]> code.delx.au - gnu-emacs/blob - src/alloc.c
Increase success rate of fallback lmalloc
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "dispextern.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
49
50 #include <verify.h>
51 #include <execinfo.h> /* For backtrace. */
52
53 #ifdef HAVE_LINUX_SYSINFO
54 #include <sys/sysinfo.h>
55 #endif
56
57 #ifdef MSDOS
58 #include "dosfns.h" /* For dos_memory_info. */
59 #endif
60
61 #if (defined ENABLE_CHECKING \
62 && defined HAVE_VALGRIND_VALGRIND_H \
63 && !defined USE_VALGRIND)
64 # define USE_VALGRIND 1
65 #endif
66
67 #if USE_VALGRIND
68 #include <valgrind/valgrind.h>
69 #include <valgrind/memcheck.h>
70 static bool valgrind_p;
71 #endif
72
73 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
74
75 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
76 memory. Can do this only if using gmalloc.c and if not checking
77 marked objects. */
78
79 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
80 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
81 #undef GC_MALLOC_CHECK
82 #endif
83
84 #include <unistd.h>
85 #include <fcntl.h>
86
87 #ifdef USE_GTK
88 # include "gtkutil.h"
89 #endif
90 #ifdef WINDOWSNT
91 #include "w32.h"
92 #include "w32heap.h" /* for sbrk */
93 #endif
94
95 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
96 /* The address where the heap starts. */
97 void *
98 my_heap_start (void)
99 {
100 static void *start;
101 if (! start)
102 start = sbrk (0);
103 return start;
104 }
105 #endif
106
107 #ifdef DOUG_LEA_MALLOC
108
109 #include <malloc.h>
110
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
113
114 #define MMAP_MAX_AREAS 100000000
115
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
119
120 /* Get and free this pointer; useful around unexec. */
121 void
122 alloc_unexec_pre (void)
123 {
124 malloc_state_ptr = malloc_get_state ();
125 }
126 void
127 alloc_unexec_post (void)
128 {
129 free (malloc_state_ptr);
130 }
131
132 /* Restore the dumped malloc state. Because malloc can be invoked
133 even before main (e.g. by the dynamic linker), the dumped malloc
134 state must be restored as early as possible using this special hook. */
135 static void
136 malloc_initialize_hook (void)
137 {
138 static bool malloc_using_checking;
139
140 if (! initialized)
141 {
142 my_heap_start ();
143 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
144 }
145 else
146 {
147 if (!malloc_using_checking)
148 {
149 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
150 ignored if the heap to be restored was constructed without
151 malloc checking. Can't use unsetenv, since that calls malloc. */
152 char **p = environ;
153 if (p)
154 for (; *p; p++)
155 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
156 {
157 do
158 *p = p[1];
159 while (*++p);
160
161 break;
162 }
163 }
164
165 malloc_set_state (malloc_state_ptr);
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
169 }
170 }
171
172 # ifndef __MALLOC_HOOK_VOLATILE
173 # define __MALLOC_HOOK_VOLATILE
174 # endif
175 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook
176 = malloc_initialize_hook;
177
178 #endif
179
180 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
181 to a struct Lisp_String. */
182
183 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
184 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
185 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
186
187 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
188 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
189 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
190
191 /* Default value of gc_cons_threshold (see below). */
192
193 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
194
195 /* Global variables. */
196 struct emacs_globals globals;
197
198 /* Number of bytes of consing done since the last gc. */
199
200 EMACS_INT consing_since_gc;
201
202 /* Similar minimum, computed from Vgc_cons_percentage. */
203
204 EMACS_INT gc_relative_threshold;
205
206 /* Minimum number of bytes of consing since GC before next GC,
207 when memory is full. */
208
209 EMACS_INT memory_full_cons_threshold;
210
211 /* True during GC. */
212
213 bool gc_in_progress;
214
215 /* True means abort if try to GC.
216 This is for code which is written on the assumption that
217 no GC will happen, so as to verify that assumption. */
218
219 bool abort_on_gc;
220
221 /* Number of live and free conses etc. */
222
223 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
224 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
225 static EMACS_INT total_free_floats, total_floats;
226
227 /* Points to memory space allocated as "spare", to be freed if we run
228 out of memory. We keep one large block, four cons-blocks, and
229 two string blocks. */
230
231 static char *spare_memory[7];
232
233 /* Amount of spare memory to keep in large reserve block, or to see
234 whether this much is available when malloc fails on a larger request. */
235
236 #define SPARE_MEMORY (1 << 14)
237
238 /* Initialize it to a nonzero value to force it into data space
239 (rather than bss space). That way unexec will remap it into text
240 space (pure), on some systems. We have not implemented the
241 remapping on more recent systems because this is less important
242 nowadays than in the days of small memories and timesharing. */
243
244 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
245 #define PUREBEG (char *) pure
246
247 /* Pointer to the pure area, and its size. */
248
249 static char *purebeg;
250 static ptrdiff_t pure_size;
251
252 /* Number of bytes of pure storage used before pure storage overflowed.
253 If this is non-zero, this implies that an overflow occurred. */
254
255 static ptrdiff_t pure_bytes_used_before_overflow;
256
257 /* Index in pure at which next pure Lisp object will be allocated.. */
258
259 static ptrdiff_t pure_bytes_used_lisp;
260
261 /* Number of bytes allocated for non-Lisp objects in pure storage. */
262
263 static ptrdiff_t pure_bytes_used_non_lisp;
264
265 /* If nonzero, this is a warning delivered by malloc and not yet
266 displayed. */
267
268 const char *pending_malloc_warning;
269
270 #if 0 /* Normally, pointer sanity only on request... */
271 #ifdef ENABLE_CHECKING
272 #define SUSPICIOUS_OBJECT_CHECKING 1
273 #endif
274 #endif
275
276 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
277 bug is unresolved. */
278 #define SUSPICIOUS_OBJECT_CHECKING 1
279
280 #ifdef SUSPICIOUS_OBJECT_CHECKING
281 struct suspicious_free_record
282 {
283 void *suspicious_object;
284 void *backtrace[128];
285 };
286 static void *suspicious_objects[32];
287 static int suspicious_object_index;
288 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
289 static int suspicious_free_history_index;
290 /* Find the first currently-monitored suspicious pointer in range
291 [begin,end) or NULL if no such pointer exists. */
292 static void *find_suspicious_object_in_range (void *begin, void *end);
293 static void detect_suspicious_free (void *ptr);
294 #else
295 # define find_suspicious_object_in_range(begin, end) NULL
296 # define detect_suspicious_free(ptr) (void)
297 #endif
298
299 /* Maximum amount of C stack to save when a GC happens. */
300
301 #ifndef MAX_SAVE_STACK
302 #define MAX_SAVE_STACK 16000
303 #endif
304
305 /* Buffer in which we save a copy of the C stack at each GC. */
306
307 #if MAX_SAVE_STACK > 0
308 static char *stack_copy;
309 static ptrdiff_t stack_copy_size;
310
311 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
312 avoiding any address sanitization. */
313
314 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
315 no_sanitize_memcpy (void *dest, void const *src, size_t size)
316 {
317 if (! ADDRESS_SANITIZER)
318 return memcpy (dest, src, size);
319 else
320 {
321 size_t i;
322 char *d = dest;
323 char const *s = src;
324 for (i = 0; i < size; i++)
325 d[i] = s[i];
326 return dest;
327 }
328 }
329
330 #endif /* MAX_SAVE_STACK > 0 */
331
332 static void mark_terminals (void);
333 static void gc_sweep (void);
334 static Lisp_Object make_pure_vector (ptrdiff_t);
335 static void mark_buffer (struct buffer *);
336
337 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
338 static void refill_memory_reserve (void);
339 #endif
340 static void compact_small_strings (void);
341 static void free_large_strings (void);
342 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
343
344 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
345 what memory allocated via lisp_malloc and lisp_align_malloc is intended
346 for what purpose. This enumeration specifies the type of memory. */
347
348 enum mem_type
349 {
350 MEM_TYPE_NON_LISP,
351 MEM_TYPE_BUFFER,
352 MEM_TYPE_CONS,
353 MEM_TYPE_STRING,
354 MEM_TYPE_MISC,
355 MEM_TYPE_SYMBOL,
356 MEM_TYPE_FLOAT,
357 /* Since all non-bool pseudovectors are small enough to be
358 allocated from vector blocks, this memory type denotes
359 large regular vectors and large bool pseudovectors. */
360 MEM_TYPE_VECTORLIKE,
361 /* Special type to denote vector blocks. */
362 MEM_TYPE_VECTOR_BLOCK,
363 /* Special type to denote reserved memory. */
364 MEM_TYPE_SPARE
365 };
366
367 /* A unique object in pure space used to make some Lisp objects
368 on free lists recognizable in O(1). */
369
370 static Lisp_Object Vdead;
371 #define DEADP(x) EQ (x, Vdead)
372
373 #ifdef GC_MALLOC_CHECK
374
375 enum mem_type allocated_mem_type;
376
377 #endif /* GC_MALLOC_CHECK */
378
379 /* A node in the red-black tree describing allocated memory containing
380 Lisp data. Each such block is recorded with its start and end
381 address when it is allocated, and removed from the tree when it
382 is freed.
383
384 A red-black tree is a balanced binary tree with the following
385 properties:
386
387 1. Every node is either red or black.
388 2. Every leaf is black.
389 3. If a node is red, then both of its children are black.
390 4. Every simple path from a node to a descendant leaf contains
391 the same number of black nodes.
392 5. The root is always black.
393
394 When nodes are inserted into the tree, or deleted from the tree,
395 the tree is "fixed" so that these properties are always true.
396
397 A red-black tree with N internal nodes has height at most 2
398 log(N+1). Searches, insertions and deletions are done in O(log N).
399 Please see a text book about data structures for a detailed
400 description of red-black trees. Any book worth its salt should
401 describe them. */
402
403 struct mem_node
404 {
405 /* Children of this node. These pointers are never NULL. When there
406 is no child, the value is MEM_NIL, which points to a dummy node. */
407 struct mem_node *left, *right;
408
409 /* The parent of this node. In the root node, this is NULL. */
410 struct mem_node *parent;
411
412 /* Start and end of allocated region. */
413 void *start, *end;
414
415 /* Node color. */
416 enum {MEM_BLACK, MEM_RED} color;
417
418 /* Memory type. */
419 enum mem_type type;
420 };
421
422 /* Base address of stack. Set in main. */
423
424 Lisp_Object *stack_base;
425
426 /* Root of the tree describing allocated Lisp memory. */
427
428 static struct mem_node *mem_root;
429
430 /* Lowest and highest known address in the heap. */
431
432 static void *min_heap_address, *max_heap_address;
433
434 /* Sentinel node of the tree. */
435
436 static struct mem_node mem_z;
437 #define MEM_NIL &mem_z
438
439 static struct mem_node *mem_insert (void *, void *, enum mem_type);
440 static void mem_insert_fixup (struct mem_node *);
441 static void mem_rotate_left (struct mem_node *);
442 static void mem_rotate_right (struct mem_node *);
443 static void mem_delete (struct mem_node *);
444 static void mem_delete_fixup (struct mem_node *);
445 static struct mem_node *mem_find (void *);
446
447 #ifndef DEADP
448 # define DEADP(x) 0
449 #endif
450
451 /* Addresses of staticpro'd variables. Initialize it to a nonzero
452 value; otherwise some compilers put it into BSS. */
453
454 enum { NSTATICS = 2048 };
455 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
456
457 /* Index of next unused slot in staticvec. */
458
459 static int staticidx;
460
461 static void *pure_alloc (size_t, int);
462
463 /* Return X rounded to the next multiple of Y. Arguments should not
464 have side effects, as they are evaluated more than once. Assume X
465 + Y - 1 does not overflow. Tune for Y being a power of 2. */
466
467 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
468 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
469 : ((x) + (y) - 1) & ~ ((y) - 1))
470
471 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
472
473 static void *
474 ALIGN (void *ptr, int alignment)
475 {
476 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
477 }
478
479 /* Extract the pointer hidden within A, if A is not a symbol.
480 If A is a symbol, extract the hidden pointer's offset from lispsym,
481 converted to void *. */
482
483 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
484 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
485
486 /* Extract the pointer hidden within A. */
487
488 #define macro_XPNTR(a) \
489 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
490 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
491
492 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
493 functions, as functions are cleaner and can be used in debuggers.
494 Also, define them as macros if being compiled with GCC without
495 optimization, for performance in that case. The macro_* names are
496 private to this section of code. */
497
498 static ATTRIBUTE_UNUSED void *
499 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
500 {
501 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
502 }
503 static ATTRIBUTE_UNUSED void *
504 XPNTR (Lisp_Object a)
505 {
506 return macro_XPNTR (a);
507 }
508
509 #if DEFINE_KEY_OPS_AS_MACROS
510 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
511 # define XPNTR(a) macro_XPNTR (a)
512 #endif
513
514 static void
515 XFLOAT_INIT (Lisp_Object f, double n)
516 {
517 XFLOAT (f)->u.data = n;
518 }
519
520 #ifdef DOUG_LEA_MALLOC
521 static bool
522 pointers_fit_in_lispobj_p (void)
523 {
524 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
525 }
526
527 static bool
528 mmap_lisp_allowed_p (void)
529 {
530 /* If we can't store all memory addresses in our lisp objects, it's
531 risky to let the heap use mmap and give us addresses from all
532 over our address space. We also can't use mmap for lisp objects
533 if we might dump: unexec doesn't preserve the contents of mmapped
534 regions. */
535 return pointers_fit_in_lispobj_p () && !might_dump;
536 }
537 #endif
538
539 /* Head of a circularly-linked list of extant finalizers. */
540 static struct Lisp_Finalizer finalizers;
541
542 /* Head of a circularly-linked list of finalizers that must be invoked
543 because we deemed them unreachable. This list must be global, and
544 not a local inside garbage_collect_1, in case we GC again while
545 running finalizers. */
546 static struct Lisp_Finalizer doomed_finalizers;
547
548 \f
549 /************************************************************************
550 Malloc
551 ************************************************************************/
552
553 /* Function malloc calls this if it finds we are near exhausting storage. */
554
555 void
556 malloc_warning (const char *str)
557 {
558 pending_malloc_warning = str;
559 }
560
561
562 /* Display an already-pending malloc warning. */
563
564 void
565 display_malloc_warning (void)
566 {
567 call3 (intern ("display-warning"),
568 intern ("alloc"),
569 build_string (pending_malloc_warning),
570 intern ("emergency"));
571 pending_malloc_warning = 0;
572 }
573 \f
574 /* Called if we can't allocate relocatable space for a buffer. */
575
576 void
577 buffer_memory_full (ptrdiff_t nbytes)
578 {
579 /* If buffers use the relocating allocator, no need to free
580 spare_memory, because we may have plenty of malloc space left
581 that we could get, and if we don't, the malloc that fails will
582 itself cause spare_memory to be freed. If buffers don't use the
583 relocating allocator, treat this like any other failing
584 malloc. */
585
586 #ifndef REL_ALLOC
587 memory_full (nbytes);
588 #else
589 /* This used to call error, but if we've run out of memory, we could
590 get infinite recursion trying to build the string. */
591 xsignal (Qnil, Vmemory_signal_data);
592 #endif
593 }
594
595 /* A common multiple of the positive integers A and B. Ideally this
596 would be the least common multiple, but there's no way to do that
597 as a constant expression in C, so do the best that we can easily do. */
598 #define COMMON_MULTIPLE(a, b) \
599 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
600
601 #ifndef XMALLOC_OVERRUN_CHECK
602 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
603 #else
604
605 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
606 around each block.
