalid hash table rehash size", rehash_size);
4321
4322 /* Look for `:rehash-threshold THRESHOLD'. */
4323 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4324 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4325 if (! (FLOATP (rehash_threshold)
4326 && 0 < XFLOAT_DATA (rehash_threshold)
4327 && XFLOAT_DATA (rehash_threshold) <= 1))
4328 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4329
4330 /* Look for `:weakness WEAK'. */
4331 i = get_key_arg (QCweakness, nargs, args, used);
4332 weak = i ? args[i] : Qnil;
4333 if (EQ (weak, Qt))
4334 weak = Qkey_and_value;
4335 if (!NILP (weak)
4336 && !EQ (weak, Qkey)
4337 && !EQ (weak, Qvalue)
4338 && !EQ (weak, Qkey_or_value)
4339 && !EQ (weak, Qkey_and_value))
4340 signal_error ("Invalid hash table weakness", weak);
4341
4342 /* Now, all args should have been used up, or there's a problem. */
4343 for (i = 0; i < nargs; ++i)
4344 if (!used[i])
4345 signal_error ("Invalid argument list", args[i]);
4346
4347 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4348 }
4349
4350
4351 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4352 doc: /* Return a copy of hash table TABLE. */)
4353 (Lisp_Object table)
4354 {
4355 return copy_hash_table (check_hash_table (table));
4356 }
4357
4358
4359 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4360 doc: /* Return the number of elements in TABLE. */)
4361 (Lisp_Object table)
4362 {
4363 return make_number (check_hash_table (table)->count);
4364 }
4365
4366
4367 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4368 Shash_table_rehash_size, 1, 1, 0,
4369 doc: /* Return the current rehash size of TABLE. */)
4370 (Lisp_Object table)
4371 {
4372 return check_hash_table (table)->rehash_size;
4373 }
4374
4375
4376 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4377 Shash_table_rehash_threshold, 1, 1, 0,
4378 doc: /* Return the current rehash threshold of TABLE. */)
4379 (Lisp_Object table)
4380 {
4381 return check_hash_table (table)->rehash_threshold;
4382 }
4383
4384
4385 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4386 doc: /* Return the size of TABLE.
4387 The size can be used as an argument to `make-hash-table' to create
4388 a hash table than can hold as many elements as TABLE holds
4389 without need for resizing. */)
4390 (Lisp_Object table)
4391 {
4392 struct Lisp_Hash_Table *h = check_hash_table (table);
4393 return make_number (HASH_TABLE_SIZE (h));
4394 }
4395
4396
4397 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4398 doc: /* Return the test TABLE uses. */)
4399 (Lisp_Object table)
4400 {
4401 return check_hash_table (table)->test.name;
4402 }
4403
4404
4405 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4406 1, 1, 0,
4407 doc: /* Return the weakness of TABLE. */)
4408 (Lisp_Object table)
4409 {
4410 return check_hash_table (table)->weak;
4411 }
4412
4413
4414 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4415 doc: /* Return t if OBJ is a Lisp hash table object. */)
4416 (Lisp_Object obj)
4417 {
4418 return HASH_TABLE_P (obj) ? Qt : Qnil;
4419 }
4420
4421
4422 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4423 doc: /* Clear hash table TABLE and return it. */)
4424 (Lisp_Object table)
4425 {
4426 hash_clear (check_hash_table (table));
4427 /* Be compatible with XEmacs. */
4428 return table;
4429 }
4430
4431
4432 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4433 doc: /* Look up KEY in TABLE and return its associated value.
4434 If KEY is not found, return DFLT which defaults to nil. */)
4435 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4436 {
4437 struct Lisp_Hash_Table *h = check_hash_table (table);
4438 ptrdiff_t i = hash_lookup (h, key, NULL);
4439 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4440 }
4441
4442
4443 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4444 doc: /* Associate KEY with VALUE in hash table TABLE.
4445 If KEY is already present in table, replace its current value with
4446 VALUE. In any case, return VALUE. */)
4447 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4448 {
4449 struct Lisp_Hash_Table *h = check_hash_table (table);
4450 ptrdiff_t i;
4451 EMACS_UINT hash;
4452
4453 i = hash_lookup (h, key, &hash);
4454 if (i >= 0)
4455 set_hash_value_slot (h, i, value);
4456 else
4457 hash_put (h, key, value, hash);
4458
4459 return value;
4460 }
4461
4462
4463 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4464 doc: /* Remove KEY from TABLE. */)
4465 (Lisp_Object key, Lisp_Object table)
4466 {
4467 struct Lisp_Hash_Table *h = check_hash_table (table);
4468 hash_remove_from_table (h, key);
4469 return Qnil;
4470 }
4471
4472
4473 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4474 doc: /* Call FUNCTION for all entries in hash table TABLE.
