]> code.delx.au - gnu-emacs/blob - doc/lispref/sequences.texi
Uncomment the next-error-function integration in xref
[gnu-emacs] / doc / lispref / sequences.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2016 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Sequences Arrays Vectors
7 @chapter Sequences, Arrays, and Vectors
8 @cindex sequence
9
10 The @dfn{sequence} type is the union of two other Lisp types: lists
11 and arrays. In other words, any list is a sequence, and any array is
12 a sequence. The common property that all sequences have is that each
13 is an ordered collection of elements.
14
15 An @dfn{array} is a fixed-length object with a slot for each of its
16 elements. All the elements are accessible in constant time. The four
17 types of arrays are strings, vectors, char-tables and bool-vectors.
18
19 A list is a sequence of elements, but it is not a single primitive
20 object; it is made of cons cells, one cell per element. Finding the
21 @var{n}th element requires looking through @var{n} cons cells, so
22 elements farther from the beginning of the list take longer to access.
23 But it is possible to add elements to the list, or remove elements.
24
25 The following diagram shows the relationship between these types:
26
27 @example
28 @group
29 _____________________________________________
30 | |
31 | Sequence |
32 | ______ ________________________________ |
33 | | | | | |
34 | | List | | Array | |
35 | | | | ________ ________ | |
36 | |______| | | | | | | |
37 | | | Vector | | String | | |
38 | | |________| |________| | |
39 | | ____________ _____________ | |
40 | | | | | | | |
41 | | | Char-table | | Bool-vector | | |
42 | | |____________| |_____________| | |
43 | |________________________________| |
44 |_____________________________________________|
45 @end group
46 @end example
47
48 @menu
49 * Sequence Functions:: Functions that accept any kind of sequence.
50 * Arrays:: Characteristics of arrays in Emacs Lisp.
51 * Array Functions:: Functions specifically for arrays.
52 * Vectors:: Special characteristics of Emacs Lisp vectors.
53 * Vector Functions:: Functions specifically for vectors.
54 * Char-Tables:: How to work with char-tables.
55 * Bool-Vectors:: How to work with bool-vectors.
56 * Rings:: Managing a fixed-size ring of objects.
57 @end menu
58
59 @node Sequence Functions
60 @section Sequences
61
62 This section describes functions that accept any kind of sequence.
63
64 @defun sequencep object
65 This function returns @code{t} if @var{object} is a list, vector,
66 string, bool-vector, or char-table, @code{nil} otherwise.
67 @end defun
68
69 @defun length sequence
70 @cindex string length
71 @cindex list length
72 @cindex vector length
73 @cindex sequence length
74 @cindex char-table length
75 @anchor{Definition of length}
76 This function returns the number of elements in @var{sequence}. If
77 @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
78 signaled. Circular lists may cause an infinite loop. For a
79 char-table, the value returned is always one more than the maximum
80 Emacs character code.
81
82 @xref{Definition of safe-length}, for the related function @code{safe-length}.
83
84 @example
85 @group
86 (length '(1 2 3))
87 @result{} 3
88 @end group
89 @group
90 (length ())
91 @result{} 0
92 @end group
93 @group
94 (length "foobar")
95 @result{} 6
96 @end group
97 @group
98 (length [1 2 3])
99 @result{} 3
100 @end group
101 @group
102 (length (make-bool-vector 5 nil))
103 @result{} 5
104 @end group
105 @end example
106 @end defun
107
108 @noindent
109 See also @code{string-bytes}, in @ref{Text Representations}.
110
111 If you need to compute the width of a string on display, you should use
112 @code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
113 since @code{length} only counts the number of characters, but does not
114 account for the display width of each character.
115
116 @defun elt sequence index
117 @anchor{Definition of elt}
118 @cindex elements of sequences
119 This function returns the element of @var{sequence} indexed by
120 @var{index}. Legitimate values of @var{index} are integers ranging
121 from 0 up to one less than the length of @var{sequence}. If
122 @var{sequence} is a list, out-of-range values behave as for
123 @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
124 trigger an @code{args-out-of-range} error.
125
126 @example
127 @group
128 (elt [1 2 3 4] 2)
129 @result{} 3
130 @end group
131 @group
132 (elt '(1 2 3 4) 2)
133 @result{} 3
134 @end group
135 @group
136 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
137 (string (elt "1234" 2))
138 @result{} "3"
139 @end group
140 @group
141 (elt [1 2 3 4] 4)
142 @error{} Args out of range: [1 2 3 4], 4
143 @end group
144 @group
145 (elt [1 2 3 4] -1)
146 @error{} Args out of range: [1 2 3 4], -1
147 @end group
148 @end example
149
150 This function generalizes @code{aref} (@pxref{Array Functions}) and
151 @code{nth} (@pxref{Definition of nth}).
152 @end defun
153
154 @defun copy-sequence sequence
155 @cindex copying sequences
156 This function returns a copy of @var{sequence}. The copy is the same
157 type of object as the original sequence, and it has the same elements
158 in the same order.
159
160 Storing a new element into the copy does not affect the original
161 @var{sequence}, and vice versa. However, the elements of the new
162 sequence are not copies; they are identical (@code{eq}) to the elements
163 of the original. Therefore, changes made within these elements, as
164 found via the copied sequence, are also visible in the original
165 sequence.
166
167 If the sequence is a string with text properties, the property list in
168 the copy is itself a copy, not shared with the original's property
169 list. However, the actual values of the properties are shared.
170 @xref{Text Properties}.
171
172 This function does not work for dotted lists. Trying to copy a
173 circular list may cause an infinite loop.
174
175 See also @code{append} in @ref{Building Lists}, @code{concat} in
176 @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
177 for other ways to copy sequences.
178
179 @example
180 @group
181 (setq bar '(1 2))
182 @result{} (1 2)
183 @end group
184 @group
185 (setq x (vector 'foo bar))
186 @result{} [foo (1 2)]
187 @end group
188 @group
189 (setq y (copy-sequence x))
190 @result{} [foo (1 2)]
191 @end group
192
193 @group
194 (eq x y)
195 @result{} nil
196 @end group
197 @group
198 (equal x y)
199 @result{} t
200 @end group
201 @group
202 (eq (elt x 1) (elt y 1))
203 @result{} t
204 @end group
205
206 @group
207 ;; @r{Replacing an element of one sequence.}
208 (aset x 0 'quux)
209 x @result{} [quux (1 2)]
210 y @result{} [foo (1 2)]
211 @end group
212
213 @group
214 ;; @r{Modifying the inside of a shared element.}
215 (setcar (aref x 1) 69)
216 x @result{} [quux (69 2)]
217 y @result{} [foo (69 2)]
218 @end group
219 @end example
220 @end defun
221
222 @defun reverse sequence
223 @cindex string reverse
224 @cindex list reverse
225 @cindex vector reverse
226 @cindex sequence reverse
227 This function creates a new sequence whose elements are the elements
228 of @var{sequence}, but in reverse order. The original argument @var{sequence}
229 is @emph{not} altered. Note that char-tables cannot be reversed.
