]> code.delx.au - gnu-emacs/blob - src/unexmacosx.c
mh-junk.el (mh-spamassassin-blacklist, mh-spamassassin-whitelist):
[gnu-emacs] / src / unexmacosx.c
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* Contributed by Andrew Choi (akochoi@mac.com). */
23
24 /* Documentation note.
25
26 Consult the following documents/files for a description of the
27 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
28 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
29 mach header (-h option) and the load commands (-l option) in a
30 Mach-O file. The tool nm on Mac OS X displays the symbol table in
31 a Mach-O file. For examples of unexec for the Mach-O format, see
32 the file unexnext.c in the GNU Emacs distribution, the file
33 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
34 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
35 contains the source code for malloc_freezedry and malloc_jumpstart.
36 Read that to see what they do. This file was written completely
37 from scratch, making use of information from the above sources. */
38
39 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
40 memory allocator. All calls to malloc, realloc, and free in Emacs
41 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
42 this file. When temacs is run, all memory requests are handled in
43 the zone EmacsZone. The Darwin memory allocator library calls
44 maintain the data structures to manage this zone. Dumping writes
45 its contents to data segments of the executable file. When emacs
46 is run, the loader recreates the contents of the zone in memory.
47 However since the initialization routine of the zone memory
48 allocator is run again, this `zone' can no longer be used as a
49 heap. That is why emacs uses the ordinary malloc system call to
50 allocate memory. Also, when a block of memory needs to be
51 reallocated and the new size is larger than the old one, a new
52 block must be obtained by malloc and the old contents copied to
53 it. */
54
55 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
56 (possible causes of future bugs if changed).
57
58 The file offset of the start of the __TEXT segment is zero. Since
59 the Mach header and load commands are located at the beginning of a
60 Mach-O file, copying the contents of the __TEXT segment from the
61 input file overwrites them in the output file. Despite this,
62 unexec works fine as written below because the segment load command
63 for __TEXT appears, and is therefore processed, before all other
64 load commands except the segment load command for __PAGEZERO, which
65 remains unchanged.
66
67 Although the file offset of the start of the __TEXT segment is
68 zero, none of the sections it contains actually start there. In
69 fact, the earliest one starts a few hundred bytes beyond the end of
70 the last load command. The linker option -headerpad controls the
71 minimum size of this padding. Its setting can be changed in
72 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
73 load commands for the newly created __DATA segments (at 56 bytes
74 each). Unexec fails if there is not enough room for these new
75 segments.
76
77 The __TEXT segment contains the sections __text, __cstring,
78 __picsymbol_stub, and __const and the __DATA segment contains the
79 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
80 and __common. The other segments do not contain any sections.
81 These sections are copied from the input file to the output file,
82 except for __data, __bss, and __common, which are dumped from
83 memory. The types of the sections __bss and __common are changed
84 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
85 their relative order in the input and output files remain
86 unchanged. Otherwise all n_sect fields in the nlist records in the
87 symbol table (specified by the LC_SYMTAB load command) will have to
88 be changed accordingly.
89 */
90
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <fcntl.h>
94 #include <stdarg.h>
95 #include <sys/types.h>
96 #include <unistd.h>
97 #include <mach/mach.h>
98 #include <mach-o/loader.h>
99 #include <mach-o/reloc.h>
100 #if defined (__ppc__)
101 #include <mach-o/ppc/reloc.h>
102 #endif
103 #include <config.h>
104 #undef malloc
105 #undef realloc
106 #undef free
107 #ifdef HAVE_MALLOC_MALLOC_H
108 #include <malloc/malloc.h>
109 #else
110 #include <objc/malloc.h>
111 #endif
112
113 #include <assert.h>
114
115 #ifdef _LP64
116 #define mach_header mach_header_64
117 #define segment_command segment_command_64
118 #undef VM_REGION_BASIC_INFO_COUNT
119 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
120 #undef VM_REGION_BASIC_INFO
121 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
122 #undef LC_SEGMENT
123 #define LC_SEGMENT LC_SEGMENT_64
124 #define vm_region vm_region_64
125 #define section section_64
126 #undef MH_MAGIC
127 #define MH_MAGIC MH_MAGIC_64
128 #endif
129
130 #define VERBOSE 1
131
132 /* Size of buffer used to copy data from the input file to the output
133 file in function unexec_copy. */
134 #define UNEXEC_COPY_BUFSZ 1024
135
136 /* Regions with memory addresses above this value are assumed to be
137 mapped to dynamically loaded libraries and will not be dumped. */
138 #define VM_DATA_TOP (20 * 1024 * 1024)
139
140 /* Type of an element on the list of regions to be dumped. */
141 struct region_t {
142 vm_address_t address;
143 vm_size_t size;
144 vm_prot_t protection;
145 vm_prot_t max_protection;
146
147 struct region_t *next;
148 };
149
150 /* Head and tail of the list of regions to be dumped. */
151 static struct region_t *region_list_head = 0;
152 static struct region_t *region_list_tail = 0;
153
154 /* Pointer to array of load commands. */
155 static struct load_command **lca;
156
157 /* Number of load commands. */
158 static int nlc;
159
160 /* The highest VM address of segments loaded by the input file.