4475 FUNCTION is called with two arguments, KEY and VALUE. */)
4476 (Lisp_Object function, Lisp_Object table)
4477 {
4478 struct Lisp_Hash_Table *h = check_hash_table (table);
4479 Lisp_Object args[3];
4480 ptrdiff_t i;
4481
4482 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4483 if (!NILP (HASH_HASH (h, i)))
4484 {
4485 args[0] = function;
4486 args[1] = HASH_KEY (h, i);
4487 args[2] = HASH_VALUE (h, i);
4488 Ffuncall (3, args);
4489 }
4490
4491 return Qnil;
4492 }
4493
4494
4495 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4496 Sdefine_hash_table_test, 3, 3, 0,
4497 doc: /* Define a new hash table test with name NAME, a symbol.
4498
4499 In hash tables created with NAME specified as test, use TEST to
4500 compare keys, and HASH for computing hash codes of keys.
4501
4502 TEST must be a function taking two arguments and returning non-nil if
4503 both arguments are the same. HASH must be a function taking one
4504 argument and return an integer that is the hash code of the argument.
4505 Hash code computation should use the whole value range of integers,
4506 including negative integers. */)
4507 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4508 {
4509 return Fput (name, Qhash_table_test, list2 (test, hash));
4510 }
4511
4512
4513 \f
4514 /************************************************************************
4515 MD5, SHA-1, and SHA-2
4516 ************************************************************************/
4517
4518 #include "md5.h"
4519 #include "sha1.h"
4520 #include "sha256.h"
4521 #include "sha512.h"
4522
4523 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4524
4525 static Lisp_Object
4526 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4527 {
4528 int i;
4529 ptrdiff_t size;
4530 EMACS_INT start_char = 0, end_char = 0;
4531 ptrdiff_t start_byte, end_byte;
4532 register EMACS_INT b, e;
4533 register struct buffer *bp;
4534 EMACS_INT temp;
4535 int digest_size;
4536 void *(*hash_func) (const char *, size_t, void *);
4537 Lisp_Object digest;
4538
4539 CHECK_SYMBOL (algorithm);
4540
4541 if (STRINGP (object))
4542 {
4543 if (NILP (coding_system))
4544 {
4545 /* Decide the coding-system to encode the data with. */
4546
4547 if (STRING_MULTIBYTE (object))
4548 /* use default, we can't guess correct value */
4549 coding_system = preferred_coding_system ();
4550 else
4551 coding_system = Qraw_text;
4552 }
4553
4554 if (NILP (Fcoding_system_p (coding_system)))
4555 {
4556 /* Invalid coding system. */
4557
4558 if (!NILP (noerror))
4559 coding_system = Qraw_text;
4560 else
4561 xsignal1 (Qcoding_system_error, coding_system);
4562 }
4563
4564 if (STRING_MULTIBYTE (object))
4565 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4566
4567 size = SCHARS (object);
4568
4569 if (!NILP (start))
4570 {
4571 CHECK_NUMBER (start);
4572
4573 start_char = XINT (start);
4574
4575 if (start_char < 0)
4576 start_char += size;
4577 }
4578
4579 if (NILP (end))
4580 end_char = size;
4581 else
4582 {
4583 CHECK_NUMBER (end);
4584
4585 end_char = XINT (end);
4586
4587 if (end_char < 0)
4588 end_char += size;
4589 }
4590
4591 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4592 args_out_of_range_3 (object, make_number (start_char),
4593 make_number (end_char));
4594
4595 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4596 end_byte =
4597 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4598 }
4599 else
4600 {
4601 struct buffer *prev = current_buffer;
4602
4603 record_unwind_current_buffer ();
4604
4605 CHECK_BUFFER (object);
4606
4607 bp = XBUFFER (object);
4608 set_buffer_internal (bp);
4609
4610 if (NILP (start))
4611 b = BEGV;
4612 else
4613 {
4614 CHECK_NUMBER_COERCE_MARKER (start);
4615 b = XINT (start);
4616 }
4617
4618 if (NILP (end))
4619 e = ZV;
4620 else
4621 {
4622 CHECK_NUMBER_COERCE_MARKER (end);
4623 e = XINT (end);
4624 }
4625
4626 if (b > e)
4627 temp = b, b = e, e = temp;
4628
4629 if (!(BEGV <= b && e <= ZV))
4630 args_out_of_range (start, end);
4631
4632 if (NILP (coding_system))
4633 {
4634 /* Decide the coding-system to encode the data with.