230
231 @example
232 @group
233 (setq x '(1 2 3 4))
234 @result{} (1 2 3 4)
235 @end group
236 @group
237 (reverse x)
238 @result{} (4 3 2 1)
239 x
240 @result{} (1 2 3 4)
241 @end group
242 @group
243 (setq x [1 2 3 4])
244 @result{} [1 2 3 4]
245 @end group
246 @group
247 (reverse x)
248 @result{} [4 3 2 1]
249 x
250 @result{} [1 2 3 4]
251 @end group
252 @group
253 (setq x "xyzzy")
254 @result{} "xyzzy"
255 @end group
256 @group
257 (reverse x)
258 @result{} "yzzyx"
259 x
260 @result{} "xyzzy"
261 @end group
262 @end example
263 @end defun
264
265 @defun nreverse sequence
266 @cindex reversing a string
267 @cindex reversing a list
268 @cindex reversing a vector
269 This function reverses the order of the elements of @var{sequence}.
270 Unlike @code{reverse} the original @var{sequence} may be modified.
271
272 For example:
273
274 @example
275 @group
276 (setq x '(a b c))
277 @result{} (a b c)
278 @end group
279 @group
280 x
281 @result{} (a b c)
282 (nreverse x)
283 @result{} (c b a)
284 @end group
285 @group
286 ;; @r{The cons cell that was first is now last.}
287 x
288 @result{} (a)
289 @end group
290 @end example
291
292 To avoid confusion, we usually store the result of @code{nreverse}
293 back in the same variable which held the original list:
294
295 @example
296 (setq x (nreverse x))
297 @end example
298
299 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
300 presented graphically:
301
302 @smallexample
303 @group
304 @r{Original list head:} @r{Reversed list:}
305 ------------- ------------- ------------
306 | car | cdr | | car | cdr | | car | cdr |
307 | a | nil |<-- | b | o |<-- | c | o |
308 | | | | | | | | | | | | |
309 ------------- | --------- | - | -------- | -
310 | | | |
311 ------------- ------------
312 @end group
313 @end smallexample
314
315 For the vector, it is even simpler because you don't need setq:
316
317 @example
318 (setq x [1 2 3 4])
319 @result{} [1 2 3 4]
320 (nreverse x)
321 @result{} [4 3 2 1]
322 x
323 @result{} [4 3 2 1]
324 @end example
325
326 Note that unlike @code{reverse}, this function doesn't work with strings.
327 Although you can alter string data by using @code{aset}, it is strongly
328 encouraged to treat strings as immutable.
329
330 @end defun
331
332 @defun sort sequence predicate
333 @cindex stable sort
334 @cindex sorting lists
335 @cindex sorting vectors
336 This function sorts @var{sequence} stably. Note that this function doesn't work
337 for all sequences; it may be used only for lists and vectors. If @var{sequence}
338 is a list, it is modified destructively. This functions returns the sorted
339 @var{sequence} and compares elements using @var{predicate}. A stable sort is
340 one in which elements with equal sort keys maintain their relative order before
341 and after the sort. Stability is important when successive sorts are used to
342 order elements according to different criteria.
343
344 The argument @var{predicate} must be a function that accepts two
345 arguments. It is called with two elements of @var{sequence}. To get an
346 increasing order sort, the @var{predicate} should return non-@code{nil} if the
347 first element is ``less'' than the second, or @code{nil} if not.
348
349 The comparison function @var{predicate} must give reliable results for
350 any given pair of arguments, at least within a single call to
351 @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
352 less than @var{b}, @var{b} must not be less than @var{a}. It must be
353 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
354 is less than @var{c}, then @var{a} must be less than @var{c}. If you
355 use a comparison function which does not meet these requirements, the
356 result of @code{sort} is unpredictable.
357
358 The destructive aspect of @code{sort} for lists is that it rearranges the
359 cons cells forming @var{sequence} by changing @sc{cdr}s. A nondestructive
360 sort function would create new cons cells to store the elements in their
361 sorted order. If you wish to make a sorted copy without destroying the
362 original, copy it first with @code{copy-sequence} and then sort.
363
364 Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
365 the cons cell that originally contained the element @code{a} in
366 @var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
367 appears in a different position in the list due to the change of
368 @sc{cdr}s. For example:
369
370 @example
371 @group
372 (setq nums '(1 3 2 6 5 4 0))
373 @result{} (1 3 2 6 5 4 0)
374 @end group
375 @group
376 (sort nums '<)
377 @result{} (0 1 2 3 4 5 6)
378 @end group
379 @group
380 nums
381 @result{} (1 2 3 4 5 6)
382 @end group
383 @end example
384
385 @noindent
386 @strong{Warning}: Note that the list in @code{nums} no longer contains
387 0; this is the same cons cell that it was before, but it is no longer
388 the first one in the list. Don't assume a variable that formerly held
389 the argument now holds the entire sorted list! Instead, save the result
390 of @code{sort} and use that. Most often we store the result back into
391 the variable that held the original list:
392
393 @example
394 (setq nums (sort nums '<))
395 @end example
396
397 For the better understanding of what stable sort is, consider the following
398 vector example. After sorting, all items whose @code{car} is 8 are grouped
399 at the beginning of @code{vector}, but their relative order is preserved.
400 All items whose @code{car} is 9 are grouped at the end of @code{vector},
401 but their relative order is also preserved:
402
403 @example
404 @group
405 (setq
406 vector
407 (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
408 '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
409 @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
410 (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
411 @end group
412 @group
413 (sort vector (lambda (x y) (< (car x) (car y))))
414 @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
415 (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
416 @end group
417 @end example
418
419 @xref{Sorting}, for more functions that perform sorting.
420 See @code{documentation} in @ref{Accessing Documentation}, for a
421 useful example of @code{sort}.
422 @end defun
423
424 @cindex sequence functions in seq
425 @cindex seq library
426 The @file{seq.el} library provides the following additional sequence
427 manipulation macros and functions, prefixed with @code{seq-}. To use
428 them, you must first load the @file{seq} library.
429
430 All functions defined in this library are free of side-effects;
431 i.e., they do not modify any sequence (list, vector, or string) that
432 you pass as an argument. Unless otherwise stated, the result is a
433 sequence of the same type as the input. For those functions that take
434 a predicate, this should be a function of one argument.
435
436 The @file{seq.el} library can be extended to work with additional
437 types of sequential data-structures. For that purpose, all functions
438 are defined using @code{cl-defgeneric}.