607
608 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
609 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
610 block size in little-endian order. The trailer consists of
611 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
612
613 The header is used to detect whether this block has been allocated
614 through these functions, as some low-level libc functions may
615 bypass the malloc hooks. */
616
617 #define XMALLOC_OVERRUN_CHECK_SIZE 16
618 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
619 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
620
621 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
622 hold a size_t value and (2) the header size is a multiple of the
623 alignment that Emacs needs for C types and for USE_LSB_TAG. */
624 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
625
626 #define XMALLOC_HEADER_ALIGNMENT \
627 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
628 #define XMALLOC_OVERRUN_SIZE_SIZE \
629 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
630 + XMALLOC_HEADER_ALIGNMENT - 1) \
631 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
632 - XMALLOC_OVERRUN_CHECK_SIZE)
633
634 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
635 { '\x9a', '\x9b', '\xae', '\xaf',
636 '\xbf', '\xbe', '\xce', '\xcf',
637 '\xea', '\xeb', '\xec', '\xed',
638 '\xdf', '\xde', '\x9c', '\x9d' };
639
640 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
641 { '\xaa', '\xab', '\xac', '\xad',
642 '\xba', '\xbb', '\xbc', '\xbd',
643 '\xca', '\xcb', '\xcc', '\xcd',
644 '\xda', '\xdb', '\xdc', '\xdd' };
645
646 /* Insert and extract the block size in the header. */
647
648 static void
649 xmalloc_put_size (unsigned char *ptr, size_t size)
650 {
651 int i;
652 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
653 {
654 *--ptr = size & ((1 << CHAR_BIT) - 1);
655 size >>= CHAR_BIT;
656 }
657 }
658
659 static size_t
660 xmalloc_get_size (unsigned char *ptr)
661 {
662 size_t size = 0;
663 int i;
664 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
665 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
666 {
667 size <<= CHAR_BIT;
668 size += *ptr++;
669 }
670 return size;
671 }
672
673
674 /* Like malloc, but wraps allocated block with header and trailer. */
675
676 static void *
677 overrun_check_malloc (size_t size)
678 {
679 register unsigned char *val;
680 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
681 emacs_abort ();
682
683 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
684 if (val)
685 {
686 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
687 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
688 xmalloc_put_size (val, size);
689 memcpy (val + size, xmalloc_overrun_check_trailer,
690 XMALLOC_OVERRUN_CHECK_SIZE);
691 }
692 return val;
693 }
694
695
696 /* Like realloc, but checks old block for overrun, and wraps new block
697 with header and trailer. */
698
699 static void *
700 overrun_check_realloc (void *block, size_t size)
701 {
702 register unsigned char *val = (unsigned char *) block;
703 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
704 emacs_abort ();
705
706 if (val
707 && memcmp (xmalloc_overrun_check_header,
708 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
709 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
710 {
711 size_t osize = xmalloc_get_size (val);
712 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
713 XMALLOC_OVERRUN_CHECK_SIZE))
714 emacs_abort ();
715 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
716 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
717 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
718 }
719
720 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
721
722 if (val)
723 {
724 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
725 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
726 xmalloc_put_size (val, size);
727 memcpy (val + size, xmalloc_overrun_check_trailer,
728 XMALLOC_OVERRUN_CHECK_SIZE);
729 }
730 return val;
731 }
732
733 /* Like free, but checks block for overrun. */
734
735 static void
736 overrun_check_free (void *block)
737 {
738 unsigned char *val = (unsigned char *) block;
739
740 if (val
741 && memcmp (xmalloc_overrun_check_header,
742 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
743 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
744 {
745 size_t osize = xmalloc_get_size (val);
746 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
747 XMALLOC_OVERRUN_CHECK_SIZE))
748 emacs_abort ();
749 #ifdef XMALLOC_CLEAR_FREE_MEMORY
750 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
751 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
752 #else
753 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
754 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
755 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
756 #endif
757 }
758
759 free (val);
760 }
761
762 #undef malloc
763 #undef realloc
764 #undef free
765 #define malloc overrun_check_malloc
766 #define realloc overrun_check_realloc
767 #define free overrun_check_free
768 #endif
769
770 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
771 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
772 If that variable is set, block input while in one of Emacs's memory
773 allocation functions. There should be no need for this debugging
774 option, since signal handlers do not allocate memory, but Emacs
775 formerly allocated memory in signal handlers and this compile-time
776 option remains as a way to help debug the issue should it rear its
777 ugly head again. */
778 #ifdef XMALLOC_BLOCK_INPUT_CHECK
779 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
780 static void
781 malloc_block_input (void)
782 {
783 if (block_input_in_memory_allocators)
784 block_input ();
785 }
786 static void
787 malloc_unblock_input (void)
788 {
789 if (block_input_in_memory_allocators)
790 unblock_input ();
791 }
792 # define MALLOC_BLOCK_INPUT malloc_block_input ()
793 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
794 #else
795 # define MALLOC_BLOCK_INPUT ((void) 0)
796 # define MALLOC_UNBLOCK_INPUT ((void) 0)
797 #endif
798
799 #define MALLOC_PROBE(size) \
800 do { \
801 if (profiler_memory_running) \
802 malloc_probe (size); \
803 } while (0)
804
805 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
806 static void *lrealloc (void *, size_t);
807
808 /* Like malloc but check for no memory and block interrupt input. */
809
810 void *
811 xmalloc (size_t size)
812 {
813 void *val;
814
815 MALLOC_BLOCK_INPUT;
816 val = lmalloc (size);
817 MALLOC_UNBLOCK_INPUT;
818
819 if (!val && size)
820 memory_full (size);
821 MALLOC_PROBE (size);
822 return val;
823 }
824
825 /* Like the above, but zeroes out the memory just allocated. */
826
827 void *
828 xzalloc (size_t size)
829 {
830 void *val;
831
832 MALLOC_BLOCK_INPUT;
833 val = lmalloc (size);
834 MALLOC_UNBLOCK_INPUT;
835
836 if (!val && size)
837 memory_full (size);
838 memset (val, 0, size);
839 MALLOC_PROBE (size);
840 return val;
841 }
842
843 /* Like realloc but check for no memory and block interrupt input.. */
844
845 void *
846 xrealloc (void *block, size_t size)
847 {
848 void *val;
849
850 MALLOC_BLOCK_INPUT;
851 /* We must call malloc explicitly when BLOCK is 0, since some
852 reallocs don't do this. */
853 if (! block)
854 val = lmalloc (size);
855 else
856 val = lrealloc (block, size);
857 MALLOC_UNBLOCK_INPUT;
858
859 if (!val && size)
860 memory_full (size);
861 MALLOC_PROBE (size);
862 return val;
863 }
864
865
866 /* Like free but block interrupt input. */
867
868 void
869 xfree (void *block)
870 {
871 if (!block)
872 return;
873 MALLOC_BLOCK_INPUT;
874 free (block);
875 MALLOC_UNBLOCK_INPUT;
876 /* We don't call refill_memory_reserve here
877 because in practice the call in r_alloc_free seems to suffice. */
878 }
879
880
881 /* Other parts of Emacs pass large int values to allocator functions
882 expecting ptrdiff_t. This is portable in practice, but check it to
883 be safe. */
884 verify (INT_MAX <= PTRDIFF_MAX);
885
886
887 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
888 Signal an error on memory exhaustion, and block interrupt input. */
889
890 void *
891 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
892 {
893 eassert (0 <= nitems && 0 < item_size);
894 ptrdiff_t nbytes;
895 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
896 memory_full (SIZE_MAX);
897 return xmalloc (nbytes);
898 }
899
900
901 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
902 Signal an error on memory exhaustion, and block interrupt input. */
903
904 void *
905 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
906 {
907 eassert (0 <= nitems && 0 < item_size);
908 ptrdiff_t nbytes;
909 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
910 memory_full (SIZE_MAX);
911 return xrealloc (pa, nbytes);
912 }
913
914
915 /* Grow PA, which points to an array of *NITEMS items, and return the
916 location of the reallocated array, updating *NITEMS to reflect its
917 new size. The new array will contain at least NITEMS_INCR_MIN more
918 items, but will not contain more than NITEMS_MAX items total.
919 ITEM_SIZE is the size of each item, in bytes.
920
921 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
922 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
923 infinity.
924
925 If PA is null, then allocate a new array instead of reallocating
926 the old one.
927
928 Block interrupt input as needed. If memory exhaustion occurs, set
929 *NITEMS to zero if PA is null, and signal an error (i.e., do not
930 return).
931
932 Thus, to grow an array A without saving its old contents, do
933 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
934 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
935 and signals an error, and later this code is reexecuted and
936 attempts to free A. */
937
938 void *
939 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
940 ptrdiff_t nitems_max, ptrdiff_t item_size)
941 {
942 ptrdiff_t n0 = *nitems;
943 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
944
945 /* The approximate size to use for initial small allocation
946 requests. This is the largest "small" request for the GNU C
947 library malloc. */
948 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
949
950 /* If the array is tiny, grow it to about (but no greater than)
951 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
952 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
953 NITEMS_MAX, and what the C language can represent safely. */
954
955 ptrdiff_t n, nbytes;
956 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
957 n = PTRDIFF_MAX;
958 if (0 <= nitems_max && nitems_max < n)
959 n = nitems_max;
960
961 ptrdiff_t adjusted_nbytes
962 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
963 ? min (PTRDIFF_MAX, SIZE_MAX)
964 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
965 if (adjusted_nbytes)
966 {
967 n = adjusted_nbytes / item_size;
968 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
969 }
970
971 if (! pa)
972 *nitems = 0;
973 if (n - n0 < nitems_incr_min
974 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
975 || (0 <= nitems_max && nitems_max < n)
976 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
977 memory_full (SIZE_MAX);
978 pa = xrealloc (pa, nbytes);
979 *nitems = n;
980 return pa;
981 }
982
983
984 /* Like strdup, but uses xmalloc. */
985
986 char *
987 xstrdup (const char *s)
988 {
989 ptrdiff_t size;
990 eassert (s);
991 size = strlen (s) + 1;
992 return memcpy (xmalloc (size), s, size);
993 }
994
995 /* Like above, but duplicates Lisp string to C string. */
996
997 char *
998 xlispstrdup (Lisp_Object string)
999 {
1000 ptrdiff_t size = SBYTES (string) + 1;
1001 return memcpy (xmalloc (size), SSDATA (string), size);
1002 }
1003
1004 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1005 pointed to. If STRING is null, assign it without copying anything.
1006 Allocate before freeing, to avoid a dangling pointer if allocation
1007 fails. */
1008
1009 void
1010 dupstring (char **ptr, char const *string)
1011 {
1012 char *old = *ptr;
1013 *ptr = string ? xstrdup (string) : 0;
1014 xfree (old);
1015 }
1016
1017
1018 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1019 argument is a const pointer. */
1020
1021 void
1022 xputenv (char const *string)
1023 {
1024 if (putenv ((char *) string) != 0)
1025 memory_full (0);
1026 }
1027
1028 /* Return a newly allocated memory block of SIZE bytes, remembering
1029 to free it when unwinding. */
1030 void *
1031 record_xmalloc (size_t size)
1032 {
1033 void *p = xmalloc (size);
1034 record_unwind_protect_ptr (xfree, p);
1035 return p;
1036 }
1037
1038
1039 /* Like malloc but used for allocating Lisp data. NBYTES is the
1040 number of bytes to allocate, TYPE describes the intended use of the
1041 allocated memory block (for strings, for conses, ...). */
1042
1043 #if ! USE_LSB_TAG
1044 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1045 #endif
1046
1047 static void *
1048 lisp_malloc (size_t nbytes, enum mem_type type)
1049 {
1050 register void *val;
1051
1052 MALLOC_BLOCK_INPUT;
1053
1054 #ifdef GC_MALLOC_CHECK
1055 allocated_mem_type = type;
1056 #endif
1057
1058 val = lmalloc (nbytes);
1059
1060 #if ! USE_LSB_TAG
1061 /* If the memory just allocated cannot be addressed thru a Lisp
1062 object's pointer, and it needs to be,
1063 that's equivalent to running out of memory. */
1064 if (val && type != MEM_TYPE_NON_LISP)
1065 {
1066 Lisp_Object tem;
1067 XSETCONS (tem, (char *) val + nbytes - 1);
1068 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1069 {
1070 lisp_malloc_loser = val;
1071 free (val);
1072 val = 0;
1073 }
1074 }
1075 #endif
1076
1077 #ifndef GC_MALLOC_CHECK
1078 if (val && type != MEM_TYPE_NON_LISP)
1079 mem_insert (val, (char *) val + nbytes, type);
1080 #endif
1081
1082 MALLOC_UNBLOCK_INPUT;
1083 if (!val && nbytes)
1084 memory_full (nbytes);
1085 MALLOC_PROBE (nbytes);
1086 return val;
1087 }
1088
1089 /* Free BLOCK. This must be called to free memory allocated with a
1090 call to lisp_malloc. */
1091
1092 static void
1093 lisp_free (void *block)
1094 {
1095 MALLOC_BLOCK_INPUT;
1096 free (block);
1097 #ifndef GC_MALLOC_CHECK
1098 mem_delete (mem_find (block));
1099 #endif
1100 MALLOC_UNBLOCK_INPUT;
1101 }
1102
1103 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1104
1105 /* The entry point is lisp_align_malloc which returns blocks of at most
1106 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1107
1108 /* Use aligned_alloc if it or a simple substitute is available.
1109 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1110 clang 3.3 anyway. Aligned allocation is incompatible with
1111 unexmacosx.c, so don't use it on Darwin. */
1112
1113 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1114 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1115 # define USE_ALIGNED_ALLOC 1
1116 # ifndef HAVE_ALIGNED_ALLOC
1117 /* Defined in gmalloc.c. */
1118 void *aligned_alloc (size_t, size_t);
1119 # endif
1120 # elif defined HYBRID_MALLOC
1121 # if defined HAVE_ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1122 # define USE_ALIGNED_ALLOC 1
1123 # define aligned_alloc hybrid_aligned_alloc
1124 /* Defined in gmalloc.c. */
1125 void *aligned_alloc (size_t, size_t);
1126 # endif
1127 # elif defined HAVE_ALIGNED_ALLOC
1128 # define USE_ALIGNED_ALLOC 1
1129 # elif defined HAVE_POSIX_MEMALIGN
1130 # define USE_ALIGNED_ALLOC 1
1131 static void *
1132 aligned_alloc (size_t alignment, size_t size)
1133 {
1134 void *p;
1135 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1136 }
1137 # endif
1138 #endif
1139
1140 /* BLOCK_ALIGN has to be a power of 2. */
1141 #define BLOCK_ALIGN (1 << 10)
1142
1143 /* Padding to leave at the end of a malloc'd block. This is to give
1144 malloc a chance to minimize the amount of memory wasted to alignment.
1145 It should be tuned to the particular malloc library used.
1146 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1147 aligned_alloc on the other hand would ideally prefer a value of 4
1148 because otherwise, there's 1020 bytes wasted between each ablocks.
1149 In Emacs, testing shows that those 1020 can most of the time be
1150 efficiently used by malloc to place other objects, so a value of 0 can
1151 still preferable unless you have a lot of aligned blocks and virtually
1152 nothing else. */
1153 #define BLOCK_PADDING 0
1154 #define BLOCK_BYTES \
1155 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1156
1157 /* Internal data structures and constants. */
1158
1159 #define ABLOCKS_SIZE 16
1160
1161 /* An aligned block of memory. */
1162 struct ablock
1163 {
1164 union
1165 {
1166 char payload[BLOCK_BYTES];
1167 struct ablock *next_free;
1168 } x;
1169 /* `abase' is the aligned base of the ablocks. */
1170 /* It is overloaded to hold the virtual `busy' field that counts
1171 the number of used ablock in the parent ablocks.
1172 The first ablock has the `busy' field, the others have the `abase'
1173 field. To tell the difference, we assume that pointers will have
1174 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1175 is used to tell whether the real base of the parent ablocks is `abase'
1176 (if not, the word before the first ablock holds a pointer to the
1177 real base). */
1178 struct ablocks *abase;
1179 /* The padding of all but the last ablock is unused. The padding of
1180 the last ablock in an ablocks is not allocated. */
1181 #if BLOCK_PADDING
1182 char padding[BLOCK_PADDING];
1183 #endif
1184 };
1185
1186 /* A bunch of consecutive aligned blocks. */
1187 struct ablocks
1188 {
1189 struct ablock blocks[ABLOCKS_SIZE];
1190 };
1191
1192 /* Size of the block requested from malloc or aligned_alloc. */
1193 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1194
1195 #define ABLOCK_ABASE(block) \
1196 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1197 ? (struct ablocks *)(block) \
1198 : (block)->abase)
1199
1200 /* Virtual `busy' field. */
1201 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1202
1203 /* Pointer to the (not necessarily aligned) malloc block. */
1204 #ifdef USE_ALIGNED_ALLOC
1205 #define ABLOCKS_BASE(abase) (abase)
1206 #else
1207 #define ABLOCKS_BASE(abase) \
1208 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1209 #endif
1210
1211 /* The list of free ablock. */
1212 static struct ablock *free_ablock;
1213
1214 /* Allocate an aligned block of nbytes.
1215 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1216 smaller or equal to BLOCK_BYTES. */
1217 static void *
1218 lisp_align_malloc (size_t nbytes, enum mem_type type)
1219 {
1220 void *base, *val;
1221 struct ablocks *abase;
1222
1223 eassert (nbytes <= BLOCK_BYTES);
1224
1225 MALLOC_BLOCK_INPUT;
1226
1227 #ifdef GC_MALLOC_CHECK
1228 allocated_mem_type = type;
1229 #endif
1230
1231 if (!free_ablock)
1232 {
1233 int i;
1234 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1235
1236 #ifdef DOUG_LEA_MALLOC
1237 if (!mmap_lisp_allowed_p ())
1238 mallopt (M_MMAP_MAX, 0);
1239 #endif
1240
1241 #ifdef USE_ALIGNED_ALLOC
1242 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1243 #else
1244 base = malloc (ABLOCKS_BYTES);
1245 abase = ALIGN (base, BLOCK_ALIGN);
1246 #endif
1247
1248 if (base == 0)
1249 {
1250 MALLOC_UNBLOCK_INPUT;
1251 memory_full (ABLOCKS_BYTES);
1252 }
1253
1254 aligned = (base == abase);
1255 if (!aligned)
1256 ((void **) abase)[-1] = base;
1257
1258 #ifdef DOUG_LEA_MALLOC
1259 if (!mmap_lisp_allowed_p ())
1260 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1261 #endif
1262
1263 #if ! USE_LSB_TAG
1264 /* If the memory just allocated cannot be addressed thru a Lisp
1265 object's pointer, and it needs to be, that's equivalent to
1266 running out of memory. */
1267 if (type != MEM_TYPE_NON_LISP)
1268 {
1269 Lisp_Object tem;
1270 char *end = (char *) base + ABLOCKS_BYTES - 1;
1271 XSETCONS (tem, end);
1272 if ((char *) XCONS (tem) != end)
1273 {
1274 lisp_malloc_loser = base;
1275 free (base);
1276 MALLOC_UNBLOCK_INPUT;
1277 memory_full (SIZE_MAX);
1278 }
1279 }
1280 #endif
1281
1282 /* Initialize the blocks and put them on the free list.
