]> code.delx.au - gnu-emacs/blob - src/regex.c
(Version, mh-version): Update for release 8.0.
[gnu-emacs] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
21 USA. */
22
23 /* TODO:
24 - structure the opcode space into opcode+flag.
25 - merge with glibc's regex.[ch].
26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
30 */
31
32 /* AIX requires this to be the first thing in the file. */
33 #if defined _AIX && !defined REGEX_MALLOC
34 #pragma alloca
35 #endif
36
37 #ifdef HAVE_CONFIG_H
38 # include <config.h>
39 #endif
40
41 #if defined STDC_HEADERS && !defined emacs
42 # include <stddef.h>
43 #else
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
45 # include <sys/types.h>
46 #endif
47
48 /* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
50 #if defined _LIBC
51 #define WIDE_CHAR_SUPPORT 1
52 #else
53 #define WIDE_CHAR_SUPPORT \
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55 #endif
56
57 /* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
59 #if WIDE_CHAR_SUPPORT
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61 # include <wchar.h>
62 # include <wctype.h>
63 #endif
64
65 #ifdef _LIBC
66 /* We have to keep the namespace clean. */
67 # define regfree(preg) __regfree (preg)
68 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 # define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72 # define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 # define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78 # define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80 # define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82 # define re_set_syntax(syntax) __re_set_syntax (syntax)
83 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
87 /* Make sure we call libc's function even if the user overrides them. */
88 # define btowc __btowc
89 # define iswctype __iswctype
90 # define wctype __wctype
91
92 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94 /* We are also using some library internals. */
95 # include <locale/localeinfo.h>
96 # include <locale/elem-hash.h>
97 # include <langinfo.h>
98 #else
99 # define WEAK_ALIAS(a,b)
100 #endif
101
102 /* This is for other GNU distributions with internationalized messages. */
103 #if HAVE_LIBINTL_H || defined _LIBC
104 # include <libintl.h>
105 #else
106 # define gettext(msgid) (msgid)
107 #endif
108
109 #ifndef gettext_noop
110 /* This define is so xgettext can find the internationalizable
111 strings. */
112 # define gettext_noop(String) String
113 #endif
114
115 /* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117 #ifdef emacs
118
119 # include "lisp.h"
120 # include "buffer.h"
121
122 /* Make syntax table lookup grant data in gl_state. */
123 # define SYNTAX_ENTRY_VIA_PROPERTY
124
125 # include "syntax.h"
126 # include "charset.h"
127 # include "category.h"
128
129 # ifdef malloc
130 # undef malloc
131 # endif
132 # define malloc xmalloc
133 # ifdef realloc
134 # undef realloc
135 # endif
136 # define realloc xrealloc
137 # ifdef free
138 # undef free
139 # endif
140 # define free xfree
141
142 /* Converts the pointer to the char to BEG-based offset from the start. */
143 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147 # define RE_STRING_CHAR(p, s) \
148 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
149 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
150 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151
152 /* Set C a (possibly multibyte) character before P. P points into a
153 string which is the virtual concatenation of STR1 (which ends at
154 END1) or STR2 (which ends at END2). */
155 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
156 do { \
157 if (multibyte) \
158 { \
159 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
160 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
161 re_char *d0 = dtemp; \
162 PREV_CHAR_BOUNDARY (d0, dlimit); \
163 c = STRING_CHAR (d0, dtemp - d0); \
164 } \
165 else \
166 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
167 } while (0)
168
169
170 #else /* not emacs */
171
172 /* If we are not linking with Emacs proper,
173 we can't use the relocating allocator
174 even if config.h says that we can. */
175 # undef REL_ALLOC
176
177 # if defined STDC_HEADERS || defined _LIBC
178 # include <stdlib.h>
179 # else
180 char *malloc ();
181 char *realloc ();
182 # endif
183
184 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
185
186 void *
187 xmalloc (size)
188 size_t size;
189 {
190 register void *val;
191 val = (void *) malloc (size);
192 if (!val && size)
193 {
194 write (2, "virtual memory exhausted\n", 25);
195 exit (1);
196 }
197 return val;
198 }
199
200 void *
201 xrealloc (block, size)
202 void *block;
203 size_t size;
204 {
205 register void *val;
206 /* We must call malloc explicitly when BLOCK is 0, since some
207 reallocs don't do this. */
208 if (! block)
209 val = (void *) malloc (size);
210 else
211 val = (void *) realloc (block, size);
212 if (!val && size)
213 {
214 write (2, "virtual memory exhausted\n", 25);
215 exit (1);
216 }
217 return val;
218 }
219
220 # ifdef malloc
221 # undef malloc
222 # endif
223 # define malloc xmalloc
224 # ifdef realloc
225 # undef realloc
226 # endif
227 # define realloc xrealloc
228
229 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
230 If nothing else has been done, use the method below. */
231 # ifdef INHIBIT_STRING_HEADER
232 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
233 # if !defined bzero && !defined bcopy
234 # undef INHIBIT_STRING_HEADER
235 # endif
236 # endif
237 # endif
238
239 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
240 This is used in most programs--a few other programs avoid this
241 by defining INHIBIT_STRING_HEADER. */
242 # ifndef INHIBIT_STRING_HEADER
243 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
244 # include <string.h>
245 # ifndef bzero
246 # ifndef _LIBC
247 # define bzero(s, n) (memset (s, '\0', n), (s))
248 # else
249 # define bzero(s, n) __bzero (s, n)
250 # endif
251 # endif
252 # else
253 # include <strings.h>
254 # ifndef memcmp
255 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
256 # endif
257 # ifndef memcpy
258 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
259 # endif
260 # endif
261 # endif
262
263 /* Define the syntax stuff for \<, \>, etc. */
264
265 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
266 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
267
268 # ifdef SWITCH_ENUM_BUG
269 # define SWITCH_ENUM_CAST(x) ((int)(x))
270 # else
271 # define SWITCH_ENUM_CAST(x) (x)
272 # endif
273
274 /* Dummy macros for non-Emacs environments. */
275 # define BASE_LEADING_CODE_P(c) (0)
276 # define CHAR_CHARSET(c) 0
277 # define CHARSET_LEADING_CODE_BASE(c) 0
278 # define MAX_MULTIBYTE_LENGTH 1
279 # define RE_MULTIBYTE_P(x) 0
280 # define WORD_BOUNDARY_P(c1, c2) (0)
281 # define CHAR_HEAD_P(p) (1)
282 # define SINGLE_BYTE_CHAR_P(c) (1)
283 # define SAME_CHARSET_P(c1, c2) (1)
284 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
285 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
286 # define STRING_CHAR(p, s) (*(p))
287 # define RE_STRING_CHAR STRING_CHAR
288 # define CHAR_STRING(c, s) (*(s) = (c), 1)
289 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
290 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
291 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
292 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
293 # define MAKE_CHAR(charset, c1, c2) (c1)
294 #endif /* not emacs */
295
296 #ifndef RE_TRANSLATE
297 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
298 # define RE_TRANSLATE_P(TBL) (TBL)
299 #endif
300 \f
301 /* Get the interface, including the syntax bits. */
302 #include "regex.h"
303
304 /* isalpha etc. are used for the character classes. */
305 #include <ctype.h>
306
307 #ifdef emacs
308
309 /* 1 if C is an ASCII character. */
310 # define IS_REAL_ASCII(c) ((c) < 0200)
311
312 /* 1 if C is a unibyte character. */
313 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
314
315 /* The Emacs definitions should not be directly affected by locales. */
316
317 /* In Emacs, these are only used for single-byte characters. */
318 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
319 # define ISCNTRL(c) ((c) < ' ')
320 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
321 || ((c) >= 'a' && (c) <= 'f') \
322 || ((c) >= 'A' && (c) <= 'F'))
323
324 /* This is only used for single-byte characters. */
325 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
326
327 /* The rest must handle multibyte characters. */
328
329 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
330 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
331 : 1)
332
333 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
334 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
335 : 1)
336
337 # define ISALNUM(c) (IS_REAL_ASCII (c) \
338 ? (((c) >= 'a' && (c) <= 'z') \
339 || ((c) >= 'A' && (c) <= 'Z') \
340 || ((c) >= '0' && (c) <= '9')) \
341 : SYNTAX (c) == Sword)
342
343 # define ISALPHA(c) (IS_REAL_ASCII (c) \
344 ? (((c) >= 'a' && (c) <= 'z') \
345 || ((c) >= 'A' && (c) <= 'Z')) \
346 : SYNTAX (c) == Sword)
347
348 # define ISLOWER(c) (LOWERCASEP (c))
349
350 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
351 ? ((c) > ' ' && (c) < 0177 \
352 && !(((c) >= 'a' && (c) <= 'z') \
353 || ((c) >= 'A' && (c) <= 'Z') \
354 || ((c) >= '0' && (c) <= '9'))) \
355 : SYNTAX (c) != Sword)
356
357 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
358
359 # define ISUPPER(c) (UPPERCASEP (c))
360
361 # define ISWORD(c) (SYNTAX (c) == Sword)
362
363 #else /* not emacs */
364
365 /* Jim Meyering writes:
366
367 "... Some ctype macros are valid only for character codes that
368 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
369 using /bin/cc or gcc but without giving an ansi option). So, all
370 ctype uses should be through macros like ISPRINT... If
371 STDC_HEADERS is defined, then autoconf has verified that the ctype
372 macros don't need to be guarded with references to isascii. ...
373 Defining isascii to 1 should let any compiler worth its salt
374 eliminate the && through constant folding."
375 Solaris defines some of these symbols so we must undefine them first. */
376
377 # undef ISASCII
378 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
379 # define ISASCII(c) 1
380 # else
381 # define ISASCII(c) isascii(c)
382 # endif
383
384 /* 1 if C is an ASCII character. */
385 # define IS_REAL_ASCII(c) ((c) < 0200)
386
387 /* This distinction is not meaningful, except in Emacs. */
388 # define ISUNIBYTE(c) 1
389
390 # ifdef isblank
391 # define ISBLANK(c) (ISASCII (c) && isblank (c))
392 # else
393 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
394 # endif
395 # ifdef isgraph
396 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
397 # else
398 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
399 # endif
400
401 # undef ISPRINT
402 # define ISPRINT(c) (ISASCII (c) && isprint (c))
403 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
404 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
405 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
406 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
407 # define ISLOWER(c) (ISASCII (c) && islower (c))
408 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
409 # define ISSPACE(c) (ISASCII (c) && isspace (c))
410 # define ISUPPER(c) (ISASCII (c) && isupper (c))
411 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
412
413 # define ISWORD(c) ISALPHA(c)
414
415 # ifdef _tolower
416 # define TOLOWER(c) _tolower(c)
417 # else
418 # define TOLOWER(c) tolower(c)
419 # endif
420
421 /* How many characters in the character set. */
422 # define CHAR_SET_SIZE 256
423
424 # ifdef SYNTAX_TABLE
425
426 extern char *re_syntax_table;
427
428 # else /* not SYNTAX_TABLE */
429
430 static char re_syntax_table[CHAR_SET_SIZE];
431
432 static void
433 init_syntax_once ()
434 {
435 register int c;
436 static int done = 0;
437
438 if (done)
439 return;
440
441 bzero (re_syntax_table, sizeof re_syntax_table);
442
443 for (c = 0; c < CHAR_SET_SIZE; ++c)
444 if (ISALNUM (c))
445 re_syntax_table[c] = Sword;
446
447 re_syntax_table['_'] = Ssymbol;
448
449 done = 1;
450 }
451
452 # endif /* not SYNTAX_TABLE */
453
454 # define SYNTAX(c) re_syntax_table[(c)]
455
456 #endif /* not emacs */
457 \f
458 #ifndef NULL
459 # define NULL (void *)0
460 #endif
461
462 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
463 since ours (we hope) works properly with all combinations of
464 machines, compilers, `char' and `unsigned char' argument types.
465 (Per Bothner suggested the basic approach.) */
466 #undef SIGN_EXTEND_CHAR
467 #if __STDC__
468 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
469 #else /* not __STDC__ */
470 /* As in Harbison and Steele. */
471 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
472 #endif
473 \f
474 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
475 use `alloca' instead of `malloc'. This is because using malloc in
476 re_search* or re_match* could cause memory leaks when C-g is used in
477 Emacs; also, malloc is slower and causes storage fragmentation. On
478 the other hand, malloc is more portable, and easier to debug.
479
480 Because we sometimes use alloca, some routines have to be macros,
481 not functions -- `alloca'-allocated space disappears at the end of the
482 function it is called in. */
483
484 #ifdef REGEX_MALLOC
485
486 # define REGEX_ALLOCATE malloc
487 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
488 # define REGEX_FREE free
489
490 #else /* not REGEX_MALLOC */
491
492 /* Emacs already defines alloca, sometimes. */
493 # ifndef alloca
494
495 /* Make alloca work the best possible way. */
496 # ifdef __GNUC__
497 # define alloca __builtin_alloca
498 # else /* not __GNUC__ */
499 # if HAVE_ALLOCA_H
500 # include <alloca.h>
501 # endif /* HAVE_ALLOCA_H */
502 # endif /* not __GNUC__ */
503
504 # endif /* not alloca */
505
506 # define REGEX_ALLOCATE alloca
507
508 /* Assumes a `char *destination' variable. */
509 # define REGEX_REALLOCATE(source, osize, nsize) \
510 (destination = (char *) alloca (nsize), \
511 memcpy (destination, source, osize))
512
513 /* No need to do anything to free, after alloca. */
514 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
515
516 #endif /* not REGEX_MALLOC */
517
518 /* Define how to allocate the failure stack. */
519
520 #if defined REL_ALLOC && defined REGEX_MALLOC
521
522 # define REGEX_ALLOCATE_STACK(size) \
523 r_alloc (&failure_stack_ptr, (size))
524 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
525 r_re_alloc (&failure_stack_ptr, (nsize))
526 # define REGEX_FREE_STACK(ptr) \
527 r_alloc_free (&failure_stack_ptr)
528
529 #else /* not using relocating allocator */
530
531 # ifdef REGEX_MALLOC
532
533 # define REGEX_ALLOCATE_STACK malloc
534 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
535 # define REGEX_FREE_STACK free
536
537 # else /* not REGEX_MALLOC */
538
539 # define REGEX_ALLOCATE_STACK alloca
540
541 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
542 REGEX_REALLOCATE (source, osize, nsize)
543 /* No need to explicitly free anything. */
544 # define REGEX_FREE_STACK(arg) ((void)0)
545
546 # endif /* not REGEX_MALLOC */
547 #endif /* not using relocating allocator */
548
549
550 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
551 `string1' or just past its end. This works if PTR is NULL, which is
552 a good thing. */
553 #define FIRST_STRING_P(ptr) \
554 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
555
556 /* (Re)Allocate N items of type T using malloc, or fail. */
557 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
558 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
559 #define RETALLOC_IF(addr, n, t) \
560 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
561 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
562
563 #define BYTEWIDTH 8 /* In bits. */
564
565 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
566
567 #undef MAX
568 #undef MIN
569 #define MAX(a, b) ((a) > (b) ? (a) : (b))
570 #define MIN(a, b) ((a) < (b) ? (a) : (b))
571
572 /* Type of source-pattern and string chars. */
573 typedef const unsigned char re_char;
574
575 typedef char boolean;
576 #define false 0
577 #define true 1
578
579 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
580 re_char *string1, int size1,
581 re_char *string2, int size2,
582 int pos,
583 struct re_registers *regs,
584 int stop));
585 \f
586 /* These are the command codes that appear in compiled regular
587 expressions. Some opcodes are followed by argument bytes. A
588 command code can specify any interpretation whatsoever for its
589 arguments. Zero bytes may appear in the compiled regular expression. */
590
591 typedef enum
592 {
593 no_op = 0,
594
595 /* Succeed right away--no more backtracking. */
596 succeed,
597
598 /* Followed by one byte giving n, then by n literal bytes. */
599 exactn,
600
601 /* Matches any (more or less) character. */
602 anychar,
603
604 /* Matches any one char belonging to specified set. First
605 following byte is number of bitmap bytes. Then come bytes
606 for a bitmap saying which chars are in. Bits in each byte
607 are ordered low-bit-first. A character is in the set if its
608 bit is 1. A character too large to have a bit in the map is
609 automatically not in the set.
610
611 If the length byte has the 0x80 bit set, then that stuff
612 is followed by a range table:
613 2 bytes of flags for character sets (low 8 bits, high 8 bits)
614 See RANGE_TABLE_WORK_BITS below.
615 2 bytes, the number of pairs that follow (upto 32767)
616 pairs, each 2 multibyte characters,
617 each multibyte character represented as 3 bytes. */
618 charset,
619
620 /* Same parameters as charset, but match any character that is
621 not one of those specified. */
622 charset_not,
623
624 /* Start remembering the text that is matched, for storing in a
625 register. Followed by one byte with the register number, in
626 the range 0 to one less than the pattern buffer's re_nsub
627 field. */
628 start_memory,
629
630 /* Stop remembering the text that is matched and store it in a
631 memory register. Followed by one byte with the register
632 number, in the range 0 to one less than `re_nsub' in the
633 pattern buffer. */
634 stop_memory,
635
636 /* Match a duplicate of something remembered. Followed by one
637 byte containing the register number. */
638 duplicate,
639
640 /* Fail unless at beginning of line. */
641 begline,
642
643 /* Fail unless at end of line. */
644 endline,
645
646 /* Succeeds if at beginning of buffer (if emacs) or at beginning
647 of string to be matched (if not). */
648 begbuf,
649
650 /* Analogously, for end of buffer/string. */
651 endbuf,
652
653 /* Followed by two byte relative address to which to jump. */
654 jump,
655
656 /* Followed by two-byte relative address of place to resume at
657 in case of failure. */
658 on_failure_jump,
659
660 /* Like on_failure_jump, but pushes a placeholder instead of the
661 current string position when executed. */
662 on_failure_keep_string_jump,
663
664 /* Just like `on_failure_jump', except that it checks that we
665 don't get stuck in an infinite loop (matching an empty string
666 indefinitely). */
667 on_failure_jump_loop,
668
669 /* Just like `on_failure_jump_loop', except that it checks for
670 a different kind of loop (the kind that shows up with non-greedy
671 operators). This operation has to be immediately preceded
672 by a `no_op'. */
673 on_failure_jump_nastyloop,
674
675 /* A smart `on_failure_jump' used for greedy * and + operators.
676 It analyses the loop before which it is put and if the
677 loop does not require backtracking, it changes itself to
678 `on_failure_keep_string_jump' and short-circuits the loop,
679 else it just defaults to changing itself into `on_failure_jump'.
680 It assumes that it is pointing to just past a `jump'. */
681 on_failure_jump_smart,
682
683 /* Followed by two-byte relative address and two-byte number n.
684 After matching N times, jump to the address upon failure.
685 Does not work if N starts at 0: use on_failure_jump_loop
686 instead. */
687 succeed_n,
688
689 /* Followed by two-byte relative address, and two-byte number n.