439
440 @defun seq-elt sequence index
441 This function the element at the index @var{index} in
442 @var{sequence}. @var{index} can be an integer from zero up to the
443 length of @var{sequence} minus one. For out-of-range values on
444 built-in sequence types, @code{seq-elt} behaves like @code{elt}.
445 @xref{Definition of elt}.
446
447 @example
448 @group
449 (seq-elt [1 2 3 4] 2)
450 @result{} 3
451 @end group
452
453 @code{seq-elt} returns settable places using @code{setf}.
454
455 @group
456 (setq vec [1 2 3 4])
457 (setf (seq-elt vec 2) 5)
458 vec
459 @result{} [1 2 5 4]
460 @end group
461 @end example
462 @end defun
463
464 @defun seq-length sequence
465 This function returns the number of elements in @var{sequence}. For
466 built-in sequence types, @code{seq-length} behaves like @code{length}.
467 @xref{Definition of length}.
468 @end defun
469
470 @defun seqp sequence
471 This function returns non-@code{nil} if @var{sequence} is a sequence
472 (a list or array), or any additional type of sequence defined via
473 @file{seq.el} generic functions.
474
475 @example
476 @group
477 (seqp [1 2])
478 @result{} t
479 @end group
480 @group
481 (seqp 2)
482 @result{} nil
483 @end group
484 @end example
485 @end defun
486
487 @defun seq-drop sequence n
488 This function returns all but the first @var{n} (an integer)
489 elements of @var{sequence}. If @var{n} is negative or zero,
490 the result is @var{sequence}.
491
492 @example
493 @group
494 (seq-drop [1 2 3 4 5 6] 3)
495 @result{} [4 5 6]
496 @end group
497 @group
498 (seq-drop "hello world" -4)
499 @result{} "hello world"
500 @end group
501 @end example
502 @end defun
503
504 @defun seq-take sequence n
505 This function returns the first @var{n} (an integer) elements of
506 @var{sequence}. If @var{n} is negative or zero, the result
507 is @code{nil}.
508
509 @example
510 @group
511 (seq-take '(1 2 3 4) 3)
512 @result{} (1 2 3)
513 @end group
514 @group
515 (seq-take [1 2 3 4] 0)
516 @result{} []
517 @end group
518 @end example
519 @end defun
520
521 @defun seq-take-while predicate sequence
522 This function returns the members of @var{sequence} in order,
523 stopping before the first one for which @var{predicate} returns @code{nil}.
524
525 @example
526 @group
527 (seq-take-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
528 @result{} (1 2 3)
529 @end group
530 @group
531 (seq-take-while (lambda (elt) (> elt 0)) [-1 4 6])
532 @result{} []
533 @end group
534 @end example
535 @end defun
536
537 @defun seq-drop-while predicate sequence
538 This function returns the members of @var{sequence} in order,
539 starting from the first one for which @var{predicate} returns @code{nil}.
540
541 @example
542 @group
543 (seq-drop-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
544 @result{} (-1 -2)
545 @end group
546 @group
547 (seq-drop-while (lambda (elt) (< elt 0)) [1 4 6])
548 @result{} [1 4 6]
549 @end group
550 @end example
551 @end defun
552
553 @defun seq-do function sequence
554 This function applies @var{function} to each element of
555 @var{sequence} in turn (presumably for side effects) and returns
556 @var{sequence}.
557 @end defun
558
559 @defun seq-map function sequence
560 This function returns the result of applying @var{function} to each
561 element of @var{sequence}. The returned value is a list.
562
563 @example
564 @group
565 (seq-map #'1+ '(2 4 6))
566 @result{} (3 5 7)
567 @end group
568 @group
569 (seq-map #'symbol-name [foo bar])
570 @result{} ("foo" "bar")
571 @end group
572 @end example
573 @end defun
574
575 @defun seq-mapn function &rest sequences
576 This function returns the result of applying @var{function} to each
577 element of @var{sequences}. The arity of @var{function} must match
578 the number of sequences. Mapping stops at the shortest sequence, and
579 the returned value is a list.
580
581 @example
582 @group
583 (seq-mapn #'+ '(2 4 6) '(20 40 60))
584 @result{} (22 44 66)
585 @end group
586 @group
587 (seq-mapn #'concat '("moskito" "bite") ["bee" "sting"])
588 @result{} ("moskitobee" "bitesting")
589 @end group
590 @end example
591 @end defun
592
593 @defun seq-filter predicate sequence
594 @cindex filtering sequences
595 This function returns a list of all the elements in @var{sequence}
596 for which @var{predicate} returns non-@code{nil}.
597
598 @example
599 @group
600 (seq-filter (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
601 @result{} (1 3 5)
602 @end group
603 @group
604 (seq-filter (lambda (elt) (> elt 0)) '(-1 -3 -5))
605 @result{} nil
606 @end group
607 @end example
608 @end defun
609
610 @defun seq-remove predicate sequence
611 @cindex removing from sequences
612 This function returns a list of all the elements in @var{sequence}
613 for which @var{predicate} returns @code{nil}.
614
615 @example
616 @group
617 (seq-remove (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
618 @result{} (-1 -3)
619 @end group
620 @group
621 (seq-remove (lambda (elt) (< elt 0)) '(-1 -3 -5))
622 @result{} nil
623 @end group
624 @end example
625 @end defun
626
627 @defun seq-reduce function sequence initial-value
628 @cindex reducing sequences
629 This function returns the result of calling @var{function} with
630 @var{initial-value} and the first element of @var{sequence}, then calling
631 @var{function} with that result and the second element of @var{sequence},
632 then with that result and the third element of @var{sequence}, etc.
633 @var{function} should be a function of two arguments. If
634 @var{sequence} is empty, this returns @var{initial-value} without
635 calling @var{function}.
636
637 @example
638 @group
639 (seq-reduce #'+ [1 2 3 4] 0)
640 @result{} 10
641 @end group
642 @group
643 (seq-reduce #'+ '(1 2 3 4) 5)
644 @result{} 15
645 @end group
646 @group
647 (seq-reduce #'+ '() 3)
648 @result{} 3
649 @end group
650 @end example
651 @end defun
652
653 @defun seq-some predicate sequence
654 This function returns the first non-@code{nil} value returned by
655 applying @var{predicate} to each element of @var{sequence} in turn.
656
657 @example
658 @group
659 (seq-some #'numberp ["abc" 1 nil])
660 @result{} t
661 @end group
662 @group
663 (seq-some #'numberp ["abc" "def"])
664 @result{} nil
665 @end group
666 @group
667 (seq-some #'null ["abc" 1 nil])
668 @result{} t
669 @end group
670 @group
671 (seq-some #'1+ [2 4 6])
672 @result{} 3
673 @end group
674 @end example
675 @end defun
676
677 @defun seq-find predicate sequence &optional default
678 This function returns the first element for which @var{predicate}
679 returns non-@code{nil} in @var{sequence}. If no element matches
680 @var{predicate}, @var{default} is returned.