1283 If `base' was not properly aligned, we can't use the last block. */
1284 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1285 {
1286 abase->blocks[i].abase = abase;
1287 abase->blocks[i].x.next_free = free_ablock;
1288 free_ablock = &abase->blocks[i];
1289 }
1290 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1291
1292 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1293 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1294 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1295 eassert (ABLOCKS_BASE (abase) == base);
1296 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1297 }
1298
1299 abase = ABLOCK_ABASE (free_ablock);
1300 ABLOCKS_BUSY (abase)
1301 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1302 val = free_ablock;
1303 free_ablock = free_ablock->x.next_free;
1304
1305 #ifndef GC_MALLOC_CHECK
1306 if (type != MEM_TYPE_NON_LISP)
1307 mem_insert (val, (char *) val + nbytes, type);
1308 #endif
1309
1310 MALLOC_UNBLOCK_INPUT;
1311
1312 MALLOC_PROBE (nbytes);
1313
1314 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1315 return val;
1316 }
1317
1318 static void
1319 lisp_align_free (void *block)
1320 {
1321 struct ablock *ablock = block;
1322 struct ablocks *abase = ABLOCK_ABASE (ablock);
1323
1324 MALLOC_BLOCK_INPUT;
1325 #ifndef GC_MALLOC_CHECK
1326 mem_delete (mem_find (block));
1327 #endif
1328 /* Put on free list. */
1329 ablock->x.next_free = free_ablock;
1330 free_ablock = ablock;
1331 /* Update busy count. */
1332 ABLOCKS_BUSY (abase)
1333 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1334
1335 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1336 { /* All the blocks are free. */
1337 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1338 struct ablock **tem = &free_ablock;
1339 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1340
1341 while (*tem)
1342 {
1343 if (*tem >= (struct ablock *) abase && *tem < atop)
1344 {
1345 i++;
1346 *tem = (*tem)->x.next_free;
1347 }
1348 else
1349 tem = &(*tem)->x.next_free;
1350 }
1351 eassert ((aligned & 1) == aligned);
1352 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1353 #ifdef USE_POSIX_MEMALIGN
1354 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1355 #endif
1356 free (ABLOCKS_BASE (abase));
1357 }
1358 MALLOC_UNBLOCK_INPUT;
1359 }
1360
1361 #if !defined __GNUC__ && !defined __alignof__
1362 # define __alignof__(type) alignof (type)
1363 #endif
1364
1365 /* True if malloc returns a multiple of GCALIGNMENT. In practice this
1366 holds if __alignof__ (max_align_t) is a multiple. Use __alignof__
1367 if available, as otherwise this check would fail with GCC x86.
1368 This is a macro, not an enum constant, for portability to HP-UX
1369 10.20 cc and AIX 3.2.5 xlc. */
1370 #define MALLOC_IS_GC_ALIGNED (__alignof__ (max_align_t) % GCALIGNMENT == 0)
1371
1372 /* True if P is suitably aligned for SIZE, where Lisp alignment may be
1373 needed if SIZE is Lisp-aligned. */
1374
1375 static bool
1376 laligned (void *p, size_t size)
1377 {
1378 return (MALLOC_IS_GC_ALIGNED || size % GCALIGNMENT != 0
1379 || (intptr_t) p % GCALIGNMENT == 0);
1380 }
1381
1382 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1383 sure the result is too, if necessary by reallocating (typically
1384 with larger and larger sizes) until the allocator returns a
1385 Lisp-aligned pointer. Code that needs to allocate C heap memory
1386 for a Lisp object should use one of these functions to obtain a
1387 pointer P; that way, if T is an enum Lisp_Type value and L ==
1388 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T. */
1389
1390 static void *
1391 lmalloc (size_t size)
1392 {
1393 #if USE_ALIGNED_ALLOC
1394 if (! MALLOC_IS_GC_ALIGNED)
1395 return aligned_alloc (GCALIGNMENT, size);
1396 #endif
1397
1398 void *p;
1399 while (true)
1400 {
1401 p = malloc (size);
1402 if (laligned (p, size))
1403 break;
1404 free (p);
1405 size_t bigger;
1406 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1407 size = bigger;
1408 }
1409
1410 eassert ((intptr_t) p % GCALIGNMENT == 0);
1411 return p;
1412 }
1413
1414 static void *
1415 lrealloc (void *p, size_t size)
1416 {
1417 while (true)
1418 {
1419 p = realloc (p, size);
1420 if (laligned (p, size))
1421 break;
1422 size_t bigger;
1423 if (! INT_ADD_WRAPV (size, GCALIGNMENT, &bigger))
1424 size = bigger;
1425 }
1426
1427 eassert ((intptr_t) p % GCALIGNMENT == 0);
1428 return p;
1429 }
1430
1431 \f
1432 /***********************************************************************
1433 Interval Allocation
1434 ***********************************************************************/
1435
1436 /* Number of intervals allocated in an interval_block structure.
1437 The 1020 is 1024 minus malloc overhead. */
1438
1439 #define INTERVAL_BLOCK_SIZE \
1440 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1441
1442 /* Intervals are allocated in chunks in the form of an interval_block
1443 structure. */
1444
1445 struct interval_block
1446 {
1447 /* Place `intervals' first, to preserve alignment. */
1448 struct interval intervals[INTERVAL_BLOCK_SIZE];
1449 struct interval_block *next;
1450 };
1451
1452 /* Current interval block. Its `next' pointer points to older
1453 blocks. */
1454
1455 static struct interval_block *interval_block;
1456
1457 /* Index in interval_block above of the next unused interval
1458 structure. */
1459
1460 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1461
1462 /* Number of free and live intervals. */
1463
1464 static EMACS_INT total_free_intervals, total_intervals;
1465
1466 /* List of free intervals. */
1467
1468 static INTERVAL interval_free_list;
1469
1470 /* Return a new interval. */
1471
1472 INTERVAL
1473 make_interval (void)
1474 {
1475 INTERVAL val;
1476
1477 MALLOC_BLOCK_INPUT;
1478
1479 if (interval_free_list)
1480 {
1481 val = interval_free_list;
1482 interval_free_list = INTERVAL_PARENT (interval_free_list);
1483 }
1484 else
1485 {
1486 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1487 {
1488 struct interval_block *newi
1489 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1490
1491 newi->next = interval_block;
1492 interval_block = newi;
1493 interval_block_index = 0;
1494 total_free_intervals += INTERVAL_BLOCK_SIZE;
1495 }
1496 val = &interval_block->intervals[interval_block_index++];
1497 }
1498
1499 MALLOC_UNBLOCK_INPUT;
1500
1501 consing_since_gc += sizeof (struct interval);
1502 intervals_consed++;
1503 total_free_intervals--;
1504 RESET_INTERVAL (val);
1505 val->gcmarkbit = 0;
1506 return val;
1507 }
1508
1509
1510 /* Mark Lisp objects in interval I. */
1511
1512 static void
1513 mark_interval (register INTERVAL i, Lisp_Object dummy)
1514 {
1515 /* Intervals should never be shared. So, if extra internal checking is
1516 enabled, GC aborts if it seems to have visited an interval twice. */
1517 eassert (!i->gcmarkbit);
1518 i->gcmarkbit = 1;
1519 mark_object (i->plist);
1520 }
1521
1522 /* Mark the interval tree rooted in I. */
1523
1524 #define MARK_INTERVAL_TREE(i) \
1525 do { \
1526 if (i && !i->gcmarkbit) \
1527 traverse_intervals_noorder (i, mark_interval, Qnil); \
1528 } while (0)
1529
1530 /***********************************************************************
1531 String Allocation
1532 ***********************************************************************/
1533
1534 /* Lisp_Strings are allocated in string_block structures. When a new
1535 string_block is allocated, all the Lisp_Strings it contains are
1536 added to a free-list string_free_list. When a new Lisp_String is
1537 needed, it is taken from that list. During the sweep phase of GC,
1538 string_blocks that are entirely free are freed, except two which
1539 we keep.
1540
1541 String data is allocated from sblock structures. Strings larger
1542 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1543 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1544
1545 Sblocks consist internally of sdata structures, one for each
1546 Lisp_String. The sdata structure points to the Lisp_String it
1547 belongs to. The Lisp_String points back to the `u.data' member of
1548 its sdata structure.
1549
1550 When a Lisp_String is freed during GC, it is put back on
1551 string_free_list, and its `data' member and its sdata's `string'
1552 pointer is set to null. The size of the string is recorded in the
1553 `n.nbytes' member of the sdata. So, sdata structures that are no
1554 longer used, can be easily recognized, and it's easy to compact the
1555 sblocks of small strings which we do in compact_small_strings. */
1556
1557 /* Size in bytes of an sblock structure used for small strings. This
1558 is 8192 minus malloc overhead. */
1559
1560 #define SBLOCK_SIZE 8188
1561
1562 /* Strings larger than this are considered large strings. String data
1563 for large strings is allocated from individual sblocks. */
1564
1565 #define LARGE_STRING_BYTES 1024
1566
1567 /* The SDATA typedef is a struct or union describing string memory
1568 sub-allocated from an sblock. This is where the contents of Lisp
1569 strings are stored. */
1570
1571 struct sdata
1572 {
1573 /* Back-pointer to the string this sdata belongs to. If null, this
1574 structure is free, and NBYTES (in this structure or in the union below)
1575 contains the string's byte size (the same value that STRING_BYTES
1576 would return if STRING were non-null). If non-null, STRING_BYTES
1577 (STRING) is the size of the data, and DATA contains the string's
1578 contents. */
1579 struct Lisp_String *string;
1580
1581 #ifdef GC_CHECK_STRING_BYTES
1582 ptrdiff_t nbytes;
1583 #endif
1584
1585 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1586 };
1587
1588 #ifdef GC_CHECK_STRING_BYTES
1589
1590 typedef struct sdata sdata;
1591 #define SDATA_NBYTES(S) (S)->nbytes
1592 #define SDATA_DATA(S) (S)->data
1593
1594 #else
1595
1596 typedef union
1597 {
1598 struct Lisp_String *string;
1599
1600 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1601 which has a flexible array member. However, if implemented by
1602 giving this union a member of type 'struct sdata', the union
1603 could not be the last (flexible) member of 'struct sblock',
1604 because C99 prohibits a flexible array member from having a type
1605 that is itself a flexible array. So, comment this member out here,
1606 but remember that the option's there when using this union. */
1607 #if 0
1608 struct sdata u;
1609 #endif
1610
1611 /* When STRING is null. */
1612 struct
1613 {
1614 struct Lisp_String *string;
1615 ptrdiff_t nbytes;
1616 } n;
1617 } sdata;
1618
1619 #define SDATA_NBYTES(S) (S)->n.nbytes
1620 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1621
1622 #endif /* not GC_CHECK_STRING_BYTES */
1623
1624 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1625
1626 /* Structure describing a block of memory which is sub-allocated to
1627 obtain string data memory for strings. Blocks for small strings
1628 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1629 as large as needed. */
1630
1631 struct sblock
1632 {
1633 /* Next in list. */
1634 struct sblock *next;
1635
1636 /* Pointer to the next free sdata block. This points past the end
1637 of the sblock if there isn't any space left in this block. */
1638 sdata *next_free;
1639
1640 /* String data. */
1641 sdata data[FLEXIBLE_ARRAY_MEMBER];
1642 };
1643
1644 /* Number of Lisp strings in a string_block structure. The 1020 is
1645 1024 minus malloc overhead. */
1646
1647 #define STRING_BLOCK_SIZE \
1648 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1649
1650 /* Structure describing a block from which Lisp_String structures
1651 are allocated. */
1652
1653 struct string_block
1654 {
1655 /* Place `strings' first, to preserve alignment. */
1656 struct Lisp_String strings[STRING_BLOCK_SIZE];
1657 struct string_block *next;
1658 };
1659
1660 /* Head and tail of the list of sblock structures holding Lisp string
1661 data. We always allocate from current_sblock. The NEXT pointers
1662 in the sblock structures go from oldest_sblock to current_sblock. */
1663
1664 static struct sblock *oldest_sblock, *current_sblock;
1665
1666 /* List of sblocks for large strings. */
1667
1668 static struct sblock *large_sblocks;
1669
1670 /* List of string_block structures. */
1671
1672 static struct string_block *string_blocks;
1673
1674 /* Free-list of Lisp_Strings. */
1675
1676 static struct Lisp_String *string_free_list;
1677
1678 /* Number of live and free Lisp_Strings. */
1679
1680 static EMACS_INT total_strings, total_free_strings;
1681
1682 /* Number of bytes used by live strings. */
1683
1684 static EMACS_INT total_string_bytes;
1685
1686 /* Given a pointer to a Lisp_String S which is on the free-list
1687 string_free_list, return a pointer to its successor in the
1688 free-list. */
1689
1690 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1691
1692 /* Return a pointer to the sdata structure belonging to Lisp string S.
1693 S must be live, i.e. S->data must not be null. S->data is actually
1694 a pointer to the `u.data' member of its sdata structure; the
1695 structure starts at a constant offset in front of that. */
1696
1697 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1698
1699
1700 #ifdef GC_CHECK_STRING_OVERRUN
1701
1702 /* We check for overrun in string data blocks by appending a small
1703 "cookie" after each allocated string data block, and check for the
1704 presence of this cookie during GC. */
1705
1706 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1707 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1708 { '\xde', '\xad', '\xbe', '\xef' };
1709
1710 #else
1711 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1712 #endif
1713
1714 /* Value is the size of an sdata structure large enough to hold NBYTES
1715 bytes of string data. The value returned includes a terminating
1716 NUL byte, the size of the sdata structure, and padding. */
1717
1718 #ifdef GC_CHECK_STRING_BYTES
1719
1720 #define SDATA_SIZE(NBYTES) \
1721 ((SDATA_DATA_OFFSET \
1722 + (NBYTES) + 1 \
1723 + sizeof (ptrdiff_t) - 1) \
1724 & ~(sizeof (ptrdiff_t) - 1))
1725
1726 #else /* not GC_CHECK_STRING_BYTES */
1727
1728 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1729 less than the size of that member. The 'max' is not needed when
1730 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1731 alignment code reserves enough space. */
1732
1733 #define SDATA_SIZE(NBYTES) \
1734 ((SDATA_DATA_OFFSET \
1735 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1736 ? NBYTES \
1737 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1738 + 1 \
1739 + sizeof (ptrdiff_t) - 1) \
1740 & ~(sizeof (ptrdiff_t) - 1))
1741
1742 #endif /* not GC_CHECK_STRING_BYTES */
1743
1744 /* Extra bytes to allocate for each string. */
1745
1746 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1747
1748 /* Exact bound on the number of bytes in a string, not counting the
1749 terminating null. A string cannot contain more bytes than
1750 STRING_BYTES_BOUND, nor can it be so long that the size_t
1751 arithmetic in allocate_string_data would overflow while it is
1752 calculating a value to be passed to malloc. */
1753 static ptrdiff_t const STRING_BYTES_MAX =
1754 min (STRING_BYTES_BOUND,
1755 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1756 - GC_STRING_EXTRA
1757 - offsetof (struct sblock, data)
1758 - SDATA_DATA_OFFSET)
1759 & ~(sizeof (EMACS_INT) - 1)));
1760
1761 /* Initialize string allocation. Called from init_alloc_once. */
1762
1763 static void
1764 init_strings (void)
1765 {
1766 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1767 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1768 }
1769
1770
1771 #ifdef GC_CHECK_STRING_BYTES
1772
1773 static int check_string_bytes_count;
1774
1775 /* Like STRING_BYTES, but with debugging check. Can be
1776 called during GC, so pay attention to the mark bit. */
1777
1778 ptrdiff_t
1779 string_bytes (struct Lisp_String *s)
1780 {
1781 ptrdiff_t nbytes =
1782 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1783
1784 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1785 emacs_abort ();
1786 return nbytes;
1787 }
1788
1789 /* Check validity of Lisp strings' string_bytes member in B. */
1790
1791 static void
1792 check_sblock (struct sblock *b)
1793 {
1794 sdata *from, *end, *from_end;
1795
1796 end = b->next_free;
1797
1798 for (from = b->data; from < end; from = from_end)
1799 {
1800 /* Compute the next FROM here because copying below may
1801 overwrite data we need to compute it. */
1802 ptrdiff_t nbytes;
1803
1804 /* Check that the string size recorded in the string is the
1805 same as the one recorded in the sdata structure. */
1806 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1807 : SDATA_NBYTES (from));
1808 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1809 }
1810 }
1811
1812
1813 /* Check validity of Lisp strings' string_bytes member. ALL_P
1814 means check all strings, otherwise check only most
1815 recently allocated strings. Used for hunting a bug. */
1816
1817 static void
1818 check_string_bytes (bool all_p)
1819 {
1820 if (all_p)
1821 {
1822 struct sblock *b;
1823
1824 for (b = large_sblocks; b; b = b->next)
1825 {
1826 struct Lisp_String *s = b->data[0].string;
1827 if (s)
1828 string_bytes (s);
1829 }
1830
1831 for (b = oldest_sblock; b; b = b->next)
1832 check_sblock (b);
1833 }
1834 else if (current_sblock)
1835 check_sblock (current_sblock);
1836 }
1837
1838 #else /* not GC_CHECK_STRING_BYTES */
1839
1840 #define check_string_bytes(all) ((void) 0)
1841
1842 #endif /* GC_CHECK_STRING_BYTES */
1843
1844 #ifdef GC_CHECK_STRING_FREE_LIST
1845
1846 /* Walk through the string free list looking for bogus next pointers.