4635 See fileio.c:Fwrite-region */
4636
4637 if (!NILP (Vcoding_system_for_write))
4638 coding_system = Vcoding_system_for_write;
4639 else
4640 {
4641 bool force_raw_text = 0;
4642
4643 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4644 if (NILP (coding_system)
4645 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4646 {
4647 coding_system = Qnil;
4648 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4649 force_raw_text = 1;
4650 }
4651
4652 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4653 {
4654 /* Check file-coding-system-alist. */
4655 Lisp_Object args[4], val;
4656
4657 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4658 args[3] = Fbuffer_file_name (object);
4659 val = Ffind_operation_coding_system (4, args);
4660 if (CONSP (val) && !NILP (XCDR (val)))
4661 coding_system = XCDR (val);
4662 }
4663
4664 if (NILP (coding_system)
4665 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4666 {
4667 /* If we still have not decided a coding system, use the
4668 default value of buffer-file-coding-system. */
4669 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4670 }
4671
4672 if (!force_raw_text
4673 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4674 /* Confirm that VAL can surely encode the current region. */
4675 coding_system = call4 (Vselect_safe_coding_system_function,
4676 make_number (b), make_number (e),
4677 coding_system, Qnil);
4678
4679 if (force_raw_text)
4680 coding_system = Qraw_text;
4681 }
4682
4683 if (NILP (Fcoding_system_p (coding_system)))
4684 {
4685 /* Invalid coding system. */
4686
4687 if (!NILP (noerror))
4688 coding_system = Qraw_text;
4689 else
4690 xsignal1 (Qcoding_system_error, coding_system);
4691 }
4692 }
4693
4694 object = make_buffer_string (b, e, 0);
4695 set_buffer_internal (prev);
4696 /* Discard the unwind protect for recovering the current
4697 buffer. */
4698 specpdl_ptr--;
4699
4700 if (STRING_MULTIBYTE (object))
4701 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4702 start_byte = 0;
4703 end_byte = SBYTES (object);
4704 }
4705
4706 if (EQ (algorithm, Qmd5))
4707 {
4708 digest_size = MD5_DIGEST_SIZE;
4709 hash_func = md5_buffer;
4710 }
4711 else if (EQ (algorithm, Qsha1))
4712 {
4713 digest_size = SHA1_DIGEST_SIZE;
4714 hash_func = sha1_buffer;
4715 }
4716 else if (EQ (algorithm, Qsha224))
4717 {
4718 digest_size = SHA224_DIGEST_SIZE;
4719 hash_func = sha224_buffer;
4720 }
4721 else if (EQ (algorithm, Qsha256))
4722 {
4723 digest_size = SHA256_DIGEST_SIZE;
4724 hash_func = sha256_buffer;
4725 }
4726 else if (EQ (algorithm, Qsha384))
4727 {
4728 digest_size = SHA384_DIGEST_SIZE;
4729 hash_func = sha384_buffer;
4730 }
4731 else if (EQ (algorithm, Qsha512))
4732 {
4733 digest_size = SHA512_DIGEST_SIZE;
4734 hash_func = sha512_buffer;
4735 }
4736 else
4737 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4738
4739 /* allocate 2 x digest_size so that it can be re-used to hold the
4740 hexified value */
4741 digest = make_uninit_string (digest_size * 2);
4742
4743 hash_func (SSDATA (object) + start_byte,
4744 end_byte - start_byte,
4745 SSDATA (digest));
4746
4747 if (NILP (binary))
4748 {
4749 unsigned char *p = SDATA (digest);
4750 for (i = digest_size - 1; i >= 0; i--)
4751 {
4752 static char const hexdigit[16] = "0123456789abcdef";
4753 int p_i = p[i];
4754 p[2 * i] = hexdigit[p_i >> 4];
4755 p[2 * i + 1] = hexdigit[p_i & 0xf];
4756 }
4757 return digest;
4758 }
4759 else
4760 return make_unibyte_string (SSDATA (digest), digest_size);
4761 }
4762
4763 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4764 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4765
4766 A message digest is a cryptographic checksum of a document, and the
4767 algorithm to calculate it is defined in RFC 1321.