161 Regions with addresses beyond this are assumed to be allocated
162 dynamically and thus require dumping. */
163 static vm_address_t infile_lc_highest_addr = 0;
164
165 /* The lowest file offset used by the all sections in the __TEXT
166 segments. This leaves room at the beginning of the file to store
167 the Mach-O header. Check this value against header size to ensure
168 the added load commands for the new __DATA segments did not
169 overwrite any of the sections in the __TEXT segment. */
170 static unsigned long text_seg_lowest_offset = 0x10000000;
171
172 /* Mach header. */
173 static struct mach_header mh;
174
175 /* Offset at which the next load command should be written. */
176 static unsigned long curr_header_offset = sizeof (struct mach_header);
177
178 /* Offset at which the next segment should be written. */
179 static unsigned long curr_file_offset = 0;
180
181 static unsigned long pagesize;
182 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
183
184 static int infd, outfd;
185
186 static int in_dumped_exec = 0;
187
188 static malloc_zone_t *emacs_zone;
189
190 /* file offset of input file's data segment */
191 static off_t data_segment_old_fileoff = 0;
192
193 static struct segment_command *data_segment_scp;
194
195 /* Read N bytes from infd into memory starting at address DEST.
196 Return true if successful, false otherwise. */
197 static int
198 unexec_read (void *dest, size_t n)
199 {
200 return n == read (infd, dest, n);
201 }
202
203 /* Write COUNT bytes from memory starting at address SRC to outfd
204 starting at offset DEST. Return true if successful, false
205 otherwise. */
206 static int
207 unexec_write (off_t dest, const void *src, size_t count)
208 {
209 if (lseek (outfd, dest, SEEK_SET) != dest)
210 return 0;
211
212 return write (outfd, src, count) == count;
213 }
214
215 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
216 Return true if successful, false otherwise. */
217 static int
218 unexec_write_zero (off_t dest, size_t count)
219 {
220 char buf[UNEXEC_COPY_BUFSZ];
221 ssize_t bytes;
222
223 bzero (buf, UNEXEC_COPY_BUFSZ);
224 if (lseek (outfd, dest, SEEK_SET) != dest)
225 return 0;
226
227 while (count > 0)
228 {
229 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
230 if (write (outfd, buf, bytes) != bytes)
231 return 0;
232 count -= bytes;
233 }
234
235 return 1;
236 }
237
238 /* Copy COUNT bytes from starting offset SRC in infd to starting
239 offset DEST in outfd. Return true if successful, false
240 otherwise. */
241 static int
242 unexec_copy (off_t dest, off_t src, ssize_t count)
243 {
244 ssize_t bytes_read;
245 ssize_t bytes_to_read;
246
247 char buf[UNEXEC_COPY_BUFSZ];
248
249 if (lseek (infd, src, SEEK_SET) != src)
250 return 0;
251
252 if (lseek (outfd, dest, SEEK_SET) != dest)
253 return 0;
254
255 while (count > 0)
256 {
257 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
258 bytes_read = read (infd, buf, bytes_to_read);
259 if (bytes_read <= 0)
260 return 0;
261 if (write (outfd, buf, bytes_read) != bytes_read)
262 return 0;
263 count -= bytes_read;
264 }
265
266 return 1;
267 }
268
269 /* Debugging and informational messages routines. */
270
271 static void
272 unexec_error (char *format, ...)