681
682 Note that this function has an ambiguity if the found element is
683 identical to @var{default}, as it cannot be known if an element was
684 found or not.
685
686 @example
687 @group
688 (seq-find #'numberp ["abc" 1 nil])
689 @result{} 1
690 @end group
691 @group
692 (seq-find #'numberp ["abc" "def"])
693 @result{} nil
694 @end group
695 @end example
696 @end defun
697
698 @defun seq-every-p predicate sequence
699 This function returns non-@code{nil} if applying @var{predicate}
700 to every element of @var{sequence} returns non-@code{nil}.
701
702 @example
703 @group
704 (seq-every-p #'numberp [2 4 6])
705 @result{} t
706 @end group
707 @group
708 (seq-some #'numberp [2 4 "6"])
709 @result{} nil
710 @end group
711 @end example
712 @end defun
713
714 @defun seq-empty-p sequence
715 This function returns non-@code{nil} if @var{sequence} is empty.
716
717 @example
718 @group
719 (seq-empty-p "not empty")
720 @result{} nil
721 @end group
722 @group
723 (seq-empty-p "")
724 @result{} t
725 @end group
726 @end example
727 @end defun
728
729 @defun seq-count predicate sequence
730 This function returns the number of elements in @var{sequence} for which
731 @var{predicate} returns non-@code{nil}.
732
733 @example
734 (seq-count (lambda (elt) (> elt 0)) [-1 2 0 3 -2])
735 @result{} 2
736 @end example
737 @end defun
738
739 @cindex sorting sequences
740 @defun seq-sort function sequence
741 This function returns a copy of @var{sequence} that is sorted
742 according to @var{function}, a function of two arguments that returns
743 non-@code{nil} if the first argument should sort before the second.
744 @end defun
745
746 @defun seq-contains sequence elt &optional function
747 This function returns the first element in @var{sequence} that is equal to
748 @var{elt}. If the optional argument @var{function} is non-@code{nil},
749 it is a function of two arguments to use instead of the default @code{equal}.
750
751 @example
752 @group
753 (seq-contains '(symbol1 symbol2) 'symbol1)
754 @result{} symbol1
755 @end group
756 @group
757 (seq-contains '(symbol1 symbol2) 'symbol3)
758 @result{} nil
759 @end group
760 @end example
761
762 @end defun
763
764 @defun seq-position sequence elt &optional function
765 This function returns the index of the first element in
766 @var{sequence} that is equal to @var{elt}. If the optional argument
767 @var{function} is non-@code{nil}, it is a function of two arguments to
768 use instead of the default @code{equal}.
769
770 @example
771 @group
772 (seq-position '(a b c) 'b)
773 @result{} 1
774 @end group
775 @group
776 (seq-position '(a b c) 'd)
777 @result{} nil
778 @end group
779 @end example
780 @end defun
781
782
783 @defun seq-uniq sequence &optional function
784 This function returns a list of the elements of @var{sequence} with
785 duplicates removed. If the optional argument @var{function} is non-@code{nil},
786 it is a function of two arguments to use instead of the default @code{equal}.
787
788 @example
789 @group
790 (seq-uniq '(1 2 2 1 3))
791 @result{} (1 2 3)
792 @end group
793 @group
794 (seq-uniq '(1 2 2.0 1.0) #'=)
795 @result{} [3 4]
796 @end group
797 @end example
798 @end defun
799
800 @defun seq-subseq sequence start &optional end
801 This function returns a subset of @var{sequence} from @var{start}
802 to @var{end}, both integers (@var{end} defaults to the last element).
803 If @var{start} or @var{end} is negative, it counts from the end of
804 @var{sequence}.
805
806 @example
807 @group
808 (seq-subseq '(1 2 3 4 5) 1)
809 @result{} (2 3 4 5)
810 @end group
811 @group
812 (seq-subseq '[1 2 3 4 5] 1 3)
813 @result{} [2 3]
814 @end group
815 @group
816 (seq-subseq '[1 2 3 4 5] -3 -1)
817 @result{} [3 4]
818 @end group
819 @end example
820 @end defun
821
822 @defun seq-concatenate type &rest sequences
823 This function returns a sequence of type @var{type} made of the
824 concatenation of @var{sequences}. @var{type} may be: @code{vector},
825 @code{list} or @code{string}.
826
827 @example
828 @group
829 (seq-concatenate 'list '(1 2) '(3 4) [5 6])
830 @result{} (1 2 3 5 6)
831 @end group
832 @group
833 (seq-concatenate 'string "Hello " "world")
834 @result{} "Hello world"
835 @end group
836 @end example
837 @end defun
838
839 @defun seq-mapcat function sequence &optional type
840 This function returns the result of applying @code{seq-concatenate}
841 to the result of applying @var{function} to each element of
842 @var{sequence}. The result is a sequence of type @var{type}, or a
843 list if @var{type} is @code{nil}.
844
845 @example
846 @group
847 (seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)))
848 @result{} (1 2 3 4 5 6)
849 @end group
850 @end example
851 @end defun
852
853 @defun seq-partition sequence n
854 This function returns a list of the elements of @var{sequence}
855 grouped into sub-sequences of length @var{n}. The last sequence may
856 contain less elements than @var{n}. @var{n} must be an integer. If
857 @var{n} is a negative integer or 0, nil is returned.
858
859 @example
860 @group
861 (seq-partition '(0 1 2 3 4 5 6 7) 3)
862 @result{} ((0 1 2) (3 4 5) (6 7))
863 @end group
864 @end example
865 @end defun
866
867 @defun seq-intersection sequence1 sequence2 &optional function
868 This function returns a list of the elements that appear both in
869 @var{sequence1} and @var{sequence2}. If the optional argument
870 @var{function} is non-@code{nil}, it is a function of two arguments to
871 use to compare elements instead of the default @code{equal}.
872
873 @example
874 @group
875 (seq-intersection [2 3 4 5] [1 3 5 6 7])
876 @result{} (3 5)
877 @end group
878 @end example
879 @end defun
880
881
882 @defun seq-difference sequence1 sequence2 &optional function
883 This function returns a list of the elements that appear in
884 @var{sequence1} but not in @var{sequence2}. If the optional argument
885 @var{function} is non-@code{nil}, it is a function of two arguments to
886 use to compare elements instead of the default @code{equal}.
887
888 @example
889 @group
890 (seq-difference '(2 3 4 5) [1 3 5 6 7])
891 @result{} (2 4)
892 @end group
893 @end example
894 @end defun
895
896 @defun seq-group-by function sequence
897 This function separates the elements of @var{sequence} into an alist
898 whose keys are the result of applying @var{function} to each element
899 of @var{sequence}. Keys are compared using @code{equal}.