690 Jump to the address N times, then fail. */
691 jump_n,
692
693 /* Set the following two-byte relative address to the
694 subsequent two-byte number. The address *includes* the two
695 bytes of number. */
696 set_number_at,
697
698 wordbeg, /* Succeeds if at word beginning. */
699 wordend, /* Succeeds if at word end. */
700
701 wordbound, /* Succeeds if at a word boundary. */
702 notwordbound, /* Succeeds if not at a word boundary. */
703
704 symbeg, /* Succeeds if at symbol beginning. */
705 symend, /* Succeeds if at symbol end. */
706
707 /* Matches any character whose syntax is specified. Followed by
708 a byte which contains a syntax code, e.g., Sword. */
709 syntaxspec,
710
711 /* Matches any character whose syntax is not that specified. */
712 notsyntaxspec
713
714 #ifdef emacs
715 ,before_dot, /* Succeeds if before point. */
716 at_dot, /* Succeeds if at point. */
717 after_dot, /* Succeeds if after point. */
718
719 /* Matches any character whose category-set contains the specified
720 category. The operator is followed by a byte which contains a
721 category code (mnemonic ASCII character). */
722 categoryspec,
723
724 /* Matches any character whose category-set does not contain the
725 specified category. The operator is followed by a byte which
726 contains the category code (mnemonic ASCII character). */
727 notcategoryspec
728 #endif /* emacs */
729 } re_opcode_t;
730 \f
731 /* Common operations on the compiled pattern. */
732
733 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
734
735 #define STORE_NUMBER(destination, number) \
736 do { \
737 (destination)[0] = (number) & 0377; \
738 (destination)[1] = (number) >> 8; \
739 } while (0)
740
741 /* Same as STORE_NUMBER, except increment DESTINATION to
742 the byte after where the number is stored. Therefore, DESTINATION
743 must be an lvalue. */
744
745 #define STORE_NUMBER_AND_INCR(destination, number) \
746 do { \
747 STORE_NUMBER (destination, number); \
748 (destination) += 2; \
749 } while (0)
750
751 /* Put into DESTINATION a number stored in two contiguous bytes starting
752 at SOURCE. */
753
754 #define EXTRACT_NUMBER(destination, source) \
755 do { \
756 (destination) = *(source) & 0377; \
757 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
758 } while (0)
759
760 #ifdef DEBUG
761 static void extract_number _RE_ARGS ((int *dest, re_char *source));
762 static void
763 extract_number (dest, source)
764 int *dest;
765 re_char *source;
766 {
767 int temp = SIGN_EXTEND_CHAR (*(source + 1));
768 *dest = *source & 0377;
769 *dest += temp << 8;
770 }
771
772 # ifndef EXTRACT_MACROS /* To debug the macros. */
773 # undef EXTRACT_NUMBER
774 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
775 # endif /* not EXTRACT_MACROS */
776
777 #endif /* DEBUG */
778
779 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
780 SOURCE must be an lvalue. */
781
782 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
783 do { \
784 EXTRACT_NUMBER (destination, source); \
785 (source) += 2; \
786 } while (0)
787
788 #ifdef DEBUG
789 static void extract_number_and_incr _RE_ARGS ((int *destination,
790 re_char **source));
791 static void
792 extract_number_and_incr (destination, source)
793 int *destination;
794 re_char **source;
795 {
796 extract_number (destination, *source);
797 *source += 2;
798 }
799
800 # ifndef EXTRACT_MACROS
801 # undef EXTRACT_NUMBER_AND_INCR
802 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
803 extract_number_and_incr (&dest, &src)
804 # endif /* not EXTRACT_MACROS */
805
806 #endif /* DEBUG */
807 \f
808 /* Store a multibyte character in three contiguous bytes starting
809 DESTINATION, and increment DESTINATION to the byte after where the
810 character is stored. Therefore, DESTINATION must be an lvalue. */
811
812 #define STORE_CHARACTER_AND_INCR(destination, character) \
813 do { \
814 (destination)[0] = (character) & 0377; \
815 (destination)[1] = ((character) >> 8) & 0377; \
816 (destination)[2] = (character) >> 16; \
817 (destination) += 3; \
818 } while (0)
819
820 /* Put into DESTINATION a character stored in three contiguous bytes
821 starting at SOURCE. */
822
823 #define EXTRACT_CHARACTER(destination, source) \
824 do { \
825 (destination) = ((source)[0] \
826 | ((source)[1] << 8) \
827 | ((source)[2] << 16)); \
828 } while (0)
829
830
831 /* Macros for charset. */
832
833 /* Size of bitmap of charset P in bytes. P is a start of charset,
834 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
835 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
836
837 /* Nonzero if charset P has range table. */
838 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
839
840 /* Return the address of range table of charset P. But not the start
841 of table itself, but the before where the number of ranges is
842 stored. `2 +' means to skip re_opcode_t and size of bitmap,
843 and the 2 bytes of flags at the start of the range table. */
844 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
845
846 /* Extract the bit flags that start a range table. */
847 #define CHARSET_RANGE_TABLE_BITS(p) \
848 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
849 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
850
851 /* Test if C is listed in the bitmap of charset P. */
852 #define CHARSET_LOOKUP_BITMAP(p, c) \
853 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
854 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
855
856 /* Return the address of end of RANGE_TABLE. COUNT is number of
857 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
858 is start of range and end of range. `* 3' is size of each start
859 and end. */
860 #define CHARSET_RANGE_TABLE_END(range_table, count) \
861 ((range_table) + (count) * 2 * 3)
862
863 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
864 COUNT is number of ranges in RANGE_TABLE. */
865 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
866 do \
867 { \
868 re_wchar_t range_start, range_end; \
869 re_char *p; \
870 re_char *range_table_end \
871 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
872 \
873 for (p = (range_table); p < range_table_end; p += 2 * 3) \
874 { \
875 EXTRACT_CHARACTER (range_start, p); \
876 EXTRACT_CHARACTER (range_end, p + 3); \
877 \
878 if (range_start <= (c) && (c) <= range_end) \
879 { \
880 (not) = !(not); \
881 break; \
882 } \
883 } \
884 } \
885 while (0)
886
887 /* Test if C is in range table of CHARSET. The flag NOT is negated if
888 C is listed in it. */
889 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
890 do \
891 { \
892 /* Number of ranges in range table. */ \
893 int count; \
894 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
895 \
896 EXTRACT_NUMBER_AND_INCR (count, range_table); \
897 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
898 } \
899 while (0)
900 \f
901 /* If DEBUG is defined, Regex prints many voluminous messages about what
902 it is doing (if the variable `debug' is nonzero). If linked with the
903 main program in `iregex.c', you can enter patterns and strings
904 interactively. And if linked with the main program in `main.c' and
905 the other test files, you can run the already-written tests. */
906
907 #ifdef DEBUG
908
909 /* We use standard I/O for debugging. */
910 # include <stdio.h>
911
912 /* It is useful to test things that ``must'' be true when debugging. */
913 # include <assert.h>
914
915 static int debug = -100000;
916
917 # define DEBUG_STATEMENT(e) e
918 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
919 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
920 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
921 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
922 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
923 if (debug > 0) print_partial_compiled_pattern (s, e)
924 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
925 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
926
927
928 /* Print the fastmap in human-readable form. */
929
930 void
931 print_fastmap (fastmap)
932 char *fastmap;
933 {
934 unsigned was_a_range = 0;
935 unsigned i = 0;
936
937 while (i < (1 << BYTEWIDTH))
938 {
939 if (fastmap[i++])
940 {
941 was_a_range = 0;
942 putchar (i - 1);
943 while (i < (1 << BYTEWIDTH) && fastmap[i])
944 {
945 was_a_range = 1;
946 i++;
947 }
948 if (was_a_range)
949 {
950 printf ("-");
951 putchar (i - 1);
952 }
953 }
954 }
955 putchar ('\n');
956 }
957
958
959 /* Print a compiled pattern string in human-readable form, starting at
960 the START pointer into it and ending just before the pointer END. */
961
962 void
963 print_partial_compiled_pattern (start, end)
964 re_char *start;
965 re_char *end;
966 {
967 int mcnt, mcnt2;
968 re_char *p = start;
969 re_char *pend = end;
970
971 if (start == NULL)
972 {
973 fprintf (stderr, "(null)\n");
974 return;
975 }
976
977 /* Loop over pattern commands. */
978 while (p < pend)
979 {
980 fprintf (stderr, "%d:\t", p - start);
981
982 switch ((re_opcode_t) *p++)
983 {
984 case no_op:
985 fprintf (stderr, "/no_op");
986 break;
987
988 case succeed:
989 fprintf (stderr, "/succeed");
990 break;
991
992 case exactn:
993 mcnt = *p++;
994 fprintf (stderr, "/exactn/%d", mcnt);
995 do
996 {
997 fprintf (stderr, "/%c", *p++);
998 }
999 while (--mcnt);
1000 break;
1001
1002 case start_memory:
1003 fprintf (stderr, "/start_memory/%d", *p++);
1004 break;
1005
1006 case stop_memory:
1007 fprintf (stderr, "/stop_memory/%d", *p++);
1008 break;
1009
1010 case duplicate:
1011 fprintf (stderr, "/duplicate/%d", *p++);
1012 break;
1013
1014 case anychar:
1015 fprintf (stderr, "/anychar");
1016 break;
1017
1018 case charset:
1019 case charset_not:
1020 {
1021 register int c, last = -100;
1022 register int in_range = 0;
1023 int length = CHARSET_BITMAP_SIZE (p - 1);
1024 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1025
1026 fprintf (stderr, "/charset [%s",
1027 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1028
1029 if (p + *p >= pend)
1030 fprintf (stderr, " !extends past end of pattern! ");
1031
1032 for (c = 0; c < 256; c++)
1033 if (c / 8 < length
1034 && (p[1 + (c/8)] & (1 << (c % 8))))
1035 {
1036 /* Are we starting a range? */
1037 if (last + 1 == c && ! in_range)
1038 {
1039 fprintf (stderr, "-");
1040 in_range = 1;
1041 }
1042 /* Have we broken a range? */
1043 else if (last + 1 != c && in_range)
1044 {
1045 fprintf (stderr, "%c", last);
1046 in_range = 0;
1047 }
1048
1049 if (! in_range)
1050 fprintf (stderr, "%c", c);
1051
1052 last = c;
1053 }
1054
1055 if (in_range)
1056 fprintf (stderr, "%c", last);
1057
1058 fprintf (stderr, "]");
1059
1060 p += 1 + length;
1061
1062 if (has_range_table)
1063 {
1064 int count;
1065 fprintf (stderr, "has-range-table");
1066
1067 /* ??? Should print the range table; for now, just skip it. */
1068 p += 2; /* skip range table bits */
1069 EXTRACT_NUMBER_AND_INCR (count, p);
1070 p = CHARSET_RANGE_TABLE_END (p, count);
1071 }
1072 }
1073 break;
1074
1075 case begline:
1076 fprintf (stderr, "/begline");
1077 break;
1078
1079 case endline:
1080 fprintf (stderr, "/endline");
1081 break;
1082
1083 case on_failure_jump:
1084 extract_number_and_incr (&mcnt, &p);
1085 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1086 break;
1087
1088 case on_failure_keep_string_jump:
1089 extract_number_and_incr (&mcnt, &p);
1090 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1091 break;
1092
1093 case on_failure_jump_nastyloop:
1094 extract_number_and_incr (&mcnt, &p);
1095 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1096 break;
1097
1098 case on_failure_jump_loop:
1099 extract_number_and_incr (&mcnt, &p);
1100 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1101 break;
1102
1103 case on_failure_jump_smart:
1104 extract_number_and_incr (&mcnt, &p);
1105 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1106 break;
1107
1108 case jump:
1109 extract_number_and_incr (&mcnt, &p);
1110 fprintf (stderr, "/jump to %d", p + mcnt - start);
1111 break;
1112
1113 case succeed_n:
1114 extract_number_and_incr (&mcnt, &p);
1115 extract_number_and_incr (&mcnt2, &p);
1116 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1117 break;
1118
1119 case jump_n:
1120 extract_number_and_incr (&mcnt, &p);
1121 extract_number_and_incr (&mcnt2, &p);
1122 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1123 break;
1124
1125 case set_number_at:
1126 extract_number_and_incr (&mcnt, &p);
1127 extract_number_and_incr (&mcnt2, &p);
1128 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1129 break;
1130
1131 case wordbound:
1132 fprintf (stderr, "/wordbound");
1133 break;
1134
1135 case notwordbound:
1136 fprintf (stderr, "/notwordbound");
1137 break;
1138
1139 case wordbeg:
1140 fprintf (stderr, "/wordbeg");
1141 break;
1142
1143 case wordend:
1144 fprintf (stderr, "/wordend");
1145 break;
1146
1147 case symbeg:
1148 fprintf (stderr, "/symbeg");
1149 break;
1150
1151 case symend:
1152 fprintf (stderr, "/symend");
1153 break;
1154
1155 case syntaxspec:
1156 fprintf (stderr, "/syntaxspec");
1157 mcnt = *p++;
1158 fprintf (stderr, "/%d", mcnt);
1159 break;
1160
1161 case notsyntaxspec:
1162 fprintf (stderr, "/notsyntaxspec");
1163 mcnt = *p++;
1164 fprintf (stderr, "/%d", mcnt);
1165 break;
1166
1167 # ifdef emacs
1168 case before_dot:
1169 fprintf (stderr, "/before_dot");
1170 break;
1171
1172 case at_dot:
1173 fprintf (stderr, "/at_dot");
1174 break;
1175
1176 case after_dot:
1177 fprintf (stderr, "/after_dot");
1178 break;
1179
1180 case categoryspec:
1181 fprintf (stderr, "/categoryspec");
1182 mcnt = *p++;
1183 fprintf (stderr, "/%d", mcnt);
1184 break;
1185
1186 case notcategoryspec:
1187 fprintf (stderr, "/notcategoryspec");
1188 mcnt = *p++;
1189 fprintf (stderr, "/%d", mcnt);
1190 break;
1191 # endif /* emacs */
1192
1193 case begbuf:
1194 fprintf (stderr, "/begbuf");
1195 break;
1196
1197 case endbuf:
1198 fprintf (stderr, "/endbuf");
1199 break;
1200
1201 default:
1202 fprintf (stderr, "?%d", *(p-1));
1203 }
1204
1205 fprintf (stderr, "\n");
1206 }
1207
1208 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1209 }
1210
1211
1212 void
1213 print_compiled_pattern (bufp)
1214 struct re_pattern_buffer *bufp;
1215 {
1216 re_char *buffer = bufp->buffer;
1217
1218 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1219 printf ("%ld bytes used/%ld bytes allocated.\n",
1220 bufp->used, bufp->allocated);
1221
1222 if (bufp->fastmap_accurate && bufp->fastmap)
1223 {
1224 printf ("fastmap: ");
1225 print_fastmap (bufp->fastmap);
1226 }
1227
1228 printf ("re_nsub: %d\t", bufp->re_nsub);
1229 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1230 printf ("can_be_null: %d\t", bufp->can_be_null);
1231 printf ("no_sub: %d\t", bufp->no_sub);
1232 printf ("not_bol: %d\t", bufp->not_bol);
1233 printf ("not_eol: %d\t", bufp->not_eol);
1234 printf ("syntax: %lx\n", bufp->syntax);
1235 fflush (stdout);
1236 /* Perhaps we should print the translate table? */
1237 }
1238
1239
1240 void
1241 print_double_string (where, string1, size1, string2, size2)
1242 re_char *where;
1243 re_char *string1;
1244 re_char *string2;
1245 int size1;
1246 int size2;
1247 {
1248 int this_char;
1249
1250 if (where == NULL)
1251 printf ("(null)");
1252 else
1253 {
1254 if (FIRST_STRING_P (where))
1255 {
1256 for (this_char = where - string1; this_char < size1; this_char++)
1257 putchar (string1[this_char]);
1258
1259 where = string2;
1260 }
1261
1262 for (this_char = where - string2; this_char < size2; this_char++)
1263 putchar (string2[this_char]);
1264 }
1265 }
1266
1267 #else /* not DEBUG */
1268
1269 # undef assert
1270 # define assert(e)
1271
1272 # define DEBUG_STATEMENT(e)
1273 # define DEBUG_PRINT1(x)
1274 # define DEBUG_PRINT2(x1, x2)
1275 # define DEBUG_PRINT3(x1, x2, x3)
1276 # define DEBUG_PRINT4(x1, x2, x3, x4)
1277 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1278 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1279
1280 #endif /* not DEBUG */
1281 \f
1282 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1283 also be assigned to arbitrarily: each pattern buffer stores its own
1284 syntax, so it can be changed between regex compilations. */
1285 /* This has no initializer because initialized variables in Emacs
1286 become read-only after dumping. */
1287 reg_syntax_t re_syntax_options;
1288
1289
1290 /* Specify the precise syntax of regexps for compilation. This provides
1291 for compatibility for various utilities which historically have
1292 different, incompatible syntaxes.
1293
1294 The argument SYNTAX is a bit mask comprised of the various bits
1295 defined in regex.h. We return the old syntax. */
1296
1297 reg_syntax_t
1298 re_set_syntax (syntax)
1299 reg_syntax_t syntax;
1300 {
1301 reg_syntax_t ret = re_syntax_options;
1302
1303 re_syntax_options = syntax;
1304 return ret;
1305 }
1306 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1307
1308 /* Regexp to use to replace spaces, or NULL meaning don't. */
1309 static re_char *whitespace_regexp;
1310
1311 void
1312 re_set_whitespace_regexp (regexp)
1313 const char *regexp;
1314 {
1315 whitespace_regexp = (re_char *) regexp;
1316 }
1317 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1318 \f
1319 /* This table gives an error message for each of the error codes listed
1320 in regex.h. Obviously the order here has to be same as there.
1321 POSIX doesn't require that we do anything for REG_NOERROR,
1322 but why not be nice? */
1323
1324 static const char *re_error_msgid[] =
1325 {
1326 gettext_noop ("Success"), /* REG_NOERROR */
1327 gettext_noop ("No match"), /* REG_NOMATCH */
1328 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1329 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1330 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1331 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1332 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1333 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1334 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1335 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1336 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1337 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1338 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1339 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1340 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1341 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1342 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1343 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1344 };
1345 \f
1346 /* Avoiding alloca during matching, to placate r_alloc. */
1347
1348 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1349 searching and matching functions should not call alloca. On some
1350 systems, alloca is implemented in terms of malloc, and if we're
1351 using the relocating allocator routines, then malloc could cause a
1352 relocation, which might (if the strings being searched are in the
1353 ralloc heap) shift the data out from underneath the regexp
1354 routines.
1355
1356 Here's another reason to avoid allocation: Emacs
1357 processes input from X in a signal handler; processing X input may
1358 call malloc; if input arrives while a matching routine is calling
1359 malloc, then we're scrod. But Emacs can't just block input while
1360 calling matching routines; then we don't notice interrupts when
1361 they come in. So, Emacs blocks input around all regexp calls
1362 except the matching calls, which it leaves unprotected, in the
1363 faith that they will not malloc. */
1364
1365 /* Normally, this is fine. */
1366 #define MATCH_MAY_ALLOCATE
1367
1368 /* When using GNU C, we are not REALLY using the C alloca, no matter
1369 what config.h may say. So don't take precautions for it. */
1370 #ifdef __GNUC__
1371 # undef C_ALLOCA
1372 #endif
1373
1374 /* The match routines may not allocate if (1) they would do it with malloc
1375 and (2) it's not safe for them to use malloc.
1376 Note that if REL_ALLOC is defined, matching would not use malloc for the
1377 failure stack, but we would still use it for the register vectors;
1378 so REL_ALLOC should not affect this. */
1379 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1380 # undef MATCH_MAY_ALLOCATE
1381 #endif
1382
1383 \f
1384 /* Failure stack declarations and macros; both re_compile_fastmap and
1385 re_match_2 use a failure stack. These have to be macros because of
1386 REGEX_ALLOCATE_STACK. */
1387
1388
1389 /* Approximate number of failure points for which to initially allocate space
1390 when matching. If this number is exceeded, we allocate more
1391 space, so it is not a hard limit. */
1392 #ifndef INIT_FAILURE_ALLOC
1393 # define INIT_FAILURE_ALLOC 20
1394 #endif
1395
1396 /* Roughly the maximum number of failure points on the stack. Would be
1397 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1398 This is a variable only so users of regex can assign to it; we never
1399 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1400 before using it, so it should probably be a byte-count instead. */
1401 # if defined MATCH_MAY_ALLOCATE
1402 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1403 whose default stack limit is 2mb. In order for a larger
1404 value to work reliably, you have to try to make it accord
1405 with the process stack limit. */
1406 size_t re_max_failures = 40000;
1407 # else
1408 size_t re_max_failures = 4000;
1409 # endif
1410
1411 union fail_stack_elt
1412 {
1413 re_char *pointer;
1414 /* This should be the biggest `int' that's no bigger than a pointer. */
1415 long integer;
1416 };
1417
1418 typedef union fail_stack_elt fail_stack_elt_t;
1419
1420 typedef struct
1421 {
1422 fail_stack_elt_t *stack;
1423 size_t size;
1424 size_t avail; /* Offset of next open position. */
1425 size_t frame; /* Offset of the cur constructed frame. */
1426 } fail_stack_type;
1427
1428 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1429 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1430
1431
1432 /* Define macros to initialize and free the failure stack.
1433 Do `return -2' if the alloc fails. */
1434
1435 #ifdef MATCH_MAY_ALLOCATE
1436 # define INIT_FAIL_STACK() \
1437 do { \
1438 fail_stack.stack = (fail_stack_elt_t *) \
1439 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1440 * sizeof (fail_stack_elt_t)); \
1441 \
1442 if (fail_stack.stack == NULL) \
1443 return -2; \
1444 \
1445 fail_stack.size = INIT_FAILURE_ALLOC; \
1446 fail_stack.avail = 0; \
1447 fail_stack.frame = 0; \
1448 } while (0)
1449
1450 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1451 #else
1452 # define INIT_FAIL_STACK() \
1453 do { \
1454 fail_stack.avail = 0; \
1455 fail_stack.frame = 0; \
1456 } while (0)
1457
1458 # define RESET_FAIL_STACK() ((void)0)
1459 #endif
1460
1461
1462 /* Double the size of FAIL_STACK, up to a limit
1463 which allows approximately `re_max_failures' items.
1464
1465 Return 1 if succeeds, and 0 if either ran out of memory
1466 allocating space for it or it was already too large.
1467
1468 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1469
1470 /* Factor to increase the failure stack size by
1471 when we increase it.
1472 This used to be 2, but 2 was too wasteful
1473 because the old discarded stacks added up to as much space
1474 were as ultimate, maximum-size stack. */
1475 #define FAIL_STACK_GROWTH_FACTOR 4
1476
1477 #define GROW_FAIL_STACK(fail_stack) \
1478 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1479 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1480 ? 0 \
1481 : ((fail_stack).stack \
1482 = (fail_stack_elt_t *) \
1483 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1484 (fail_stack).size * sizeof (fail_stack_elt_t), \
1485 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1486 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1487 * FAIL_STACK_GROWTH_FACTOR))), \
1488 \
1489 (fail_stack).stack == NULL \
1490 ? 0 \
1491 : ((fail_stack).size \
1492 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1493 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1494 * FAIL_STACK_GROWTH_FACTOR)) \
1495 / sizeof (fail_stack_elt_t)), \
1496 1)))
1497
1498
1499 /* Push a pointer value onto the failure stack.
1500 Assumes the variable `fail_stack'. Probably should only
1501 be called from within `PUSH_FAILURE_POINT'. */
1502 #define PUSH_FAILURE_POINTER(item) \
1503 fail_stack.stack[fail_stack.avail++].pointer = (item)
1504
1505 /* This pushes an integer-valued item onto the failure stack.
1506 Assumes the variable `fail_stack'. Probably should only
1507 be called from within `PUSH_FAILURE_POINT'. */
1508 #define PUSH_FAILURE_INT(item) \
1509 fail_stack.stack[fail_stack.avail++].integer = (item)
1510
1511 /* Push a fail_stack_elt_t value onto the failure stack.
1512 Assumes the variable `fail_stack'. Probably should only
1513 be called from within `PUSH_FAILURE_POINT'. */
1514 #define PUSH_FAILURE_ELT(item) \
1515 fail_stack.stack[fail_stack.avail++] = (item)
1516
1517 /* These three POP... operations complement the three PUSH... operations.
1518 All assume that `fail_stack' is nonempty. */
1519 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1520 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1521 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1522
1523 /* Individual items aside from the registers. */
1524 #define NUM_NONREG_ITEMS 3
1525
1526 /* Used to examine the stack (to detect infinite loops). */
1527 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1528 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1529 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1530 #define TOP_FAILURE_HANDLE() fail_stack.frame
1531
1532
1533 #define ENSURE_FAIL_STACK(space) \
1534 while (REMAINING_AVAIL_SLOTS <= space) { \
1535 if (!GROW_FAIL_STACK (fail_stack)) \
1536 return -2; \
1537 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1538 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1539 }
1540
1541 /* Push register NUM onto the stack. */
1542 #define PUSH_FAILURE_REG(num) \
1543 do { \
1544 char *destination; \
1545 ENSURE_FAIL_STACK(3); \
1546 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1547 num, regstart[num], regend[num]); \
1548 PUSH_FAILURE_POINTER (regstart[num]); \
1549 PUSH_FAILURE_POINTER (regend[num]); \
1550 PUSH_FAILURE_INT (num); \
1551 } while (0)
1552
1553 /* Change the counter's value to VAL, but make sure that it will
1554 be reset when backtracking. */
1555 #define PUSH_NUMBER(ptr,val) \
1556 do { \
1557 char *destination; \
1558 int c; \
1559 ENSURE_FAIL_STACK(3); \
1560 EXTRACT_NUMBER (c, ptr); \
1561 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1562 PUSH_FAILURE_INT (c); \
1563 PUSH_FAILURE_POINTER (ptr); \
1564 PUSH_FAILURE_INT (-1); \
1565 STORE_NUMBER (ptr, val); \
1566 } while (0)
1567
1568 /* Pop a saved register off the stack. */
1569 #define POP_FAILURE_REG_OR_COUNT() \
1570 do { \
1571 int reg = POP_FAILURE_INT (); \
1572 if (reg == -1) \
1573 { \
1574 /* It's a counter. */ \
1575 /* Here, we discard `const', making re_match non-reentrant. */ \
1576 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1577 reg = POP_FAILURE_INT (); \
1578 STORE_NUMBER (ptr, reg); \
1579 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1580 } \
1581 else \
1582 { \
1583 regend[reg] = POP_FAILURE_POINTER (); \
1584 regstart[reg] = POP_FAILURE_POINTER (); \
1585 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1586 reg, regstart[reg], regend[reg]); \
1587 } \
1588 } while (0)
1589
1590 /* Check that we are not stuck in an infinite loop. */
1591 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1592 do { \
1593 int failure = TOP_FAILURE_HANDLE (); \
1594 /* Check for infinite matching loops */ \
1595 while (failure > 0 \
1596 && (FAILURE_STR (failure) == string_place \
1597 || FAILURE_STR (failure) == NULL)) \
1598 { \
1599 assert (FAILURE_PAT (failure) >= bufp->buffer \
1600 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1601 if (FAILURE_PAT (failure) == pat_cur) \
1602 { \
1603 cycle = 1; \
1604 break; \
1605 } \
1606 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1607 failure = NEXT_FAILURE_HANDLE(failure); \
1608 } \
1609 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1610 } while (0)
1611
1612 /* Push the information about the state we will need
1613 if we ever fail back to it.
1614
1615 Requires variables fail_stack, regstart, regend and
1616 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1617 declared.
1618
1619 Does `return FAILURE_CODE' if runs out of memory. */
1620
1621 #define PUSH_FAILURE_POINT(pattern, string_place) \
1622 do { \
1623 char *destination; \
1624 /* Must be int, so when we don't save any registers, the arithmetic \
1625 of 0 + -1 isn't done as unsigned. */ \
1626 \
1627 DEBUG_STATEMENT (nfailure_points_pushed++); \
1628 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1629 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1630 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1631 \
1632 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1633 \
1634 DEBUG_PRINT1 ("\n"); \
1635 \
1636 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1637 PUSH_FAILURE_INT (fail_stack.frame); \
1638 \
1639 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1640 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1641 DEBUG_PRINT1 ("'\n"); \
1642 PUSH_FAILURE_POINTER (string_place); \
1643 \
1644 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1645 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1646 PUSH_FAILURE_POINTER (pattern); \
1647 \
1648 /* Close the frame by moving the frame pointer past it. */ \
1649 fail_stack.frame = fail_stack.avail; \
1650 } while (0)
1651
1652 /* Estimate the size of data pushed by a typical failure stack entry.
1653 An estimate is all we need, because all we use this for
1654 is to choose a limit for how big to make the failure stack. */
1655 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1656 #define TYPICAL_FAILURE_SIZE 20
1657
1658 /* How many items can still be added to the stack without overflowing it. */
1659 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1660
1661
1662 /* Pops what PUSH_FAIL_STACK pushes.