273 {
274 va_list ap;
275
276 va_start (ap, format);
277 fprintf (stderr, "unexec: ");
278 vfprintf (stderr, format, ap);
279 fprintf (stderr, "\n");
280 va_end (ap);
281 exit (1);
282 }
283
284 static void
285 print_prot (vm_prot_t prot)
286 {
287 if (prot == VM_PROT_NONE)
288 printf ("none");
289 else
290 {
291 putchar (prot & VM_PROT_READ ? 'r' : ' ');
292 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
293 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
294 putchar (' ');
295 }
296 }
297
298 static void
299 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
300 vm_prot_t max_prot)
301 {
302 printf ("%#10lx %#8lx ", (long) address, (long) size);
303 print_prot (prot);
304 putchar (' ');
305 print_prot (max_prot);
306 putchar ('\n');
307 }
308
309 static void
310 print_region_list ()
311 {
312 struct region_t *r;
313
314 printf (" address size prot maxp\n");
315
316 for (r = region_list_head; r; r = r->next)
317 print_region (r->address, r->size, r->protection, r->max_protection);
318 }
319
320 static void
321 print_regions ()
322 {
323 task_t target_task = mach_task_self ();
324 vm_address_t address = (vm_address_t) 0;
325 vm_size_t size;
326 struct vm_region_basic_info info;
327 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
328 mach_port_t object_name;
329
330 printf (" address size prot maxp\n");
331
332 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
333 (vm_region_info_t) &info, &info_count, &object_name)
334 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
335 {
336 print_region (address, size, info.protection, info.max_protection);
337
338 if (object_name != MACH_PORT_NULL)
339 mach_port_deallocate (target_task, object_name);
340
341 address += size;
342 }
343 }
344
345 /* Build the list of regions that need to be dumped. Regions with
346 addresses above VM_DATA_TOP are omitted. Adjacent regions with
347 identical protection are merged. Note that non-writable regions
348 cannot be omitted because they some regions created at run time are
349 read-only. */
350 static void
351 build_region_list ()
352 {
353 task_t target_task = mach_task_self ();
354 vm_address_t address = (vm_address_t) 0;
355 vm_size_t size;
356 struct vm_region_basic_info info;
357 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
358 mach_port_t object_name;
359 struct region_t *r;
360
361 #if VERBOSE
362 printf ("--- List of All Regions ---\n");
363 printf (" address size prot maxp\n");
364 #endif
365
366 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
367 (vm_region_info_t) &info, &info_count, &object_name)
368 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
369 {
370 /* Done when we reach addresses of shared libraries, which are
371 loaded in high memory. */
372 if (address >= VM_DATA_TOP)
373 break;
374
375 #if VERBOSE
376 print_region (address, size, info.protection, info.max_protection);
377 #endif
378
379 /* If a region immediately follows the previous one (the one
380 most recently added to the list) and has identical
381 protection, merge it with the latter. Otherwise create a
382 new list element for it. */
383 if (region_list_tail
384 && info.protection == region_list_tail->protection
385 && info.max_protection == region_list_tail->max_protection
386 && region_list_tail->address + region_list_tail->size == address)
387 {
388 region_list_tail->size += size;
389 }
390 else
391 {
392 r = (struct region_t *) malloc (sizeof (struct region_t));
393
394 if (!r)
395 unexec_error ("cannot allocate region structure");
396
397 r->address = address;
398 r->size = size;
399 r->protection = info.protection;
400 r->max_protection = info.max_protection;
401
402 r->next = 0;
403 if (region_list_head == 0)
404 {
405 region_list_head = r;
406 region_list_tail = r;
407 }
408 else
409 {
410 region_list_tail->next = r;
411 region_list_tail = r;
412 }
413
414 /* Deallocate (unused) object name returned by
415 vm_region. */
416 if (object_name != MACH_PORT_NULL)
417 mach_port_deallocate (target_task, object_name);
418 }
419
420 address += size;
421 }
422
423 printf ("--- List of Regions to be Dumped ---\n");
424 print_region_list ();
425 }
426
427
428 #define MAX_UNEXEC_REGIONS 400
429
430 static int num_unexec_regions;
431 typedef struct {
432 vm_range_t range;
433 vm_size_t filesize;
434 } unexec_region_info;
435 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
436
437 static void
438 unexec_regions_recorder (task_t task, void *rr, unsigned type,
439 vm_range_t *ranges, unsigned num)
440 {
441 vm_address_t p;
442 vm_size_t filesize;
443
444 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
445 {
446 /* Subtract the size of trailing null pages from filesize. It