900
901 @example
902 @group
903 (seq-group-by #'integerp '(1 2.1 3 2 3.2))
904 @result{} ((t 1 3 2) (nil 2.1 3.2))
905 @end group
906 @group
907 (seq-group-by #'car '((a 1) (b 2) (a 3) (c 4)))
908 @result{} ((b (b 2)) (a (a 1) (a 3)) (c (c 4)))
909 @end group
910 @end example
911 @end defun
912
913 @defun seq-into sequence type
914 This function converts the sequence @var{sequence} into a sequence
915 of type @var{type}. @var{type} can be one of the following symbols:
916 @code{vector}, @code{string} or @code{list}.
917
918 @example
919 @group
920 (seq-into [1 2 3] 'list)
921 @result{} (1 2 3)
922 @end group
923 @group
924 (seq-into nil 'vector)
925 @result{} []
926 @end group
927 @group
928 (seq-into "hello" 'vector)
929 @result{} [104 101 108 108 111]
930 @end group
931 @end example
932 @end defun
933
934 @defun seq-min sequence
935 This function returns the smallest element of
936 @var{sequence}. @var{sequence} must be a sequence of numbers or
937 markers.
938
939 @example
940 @group
941 (seq-min [3 1 2])
942 @result{} 1
943 @end group
944 @group
945 (seq-min "Hello")
946 @result{} 72
947 @end group
948 @end example
949 @end defun
950
951 @defun seq-max sequence
952 This function returns the largest element of
953 @var{sequence}. @var{sequence} must be a sequence of numbers or
954 markers.
955
956 @example
957 @group
958 (seq-max [1 3 2])
959 @result{} 3
960 @end group
961 @group
962 (seq-max "Hello")
963 @result{} 111
964 @end group
965 @end example
966 @end defun
967
968 @defmac seq-doseq (var sequence) body@dots{}
969 @cindex sequence iteration
970 This macro is like @code{dolist}, except that @var{sequence} can be a list,
971 vector or string (@pxref{Iteration} for more information about the
972 @code{dolist} macro). This is primarily useful for side-effects.
973 @end defmac
974
975 @defmac seq-let arguments sequence body@dots{}
976 @cindex sequence destructuring
977 This macro binds the variables defined in @var{arguments} to the
978 elements of the sequence @var{sequence}. @var{arguments} can itself
979 include sequences allowing for nested destructuring.
980
981 The @var{arguments} sequence can also include the @code{&rest} marker
982 followed by a variable name to be bound to the rest of
983 @code{sequence}.
984
985 @example
986 @group
987 (seq-let [first second] [1 2 3 4]
988 (list first second))
989 @result{} (1 2)
990 @end group
991 @group
992 (seq-let (_ a _ b) '(1 2 3 4)
993 (list a b))
994 @result{} (2 4)
995 @end group
996 @group
997 (seq-let [a [b [c]]] [1 [2 [3]]]
998 (list a b c))
999 @result{} (1 2 3)
1000 @end group
1001 @group
1002 (seq-let [a b &rest others] [1 2 3 4]
1003 others)
1004 @end group
1005 @result{} [3 4]
1006 @end example
1007 @end defmac
1008
1009
1010 @node Arrays
1011 @section Arrays
1012 @cindex array
1013
1014 An @dfn{array} object has slots that hold a number of other Lisp
1015 objects, called the elements of the array. Any element of an array
1016 may be accessed in constant time. In contrast, the time to access an
1017 element of a list is proportional to the position of that element in
1018 the list.
1019
1020 Emacs defines four types of array, all one-dimensional:
1021 @dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
1022 Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
1023 @dfn{char-tables} (@pxref{Char-Table Type}). Vectors and char-tables
1024 can hold elements of any type, but strings can only hold characters,
1025 and bool-vectors can only hold @code{t} and @code{nil}.
1026
1027 All four kinds of array share these characteristics:
1028
1029 @itemize @bullet
1030 @item
1031 The first element of an array has index zero, the second element has
1032 index 1, and so on. This is called @dfn{zero-origin} indexing. For
1033 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
1034
1035 @item
1036 The length of the array is fixed once you create it; you cannot
1037 change the length of an existing array.
1038
1039 @item
1040 For purposes of evaluation, the array is a constant---i.e.,
1041 it evaluates to itself.
1042
1043 @item
1044 The elements of an array may be referenced or changed with the functions
1045 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
1046 @end itemize
1047
1048 When you create an array, other than a char-table, you must specify
1049 its length. You cannot specify the length of a char-table, because that
1050 is determined by the range of character codes.
1051
1052 In principle, if you want an array of text characters, you could use
1053 either a string or a vector. In practice, we always choose strings for
1054 such applications, for four reasons:
1055
1056 @itemize @bullet
1057 @item
1058 They occupy one-fourth the space of a vector of the same elements.
1059
1060 @item
1061 Strings are printed in a way that shows the contents more clearly
1062 as text.
1063
1064 @item
1065 Strings can hold text properties. @xref{Text Properties}.
1066
1067 @item
1068 Many of the specialized editing and I/O facilities of Emacs accept only
1069 strings. For example, you cannot insert a vector of characters into a
1070 buffer the way you can insert a string. @xref{Strings and Characters}.
1071 @end itemize
1072
1073 By contrast, for an array of keyboard input characters (such as a key
1074 sequence), a vector may be necessary, because many keyboard input
1075 characters are outside the range that will fit in a string. @xref{Key
1076 Sequence Input}.
1077
1078 @node Array Functions
1079 @section Functions that Operate on Arrays
1080
1081 In this section, we describe the functions that accept all types of
1082 arrays.
1083
1084 @defun arrayp object
1085 This function returns @code{t} if @var{object} is an array (i.e., a
1086 vector, a string, a bool-vector or a char-table).
1087
1088 @example
1089 @group
1090 (arrayp [a])
1091 @result{} t
1092 (arrayp "asdf")
1093 @result{} t
1094 (arrayp (syntax-table)) ;; @r{A char-table.}
1095 @result{} t
1096 @end group
1097 @end example
1098 @end defun
1099
1100 @defun aref array index
1101 @cindex array elements
1102 This function returns the @var{index}th element of @var{array}. The
1103 first element is at index zero.
1104
1105 @example
1106 @group
1107 (setq primes [2 3 5 7 11 13])
1108 @result{} [2 3 5 7 11 13]
1109 (aref primes 4)
1110 @result{} 11
1111 @end group
1112 @group
1113 (aref "abcdefg" 1)
1114 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
1115 @end group
1116 @end example
1117
1118 See also the function @code{elt}, in @ref{Sequence Functions}.
1119 @end defun
1120
1121 @defun aset array index object
1122 This function sets the @var{index}th element of @var{array} to be
1123 @var{object}. It returns @var{object}.