1663
1664 We restore into the parameters, all of which should be lvalues:
1665 STR -- the saved data position.
1666 PAT -- the saved pattern position.
1667 REGSTART, REGEND -- arrays of string positions.
1668
1669 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1670 `pend', `string1', `size1', `string2', and `size2'. */
1671
1672 #define POP_FAILURE_POINT(str, pat) \
1673 do { \
1674 assert (!FAIL_STACK_EMPTY ()); \
1675 \
1676 /* Remove failure points and point to how many regs pushed. */ \
1677 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1678 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1679 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1680 \
1681 /* Pop the saved registers. */ \
1682 while (fail_stack.frame < fail_stack.avail) \
1683 POP_FAILURE_REG_OR_COUNT (); \
1684 \
1685 pat = POP_FAILURE_POINTER (); \
1686 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1687 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1688 \
1689 /* If the saved string location is NULL, it came from an \
1690 on_failure_keep_string_jump opcode, and we want to throw away the \
1691 saved NULL, thus retaining our current position in the string. */ \
1692 str = POP_FAILURE_POINTER (); \
1693 DEBUG_PRINT2 (" Popping string %p: `", str); \
1694 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1695 DEBUG_PRINT1 ("'\n"); \
1696 \
1697 fail_stack.frame = POP_FAILURE_INT (); \
1698 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1699 \
1700 assert (fail_stack.avail >= 0); \
1701 assert (fail_stack.frame <= fail_stack.avail); \
1702 \
1703 DEBUG_STATEMENT (nfailure_points_popped++); \
1704 } while (0) /* POP_FAILURE_POINT */
1705
1706
1707 \f
1708 /* Registers are set to a sentinel when they haven't yet matched. */
1709 #define REG_UNSET(e) ((e) == NULL)
1710 \f
1711 /* Subroutine declarations and macros for regex_compile. */
1712
1713 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1714 reg_syntax_t syntax,
1715 struct re_pattern_buffer *bufp));
1716 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1717 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1718 int arg1, int arg2));
1719 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1720 int arg, unsigned char *end));
1721 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1722 int arg1, int arg2, unsigned char *end));
1723 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1724 re_char *p,
1725 reg_syntax_t syntax));
1726 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1727 re_char *pend,
1728 reg_syntax_t syntax));
1729 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1730 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1731 char *fastmap, const int multibyte));
1732
1733 /* Fetch the next character in the uncompiled pattern, with no
1734 translation. */
1735 #define PATFETCH(c) \
1736 do { \
1737 int len; \
1738 if (p == pend) return REG_EEND; \
1739 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1740 p += len; \
1741 } while (0)
1742
1743
1744 /* If `translate' is non-null, return translate[D], else just D. We
1745 cast the subscript to translate because some data is declared as
1746 `char *', to avoid warnings when a string constant is passed. But
1747 when we use a character as a subscript we must make it unsigned. */
1748 #ifndef TRANSLATE
1749 # define TRANSLATE(d) \
1750 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1751 #endif
1752
1753
1754 /* Macros for outputting the compiled pattern into `buffer'. */
1755
1756 /* If the buffer isn't allocated when it comes in, use this. */
1757 #define INIT_BUF_SIZE 32
1758
1759 /* Make sure we have at least N more bytes of space in buffer. */
1760 #define GET_BUFFER_SPACE(n) \
1761 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1762 EXTEND_BUFFER ()
1763
1764 /* Make sure we have one more byte of buffer space and then add C to it. */
1765 #define BUF_PUSH(c) \
1766 do { \
1767 GET_BUFFER_SPACE (1); \
1768 *b++ = (unsigned char) (c); \
1769 } while (0)
1770
1771
1772 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1773 #define BUF_PUSH_2(c1, c2) \
1774 do { \
1775 GET_BUFFER_SPACE (2); \
1776 *b++ = (unsigned char) (c1); \
1777 *b++ = (unsigned char) (c2); \
1778 } while (0)
1779
1780
1781 /* As with BUF_PUSH_2, except for three bytes. */
1782 #define BUF_PUSH_3(c1, c2, c3) \
1783 do { \
1784 GET_BUFFER_SPACE (3); \
1785 *b++ = (unsigned char) (c1); \
1786 *b++ = (unsigned char) (c2); \
1787 *b++ = (unsigned char) (c3); \
1788 } while (0)
1789
1790
1791 /* Store a jump with opcode OP at LOC to location TO. We store a
1792 relative address offset by the three bytes the jump itself occupies. */
1793 #define STORE_JUMP(op, loc, to) \
1794 store_op1 (op, loc, (to) - (loc) - 3)
1795
1796 /* Likewise, for a two-argument jump. */
1797 #define STORE_JUMP2(op, loc, to, arg) \
1798 store_op2 (op, loc, (to) - (loc) - 3, arg)
1799
1800 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1801 #define INSERT_JUMP(op, loc, to) \
1802 insert_op1 (op, loc, (to) - (loc) - 3, b)
1803
1804 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1805 #define INSERT_JUMP2(op, loc, to, arg) \
1806 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1807
1808
1809 /* This is not an arbitrary limit: the arguments which represent offsets
1810 into the pattern are two bytes long. So if 2^15 bytes turns out to
1811 be too small, many things would have to change. */
1812 # define MAX_BUF_SIZE (1L << 15)
1813
1814 #if 0 /* This is when we thought it could be 2^16 bytes. */
1815 /* Any other compiler which, like MSC, has allocation limit below 2^16
1816 bytes will have to use approach similar to what was done below for
1817 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1818 reallocating to 0 bytes. Such thing is not going to work too well.
1819 You have been warned!! */
1820 #if defined _MSC_VER && !defined WIN32
1821 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1822 # define MAX_BUF_SIZE 65500L
1823 #else
1824 # define MAX_BUF_SIZE (1L << 16)
1825 #endif
1826 #endif /* 0 */
1827
1828 /* Extend the buffer by twice its current size via realloc and
1829 reset the pointers that pointed into the old block to point to the
1830 correct places in the new one. If extending the buffer results in it
1831 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1832 #if __BOUNDED_POINTERS__
1833 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1834 # define MOVE_BUFFER_POINTER(P) \
1835 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1836 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1837 else \
1838 { \
1839 SET_HIGH_BOUND (b); \
1840 SET_HIGH_BOUND (begalt); \
1841 if (fixup_alt_jump) \
1842 SET_HIGH_BOUND (fixup_alt_jump); \
1843 if (laststart) \
1844 SET_HIGH_BOUND (laststart); \
1845 if (pending_exact) \
1846 SET_HIGH_BOUND (pending_exact); \
1847 }
1848 #else
1849 # define MOVE_BUFFER_POINTER(P) (P) += incr
1850 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1851 #endif
1852 #define EXTEND_BUFFER() \
1853 do { \
1854 re_char *old_buffer = bufp->buffer; \
1855 if (bufp->allocated == MAX_BUF_SIZE) \
1856 return REG_ESIZE; \
1857 bufp->allocated <<= 1; \
1858 if (bufp->allocated > MAX_BUF_SIZE) \
1859 bufp->allocated = MAX_BUF_SIZE; \
1860 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1861 if (bufp->buffer == NULL) \
1862 return REG_ESPACE; \
1863 /* If the buffer moved, move all the pointers into it. */ \
1864 if (old_buffer != bufp->buffer) \
1865 { \
1866 int incr = bufp->buffer - old_buffer; \
1867 MOVE_BUFFER_POINTER (b); \
1868 MOVE_BUFFER_POINTER (begalt); \
1869 if (fixup_alt_jump) \
1870 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1871 if (laststart) \
1872 MOVE_BUFFER_POINTER (laststart); \
1873 if (pending_exact) \
1874 MOVE_BUFFER_POINTER (pending_exact); \
1875 } \
1876 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1877 } while (0)
1878
1879
1880 /* Since we have one byte reserved for the register number argument to
1881 {start,stop}_memory, the maximum number of groups we can report
1882 things about is what fits in that byte. */
1883 #define MAX_REGNUM 255
1884
1885 /* But patterns can have more than `MAX_REGNUM' registers. We just
1886 ignore the excess. */
1887 typedef int regnum_t;
1888
1889
1890 /* Macros for the compile stack. */
1891
1892 /* Since offsets can go either forwards or backwards, this type needs to
1893 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1894 /* int may be not enough when sizeof(int) == 2. */
1895 typedef long pattern_offset_t;
1896
1897 typedef struct
1898 {
1899 pattern_offset_t begalt_offset;
1900 pattern_offset_t fixup_alt_jump;
1901 pattern_offset_t laststart_offset;
1902 regnum_t regnum;
1903 } compile_stack_elt_t;
1904
1905
1906 typedef struct
1907 {
1908 compile_stack_elt_t *stack;
1909 unsigned size;
1910 unsigned avail; /* Offset of next open position. */
1911 } compile_stack_type;
1912
1913
1914 #define INIT_COMPILE_STACK_SIZE 32
1915
1916 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1917 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1918
1919 /* The next available element. */
1920 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1921
1922 /* Explicit quit checking is only used on NTemacs and whenever we
1923 use polling to process input events. */
1924 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1925 extern int immediate_quit;
1926 # define IMMEDIATE_QUIT_CHECK \
1927 do { \
1928 if (immediate_quit) QUIT; \
1929 } while (0)
1930 #else
1931 # define IMMEDIATE_QUIT_CHECK ((void)0)
1932 #endif
1933 \f
1934 /* Structure to manage work area for range table. */
1935 struct range_table_work_area
1936 {
1937 int *table; /* actual work area. */
1938 int allocated; /* allocated size for work area in bytes. */
1939 int used; /* actually used size in words. */
1940 int bits; /* flag to record character classes */
1941 };
1942
1943 /* Make sure that WORK_AREA can hold more N multibyte characters.
1944 This is used only in set_image_of_range and set_image_of_range_1.
1945 It expects WORK_AREA to be a pointer.
1946 If it can't get the space, it returns from the surrounding function. */
1947
1948 #define EXTEND_RANGE_TABLE(work_area, n) \
1949 do { \
1950 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1951 { \
1952 extend_range_table_work_area (work_area); \
1953 if ((work_area)->table == 0) \
1954 return (REG_ESPACE); \
1955 } \
1956 } while (0)
1957
1958 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1959 (work_area).bits |= (bit)
1960
1961 /* Bits used to implement the multibyte-part of the various character classes
1962 such as [:alnum:] in a charset's range table. */
1963 #define BIT_WORD 0x1
1964 #define BIT_LOWER 0x2
1965 #define BIT_PUNCT 0x4
1966 #define BIT_SPACE 0x8
1967 #define BIT_UPPER 0x10
1968 #define BIT_MULTIBYTE 0x20
1969
1970 /* Set a range START..END to WORK_AREA.
1971 The range is passed through TRANSLATE, so START and END
1972 should be untranslated. */
1973 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1974 do { \
1975 int tem; \
1976 tem = set_image_of_range (&work_area, start, end, translate); \
1977 if (tem > 0) \
1978 FREE_STACK_RETURN (tem); \
1979 } while (0)
1980
1981 /* Free allocated memory for WORK_AREA. */
1982 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1983 do { \
1984 if ((work_area).table) \
1985 free ((work_area).table); \
1986 } while (0)
1987
1988 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1989 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1990 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1991 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1992 \f
1993
1994 /* Set the bit for character C in a list. */
1995 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1996
1997
1998 /* Get the next unsigned number in the uncompiled pattern. */
1999 #define GET_UNSIGNED_NUMBER(num) \
2000 do { \
2001 if (p == pend) \
2002 FREE_STACK_RETURN (REG_EBRACE); \
2003 else \
2004 { \
2005 PATFETCH (c); \
2006 while ('0' <= c && c <= '9') \
2007 { \
2008 int prev; \
2009 if (num < 0) \
2010 num = 0; \
2011 prev = num; \
2012 num = num * 10 + c - '0'; \
2013 if (num / 10 != prev) \
2014 FREE_STACK_RETURN (REG_BADBR); \
2015 if (p == pend) \
2016 FREE_STACK_RETURN (REG_EBRACE); \
2017 PATFETCH (c); \
2018 } \
2019 } \
2020 } while (0)
2021 \f
2022 #if ! WIDE_CHAR_SUPPORT
2023
2024 /* Map a string to the char class it names (if any). */
2025 re_wctype_t
2026 re_wctype (str)
2027 re_char *str;
2028 {
2029 const char *string = str;
2030 if (STREQ (string, "alnum")) return RECC_ALNUM;
2031 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2032 else if (STREQ (string, "word")) return RECC_WORD;
2033 else if (STREQ (string, "ascii")) return RECC_ASCII;
2034 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2035 else if (STREQ (string, "graph")) return RECC_GRAPH;
2036 else if (STREQ (string, "lower")) return RECC_LOWER;
2037 else if (STREQ (string, "print")) return RECC_PRINT;
2038 else if (STREQ (string, "punct")) return RECC_PUNCT;
2039 else if (STREQ (string, "space")) return RECC_SPACE;
2040 else if (STREQ (string, "upper")) return RECC_UPPER;
2041 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2042 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2043 else if (STREQ (string, "digit")) return RECC_DIGIT;
2044 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2045 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2046 else if (STREQ (string, "blank")) return RECC_BLANK;
2047 else return 0;
2048 }
2049
2050 /* True iff CH is in the char class CC. */
2051 boolean
2052 re_iswctype (ch, cc)
2053 int ch;
2054 re_wctype_t cc;
2055 {
2056 switch (cc)
2057 {
2058 case RECC_ALNUM: return ISALNUM (ch);
2059 case RECC_ALPHA: return ISALPHA (ch);
2060 case RECC_BLANK: return ISBLANK (ch);
2061 case RECC_CNTRL: return ISCNTRL (ch);
2062 case RECC_DIGIT: return ISDIGIT (ch);
2063 case RECC_GRAPH: return ISGRAPH (ch);
2064 case RECC_LOWER: return ISLOWER (ch);
2065 case RECC_PRINT: return ISPRINT (ch);
2066 case RECC_PUNCT: return ISPUNCT (ch);
2067 case RECC_SPACE: return ISSPACE (ch);
2068 case RECC_UPPER: return ISUPPER (ch);
2069 case RECC_XDIGIT: return ISXDIGIT (ch);
2070 case RECC_ASCII: return IS_REAL_ASCII (ch);
2071 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2072 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2073 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2074 case RECC_WORD: return ISWORD (ch);
2075 case RECC_ERROR: return false;
2076 default:
2077 abort();
2078 }
2079 }
2080
2081 /* Return a bit-pattern to use in the range-table bits to match multibyte
2082 chars of class CC. */
2083 static int
2084 re_wctype_to_bit (cc)
2085 re_wctype_t cc;
2086 {
2087 switch (cc)
2088 {
2089 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2090 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2091 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2092 case RECC_LOWER: return BIT_LOWER;
2093 case RECC_UPPER: return BIT_UPPER;
2094 case RECC_PUNCT: return BIT_PUNCT;
2095 case RECC_SPACE: return BIT_SPACE;
2096 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2097 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2098 default:
2099 abort();
2100 }
2101 }
2102 #endif
2103 \f
2104 /* Filling in the work area of a range. */
2105
2106 /* Actually extend the space in WORK_AREA. */
2107
2108 static void
2109 extend_range_table_work_area (work_area)
2110 struct range_table_work_area *work_area;
2111 {
2112 work_area->allocated += 16 * sizeof (int);
2113 if (work_area->table)
2114 work_area->table
2115 = (int *) realloc (work_area->table, work_area->allocated);
2116 else
2117 work_area->table
2118 = (int *) malloc (work_area->allocated);
2119 }
2120
2121 #ifdef emacs
2122
2123 /* Carefully find the ranges of codes that are equivalent
2124 under case conversion to the range start..end when passed through
2125 TRANSLATE. Handle the case where non-letters can come in between
2126 two upper-case letters (which happens in Latin-1).
2127 Also handle the case of groups of more than 2 case-equivalent chars.
2128
2129 The basic method is to look at consecutive characters and see
2130 if they can form a run that can be handled as one.
2131
2132 Returns -1 if successful, REG_ESPACE if ran out of space. */
2133
2134 static int
2135 set_image_of_range_1 (work_area, start, end, translate)
2136 RE_TRANSLATE_TYPE translate;
2137 struct range_table_work_area *work_area;
2138 re_wchar_t start, end;
2139 {
2140 /* `one_case' indicates a character, or a run of characters,
2141 each of which is an isolate (no case-equivalents).
2142 This includes all ASCII non-letters.
2143
2144 `two_case' indicates a character, or a run of characters,
2145 each of which has two case-equivalent forms.
2146 This includes all ASCII letters.
2147
2148 `strange' indicates a character that has more than one
2149 case-equivalent. */
2150
2151 enum case_type {one_case, two_case, strange};
2152
2153 /* Describe the run that is in progress,
2154 which the next character can try to extend.
2155 If run_type is strange, that means there really is no run.
2156 If run_type is one_case, then run_start...run_end is the run.
2157 If run_type is two_case, then the run is run_start...run_end,
2158 and the case-equivalents end at run_eqv_end. */
2159
2160 enum case_type run_type = strange;
2161 int run_start, run_end, run_eqv_end;
2162
2163 Lisp_Object eqv_table;
2164
2165 if (!RE_TRANSLATE_P (translate))
2166 {
2167 EXTEND_RANGE_TABLE (work_area, 2);
2168 work_area->table[work_area->used++] = (start);
2169 work_area->table[work_area->used++] = (end);
2170 return -1;
2171 }
2172
2173 eqv_table = XCHAR_TABLE (translate)->extras[2];
2174
2175 for (; start <= end; start++)
2176 {
2177 enum case_type this_type;
2178 int eqv = RE_TRANSLATE (eqv_table, start);
2179 int minchar, maxchar;
2180
2181 /* Classify this character */
2182 if (eqv == start)
2183 this_type = one_case;
2184 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2185 this_type = two_case;
2186 else
2187 this_type = strange;
2188
2189 if (start < eqv)
2190 minchar = start, maxchar = eqv;
2191 else
2192 minchar = eqv, maxchar = start;
2193
2194 /* Can this character extend the run in progress? */
2195 if (this_type == strange || this_type != run_type
2196 || !(minchar == run_end + 1
2197 && (run_type == two_case
2198 ? maxchar == run_eqv_end + 1 : 1)))
2199 {
2200 /* No, end the run.
2201 Record each of its equivalent ranges. */
2202 if (run_type == one_case)
2203 {
2204 EXTEND_RANGE_TABLE (work_area, 2);
2205 work_area->table[work_area->used++] = run_start;
2206 work_area->table[work_area->used++] = run_end;
2207 }
2208 else if (run_type == two_case)
2209 {
2210 EXTEND_RANGE_TABLE (work_area, 4);
2211 work_area->table[work_area->used++] = run_start;
2212 work_area->table[work_area->used++] = run_end;
2213 work_area->table[work_area->used++]
2214 = RE_TRANSLATE (eqv_table, run_start);
2215 work_area->table[work_area->used++]
2216 = RE_TRANSLATE (eqv_table, run_end);
2217 }
2218 run_type = strange;
2219 }
2220
2221 if (this_type == strange)
2222 {
2223 /* For a strange character, add each of its equivalents, one
2224 by one. Don't start a range. */
2225 do
2226 {
2227 EXTEND_RANGE_TABLE (work_area, 2);
2228 work_area->table[work_area->used++] = eqv;
2229 work_area->table[work_area->used++] = eqv;
2230 eqv = RE_TRANSLATE (eqv_table, eqv);
2231 }
2232 while (eqv != start);
2233 }
2234
2235 /* Add this char to the run, or start a new run. */
2236 else if (run_type == strange)
2237 {
2238 /* Initialize a new range. */
2239 run_type = this_type;
2240 run_start = start;
2241 run_end = start;
2242 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2243 }
2244 else
2245 {
2246 /* Extend a running range. */
2247 run_end = minchar;
2248 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2249 }
2250 }
2251
2252 /* If a run is still in progress at the end, finish it now
2253 by recording its equivalent ranges. */
2254 if (run_type == one_case)
2255 {
2256 EXTEND_RANGE_TABLE (work_area, 2);
2257 work_area->table[work_area->used++] = run_start;
2258 work_area->table[work_area->used++] = run_end;
2259 }
2260 else if (run_type == two_case)
2261 {
2262 EXTEND_RANGE_TABLE (work_area, 4);
2263 work_area->table[work_area->used++] = run_start;
2264 work_area->table[work_area->used++] = run_end;
2265 work_area->table[work_area->used++]
2266 = RE_TRANSLATE (eqv_table, run_start);
2267 work_area->table[work_area->used++]
2268 = RE_TRANSLATE (eqv_table, run_end);
2269 }
2270
2271 return -1;
2272 }
2273
2274 #endif /* emacs */
2275
2276 /* Record the the image of the range start..end when passed through
2277 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2278 and is not even necessarily contiguous.
2279 Normally we approximate it with the smallest contiguous range that contains
2280 all the chars we need. However, for Latin-1 we go to extra effort
2281 to do a better job.
2282
2283 This function is not called for ASCII ranges.
2284
2285 Returns -1 if successful, REG_ESPACE if ran out of space. */
2286
2287 static int
2288 set_image_of_range (work_area, start, end, translate)
2289 RE_TRANSLATE_TYPE translate;
2290 struct range_table_work_area *work_area;
2291 re_wchar_t start, end;
2292 {
2293 re_wchar_t cmin, cmax;
2294
2295 #ifdef emacs
2296 /* For Latin-1 ranges, use set_image_of_range_1
2297 to get proper handling of ranges that include letters and nonletters.
2298 For a range that includes the whole of Latin-1, this is not necessary.
2299 For other character sets, we don't bother to get this right. */
2300 if (RE_TRANSLATE_P (translate) && start < 04400
2301 && !(start < 04200 && end >= 04377))
2302 {
2303 int newend;
2304 int tem;
2305 newend = end;
2306 if (newend > 04377)
2307 newend = 04377;
2308 tem = set_image_of_range_1 (work_area, start, newend, translate);
2309 if (tem > 0)
2310 return tem;
2311
2312 start = 04400;
2313 if (end < 04400)
2314 return -1;
2315 }
2316 #endif
2317
2318 EXTEND_RANGE_TABLE (work_area, 2);
2319 work_area->table[work_area->used++] = (start);
2320 work_area->table[work_area->used++] = (end);
2321
2322 cmin = -1, cmax = -1;
2323
2324 if (RE_TRANSLATE_P (translate))
2325 {
2326 int ch;
2327
2328 for (ch = start; ch <= end; ch++)
2329 {
2330 re_wchar_t c = TRANSLATE (ch);
2331 if (! (start <= c && c <= end))
2332 {
2333 if (cmin == -1)
2334 cmin = c, cmax = c;
2335 else
2336 {
2337 cmin = MIN (cmin, c);
2338 cmax = MAX (cmax, c);
2339 }
2340 }
2341 }
2342
2343 if (cmin != -1)
2344 {
2345 EXTEND_RANGE_TABLE (work_area, 2);
2346 work_area->table[work_area->used++] = (cmin);
2347 work_area->table[work_area->used++] = (cmax);
2348 }
2349 }
2350
2351 return -1;
2352 }
2353 \f
2354 #ifndef MATCH_MAY_ALLOCATE
2355
2356 /* If we cannot allocate large objects within re_match_2_internal,
2357 we make the fail stack and register vectors global.
2358 The fail stack, we grow to the maximum size when a regexp
2359 is compiled.
2360 The register vectors, we adjust in size each time we
2361 compile a regexp, according to the number of registers it needs. */
2362
2363 static fail_stack_type fail_stack;
2364
2365 /* Size with which the following vectors are currently allocated.
2366 That is so we can make them bigger as needed,
2367 but never make them smaller. */
2368 static int regs_allocated_size;
2369
2370 static re_char ** regstart, ** regend;
2371 static re_char **best_regstart, **best_regend;
2372
2373 /* Make the register vectors big enough for NUM_REGS registers,
2374 but don't make them smaller. */
2375
2376 static
2377 regex_grow_registers (num_regs)
2378 int num_regs;
2379 {
2380 if (num_regs > regs_allocated_size)
2381 {
2382 RETALLOC_IF (regstart, num_regs, re_char *);
2383 RETALLOC_IF (regend, num_regs, re_char *);
2384 RETALLOC_IF (best_regstart, num_regs, re_char *);
2385 RETALLOC_IF (best_regend, num_regs, re_char *);
2386
2387 regs_allocated_size = num_regs;
2388 }
2389 }
2390
2391 #endif /* not MATCH_MAY_ALLOCATE */
2392 \f
2393 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2394 compile_stack,
2395 regnum_t regnum));
2396
2397 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2398 Returns one of error codes defined in `regex.h', or zero for success.
2399
2400 Assumes the `allocated' (and perhaps `buffer') and `translate'
2401 fields are set in BUFP on entry.
2402
2403 If it succeeds, results are put in BUFP (if it returns an error, the
2404 contents of BUFP are undefined):
2405 `buffer' is the compiled pattern;
2406 `syntax' is set to SYNTAX;
2407 `used' is set to the length of the compiled pattern;
2408 `fastmap_accurate' is zero;
2409 `re_nsub' is the number of subexpressions in PATTERN;
2410 `not_bol' and `not_eol' are zero;
2411
2412 The `fastmap' field is neither examined nor set. */
2413
2414 /* Insert the `jump' from the end of last alternative to "here".