447 can be smaller than vmsize in segment commands. In such a
448 case, trailing pages are initialized with zeros. */
449 for (p = ranges->address + ranges->size; p > ranges->address;
450 p -= sizeof (int))
451 if (*(((int *) p)-1))
452 break;
453 filesize = ROUNDUP_TO_PAGE_BOUNDARY (p - ranges->address);
454 assert (filesize <= ranges->size);
455
456 unexec_regions[num_unexec_regions].filesize = filesize;
457 unexec_regions[num_unexec_regions++].range = *ranges;
458 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
459 (long) filesize, (long) (ranges->size));
460 ranges++; num--;
461 }
462 }
463
464 static kern_return_t
465 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
466 {
467 *ptr = (void *) address;
468 return KERN_SUCCESS;
469 }
470
471 static void
472 find_emacs_zone_regions ()
473 {
474 num_unexec_regions = 0;
475
476 emacs_zone->introspect->enumerator (mach_task_self(), 0,
477 MALLOC_PTR_REGION_RANGE_TYPE
478 | MALLOC_ADMIN_REGION_RANGE_TYPE,
479 (vm_address_t) emacs_zone,
480 unexec_reader,
481 unexec_regions_recorder);
482
483 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
484 unexec_error ("find_emacs_zone_regions: too many regions");
485 }
486
487 static int
488 unexec_regions_sort_compare (const void *a, const void *b)
489 {
490 vm_address_t aa = ((unexec_region_info *) a)->range.address;
491 vm_address_t bb = ((unexec_region_info *) b)->range.address;
492
493 if (aa < bb)
494 return -1;
495 else if (aa > bb)
496 return 1;
497 else
498 return 0;
499 }
500
501 static void
502 unexec_regions_merge ()
503 {
504 int i, n;
505 unexec_region_info r;
506
507 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
508 &unexec_regions_sort_compare);
509 n = 0;
510 r = unexec_regions[0];
511 for (i = 1; i < num_unexec_regions; i++)
512 {
513 if (r.range.address + r.range.size == unexec_regions[i].range.address
514 && r.range.size - r.filesize < 2 * pagesize)
515 {
516 r.filesize = r.range.size + unexec_regions[i].filesize;
517 r.range.size += unexec_regions[i].range.size;
518 }
519 else
520 {
521 unexec_regions[n++] = r;
522 r = unexec_regions[i];
523 }
524 }
525 unexec_regions[n++] = r;
526 num_unexec_regions = n;
527 }
528
529
530 /* More informational messages routines. */
531
532 static void
533 print_load_command_name (int lc)
534 {
535 switch (lc)
536 {
537 case LC_SEGMENT:
538 #ifndef _LP64
539 printf ("LC_SEGMENT ");
540 #else
541 printf ("LC_SEGMENT_64 ");
542 #endif
543 break;
544 case LC_LOAD_DYLINKER:
545 printf ("LC_LOAD_DYLINKER ");
546 break;
547 case LC_LOAD_DYLIB:
548 printf ("LC_LOAD_DYLIB ");
549 break;
550 case LC_SYMTAB:
551 printf ("LC_SYMTAB ");
552 break;
553 case LC_DYSYMTAB:
554 printf ("LC_DYSYMTAB ");
555 break;
556 case LC_UNIXTHREAD:
557 printf ("LC_UNIXTHREAD ");
558 break;
559 case LC_PREBOUND_DYLIB:
560 printf ("LC_PREBOUND_DYLIB");
561 break;
562 case LC_TWOLEVEL_HINTS:
563 printf ("LC_TWOLEVEL_HINTS");
564 break;
565 default:
566 printf ("unknown ");
567 }
568 }
569
570 static void
571 print_load_command (struct load_command *lc)
572 {
573 print_load_command_name (lc->cmd);
574 printf ("%8d", lc->cmdsize);
575
576 if (lc->cmd == LC_SEGMENT)
577 {
578 struct segment_command *scp;
579 struct section *sectp;
580 int j;
581
582 scp = (struct segment_command *) lc;
583 printf (" %-16.16s %#10lx %#8lx\n",
584 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
585
586 sectp = (struct section *) (scp + 1);
587 for (j = 0; j < scp->nsects; j++)
588 {
589 printf (" %-16.16s %#10lx %#8lx\n",
590 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
591 sectp++;
592 }
593 }
594 else
595 printf ("\n");
596 }
597
598 /* Read header and load commands from input file. Store the latter in
599 the global array lca. Store the total number of load commands in
600 global variable nlc. */
601 static void
602 read_load_commands ()
603 {
604 int i;
605
606 if (!unexec_read (&mh, sizeof (struct mach_header)))
607 unexec_error ("cannot read mach-o header");
608
609 if (mh.magic != MH_MAGIC)
610 unexec_error ("input file not in Mach-O format");
611
612 if (mh.filetype != MH_EXECUTE)
613 unexec_error ("input Mach-O file is not an executable object file");
614
615 #if VERBOSE
616 printf ("--- Header Information ---\n");
617 printf ("Magic = 0x%08x\n", mh.magic);
618 printf ("CPUType = %d\n", mh.cputype);
619 printf ("CPUSubType = %d\n", mh.cpusubtype);
620 printf ("FileType = 0x%x\n", mh.filetype);
621 printf ("NCmds = %d\n", mh.ncmds);
622 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
623 printf ("Flags = 0x%08x\n", mh.flags);
624 #endif
625
626 nlc = mh.ncmds;
627 lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