1124
1125 @example
1126 @group
1127 (setq w [foo bar baz])
1128 @result{} [foo bar baz]
1129 (aset w 0 'fu)
1130 @result{} fu
1131 w
1132 @result{} [fu bar baz]
1133 @end group
1134
1135 @group
1136 (setq x "asdfasfd")
1137 @result{} "asdfasfd"
1138 (aset x 3 ?Z)
1139 @result{} 90
1140 x
1141 @result{} "asdZasfd"
1142 @end group
1143 @end example
1144
1145 If @var{array} is a string and @var{object} is not a character, a
1146 @code{wrong-type-argument} error results. The function converts a
1147 unibyte string to multibyte if necessary to insert a character.
1148 @end defun
1149
1150 @defun fillarray array object
1151 This function fills the array @var{array} with @var{object}, so that
1152 each element of @var{array} is @var{object}. It returns @var{array}.
1153
1154 @example
1155 @group
1156 (setq a [a b c d e f g])
1157 @result{} [a b c d e f g]
1158 (fillarray a 0)
1159 @result{} [0 0 0 0 0 0 0]
1160 a
1161 @result{} [0 0 0 0 0 0 0]
1162 @end group
1163 @group
1164 (setq s "When in the course")
1165 @result{} "When in the course"
1166 (fillarray s ?-)
1167 @result{} "------------------"
1168 @end group
1169 @end example
1170
1171 If @var{array} is a string and @var{object} is not a character, a
1172 @code{wrong-type-argument} error results.
1173 @end defun
1174
1175 The general sequence functions @code{copy-sequence} and @code{length}
1176 are often useful for objects known to be arrays. @xref{Sequence Functions}.
1177
1178 @node Vectors
1179 @section Vectors
1180 @cindex vector (type)
1181
1182 A @dfn{vector} is a general-purpose array whose elements can be any
1183 Lisp objects. (By contrast, the elements of a string can only be
1184 characters. @xref{Strings and Characters}.) Vectors are used in
1185 Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
1186 symbol-lookup tables (@pxref{Creating Symbols}), as part of the
1187 representation of a byte-compiled function (@pxref{Byte Compilation}),
1188 and more.
1189
1190 Like other arrays, vectors use zero-origin indexing: the first
1191 element has index 0.
1192
1193 Vectors are printed with square brackets surrounding the elements.
1194 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
1195 @code{a} is printed as @code{[a b a]}. You can write vectors in the
1196 same way in Lisp input.
1197
1198 A vector, like a string or a number, is considered a constant for
1199 evaluation: the result of evaluating it is the same vector. This does
1200 not evaluate or even examine the elements of the vector.
1201 @xref{Self-Evaluating Forms}.
1202
1203 Here are examples illustrating these principles:
1204
1205 @example
1206 @group
1207 (setq avector [1 two '(three) "four" [five]])
1208 @result{} [1 two (quote (three)) "four" [five]]
1209 (eval avector)
1210 @result{} [1 two (quote (three)) "four" [five]]
1211 (eq avector (eval avector))
1212 @result{} t
1213 @end group
1214 @end example
1215
1216 @node Vector Functions
1217 @section Functions for Vectors
1218
1219 Here are some functions that relate to vectors:
1220
1221 @defun vectorp object
1222 This function returns @code{t} if @var{object} is a vector.
1223
1224 @example
1225 @group
1226 (vectorp [a])
1227 @result{} t
1228 (vectorp "asdf")
1229 @result{} nil
1230 @end group
1231 @end example
1232 @end defun
1233
1234 @defun vector &rest objects
1235 This function creates and returns a vector whose elements are the
1236 arguments, @var{objects}.
1237
1238 @example
1239 @group
1240 (vector 'foo 23 [bar baz] "rats")
1241 @result{} [foo 23 [bar baz] "rats"]
1242 (vector)
1243 @result{} []
1244 @end group
1245 @end example
1246 @end defun
1247
1248 @defun make-vector length object
1249 This function returns a new vector consisting of @var{length} elements,
1250 each initialized to @var{object}.
1251
1252 @example
1253 @group
1254 (setq sleepy (make-vector 9 'Z))
1255 @result{} [Z Z Z Z Z Z Z Z Z]
1256 @end group
1257 @end example
1258 @end defun
1259
1260 @defun vconcat &rest sequences
1261 @cindex copying vectors
1262 This function returns a new vector containing all the elements of
1263 @var{sequences}. The arguments @var{sequences} may be true lists,
1264 vectors, strings or bool-vectors. If no @var{sequences} are given,
1265 the empty vector is returned.
1266
1267 The value is either the empty vector, or is a newly constructed
1268 nonempty vector that is not @code{eq} to any existing vector.
1269
1270 @example
1271 @group
1272 (setq a (vconcat '(A B C) '(D E F)))
1273 @result{} [A B C D E F]
1274 (eq a (vconcat a))
1275 @result{} nil
1276 @end group
1277 @group
1278 (vconcat)
1279 @result{} []
1280 (vconcat [A B C] "aa" '(foo (6 7)))
1281 @result{} [A B C 97 97 foo (6 7)]
1282 @end group
1283 @end example
1284
1285 The @code{vconcat} function also allows byte-code function objects as
1286 arguments. This is a special feature to make it easy to access the entire
1287 contents of a byte-code function object. @xref{Byte-Code Objects}.
1288
1289 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
1290 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
1291 in @ref{Building Lists}.
1292 @end defun
1293
1294 The @code{append} function also provides a way to convert a vector into a
1295 list with the same elements:
1296
1297 @example
1298 @group
1299 (setq avector [1 two (quote (three)) "four" [five]])
1300 @result{} [1 two (quote (three)) "four" [five]]
1301 (append avector nil)
1302 @result{} (1 two (quote (three)) "four" [five])
1303 @end group
1304 @end example
1305
1306 @node Char-Tables
1307 @section Char-Tables
1308 @cindex char-tables
1309 @cindex extra slots of char-table
1310
1311 A char-table is much like a vector, except that it is indexed by
1312 character codes. Any valid character code, without modifiers, can be
1313 used as an index in a char-table. You can access a char-table's
1314 elements with @code{aref} and @code{aset}, as with any array. In
1315 addition, a char-table can have @dfn{extra slots} to hold additional
1316 data not associated with particular character codes. Like vectors,
1317 char-tables are constants when evaluated, and can hold elements of any
1318 type.