2415 The space for the jump has already been allocated. */
2416 #define FIXUP_ALT_JUMP() \
2417 do { \
2418 if (fixup_alt_jump) \
2419 STORE_JUMP (jump, fixup_alt_jump, b); \
2420 } while (0)
2421
2422
2423 /* Return, freeing storage we allocated. */
2424 #define FREE_STACK_RETURN(value) \
2425 do { \
2426 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2427 free (compile_stack.stack); \
2428 return value; \
2429 } while (0)
2430
2431 static reg_errcode_t
2432 regex_compile (pattern, size, syntax, bufp)
2433 re_char *pattern;
2434 size_t size;
2435 reg_syntax_t syntax;
2436 struct re_pattern_buffer *bufp;
2437 {
2438 /* We fetch characters from PATTERN here. */
2439 register re_wchar_t c, c1;
2440
2441 /* A random temporary spot in PATTERN. */
2442 re_char *p1;
2443
2444 /* Points to the end of the buffer, where we should append. */
2445 register unsigned char *b;
2446
2447 /* Keeps track of unclosed groups. */
2448 compile_stack_type compile_stack;
2449
2450 /* Points to the current (ending) position in the pattern. */
2451 #ifdef AIX
2452 /* `const' makes AIX compiler fail. */
2453 unsigned char *p = pattern;
2454 #else
2455 re_char *p = pattern;
2456 #endif
2457 re_char *pend = pattern + size;
2458
2459 /* How to translate the characters in the pattern. */
2460 RE_TRANSLATE_TYPE translate = bufp->translate;
2461
2462 /* Address of the count-byte of the most recently inserted `exactn'
2463 command. This makes it possible to tell if a new exact-match
2464 character can be added to that command or if the character requires
2465 a new `exactn' command. */
2466 unsigned char *pending_exact = 0;
2467
2468 /* Address of start of the most recently finished expression.
2469 This tells, e.g., postfix * where to find the start of its
2470 operand. Reset at the beginning of groups and alternatives. */
2471 unsigned char *laststart = 0;
2472
2473 /* Address of beginning of regexp, or inside of last group. */
2474 unsigned char *begalt;
2475
2476 /* Place in the uncompiled pattern (i.e., the {) to
2477 which to go back if the interval is invalid. */
2478 re_char *beg_interval;
2479
2480 /* Address of the place where a forward jump should go to the end of
2481 the containing expression. Each alternative of an `or' -- except the
2482 last -- ends with a forward jump of this sort. */
2483 unsigned char *fixup_alt_jump = 0;
2484
2485 /* Counts open-groups as they are encountered. Remembered for the
2486 matching close-group on the compile stack, so the same register
2487 number is put in the stop_memory as the start_memory. */
2488 regnum_t regnum = 0;
2489
2490 /* Work area for range table of charset. */
2491 struct range_table_work_area range_table_work;
2492
2493 /* If the object matched can contain multibyte characters. */
2494 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2495
2496 /* Nonzero if we have pushed down into a subpattern. */
2497 int in_subpattern = 0;
2498
2499 /* These hold the values of p, pattern, and pend from the main
2500 pattern when we have pushed into a subpattern. */
2501 re_char *main_p;
2502 re_char *main_pattern;
2503 re_char *main_pend;
2504
2505 #ifdef DEBUG
2506 debug++;
2507 DEBUG_PRINT1 ("\nCompiling pattern: ");
2508 if (debug > 0)
2509 {
2510 unsigned debug_count;
2511
2512 for (debug_count = 0; debug_count < size; debug_count++)
2513 putchar (pattern[debug_count]);
2514 putchar ('\n');
2515 }
2516 #endif /* DEBUG */
2517
2518 /* Initialize the compile stack. */
2519 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2520 if (compile_stack.stack == NULL)
2521 return REG_ESPACE;
2522
2523 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2524 compile_stack.avail = 0;
2525
2526 range_table_work.table = 0;
2527 range_table_work.allocated = 0;
2528
2529 /* Initialize the pattern buffer. */
2530 bufp->syntax = syntax;
2531 bufp->fastmap_accurate = 0;
2532 bufp->not_bol = bufp->not_eol = 0;
2533
2534 /* Set `used' to zero, so that if we return an error, the pattern
2535 printer (for debugging) will think there's no pattern. We reset it
2536 at the end. */
2537 bufp->used = 0;
2538
2539 /* Always count groups, whether or not bufp->no_sub is set. */
2540 bufp->re_nsub = 0;
2541
2542 #if !defined emacs && !defined SYNTAX_TABLE
2543 /* Initialize the syntax table. */
2544 init_syntax_once ();
2545 #endif
2546
2547 if (bufp->allocated == 0)
2548 {
2549 if (bufp->buffer)
2550 { /* If zero allocated, but buffer is non-null, try to realloc
2551 enough space. This loses if buffer's address is bogus, but
2552 that is the user's responsibility. */
2553 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2554 }
2555 else
2556 { /* Caller did not allocate a buffer. Do it for them. */
2557 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2558 }
2559 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2560
2561 bufp->allocated = INIT_BUF_SIZE;
2562 }
2563
2564 begalt = b = bufp->buffer;
2565
2566 /* Loop through the uncompiled pattern until we're at the end. */
2567 while (1)
2568 {
2569 if (p == pend)
2570 {
2571 /* If this is the end of an included regexp,
2572 pop back to the main regexp and try again. */
2573 if (in_subpattern)
2574 {
2575 in_subpattern = 0;
2576 pattern = main_pattern;
2577 p = main_p;
2578 pend = main_pend;
2579 continue;
2580 }
2581 /* If this is the end of the main regexp, we are done. */
2582 break;
2583 }
2584
2585 PATFETCH (c);
2586
2587 switch (c)
2588 {
2589 case ' ':
2590 {
2591 re_char *p1 = p;
2592
2593 /* If there's no special whitespace regexp, treat
2594 spaces normally. And don't try to do this recursively. */
2595 if (!whitespace_regexp || in_subpattern)
2596 goto normal_char;
2597
2598 /* Peek past following spaces. */
2599 while (p1 != pend)
2600 {
2601 if (*p1 != ' ')
2602 break;
2603 p1++;
2604 }
2605 /* If the spaces are followed by a repetition op,
2606 treat them normally. */
2607 if (p1 != pend
2608 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2609 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2610 goto normal_char;
2611
2612 /* Replace the spaces with the whitespace regexp. */
2613 in_subpattern = 1;
2614 main_p = p1;
2615 main_pend = pend;
2616 main_pattern = pattern;
2617 p = pattern = whitespace_regexp;
2618 pend = p + strlen (p);
2619 break;
2620 }
2621
2622 case '^':
2623 {
2624 if ( /* If at start of pattern, it's an operator. */
2625 p == pattern + 1
2626 /* If context independent, it's an operator. */
2627 || syntax & RE_CONTEXT_INDEP_ANCHORS
2628 /* Otherwise, depends on what's come before. */
2629 || at_begline_loc_p (pattern, p, syntax))
2630 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2631 else
2632 goto normal_char;
2633 }
2634 break;
2635
2636
2637 case '$':
2638 {
2639 if ( /* If at end of pattern, it's an operator. */
2640 p == pend
2641 /* If context independent, it's an operator. */
2642 || syntax & RE_CONTEXT_INDEP_ANCHORS
2643 /* Otherwise, depends on what's next. */
2644 || at_endline_loc_p (p, pend, syntax))
2645 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2646 else
2647 goto normal_char;
2648 }
2649 break;
2650
2651
2652 case '+':
2653 case '?':
2654 if ((syntax & RE_BK_PLUS_QM)
2655 || (syntax & RE_LIMITED_OPS))
2656 goto normal_char;
2657 handle_plus:
2658 case '*':
2659 /* If there is no previous pattern... */
2660 if (!laststart)
2661 {
2662 if (syntax & RE_CONTEXT_INVALID_OPS)
2663 FREE_STACK_RETURN (REG_BADRPT);
2664 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2665 goto normal_char;
2666 }
2667
2668 {
2669 /* 1 means zero (many) matches is allowed. */
2670 boolean zero_times_ok = 0, many_times_ok = 0;
2671 boolean greedy = 1;
2672
2673 /* If there is a sequence of repetition chars, collapse it
2674 down to just one (the right one). We can't combine
2675 interval operators with these because of, e.g., `a{2}*',
2676 which should only match an even number of `a's. */
2677
2678 for (;;)
2679 {
2680 if ((syntax & RE_FRUGAL)
2681 && c == '?' && (zero_times_ok || many_times_ok))
2682 greedy = 0;
2683 else
2684 {
2685 zero_times_ok |= c != '+';
2686 many_times_ok |= c != '?';
2687 }
2688
2689 if (p == pend)
2690 break;
2691 else if (*p == '*'
2692 || (!(syntax & RE_BK_PLUS_QM)
2693 && (*p == '+' || *p == '?')))
2694 ;
2695 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2696 {
2697 if (p+1 == pend)
2698 FREE_STACK_RETURN (REG_EESCAPE);
2699 if (p[1] == '+' || p[1] == '?')
2700 PATFETCH (c); /* Gobble up the backslash. */
2701 else
2702 break;
2703 }
2704 else
2705 break;
2706 /* If we get here, we found another repeat character. */
2707 PATFETCH (c);
2708 }
2709
2710 /* Star, etc. applied to an empty pattern is equivalent
2711 to an empty pattern. */
2712 if (!laststart || laststart == b)
2713 break;
2714
2715 /* Now we know whether or not zero matches is allowed
2716 and also whether or not two or more matches is allowed. */
2717 if (greedy)
2718 {
2719 if (many_times_ok)
2720 {
2721 boolean simple = skip_one_char (laststart) == b;
2722 unsigned int startoffset = 0;
2723 re_opcode_t ofj =
2724 /* Check if the loop can match the empty string. */
2725 (simple || !analyse_first (laststart, b, NULL, 0))
2726 ? on_failure_jump : on_failure_jump_loop;
2727 assert (skip_one_char (laststart) <= b);
2728
2729 if (!zero_times_ok && simple)
2730 { /* Since simple * loops can be made faster by using
2731 on_failure_keep_string_jump, we turn simple P+
2732 into PP* if P is simple. */
2733 unsigned char *p1, *p2;
2734 startoffset = b - laststart;
2735 GET_BUFFER_SPACE (startoffset);
2736 p1 = b; p2 = laststart;
2737 while (p2 < p1)
2738 *b++ = *p2++;
2739 zero_times_ok = 1;
2740 }
2741
2742 GET_BUFFER_SPACE (6);
2743 if (!zero_times_ok)
2744 /* A + loop. */
2745 STORE_JUMP (ofj, b, b + 6);
2746 else
2747 /* Simple * loops can use on_failure_keep_string_jump
2748 depending on what follows. But since we don't know
2749 that yet, we leave the decision up to
2750 on_failure_jump_smart. */
2751 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2752 laststart + startoffset, b + 6);
2753 b += 3;
2754 STORE_JUMP (jump, b, laststart + startoffset);
2755 b += 3;
2756 }
2757 else
2758 {
2759 /* A simple ? pattern. */
2760 assert (zero_times_ok);
2761 GET_BUFFER_SPACE (3);
2762 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2763 b += 3;
2764 }
2765 }
2766 else /* not greedy */
2767 { /* I wish the greedy and non-greedy cases could be merged. */
2768
2769 GET_BUFFER_SPACE (7); /* We might use less. */
2770 if (many_times_ok)
2771 {
2772 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2773
2774 /* The non-greedy multiple match looks like
2775 a repeat..until: we only need a conditional jump
2776 at the end of the loop. */
2777 if (emptyp) BUF_PUSH (no_op);
2778 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2779 : on_failure_jump, b, laststart);
2780 b += 3;
2781 if (zero_times_ok)
2782 {
2783 /* The repeat...until naturally matches one or more.
2784 To also match zero times, we need to first jump to
2785 the end of the loop (its conditional jump). */
2786 INSERT_JUMP (jump, laststart, b);
2787 b += 3;
2788 }
2789 }
2790 else
2791 {
2792 /* non-greedy a?? */
2793 INSERT_JUMP (jump, laststart, b + 3);
2794 b += 3;
2795 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2796 b += 3;
2797 }
2798 }
2799 }
2800 pending_exact = 0;
2801 break;
2802
2803
2804 case '.':
2805 laststart = b;
2806 BUF_PUSH (anychar);
2807 break;
2808
2809
2810 case '[':
2811 {
2812 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2813
2814 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2815
2816 /* Ensure that we have enough space to push a charset: the
2817 opcode, the length count, and the bitset; 34 bytes in all. */
2818 GET_BUFFER_SPACE (34);
2819
2820 laststart = b;
2821
2822 /* We test `*p == '^' twice, instead of using an if
2823 statement, so we only need one BUF_PUSH. */
2824 BUF_PUSH (*p == '^' ? charset_not : charset);
2825 if (*p == '^')
2826 p++;
2827
2828 /* Remember the first position in the bracket expression. */
2829 p1 = p;
2830
2831 /* Push the number of bytes in the bitmap. */
2832 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2833
2834 /* Clear the whole map. */
2835 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2836
2837 /* charset_not matches newline according to a syntax bit. */
2838 if ((re_opcode_t) b[-2] == charset_not
2839 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2840 SET_LIST_BIT ('\n');
2841
2842 /* Read in characters and ranges, setting map bits. */
2843 for (;;)
2844 {
2845 boolean escaped_char = false;
2846 const unsigned char *p2 = p;
2847
2848 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2849
2850 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2851 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2852 So the translation is done later in a loop. Example:
2853 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2854 PATFETCH (c);
2855
2856 /* \ might escape characters inside [...] and [^...]. */
2857 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2858 {
2859 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2860
2861 PATFETCH (c);
2862 escaped_char = true;
2863 }
2864 else
2865 {
2866 /* Could be the end of the bracket expression. If it's
2867 not (i.e., when the bracket expression is `[]' so
2868 far), the ']' character bit gets set way below. */
2869 if (c == ']' && p2 != p1)
2870 break;
2871 }
2872
2873 /* What should we do for the character which is
2874 greater than 0x7F, but not BASE_LEADING_CODE_P?
2875 XXX */
2876
2877 /* See if we're at the beginning of a possible character
2878 class. */
2879
2880 if (!escaped_char &&
2881 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2882 {
2883 /* Leave room for the null. */
2884 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2885 const unsigned char *class_beg;
2886
2887 PATFETCH (c);
2888 c1 = 0;
2889 class_beg = p;
2890
2891 /* If pattern is `[[:'. */
2892 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2893
2894 for (;;)
2895 {
2896 PATFETCH (c);
2897 if ((c == ':' && *p == ']') || p == pend)
2898 break;
2899 if (c1 < CHAR_CLASS_MAX_LENGTH)
2900 str[c1++] = c;
2901 else
2902 /* This is in any case an invalid class name. */
2903 str[0] = '\0';
2904 }
2905 str[c1] = '\0';
2906
2907 /* If isn't a word bracketed by `[:' and `:]':
2908 undo the ending character, the letters, and
2909 leave the leading `:' and `[' (but set bits for
2910 them). */
2911 if (c == ':' && *p == ']')
2912 {
2913 re_wchar_t ch;
2914 re_wctype_t cc;
2915
2916 cc = re_wctype (str);
2917
2918 if (cc == 0)
2919 FREE_STACK_RETURN (REG_ECTYPE);
2920
2921 /* Throw away the ] at the end of the character
2922 class. */
2923 PATFETCH (c);
2924
2925 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2926
2927 /* Most character classes in a multibyte match
2928 just set a flag. Exceptions are is_blank,
2929 is_digit, is_cntrl, and is_xdigit, since
2930 they can only match ASCII characters. We
2931 don't need to handle them for multibyte.
2932 They are distinguished by a negative wctype. */
2933
2934 if (multibyte)
2935 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2936 re_wctype_to_bit (cc));
2937
2938 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2939 {
2940 int translated = TRANSLATE (ch);
2941 if (re_iswctype (btowc (ch), cc))
2942 SET_LIST_BIT (translated);
2943 }
2944
2945 /* Repeat the loop. */
2946 continue;
2947 }
2948 else
2949 {
2950 /* Go back to right after the "[:". */
2951 p = class_beg;
2952 SET_LIST_BIT ('[');
2953
2954 /* Because the `:' may starts the range, we
2955 can't simply set bit and repeat the loop.
2956 Instead, just set it to C and handle below. */
2957 c = ':';
2958 }
2959 }
2960
2961 if (p < pend && p[0] == '-' && p[1] != ']')
2962 {
2963
2964 /* Discard the `-'. */
2965 PATFETCH (c1);
2966
2967 /* Fetch the character which ends the range. */
2968 PATFETCH (c1);
2969
2970 if (SINGLE_BYTE_CHAR_P (c))
2971 {
2972 if (! SINGLE_BYTE_CHAR_P (c1))
2973 {
2974 /* Handle a range starting with a
2975 character of less than 256, and ending
2976 with a character of not less than 256.
2977 Split that into two ranges, the low one
2978 ending at 0377, and the high one
2979 starting at the smallest character in
2980 the charset of C1 and ending at C1. */
2981 int charset = CHAR_CHARSET (c1);
2982 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2983
2984 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2985 c2, c1);
2986 c1 = 0377;
2987 }
2988 }
2989 else if (!SAME_CHARSET_P (c, c1))
2990 FREE_STACK_RETURN (REG_ERANGEX);
2991 }
2992 else
2993 /* Range from C to C. */
2994 c1 = c;
2995
2996 /* Set the range ... */
2997 if (SINGLE_BYTE_CHAR_P (c))
2998 /* ... into bitmap. */
2999 {
3000 re_wchar_t this_char;
3001 re_wchar_t range_start = c, range_end = c1;
3002
3003 /* If the start is after the end, the range is empty. */
3004 if (range_start > range_end)
3005 {
3006 if (syntax & RE_NO_EMPTY_RANGES)
3007 FREE_STACK_RETURN (REG_ERANGE);
3008 /* Else, repeat the loop. */
3009 }
3010 else
3011 {
3012 for (this_char = range_start; this_char <= range_end;
3013 this_char++)
3014 SET_LIST_BIT (TRANSLATE (this_char));
3015 }
3016 }
3017 else
3018 /* ... into range table. */
3019 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
3020 }
3021
3022 /* Discard any (non)matching list bytes that are all 0 at the
3023 end of the map. Decrease the map-length byte too. */
3024 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3025 b[-1]--;
3026 b += b[-1];
3027
3028 /* Build real range table from work area. */
3029 if (RANGE_TABLE_WORK_USED (range_table_work)
3030 || RANGE_TABLE_WORK_BITS (range_table_work))
3031 {
3032 int i;
3033 int used = RANGE_TABLE_WORK_USED (range_table_work);
3034
3035 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3036 bytes for flags, two for COUNT, and three bytes for
3037 each character. */
3038 GET_BUFFER_SPACE (4 + used * 3);
3039
3040 /* Indicate the existence of range table. */
3041 laststart[1] |= 0x80;
3042
3043 /* Store the character class flag bits into the range table.
3044 If not in emacs, these flag bits are always 0. */
3045 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3046 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3047
3048 STORE_NUMBER_AND_INCR (b, used / 2);
3049 for (i = 0; i < used; i++)
3050 STORE_CHARACTER_AND_INCR
3051 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3052 }
3053 }
3054 break;
3055
3056
3057 case '(':
3058 if (syntax & RE_NO_BK_PARENS)
3059 goto handle_open;
3060 else
3061 goto normal_char;
3062
3063
3064 case ')':
3065 if (syntax & RE_NO_BK_PARENS)
3066 goto handle_close;
3067 else
3068 goto normal_char;
3069
3070
3071 case '\n':
3072 if (syntax & RE_NEWLINE_ALT)
3073 goto handle_alt;
3074 else
3075 goto normal_char;
3076
3077
3078 case '|':
3079 if (syntax & RE_NO_BK_VBAR)
3080 goto handle_alt;
3081 else
3082 goto normal_char;
3083
3084
3085 case '{':
3086 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3087 goto handle_interval;
3088 else
3089 goto normal_char;
3090
3091
3092 case '\\':
3093 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3094
3095 /* Do not translate the character after the \, so that we can
3096 distinguish, e.g., \B from \b, even if we normally would
3097 translate, e.g., B to b. */
3098 PATFETCH (c);
3099
3100 switch (c)
3101 {
3102 case '(':
3103 if (syntax & RE_NO_BK_PARENS)
3104 goto normal_backslash;
3105
3106 handle_open:
3107 {
3108 int shy = 0;
3109 if (p+1 < pend)
3110 {
3111 /* Look for a special (?...) construct */
3112 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3113 {
3114 PATFETCH (c); /* Gobble up the '?'. */
3115 PATFETCH (c);
3116 switch (c)
3117 {
3118 case ':': shy = 1; break;
3119 default:
3120 /* Only (?:...) is supported right now. */
3121 FREE_STACK_RETURN (REG_BADPAT);
3122 }
3123 }
3124 }
3125
3126 if (!shy)
3127 {
3128 bufp->re_nsub++;
3129 regnum++;
3130 }
3131
3132 if (COMPILE_STACK_FULL)
3133 {
3134 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3135 compile_stack_elt_t);
3136 if (compile_stack.stack == NULL) return REG_ESPACE;
3137
3138 compile_stack.size <<= 1;
3139 }
3140
3141 /* These are the values to restore when we hit end of this
3142 group. They are all relative offsets, so that if the
3143 whole pattern moves because of realloc, they will still
3144 be valid. */
3145 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3146 COMPILE_STACK_TOP.fixup_alt_jump
3147 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3148 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3149 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3150
3151 /* Do not push a
3152 start_memory for groups beyond the last one we can
3153 represent in the compiled pattern. */
3154 if (regnum <= MAX_REGNUM && !shy)
3155 BUF_PUSH_2 (start_memory, regnum);
3156
3157 compile_stack.avail++;
3158
3159 fixup_alt_jump = 0;
3160 laststart = 0;
3161 begalt = b;
3162 /* If we've reached MAX_REGNUM groups, then this open
3163 won't actually generate any code, so we'll have to
3164 clear pending_exact explicitly. */
3165 pending_exact = 0;
3166 break;
3167 }
3168
3169 case ')':
3170 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3171
3172 if (COMPILE_STACK_EMPTY)
3173 {
3174 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3175 goto normal_backslash;
3176 else
3177 FREE_STACK_RETURN (REG_ERPAREN);
3178 }
3179
3180 handle_close:
3181 FIXUP_ALT_JUMP ();
3182
3183 /* See similar code for backslashed left paren above. */
3184 if (COMPILE_STACK_EMPTY)
3185 {
3186 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3187 goto normal_char;
3188 else
3189 FREE_STACK_RETURN (REG_ERPAREN);
3190 }
3191
3192 /* Since we just checked for an empty stack above, this
3193 ``can't happen''. */
3194 assert (compile_stack.avail != 0);
3195 {
3196 /* We don't just want to restore into `regnum', because
3197 later groups should continue to be numbered higher,
3198 as in `(ab)c(de)' -- the second group is #2. */
3199 regnum_t this_group_regnum;
3200
3201 compile_stack.avail--;
3202 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3203 fixup_alt_jump
3204 = COMPILE_STACK_TOP.fixup_alt_jump
3205 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3206 : 0;
3207 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3208 this_group_regnum = COMPILE_STACK_TOP.regnum;
3209 /* If we've reached MAX_REGNUM groups, then this open
3210 won't actually generate any code, so we'll have to
3211 clear pending_exact explicitly. */
3212 pending_exact = 0;
3213
3214 /* We're at the end of the group, so now we know how many
3215 groups were inside this one. */
3216 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3217 BUF_PUSH_2 (stop_memory, this_group_regnum);
3218 }
3219 break;
3220
3221
3222 case '|': /* `\|'. */
3223 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3224 goto normal_backslash;
3225 handle_alt:
3226 if (syntax & RE_LIMITED_OPS)
3227 goto normal_char;
3228
3229 /* Insert before the previous alternative a jump which
3230 jumps to this alternative if the former fails. */
3231 GET_BUFFER_SPACE (3);
3232 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3233 pending_exact = 0;
3234 b += 3;
3235
3236 /* The alternative before this one has a jump after it
3237 which gets executed if it gets matched. Adjust that
3238 jump so it will jump to this alternative's analogous
3239 jump (put in below, which in turn will jump to the next
3240 (if any) alternative's such jump, etc.). The last such
3241 jump jumps to the correct final destination. A picture:
3242 _____ _____
3243 | | | |
3244 | v | v
3245 a | b | c
3246
3247 If we are at `b', then fixup_alt_jump right now points to a
3248 three-byte space after `a'. We'll put in the jump, set
3249 fixup_alt_jump to right after `b', and leave behind three
3250 bytes which we'll fill in when we get to after `c'. */
3251
3252 FIXUP_ALT_JUMP ();
3253
3254 /* Mark and leave space for a jump after this alternative,
3255 to be filled in later either by next alternative or
3256 when know we're at the end of a series of alternatives. */
3257 fixup_alt_jump = b;
3258 GET_BUFFER_SPACE (3);
3259 b += 3;
3260
3261 laststart = 0;
3262 begalt = b;
3263 break;
3264
3265
3266 case '{':
3267 /* If \{ is a literal. */
3268 if (!(syntax & RE_INTERVALS)
3269 /* If we're at `\{' and it's not the open-interval
3270 operator. */
3271 || (syntax & RE_NO_BK_BRACES))
3272 goto normal_backslash;
3273
3274 handle_interval:
3275 {
3276 /* If got here, then the syntax allows intervals. */
3277
3278 /* At least (most) this many matches must be made. */
3279 int lower_bound = 0, upper_bound = -1;
3280
3281 beg_interval = p;
3282
3283 GET_UNSIGNED_NUMBER (lower_bound);
3284
3285 if (c == ',')
3286 GET_UNSIGNED_NUMBER (upper_bound);
3287 else
3288 /* Interval such as `{1}' => match exactly once. */
3289 upper_bound = lower_bound;
3290
3291 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3292 || (upper_bound >= 0 && lower_bound > upper_bound))
3293 FREE_STACK_RETURN (REG_BADBR);
3294
3295 if (!(syntax & RE_NO_BK_BRACES))
3296 {
3297 if (c != '\\')
3298 FREE_STACK_RETURN (REG_BADBR);
3299 if (p == pend)
3300 FREE_STACK_RETURN (REG_EESCAPE);
3301 PATFETCH (c);
3302 }
3303
3304 if (c != '}')
3305 FREE_STACK_RETURN (REG_BADBR);
3306
3307 /* We just parsed a valid interval. */
3308
3309 /* If it's invalid to have no preceding re. */
3310 if (!laststart)
3311 {
3312 if (syntax & RE_CONTEXT_INVALID_OPS)
3313 FREE_STACK_RETURN (REG_BADRPT);
3314 else if (syntax & RE_CONTEXT_INDEP_OPS)
3315 laststart = b;
3316 else
3317 goto unfetch_interval;
3318 }
3319
3320 if (upper_bound == 0)
3321 /* If the upper bound is zero, just drop the sub pattern
3322 altogether. */
3323 b = laststart;
3324 else if (lower_bound == 1 && upper_bound == 1)
3325 /* Just match it once: nothing to do here. */
3326 ;
3327
3328 /* Otherwise, we have a nontrivial interval. When
3329 we're all done, the pattern will look like:
3330 set_number_at <jump count> <upper bound>
3331 set_number_at <succeed_n count> <lower bound>
3332 succeed_n <after jump addr> <succeed_n count>
3333 <body of loop>
3334 jump_n <succeed_n addr> <jump count>
3335 (The upper bound and `jump_n' are omitted if
3336 `upper_bound' is 1, though.) */
3337 else
3338 { /* If the upper bound is > 1, we need to insert
3339 more at the end of the loop. */
3340 unsigned int nbytes = (upper_bound < 0 ? 3
3341 : upper_bound > 1 ? 5 : 0);
3342 unsigned int startoffset = 0;
3343
3344 GET_BUFFER_SPACE (20); /* We might use less. */
3345
3346 if (lower_bound == 0)
3347 {
3348 /* A succeed_n that starts with 0 is really a
3349 a simple on_failure_jump_loop. */
3350 INSERT_JUMP (on_failure_jump_loop, laststart,
3351 b + 3 + nbytes);
3352 b += 3;
3353 }
3354 else
3355 {
3356 /* Initialize lower bound of the `succeed_n', even
3357 though it will be set during matching by its
3358 attendant `set_number_at' (inserted next),
3359 because `re_compile_fastmap' needs to know.