1847 This may catch buffer overrun from a previous string. */
1848
1849 static void
1850 check_string_free_list (void)
1851 {
1852 struct Lisp_String *s;
1853
1854 /* Pop a Lisp_String off the free-list. */
1855 s = string_free_list;
1856 while (s != NULL)
1857 {
1858 if ((uintptr_t) s < 1024)
1859 emacs_abort ();
1860 s = NEXT_FREE_LISP_STRING (s);
1861 }
1862 }
1863 #else
1864 #define check_string_free_list()
1865 #endif
1866
1867 /* Return a new Lisp_String. */
1868
1869 static struct Lisp_String *
1870 allocate_string (void)
1871 {
1872 struct Lisp_String *s;
1873
1874 MALLOC_BLOCK_INPUT;
1875
1876 /* If the free-list is empty, allocate a new string_block, and
1877 add all the Lisp_Strings in it to the free-list. */
1878 if (string_free_list == NULL)
1879 {
1880 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1881 int i;
1882
1883 b->next = string_blocks;
1884 string_blocks = b;
1885
1886 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1887 {
1888 s = b->strings + i;
1889 /* Every string on a free list should have NULL data pointer. */
1890 s->data = NULL;
1891 NEXT_FREE_LISP_STRING (s) = string_free_list;
1892 string_free_list = s;
1893 }
1894
1895 total_free_strings += STRING_BLOCK_SIZE;
1896 }
1897
1898 check_string_free_list ();
1899
1900 /* Pop a Lisp_String off the free-list. */
1901 s = string_free_list;
1902 string_free_list = NEXT_FREE_LISP_STRING (s);
1903
1904 MALLOC_UNBLOCK_INPUT;
1905
1906 --total_free_strings;
1907 ++total_strings;
1908 ++strings_consed;
1909 consing_since_gc += sizeof *s;
1910
1911 #ifdef GC_CHECK_STRING_BYTES
1912 if (!noninteractive)
1913 {
1914 if (++check_string_bytes_count == 200)
1915 {
1916 check_string_bytes_count = 0;
1917 check_string_bytes (1);
1918 }
1919 else
1920 check_string_bytes (0);
1921 }
1922 #endif /* GC_CHECK_STRING_BYTES */
1923
1924 return s;
1925 }
1926
1927
1928 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1929 plus a NUL byte at the end. Allocate an sdata structure for S, and
1930 set S->data to its `u.data' member. Store a NUL byte at the end of
1931 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1932 S->data if it was initially non-null. */
1933
1934 void
1935 allocate_string_data (struct Lisp_String *s,
1936 EMACS_INT nchars, EMACS_INT nbytes)
1937 {
1938 sdata *data, *old_data;
1939 struct sblock *b;
1940 ptrdiff_t needed, old_nbytes;
1941
1942 if (STRING_BYTES_MAX < nbytes)
1943 string_overflow ();
1944
1945 /* Determine the number of bytes needed to store NBYTES bytes
1946 of string data. */
1947 needed = SDATA_SIZE (nbytes);
1948 if (s->data)
1949 {
1950 old_data = SDATA_OF_STRING (s);
1951 old_nbytes = STRING_BYTES (s);
1952 }
1953 else
1954 old_data = NULL;
1955
1956 MALLOC_BLOCK_INPUT;
1957
1958 if (nbytes > LARGE_STRING_BYTES)
1959 {
1960 size_t size = offsetof (struct sblock, data) + needed;
1961
1962 #ifdef DOUG_LEA_MALLOC
1963 if (!mmap_lisp_allowed_p ())
1964 mallopt (M_MMAP_MAX, 0);
1965 #endif
1966
1967 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1968
1969 #ifdef DOUG_LEA_MALLOC
1970 if (!mmap_lisp_allowed_p ())
1971 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1972 #endif
1973
1974 b->next_free = b->data;
1975 b->data[0].string = NULL;
1976 b->next = large_sblocks;
1977 large_sblocks = b;
1978 }
1979 else if (current_sblock == NULL
1980 || (((char *) current_sblock + SBLOCK_SIZE
1981 - (char *) current_sblock->next_free)
1982 < (needed + GC_STRING_EXTRA)))
1983 {
1984 /* Not enough room in the current sblock. */
1985 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1986 b->next_free = b->data;
1987 b->data[0].string = NULL;
1988 b->next = NULL;
1989
1990 if (current_sblock)
1991 current_sblock->next = b;
1992 else
1993 oldest_sblock = b;
1994 current_sblock = b;
1995 }
1996 else
1997 b = current_sblock;
1998
1999 data = b->next_free;
2000 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2001
2002 MALLOC_UNBLOCK_INPUT;
2003
2004 data->string = s;
2005 s->data = SDATA_DATA (data);
2006 #ifdef GC_CHECK_STRING_BYTES
2007 SDATA_NBYTES (data) = nbytes;
2008 #endif
2009 s->size = nchars;
2010 s->size_byte = nbytes;
2011 s->data[nbytes] = '\0';
2012 #ifdef GC_CHECK_STRING_OVERRUN
2013 memcpy ((char *) data + needed, string_overrun_cookie,
2014 GC_STRING_OVERRUN_COOKIE_SIZE);
2015 #endif
2016
2017 /* Note that Faset may call to this function when S has already data
2018 assigned. In this case, mark data as free by setting it's string
2019 back-pointer to null, and record the size of the data in it. */
2020 if (old_data)
2021 {
2022 SDATA_NBYTES (old_data) = old_nbytes;
2023 old_data->string = NULL;
2024 }
2025
2026 consing_since_gc += needed;
2027 }
2028
2029
2030 /* Sweep and compact strings. */
2031
2032 NO_INLINE /* For better stack traces */
2033 static void
2034 sweep_strings (void)
2035 {
2036 struct string_block *b, *next;
2037 struct string_block *live_blocks = NULL;
2038
2039 string_free_list = NULL;
2040 total_strings = total_free_strings = 0;
2041 total_string_bytes = 0;
2042
2043 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2044 for (b = string_blocks; b; b = next)
2045 {
2046 int i, nfree = 0;
2047 struct Lisp_String *free_list_before = string_free_list;
2048
2049 next = b->next;
2050
2051 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2052 {
2053 struct Lisp_String *s = b->strings + i;
2054
2055 if (s->data)
2056 {
2057 /* String was not on free-list before. */
2058 if (STRING_MARKED_P (s))
2059 {
2060 /* String is live; unmark it and its intervals. */
2061 UNMARK_STRING (s);
2062
2063 /* Do not use string_(set|get)_intervals here. */
2064 s->intervals = balance_intervals (s->intervals);
2065
2066 ++total_strings;
2067 total_string_bytes += STRING_BYTES (s);
2068 }
2069 else
2070 {
2071 /* String is dead. Put it on the free-list. */
2072 sdata *data = SDATA_OF_STRING (s);
2073
2074 /* Save the size of S in its sdata so that we know
2075 how large that is. Reset the sdata's string
2076 back-pointer so that we know it's free. */
2077 #ifdef GC_CHECK_STRING_BYTES
2078 if (string_bytes (s) != SDATA_NBYTES (data))
2079 emacs_abort ();
2080 #else
2081 data->n.nbytes = STRING_BYTES (s);
2082 #endif
2083 data->string = NULL;
2084
2085 /* Reset the strings's `data' member so that we
2086 know it's free. */
2087 s->data = NULL;
2088
2089 /* Put the string on the free-list. */
2090 NEXT_FREE_LISP_STRING (s) = string_free_list;
2091 string_free_list = s;
2092 ++nfree;
2093 }
2094 }
2095 else
2096 {
2097 /* S was on the free-list before. Put it there again. */
2098 NEXT_FREE_LISP_STRING (s) = string_free_list;
2099 string_free_list = s;
2100 ++nfree;
2101 }
2102 }
2103
2104 /* Free blocks that contain free Lisp_Strings only, except
2105 the first two of them. */
2106 if (nfree == STRING_BLOCK_SIZE
2107 && total_free_strings > STRING_BLOCK_SIZE)
2108 {
2109 lisp_free (b);
2110 string_free_list = free_list_before;
2111 }
2112 else
2113 {
2114 total_free_strings += nfree;
2115 b->next = live_blocks;
2116 live_blocks = b;
2117 }
2118 }
2119
2120 check_string_free_list ();
2121
2122 string_blocks = live_blocks;
2123 free_large_strings ();
2124 compact_small_strings ();
2125
2126 check_string_free_list ();
2127 }
2128
2129
2130 /* Free dead large strings. */
2131
2132 static void
2133 free_large_strings (void)
2134 {
2135 struct sblock *b, *next;
2136 struct sblock *live_blocks = NULL;
2137
2138 for (b = large_sblocks; b; b = next)
2139 {
2140 next = b->next;
2141
2142 if (b->data[0].string == NULL)
2143 lisp_free (b);
2144 else
2145 {
2146 b->next = live_blocks;
2147 live_blocks = b;
2148 }
2149 }
2150
2151 large_sblocks = live_blocks;
2152 }
2153
2154
2155 /* Compact data of small strings. Free sblocks that don't contain
2156 data of live strings after compaction. */
2157
2158 static void
2159 compact_small_strings (void)
2160 {
2161 struct sblock *b, *tb, *next;
2162 sdata *from, *to, *end, *tb_end;
2163 sdata *to_end, *from_end;
2164
2165 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2166 to, and TB_END is the end of TB. */
2167 tb = oldest_sblock;
2168 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2169 to = tb->data;
2170
2171 /* Step through the blocks from the oldest to the youngest. We
2172 expect that old blocks will stabilize over time, so that less
2173 copying will happen this way. */
2174 for (b = oldest_sblock; b; b = b->next)
2175 {
2176 end = b->next_free;
2177 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2178
2179 for (from = b->data; from < end; from = from_end)
2180 {
2181 /* Compute the next FROM here because copying below may
2182 overwrite data we need to compute it. */
2183 ptrdiff_t nbytes;
2184 struct Lisp_String *s = from->string;
2185
2186 #ifdef GC_CHECK_STRING_BYTES
2187 /* Check that the string size recorded in the string is the
2188 same as the one recorded in the sdata structure. */
2189 if (s && string_bytes (s) != SDATA_NBYTES (from))
2190 emacs_abort ();
2191 #endif /* GC_CHECK_STRING_BYTES */
2192
2193 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2194 eassert (nbytes <= LARGE_STRING_BYTES);
2195
2196 nbytes = SDATA_SIZE (nbytes);
2197 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2198
2199 #ifdef GC_CHECK_STRING_OVERRUN
2200 if (memcmp (string_overrun_cookie,
2201 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2202 GC_STRING_OVERRUN_COOKIE_SIZE))
2203 emacs_abort ();
2204 #endif
2205
2206 /* Non-NULL S means it's alive. Copy its data. */
2207 if (s)
2208 {
2209 /* If TB is full, proceed with the next sblock. */
2210 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2211 if (to_end > tb_end)
2212 {
2213 tb->next_free = to;
2214 tb = tb->next;
2215 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2216 to = tb->data;
2217 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2218 }
2219
2220 /* Copy, and update the string's `data' pointer. */
2221 if (from != to)
2222 {
2223 eassert (tb != b || to < from);
2224 memmove (to, from, nbytes + GC_STRING_EXTRA);
2225 to->string->data = SDATA_DATA (to);
2226 }
2227
2228 /* Advance past the sdata we copied to. */
2229 to = to_end;
2230 }
2231 }
2232 }
2233
2234 /* The rest of the sblocks following TB don't contain live data, so
2235 we can free them. */
2236 for (b = tb->next; b; b = next)
2237 {
2238 next = b->next;
2239 lisp_free (b);
2240 }
2241
2242 tb->next_free = to;
2243 tb->next = NULL;
2244 current_sblock = tb;
2245 }
2246
2247 void
2248 string_overflow (void)
2249 {
2250 error ("Maximum string size exceeded");
2251 }
2252
2253 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2254 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2255 LENGTH must be an integer.
2256 INIT must be an integer that represents a character. */)
2257 (Lisp_Object length, Lisp_Object init)
2258 {
2259 register Lisp_Object val;
2260 int c;
2261 EMACS_INT nbytes;
2262
2263 CHECK_NATNUM (length);
2264 CHECK_CHARACTER (init);
2265
2266 c = XFASTINT (init);
2267 if (ASCII_CHAR_P (c))
2268 {
2269 nbytes = XINT (length);
2270 val = make_uninit_string (nbytes);
2271 if (nbytes)
2272 {
2273 memset (SDATA (val), c, nbytes);
2274 SDATA (val)[nbytes] = 0;
2275 }
2276 }
2277 else
2278 {
2279 unsigned char str[MAX_MULTIBYTE_LENGTH];
2280 ptrdiff_t len = CHAR_STRING (c, str);
2281 EMACS_INT string_len = XINT (length);
2282 unsigned char *p, *beg, *end;
2283
2284 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2285 string_overflow ();
2286 val = make_uninit_multibyte_string (string_len, nbytes);
2287 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2288 {
2289 /* First time we just copy `str' to the data of `val'. */
2290 if (p == beg)
2291 memcpy (p, str, len);
2292 else
2293 {
2294 /* Next time we copy largest possible chunk from
2295 initialized to uninitialized part of `val'. */
2296 len = min (p - beg, end - p);
2297 memcpy (p, beg, len);
2298 }
2299 }
2300 if (nbytes)
2301 *p = 0;
2302 }
2303
2304 return val;
2305 }
2306
2307 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2308 Return A. */
2309
2310 Lisp_Object
2311 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2312 {
2313 EMACS_INT nbits = bool_vector_size (a);
2314 if (0 < nbits)
2315 {
2316 unsigned char *data = bool_vector_uchar_data (a);
2317 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2318 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2319 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2320 memset (data, pattern, nbytes - 1);
2321 data[nbytes - 1] = pattern & last_mask;
2322 }
2323 return a;
2324 }
2325
2326 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2327
2328 Lisp_Object
2329 make_uninit_bool_vector (EMACS_INT nbits)
2330 {
2331 Lisp_Object val;
2332 EMACS_INT words = bool_vector_words (nbits);
2333 EMACS_INT word_bytes = words * sizeof (bits_word);
2334 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2335 + word_size - 1)
2336 / word_size);
2337 struct Lisp_Bool_Vector *p
2338 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2339 XSETVECTOR (val, p);
2340 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2341 p->size = nbits;
2342
2343 /* Clear padding at the end. */
2344 if (words)
2345 p->data[words - 1] = 0;
2346
2347 return val;
2348 }
2349
2350 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2351 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2352 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2353 (Lisp_Object length, Lisp_Object init)
2354 {
2355 Lisp_Object val;
2356
2357 CHECK_NATNUM (length);
2358 val = make_uninit_bool_vector (XFASTINT (length));
2359 return bool_vector_fill (val, init);
2360 }
2361
2362 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2363 doc: /* Return a new bool-vector with specified arguments as elements.