1319
1320 @cindex subtype of char-table
1321 Each char-table has a @dfn{subtype}, a symbol, which serves two
1322 purposes:
1323
1324 @itemize @bullet
1325 @item
1326 The subtype provides an easy way to tell what the char-table is for.
1327 For instance, display tables are char-tables with @code{display-table}
1328 as the subtype, and syntax tables are char-tables with
1329 @code{syntax-table} as the subtype. The subtype can be queried using
1330 the function @code{char-table-subtype}, described below.
1331
1332 @item
1333 The subtype controls the number of @dfn{extra slots} in the
1334 char-table. This number is specified by the subtype's
1335 @code{char-table-extra-slots} symbol property (@pxref{Symbol
1336 Properties}), whose value should be an integer between 0 and 10. If
1337 the subtype has no such symbol property, the char-table has no extra
1338 slots.
1339 @end itemize
1340
1341 @cindex parent of char-table
1342 A char-table can have a @dfn{parent}, which is another char-table. If
1343 it does, then whenever the char-table specifies @code{nil} for a
1344 particular character @var{c}, it inherits the value specified in the
1345 parent. In other words, @code{(aref @var{char-table} @var{c})} returns
1346 the value from the parent of @var{char-table} if @var{char-table} itself
1347 specifies @code{nil}.
1348
1349 @cindex default value of char-table
1350 A char-table can also have a @dfn{default value}. If so, then
1351 @code{(aref @var{char-table} @var{c})} returns the default value
1352 whenever the char-table does not specify any other non-@code{nil} value.
1353
1354 @defun make-char-table subtype &optional init
1355 Return a newly-created char-table, with subtype @var{subtype} (a
1356 symbol). Each element is initialized to @var{init}, which defaults to
1357 @code{nil}. You cannot alter the subtype of a char-table after the
1358 char-table is created.
1359
1360 There is no argument to specify the length of the char-table, because
1361 all char-tables have room for any valid character code as an index.
1362
1363 If @var{subtype} has the @code{char-table-extra-slots} symbol
1364 property, that specifies the number of extra slots in the char-table.
1365 This should be an integer between 0 and 10; otherwise,
1366 @code{make-char-table} raises an error. If @var{subtype} has no
1367 @code{char-table-extra-slots} symbol property (@pxref{Property
1368 Lists}), the char-table has no extra slots.
1369 @end defun
1370
1371 @defun char-table-p object
1372 This function returns @code{t} if @var{object} is a char-table, and
1373 @code{nil} otherwise.
1374 @end defun
1375
1376 @defun char-table-subtype char-table
1377 This function returns the subtype symbol of @var{char-table}.
1378 @end defun
1379
1380 There is no special function to access default values in a char-table.
1381 To do that, use @code{char-table-range} (see below).
1382
1383 @defun char-table-parent char-table
1384 This function returns the parent of @var{char-table}. The parent is
1385 always either @code{nil} or another char-table.
1386 @end defun
1387
1388 @defun set-char-table-parent char-table new-parent
1389 This function sets the parent of @var{char-table} to @var{new-parent}.
1390 @end defun
1391
1392 @defun char-table-extra-slot char-table n
1393 This function returns the contents of extra slot @var{n} (zero based)
1394 of @var{char-table}. The number of extra slots in a char-table is
1395 determined by its subtype.
1396 @end defun
1397
1398 @defun set-char-table-extra-slot char-table n value
1399 This function stores @var{value} in extra slot @var{n} (zero based) of
1400 @var{char-table}.
1401 @end defun
1402
1403 A char-table can specify an element value for a single character code;
1404 it can also specify a value for an entire character set.
1405
1406 @defun char-table-range char-table range
1407 This returns the value specified in @var{char-table} for a range of
1408 characters @var{range}. Here are the possibilities for @var{range}:
1409
1410 @table @asis
1411 @item @code{nil}
1412 Refers to the default value.
1413
1414 @item @var{char}
1415 Refers to the element for character @var{char}
1416 (supposing @var{char} is a valid character code).
1417
1418 @item @code{(@var{from} . @var{to})}
1419 A cons cell refers to all the characters in the inclusive range
1420 @samp{[@var{from}..@var{to}]}.
1421 @end table
1422 @end defun
1423
1424 @defun set-char-table-range char-table range value
1425 This function sets the value in @var{char-table} for a range of
1426 characters @var{range}. Here are the possibilities for @var{range}:
1427
1428 @table @asis
1429 @item @code{nil}
1430 Refers to the default value.
1431
1432 @item @code{t}
1433 Refers to the whole range of character codes.
1434
1435 @item @var{char}
1436 Refers to the element for character @var{char}
1437 (supposing @var{char} is a valid character code).
1438
1439 @item @code{(@var{from} . @var{to})}
1440 A cons cell refers to all the characters in the inclusive range
1441 @samp{[@var{from}..@var{to}]}.
1442 @end table
1443 @end defun
1444
1445 @defun map-char-table function char-table
1446 This function calls its argument @var{function} for each element of
1447 @var{char-table} that has a non-@code{nil} value. The call to
1448 @var{function} is with two arguments, a key and a value. The key
1449 is a possible @var{range} argument for @code{char-table-range}---either
1450 a valid character or a cons cell @code{(@var{from} . @var{to})},
1451 specifying a range of characters that share the same value. The value is
1452 what @code{(char-table-range @var{char-table} @var{key})} returns.
1453
1454 Overall, the key-value pairs passed to @var{function} describe all the
1455 values stored in @var{char-table}.
1456
1457 The return value is always @code{nil}; to make calls to
1458 @code{map-char-table} useful, @var{function} should have side effects.
1459 For example, here is how to examine the elements of the syntax table:
1460
1461 @example
1462 (let (accumulator)
1463 (map-char-table
1464 #'(lambda (key value)
1465 (setq accumulator
1466 (cons (list
1467 (if (consp key)
1468 (list (car key) (cdr key))
1469 key)
1470 value)
1471 accumulator)))
1472 (syntax-table))
1473 accumulator)
1474 @result{}
1475 (((2597602 4194303) (2)) ((2597523 2597601) (3))
1476 ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
1477 ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
1478 @end example
1479 @end defun
1480
1481 @node Bool-Vectors
1482 @section Bool-vectors
1483 @cindex Bool-vectors
1484
1485 A bool-vector is much like a vector, except that it stores only the
1486 values @code{t} and @code{nil}. If you try to store any non-@code{nil}
1487 value into an element of the bool-vector, the effect is to store
1488 @code{t} there. As with all arrays, bool-vector indices start from 0,
1489 and the length cannot be changed once the bool-vector is created.
1490 Bool-vectors are constants when evaluated.
1491
1492 Several functions work specifically with bool-vectors; aside
1493 from that, you manipulate them with same functions used for other kinds
1494 of arrays.
1495
1496 @defun make-bool-vector length initial
1497 Return a new bool-vector of @var{length} elements,
1498 each one initialized to @var{initial}.