3360 Jump to the `jump_n' we might insert below. */
3361 INSERT_JUMP2 (succeed_n, laststart,
3362 b + 5 + nbytes,
3363 lower_bound);
3364 b += 5;
3365
3366 /* Code to initialize the lower bound. Insert
3367 before the `succeed_n'. The `5' is the last two
3368 bytes of this `set_number_at', plus 3 bytes of
3369 the following `succeed_n'. */
3370 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3371 b += 5;
3372 startoffset += 5;
3373 }
3374
3375 if (upper_bound < 0)
3376 {
3377 /* A negative upper bound stands for infinity,
3378 in which case it degenerates to a plain jump. */
3379 STORE_JUMP (jump, b, laststart + startoffset);
3380 b += 3;
3381 }
3382 else if (upper_bound > 1)
3383 { /* More than one repetition is allowed, so
3384 append a backward jump to the `succeed_n'
3385 that starts this interval.
3386
3387 When we've reached this during matching,
3388 we'll have matched the interval once, so
3389 jump back only `upper_bound - 1' times. */
3390 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3391 upper_bound - 1);
3392 b += 5;
3393
3394 /* The location we want to set is the second
3395 parameter of the `jump_n'; that is `b-2' as
3396 an absolute address. `laststart' will be
3397 the `set_number_at' we're about to insert;
3398 `laststart+3' the number to set, the source
3399 for the relative address. But we are
3400 inserting into the middle of the pattern --
3401 so everything is getting moved up by 5.
3402 Conclusion: (b - 2) - (laststart + 3) + 5,
3403 i.e., b - laststart.
3404
3405 We insert this at the beginning of the loop
3406 so that if we fail during matching, we'll
3407 reinitialize the bounds. */
3408 insert_op2 (set_number_at, laststart, b - laststart,
3409 upper_bound - 1, b);
3410 b += 5;
3411 }
3412 }
3413 pending_exact = 0;
3414 beg_interval = NULL;
3415 }
3416 break;
3417
3418 unfetch_interval:
3419 /* If an invalid interval, match the characters as literals. */
3420 assert (beg_interval);
3421 p = beg_interval;
3422 beg_interval = NULL;
3423
3424 /* normal_char and normal_backslash need `c'. */
3425 c = '{';
3426
3427 if (!(syntax & RE_NO_BK_BRACES))
3428 {
3429 assert (p > pattern && p[-1] == '\\');
3430 goto normal_backslash;
3431 }
3432 else
3433 goto normal_char;
3434
3435 #ifdef emacs
3436 /* There is no way to specify the before_dot and after_dot
3437 operators. rms says this is ok. --karl */
3438 case '=':
3439 BUF_PUSH (at_dot);
3440 break;
3441
3442 case 's':
3443 laststart = b;
3444 PATFETCH (c);
3445 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3446 break;
3447
3448 case 'S':
3449 laststart = b;
3450 PATFETCH (c);
3451 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3452 break;
3453
3454 case 'c':
3455 laststart = b;
3456 PATFETCH (c);
3457 BUF_PUSH_2 (categoryspec, c);
3458 break;
3459
3460 case 'C':
3461 laststart = b;
3462 PATFETCH (c);
3463 BUF_PUSH_2 (notcategoryspec, c);
3464 break;
3465 #endif /* emacs */
3466
3467
3468 case 'w':
3469 if (syntax & RE_NO_GNU_OPS)
3470 goto normal_char;
3471 laststart = b;
3472 BUF_PUSH_2 (syntaxspec, Sword);
3473 break;
3474
3475
3476 case 'W':
3477 if (syntax & RE_NO_GNU_OPS)
3478 goto normal_char;
3479 laststart = b;
3480 BUF_PUSH_2 (notsyntaxspec, Sword);
3481 break;
3482
3483
3484 case '<':
3485 if (syntax & RE_NO_GNU_OPS)
3486 goto normal_char;
3487 BUF_PUSH (wordbeg);
3488 break;
3489
3490 case '>':
3491 if (syntax & RE_NO_GNU_OPS)
3492 goto normal_char;
3493 BUF_PUSH (wordend);
3494 break;
3495
3496 case '_':
3497 if (syntax & RE_NO_GNU_OPS)
3498 goto normal_char;
3499 laststart = b;
3500 PATFETCH (c);
3501 if (c == '<')
3502 BUF_PUSH (symbeg);
3503 else if (c == '>')
3504 BUF_PUSH (symend);
3505 else
3506 FREE_STACK_RETURN (REG_BADPAT);
3507 break;
3508
3509 case 'b':
3510 if (syntax & RE_NO_GNU_OPS)
3511 goto normal_char;
3512 BUF_PUSH (wordbound);
3513 break;
3514
3515 case 'B':
3516 if (syntax & RE_NO_GNU_OPS)
3517 goto normal_char;
3518 BUF_PUSH (notwordbound);
3519 break;
3520
3521 case '`':
3522 if (syntax & RE_NO_GNU_OPS)
3523 goto normal_char;
3524 BUF_PUSH (begbuf);
3525 break;
3526
3527 case '\'':
3528 if (syntax & RE_NO_GNU_OPS)
3529 goto normal_char;
3530 BUF_PUSH (endbuf);
3531 break;
3532
3533 case '1': case '2': case '3': case '4': case '5':
3534 case '6': case '7': case '8': case '9':
3535 {
3536 regnum_t reg;
3537
3538 if (syntax & RE_NO_BK_REFS)
3539 goto normal_backslash;
3540
3541 reg = c - '0';
3542
3543 /* Can't back reference to a subexpression before its end. */
3544 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3545 FREE_STACK_RETURN (REG_ESUBREG);
3546
3547 laststart = b;
3548 BUF_PUSH_2 (duplicate, reg);
3549 }
3550 break;
3551
3552
3553 case '+':
3554 case '?':
3555 if (syntax & RE_BK_PLUS_QM)
3556 goto handle_plus;
3557 else
3558 goto normal_backslash;
3559
3560 default:
3561 normal_backslash:
3562 /* You might think it would be useful for \ to mean
3563 not to translate; but if we don't translate it
3564 it will never match anything. */
3565 goto normal_char;
3566 }
3567 break;
3568
3569
3570 default:
3571 /* Expects the character in `c'. */
3572 normal_char:
3573 /* If no exactn currently being built. */
3574 if (!pending_exact
3575
3576 /* If last exactn not at current position. */
3577 || pending_exact + *pending_exact + 1 != b
3578
3579 /* We have only one byte following the exactn for the count. */
3580 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3581
3582 /* If followed by a repetition operator. */
3583 || (p != pend && (*p == '*' || *p == '^'))
3584 || ((syntax & RE_BK_PLUS_QM)
3585 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3586 : p != pend && (*p == '+' || *p == '?'))
3587 || ((syntax & RE_INTERVALS)
3588 && ((syntax & RE_NO_BK_BRACES)
3589 ? p != pend && *p == '{'
3590 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3591 {
3592 /* Start building a new exactn. */
3593
3594 laststart = b;
3595
3596 BUF_PUSH_2 (exactn, 0);
3597 pending_exact = b - 1;
3598 }
3599
3600 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3601 {
3602 int len;
3603
3604 c = TRANSLATE (c);
3605 if (multibyte)
3606 len = CHAR_STRING (c, b);
3607 else
3608 *b = c, len = 1;
3609 b += len;
3610 (*pending_exact) += len;
3611 }
3612
3613 break;
3614 } /* switch (c) */
3615 } /* while p != pend */
3616
3617
3618 /* Through the pattern now. */
3619
3620 FIXUP_ALT_JUMP ();
3621
3622 if (!COMPILE_STACK_EMPTY)
3623 FREE_STACK_RETURN (REG_EPAREN);
3624
3625 /* If we don't want backtracking, force success
3626 the first time we reach the end of the compiled pattern. */
3627 if (syntax & RE_NO_POSIX_BACKTRACKING)
3628 BUF_PUSH (succeed);
3629
3630 /* We have succeeded; set the length of the buffer. */
3631 bufp->used = b - bufp->buffer;
3632
3633 #ifdef DEBUG
3634 if (debug > 0)
3635 {
3636 re_compile_fastmap (bufp);
3637 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3638 print_compiled_pattern (bufp);
3639 }
3640 debug--;
3641 #endif /* DEBUG */
3642
3643 #ifndef MATCH_MAY_ALLOCATE
3644 /* Initialize the failure stack to the largest possible stack. This
3645 isn't necessary unless we're trying to avoid calling alloca in
3646 the search and match routines. */
3647 {
3648 int num_regs = bufp->re_nsub + 1;
3649
3650 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3651 {
3652 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3653
3654 if (! fail_stack.stack)
3655 fail_stack.stack
3656 = (fail_stack_elt_t *) malloc (fail_stack.size
3657 * sizeof (fail_stack_elt_t));
3658 else
3659 fail_stack.stack
3660 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3661 (fail_stack.size
3662 * sizeof (fail_stack_elt_t)));
3663 }
3664
3665 regex_grow_registers (num_regs);
3666 }
3667 #endif /* not MATCH_MAY_ALLOCATE */
3668
3669 FREE_STACK_RETURN (REG_NOERROR);
3670 } /* regex_compile */
3671 \f
3672 /* Subroutines for `regex_compile'. */
3673
3674 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3675
3676 static void
3677 store_op1 (op, loc, arg)
3678 re_opcode_t op;
3679 unsigned char *loc;
3680 int arg;
3681 {
3682 *loc = (unsigned char) op;
3683 STORE_NUMBER (loc + 1, arg);
3684 }
3685
3686
3687 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3688
3689 static void
3690 store_op2 (op, loc, arg1, arg2)
3691 re_opcode_t op;
3692 unsigned char *loc;
3693 int arg1, arg2;
3694 {
3695 *loc = (unsigned char) op;
3696 STORE_NUMBER (loc + 1, arg1);
3697 STORE_NUMBER (loc + 3, arg2);
3698 }
3699
3700
3701 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3702 for OP followed by two-byte integer parameter ARG. */
3703
3704 static void
3705 insert_op1 (op, loc, arg, end)
3706 re_opcode_t op;
3707 unsigned char *loc;
3708 int arg;
3709 unsigned char *end;
3710 {
3711 register unsigned char *pfrom = end;
3712 register unsigned char *pto = end + 3;
3713
3714 while (pfrom != loc)
3715 *--pto = *--pfrom;
3716
3717 store_op1 (op, loc, arg);
3718 }
3719
3720
3721 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3722
3723 static void
3724 insert_op2 (op, loc, arg1, arg2, end)
3725 re_opcode_t op;
3726 unsigned char *loc;
3727 int arg1, arg2;
3728 unsigned char *end;
3729 {
3730 register unsigned char *pfrom = end;
3731 register unsigned char *pto = end + 5;
3732
3733 while (pfrom != loc)
3734 *--pto = *--pfrom;
3735
3736 store_op2 (op, loc, arg1, arg2);
3737 }
3738
3739
3740 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3741 after an alternative or a begin-subexpression. We assume there is at
3742 least one character before the ^. */
3743
3744 static boolean
3745 at_begline_loc_p (pattern, p, syntax)
3746 re_char *pattern, *p;
3747 reg_syntax_t syntax;
3748 {
3749 re_char *prev = p - 2;
3750 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3751
3752 return
3753 /* After a subexpression? */
3754 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3755 /* After an alternative? */
3756 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3757 /* After a shy subexpression? */
3758 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3759 && prev[-1] == '?' && prev[-2] == '('
3760 && (syntax & RE_NO_BK_PARENS
3761 || (prev - 3 >= pattern && prev[-3] == '\\')));
3762 }
3763
3764
3765 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3766 at least one character after the $, i.e., `P < PEND'. */
3767
3768 static boolean
3769 at_endline_loc_p (p, pend, syntax)
3770 re_char *p, *pend;
3771 reg_syntax_t syntax;
3772 {
3773 re_char *next = p;
3774 boolean next_backslash = *next == '\\';
3775 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3776
3777 return
3778 /* Before a subexpression? */
3779 (syntax & RE_NO_BK_PARENS ? *next == ')'
3780 : next_backslash && next_next && *next_next == ')')
3781 /* Before an alternative? */
3782 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3783 : next_backslash && next_next && *next_next == '|');
3784 }
3785
3786
3787 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3788 false if it's not. */
3789
3790 static boolean
3791 group_in_compile_stack (compile_stack, regnum)
3792 compile_stack_type compile_stack;
3793 regnum_t regnum;
3794 {
3795 int this_element;
3796
3797 for (this_element = compile_stack.avail - 1;
3798 this_element >= 0;
3799 this_element--)
3800 if (compile_stack.stack[this_element].regnum == regnum)
3801 return true;
3802
3803 return false;
3804 }
3805 \f
3806 /* analyse_first.
3807 If fastmap is non-NULL, go through the pattern and fill fastmap
3808 with all the possible leading chars. If fastmap is NULL, don't
3809 bother filling it up (obviously) and only return whether the
3810 pattern could potentially match the empty string.
3811
3812 Return 1 if p..pend might match the empty string.
3813 Return 0 if p..pend matches at least one char.
3814 Return -1 if fastmap was not updated accurately. */
3815
3816 static int
3817 analyse_first (p, pend, fastmap, multibyte)
3818 re_char *p, *pend;
3819 char *fastmap;
3820 const int multibyte;
3821 {
3822 int j, k;
3823 boolean not;
3824
3825 /* If all elements for base leading-codes in fastmap is set, this
3826 flag is set true. */
3827 boolean match_any_multibyte_characters = false;
3828
3829 assert (p);
3830
3831 /* The loop below works as follows:
3832 - It has a working-list kept in the PATTERN_STACK and which basically
3833 starts by only containing a pointer to the first operation.
3834 - If the opcode we're looking at is a match against some set of
3835 chars, then we add those chars to the fastmap and go on to the
3836 next work element from the worklist (done via `break').
3837 - If the opcode is a control operator on the other hand, we either
3838 ignore it (if it's meaningless at this point, such as `start_memory')
3839 or execute it (if it's a jump). If the jump has several destinations
3840 (i.e. `on_failure_jump'), then we push the other destination onto the
3841 worklist.
3842 We guarantee termination by ignoring backward jumps (more or less),
3843 so that `p' is monotonically increasing. More to the point, we
3844 never set `p' (or push) anything `<= p1'. */
3845
3846 while (p < pend)
3847 {
3848 /* `p1' is used as a marker of how far back a `on_failure_jump'
3849 can go without being ignored. It is normally equal to `p'
3850 (which prevents any backward `on_failure_jump') except right
3851 after a plain `jump', to allow patterns such as:
3852 0: jump 10
3853 3..9: <body>
3854 10: on_failure_jump 3
3855 as used for the *? operator. */
3856 re_char *p1 = p;
3857
3858 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3859 {
3860 case succeed:
3861 return 1;
3862 continue;
3863
3864 case duplicate:
3865 /* If the first character has to match a backreference, that means
3866 that the group was empty (since it already matched). Since this
3867 is the only case that interests us here, we can assume that the
3868 backreference must match the empty string. */
3869 p++;
3870 continue;
3871
3872
3873 /* Following are the cases which match a character. These end
3874 with `break'. */
3875
3876 case exactn:
3877 if (fastmap)
3878 {
3879 int c = RE_STRING_CHAR (p + 1, pend - p);
3880
3881 if (SINGLE_BYTE_CHAR_P (c))
3882 fastmap[c] = 1;
3883 else
3884 fastmap[p[1]] = 1;
3885 }
3886 break;
3887
3888
3889 case anychar:
3890 /* We could put all the chars except for \n (and maybe \0)
3891 but we don't bother since it is generally not worth it. */
3892 if (!fastmap) break;
3893 return -1;
3894
3895
3896 case charset_not:
3897 /* Chars beyond end of bitmap are possible matches.
3898 All the single-byte codes can occur in multibyte buffers.
3899 So any that are not listed in the charset
3900 are possible matches, even in multibyte buffers. */
3901 if (!fastmap) break;
3902 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3903 j < (1 << BYTEWIDTH); j++)
3904 fastmap[j] = 1;
3905 /* Fallthrough */
3906 case charset:
3907 if (!fastmap) break;
3908 not = (re_opcode_t) *(p - 1) == charset_not;
3909 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3910 j >= 0; j--)
3911 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3912 fastmap[j] = 1;
3913
3914 if ((not && multibyte)
3915 /* Any character set can possibly contain a character
3916 which doesn't match the specified set of characters. */
3917 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3918 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3919 /* If we can match a character class, we can match
3920 any character set. */
3921 {
3922 set_fastmap_for_multibyte_characters:
3923 if (match_any_multibyte_characters == false)
3924 {
3925 for (j = 0x80; j < 0xA0; j++) /* XXX */
3926 if (BASE_LEADING_CODE_P (j))
3927 fastmap[j] = 1;
3928 match_any_multibyte_characters = true;
3929 }
3930 }
3931
3932 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3933 && match_any_multibyte_characters == false)
3934 {
3935 /* Set fastmap[I] 1 where I is a base leading code of each
3936 multibyte character in the range table. */
3937 int c, count;
3938
3939 /* Make P points the range table. `+ 2' is to skip flag
3940 bits for a character class. */
3941 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3942
3943 /* Extract the number of ranges in range table into COUNT. */
3944 EXTRACT_NUMBER_AND_INCR (count, p);
3945 for (; count > 0; count--, p += 2 * 3) /* XXX */
3946 {
3947 /* Extract the start of each range. */
3948 EXTRACT_CHARACTER (c, p);
3949 j = CHAR_CHARSET (c);
3950 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3951 }
3952 }
3953 break;
3954
3955 case syntaxspec:
3956 case notsyntaxspec:
3957 if (!fastmap) break;
3958 #ifndef emacs
3959 not = (re_opcode_t)p[-1] == notsyntaxspec;
3960 k = *p++;
3961 for (j = 0; j < (1 << BYTEWIDTH); j++)
3962 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3963 fastmap[j] = 1;
3964 break;
3965 #else /* emacs */
3966 /* This match depends on text properties. These end with
3967 aborting optimizations. */
3968 return -1;
3969
3970 case categoryspec:
3971 case notcategoryspec:
3972 if (!fastmap) break;
3973 not = (re_opcode_t)p[-1] == notcategoryspec;
3974 k = *p++;
3975 for (j = 0; j < (1 << BYTEWIDTH); j++)
3976 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3977 fastmap[j] = 1;
3978
3979 if (multibyte)
3980 /* Any character set can possibly contain a character
3981 whose category is K (or not). */
3982 goto set_fastmap_for_multibyte_characters;
3983 break;
3984
3985 /* All cases after this match the empty string. These end with
3986 `continue'. */
3987
3988 case before_dot:
3989 case at_dot:
3990 case after_dot:
3991 #endif /* !emacs */
3992 case no_op:
3993 case begline:
3994 case endline:
3995 case begbuf:
3996 case endbuf:
3997 case wordbound:
3998 case notwordbound:
3999 case wordbeg:
4000 case wordend:
4001 case symbeg:
4002 case symend:
4003 continue;
4004
4005
4006 case jump:
4007 EXTRACT_NUMBER_AND_INCR (j, p);
4008 if (j < 0)
4009 /* Backward jumps can only go back to code that we've already
4010 visited. `re_compile' should make sure this is true. */
4011 break;
4012 p += j;
4013 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4014 {
4015 case on_failure_jump:
4016 case on_failure_keep_string_jump:
4017 case on_failure_jump_loop:
4018 case on_failure_jump_nastyloop:
4019 case on_failure_jump_smart:
4020 p++;
4021 break;
4022 default:
4023 continue;
4024 };
4025 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4026 to jump back to "just after here". */
4027 /* Fallthrough */
4028
4029 case on_failure_jump:
4030 case on_failure_keep_string_jump:
4031 case on_failure_jump_nastyloop:
4032 case on_failure_jump_loop:
4033 case on_failure_jump_smart:
4034 EXTRACT_NUMBER_AND_INCR (j, p);
4035 if (p + j <= p1)
4036 ; /* Backward jump to be ignored. */
4037 else
4038 { /* We have to look down both arms.
4039 We first go down the "straight" path so as to minimize
4040 stack usage when going through alternatives. */
4041 int r = analyse_first (p, pend, fastmap, multibyte);
4042 if (r) return r;
4043 p += j;
4044 }
4045 continue;
4046
4047
4048 case jump_n:
4049 /* This code simply does not properly handle forward jump_n. */
4050 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4051 p += 4;
4052 /* jump_n can either jump or fall through. The (backward) jump
4053 case has already been handled, so we only need to look at the
4054 fallthrough case. */
4055 continue;
4056
4057 case succeed_n:
4058 /* If N == 0, it should be an on_failure_jump_loop instead. */
4059 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4060 p += 4;
4061 /* We only care about one iteration of the loop, so we don't
4062 need to consider the case where this behaves like an
4063 on_failure_jump. */
4064 continue;
4065
4066
4067 case set_number_at:
4068 p += 4;
4069 continue;
4070
4071
4072 case start_memory:
4073 case stop_memory:
4074 p += 1;
4075 continue;
4076
4077
4078 default:
4079 abort (); /* We have listed all the cases. */
4080 } /* switch *p++ */
4081
4082 /* Getting here means we have found the possible starting
4083 characters for one path of the pattern -- and that the empty
4084 string does not match. We need not follow this path further. */
4085 return 0;
4086 } /* while p */
4087
4088 /* We reached the end without matching anything. */
4089 return 1;
4090
4091 } /* analyse_first */
4092 \f
4093 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4094 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4095 characters can start a string that matches the pattern. This fastmap
4096 is used by re_search to skip quickly over impossible starting points.