4768
4769 The two optional arguments START and END are character positions
4770 specifying for which part of OBJECT the message digest should be
4771 computed. If nil or omitted, the digest is computed for the whole
4772 OBJECT.
4773
4774 The MD5 message digest is computed from the result of encoding the
4775 text in a coding system, not directly from the internal Emacs form of
4776 the text. The optional fourth argument CODING-SYSTEM specifies which
4777 coding system to encode the text with. It should be the same coding
4778 system that you used or will use when actually writing the text into a
4779 file.
4780
4781 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4782 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4783 system would be chosen by default for writing this text into a file.
4784
4785 If OBJECT is a string, the most preferred coding system (see the
4786 command `prefer-coding-system') is used.
4787
4788 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4789 guesswork fails. Normally, an error is signaled in such case. */)
4790 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4791 {
4792 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4793 }
4794
4795 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4796 doc: /* Return the secure hash of OBJECT, a buffer or string.
4797 ALGORITHM is a symbol specifying the hash to use:
4798 md5, sha1, sha224, sha256, sha384 or sha512.
4799
4800 The two optional arguments START and END are positions specifying for
4801 which part of OBJECT to compute the hash. If nil or omitted, uses the
4802 whole OBJECT.
4803
4804 If BINARY is non-nil, returns a string in binary form. */)
4805 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4806 {
4807 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4808 }
4809 \f
4810 void
4811 syms_of_fns (void)
4812 {
4813 DEFSYM (Qmd5, "md5");
4814 DEFSYM (Qsha1, "sha1");
4815 DEFSYM (Qsha224, "sha224");
4816 DEFSYM (Qsha256, "sha256");
4817 DEFSYM (Qsha384, "sha384");
4818 DEFSYM (Qsha512, "sha512");
4819
4820 /* Hash table stuff. */
4821 DEFSYM (Qhash_table_p, "hash-table-p");
4822 DEFSYM (Qeq, "eq");
4823 DEFSYM (Qeql, "eql");
4824 DEFSYM (Qequal, "equal");
4825 DEFSYM (QCtest, ":test");
4826 DEFSYM (QCsize, ":size");
4827 DEFSYM (QCrehash_size, ":rehash-size");
4828 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4829 DEFSYM (QCweakness, ":weakness");
4830 DEFSYM (Qkey, "key");
4831 DEFSYM (Qvalue, "value");
4832 DEFSYM (Qhash_table_test, "hash-table-test");
4833 DEFSYM (Qkey_or_value, "key-or-value");
4834 DEFSYM (Qkey_and_value, "key-and-value");
4835
4836 defsubr (&Ssxhash);
4837 defsubr (&Smake_hash_table);
4838 defsubr (&Scopy_hash_table);
4839 defsubr (&Shash_table_count);
4840 defsubr (&Shash_table_rehash_size);
4841 defsubr (&Shash_table_rehash_threshold);
4842 defsubr (&Shash_table_size);
4843 defsubr (&Shash_table_test);
4844 defsubr (&Shash_table_weakness);
4845 defsubr (&Shash_table_p);
4846 defsubr (&Sclrhash);
4847 defsubr (&Sgethash);
4848 defsubr (&Sputhash);
4849 defsubr (&Sremhash);
4850 defsubr (&Smaphash);
4851 defsubr (&Sdefine_hash_table_test);
4852
4853 DEFSYM (Qstring_lessp, "string-lessp");
4854 DEFSYM (Qprovide, "provide");
4855 DEFSYM (Qrequire, "require");
4856 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4857 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4858 DEFSYM (Qwidget_type, "widget-type");
4859
4860 staticpro (&string_char_byte_cache_string);
4861 string_char_byte_cache_string = Qnil;
4862
4863 require_nesting_list = Qnil;
4864 staticpro (&require_nesting_list);
4865
4866 Fset (Qyes_or_no_p_history, Qnil);
4867
4868 DEFVAR_LISP ("features", Vfeatures,
4869 doc: /* A list of symbols which are the features of the executing Emacs.