2364 Any number of arguments, even zero arguments, are allowed.
2365 usage: (bool-vector &rest OBJECTS) */)
2366 (ptrdiff_t nargs, Lisp_Object *args)
2367 {
2368 ptrdiff_t i;
2369 Lisp_Object vector;
2370
2371 vector = make_uninit_bool_vector (nargs);
2372 for (i = 0; i < nargs; i++)
2373 bool_vector_set (vector, i, !NILP (args[i]));
2374
2375 return vector;
2376 }
2377
2378 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2379 of characters from the contents. This string may be unibyte or
2380 multibyte, depending on the contents. */
2381
2382 Lisp_Object
2383 make_string (const char *contents, ptrdiff_t nbytes)
2384 {
2385 register Lisp_Object val;
2386 ptrdiff_t nchars, multibyte_nbytes;
2387
2388 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2389 &nchars, &multibyte_nbytes);
2390 if (nbytes == nchars || nbytes != multibyte_nbytes)
2391 /* CONTENTS contains no multibyte sequences or contains an invalid
2392 multibyte sequence. We must make unibyte string. */
2393 val = make_unibyte_string (contents, nbytes);
2394 else
2395 val = make_multibyte_string (contents, nchars, nbytes);
2396 return val;
2397 }
2398
2399 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2400
2401 Lisp_Object
2402 make_unibyte_string (const char *contents, ptrdiff_t length)
2403 {
2404 register Lisp_Object val;
2405 val = make_uninit_string (length);
2406 memcpy (SDATA (val), contents, length);
2407 return val;
2408 }
2409
2410
2411 /* Make a multibyte string from NCHARS characters occupying NBYTES
2412 bytes at CONTENTS. */
2413
2414 Lisp_Object
2415 make_multibyte_string (const char *contents,
2416 ptrdiff_t nchars, ptrdiff_t nbytes)
2417 {
2418 register Lisp_Object val;
2419 val = make_uninit_multibyte_string (nchars, nbytes);
2420 memcpy (SDATA (val), contents, nbytes);
2421 return val;
2422 }
2423
2424
2425 /* Make a string from NCHARS characters occupying NBYTES bytes at
2426 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2427
2428 Lisp_Object
2429 make_string_from_bytes (const char *contents,
2430 ptrdiff_t nchars, ptrdiff_t nbytes)
2431 {
2432 register Lisp_Object val;
2433 val = make_uninit_multibyte_string (nchars, nbytes);
2434 memcpy (SDATA (val), contents, nbytes);
2435 if (SBYTES (val) == SCHARS (val))
2436 STRING_SET_UNIBYTE (val);
2437 return val;
2438 }
2439
2440
2441 /* Make a string from NCHARS characters occupying NBYTES bytes at
2442 CONTENTS. The argument MULTIBYTE controls whether to label the
2443 string as multibyte. If NCHARS is negative, it counts the number of
2444 characters by itself. */
2445
2446 Lisp_Object
2447 make_specified_string (const char *contents,
2448 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2449 {
2450 Lisp_Object val;
2451
2452 if (nchars < 0)
2453 {
2454 if (multibyte)
2455 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2456 nbytes);
2457 else
2458 nchars = nbytes;
2459 }
2460 val = make_uninit_multibyte_string (nchars, nbytes);
2461 memcpy (SDATA (val), contents, nbytes);
2462 if (!multibyte)
2463 STRING_SET_UNIBYTE (val);
2464 return val;
2465 }
2466
2467
2468 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2469 occupying LENGTH bytes. */
2470
2471 Lisp_Object
2472 make_uninit_string (EMACS_INT length)
2473 {
2474 Lisp_Object val;
2475
2476 if (!length)
2477 return empty_unibyte_string;
2478 val = make_uninit_multibyte_string (length, length);
2479 STRING_SET_UNIBYTE (val);
2480 return val;
2481 }
2482
2483
2484 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2485 which occupy NBYTES bytes. */
2486
2487 Lisp_Object
2488 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2489 {
2490 Lisp_Object string;
2491 struct Lisp_String *s;
2492
2493 if (nchars < 0)
2494 emacs_abort ();
2495 if (!nbytes)
2496 return empty_multibyte_string;
2497
2498 s = allocate_string ();
2499 s->intervals = NULL;
2500 allocate_string_data (s, nchars, nbytes);
2501 XSETSTRING (string, s);
2502 string_chars_consed += nbytes;
2503 return string;
2504 }
2505
2506 /* Print arguments to BUF according to a FORMAT, then return
2507 a Lisp_String initialized with the data from BUF. */
2508
2509 Lisp_Object
2510 make_formatted_string (char *buf, const char *format, ...)
2511 {
2512 va_list ap;
2513 int length;
2514
2515 va_start (ap, format);
2516 length = vsprintf (buf, format, ap);
2517 va_end (ap);
2518 return make_string (buf, length);
2519 }
2520
2521 \f
2522 /***********************************************************************
2523 Float Allocation
2524 ***********************************************************************/
2525
2526 /* We store float cells inside of float_blocks, allocating a new
2527 float_block with malloc whenever necessary. Float cells reclaimed
2528 by GC are put on a free list to be reallocated before allocating
2529 any new float cells from the latest float_block. */
2530
2531 #define FLOAT_BLOCK_SIZE \
2532 (((BLOCK_BYTES - sizeof (struct float_block *) \
2533 /* The compiler might add padding at the end. */ \
2534 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2535 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2536
2537 #define GETMARKBIT(block,n) \
2538 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2539 >> ((n) % BITS_PER_BITS_WORD)) \
2540 & 1)
2541
2542 #define SETMARKBIT(block,n) \
2543 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2544 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2545
2546 #define UNSETMARKBIT(block,n) \
2547 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2548 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2549
2550 #define FLOAT_BLOCK(fptr) \
2551 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2552
2553 #define FLOAT_INDEX(fptr) \
2554 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2555
2556 struct float_block
2557 {
2558 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2559 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2560 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2561 struct float_block *next;
2562 };
2563
2564 #define FLOAT_MARKED_P(fptr) \
2565 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2566
2567 #define FLOAT_MARK(fptr) \
2568 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2569
2570 #define FLOAT_UNMARK(fptr) \
2571 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2572
2573 /* Current float_block. */
2574
2575 static struct float_block *float_block;
2576
2577 /* Index of first unused Lisp_Float in the current float_block. */
2578
2579 static int float_block_index = FLOAT_BLOCK_SIZE;
2580
2581 /* Free-list of Lisp_Floats. */
2582
2583 static struct Lisp_Float *float_free_list;
2584
2585 /* Return a new float object with value FLOAT_VALUE. */
2586
2587 Lisp_Object
2588 make_float (double float_value)
2589 {
2590 register Lisp_Object val;
2591
2592 MALLOC_BLOCK_INPUT;
2593
2594 if (float_free_list)
2595 {
2596 /* We use the data field for chaining the free list
2597 so that we won't use the same field that has the mark bit. */
2598 XSETFLOAT (val, float_free_list);
2599 float_free_list = float_free_list->u.chain;
2600 }
2601 else
2602 {
2603 if (float_block_index == FLOAT_BLOCK_SIZE)
2604 {
2605 struct float_block *new
2606 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2607 new->next = float_block;
2608 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2609 float_block = new;
2610 float_block_index = 0;
2611 total_free_floats += FLOAT_BLOCK_SIZE;
2612 }
2613 XSETFLOAT (val, &float_block->floats[float_block_index]);
2614 float_block_index++;
2615 }
2616
2617 MALLOC_UNBLOCK_INPUT;
2618
2619 XFLOAT_INIT (val, float_value);
2620 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2621 consing_since_gc += sizeof (struct Lisp_Float);
2622 floats_consed++;
2623 total_free_floats--;
2624 return val;
2625 }
2626
2627
2628 \f
2629 /***********************************************************************
2630 Cons Allocation
2631 ***********************************************************************/
2632
2633 /* We store cons cells inside of cons_blocks, allocating a new
2634 cons_block with malloc whenever necessary. Cons cells reclaimed by
2635 GC are put on a free list to be reallocated before allocating
2636 any new cons cells from the latest cons_block. */
2637
2638 #define CONS_BLOCK_SIZE \
2639 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2640 /* The compiler might add padding at the end. */ \
2641 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2642 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2643
2644 #define CONS_BLOCK(fptr) \
2645 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2646
2647 #define CONS_INDEX(fptr) \
2648 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2649
2650 struct cons_block
2651 {
2652 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2653 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2654 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2655 struct cons_block *next;
2656 };
2657
2658 #define CONS_MARKED_P(fptr) \
2659 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2660
2661 #define CONS_MARK(fptr) \
2662 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2663
2664 #define CONS_UNMARK(fptr) \
2665 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2666
2667 /* Current cons_block. */
2668
2669 static struct cons_block *cons_block;
2670
2671 /* Index of first unused Lisp_Cons in the current block. */
2672
2673 static int cons_block_index = CONS_BLOCK_SIZE;
2674
2675 /* Free-list of Lisp_Cons structures. */
2676
2677 static struct Lisp_Cons *cons_free_list;
2678
2679 /* Explicitly free a cons cell by putting it on the free-list. */
2680
2681 void
2682 free_cons (struct Lisp_Cons *ptr)
2683 {
2684 ptr->u.chain = cons_free_list;
2685 ptr->car = Vdead;
2686 cons_free_list = ptr;
2687 consing_since_gc -= sizeof *ptr;
2688 total_free_conses++;
2689 }
2690
2691 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2692 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2693 (Lisp_Object car, Lisp_Object cdr)
2694 {
2695 register Lisp_Object val;
2696
2697 MALLOC_BLOCK_INPUT;
2698
2699 if (cons_free_list)
2700 {
2701 /* We use the cdr for chaining the free list
2702 so that we won't use the same field that has the mark bit. */
2703 XSETCONS (val, cons_free_list);
2704 cons_free_list = cons_free_list->u.chain;
2705 }
2706 else
2707 {
2708 if (cons_block_index == CONS_BLOCK_SIZE)
2709 {
2710 struct cons_block *new
2711 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2712 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2713 new->next = cons_block;
2714 cons_block = new;
2715 cons_block_index = 0;
2716 total_free_conses += CONS_BLOCK_SIZE;
2717 }
2718 XSETCONS (val, &cons_block->conses[cons_block_index]);
2719 cons_block_index++;
2720 }
2721
2722 MALLOC_UNBLOCK_INPUT;
2723
2724 XSETCAR (val, car);
2725 XSETCDR (val, cdr);
2726 eassert (!CONS_MARKED_P (XCONS (val)));
2727 consing_since_gc += sizeof (struct Lisp_Cons);
2728 total_free_conses--;
2729 cons_cells_consed++;
2730 return val;
2731 }
2732
2733 #ifdef GC_CHECK_CONS_LIST
2734 /* Get an error now if there's any junk in the cons free list. */
2735 void
2736 check_cons_list (void)
2737 {
2738 struct Lisp_Cons *tail = cons_free_list;
2739
2740 while (tail)
2741 tail = tail->u.chain;
2742 }
2743 #endif
2744
2745 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2746
2747 Lisp_Object
2748 list1 (Lisp_Object arg1)
2749 {
2750 return Fcons (arg1, Qnil);
2751 }
2752
2753 Lisp_Object
2754 list2 (Lisp_Object arg1, Lisp_Object arg2)
2755 {
2756 return Fcons (arg1, Fcons (arg2, Qnil));
2757 }
2758
2759
2760 Lisp_Object
2761 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2762 {
2763 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2764 }
2765
2766
2767 Lisp_Object
2768 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2769 {
2770 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2771 }
2772
2773
2774 Lisp_Object
2775 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2776 {
2777 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2778 Fcons (arg5, Qnil)))));
2779 }
2780
2781 /* Make a list of COUNT Lisp_Objects, where ARG is the
2782 first one. Allocate conses from pure space if TYPE
2783 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2784
2785 Lisp_Object
2786 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2787 {
2788 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2789 switch (type)
2790 {
2791 case CONSTYPE_PURE: cons = pure_cons; break;
2792 case CONSTYPE_HEAP: cons = Fcons; break;
2793 default: emacs_abort ();
2794 }
2795
2796 eassume (0 < count);
2797 Lisp_Object val = cons (arg, Qnil);
2798 Lisp_Object tail = val;
2799
2800 va_list ap;
2801 va_start (ap, arg);
2802 for (ptrdiff_t i = 1; i < count; i++)
2803 {
2804 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2805 XSETCDR (tail, elem);
2806 tail = elem;
2807 }
2808 va_end (ap);
2809
2810 return val;
2811 }
2812
2813 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2814 doc: /* Return a newly created list with specified arguments as elements.
2815 Any number of arguments, even zero arguments, are allowed.
2816 usage: (list &rest OBJECTS) */)
2817 (ptrdiff_t nargs, Lisp_Object *args)
2818 {
2819 register Lisp_Object val;
2820 val = Qnil;
2821
2822 while (nargs > 0)
2823 {
2824 nargs--;
2825 val = Fcons (args[nargs], val);
2826 }
2827 return val;
2828 }
2829
2830
2831 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2832 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2833 (register Lisp_Object length, Lisp_Object init)
2834 {
2835 register Lisp_Object val;
2836 register EMACS_INT size;
2837
2838 CHECK_NATNUM (length);
2839 size = XFASTINT (length);
2840
2841 val = Qnil;
2842 while (size > 0)
2843 {
2844 val = Fcons (init, val);
2845 --size;
2846
2847 if (size > 0)
2848 {
2849 val = Fcons (init, val);
2850 --size;
2851
2852 if (size > 0)
2853 {
2854 val = Fcons (init, val);
2855 --size;
2856
2857 if (size > 0)
2858 {
2859 val = Fcons (init, val);
2860 --size;
2861
2862 if (size > 0)
2863 {
2864 val = Fcons (init, val);
2865 --size;
2866 }
2867 }
2868 }
2869 }
2870
2871 QUIT;
2872 }
2873
2874 return val;
2875 }
2876
2877
2878 \f
2879 /***********************************************************************
2880 Vector Allocation
2881 ***********************************************************************/
2882
2883 /* Sometimes a vector's contents are merely a pointer internally used
2884 in vector allocation code. On the rare platforms where a null
2885 pointer cannot be tagged, represent it with a Lisp 0.
2886 Usually you don't want to touch this. */
2887
2888 static struct Lisp_Vector *
2889 next_vector (struct Lisp_Vector *v)
2890 {
2891 return XUNTAG (v->contents[0], Lisp_Int0);
2892 }
2893
2894 static void
2895 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2896 {
2897 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2898 }
2899
2900 /* This value is balanced well enough to avoid too much internal overhead
2901 for the most common cases; it's not required to be a power of two, but
2902 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2903
2904 #define VECTOR_BLOCK_SIZE 4096
2905
2906 enum
2907 {
2908 /* Alignment of struct Lisp_Vector objects. */
2909 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2910 GCALIGNMENT),
2911
2912 /* Vector size requests are a multiple of this. */
2913 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2914 };
2915
2916 /* Verify assumptions described above. */
2917 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2918 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2919
2920 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2921 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2922 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2923 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2924
2925 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2926
2927 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2928
2929 /* Size of the minimal vector allocated from block. */
2930
2931 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2932
2933 /* Size of the largest vector allocated from block. */
2934
2935 #define VBLOCK_BYTES_MAX \
2936 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2937
2938 /* We maintain one free list for each possible block-allocated
2939 vector size, and this is the number of free lists we have. */
2940
2941 #define VECTOR_MAX_FREE_LIST_INDEX \
2942 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2943
2944 /* Common shortcut to advance vector pointer over a block data. */
2945
2946 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2947
2948 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2949
2950 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2951
2952 /* Common shortcut to setup vector on a free list. */
2953
2954 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2955 do { \
2956 (tmp) = ((nbytes - header_size) / word_size); \
2957 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2958 eassert ((nbytes) % roundup_size == 0); \
2959 (tmp) = VINDEX (nbytes); \
2960 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2961 set_next_vector (v, vector_free_lists[tmp]); \
2962 vector_free_lists[tmp] = (v); \
2963 total_free_vector_slots += (nbytes) / word_size; \
2964 } while (0)
2965
2966 /* This internal type is used to maintain the list of large vectors
2967 which are allocated at their own, e.g. outside of vector blocks.