4097
4098 Character codes above (1 << BYTEWIDTH) are not represented in the
4099 fastmap, but the leading codes are represented. Thus, the fastmap
4100 indicates which character sets could start a match.
4101
4102 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4103 area as BUFP->fastmap.
4104
4105 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4106 the pattern buffer.
4107
4108 Returns 0 if we succeed, -2 if an internal error. */
4109
4110 int
4111 re_compile_fastmap (bufp)
4112 struct re_pattern_buffer *bufp;
4113 {
4114 char *fastmap = bufp->fastmap;
4115 int analysis;
4116
4117 assert (fastmap && bufp->buffer);
4118
4119 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4120 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4121
4122 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4123 fastmap, RE_MULTIBYTE_P (bufp));
4124 bufp->can_be_null = (analysis != 0);
4125 return 0;
4126 } /* re_compile_fastmap */
4127 \f
4128 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4129 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4130 this memory for recording register information. STARTS and ENDS
4131 must be allocated using the malloc library routine, and must each
4132 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4133
4134 If NUM_REGS == 0, then subsequent matches should allocate their own
4135 register data.
4136
4137 Unless this function is called, the first search or match using
4138 PATTERN_BUFFER will allocate its own register data, without
4139 freeing the old data. */
4140
4141 void
4142 re_set_registers (bufp, regs, num_regs, starts, ends)
4143 struct re_pattern_buffer *bufp;
4144 struct re_registers *regs;
4145 unsigned num_regs;
4146 regoff_t *starts, *ends;
4147 {
4148 if (num_regs)
4149 {
4150 bufp->regs_allocated = REGS_REALLOCATE;
4151 regs->num_regs = num_regs;
4152 regs->start = starts;
4153 regs->end = ends;
4154 }
4155 else
4156 {
4157 bufp->regs_allocated = REGS_UNALLOCATED;
4158 regs->num_regs = 0;
4159 regs->start = regs->end = (regoff_t *) 0;
4160 }
4161 }
4162 WEAK_ALIAS (__re_set_registers, re_set_registers)
4163 \f
4164 /* Searching routines. */
4165
4166 /* Like re_search_2, below, but only one string is specified, and
4167 doesn't let you say where to stop matching. */
4168
4169 int
4170 re_search (bufp, string, size, startpos, range, regs)
4171 struct re_pattern_buffer *bufp;
4172 const char *string;
4173 int size, startpos, range;
4174 struct re_registers *regs;
4175 {
4176 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4177 regs, size);
4178 }
4179 WEAK_ALIAS (__re_search, re_search)
4180
4181 /* Head address of virtual concatenation of string. */
4182 #define HEAD_ADDR_VSTRING(P) \
4183 (((P) >= size1 ? string2 : string1))
4184
4185 /* End address of virtual concatenation of string. */
4186 #define STOP_ADDR_VSTRING(P) \
4187 (((P) >= size1 ? string2 + size2 : string1 + size1))
4188
4189 /* Address of POS in the concatenation of virtual string. */
4190 #define POS_ADDR_VSTRING(POS) \
4191 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4192
4193 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4194 virtual concatenation of STRING1 and STRING2, starting first at index
4195 STARTPOS, then at STARTPOS + 1, and so on.
4196
4197 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4198
4199 RANGE is how far to scan while trying to match. RANGE = 0 means try
4200 only at STARTPOS; in general, the last start tried is STARTPOS +
4201 RANGE.
4202
4203 In REGS, return the indices of the virtual concatenation of STRING1
4204 and STRING2 that matched the entire BUFP->buffer and its contained
4205 subexpressions.
4206
4207 Do not consider matching one past the index STOP in the virtual
4208 concatenation of STRING1 and STRING2.
4209
4210 We return either the position in the strings at which the match was
4211 found, -1 if no match, or -2 if error (such as failure
4212 stack overflow). */
4213
4214 int
4215 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4216 struct re_pattern_buffer *bufp;
4217 const char *str1, *str2;
4218 int size1, size2;
4219 int startpos;
4220 int range;
4221 struct re_registers *regs;
4222 int stop;
4223 {
4224 int val;
4225 re_char *string1 = (re_char*) str1;
4226 re_char *string2 = (re_char*) str2;
4227 register char *fastmap = bufp->fastmap;
4228 register RE_TRANSLATE_TYPE translate = bufp->translate;
4229 int total_size = size1 + size2;
4230 int endpos = startpos + range;
4231 boolean anchored_start;
4232
4233 /* Nonzero if we have to concern multibyte character. */
4234 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4235
4236 /* Check for out-of-range STARTPOS. */
4237 if (startpos < 0 || startpos > total_size)
4238 return -1;
4239
4240 /* Fix up RANGE if it might eventually take us outside
4241 the virtual concatenation of STRING1 and STRING2.
4242 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4243 if (endpos < 0)
4244 range = 0 - startpos;
4245 else if (endpos > total_size)
4246 range = total_size - startpos;
4247
4248 /* If the search isn't to be a backwards one, don't waste time in a
4249 search for a pattern anchored at beginning of buffer. */
4250 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4251 {
4252 if (startpos > 0)
4253 return -1;
4254 else
4255 range = 0;
4256 }
4257
4258 #ifdef emacs
4259 /* In a forward search for something that starts with \=.
4260 don't keep searching past point. */
4261 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4262 {
4263 range = PT_BYTE - BEGV_BYTE - startpos;
4264 if (range < 0)
4265 return -1;
4266 }
4267 #endif /* emacs */
4268
4269 /* Update the fastmap now if not correct already. */
4270 if (fastmap && !bufp->fastmap_accurate)
4271 re_compile_fastmap (bufp);
4272
4273 /* See whether the pattern is anchored. */
4274 anchored_start = (bufp->buffer[0] == begline);
4275
4276 #ifdef emacs
4277 gl_state.object = re_match_object;
4278 {
4279 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4280
4281 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4282 }
4283 #endif
4284
4285 /* Loop through the string, looking for a place to start matching. */
4286 for (;;)
4287 {
4288 /* If the pattern is anchored,
4289 skip quickly past places we cannot match.
4290 We don't bother to treat startpos == 0 specially
4291 because that case doesn't repeat. */
4292 if (anchored_start && startpos > 0)
4293 {
4294 if (! ((startpos <= size1 ? string1[startpos - 1]
4295 : string2[startpos - size1 - 1])
4296 == '\n'))
4297 goto advance;
4298 }
4299
4300 /* If a fastmap is supplied, skip quickly over characters that
4301 cannot be the start of a match. If the pattern can match the
4302 null string, however, we don't need to skip characters; we want
4303 the first null string. */
4304 if (fastmap && startpos < total_size && !bufp->can_be_null)
4305 {
4306 register re_char *d;
4307 register re_wchar_t buf_ch;
4308
4309 d = POS_ADDR_VSTRING (startpos);
4310
4311 if (range > 0) /* Searching forwards. */
4312 {
4313 register int lim = 0;
4314 int irange = range;
4315
4316 if (startpos < size1 && startpos + range >= size1)
4317 lim = range - (size1 - startpos);
4318
4319 /* Written out as an if-else to avoid testing `translate'
4320 inside the loop. */
4321 if (RE_TRANSLATE_P (translate))
4322 {
4323 if (multibyte)
4324 while (range > lim)
4325 {
4326 int buf_charlen;
4327
4328 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4329 buf_charlen);
4330
4331 buf_ch = RE_TRANSLATE (translate, buf_ch);
4332 if (buf_ch >= 0400
4333 || fastmap[buf_ch])
4334 break;
4335
4336 range -= buf_charlen;
4337 d += buf_charlen;
4338 }
4339 else
4340 {
4341 /* Convert *d to integer to shut up GCC's
4342 whining about comparison that is always
4343 true. */
4344 int di = *d;
4345
4346 while (range > lim
4347 && !fastmap[RE_TRANSLATE (translate, di)])
4348 {
4349 di = *(++d);
4350 range--;
4351 }
4352 }
4353 }
4354 else
4355 while (range > lim && !fastmap[*d])
4356 {
4357 d++;
4358 range--;
4359 }
4360
4361 startpos += irange - range;
4362 }
4363 else /* Searching backwards. */
4364 {
4365 int room = (startpos >= size1
4366 ? size2 + size1 - startpos
4367 : size1 - startpos);
4368 buf_ch = RE_STRING_CHAR (d, room);
4369 buf_ch = TRANSLATE (buf_ch);
4370
4371 if (! (buf_ch >= 0400
4372 || fastmap[buf_ch]))
4373 goto advance;
4374 }
4375 }
4376
4377 /* If can't match the null string, and that's all we have left, fail. */
4378 if (range >= 0 && startpos == total_size && fastmap
4379 && !bufp->can_be_null)
4380 return -1;
4381
4382 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4383 startpos, regs, stop);
4384 #ifndef REGEX_MALLOC
4385 # ifdef C_ALLOCA
4386 alloca (0);
4387 # endif
4388 #endif
4389
4390 if (val >= 0)
4391 return startpos;
4392
4393 if (val == -2)
4394 return -2;
4395
4396 advance:
4397 if (!range)
4398 break;
4399 else if (range > 0)
4400 {
4401 /* Update STARTPOS to the next character boundary. */
4402 if (multibyte)
4403 {
4404 re_char *p = POS_ADDR_VSTRING (startpos);
4405 re_char *pend = STOP_ADDR_VSTRING (startpos);
4406 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4407
4408 range -= len;
4409 if (range < 0)
4410 break;
4411 startpos += len;
4412 }
4413 else
4414 {
4415 range--;
4416 startpos++;
4417 }
4418 }
4419 else
4420 {
4421 range++;
4422 startpos--;
4423
4424 /* Update STARTPOS to the previous character boundary. */
4425 if (multibyte)
4426 {
4427 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4428 re_char *p0 = p;
4429 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4430
4431 /* Find the head of multibyte form. */
4432 PREV_CHAR_BOUNDARY (p, phead);
4433 range += p0 - 1 - p;
4434 if (range > 0)
4435 break;
4436
4437 startpos -= p0 - 1 - p;
4438 }
4439 }
4440 }
4441 return -1;
4442 } /* re_search_2 */
4443 WEAK_ALIAS (__re_search_2, re_search_2)
4444 \f
4445 /* Declarations and macros for re_match_2. */
4446
4447 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4448 register int len,
4449 RE_TRANSLATE_TYPE translate,
4450 const int multibyte));
4451
4452 /* This converts PTR, a pointer into one of the search strings `string1'
4453 and `string2' into an offset from the beginning of that string. */
4454 #define POINTER_TO_OFFSET(ptr) \
4455 (FIRST_STRING_P (ptr) \
4456 ? ((regoff_t) ((ptr) - string1)) \
4457 : ((regoff_t) ((ptr) - string2 + size1)))
4458
4459 /* Call before fetching a character with *d. This switches over to
4460 string2 if necessary.
4461 Check re_match_2_internal for a discussion of why end_match_2 might
4462 not be within string2 (but be equal to end_match_1 instead). */
4463 #define PREFETCH() \
4464 while (d == dend) \
4465 { \
4466 /* End of string2 => fail. */ \
4467 if (dend == end_match_2) \
4468 goto fail; \
4469 /* End of string1 => advance to string2. */ \
4470 d = string2; \
4471 dend = end_match_2; \
4472 }
4473
4474 /* Call before fetching a char with *d if you already checked other limits.
4475 This is meant for use in lookahead operations like wordend, etc..
4476 where we might need to look at parts of the string that might be
4477 outside of the LIMITs (i.e past `stop'). */
4478 #define PREFETCH_NOLIMIT() \
4479 if (d == end1) \
4480 { \
4481 d = string2; \
4482 dend = end_match_2; \
4483 } \
4484
4485 /* Test if at very beginning or at very end of the virtual concatenation
4486 of `string1' and `string2'. If only one string, it's `string2'. */
4487 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4488 #define AT_STRINGS_END(d) ((d) == end2)
4489
4490
4491 /* Test if D points to a character which is word-constituent. We have
4492 two special cases to check for: if past the end of string1, look at
4493 the first character in string2; and if before the beginning of
4494 string2, look at the last character in string1. */
4495 #define WORDCHAR_P(d) \
4496 (SYNTAX ((d) == end1 ? *string2 \
4497 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4498 == Sword)
4499
4500 /* Disabled due to a compiler bug -- see comment at case wordbound */
4501
4502 /* The comment at case wordbound is following one, but we don't use
4503 AT_WORD_BOUNDARY anymore to support multibyte form.
4504
4505 The DEC Alpha C compiler 3.x generates incorrect code for the
4506 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4507 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4508 macro and introducing temporary variables works around the bug. */
4509
4510 #if 0
4511 /* Test if the character before D and the one at D differ with respect
4512 to being word-constituent. */
4513 #define AT_WORD_BOUNDARY(d) \
4514 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4515 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4516 #endif
4517
4518 /* Free everything we malloc. */
4519 #ifdef MATCH_MAY_ALLOCATE
4520 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4521 # define FREE_VARIABLES() \
4522 do { \
4523 REGEX_FREE_STACK (fail_stack.stack); \
4524 FREE_VAR (regstart); \
4525 FREE_VAR (regend); \
4526 FREE_VAR (best_regstart); \
4527 FREE_VAR (best_regend); \
4528 } while (0)
4529 #else
4530 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4531 #endif /* not MATCH_MAY_ALLOCATE */
4532
4533 \f
4534 /* Optimization routines. */
4535
4536 /* If the operation is a match against one or more chars,
4537 return a pointer to the next operation, else return NULL. */
4538 static re_char *
4539 skip_one_char (p)
4540 re_char *p;
4541 {
4542 switch (SWITCH_ENUM_CAST (*p++))
4543 {
4544 case anychar:
4545 break;
4546
4547 case exactn:
4548 p += *p + 1;
4549 break;
4550
4551 case charset_not:
4552 case charset:
4553 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4554 {
4555 int mcnt;
4556 p = CHARSET_RANGE_TABLE (p - 1);
4557 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4558 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4559 }
4560 else
4561 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4562 break;
4563
4564 case syntaxspec:
4565 case notsyntaxspec:
4566 #ifdef emacs
4567 case categoryspec:
4568 case notcategoryspec:
4569 #endif /* emacs */
4570 p++;
4571 break;
4572
4573 default:
4574 p = NULL;
4575 }
4576 return p;
4577 }
4578
4579
4580 /* Jump over non-matching operations. */
4581 static re_char *
4582 skip_noops (p, pend)
4583 re_char *p, *pend;
4584 {
4585 int mcnt;
4586 while (p < pend)
4587 {
4588 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4589 {
4590 case start_memory:
4591 case stop_memory:
4592 p += 2; break;
4593 case no_op:
4594 p += 1; break;
4595 case jump:
4596 p += 1;
4597 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4598 p += mcnt;
4599 break;
4600 default:
4601 return p;
4602 }
4603 }
4604 assert (p == pend);
4605 return p;
4606 }
4607
4608 /* Non-zero if "p1 matches something" implies "p2 fails". */
4609 static int
4610 mutually_exclusive_p (bufp, p1, p2)
4611 struct re_pattern_buffer *bufp;
4612 re_char *p1, *p2;
4613 {
4614 re_opcode_t op2;
4615 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4616 unsigned char *pend = bufp->buffer + bufp->used;
4617
4618 assert (p1 >= bufp->buffer && p1 < pend
4619 && p2 >= bufp->buffer && p2 <= pend);
4620
4621 /* Skip over open/close-group commands.
4622 If what follows this loop is a ...+ construct,
4623 look at what begins its body, since we will have to
4624 match at least one of that. */
4625 p2 = skip_noops (p2, pend);
4626 /* The same skip can be done for p1, except that this function
4627 is only used in the case where p1 is a simple match operator. */
4628 /* p1 = skip_noops (p1, pend); */
4629
4630 assert (p1 >= bufp->buffer && p1 < pend
4631 && p2 >= bufp->buffer && p2 <= pend);
4632
4633 op2 = p2 == pend ? succeed : *p2;
4634
4635 switch (SWITCH_ENUM_CAST (op2))
4636 {
4637 case succeed:
4638 case endbuf:
4639 /* If we're at the end of the pattern, we can change. */
4640 if (skip_one_char (p1))
4641 {
4642 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4643 return 1;
4644 }
4645 break;
4646
4647 case endline:
4648 case exactn:
4649 {
4650 register re_wchar_t c
4651 = (re_opcode_t) *p2 == endline ? '\n'
4652 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4653
4654 if ((re_opcode_t) *p1 == exactn)
4655 {
4656 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4657 {
4658 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4659 return 1;
4660 }
4661 }
4662
4663 else if ((re_opcode_t) *p1 == charset
4664 || (re_opcode_t) *p1 == charset_not)
4665 {
4666 int not = (re_opcode_t) *p1 == charset_not;
4667
4668 /* Test if C is listed in charset (or charset_not)
4669 at `p1'. */
4670 if (SINGLE_BYTE_CHAR_P (c))
4671 {
4672 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4673 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4674 not = !not;
4675 }
4676 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4677 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4678
4679 /* `not' is equal to 1 if c would match, which means
4680 that we can't change to pop_failure_jump. */
4681 if (!not)
4682 {
4683 DEBUG_PRINT1 (" No match => fast loop.\n");
4684 return 1;
4685 }
4686 }
4687 else if ((re_opcode_t) *p1 == anychar
4688 && c == '\n')
4689 {
4690 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4691 return 1;
4692 }
4693 }
4694 break;
4695
4696 case charset:
4697 {
4698 if ((re_opcode_t) *p1 == exactn)
4699 /* Reuse the code above. */
4700 return mutually_exclusive_p (bufp, p2, p1);
4701
4702 /* It is hard to list up all the character in charset
4703 P2 if it includes multibyte character. Give up in
4704 such case. */
4705 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4706 {
4707 /* Now, we are sure that P2 has no range table.
4708 So, for the size of bitmap in P2, `p2[1]' is
4709 enough. But P1 may have range table, so the
4710 size of bitmap table of P1 is extracted by
4711 using macro `CHARSET_BITMAP_SIZE'.
4712
4713 Since we know that all the character listed in
4714 P2 is ASCII, it is enough to test only bitmap
4715 table of P1. */
4716
4717 if ((re_opcode_t) *p1 == charset)
4718 {
4719 int idx;
4720 /* We win if the charset inside the loop
4721 has no overlap with the one after the loop. */
4722 for (idx = 0;
4723 (idx < (int) p2[1]
4724 && idx < CHARSET_BITMAP_SIZE (p1));
4725 idx++)
4726 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4727 break;
4728
4729 if (idx == p2[1]
4730 || idx == CHARSET_BITMAP_SIZE (p1))
4731 {
4732 DEBUG_PRINT1 (" No match => fast loop.\n");
4733 return 1;
4734 }
4735 }
4736 else if ((re_opcode_t) *p1 == charset_not)
4737 {
4738 int idx;
4739 /* We win if the charset_not inside the loop lists
4740 every character listed in the charset after. */
4741 for (idx = 0; idx < (int) p2[1]; idx++)
4742 if (! (p2[2 + idx] == 0
4743 || (idx < CHARSET_BITMAP_SIZE (p1)
4744 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4745 break;
4746
4747 if (idx == p2[1])
4748 {
4749 DEBUG_PRINT1 (" No match => fast loop.\n");
4750 return 1;
4751 }
4752 }
4753 }
4754 }
4755 break;
4756
4757 case charset_not:
4758 switch (SWITCH_ENUM_CAST (*p1))
4759 {
4760 case exactn:
4761 case charset:
4762 /* Reuse the code above. */
4763 return mutually_exclusive_p (bufp, p2, p1);
4764 case charset_not:
4765 /* When we have two charset_not, it's very unlikely that
4766 they don't overlap. The union of the two sets of excluded
4767 chars should cover all possible chars, which, as a matter of
4768 fact, is virtually impossible in multibyte buffers. */
4769 break;
4770 }
4771 break;
4772
4773 case wordend:
4774 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4775 case symend:
4776 return ((re_opcode_t) *p1 == syntaxspec
4777 && (p1[1] == Ssymbol || p1[1] == Sword));
4778 case notsyntaxspec:
4779 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4780
4781 case wordbeg:
4782 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4783 case symbeg:
4784 return ((re_opcode_t) *p1 == notsyntaxspec
4785 && (p1[1] == Ssymbol || p1[1] == Sword));
4786 case syntaxspec:
4787 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4788
4789 case wordbound:
4790 return (((re_opcode_t) *p1 == notsyntaxspec
4791 || (re_opcode_t) *p1 == syntaxspec)
4792 && p1[1] == Sword);
4793
4794 #ifdef emacs
4795 case categoryspec:
4796 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4797 case notcategoryspec:
4798 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4799 #endif /* emacs */
4800
4801 default:
4802 ;
4803 }
4804
4805 /* Safe default. */
4806 return 0;
4807 }
4808
4809 \f
4810 /* Matching routines. */
4811
4812 #ifndef emacs /* Emacs never uses this. */
4813 /* re_match is like re_match_2 except it takes only a single string. */
4814
4815 int
4816 re_match (bufp, string, size, pos, regs)
4817 struct re_pattern_buffer *bufp;
4818 const char *string;
4819 int size, pos;
4820 struct re_registers *regs;
4821 {
4822 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4823 pos, regs, size);
4824 # if defined C_ALLOCA && !defined REGEX_MALLOC
4825 alloca (0);
4826 # endif
4827 return result;
4828 }
4829 WEAK_ALIAS (__re_match, re_match)
4830 #endif /* not emacs */
4831
4832 #ifdef emacs
4833 /* In Emacs, this is the string or buffer in which we
4834 are matching. It is used for looking up syntax properties. */
4835 Lisp_Object re_match_object;
4836 #endif
4837
4838 /* re_match_2 matches the compiled pattern in BUFP against the
4839 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4840 and SIZE2, respectively). We start matching at POS, and stop
4841 matching at STOP.
4842
4843 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4844 store offsets for the substring each group matched in REGS. See the
4845 documentation for exactly how many groups we fill.
4846
4847 We return -1 if no match, -2 if an internal error (such as the
4848 failure stack overflowing). Otherwise, we return the length of the
4849 matched substring. */
4850
4851 int
4852 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4853 struct re_pattern_buffer *bufp;
4854 const char *string1, *string2;
4855 int size1, size2;
4856 int pos;
4857 struct re_registers *regs;
4858 int stop;
4859 {
4860 int result;
4861
4862 #ifdef emacs
4863 int charpos;
4864 gl_state.object = re_match_object;
4865 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4866 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4867 #endif
4868
4869 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4870 (re_char*) string2, size2,
4871 pos, regs, stop);
4872 #if defined C_ALLOCA && !defined REGEX_MALLOC
4873 alloca (0);
4874 #endif
4875 return result;
4876 }
4877 WEAK_ALIAS (__re_match_2, re_match_2)
4878
4879 /* This is a separate function so that we can force an alloca cleanup
4880 afterwards. */
4881 static int
4882 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4883 struct re_pattern_buffer *bufp;
4884 re_char *string1, *string2;
4885 int size1, size2;
4886 int pos;
4887 struct re_registers *regs;
4888 int stop;
4889 {
4890 /* General temporaries. */
4891 int mcnt;
4892 size_t reg;
4893 boolean not;
4894
4895 /* Just past the end of the corresponding string. */
4896 re_char *end1, *end2;
4897
4898 /* Pointers into string1 and string2, just past the last characters in
4899 each to consider matching. */
4900 re_char *end_match_1, *end_match_2;
4901
4902 /* Where we are in the data, and the end of the current string. */
4903 re_char *d, *dend;
4904
4905 /* Used sometimes to remember where we were before starting matching
4906 an operator so that we can go back in case of failure. This "atomic"
4907 behavior of matching opcodes is indispensable to the correctness
4908 of the on_failure_keep_string_jump optimization. */
4909 re_char *dfail;
4910
4911 /* Where we are in the pattern, and the end of the pattern. */
4912 re_char *p = bufp->buffer;
4913 re_char *pend = p + bufp->used;
4914
4915 /* We use this to map every character in the string. */
4916 RE_TRANSLATE_TYPE translate = bufp->translate;
4917
4918 /* Nonzero if we have to concern multibyte character. */
4919 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4920
4921 /* Failure point stack. Each place that can handle a failure further
4922 down the line pushes a failure point on this stack. It consists of
4923 regstart, and regend for all registers corresponding to
4924 the subexpressions we're currently inside, plus the number of such
4925 registers, and, finally, two char *'s. The first char * is where
4926 to resume scanning the pattern; the second one is where to resume
4927 scanning the strings. */
4928 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4929 fail_stack_type fail_stack;
4930 #endif
4931 #ifdef DEBUG
4932 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4933 #endif
4934
4935 #if defined REL_ALLOC && defined REGEX_MALLOC
4936 /* This holds the pointer to the failure stack, when
4937 it is allocated relocatably. */
4938 fail_stack_elt_t *failure_stack_ptr;
4939 #endif
4940
4941 /* We fill all the registers internally, independent of what we
4942 return, for use in backreferences. The number here includes
4943 an element for register zero. */
4944 size_t num_regs = bufp->re_nsub + 1;
4945
4946 /* Information on the contents of registers. These are pointers into
4947 the input strings; they record just what was matched (on this
4948 attempt) by a subexpression part of the pattern, that is, the
4949 regnum-th regstart pointer points to where in the pattern we began
4950 matching and the regnum-th regend points to right after where we
4951 stopped matching the regnum-th subexpression. (The zeroth register
4952 keeps track of what the whole pattern matches.) */
4953 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4954 re_char **regstart, **regend;
4955 #endif
4956
4957 /* The following record the register info as found in the above
4958 variables when we find a match better than any we've seen before.