1499 @end defun
1500
1501 @defun bool-vector &rest objects
1502 This function creates and returns a bool-vector whose elements are the
1503 arguments, @var{objects}.
1504 @end defun
1505
1506 @defun bool-vector-p object
1507 This returns @code{t} if @var{object} is a bool-vector,
1508 and @code{nil} otherwise.
1509 @end defun
1510
1511 There are also some bool-vector set operation functions, described below:
1512
1513 @defun bool-vector-exclusive-or a b &optional c
1514 Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
1515 If optional argument @var{c} is given, the result of this operation is
1516 stored into @var{c}. All arguments should be bool vectors of the same length.
1517 @end defun
1518
1519 @defun bool-vector-union a b &optional c
1520 Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}. If
1521 optional argument @var{c} is given, the result of this operation is
1522 stored into @var{c}. All arguments should be bool vectors of the same length.
1523 @end defun
1524
1525 @defun bool-vector-intersection a b &optional c
1526 Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}. If
1527 optional argument @var{c} is given, the result of this operation is
1528 stored into @var{c}. All arguments should be bool vectors of the same length.
1529 @end defun
1530
1531 @defun bool-vector-set-difference a b &optional c
1532 Return @dfn{set difference} of bool vectors @var{a} and @var{b}. If
1533 optional argument @var{c} is given, the result of this operation is
1534 stored into @var{c}. All arguments should be bool vectors of the same length.
1535 @end defun
1536
1537 @defun bool-vector-not a &optional b
1538 Return @dfn{set complement} of bool vector @var{a}. If optional
1539 argument @var{b} is given, the result of this operation is stored into
1540 @var{b}. All arguments should be bool vectors of the same length.
1541 @end defun
1542
1543 @defun bool-vector-subsetp a b
1544 Return @code{t} if every @code{t} value in @var{a} is also t in
1545 @var{b}, @code{nil} otherwise. All arguments should be bool vectors of the
1546 same length.
1547 @end defun
1548
1549 @defun bool-vector-count-consecutive a b i
1550 Return the number of consecutive elements in @var{a} equal @var{b}
1551 starting at @var{i}. @code{a} is a bool vector, @var{b} is @code{t}
1552 or @code{nil}, and @var{i} is an index into @code{a}.
1553 @end defun
1554
1555 @defun bool-vector-count-population a
1556 Return the number of elements that are @code{t} in bool vector @var{a}.
1557 @end defun
1558
1559 The printed form represents up to 8 boolean values as a single
1560 character:
1561
1562 @example
1563 @group
1564 (bool-vector t nil t nil)
1565 @result{} #&4"^E"
1566 (bool-vector)
1567 @result{} #&0""
1568 @end group
1569 @end example
1570
1571 You can use @code{vconcat} to print a bool-vector like other vectors:
1572
1573 @example
1574 @group
1575 (vconcat (bool-vector nil t nil t))
1576 @result{} [nil t nil t]
1577 @end group
1578 @end example
1579
1580 Here is another example of creating, examining, and updating a
1581 bool-vector:
1582
1583 @example
1584 (setq bv (make-bool-vector 5 t))
1585 @result{} #&5"^_"
1586 (aref bv 1)
1587 @result{} t
1588 (aset bv 3 nil)
1589 @result{} nil
1590 bv
1591 @result{} #&5"^W"
1592 @end example
1593
1594 @noindent
1595 These results make sense because the binary codes for control-_ and
1596 control-W are 11111 and 10111, respectively.
1597
1598 @node Rings
1599 @section Managing a Fixed-Size Ring of Objects
1600
1601 @cindex ring data structure
1602 A @dfn{ring} is a fixed-size data structure that supports insertion,
1603 deletion, rotation, and modulo-indexed reference and traversal. An
1604 efficient ring data structure is implemented by the @code{ring}
1605 package. It provides the functions listed in this section.
1606
1607 Note that several rings in Emacs, like the kill ring and the
1608 mark ring, are actually implemented as simple lists, @emph{not} using
1609 the @code{ring} package; thus the following functions won't work on
1610 them.
1611
1612 @defun make-ring size
1613 This returns a new ring capable of holding @var{size} objects.
1614 @var{size} should be an integer.
1615 @end defun
1616
1617 @defun ring-p object
1618 This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1619 @end defun
1620
1621 @defun ring-size ring
1622 This returns the maximum capacity of the @var{ring}.
1623 @end defun
1624
1625 @defun ring-length ring
1626 This returns the number of objects that @var{ring} currently contains.
1627 The value will never exceed that returned by @code{ring-size}.
1628 @end defun
1629
1630 @defun ring-elements ring
1631 This returns a list of the objects in @var{ring}, in order, newest first.
1632 @end defun
1633
1634 @defun ring-copy ring
1635 This returns a new ring which is a copy of @var{ring}.
1636 The new ring contains the same (@code{eq}) objects as @var{ring}.
1637 @end defun
1638
1639 @defun ring-empty-p ring
1640 This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1641 @end defun
1642
1643 The newest element in the ring always has index 0. Higher indices
1644 correspond to older elements. Indices are computed modulo the ring
1645 length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1646 to the next-oldest, and so forth.
1647
1648 @defun ring-ref ring index
1649 This returns the object in @var{ring} found at index @var{index}.
1650 @var{index} may be negative or greater than the ring length. If
1651 @var{ring} is empty, @code{ring-ref} signals an error.
1652 @end defun
1653
1654 @defun ring-insert ring object
1655 This inserts @var{object} into @var{ring}, making it the newest
1656 element, and returns @var{object}.
1657
1658 If the ring is full, insertion removes the oldest element to
1659 make room for the new element.
1660 @end defun
1661
1662 @defun ring-remove ring &optional index
1663 Remove an object from @var{ring}, and return that object. The
1664 argument @var{index} specifies which item to remove; if it is
1665 @code{nil}, that means to remove the oldest item. If @var{ring} is
1666 empty, @code{ring-remove} signals an error.
1667 @end defun
1668
1669 @defun ring-insert-at-beginning ring object
1670 This inserts @var{object} into @var{ring}, treating it as the oldest
1671 element. The return value is not significant.
1672
1673 If the ring is full, this function removes the newest element to make
1674 room for the inserted element.
1675 @end defun
1676
1677 @cindex fifo data structure
1678 If you are careful not to exceed the ring size, you can
1679 use the ring as a first-in-first-out queue. For example:
1680
1681 @lisp
1682 (let ((fifo (make-ring 5)))
1683 (mapc (lambda (obj) (ring-insert fifo obj))
1684 '(0 one "two"))
1685 (list (ring-remove fifo) t
1686 (ring-remove fifo) t
1687 (ring-remove fifo)))
1688 @result{} (0 t one t "two")
1689 @end lisp