2968
2969 struct large_vector itself cannot contain a struct Lisp_Vector, as
2970 the latter contains a flexible array member and C99 does not allow
2971 such structs to be nested. Instead, each struct large_vector
2972 object LV is followed by a struct Lisp_Vector, which is at offset
2973 large_vector_offset from LV, and whose address is therefore
2974 large_vector_vec (&LV). */
2975
2976 struct large_vector
2977 {
2978 struct large_vector *next;
2979 };
2980
2981 enum
2982 {
2983 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2984 };
2985
2986 static struct Lisp_Vector *
2987 large_vector_vec (struct large_vector *p)
2988 {
2989 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2990 }
2991
2992 /* This internal type is used to maintain an underlying storage
2993 for small vectors. */
2994
2995 struct vector_block
2996 {
2997 char data[VECTOR_BLOCK_BYTES];
2998 struct vector_block *next;
2999 };
3000
3001 /* Chain of vector blocks. */
3002
3003 static struct vector_block *vector_blocks;
3004
3005 /* Vector free lists, where NTH item points to a chain of free
3006 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3007
3008 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3009
3010 /* Singly-linked list of large vectors. */
3011
3012 static struct large_vector *large_vectors;
3013
3014 /* The only vector with 0 slots, allocated from pure space. */
3015
3016 Lisp_Object zero_vector;
3017
3018 /* Number of live vectors. */
3019
3020 static EMACS_INT total_vectors;
3021
3022 /* Total size of live and free vectors, in Lisp_Object units. */
3023
3024 static EMACS_INT total_vector_slots, total_free_vector_slots;
3025
3026 /* Get a new vector block. */
3027
3028 static struct vector_block *
3029 allocate_vector_block (void)
3030 {
3031 struct vector_block *block = xmalloc (sizeof *block);
3032
3033 #ifndef GC_MALLOC_CHECK
3034 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3035 MEM_TYPE_VECTOR_BLOCK);
3036 #endif
3037
3038 block->next = vector_blocks;
3039 vector_blocks = block;
3040 return block;
3041 }
3042
3043 /* Called once to initialize vector allocation. */
3044
3045 static void
3046 init_vectors (void)
3047 {
3048 zero_vector = make_pure_vector (0);
3049 }
3050
3051 /* Allocate vector from a vector block. */
3052
3053 static struct Lisp_Vector *
3054 allocate_vector_from_block (size_t nbytes)
3055 {
3056 struct Lisp_Vector *vector;
3057 struct vector_block *block;
3058 size_t index, restbytes;
3059
3060 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3061 eassert (nbytes % roundup_size == 0);
3062
3063 /* First, try to allocate from a free list
3064 containing vectors of the requested size. */
3065 index = VINDEX (nbytes);
3066 if (vector_free_lists[index])
3067 {
3068 vector = vector_free_lists[index];
3069 vector_free_lists[index] = next_vector (vector);
3070 total_free_vector_slots -= nbytes / word_size;
3071 return vector;
3072 }
3073
3074 /* Next, check free lists containing larger vectors. Since
3075 we will split the result, we should have remaining space
3076 large enough to use for one-slot vector at least. */
3077 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3078 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3079 if (vector_free_lists[index])
3080 {
3081 /* This vector is larger than requested. */
3082 vector = vector_free_lists[index];
3083 vector_free_lists[index] = next_vector (vector);
3084 total_free_vector_slots -= nbytes / word_size;
3085
3086 /* Excess bytes are used for the smaller vector,
3087 which should be set on an appropriate free list. */
3088 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3089 eassert (restbytes % roundup_size == 0);
3090 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3091 return vector;
3092 }
3093
3094 /* Finally, need a new vector block. */
3095 block = allocate_vector_block ();
3096
3097 /* New vector will be at the beginning of this block. */
3098 vector = (struct Lisp_Vector *) block->data;
3099
3100 /* If the rest of space from this block is large enough
3101 for one-slot vector at least, set up it on a free list. */
3102 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3103 if (restbytes >= VBLOCK_BYTES_MIN)
3104 {
3105 eassert (restbytes % roundup_size == 0);
3106 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3107 }
3108 return vector;
3109 }
3110
3111 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3112
3113 #define VECTOR_IN_BLOCK(vector, block) \
3114 ((char *) (vector) <= (block)->data \
3115 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3116
3117 /* Return the memory footprint of V in bytes. */
3118
3119 static ptrdiff_t
3120 vector_nbytes (struct Lisp_Vector *v)
3121 {
3122 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3123 ptrdiff_t nwords;
3124
3125 if (size & PSEUDOVECTOR_FLAG)
3126 {
3127 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3128 {
3129 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3130 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3131 * sizeof (bits_word));
3132 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3133 verify (header_size <= bool_header_size);
3134 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3135 }
3136 else
3137 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3138 + ((size & PSEUDOVECTOR_REST_MASK)
3139 >> PSEUDOVECTOR_SIZE_BITS));
3140 }
3141 else
3142 nwords = size;
3143 return vroundup (header_size + word_size * nwords);
3144 }
3145
3146 /* Release extra resources still in use by VECTOR, which may be any
3147 vector-like object. For now, this is used just to free data in
3148 font objects. */
3149
3150 static void
3151 cleanup_vector (struct Lisp_Vector *vector)
3152 {
3153 detect_suspicious_free (vector);
3154 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3155 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3156 == FONT_OBJECT_MAX))
3157 {
3158 struct font_driver *drv = ((struct font *) vector)->driver;
3159
3160 /* The font driver might sometimes be NULL, e.g. if Emacs was
3161 interrupted before it had time to set it up. */
3162 if (drv)
3163 {
3164 /* Attempt to catch subtle bugs like Bug#16140. */
3165 eassert (valid_font_driver (drv));
3166 drv->close ((struct font *) vector);
3167 }
3168 }
3169 }
3170
3171 /* Reclaim space used by unmarked vectors. */
3172
3173 NO_INLINE /* For better stack traces */
3174 static void
3175 sweep_vectors (void)
3176 {
3177 struct vector_block *block, **bprev = &vector_blocks;
3178 struct large_vector *lv, **lvprev = &large_vectors;
3179 struct Lisp_Vector *vector, *next;
3180
3181 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3182 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3183
3184 /* Looking through vector blocks. */
3185
3186 for (block = vector_blocks; block; block = *bprev)
3187 {
3188 bool free_this_block = 0;
3189 ptrdiff_t nbytes;
3190
3191 for (vector = (struct Lisp_Vector *) block->data;
3192 VECTOR_IN_BLOCK (vector, block); vector = next)
3193 {
3194 if (VECTOR_MARKED_P (vector))
3195 {
3196 VECTOR_UNMARK (vector);
3197 total_vectors++;
3198 nbytes = vector_nbytes (vector);
3199 total_vector_slots += nbytes / word_size;
3200 next = ADVANCE (vector, nbytes);
3201 }
3202 else
3203 {
3204 ptrdiff_t total_bytes;
3205
3206 cleanup_vector (vector);
3207 nbytes = vector_nbytes (vector);
3208 total_bytes = nbytes;
3209 next = ADVANCE (vector, nbytes);
3210
3211 /* While NEXT is not marked, try to coalesce with VECTOR,
3212 thus making VECTOR of the largest possible size. */
3213
3214 while (VECTOR_IN_BLOCK (next, block))
3215 {
3216 if (VECTOR_MARKED_P (next))
3217 break;
3218 cleanup_vector (next);
3219 nbytes = vector_nbytes (next);
3220 total_bytes += nbytes;
3221 next = ADVANCE (next, nbytes);
3222 }
3223
3224 eassert (total_bytes % roundup_size == 0);
3225
3226 if (vector == (struct Lisp_Vector *) block->data
3227 && !VECTOR_IN_BLOCK (next, block))
3228 /* This block should be freed because all of its
3229 space was coalesced into the only free vector. */
3230 free_this_block = 1;
3231 else
3232 {
3233 size_t tmp;
3234 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3235 }
3236 }
3237 }
3238
3239 if (free_this_block)
3240 {
3241 *bprev = block->next;
3242 #ifndef GC_MALLOC_CHECK
3243 mem_delete (mem_find (block->data));
3244 #endif
3245 xfree (block);
3246 }
3247 else
3248 bprev = &block->next;
3249 }
3250
3251 /* Sweep large vectors. */
3252
3253 for (lv = large_vectors; lv; lv = *lvprev)
3254 {
3255 vector = large_vector_vec (lv);
3256 if (VECTOR_MARKED_P (vector))
3257 {
3258 VECTOR_UNMARK (vector);
3259 total_vectors++;
3260 if (vector->header.size & PSEUDOVECTOR_FLAG)
3261 {
3262 /* All non-bool pseudovectors are small enough to be allocated
3263 from vector blocks. This code should be redesigned if some
3264 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3265 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3266 total_vector_slots += vector_nbytes (vector) / word_size;
3267 }
3268 else
3269 total_vector_slots
3270 += header_size / word_size + vector->header.size;
3271 lvprev = &lv->next;
3272 }
3273 else
3274 {
3275 *lvprev = lv->next;
3276 lisp_free (lv);
3277 }
3278 }
3279 }
3280
3281 /* Value is a pointer to a newly allocated Lisp_Vector structure
3282 with room for LEN Lisp_Objects. */
3283
3284 static struct Lisp_Vector *
3285 allocate_vectorlike (ptrdiff_t len)
3286 {
3287 struct Lisp_Vector *p;
3288
3289 MALLOC_BLOCK_INPUT;
3290
3291 if (len == 0)
3292 p = XVECTOR (zero_vector);
3293 else
3294 {
3295 size_t nbytes = header_size + len * word_size;
3296
3297 #ifdef DOUG_LEA_MALLOC
3298 if (!mmap_lisp_allowed_p ())
3299 mallopt (M_MMAP_MAX, 0);
3300 #endif
3301
3302 if (nbytes <= VBLOCK_BYTES_MAX)
3303 p = allocate_vector_from_block (vroundup (nbytes));
3304 else
3305 {
3306 struct large_vector *lv
3307 = lisp_malloc ((large_vector_offset + header_size
3308 + len * word_size),
3309 MEM_TYPE_VECTORLIKE);
3310 lv->next = large_vectors;
3311 large_vectors = lv;
3312 p = large_vector_vec (lv);
3313 }
3314
3315 #ifdef DOUG_LEA_MALLOC
3316 if (!mmap_lisp_allowed_p ())
3317 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3318 #endif
3319
3320 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3321 emacs_abort ();
3322
3323 consing_since_gc += nbytes;
3324 vector_cells_consed += len;
3325 }
3326
3327 MALLOC_UNBLOCK_INPUT;
3328
3329 return p;
3330 }
3331
3332
3333 /* Allocate a vector with LEN slots. */
3334
3335 struct Lisp_Vector *
3336 allocate_vector (EMACS_INT len)
3337 {
3338 struct Lisp_Vector *v;
3339 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3340
3341 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3342 memory_full (SIZE_MAX);
3343 v = allocate_vectorlike (len);
3344 if (len)
3345 v->header.size = len;
3346 return v;
3347 }
3348
3349
3350 /* Allocate other vector-like structures. */
3351
3352 struct Lisp_Vector *
3353 allocate_pseudovector (int memlen, int lisplen,
3354 int zerolen, enum pvec_type tag)
3355 {
3356 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3357
3358 /* Catch bogus values. */
3359 eassert (0 <= tag && tag <= PVEC_FONT);
3360 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3361 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3362 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3363
3364 /* Only the first LISPLEN slots will be traced normally by the GC. */
3365 memclear (v->contents, zerolen * word_size);
3366 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3367 return v;
3368 }
3369
3370 struct buffer *
3371 allocate_buffer (void)
3372 {
3373 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3374
3375 BUFFER_PVEC_INIT (b);
3376 /* Put B on the chain of all buffers including killed ones. */
3377 b->next = all_buffers;
3378 all_buffers = b;
3379 /* Note that the rest fields of B are not initialized. */
3380 return b;
3381 }
3382
3383 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3384 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3385 See also the function `vector'. */)
3386 (register Lisp_Object length, Lisp_Object init)
3387 {
3388 Lisp_Object vector;
3389 register ptrdiff_t sizei;
3390 register ptrdiff_t i;
3391 register struct Lisp_Vector *p;
3392
3393 CHECK_NATNUM (length);
3394
3395 p = allocate_vector (XFASTINT (length));
3396 sizei = XFASTINT (length);
3397 for (i = 0; i < sizei; i++)
3398 p->contents[i] = init;
3399
3400 XSETVECTOR (vector, p);
3401 return vector;
3402 }
3403
3404 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3405 doc: /* Return a newly created vector with specified arguments as elements.
3406 Any number of arguments, even zero arguments, are allowed.
3407 usage: (vector &rest OBJECTS) */)
3408 (ptrdiff_t nargs, Lisp_Object *args)
3409 {
3410 ptrdiff_t i;
3411 register Lisp_Object val = make_uninit_vector (nargs);
3412 register struct Lisp_Vector *p = XVECTOR (val);
3413
3414 for (i = 0; i < nargs; i++)
3415 p->contents[i] = args[i];
3416 return val;
3417 }
3418
3419 void
3420 make_byte_code (struct Lisp_Vector *v)
3421 {
3422 /* Don't allow the global zero_vector to become a byte code object. */
3423 eassert (0 < v->header.size);
3424
3425 if (v->header.size > 1 && STRINGP (v->contents[1])
3426 && STRING_MULTIBYTE (v->contents[1]))
3427 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3428 earlier because they produced a raw 8-bit string for byte-code
3429 and now such a byte-code string is loaded as multibyte while
3430 raw 8-bit characters converted to multibyte form. Thus, now we
3431 must convert them back to the original unibyte form. */
3432 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3433 XSETPVECTYPE (v, PVEC_COMPILED);
3434 }
3435
3436 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3437 doc: /* Create a byte-code object with specified arguments as elements.
3438 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3439 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3440 and (optional) INTERACTIVE-SPEC.
3441 The first four arguments are required; at most six have any
3442 significance.
3443 The ARGLIST can be either like the one of `lambda', in which case the arguments
3444 will be dynamically bound before executing the byte code, or it can be an
3445 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3446 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3447 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3448 argument to catch the left-over arguments. If such an integer is used, the
3449 arguments will not be dynamically bound but will be instead pushed on the
3450 stack before executing the byte-code.
3451 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3452 (ptrdiff_t nargs, Lisp_Object *args)
3453 {
3454 ptrdiff_t i;
3455 register Lisp_Object val = make_uninit_vector (nargs);
3456 register struct Lisp_Vector *p = XVECTOR (val);
3457
3458 /* We used to purecopy everything here, if purify-flag was set. This worked
3459 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3460 dangerous, since make-byte-code is used during execution to build
3461 closures, so any closure built during the preload phase would end up
3462 copied into pure space, including its free variables, which is sometimes
3463 just wasteful and other times plainly wrong (e.g. those free vars may want
3464 to be setcar'd). */
3465
3466 for (i = 0; i < nargs; i++)
3467 p->contents[i] = args[i];
3468 make_byte_code (p);
3469 XSETCOMPILED (val, p);
3470 return val;
3471 }
3472
3473
3474 \f
3475 /***********************************************************************
3476 Symbol Allocation
3477 ***********************************************************************/
3478
3479 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3480 of the required alignment. */
3481
3482 union aligned_Lisp_Symbol
3483 {
3484 struct Lisp_Symbol s;
3485 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3486 & -GCALIGNMENT];
3487 };
3488
3489 /* Each symbol_block is just under 1020 bytes long, since malloc
3490 really allocates in units of powers of two and uses 4 bytes for its
3491 own overhead. */
3492
3493 #define SYMBOL_BLOCK_SIZE \
3494 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3495
3496 struct symbol_block
3497 {
3498 /* Place `symbols' first, to preserve alignment. */
3499 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3500 struct symbol_block *next;
3501 };
3502
3503 /* Current symbol block and index of first unused Lisp_Symbol
3504 structure in it. */
3505
3506 static struct symbol_block *symbol_block;
3507 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3508 /* Pointer to the first symbol_block that contains pinned symbols.
3509 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3510 10K of which are pinned (and all but 250 of them are interned in obarray),
3511 whereas a "typical session" has in the order of 30K symbols.
3512 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3513 than 30K to find the 10K symbols we need to mark. */
3514 static struct symbol_block *symbol_block_pinned;
3515
3516 /* List of free symbols. */
3517
3518 static struct Lisp_Symbol *symbol_free_list;
3519
3520 static void
3521 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3522 {
3523 XSYMBOL (sym)->name = name;
3524 }
3525
3526 void
3527 init_symbol (Lisp_Object val, Lisp_Object name)
3528 {
3529 struct Lisp_Symbol *p = XSYMBOL (val);
3530 set_symbol_name (val, name);
3531 set_symbol_plist (val, Qnil);
3532 p->redirect = SYMBOL_PLAINVAL;
3533 SET_SYMBOL_VAL (p, Qunbound);
3534 set_symbol_function (val, Qnil);
3535 set_symbol_next (val, NULL);
3536 p->gcmarkbit = false;
3537 p->interned = SYMBOL_UNINTERNED;
3538 p->constant = 0;
3539 p->declared_special = false;
3540 p->pinned = false;
3541 }
3542
3543 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3544 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3545 Its value is void, and its function definition and property list are nil. */)
3546 (Lisp_Object name)
3547 {
3548 Lisp_Object val;
3549
3550 CHECK_STRING (name);
3551
3552 MALLOC_BLOCK_INPUT;
3553
3554 if (symbol_free_list)
3555 {
3556 XSETSYMBOL (val, symbol_free_list);
3557 symbol_free_list = symbol_free_list->next;
3558 }
3559 else
3560 {
3561 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3562 {
3563 struct symbol_block *new
3564 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3565 new->next = symbol_block;
3566 symbol_block = new;
3567 symbol_block_index = 0;
3568 total_free_symbols += SYMBOL_BLOCK_SIZE;
3569 }
3570 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3571 symbol_block_index++;
3572 }
3573
3574 MALLOC_UNBLOCK_INPUT;
3575
3576 init_symbol (val, name);
3577 consing_since_gc += sizeof (struct Lisp_Symbol);
3578 symbols_consed++;
3579 total_free_symbols--;
3580 return val;
3581 }
3582
3583
3584 \f
3585 /***********************************************************************
3586 Marker (Misc) Allocation
3587 ***********************************************************************/
3588
3589 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3590 the required alignment. */
3591
3592 union aligned_Lisp_Misc
3593 {
3594 union Lisp_Misc m;
3595 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3596 & -GCALIGNMENT];
3597 };
3598
3599 /* Allocation of markers and other objects that share that structure.