4959 This happens as we backtrack through the failure points, which in
4960 turn happens only if we have not yet matched the entire string. */
4961 unsigned best_regs_set = false;
4962 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4963 re_char **best_regstart, **best_regend;
4964 #endif
4965
4966 /* Logically, this is `best_regend[0]'. But we don't want to have to
4967 allocate space for that if we're not allocating space for anything
4968 else (see below). Also, we never need info about register 0 for
4969 any of the other register vectors, and it seems rather a kludge to
4970 treat `best_regend' differently than the rest. So we keep track of
4971 the end of the best match so far in a separate variable. We
4972 initialize this to NULL so that when we backtrack the first time
4973 and need to test it, it's not garbage. */
4974 re_char *match_end = NULL;
4975
4976 #ifdef DEBUG
4977 /* Counts the total number of registers pushed. */
4978 unsigned num_regs_pushed = 0;
4979 #endif
4980
4981 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4982
4983 INIT_FAIL_STACK ();
4984
4985 #ifdef MATCH_MAY_ALLOCATE
4986 /* Do not bother to initialize all the register variables if there are
4987 no groups in the pattern, as it takes a fair amount of time. If
4988 there are groups, we include space for register 0 (the whole
4989 pattern), even though we never use it, since it simplifies the
4990 array indexing. We should fix this. */
4991 if (bufp->re_nsub)
4992 {
4993 regstart = REGEX_TALLOC (num_regs, re_char *);
4994 regend = REGEX_TALLOC (num_regs, re_char *);
4995 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4996 best_regend = REGEX_TALLOC (num_regs, re_char *);
4997
4998 if (!(regstart && regend && best_regstart && best_regend))
4999 {
5000 FREE_VARIABLES ();
5001 return -2;
5002 }
5003 }
5004 else
5005 {
5006 /* We must initialize all our variables to NULL, so that
5007 `FREE_VARIABLES' doesn't try to free them. */
5008 regstart = regend = best_regstart = best_regend = NULL;
5009 }
5010 #endif /* MATCH_MAY_ALLOCATE */
5011
5012 /* The starting position is bogus. */
5013 if (pos < 0 || pos > size1 + size2)
5014 {
5015 FREE_VARIABLES ();
5016 return -1;
5017 }
5018
5019 /* Initialize subexpression text positions to -1 to mark ones that no
5020 start_memory/stop_memory has been seen for. Also initialize the
5021 register information struct. */
5022 for (reg = 1; reg < num_regs; reg++)
5023 regstart[reg] = regend[reg] = NULL;
5024
5025 /* We move `string1' into `string2' if the latter's empty -- but not if
5026 `string1' is null. */
5027 if (size2 == 0 && string1 != NULL)
5028 {
5029 string2 = string1;
5030 size2 = size1;
5031 string1 = 0;
5032 size1 = 0;
5033 }
5034 end1 = string1 + size1;
5035 end2 = string2 + size2;
5036
5037 /* `p' scans through the pattern as `d' scans through the data.
5038 `dend' is the end of the input string that `d' points within. `d'
5039 is advanced into the following input string whenever necessary, but
5040 this happens before fetching; therefore, at the beginning of the
5041 loop, `d' can be pointing at the end of a string, but it cannot
5042 equal `string2'. */
5043 if (pos >= size1)
5044 {
5045 /* Only match within string2. */
5046 d = string2 + pos - size1;
5047 dend = end_match_2 = string2 + stop - size1;
5048 end_match_1 = end1; /* Just to give it a value. */
5049 }
5050 else
5051 {
5052 if (stop < size1)
5053 {
5054 /* Only match within string1. */
5055 end_match_1 = string1 + stop;
5056 /* BEWARE!
5057 When we reach end_match_1, PREFETCH normally switches to string2.
5058 But in the present case, this means that just doing a PREFETCH
5059 makes us jump from `stop' to `gap' within the string.
5060 What we really want here is for the search to stop as
5061 soon as we hit end_match_1. That's why we set end_match_2
5062 to end_match_1 (since PREFETCH fails as soon as we hit
5063 end_match_2). */
5064 end_match_2 = end_match_1;
5065 }
5066 else
5067 { /* It's important to use this code when stop == size so that
5068 moving `d' from end1 to string2 will not prevent the d == dend
5069 check from catching the end of string. */
5070 end_match_1 = end1;
5071 end_match_2 = string2 + stop - size1;
5072 }
5073 d = string1 + pos;
5074 dend = end_match_1;
5075 }
5076
5077 DEBUG_PRINT1 ("The compiled pattern is: ");
5078 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5079 DEBUG_PRINT1 ("The string to match is: `");
5080 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5081 DEBUG_PRINT1 ("'\n");
5082
5083 /* This loops over pattern commands. It exits by returning from the
5084 function if the match is complete, or it drops through if the match
5085 fails at this starting point in the input data. */
5086 for (;;)
5087 {
5088 DEBUG_PRINT2 ("\n%p: ", p);
5089
5090 if (p == pend)
5091 { /* End of pattern means we might have succeeded. */
5092 DEBUG_PRINT1 ("end of pattern ... ");
5093
5094 /* If we haven't matched the entire string, and we want the
5095 longest match, try backtracking. */
5096 if (d != end_match_2)
5097 {
5098 /* 1 if this match ends in the same string (string1 or string2)
5099 as the best previous match. */
5100 boolean same_str_p = (FIRST_STRING_P (match_end)
5101 == FIRST_STRING_P (d));
5102 /* 1 if this match is the best seen so far. */
5103 boolean best_match_p;
5104
5105 /* AIX compiler got confused when this was combined
5106 with the previous declaration. */
5107 if (same_str_p)
5108 best_match_p = d > match_end;
5109 else
5110 best_match_p = !FIRST_STRING_P (d);
5111
5112 DEBUG_PRINT1 ("backtracking.\n");
5113
5114 if (!FAIL_STACK_EMPTY ())
5115 { /* More failure points to try. */
5116
5117 /* If exceeds best match so far, save it. */
5118 if (!best_regs_set || best_match_p)
5119 {
5120 best_regs_set = true;
5121 match_end = d;
5122
5123 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5124
5125 for (reg = 1; reg < num_regs; reg++)
5126 {
5127 best_regstart[reg] = regstart[reg];
5128 best_regend[reg] = regend[reg];
5129 }
5130 }
5131 goto fail;
5132 }
5133
5134 /* If no failure points, don't restore garbage. And if
5135 last match is real best match, don't restore second
5136 best one. */
5137 else if (best_regs_set && !best_match_p)
5138 {
5139 restore_best_regs:
5140 /* Restore best match. It may happen that `dend ==
5141 end_match_1' while the restored d is in string2.
5142 For example, the pattern `x.*y.*z' against the
5143 strings `x-' and `y-z-', if the two strings are
5144 not consecutive in memory. */
5145 DEBUG_PRINT1 ("Restoring best registers.\n");
5146
5147 d = match_end;
5148 dend = ((d >= string1 && d <= end1)
5149 ? end_match_1 : end_match_2);
5150
5151 for (reg = 1; reg < num_regs; reg++)
5152 {
5153 regstart[reg] = best_regstart[reg];
5154 regend[reg] = best_regend[reg];
5155 }
5156 }
5157 } /* d != end_match_2 */
5158
5159 succeed_label:
5160 DEBUG_PRINT1 ("Accepting match.\n");
5161
5162 /* If caller wants register contents data back, do it. */
5163 if (regs && !bufp->no_sub)
5164 {
5165 /* Have the register data arrays been allocated? */
5166 if (bufp->regs_allocated == REGS_UNALLOCATED)
5167 { /* No. So allocate them with malloc. We need one
5168 extra element beyond `num_regs' for the `-1' marker
5169 GNU code uses. */
5170 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5171 regs->start = TALLOC (regs->num_regs, regoff_t);
5172 regs->end = TALLOC (regs->num_regs, regoff_t);
5173 if (regs->start == NULL || regs->end == NULL)
5174 {
5175 FREE_VARIABLES ();
5176 return -2;
5177 }
5178 bufp->regs_allocated = REGS_REALLOCATE;
5179 }
5180 else if (bufp->regs_allocated == REGS_REALLOCATE)
5181 { /* Yes. If we need more elements than were already
5182 allocated, reallocate them. If we need fewer, just
5183 leave it alone. */
5184 if (regs->num_regs < num_regs + 1)
5185 {
5186 regs->num_regs = num_regs + 1;
5187 RETALLOC (regs->start, regs->num_regs, regoff_t);
5188 RETALLOC (regs->end, regs->num_regs, regoff_t);
5189 if (regs->start == NULL || regs->end == NULL)
5190 {
5191 FREE_VARIABLES ();
5192 return -2;
5193 }
5194 }
5195 }
5196 else
5197 {
5198 /* These braces fend off a "empty body in an else-statement"
5199 warning under GCC when assert expands to nothing. */
5200 assert (bufp->regs_allocated == REGS_FIXED);
5201 }
5202
5203 /* Convert the pointer data in `regstart' and `regend' to
5204 indices. Register zero has to be set differently,
5205 since we haven't kept track of any info for it. */
5206 if (regs->num_regs > 0)
5207 {
5208 regs->start[0] = pos;
5209 regs->end[0] = POINTER_TO_OFFSET (d);
5210 }
5211
5212 /* Go through the first `min (num_regs, regs->num_regs)'
5213 registers, since that is all we initialized. */
5214 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5215 {
5216 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5217 regs->start[reg] = regs->end[reg] = -1;
5218 else
5219 {
5220 regs->start[reg]
5221 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5222 regs->end[reg]
5223 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5224 }
5225 }
5226
5227 /* If the regs structure we return has more elements than
5228 were in the pattern, set the extra elements to -1. If
5229 we (re)allocated the registers, this is the case,
5230 because we always allocate enough to have at least one
5231 -1 at the end. */
5232 for (reg = num_regs; reg < regs->num_regs; reg++)
5233 regs->start[reg] = regs->end[reg] = -1;
5234 } /* regs && !bufp->no_sub */
5235
5236 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5237 nfailure_points_pushed, nfailure_points_popped,
5238 nfailure_points_pushed - nfailure_points_popped);
5239 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5240
5241 mcnt = POINTER_TO_OFFSET (d) - pos;
5242
5243 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5244
5245 FREE_VARIABLES ();
5246 return mcnt;
5247 }
5248
5249 /* Otherwise match next pattern command. */
5250 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5251 {
5252 /* Ignore these. Used to ignore the n of succeed_n's which
5253 currently have n == 0. */
5254 case no_op:
5255 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5256 break;
5257
5258 case succeed:
5259 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5260 goto succeed_label;
5261
5262 /* Match the next n pattern characters exactly. The following
5263 byte in the pattern defines n, and the n bytes after that
5264 are the characters to match. */
5265 case exactn:
5266 mcnt = *p++;
5267 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5268
5269 /* Remember the start point to rollback upon failure. */
5270 dfail = d;
5271
5272 /* This is written out as an if-else so we don't waste time
5273 testing `translate' inside the loop. */
5274 if (RE_TRANSLATE_P (translate))
5275 {
5276 if (multibyte)
5277 do
5278 {
5279 int pat_charlen, buf_charlen;
5280 unsigned int pat_ch, buf_ch;
5281
5282 PREFETCH ();
5283 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5284 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5285
5286 if (RE_TRANSLATE (translate, buf_ch)
5287 != pat_ch)
5288 {
5289 d = dfail;
5290 goto fail;
5291 }
5292
5293 p += pat_charlen;
5294 d += buf_charlen;
5295 mcnt -= pat_charlen;
5296 }
5297 while (mcnt > 0);
5298 else
5299 do
5300 {
5301 /* Avoid compiler whining about comparison being
5302 always true. */
5303 int di;
5304
5305 PREFETCH ();
5306 di = *d;
5307 if (RE_TRANSLATE (translate, di) != *p++)
5308 {
5309 d = dfail;
5310 goto fail;
5311 }
5312 d++;
5313 }
5314 while (--mcnt);
5315 }
5316 else
5317 {
5318 do
5319 {
5320 PREFETCH ();
5321 if (*d++ != *p++)
5322 {
5323 d = dfail;
5324 goto fail;
5325 }
5326 }
5327 while (--mcnt);
5328 }
5329 break;
5330
5331
5332 /* Match any character except possibly a newline or a null. */
5333 case anychar:
5334 {
5335 int buf_charlen;
5336 re_wchar_t buf_ch;
5337
5338 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5339
5340 PREFETCH ();
5341 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5342 buf_ch = TRANSLATE (buf_ch);
5343
5344 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5345 && buf_ch == '\n')
5346 || ((bufp->syntax & RE_DOT_NOT_NULL)
5347 && buf_ch == '\000'))
5348 goto fail;
5349
5350 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5351 d += buf_charlen;
5352 }
5353 break;
5354
5355
5356 case charset:
5357 case charset_not:
5358 {
5359 register unsigned int c;
5360 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5361 int len;
5362
5363 /* Start of actual range_table, or end of bitmap if there is no
5364 range table. */
5365 re_char *range_table;
5366
5367 /* Nonzero if there is a range table. */
5368 int range_table_exists;
5369
5370 /* Number of ranges of range table. This is not included
5371 in the initial byte-length of the command. */
5372 int count = 0;
5373
5374 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5375
5376 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5377
5378 if (range_table_exists)
5379 {
5380 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5381 EXTRACT_NUMBER_AND_INCR (count, range_table);
5382 }
5383
5384 PREFETCH ();
5385 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5386 c = TRANSLATE (c); /* The character to match. */
5387
5388 if (SINGLE_BYTE_CHAR_P (c))
5389 { /* Lookup bitmap. */
5390 /* Cast to `unsigned' instead of `unsigned char' in
5391 case the bit list is a full 32 bytes long. */
5392 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5393 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5394 not = !not;
5395 }
5396 #ifdef emacs
5397 else if (range_table_exists)
5398 {
5399 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5400
5401 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5402 | (class_bits & BIT_MULTIBYTE)
5403 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5404 | (class_bits & BIT_SPACE && ISSPACE (c))
5405 | (class_bits & BIT_UPPER && ISUPPER (c))
5406 | (class_bits & BIT_WORD && ISWORD (c)))
5407 not = !not;
5408 else
5409 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5410 }
5411 #endif /* emacs */
5412
5413 if (range_table_exists)
5414 p = CHARSET_RANGE_TABLE_END (range_table, count);
5415 else
5416 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5417
5418 if (!not) goto fail;
5419
5420 d += len;
5421 break;
5422 }
5423
5424
5425 /* The beginning of a group is represented by start_memory.
5426 The argument is the register number. The text
5427 matched within the group is recorded (in the internal
5428 registers data structure) under the register number. */
5429 case start_memory:
5430 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5431
5432 /* In case we need to undo this operation (via backtracking). */
5433 PUSH_FAILURE_REG ((unsigned int)*p);
5434
5435 regstart[*p] = d;
5436 regend[*p] = NULL; /* probably unnecessary. -sm */
5437 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5438
5439 /* Move past the register number and inner group count. */
5440 p += 1;
5441 break;
5442
5443
5444 /* The stop_memory opcode represents the end of a group. Its
5445 argument is the same as start_memory's: the register number. */
5446 case stop_memory:
5447 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5448
5449 assert (!REG_UNSET (regstart[*p]));
5450 /* Strictly speaking, there should be code such as:
5451
5452 assert (REG_UNSET (regend[*p]));
5453 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5454
5455 But the only info to be pushed is regend[*p] and it is known to
5456 be UNSET, so there really isn't anything to push.
5457 Not pushing anything, on the other hand deprives us from the
5458 guarantee that regend[*p] is UNSET since undoing this operation
5459 will not reset its value properly. This is not important since
5460 the value will only be read on the next start_memory or at
5461 the very end and both events can only happen if this stop_memory
5462 is *not* undone. */
5463
5464 regend[*p] = d;
5465 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5466
5467 /* Move past the register number and the inner group count. */
5468 p += 1;
5469 break;
5470
5471
5472 /* \<digit> has been turned into a `duplicate' command which is
5473 followed by the numeric value of <digit> as the register number. */
5474 case duplicate:
5475 {
5476 register re_char *d2, *dend2;
5477 int regno = *p++; /* Get which register to match against. */
5478 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5479
5480 /* Can't back reference a group which we've never matched. */
5481 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5482 goto fail;
5483
5484 /* Where in input to try to start matching. */
5485 d2 = regstart[regno];
5486
5487 /* Remember the start point to rollback upon failure. */
5488 dfail = d;
5489
5490 /* Where to stop matching; if both the place to start and
5491 the place to stop matching are in the same string, then
5492 set to the place to stop, otherwise, for now have to use
5493 the end of the first string. */
5494
5495 dend2 = ((FIRST_STRING_P (regstart[regno])
5496 == FIRST_STRING_P (regend[regno]))
5497 ? regend[regno] : end_match_1);
5498 for (;;)
5499 {
5500 /* If necessary, advance to next segment in register
5501 contents. */
5502 while (d2 == dend2)
5503 {
5504 if (dend2 == end_match_2) break;
5505 if (dend2 == regend[regno]) break;
5506
5507 /* End of string1 => advance to string2. */
5508 d2 = string2;
5509 dend2 = regend[regno];
5510 }
5511 /* At end of register contents => success */
5512 if (d2 == dend2) break;
5513
5514 /* If necessary, advance to next segment in data. */
5515 PREFETCH ();
5516
5517 /* How many characters left in this segment to match. */
5518 mcnt = dend - d;
5519
5520 /* Want how many consecutive characters we can match in
5521 one shot, so, if necessary, adjust the count. */
5522 if (mcnt > dend2 - d2)
5523 mcnt = dend2 - d2;
5524
5525 /* Compare that many; failure if mismatch, else move
5526 past them. */
5527 if (RE_TRANSLATE_P (translate)
5528 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5529 : memcmp (d, d2, mcnt))
5530 {
5531 d = dfail;
5532 goto fail;
5533 }
5534 d += mcnt, d2 += mcnt;
5535 }
5536 }
5537 break;
5538
5539
5540 /* begline matches the empty string at the beginning of the string
5541 (unless `not_bol' is set in `bufp'), and after newlines. */
5542 case begline:
5543 DEBUG_PRINT1 ("EXECUTING begline.\n");
5544
5545 if (AT_STRINGS_BEG (d))
5546 {
5547 if (!bufp->not_bol) break;
5548 }
5549 else
5550 {
5551 unsigned char c;
5552 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5553 if (c == '\n')
5554 break;
5555 }
5556 /* In all other cases, we fail. */
5557 goto fail;
5558
5559
5560 /* endline is the dual of begline. */
5561 case endline:
5562 DEBUG_PRINT1 ("EXECUTING endline.\n");
5563
5564 if (AT_STRINGS_END (d))
5565 {
5566 if (!bufp->not_eol) break;
5567 }
5568 else
5569 {
5570 PREFETCH_NOLIMIT ();
5571 if (*d == '\n')
5572 break;
5573 }
5574 goto fail;
5575
5576
5577 /* Match at the very beginning of the data. */
5578 case begbuf:
5579 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5580 if (AT_STRINGS_BEG (d))
5581 break;
5582 goto fail;
5583
5584
5585 /* Match at the very end of the data. */
5586 case endbuf:
5587 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5588 if (AT_STRINGS_END (d))
5589 break;
5590 goto fail;
5591
5592
5593 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5594 pushes NULL as the value for the string on the stack. Then
5595 `POP_FAILURE_POINT' will keep the current value for the
5596 string, instead of restoring it. To see why, consider
5597 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5598 then the . fails against the \n. But the next thing we want
5599 to do is match the \n against the \n; if we restored the
5600 string value, we would be back at the foo.
5601
5602 Because this is used only in specific cases, we don't need to
5603 check all the things that `on_failure_jump' does, to make
5604 sure the right things get saved on the stack. Hence we don't
5605 share its code. The only reason to push anything on the
5606 stack at all is that otherwise we would have to change
5607 `anychar's code to do something besides goto fail in this
5608 case; that seems worse than this. */
5609 case on_failure_keep_string_jump:
5610 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5611 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5612 mcnt, p + mcnt);
5613
5614 PUSH_FAILURE_POINT (p - 3, NULL);
5615 break;
5616
5617 /* A nasty loop is introduced by the non-greedy *? and +?.
5618 With such loops, the stack only ever contains one failure point
5619 at a time, so that a plain on_failure_jump_loop kind of
5620 cycle detection cannot work. Worse yet, such a detection
5621 can not only fail to detect a cycle, but it can also wrongly
5622 detect a cycle (between different instantiations of the same
5623 loop).
5624 So the method used for those nasty loops is a little different:
5625 We use a special cycle-detection-stack-frame which is pushed
5626 when the on_failure_jump_nastyloop failure-point is *popped*.
5627 This special frame thus marks the beginning of one iteration
5628 through the loop and we can hence easily check right here
5629 whether something matched between the beginning and the end of
5630 the loop. */
5631 case on_failure_jump_nastyloop:
5632 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5633 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5634 mcnt, p + mcnt);
5635
5636 assert ((re_opcode_t)p[-4] == no_op);
5637 {
5638 int cycle = 0;
5639 CHECK_INFINITE_LOOP (p - 4, d);
5640 if (!cycle)
5641 /* If there's a cycle, just continue without pushing
5642 this failure point. The failure point is the "try again"
5643 option, which shouldn't be tried.
5644 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5645 PUSH_FAILURE_POINT (p - 3, d);
5646 }
5647 break;
5648
5649 /* Simple loop detecting on_failure_jump: just check on the
5650 failure stack if the same spot was already hit earlier. */
5651 case on_failure_jump_loop:
5652 on_failure:
5653 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5654 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5655 mcnt, p + mcnt);
5656 {
5657 int cycle = 0;
5658 CHECK_INFINITE_LOOP (p - 3, d);
5659 if (cycle)
5660 /* If there's a cycle, get out of the loop, as if the matching
5661 had failed. We used to just `goto fail' here, but that was
5662 aborting the search a bit too early: we want to keep the
5663 empty-loop-match and keep matching after the loop.
5664 We want (x?)*y\1z to match both xxyz and xxyxz. */
5665 p += mcnt;
5666 else
5667 PUSH_FAILURE_POINT (p - 3, d);
5668 }
5669 break;
5670
5671
5672 /* Uses of on_failure_jump:
5673
5674 Each alternative starts with an on_failure_jump that points
5675 to the beginning of the next alternative. Each alternative
5676 except the last ends with a jump that in effect jumps past
5677 the rest of the alternatives. (They really jump to the
5678 ending jump of the following alternative, because tensioning
5679 these jumps is a hassle.)
5680
5681 Repeats start with an on_failure_jump that points past both
5682 the repetition text and either the following jump or
5683 pop_failure_jump back to this on_failure_jump. */
5684 case on_failure_jump:
5685 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5686 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5687 mcnt, p + mcnt);
5688
5689 PUSH_FAILURE_POINT (p -3, d);
5690 break;
5691
5692 /* This operation is used for greedy *.