628
629 for (i = 0; i < nlc; i++)
630 {
631 struct load_command lc;
632 /* Load commands are variable-size: so read the command type and
633 size first and then read the rest. */
634 if (!unexec_read (&lc, sizeof (struct load_command)))
635 unexec_error ("cannot read load command");
636 lca[i] = (struct load_command *) malloc (lc.cmdsize);
637 memcpy (lca[i], &lc, sizeof (struct load_command));
638 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
639 unexec_error ("cannot read content of load command");
640 if (lc.cmd == LC_SEGMENT)
641 {
642 struct segment_command *scp = (struct segment_command *) lca[i];
643
644 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
645 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
646
647 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
648 {
649 struct section *sectp = (struct section *) (scp + 1);
650 int j;
651
652 for (j = 0; j < scp->nsects; j++)
653 if (sectp->offset < text_seg_lowest_offset)
654 text_seg_lowest_offset = sectp->offset;
655 }
656 }
657 }
658
659 printf ("Highest address of load commands in input file: %#8x\n",
660 infile_lc_highest_addr);
661
662 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
663 text_seg_lowest_offset);
664
665 printf ("--- List of Load Commands in Input File ---\n");
666 printf ("# cmd cmdsize name address size\n");
667
668 for (i = 0; i < nlc; i++)
669 {
670 printf ("%1d ", i);
671 print_load_command (lca[i]);
672 }
673 }
674
675 /* Copy a LC_SEGMENT load command other than the __DATA segment from
676 the input file to the output file, adjusting the file offset of the
677 segment and the file offsets of sections contained in it. */
678 static void
679 copy_segment (struct load_command *lc)
680 {
681 struct segment_command *scp = (struct segment_command *) lc;
682 unsigned long old_fileoff = scp->fileoff;
683 struct section *sectp;
684 int j;
685
686 scp->fileoff = curr_file_offset;
687
688 sectp = (struct section *) (scp + 1);
689 for (j = 0; j < scp->nsects; j++)
690 {
691 sectp->offset += curr_file_offset - old_fileoff;
692 sectp++;
693 }
694
695 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
696 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
697 (long) (scp->vmsize), (long) (scp->vmaddr));
698
699 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
700 unexec_error ("cannot copy segment from input to output file");
701 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
702
703 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
704 unexec_error ("cannot write load command to header");
705
706 curr_header_offset += lc->cmdsize;
707 }
708
709 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
710 file to the output file. We assume that only one such segment load
711 command exists in the input file and it contains the sections
712 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
713 __dyld. The first three of these should be dumped from memory and
714 the rest should be copied from the input file. Note that the
715 sections __bss and __common contain no data in the input file
716 because their flag fields have the value S_ZEROFILL. Dumping these
717 from memory makes it necessary to adjust file offset fields in
718 subsequently dumped load commands. Then, create new __DATA segment
719 load commands for regions on the region list other than the one
720 corresponding to the __DATA segment in the input file. */
721 static void
722 copy_data_segment (struct load_command *lc)
723 {
724 struct segment_command *scp = (struct segment_command *) lc;
725 struct section *sectp;
726 int j;
727 unsigned long header_offset, old_file_offset;
728
729 /* The new filesize of the segment is set to its vmsize because data
730 blocks for segments must start at region boundaries. Note that
731 this may leave unused locations at the end of the segment data
732 block because the total of the sizes of all sections in the
733 segment is generally smaller than vmsize. */
734 scp->filesize = scp->vmsize;
735
736 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
737 scp->segname, curr_file_offset, (long)(scp->filesize),
738 (long)(scp->vmsize), (long) (scp->vmaddr));
739
740 /* Offsets in the output file for writing the next section structure
741 and segment data block, respectively. */
742 header_offset = curr_header_offset + sizeof (struct segment_command);
743
744 sectp = (struct section *) (scp + 1);
745 for (j = 0; j < scp->nsects; j++)
746 {
747 old_file_offset = sectp->offset;
748 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
749 /* The __data section is dumped from memory. The __bss and
750 __common sections are also dumped from memory but their flag