3600 Works like allocation of conses. */
3601
3602 #define MARKER_BLOCK_SIZE \
3603 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3604
3605 struct marker_block
3606 {
3607 /* Place `markers' first, to preserve alignment. */
3608 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3609 struct marker_block *next;
3610 };
3611
3612 static struct marker_block *marker_block;
3613 static int marker_block_index = MARKER_BLOCK_SIZE;
3614
3615 static union Lisp_Misc *marker_free_list;
3616
3617 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3618
3619 static Lisp_Object
3620 allocate_misc (enum Lisp_Misc_Type type)
3621 {
3622 Lisp_Object val;
3623
3624 MALLOC_BLOCK_INPUT;
3625
3626 if (marker_free_list)
3627 {
3628 XSETMISC (val, marker_free_list);
3629 marker_free_list = marker_free_list->u_free.chain;
3630 }
3631 else
3632 {
3633 if (marker_block_index == MARKER_BLOCK_SIZE)
3634 {
3635 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3636 new->next = marker_block;
3637 marker_block = new;
3638 marker_block_index = 0;
3639 total_free_markers += MARKER_BLOCK_SIZE;
3640 }
3641 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3642 marker_block_index++;
3643 }
3644
3645 MALLOC_UNBLOCK_INPUT;
3646
3647 --total_free_markers;
3648 consing_since_gc += sizeof (union Lisp_Misc);
3649 misc_objects_consed++;
3650 XMISCANY (val)->type = type;
3651 XMISCANY (val)->gcmarkbit = 0;
3652 return val;
3653 }
3654
3655 /* Free a Lisp_Misc object. */
3656
3657 void
3658 free_misc (Lisp_Object misc)
3659 {
3660 XMISCANY (misc)->type = Lisp_Misc_Free;
3661 XMISC (misc)->u_free.chain = marker_free_list;
3662 marker_free_list = XMISC (misc);
3663 consing_since_gc -= sizeof (union Lisp_Misc);
3664 total_free_markers++;
3665 }
3666
3667 /* Verify properties of Lisp_Save_Value's representation
3668 that are assumed here and elsewhere. */
3669
3670 verify (SAVE_UNUSED == 0);
3671 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3672 >> SAVE_SLOT_BITS)
3673 == 0);
3674
3675 /* Return Lisp_Save_Value objects for the various combinations
3676 that callers need. */
3677
3678 Lisp_Object
3679 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3680 {
3681 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3682 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3683 p->save_type = SAVE_TYPE_INT_INT_INT;
3684 p->data[0].integer = a;
3685 p->data[1].integer = b;
3686 p->data[2].integer = c;
3687 return val;
3688 }
3689
3690 Lisp_Object
3691 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3692 Lisp_Object d)
3693 {
3694 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3695 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3696 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3697 p->data[0].object = a;
3698 p->data[1].object = b;
3699 p->data[2].object = c;
3700 p->data[3].object = d;
3701 return val;
3702 }
3703
3704 Lisp_Object
3705 make_save_ptr (void *a)
3706 {
3707 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3708 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3709 p->save_type = SAVE_POINTER;
3710 p->data[0].pointer = a;
3711 return val;
3712 }
3713
3714 Lisp_Object
3715 make_save_ptr_int (void *a, ptrdiff_t b)
3716 {
3717 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3718 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3719 p->save_type = SAVE_TYPE_PTR_INT;
3720 p->data[0].pointer = a;
3721 p->data[1].integer = b;
3722 return val;
3723 }
3724
3725 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3726 Lisp_Object
3727 make_save_ptr_ptr (void *a, void *b)
3728 {
3729 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3730 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3731 p->save_type = SAVE_TYPE_PTR_PTR;
3732 p->data[0].pointer = a;
3733 p->data[1].pointer = b;
3734 return val;
3735 }
3736 #endif
3737
3738 Lisp_Object
3739 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3740 {
3741 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3742 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3743 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3744 p->data[0].funcpointer = a;
3745 p->data[1].pointer = b;
3746 p->data[2].object = c;
3747 return val;
3748 }
3749
3750 /* Return a Lisp_Save_Value object that represents an array A
3751 of N Lisp objects. */
3752
3753 Lisp_Object
3754 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3755 {
3756 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3757 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3758 p->save_type = SAVE_TYPE_MEMORY;
3759 p->data[0].pointer = a;
3760 p->data[1].integer = n;
3761 return val;
3762 }
3763
3764 /* Free a Lisp_Save_Value object. Do not use this function
3765 if SAVE contains pointer other than returned by xmalloc. */
3766
3767 void
3768 free_save_value (Lisp_Object save)
3769 {
3770 xfree (XSAVE_POINTER (save, 0));
3771 free_misc (save);
3772 }
3773
3774 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3775
3776 Lisp_Object
3777 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3778 {
3779 register Lisp_Object overlay;
3780
3781 overlay = allocate_misc (Lisp_Misc_Overlay);
3782 OVERLAY_START (overlay) = start;
3783 OVERLAY_END (overlay) = end;
3784 set_overlay_plist (overlay, plist);
3785 XOVERLAY (overlay)->next = NULL;
3786 return overlay;
3787 }
3788
3789 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3790 doc: /* Return a newly allocated marker which does not point at any place. */)
3791 (void)
3792 {
3793 register Lisp_Object val;
3794 register struct Lisp_Marker *p;
3795
3796 val = allocate_misc (Lisp_Misc_Marker);
3797 p = XMARKER (val);
3798 p->buffer = 0;
3799 p->bytepos = 0;
3800 p->charpos = 0;
3801 p->next = NULL;
3802 p->insertion_type = 0;
3803 p->need_adjustment = 0;
3804 return val;
3805 }
3806
3807 /* Return a newly allocated marker which points into BUF
3808 at character position CHARPOS and byte position BYTEPOS. */
3809
3810 Lisp_Object
3811 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3812 {
3813 Lisp_Object obj;
3814 struct Lisp_Marker *m;
3815
3816 /* No dead buffers here. */
3817 eassert (BUFFER_LIVE_P (buf));
3818
3819 /* Every character is at least one byte. */
3820 eassert (charpos <= bytepos);
3821
3822 obj = allocate_misc (Lisp_Misc_Marker);
3823 m = XMARKER (obj);
3824 m->buffer = buf;
3825 m->charpos = charpos;
3826 m->bytepos = bytepos;
3827 m->insertion_type = 0;
3828 m->need_adjustment = 0;
3829 m->next = BUF_MARKERS (buf);
3830 BUF_MARKERS (buf) = m;
3831 return obj;
3832 }
3833
3834 /* Put MARKER back on the free list after using it temporarily. */
3835
3836 void
3837 free_marker (Lisp_Object marker)
3838 {
3839 unchain_marker (XMARKER (marker));
3840 free_misc (marker);
3841 }
3842
3843 \f
3844 /* Return a newly created vector or string with specified arguments as
3845 elements. If all the arguments are characters that can fit
3846 in a string of events, make a string; otherwise, make a vector.
3847
3848 Any number of arguments, even zero arguments, are allowed. */
3849
3850 Lisp_Object
3851 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3852 {
3853 ptrdiff_t i;
3854
3855 for (i = 0; i < nargs; i++)
3856 /* The things that fit in a string
3857 are characters that are in 0...127,
3858 after discarding the meta bit and all the bits above it. */
3859 if (!INTEGERP (args[i])
3860 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3861 return Fvector (nargs, args);
3862
3863 /* Since the loop exited, we know that all the things in it are
3864 characters, so we can make a string. */
3865 {
3866 Lisp_Object result;
3867
3868 result = Fmake_string (make_number (nargs), make_number (0));
3869 for (i = 0; i < nargs; i++)
3870 {
3871 SSET (result, i, XINT (args[i]));
3872 /* Move the meta bit to the right place for a string char. */
3873 if (XINT (args[i]) & CHAR_META)
3874 SSET (result, i, SREF (result, i) | 0x80);
3875 }
3876
3877 return result;
3878 }
3879 }
3880
3881 #ifdef HAVE_MODULES
3882 /* Create a new module user ptr object. */
3883 Lisp_Object
3884 make_user_ptr (void (*finalizer) (void *), void *p)
3885 {
3886 Lisp_Object obj;
3887 struct Lisp_User_Ptr *uptr;
3888
3889 obj = allocate_misc (Lisp_Misc_User_Ptr);
3890 uptr = XUSER_PTR (obj);
3891 uptr->finalizer = finalizer;
3892 uptr->p = p;
3893 return obj;
3894 }
3895
3896 #endif
3897
3898 static void
3899 init_finalizer_list (struct Lisp_Finalizer *head)
3900 {
3901 head->prev = head->next = head;
3902 }
3903
3904 /* Insert FINALIZER before ELEMENT. */
3905
3906 static void
3907 finalizer_insert (struct Lisp_Finalizer *element,
3908 struct Lisp_Finalizer *finalizer)
3909 {
3910 eassert (finalizer->prev == NULL);
3911 eassert (finalizer->next == NULL);
3912 finalizer->next = element;
3913 finalizer->prev = element->prev;
3914 finalizer->prev->next = finalizer;
3915 element->prev = finalizer;
3916 }
3917
3918 static void
3919 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3920 {
3921 if (finalizer->prev != NULL)
3922 {
3923 eassert (finalizer->next != NULL);
3924 finalizer->prev->next = finalizer->next;
3925 finalizer->next->prev = finalizer->prev;
3926 finalizer->prev = finalizer->next = NULL;
3927 }
3928 }
3929
3930 static void
3931 mark_finalizer_list (struct Lisp_Finalizer *head)
3932 {
3933 for (struct Lisp_Finalizer *finalizer = head->next;
3934 finalizer != head;
3935 finalizer = finalizer->next)
3936 {
3937 finalizer->base.gcmarkbit = true;
3938 mark_object (finalizer->function);
3939 }
3940 }
3941
3942 /* Move doomed finalizers to list DEST from list SRC. A doomed
3943 finalizer is one that is not GC-reachable and whose
3944 finalizer->function is non-nil. */
3945
3946 static void
3947 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3948 struct Lisp_Finalizer *src)
3949 {
3950 struct Lisp_Finalizer *finalizer = src->next;
3951 while (finalizer != src)
3952 {
3953 struct Lisp_Finalizer *next = finalizer->next;
3954 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3955 {
3956 unchain_finalizer (finalizer);
3957 finalizer_insert (dest, finalizer);
3958 }
3959
3960 finalizer = next;
3961 }
3962 }
3963
3964 static Lisp_Object
3965 run_finalizer_handler (Lisp_Object args)
3966 {
3967 add_to_log ("finalizer failed: %S", args);
3968 return Qnil;
3969 }
3970
3971 static void
3972 run_finalizer_function (Lisp_Object function)
3973 {
3974 ptrdiff_t count = SPECPDL_INDEX ();
3975
3976 specbind (Qinhibit_quit, Qt);
3977 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3978 unbind_to (count, Qnil);
3979 }
3980
3981 static void
3982 run_finalizers (struct Lisp_Finalizer *finalizers)
3983 {
3984 struct Lisp_Finalizer *finalizer;
3985 Lisp_Object function;
3986
3987 while (finalizers->next != finalizers)
3988 {
3989 finalizer = finalizers->next;
3990 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3991 unchain_finalizer (finalizer);
3992 function = finalizer->function;
3993 if (!NILP (function))
3994 {
3995 finalizer->function = Qnil;
3996 run_finalizer_function (function);
3997 }
3998 }
3999 }
4000
4001 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4002 doc: /* Make a finalizer that will run FUNCTION.
4003 FUNCTION will be called after garbage collection when the returned
4004 finalizer object becomes unreachable. If the finalizer object is
4005 reachable only through references from finalizer objects, it does not
4006 count as reachable for the purpose of deciding whether to run
4007 FUNCTION. FUNCTION will be run once per finalizer object. */)
4008 (Lisp_Object function)
4009 {
4010 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4011 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4012 finalizer->function = function;
4013 finalizer->prev = finalizer->next = NULL;
4014 finalizer_insert (&finalizers, finalizer);
4015 return val;
4016 }
4017
4018 \f
4019 /************************************************************************
4020 Memory Full Handling
4021 ************************************************************************/
4022
4023
4024 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4025 there may have been size_t overflow so that malloc was never
4026 called, or perhaps malloc was invoked successfully but the
4027 resulting pointer had problems fitting into a tagged EMACS_INT. In
4028 either case this counts as memory being full even though malloc did
4029 not fail. */
4030
4031 void
4032 memory_full (size_t nbytes)
4033 {
4034 /* Do not go into hysterics merely because a large request failed. */
4035 bool enough_free_memory = 0;
4036 if (SPARE_MEMORY < nbytes)
4037 {
4038 void *p;
4039
4040 MALLOC_BLOCK_INPUT;
4041 p = malloc (SPARE_MEMORY);
4042 if (p)
4043 {
4044 free (p);
4045 enough_free_memory = 1;
4046 }
4047 MALLOC_UNBLOCK_INPUT;
4048 }
4049
4050 if (! enough_free_memory)
4051 {
4052 int i;
4053
4054 Vmemory_full = Qt;
4055
4056 memory_full_cons_threshold = sizeof (struct cons_block);
4057
4058 /* The first time we get here, free the spare memory. */
4059 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4060 if (spare_memory[i])
4061 {
4062 if (i == 0)
4063 free (spare_memory[i]);
4064 else if (i >= 1 && i <= 4)
4065 lisp_align_free (spare_memory[i]);
4066 else
4067 lisp_free (spare_memory[i]);
4068 spare_memory[i] = 0;
4069 }
4070 }
4071
4072 /* This used to call error, but if we've run out of memory, we could
4073 get infinite recursion trying to build the string. */
4074 xsignal (Qnil, Vmemory_signal_data);
4075 }
4076
4077 /* If we released our reserve (due to running out of memory),
4078 and we have a fair amount free once again,
4079 try to set aside another reserve in case we run out once more.