5693 Compare the beginning of the repeat with what in the
5694 pattern follows its end. If we can establish that there
5695 is nothing that they would both match, i.e., that we
5696 would have to backtrack because of (as in, e.g., `a*a')
5697 then we can use a non-backtracking loop based on
5698 on_failure_keep_string_jump instead of on_failure_jump. */
5699 case on_failure_jump_smart:
5700 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5701 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5702 mcnt, p + mcnt);
5703 {
5704 re_char *p1 = p; /* Next operation. */
5705 /* Here, we discard `const', making re_match non-reentrant. */
5706 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5707 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5708
5709 p -= 3; /* Reset so that we will re-execute the
5710 instruction once it's been changed. */
5711
5712 EXTRACT_NUMBER (mcnt, p2 - 2);
5713
5714 /* Ensure this is a indeed the trivial kind of loop
5715 we are expecting. */
5716 assert (skip_one_char (p1) == p2 - 3);
5717 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5718 DEBUG_STATEMENT (debug += 2);
5719 if (mutually_exclusive_p (bufp, p1, p2))
5720 {
5721 /* Use a fast `on_failure_keep_string_jump' loop. */
5722 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5723 *p3 = (unsigned char) on_failure_keep_string_jump;
5724 STORE_NUMBER (p2 - 2, mcnt + 3);
5725 }
5726 else
5727 {
5728 /* Default to a safe `on_failure_jump' loop. */
5729 DEBUG_PRINT1 (" smart default => slow loop.\n");
5730 *p3 = (unsigned char) on_failure_jump;
5731 }
5732 DEBUG_STATEMENT (debug -= 2);
5733 }
5734 break;
5735
5736 /* Unconditionally jump (without popping any failure points). */
5737 case jump:
5738 unconditional_jump:
5739 IMMEDIATE_QUIT_CHECK;
5740 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5741 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5742 p += mcnt; /* Do the jump. */
5743 DEBUG_PRINT2 ("(to %p).\n", p);
5744 break;
5745
5746
5747 /* Have to succeed matching what follows at least n times.
5748 After that, handle like `on_failure_jump'. */
5749 case succeed_n:
5750 /* Signedness doesn't matter since we only compare MCNT to 0. */
5751 EXTRACT_NUMBER (mcnt, p + 2);
5752 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5753
5754 /* Originally, mcnt is how many times we HAVE to succeed. */
5755 if (mcnt != 0)
5756 {
5757 /* Here, we discard `const', making re_match non-reentrant. */
5758 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5759 mcnt--;
5760 p += 4;
5761 PUSH_NUMBER (p2, mcnt);
5762 }
5763 else
5764 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5765 goto on_failure;
5766 break;
5767
5768 case jump_n:
5769 /* Signedness doesn't matter since we only compare MCNT to 0. */
5770 EXTRACT_NUMBER (mcnt, p + 2);
5771 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5772
5773 /* Originally, this is how many times we CAN jump. */
5774 if (mcnt != 0)
5775 {
5776 /* Here, we discard `const', making re_match non-reentrant. */
5777 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5778 mcnt--;
5779 PUSH_NUMBER (p2, mcnt);
5780 goto unconditional_jump;
5781 }
5782 /* If don't have to jump any more, skip over the rest of command. */
5783 else
5784 p += 4;
5785 break;
5786
5787 case set_number_at:
5788 {
5789 unsigned char *p2; /* Location of the counter. */
5790 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5791
5792 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5793 /* Here, we discard `const', making re_match non-reentrant. */
5794 p2 = (unsigned char*) p + mcnt;
5795 /* Signedness doesn't matter since we only copy MCNT's bits . */
5796 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5797 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5798 PUSH_NUMBER (p2, mcnt);
5799 break;
5800 }
5801
5802 case wordbound:
5803 case notwordbound:
5804 not = (re_opcode_t) *(p - 1) == notwordbound;
5805 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5806
5807 /* We SUCCEED (or FAIL) in one of the following cases: */
5808
5809 /* Case 1: D is at the beginning or the end of string. */
5810 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5811 not = !not;
5812 else
5813 {
5814 /* C1 is the character before D, S1 is the syntax of C1, C2
5815 is the character at D, and S2 is the syntax of C2. */
5816 re_wchar_t c1, c2;
5817 int s1, s2;
5818 #ifdef emacs
5819 int offset = PTR_TO_OFFSET (d - 1);
5820 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5821 UPDATE_SYNTAX_TABLE (charpos);
5822 #endif
5823 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5824 s1 = SYNTAX (c1);
5825 #ifdef emacs
5826 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5827 #endif
5828 PREFETCH_NOLIMIT ();
5829 c2 = RE_STRING_CHAR (d, dend - d);
5830 s2 = SYNTAX (c2);
5831
5832 if (/* Case 2: Only one of S1 and S2 is Sword. */
5833 ((s1 == Sword) != (s2 == Sword))
5834 /* Case 3: Both of S1 and S2 are Sword, and macro
5835 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5836 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5837 not = !not;
5838 }
5839 if (not)
5840 break;
5841 else
5842 goto fail;
5843
5844 case wordbeg:
5845 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5846
5847 /* We FAIL in one of the following cases: */
5848
5849 /* Case 1: D is at the end of string. */
5850 if (AT_STRINGS_END (d))
5851 goto fail;
5852 else
5853 {
5854 /* C1 is the character before D, S1 is the syntax of C1, C2
5855 is the character at D, and S2 is the syntax of C2. */
5856 re_wchar_t c1, c2;
5857 int s1, s2;
5858 #ifdef emacs
5859 int offset = PTR_TO_OFFSET (d);
5860 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5861 UPDATE_SYNTAX_TABLE (charpos);
5862 #endif
5863 PREFETCH ();
5864 c2 = RE_STRING_CHAR (d, dend - d);
5865 s2 = SYNTAX (c2);
5866
5867 /* Case 2: S2 is not Sword. */
5868 if (s2 != Sword)
5869 goto fail;
5870
5871 /* Case 3: D is not at the beginning of string ... */
5872 if (!AT_STRINGS_BEG (d))
5873 {
5874 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5875 #ifdef emacs
5876 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5877 #endif
5878 s1 = SYNTAX (c1);
5879
5880 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5881 returns 0. */
5882 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5883 goto fail;
5884 }
5885 }
5886 break;
5887
5888 case wordend:
5889 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5890
5891 /* We FAIL in one of the following cases: */
5892
5893 /* Case 1: D is at the beginning of string. */
5894 if (AT_STRINGS_BEG (d))
5895 goto fail;
5896 else
5897 {
5898 /* C1 is the character before D, S1 is the syntax of C1, C2
5899 is the character at D, and S2 is the syntax of C2. */
5900 re_wchar_t c1, c2;
5901 int s1, s2;
5902 #ifdef emacs
5903 int offset = PTR_TO_OFFSET (d) - 1;
5904 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5905 UPDATE_SYNTAX_TABLE (charpos);
5906 #endif
5907 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5908 s1 = SYNTAX (c1);
5909
5910 /* Case 2: S1 is not Sword. */
5911 if (s1 != Sword)
5912 goto fail;
5913
5914 /* Case 3: D is not at the end of string ... */
5915 if (!AT_STRINGS_END (d))
5916 {
5917 PREFETCH_NOLIMIT ();
5918 c2 = RE_STRING_CHAR (d, dend - d);
5919 #ifdef emacs
5920 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5921 #endif
5922 s2 = SYNTAX (c2);
5923
5924 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5925 returns 0. */
5926 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5927 goto fail;
5928 }
5929 }
5930 break;
5931
5932 case symbeg:
5933 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5934
5935 /* We FAIL in one of the following cases: */
5936
5937 /* Case 1: D is at the end of string. */
5938 if (AT_STRINGS_END (d))
5939 goto fail;
5940 else
5941 {
5942 /* C1 is the character before D, S1 is the syntax of C1, C2
5943 is the character at D, and S2 is the syntax of C2. */
5944 re_wchar_t c1, c2;
5945 int s1, s2;
5946 #ifdef emacs
5947 int offset = PTR_TO_OFFSET (d);
5948 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5949 UPDATE_SYNTAX_TABLE (charpos);
5950 #endif
5951 PREFETCH ();
5952 c2 = RE_STRING_CHAR (d, dend - d);
5953 s2 = SYNTAX (c2);
5954
5955 /* Case 2: S2 is neither Sword nor Ssymbol. */
5956 if (s2 != Sword && s2 != Ssymbol)
5957 goto fail;
5958
5959 /* Case 3: D is not at the beginning of string ... */
5960 if (!AT_STRINGS_BEG (d))
5961 {
5962 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5963 #ifdef emacs
5964 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5965 #endif
5966 s1 = SYNTAX (c1);
5967
5968 /* ... and S1 is Sword or Ssymbol. */
5969 if (s1 == Sword || s1 == Ssymbol)
5970 goto fail;
5971 }
5972 }
5973 break;
5974
5975 case symend:
5976 DEBUG_PRINT1 ("EXECUTING symend.\n");
5977
5978 /* We FAIL in one of the following cases: */
5979
5980 /* Case 1: D is at the beginning of string. */
5981 if (AT_STRINGS_BEG (d))
5982 goto fail;
5983 else
5984 {
5985 /* C1 is the character before D, S1 is the syntax of C1, C2
5986 is the character at D, and S2 is the syntax of C2. */
5987 re_wchar_t c1, c2;
5988 int s1, s2;
5989 #ifdef emacs
5990 int offset = PTR_TO_OFFSET (d) - 1;
5991 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5992 UPDATE_SYNTAX_TABLE (charpos);
5993 #endif
5994 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5995 s1 = SYNTAX (c1);
5996
5997 /* Case 2: S1 is neither Ssymbol nor Sword. */
5998 if (s1 != Sword && s1 != Ssymbol)
5999 goto fail;
6000
6001 /* Case 3: D is not at the end of string ... */
6002 if (!AT_STRINGS_END (d))
6003 {
6004 PREFETCH_NOLIMIT ();
6005 c2 = RE_STRING_CHAR (d, dend - d);
6006 #ifdef emacs
6007 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6008 #endif
6009 s2 = SYNTAX (c2);
6010
6011 /* ... and S2 is Sword or Ssymbol. */
6012 if (s2 == Sword || s2 == Ssymbol)
6013 goto fail;
6014 }
6015 }
6016 break;
6017
6018 case syntaxspec:
6019 case notsyntaxspec:
6020 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6021 mcnt = *p++;
6022 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6023 PREFETCH ();
6024 #ifdef emacs
6025 {
6026 int offset = PTR_TO_OFFSET (d);
6027 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6028 UPDATE_SYNTAX_TABLE (pos1);
6029 }
6030 #endif
6031 {
6032 int len;
6033 re_wchar_t c;
6034
6035 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6036
6037 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6038 goto fail;
6039 d += len;
6040 }
6041 break;
6042
6043 #ifdef emacs
6044 case before_dot:
6045 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6046 if (PTR_BYTE_POS (d) >= PT_BYTE)
6047 goto fail;
6048 break;
6049
6050 case at_dot:
6051 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6052 if (PTR_BYTE_POS (d) != PT_BYTE)
6053 goto fail;
6054 break;
6055
6056 case after_dot:
6057 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6058 if (PTR_BYTE_POS (d) <= PT_BYTE)
6059 goto fail;
6060 break;
6061
6062 case categoryspec:
6063 case notcategoryspec:
6064 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6065 mcnt = *p++;
6066 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6067 PREFETCH ();
6068 {
6069 int len;
6070 re_wchar_t c;
6071
6072 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6073
6074 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6075 goto fail;
6076 d += len;
6077 }
6078 break;
6079
6080 #endif /* emacs */
6081
6082 default:
6083 abort ();
6084 }
6085 continue; /* Successfully executed one pattern command; keep going. */
6086
6087
6088 /* We goto here if a matching operation fails. */
6089 fail:
6090 IMMEDIATE_QUIT_CHECK;
6091 if (!FAIL_STACK_EMPTY ())
6092 {
6093 re_char *str, *pat;
6094 /* A restart point is known. Restore to that state. */
6095 DEBUG_PRINT1 ("\nFAIL:\n");
6096 POP_FAILURE_POINT (str, pat);
6097 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6098 {
6099 case on_failure_keep_string_jump:
6100 assert (str == NULL);
6101 goto continue_failure_jump;
6102
6103 case on_failure_jump_nastyloop:
6104 assert ((re_opcode_t)pat[-2] == no_op);
6105 PUSH_FAILURE_POINT (pat - 2, str);
6106 /* Fallthrough */
6107
6108 case on_failure_jump_loop:
6109 case on_failure_jump:
6110 case succeed_n:
6111 d = str;
6112 continue_failure_jump:
6113 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6114 p = pat + mcnt;
6115 break;
6116
6117 case no_op:
6118 /* A special frame used for nastyloops. */
6119 goto fail;
6120
6121 default:
6122 abort();
6123 }
6124
6125 assert (p >= bufp->buffer && p <= pend);
6126
6127 if (d >= string1 && d <= end1)
6128 dend = end_match_1;
6129 }
6130 else
6131 break; /* Matching at this starting point really fails. */
6132 } /* for (;;) */
6133
6134 if (best_regs_set)
6135 goto restore_best_regs;
6136
6137 FREE_VARIABLES ();
6138
6139 return -1; /* Failure to match. */
6140 } /* re_match_2 */
6141 \f
6142 /* Subroutine definitions for re_match_2. */
6143
6144 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6145 bytes; nonzero otherwise. */
6146
6147 static int
6148 bcmp_translate (s1, s2, len, translate, multibyte)
6149 re_char *s1, *s2;
6150 register int len;
6151 RE_TRANSLATE_TYPE translate;
6152 const int multibyte;
6153 {
6154 register re_char *p1 = s1, *p2 = s2;
6155 re_char *p1_end = s1 + len;
6156 re_char *p2_end = s2 + len;
6157
6158 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6159 different lengths, but relying on a single `len' would break this. -sm */
6160 while (p1 < p1_end && p2 < p2_end)
6161 {
6162 int p1_charlen, p2_charlen;
6163 re_wchar_t p1_ch, p2_ch;
6164
6165 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6166 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6167
6168 if (RE_TRANSLATE (translate, p1_ch)
6169 != RE_TRANSLATE (translate, p2_ch))
6170 return 1;
6171
6172 p1 += p1_charlen, p2 += p2_charlen;
6173 }
6174
6175 if (p1 != p1_end || p2 != p2_end)
6176 return 1;
6177
6178 return 0;
6179 }
6180 \f
6181 /* Entry points for GNU code. */
6182
6183 /* re_compile_pattern is the GNU regular expression compiler: it
6184 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6185 Returns 0 if the pattern was valid, otherwise an error string.
6186
6187 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6188 are set in BUFP on entry.
6189
6190 We call regex_compile to do the actual compilation. */
6191
6192 const char *
6193 re_compile_pattern (pattern, length, bufp)
6194 const char *pattern;
6195 size_t length;
6196 struct re_pattern_buffer *bufp;
6197 {
6198 reg_errcode_t ret;
6199
6200 /* GNU code is written to assume at least RE_NREGS registers will be set
6201 (and at least one extra will be -1). */
6202 bufp->regs_allocated = REGS_UNALLOCATED;
6203
6204 /* And GNU code determines whether or not to get register information
6205 by passing null for the REGS argument to re_match, etc., not by
6206 setting no_sub. */
6207 bufp->no_sub = 0;
6208
6209 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6210
6211 if (!ret)
6212 return NULL;
6213 return gettext (re_error_msgid[(int) ret]);
6214 }
6215 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6216 \f
6217 /* Entry points compatible with 4.2 BSD regex library. We don't define
6218 them unless specifically requested. */
6219
6220 #if defined _REGEX_RE_COMP || defined _LIBC
6221
6222 /* BSD has one and only one pattern buffer. */
6223 static struct re_pattern_buffer re_comp_buf;
6224
6225 char *
6226 # ifdef _LIBC
6227 /* Make these definitions weak in libc, so POSIX programs can redefine
6228 these names if they don't use our functions, and still use
6229 regcomp/regexec below without link errors. */
6230 weak_function
6231 # endif
6232 re_comp (s)
6233 const char *s;
6234 {
6235 reg_errcode_t ret;
6236
6237 if (!s)
6238 {
6239 if (!re_comp_buf.buffer)
6240 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6241 return (char *) gettext ("No previous regular expression");
6242 return 0;
6243 }
6244
6245 if (!re_comp_buf.buffer)
6246 {
6247 re_comp_buf.buffer = (unsigned char *) malloc (200);
6248 if (re_comp_buf.buffer == NULL)
6249 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6250 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6251 re_comp_buf.allocated = 200;
6252
6253 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6254 if (re_comp_buf.fastmap == NULL)
6255 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6256 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6257 }
6258
6259 /* Since `re_exec' always passes NULL for the `regs' argument, we
6260 don't need to initialize the pattern buffer fields which affect it. */
6261
6262 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6263
6264 if (!ret)
6265 return NULL;
6266
6267 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6268 return (char *) gettext (re_error_msgid[(int) ret]);
6269 }
6270
6271
6272 int
6273 # ifdef _LIBC
6274 weak_function
6275 # endif
6276 re_exec (s)
6277 const char *s;
6278 {
6279 const int len = strlen (s);
6280 return
6281 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6282 }
6283 #endif /* _REGEX_RE_COMP */
6284 \f
6285 /* POSIX.2 functions. Don't define these for Emacs. */
6286
6287 #ifndef emacs
6288
6289 /* regcomp takes a regular expression as a string and compiles it.
6290
6291 PREG is a regex_t *. We do not expect any fields to be initialized,
6292 since POSIX says we shouldn't. Thus, we set
6293
6294 `buffer' to the compiled pattern;
6295 `used' to the length of the compiled pattern;
6296 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6297 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6298 RE_SYNTAX_POSIX_BASIC;
6299 `fastmap' to an allocated space for the fastmap;
6300 `fastmap_accurate' to zero;
6301 `re_nsub' to the number of subexpressions in PATTERN.
6302
6303 PATTERN is the address of the pattern string.
6304
6305 CFLAGS is a series of bits which affect compilation.
6306
6307 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6308 use POSIX basic syntax.
6309
6310 If REG_NEWLINE is set, then . and [^...] don't match newline.
6311 Also, regexec will try a match beginning after every newline.
6312
6313 If REG_ICASE is set, then we considers upper- and lowercase
6314 versions of letters to be equivalent when matching.
6315
6316 If REG_NOSUB is set, then when PREG is passed to regexec, that
6317 routine will report only success or failure, and nothing about the
6318 registers.
6319
6320 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6321 the return codes and their meanings.) */
6322
6323 int
6324 regcomp (preg, pattern, cflags)
6325 regex_t *__restrict preg;
6326 const char *__restrict pattern;
6327 int cflags;
6328 {
6329 reg_errcode_t ret;
6330 reg_syntax_t syntax
6331 = (cflags & REG_EXTENDED) ?
6332 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6333
6334 /* regex_compile will allocate the space for the compiled pattern. */
6335 preg->buffer = 0;
6336 preg->allocated = 0;
6337 preg->used = 0;
6338
6339 /* Try to allocate space for the fastmap. */
6340 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6341
6342 if (cflags & REG_ICASE)
6343 {
6344 unsigned i;
6345
6346 preg->translate
6347 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6348 * sizeof (*(RE_TRANSLATE_TYPE)0));
6349 if (preg->translate == NULL)
6350 return (int) REG_ESPACE;
6351
6352 /* Map uppercase characters to corresponding lowercase ones. */
6353 for (i = 0; i < CHAR_SET_SIZE; i++)
6354 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6355 }
6356 else
6357 preg->translate = NULL;
6358
6359 /* If REG_NEWLINE is set, newlines are treated differently. */
6360 if (cflags & REG_NEWLINE)
6361 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6362 syntax &= ~RE_DOT_NEWLINE;
6363 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6364 }
6365 else
6366 syntax |= RE_NO_NEWLINE_ANCHOR;
6367
6368 preg->no_sub = !!(cflags & REG_NOSUB);
6369
6370 /* POSIX says a null character in the pattern terminates it, so we
6371 can use strlen here in compiling the pattern. */
6372 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6373
6374 /* POSIX doesn't distinguish between an unmatched open-group and an
6375 unmatched close-group: both are REG_EPAREN. */
6376 if (ret == REG_ERPAREN)
6377 ret = REG_EPAREN;
6378
6379 if (ret == REG_NOERROR && preg->fastmap)
6380 { /* Compute the fastmap now, since regexec cannot modify the pattern
6381 buffer. */
6382 re_compile_fastmap (preg);
6383 if (preg->can_be_null)
6384 { /* The fastmap can't be used anyway. */
6385 free (preg->fastmap);
6386 preg->fastmap = NULL;
6387 }
6388 }
6389 return (int) ret;
6390 }
6391 WEAK_ALIAS (__regcomp, regcomp)
6392
6393
6394 /* regexec searches for a given pattern, specified by PREG, in the
6395 string STRING.
6396
6397 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6398 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6399 least NMATCH elements, and we set them to the offsets of the
6400 corresponding matched substrings.
6401
6402 EFLAGS specifies `execution flags' which affect matching: if
6403 REG_NOTBOL is set, then ^ does not match at the beginning of the
6404 string; if REG_NOTEOL is set, then $ does not match at the end.
6405
6406 We return 0 if we find a match and REG_NOMATCH if not. */
6407
6408 int
6409 regexec (preg, string, nmatch, pmatch, eflags)
6410 const regex_t *__restrict preg;
6411 const char *__restrict string;
6412 size_t nmatch;
6413 regmatch_t pmatch[__restrict_arr];
6414 int eflags;
6415 {
6416 int ret;
6417 struct re_registers regs;
6418 regex_t private_preg;
6419 int len = strlen (string);
6420 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6421
6422 private_preg = *preg;
6423
6424 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6425 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6426
6427 /* The user has told us exactly how many registers to return
6428 information about, via `nmatch'. We have to pass that on to the
6429 matching routines. */
6430 private_preg.regs_allocated = REGS_FIXED;
6431
6432 if (want_reg_info)
6433 {
6434 regs.num_regs = nmatch;
6435 regs.start = TALLOC (nmatch * 2, regoff_t);
6436 if (regs.start == NULL)
6437 return (int) REG_NOMATCH;
6438 regs.end = regs.start + nmatch;
6439 }
6440
6441 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6442 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6443 was a little bit longer but still only matching the real part.
6444 This works because the `endline' will check for a '\n' and will find a
6445 '\0', correctly deciding that this is not the end of a line.
6446 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6447 a convenient '\0' there. For all we know, the string could be preceded
6448 by '\n' which would throw things off. */
6449
6450 /* Perform the searching operation. */
6451 ret = re_search (&private_preg, string, len,
6452 /* start: */ 0, /* range: */ len,
6453 want_reg_info ? &regs : (struct re_registers *) 0);
6454
6455 /* Copy the register information to the POSIX structure. */
6456 if (want_reg_info)
6457 {
6458 if (ret >= 0)
6459 {
6460 unsigned r;
6461
6462 for (r = 0; r < nmatch; r++)
6463 {
6464 pmatch[r].rm_so = regs.start[r];
6465 pmatch[r].rm_eo = regs.end[r];
6466 }
6467 }
6468
6469 /* If we needed the temporary register info, free the space now. */
6470 free (regs.start);
6471 }
6472
6473 /* We want zero return to mean success, unlike `re_search'. */
6474 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6475 }
6476 WEAK_ALIAS (__regexec, regexec)
6477
6478
6479 /* Returns a message corresponding to an error code, ERRCODE, returned
6480 from either regcomp or regexec. We don't use PREG here. */
6481
6482 size_t
6483 regerror (errcode, preg, errbuf, errbuf_size)
6484 int errcode;
6485 const regex_t *preg;
6486 char *errbuf;
6487 size_t errbuf_size;
6488 {
6489 const char *msg;
6490 size_t msg_size;
6491
6492 if (errcode < 0
6493 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6494 /* Only error codes returned by the rest of the code should be passed
6495 to this routine. If we are given anything else, or if other regex
6496 code generates an invalid error code, then the program has a bug.
6497 Dump core so we can fix it. */
6498 abort ();
6499
6500 msg = gettext (re_error_msgid[errcode]);
6501
6502 msg_size = strlen (msg) + 1; /* Includes the null. */
6503
6504 if (errbuf_size != 0)
6505 {
6506 if (msg_size > errbuf_size)
6507 {
6508 strncpy (errbuf, msg, errbuf_size - 1);
6509 errbuf[errbuf_size - 1] = 0;
6510 }
6511 else
6512 strcpy (errbuf, msg);
6513 }
6514
6515 return msg_size;
6516 }
6517 WEAK_ALIAS (__regerror, regerror)
6518
6519
6520 /* Free dynamically allocated space used by PREG. */
6521
6522 void
6523 regfree (preg)
6524 regex_t *preg;
6525 {
6526 if (preg->buffer != NULL)
6527 free (preg->buffer);
6528 preg->buffer = NULL;
6529
6530 preg->allocated = 0;
6531 preg->used = 0;
6532
6533 if (preg->fastmap != NULL)
6534 free (preg->fastmap);
6535 preg->fastmap = NULL;
6536 preg->fastmap_accurate = 0;
6537
6538 if (preg->translate != NULL)
6539 free (preg->translate);
6540 preg->translate = NULL;
6541 }
6542 WEAK_ALIAS (__regfree, regfree)
6543
6544 #endif /* not emacs */
6545
6546 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6547 (do not change this comment) */