751 fields require changing (from S_ZEROFILL to S_REGULAR). The
752 other three kinds of sections are just copied from the input
753 file. */
754 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
755 {
756 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
757 unexec_error ("cannot write section %s", SECT_DATA);
758 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
759 unexec_error ("cannot write section %s's header", SECT_DATA);
760 }
761 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
762 {
763 sectp->flags = S_REGULAR;
764 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
765 unexec_error ("cannot write section %s", sectp->sectname);
766 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
767 unexec_error ("cannot write section %s's header", sectp->sectname);
768 }
769 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
770 {
771 extern char *my_endbss_static;
772 unsigned long my_size;
773
774 sectp->flags = S_REGULAR;
775
776 /* Clear uninitialized local variables in statically linked
777 libraries. In particular, function pointers stored by
778 libSystemStub.a, which is introduced in Mac OS X 10.4 for
779 binary compatibility with respect to long double, are
780 cleared so that they will be reinitialized when the
781 dumped binary is executed on other versions of OS. */
782 my_size = (unsigned long)my_endbss_static - sectp->addr;
783 if (!(sectp->addr <= (unsigned long)my_endbss_static
784 && my_size <= sectp->size))
785 unexec_error ("my_endbss_static is not in section %s",
786 sectp->sectname);
787 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
788 unexec_error ("cannot write section %s", sectp->sectname);
789 if (!unexec_write_zero (sectp->offset + my_size,
790 sectp->size - my_size))
791 unexec_error ("cannot write section %s", sectp->sectname);
792 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
793 unexec_error ("cannot write section %s's header", sectp->sectname);
794 }
795 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
796 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
797 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
798 || strncmp (sectp->sectname, "__dyld", 16) == 0
799 || strncmp (sectp->sectname, "__const", 16) == 0
800 || strncmp (sectp->sectname, "__cfstring", 16) == 0)
801 {
802 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
803 unexec_error ("cannot copy section %s", sectp->sectname);
804 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
805 unexec_error ("cannot write section %s's header", sectp->sectname);
806 }
807 else
808 unexec_error ("unrecognized section name in __DATA segment");
809
810 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
811 sectp->sectname, (long) (sectp->offset),
812 (long) (sectp->offset + sectp->size), (long) (sectp->size));
813
814 header_offset += sizeof (struct section);
815 sectp++;
816 }
817
818 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
819
820 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
821 unexec_error ("cannot write header of __DATA segment");
822 curr_header_offset += lc->cmdsize;
823
824 /* Create new __DATA segment load commands for regions on the region
825 list that do not corresponding to any segment load commands in
826 the input file.
827 */
828 for (j = 0; j < num_unexec_regions; j++)
829 {
830 struct segment_command sc;
831
832 sc.cmd = LC_SEGMENT;
833 sc.cmdsize = sizeof (struct segment_command);
834 strncpy (sc.segname, SEG_DATA, 16);
835 sc.vmaddr = unexec_regions[j].range.address;
836 sc.vmsize = unexec_regions[j].range.size;
837 sc.fileoff = curr_file_offset;
838 sc.filesize = unexec_regions[j].filesize;
839 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
840 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
841 sc.nsects = 0;
842 sc.flags = 0;
843
844 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
845 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
846 (long) (sc.vmsize), (long) (sc.vmaddr));
847
848 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
849 unexec_error ("cannot write new __DATA segment");
850 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
851
852 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
853 unexec_error ("cannot write new __DATA segment's header");
854 curr_header_offset += sc.cmdsize;
855 mh.ncmds++;
856 }
857 }
858
859 /* Copy a LC_SYMTAB load command from the input file to the output
860 file, adjusting the file offset fields. */
861 static void
862 copy_symtab (struct load_command *lc, long delta)
863 {
864 struct symtab_command *stp = (struct symtab_command *) lc;
865
866 stp->symoff += delta;
867 stp->stroff += delta;