4870 Used by `featurep' and `require', and altered by `provide'. */);
4871 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4872 DEFSYM (Qsubfeatures, "subfeatures");
4873
4874 #ifdef HAVE_LANGINFO_CODESET
4875 DEFSYM (Qcodeset, "codeset");
4876 DEFSYM (Qdays, "days");
4877 DEFSYM (Qmonths, "months");
4878 DEFSYM (Qpaper, "paper");
4879 #endif /* HAVE_LANGINFO_CODESET */
4880
4881 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4882 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4883 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4884 invoked by mouse clicks and mouse menu items.
4885
4886 On some platforms, file selection dialogs are also enabled if this is
4887 non-nil. */);
4888 use_dialog_box = 1;
4889
4890 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4891 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4892 This applies to commands from menus and tool bar buttons even when
4893 they are initiated from the keyboard. If `use-dialog-box' is nil,
4894 that disables the use of a file dialog, regardless of the value of
4895 this variable. */);
4896 use_file_dialog = 1;
4897
4898 defsubr (&Sidentity);
4899 defsubr (&Srandom);
4900 defsubr (&Slength);
4901 defsubr (&Ssafe_length);
4902 defsubr (&Sstring_bytes);
4903 defsubr (&Sstring_equal);
4904 defsubr (&Scompare_strings);
4905 defsubr (&Sstring_lessp);
4906 defsubr (&Sappend);
4907 defsubr (&Sconcat);
4908 defsubr (&Svconcat);
4909 defsubr (&Scopy_sequence);
4910 defsubr (&Sstring_make_multibyte);
4911 defsubr (&Sstring_make_unibyte);
4912 defsubr (&Sstring_as_multibyte);
4913 defsubr (&Sstring_as_unibyte);
4914 defsubr (&Sstring_to_multibyte);
4915 defsubr (&Sstring_to_unibyte);
4916 defsubr (&Scopy_alist);
4917 defsubr (&Ssubstring);
4918 defsubr (&Ssubstring_no_properties);
4919 defsubr (&Snthcdr);
4920 defsubr (&Snth);
4921 defsubr (&Selt);
4922 defsubr (&Smember);
4923 defsubr (&Smemq);
4924 defsubr (&Smemql);
4925 defsubr (&Sassq);
4926 defsubr (&Sassoc);
4927 defsubr (&Srassq);
4928 defsubr (&Srassoc);
4929 defsubr (&Sdelq);
4930 defsubr (&Sdelete);
4931 defsubr (&Snreverse);
4932 defsubr (&Sreverse);
4933 defsubr (&Ssort);
4934 defsubr (&Splist_get);
4935 defsubr (&Sget);
4936 defsubr (&Splist_put);
4937 defsubr (&Sput);
4938 defsubr (&Slax_plist_get);
4939 defsubr (&Slax_plist_put);
4940 defsubr (&Seql);
4941 defsubr (&Sequal);
4942 defsubr (&Sequal_including_properties);
4943 defsubr (&Sfillarray);
4944 defsubr (&Sclear_string);
4945 defsubr (&Snconc);
4946 defsubr (&Smapcar);
4947 defsubr (&Smapc);
4948 defsubr (&Smapconcat);
4949 defsubr (&Syes_or_no_p);
4950 defsubr (&Sload_average);
4951 defsubr (&Sfeaturep);
4952 defsubr (&Srequire);
4953 defsubr (&Sprovide);
4954 defsubr (&Splist_member);
4955 defsubr (&Swidget_put);
4956 defsubr (&Swidget_get);
4957 defsubr (&Swidget_apply);
4958 defsubr (&Sbase64_encode_region);
4959 defsubr (&Sbase64_decode_region);
4960 defsubr (&Sbase64_encode_string);
4961 defsubr (&Sbase64_decode_string);
4962 defsubr (&Smd5);
4963 defsubr (&Ssecure_hash);
4964 defsubr (&Slocale_info);
4965
4966 {
4967 struct hash_table_test
4968 eq = { Qeq, Qnil, Qnil, NULL, hashfn_eq },
4969 eql = { Qeql, Qnil, Qnil, cmpfn_eql, hashfn_eql },
4970 equal = { Qequal, Qnil, Qnil, cmpfn_equal, hashfn_equal };
4971 hashtest_eq = eq;
4972 hashtest_eql = eql;
4973 hashtest_equal = equal;
4974 }
4975 }