868
869 printf ("Writing LC_SYMTAB command\n");
870
871 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
872 unexec_error ("cannot write symtab command to header");
873
874 curr_header_offset += lc->cmdsize;
875 }
876
877 /* Fix up relocation entries. */
878 static void
879 unrelocate (const char *name, off_t reloff, int nrel)
880 {
881 int i, unreloc_count;
882 struct relocation_info reloc_info;
883 struct scattered_relocation_info *sc_reloc_info
884 = (struct scattered_relocation_info *) &reloc_info;
885
886 for (unreloc_count = 0, i = 0; i < nrel; i++)
887 {
888 if (lseek (infd, reloff, L_SET) != reloff)
889 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
890 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
891 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
892 reloff += sizeof (reloc_info);
893
894 if (sc_reloc_info->r_scattered == 0)
895 switch (reloc_info.r_type)
896 {
897 case GENERIC_RELOC_VANILLA:
898 if (reloc_info.r_address >= data_segment_scp->vmaddr
899 && reloc_info.r_address < (data_segment_scp->vmaddr
900 + data_segment_scp->vmsize))
901 {
902 off_t src_off = data_segment_old_fileoff
903 + reloc_info.r_address - data_segment_scp->vmaddr;
904 off_t dst_off = data_segment_scp->fileoff
905 + reloc_info.r_address - data_segment_scp->vmaddr;
906
907 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
908 unexec_error ("unrelocate: %s:%d cannot copy original value",
909 name, i);
910 unreloc_count++;
911 }
912 break;
913 default:
914 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
915 name, i, reloc_info.r_type);
916 }
917 else
918 switch (sc_reloc_info->r_type)
919 {
920 #if defined (__ppc__)
921 case PPC_RELOC_PB_LA_PTR:
922 /* nothing to do for prebound lazy pointer */
923 break;
924 #endif
925 default:
926 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
927 name, i, sc_reloc_info->r_type);
928 }
929 }
930
931 if (nrel > 0)
932 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
933 unreloc_count, nrel, name);
934 }
935
936 /* Copy a LC_DYSYMTAB load command from the input file to the output
937 file, adjusting the file offset fields. */
938 static void
939 copy_dysymtab (struct load_command *lc, long delta)
940 {
941 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
942
943 unrelocate ("local", dstp->locreloff, dstp->nlocrel);
944 unrelocate ("external", dstp->extreloff, dstp->nextrel);
945
946 if (dstp->nextrel > 0) {
947 dstp->extreloff += delta;
948 }
949
950 if (dstp->nlocrel > 0) {
951 dstp->locreloff += delta;
952 }
953
954 if (dstp->nindirectsyms > 0)
955 dstp->indirectsymoff += delta;
956
957 printf ("Writing LC_DYSYMTAB command\n");
958
959 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
960 unexec_error ("cannot write symtab command to header");
961
962 curr_header_offset += lc->cmdsize;
963 }
964
965 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
966 file, adjusting the file offset fields. */
967 static void
968 copy_twolevelhints (struct load_command *lc, long delta)
969 {
970 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
971
972 if (tlhp->nhints > 0) {
973 tlhp->offset += delta;
974 }
975
976 printf ("Writing LC_TWOLEVEL_HINTS command\n");
977
978 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
979 unexec_error ("cannot write two level hint command to header");
980
981 curr_header_offset += lc->cmdsize;
982 }
983
984 /* Copy other kinds of load commands from the input file to the output
985 file, ones that do not require adjustments of file offsets. */
986 static void
987 copy_other (struct load_command *lc)
988 {
989 printf ("Writing ");
990 print_load_command_name (lc->cmd);
991 printf (" command\n");
992
993 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
994 unexec_error ("cannot write symtab command to header");
995
996 curr_header_offset += lc->cmdsize;
997 }
998
999 /* Loop through all load commands and dump them. Then write the Mach
1000 header. */
1001 static void
1002 dump_it ()
1003 {
1004 int i;
1005 long linkedit_delta = 0;
1006
1007 printf ("--- Load Commands written to Output File ---\n");
1008
1009 for (i = 0; i < nlc; i++)
1010 switch (lca[i]->cmd)
1011 {
1012 case LC_SEGMENT:
1013 {
1014 struct segment_command *scp = (struct segment_command *) lca[i];
1015 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1016 {
1017 /* save data segment file offset and segment_command for
1018 unrelocate */
1019 if (data_segment_old_fileoff)
1020 unexec_error ("cannot handle multiple DATA segments"
1021 " in input file");
1022 data_segment_old_fileoff = scp->fileoff;
1023 data_segment_scp = scp;
1024
1025 copy_data_segment (lca[i]);
1026 }
1027 else
1028 {
1029 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1030 {
1031 if (linkedit_delta)
1032 unexec_error ("cannot handle multiple LINKEDIT segments"
1033 " in input file");
1034 linkedit_delta = curr_file_offset - scp->fileoff;
1035 }
1036
1037 copy_segment (lca[i]);
1038 }
1039 }
1040 break;
1041 case LC_SYMTAB:
1042 copy_symtab (lca[i], linkedit_delta);
1043 break;
1044 case LC_DYSYMTAB:
1045 copy_dysymtab (lca[i], linkedit_delta);
1046 break;
1047 case LC_TWOLEVEL_HINTS:
1048 copy_twolevelhints (lca[i], linkedit_delta);
1049 break;
1050 default:
1051 copy_other (lca[i]);
1052 break;
1053 }
1054
1055 if (curr_header_offset > text_seg_lowest_offset)
1056 unexec_error ("not enough room for load commands for new __DATA segments");
1057
1058 printf ("%ld unused bytes follow Mach-O header\n",
1059 text_seg_lowest_offset - curr_header_offset);
1060
1061 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1062 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1063 unexec_error ("cannot write final header contents");
1064 }
1065
1066 /* Take a snapshot of Emacs and make a Mach-O format executable file
1067 from it. The file names of the output and input files are outfile
1068 and infile, respectively. The three other parameters are
1069 ignored. */
1070 void
1071 unexec (char *outfile, char *infile, void *start_data, void *start_bss,
1072 void *entry_address)
1073 {
1074 if (in_dumped_exec)
1075 unexec_error ("Unexec from a dumped executable is not supported.");
1076
1077 pagesize = getpagesize ();
1078 infd = open (infile, O_RDONLY, 0);
1079 if (infd < 0)
1080 {
1081 unexec_error ("cannot open input file `%s'", infile);
1082 }
1083
1084 outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
1085 if (outfd < 0)
1086 {
1087 close (infd);
1088 unexec_error ("cannot open output file `%s'", outfile);
1089 }
1090
1091 build_region_list ();
1092 read_load_commands ();
1093
1094 find_emacs_zone_regions ();
1095 unexec_regions_merge ();
1096
1097 in_dumped_exec = 1;
1098
1099 dump_it ();
1100
1101 close (outfd);
1102 }
1103
1104
1105 void
1106 unexec_init_emacs_zone ()
1107 {
1108 emacs_zone = malloc_create_zone (0, 0);
1109 malloc_set_zone_name (emacs_zone, "EmacsZone");
1110 }
1111
1112 #ifndef MACOSX_MALLOC_MULT16
1113 #define MACOSX_MALLOC_MULT16 1
1114 #endif
1115
1116 typedef struct unexec_malloc_header {
1117 union {
1118 char c[8];
1119 size_t size;
1120 } u;
1121 } unexec_malloc_header_t;
1122
1123 #if MACOSX_MALLOC_MULT16
1124
1125 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1126
1127 #else
1128
1129 int
1130 ptr_in_unexec_regions (void *ptr)
1131 {
1132 int i;
1133
1134 for (i = 0; i < num_unexec_regions; i++)
1135 if ((vm_address_t) ptr - unexec_regions[i].range.address
1136 < unexec_regions[i].range.size)
1137 return 1;
1138
1139 return 0;
1140 }
1141
1142 #endif
1143
1144 void *
1145 unexec_malloc (size_t size)
1146 {
1147 if (in_dumped_exec)
1148 {
1149 void *p;
1150
1151 p = malloc (size);
1152 #if MACOSX_MALLOC_MULT16
1153 assert (((vm_address_t) p % 16) == 0);
1154 #endif
1155 return p;
1156 }
1157 else
1158 {
1159 unexec_malloc_header_t *ptr;
1160
1161 ptr = (unexec_malloc_header_t *)
1162 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1163 ptr->u.size = size;
1164 ptr++;
1165 #if MACOSX_MALLOC_MULT16
1166 assert (((vm_address_t) ptr % 16) == 8);
1167 #endif
1168 return (void *) ptr;
1169 }
1170 }
1171
1172 void *
1173 unexec_realloc (void *old_ptr, size_t new_size)
1174 {
1175 if (in_dumped_exec)
1176 {
1177 void *p;
1178
1179 if (ptr_in_unexec_regions (old_ptr))
1180 {
1181 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1182 size_t size = new_size > old_size ? old_size : new_size;
1183
1184 p = (size_t *) malloc (new_size);
1185 if (size)
1186 memcpy (p, old_ptr, size);
1187 }
1188 else
1189 {
1190 p = realloc (old_ptr, new_size);
1191 }
1192 #if MACOSX_MALLOC_MULT16
1193 assert (((vm_address_t) p % 16) == 0);
1194 #endif
1195 return p;
1196 }
1197 else
1198 {
1199 unexec_malloc_header_t *ptr;
1200
1201 ptr = (unexec_malloc_header_t *)
1202 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1203 new_size + sizeof (unexec_malloc_header_t));
1204 ptr->u.size = new_size;
1205 ptr++;
1206 #if MACOSX_MALLOC_MULT16
1207 assert (((vm_address_t) ptr % 16) == 8);
1208 #endif
1209 return (void *) ptr;
1210 }
1211 }
1212
1213 void
1214 unexec_free (void *ptr)
1215 {
1216 if (in_dumped_exec)
1217 {
1218 if (!ptr_in_unexec_regions (ptr))
1219 free (ptr);
1220 }
1221 else
1222 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1223 }
1224
1225 /* arch-tag: 1a784f7b-a184-4c4f-9544-da8619593d72
1226 (do not change this comment) */