4080
4081 This is called when a relocatable block is freed in ralloc.c,
4082 and also directly from this file, in case we're not using ralloc.c. */
4083
4084 void
4085 refill_memory_reserve (void)
4086 {
4087 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4088 if (spare_memory[0] == 0)
4089 spare_memory[0] = malloc (SPARE_MEMORY);
4090 if (spare_memory[1] == 0)
4091 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4092 MEM_TYPE_SPARE);
4093 if (spare_memory[2] == 0)
4094 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4095 MEM_TYPE_SPARE);
4096 if (spare_memory[3] == 0)
4097 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4098 MEM_TYPE_SPARE);
4099 if (spare_memory[4] == 0)
4100 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4101 MEM_TYPE_SPARE);
4102 if (spare_memory[5] == 0)
4103 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4104 MEM_TYPE_SPARE);
4105 if (spare_memory[6] == 0)
4106 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4107 MEM_TYPE_SPARE);
4108 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4109 Vmemory_full = Qnil;
4110 #endif
4111 }
4112 \f
4113 /************************************************************************
4114 C Stack Marking
4115 ************************************************************************/
4116
4117 /* Conservative C stack marking requires a method to identify possibly
4118 live Lisp objects given a pointer value. We do this by keeping
4119 track of blocks of Lisp data that are allocated in a red-black tree
4120 (see also the comment of mem_node which is the type of nodes in
4121 that tree). Function lisp_malloc adds information for an allocated
4122 block to the red-black tree with calls to mem_insert, and function
4123 lisp_free removes it with mem_delete. Functions live_string_p etc
4124 call mem_find to lookup information about a given pointer in the
4125 tree, and use that to determine if the pointer points to a Lisp
4126 object or not. */
4127
4128 /* Initialize this part of alloc.c. */
4129
4130 static void
4131 mem_init (void)
4132 {
4133 mem_z.left = mem_z.right = MEM_NIL;
4134 mem_z.parent = NULL;
4135 mem_z.color = MEM_BLACK;
4136 mem_z.start = mem_z.end = NULL;
4137 mem_root = MEM_NIL;
4138 }
4139
4140
4141 /* Value is a pointer to the mem_node containing START. Value is
4142 MEM_NIL if there is no node in the tree containing START. */
4143
4144 static struct mem_node *
4145 mem_find (void *start)
4146 {
4147 struct mem_node *p;
4148
4149 if (start < min_heap_address || start > max_heap_address)
4150 return MEM_NIL;
4151
4152 /* Make the search always successful to speed up the loop below. */
4153 mem_z.start = start;
4154 mem_z.end = (char *) start + 1;
4155
4156 p = mem_root;
4157 while (start < p->start || start >= p->end)
4158 p = start < p->start ? p->left : p->right;
4159 return p;
4160 }
4161
4162
4163 /* Insert a new node into the tree for a block of memory with start
4164 address START, end address END, and type TYPE. Value is a
4165 pointer to the node that was inserted. */
4166
4167 static struct mem_node *
4168 mem_insert (void *start, void *end, enum mem_type type)
4169 {
4170 struct mem_node *c, *parent, *x;
4171
4172 if (min_heap_address == NULL || start < min_heap_address)
4173 min_heap_address = start;
4174 if (max_heap_address == NULL || end > max_heap_address)
4175 max_heap_address = end;
4176
4177 /* See where in the tree a node for START belongs. In this
4178 particular application, it shouldn't happen that a node is already
4179 present. For debugging purposes, let's check that. */
4180 c = mem_root;
4181 parent = NULL;
4182
4183 while (c != MEM_NIL)
4184 {
4185 parent = c;
4186 c = start < c->start ? c->left : c->right;
4187 }
4188
4189 /* Create a new node. */
4190 #ifdef GC_MALLOC_CHECK
4191 x = malloc (sizeof *x);
4192 if (x == NULL)
4193 emacs_abort ();
4194 #else
4195 x = xmalloc (sizeof *x);
4196 #endif
4197 x->start = start;
4198 x->end = end;
4199 x->type = type;
4200 x->parent = parent;
4201 x->left = x->right = MEM_NIL;
4202 x->color = MEM_RED;
4203
4204 /* Insert it as child of PARENT or install it as root. */
4205 if (parent)
4206 {
4207 if (start < parent->start)
4208 parent->left = x;
4209 else
4210 parent->right = x;
4211 }
4212 else
4213 mem_root = x;
4214
4215 /* Re-establish red-black tree properties. */
4216 mem_insert_fixup (x);
4217
4218 return x;
4219 }
4220
4221
4222 /* Re-establish the red-black properties of the tree, and thereby
4223 balance the tree, after node X has been inserted; X is always red. */
4224
4225 static void
4226 mem_insert_fixup (struct mem_node *x)
4227 {
4228 while (x != mem_root && x->parent->color == MEM_RED)
4229 {
4230 /* X is red and its parent is red. This is a violation of
4231 red-black tree property #3. */
4232
4233 if (x->parent == x->parent->parent->left)
4234 {
4235 /* We're on the left side of our grandparent, and Y is our
4236 "uncle". */
4237 struct mem_node *y = x->parent->parent->right;
4238
4239 if (y->color == MEM_RED)
4240 {
4241 /* Uncle and parent are red but should be black because
4242 X is red. Change the colors accordingly and proceed
4243 with the grandparent. */
4244 x->parent->color = MEM_BLACK;
4245 y->color = MEM_BLACK;
4246 x->parent->parent->color = MEM_RED;
4247 x = x->parent->parent;
4248 }
4249 else
4250 {
4251 /* Parent and uncle have different colors; parent is
4252 red, uncle is black. */
4253 if (x == x->parent->right)
4254 {
4255 x = x->parent;
4256 mem_rotate_left (x);
4257 }
4258
4259 x->parent->color = MEM_BLACK;
4260 x->parent->parent->color = MEM_RED;
4261 mem_rotate_right (x->parent->parent);
4262 }
4263 }
4264 else
4265 {
4266 /* This is the symmetrical case of above. */
4267 struct mem_node *y = x->parent->parent->left;
4268
4269 if (y->color == MEM_RED)
4270 {
4271 x->parent->color = MEM_BLACK;
4272 y->color = MEM_BLACK;
4273 x->parent->parent->color = MEM_RED;
4274 x = x->parent->parent;
4275 }
4276 else
4277 {
4278 if (x == x->parent->left)
4279 {
4280 x = x->parent;
4281 mem_rotate_right (x);
4282 }
4283
4284 x->parent->color = MEM_BLACK;
4285 x->parent->parent->color = MEM_RED;
4286 mem_rotate_left (x->parent->parent);
4287 }
4288 }
4289 }
4290
4291 /* The root may have been changed to red due to the algorithm. Set
4292 it to black so that property #5 is satisfied. */
4293 mem_root->color = MEM_BLACK;
4294 }
4295
4296
4297 /* (x) (y)
4298 / \ / \
4299 a (y) ===> (x) c
4300 / \ / \
4301 b c a b */
4302
4303 static void
4304 mem_rotate_left (struct mem_node *x)
4305 {
4306 struct mem_node *y;
4307
4308 /* Turn y's left sub-tree into x's right sub-tree. */
4309 y = x->right;
4310 x->right = y->left;
4311 if (y->left != MEM_NIL)
4312 y->left->parent = x;
4313
4314 /* Y's parent was x's parent. */
4315 if (y != MEM_NIL)
4316 y->parent = x->parent;
4317
4318 /* Get the parent to point to y instead of x. */
4319 if (x->parent)
4320 {
4321 if (x == x->parent->left)
4322 x->parent->left = y;
4323 else
4324 x->parent->right = y;
4325 }
4326 else
4327 mem_root = y;
4328
4329 /* Put x on y's left. */
4330 y->left = x;
4331 if (x != MEM_NIL)
4332 x->parent = y;
4333 }
4334
4335
4336 /* (x) (Y)
4337 / \ / \
4338 (y) c ===> a (x)
4339 / \ / \
4340 a b b c */
4341
4342 static void
4343 mem_rotate_right (struct mem_node *x)
4344 {
4345 struct mem_node *y = x->left;
4346
4347 x->left = y->right;
4348 if (y->right != MEM_NIL)
4349 y->right->parent = x;
4350
4351 if (y != MEM_NIL)
4352 y->parent = x->parent;
4353 if (x->parent)
4354 {
4355 if (x == x->parent->right)
4356 x->parent->right = y;
4357 else
4358 x->parent->left = y;
4359 }
4360 else
4361 mem_root = y;
4362
4363 y->right = x;
4364 if (x != MEM_NIL)
4365 x->parent = y;
4366 }
4367
4368
4369 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4370
4371 static void
4372 mem_delete (struct mem_node *z)
4373 {
4374 struct mem_node *x, *y;
4375
4376 if (!z || z == MEM_NIL)
4377 return;
4378
4379 if (z->left == MEM_NIL || z->right == MEM_NIL)
4380 y = z;
4381 else
4382 {
4383 y = z->right;
4384 while (y->left != MEM_NIL)
4385 y = y->left;
4386 }
4387
4388 if (y->left != MEM_NIL)
4389 x = y->left;
4390 else
4391 x = y->right;
4392
4393 x->parent = y->parent;
4394 if (y->parent)
4395 {
4396 if (y == y->parent->left)
4397 y->parent->left = x;
4398 else
4399 y->parent->right = x;
4400 }
4401 else
4402 mem_root = x;
4403
4404 if (y != z)
4405 {
4406 z->start = y->start;
4407 z->end = y->end;
4408 z->type = y->type;
4409 }
4410
4411 if (y->color == MEM_BLACK)
4412 mem_delete_fixup (x);
4413
4414 #ifdef GC_MALLOC_CHECK
4415 free (y);
4416 #else
4417 xfree (y);
4418 #endif
4419 }
4420
4421
4422 /* Re-establish the red-black properties of the tree, after a
4423 deletion. */
4424
4425 static void
4426 mem_delete_fixup (struct mem_node *x)
4427 {
4428 while (x != mem_root && x->color == MEM_BLACK)
4429 {
4430 if (x == x->parent->left)
4431 {
4432 struct mem_node *w = x->parent->right;
4433
4434 if (w->color == MEM_RED)
4435 {
4436 w->color = MEM_BLACK;
4437 x->parent->color = MEM_RED;
4438 mem_rotate_left (x->parent);
4439 w = x->parent->right;
4440 }
4441
4442 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4443 {
4444 w->color = MEM_RED;
4445 x = x->parent;
4446 }
4447 else
4448 {
4449 if (w->right->color == MEM_BLACK)
4450 {
4451 w->left->color = MEM_BLACK;
4452 w->color = MEM_RED;
4453 mem_rotate_right (w);
4454 w = x->parent->right;
4455 }
4456 w->color = x->parent->color;
4457 x->parent->color = MEM_BLACK;
4458 w->right->color = MEM_BLACK;
4459 mem_rotate_left (x->parent);
4460 x = mem_root;
4461 }
4462 }
4463 else
4464 {
4465 struct mem_node *w = x->parent->left;
4466
4467 if (w->color == MEM_RED)
4468 {
4469 w->color = MEM_BLACK;
4470 x->parent->color = MEM_RED;
4471 mem_rotate_right (x->parent);
4472 w = x->parent->left;
4473 }
4474
4475 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4476 {
4477 w->color = MEM_RED;
4478 x = x->parent;
4479 }
4480 else
4481 {
4482 if (w->left->color == MEM_BLACK)
4483 {
4484 w->right->color = MEM_BLACK;
4485 w->color = MEM_RED;
4486 mem_rotate_left (w);
4487 w = x->parent->left;
4488 }
4489
4490 w->color = x->parent->color;
4491 x->parent->color = MEM_BLACK;
4492 w->left->color = MEM_BLACK;
4493 mem_rotate_right (x->parent);
4494 x = mem_root;
4495 }
4496 }
4497 }
4498
4499 x->color = MEM_BLACK;
4500 }
4501
4502
4503 /* Value is non-zero if P is a pointer to a live Lisp string on
4504 the heap. M is a pointer to the mem_block for P. */
4505
4506 static bool
4507 live_string_p (struct mem_node *m, void *p)
4508 {
4509 if (m->type == MEM_TYPE_STRING)
4510 {
4511 struct string_block *b = m->start;
4512 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4513
4514 /* P must point to the start of a Lisp_String structure, and it
4515 must not be on the free-list. */
4516 return (offset >= 0
4517 && offset % sizeof b->strings[0] == 0
4518 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4519 && ((struct Lisp_String *) p)->data != NULL);
4520 }
4521 else
4522 return 0;
4523 }
4524
4525
4526 /* Value is non-zero if P is a pointer to a live Lisp cons on
4527 the heap. M is a pointer to the mem_block for P. */
4528
4529 static bool
4530 live_cons_p (struct mem_node *m, void *p)
4531 {
4532 if (m->type == MEM_TYPE_CONS)
4533 {
4534 struct cons_block *b = m->start;
4535 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4536
4537 /* P must point to the start of a Lisp_Cons, not be
4538 one of the unused cells in the current cons block,
4539 and not be on the free-list. */
4540 return (offset >= 0
4541 && offset % sizeof b->conses[0] == 0
4542 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4543 && (b != cons_block
4544 || offset / sizeof b->conses[0] < cons_block_index)
4545 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4546 }
4547 else
4548 return 0;
4549 }
4550
4551
4552 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4553 the heap. M is a pointer to the mem_block for P. */
4554
4555 static bool
4556 live_symbol_p (struct mem_node *m, void *p)
4557 {
4558 if (m->type == MEM_TYPE_SYMBOL)
4559 {
4560 struct symbol_block *b = m->start;
4561 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4562
4563 /* P must point to the start of a Lisp_Symbol, not be
4564 one of the unused cells in the current symbol block,
4565 and not be on the free-list. */
4566 return (offset >= 0
4567 && offset % sizeof b->symbols[0] == 0
4568 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4569 && (b != symbol_block
4570 || offset / sizeof b->symbols[0] < symbol_block_index)
4571 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4572 }
4573 else
4574 return 0;
4575 }
4576
4577
4578 /* Value is non-zero if P is a pointer to a live Lisp float on
4579 the heap. M is a pointer to the mem_block for P. */
4580
4581 static bool
4582 live_float_p (struct mem_node *m, void *p)
4583 {
4584 if (m->type == MEM_TYPE_FLOAT)
4585 {
4586 struct float_block *b = m->start;
4587 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4588
4589 /* P must point to the start of a Lisp_Float and not be
4590 one of the unused cells in the current float block. */
4591 return (offset >= 0
4592 && offset % sizeof b->floats[0] == 0
4593 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4594 && (b != float_block
4595 || offset / sizeof b->floats[0] < float_block_index));
4596 }
4597 else
4598 return 0;
4599 }
4600
4601
4602 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4603 the heap. M is a pointer to the mem_block for P. */
4604
4605 static bool
4606 live_misc_p (struct mem_node *m, void *p)
4607 {
4608 if (m->type == MEM_TYPE_MISC)
4609 {
4610 struct marker_block *b = m->start;
4611 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4612
4613 /* P must point to the start of a Lisp_Misc, not be
4614 one of the unused cells in the current misc block,
4615 and not be on the free-list. */
4616 return (offset >= 0
4617 && offset % sizeof b->markers[0] == 0
4618 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4619 && (b != marker_block
4620 || offset / sizeof b->markers[0] < marker_block_index)
4621 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4622 }
4623 else
4624 return 0;
4625 }
4626
4627
4628 /* Value is non-zero if P is a pointer to a live vector-like object.
4629 M is a pointer to the mem_block for P. */
4630
4631 static bool
4632 live_vector_p (struct mem_node *m, void *p)
4633 {
4634 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4635 {
4636 /* This memory node corresponds to a vector block. */
4637 struct vector_block *block = m->start;
4638 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4639
4640 /* P is in the block's allocation range. Scan the block
4641 up to P and see whether P points to the start of some
4642 vector which is not on a free list. FIXME: check whether
4643 some allocation patterns (probably a lot of short vectors)
4644 may cause a substantial overhead of this loop. */
4645 while (VECTOR_IN_BLOCK (vector, block)
4646 && vector <= (struct Lisp_Vector *) p)
4647 {
4648 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4649 return 1;
4650 else
4651 vector = ADVANCE (vector, vector_nbytes (vector));
4652 }
4653 }
4654 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4655 /* This memory node corresponds to a large vector. */
4656 return 1;
4657 return 0;
4658 }
4659
4660
4661 /* Value is non-zero if P is a pointer to a live buffer. M is a
4662 pointer to the mem_block for P. */
4663
4664 static bool
4665 live_buffer_p (struct mem_node *m, void *p)
4666 {
4667 /* P must point to the start of the block, and the buffer
4668 must not have been killed. */
4669 return (m->type == MEM_TYPE_BUFFER
4670 && p == m->start
4671 && !NILP (((struct buffer *) p)->name_));
4672 }
4673
4674 /* Mark OBJ if we can prove it's a Lisp_Object. */
4675
4676 static void
4677 mark_maybe_object (Lisp_Object obj)
4678 {
4679 #if USE_VALGRIND
4680 if (valgrind_p)
4681 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4682 #endif
4683
4684 if (INTEGERP (obj))
4685 return;
4686
4687 void *po = XPNTR (obj);
4688 struct mem_node *m = mem_find (po);
4689
4690 if (m != MEM_NIL)
4691 {
4692 bool mark_p = false;
4693
4694 switch (XTYPE (obj))
4695 {
4696 case Lisp_String:
4697 mark_p = (live_string_p (m, po)
4698 && !STRING_MARKED_P ((struct Lisp_String *) po));
4699 break;
4700
4701 case Lisp_Cons:
4702 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4703 break;
4704
4705 case Lisp_Symbol:
4706 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4707 break;
4708
4709 case Lisp_Float:
4710 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4711 break;
4712
4713 case Lisp_Vectorlike:
4714 /* Note: can't check BUFFERP before we know it's a
4715 buffer because checking that dereferences the pointer
4716 PO which might point anywhere. */
4717 if (live_vector_p (m, po))
4718 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4719 else if (live_buffer_p (m, po))
4720 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4721 break;
4722
4723 case Lisp_Misc:
4724 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4725 break;
4726
4727 default:
4728 break;
4729 }
4730
4731 if (mark_p)
4732 mark_object (obj);
4733 }
4734 }
4735
4736 /* Return true if P can point to Lisp data, and false otherwise.
4737 Symbols are implemented via offsets not pointers, but the offsets
4738 are also multiples of GCALIGNMENT. */
4739
4740 static bool
4741 maybe_lisp_pointer (void *p)
4742 {
4743 return (uintptr_t) p % GCALIGNMENT == 0;
4744 }
4745
4746 #ifndef HAVE_MODULES
4747 enum { HAVE_MODULES = false };
4748 #endif
4749
4750 /* If P points to Lisp data, mark that as live if it isn't already
4751 marked. */
4752
4753 static void
4754 mark_maybe_pointer (void *p)
4755 {
4756 struct mem_node *m;
4757
4758 #if USE_VALGRIND
4759 if (valgrind_p)
4760 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4761 #endif
4762
4763 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4764 {
4765 if (!maybe_lisp_pointer (p))
4766 return;
4767 }
4768 else
4769 {
4770 /* For the wide-int case, also mark emacs_value tagged pointers,
4771 which can be generated by emacs-module.c's value_to_lisp. */
4772 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4773 }
4774
4775 m = mem_find (p);
4776 if (m != MEM_NIL)
4777 {
4778 Lisp_Object obj = Qnil;
4779
4780 switch (m->type)
4781 {
4782 case MEM_TYPE_NON_LISP:
4783 case MEM_TYPE_SPARE:
4784 /* Nothing to do; not a pointer to Lisp memory. */
4785 break;
4786
4787 case MEM_TYPE_BUFFER:
4788 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4789 XSETVECTOR (obj, p);
4790 break;
4791
4792 case MEM_TYPE_CONS:
4793 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4794 XSETCONS (obj, p);
4795 break;
4796
4797 case MEM_TYPE_STRING:
4798 if (live_string_p (m, p)
4799 && !STRING_MARKED_P ((struct Lisp_String *) p))
4800 XSETSTRING (obj, p);
4801 break;
4802
4803 case MEM_TYPE_MISC:
4804 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4805 XSETMISC (obj, p);
4806 break;
4807
4808 case MEM_TYPE_SYMBOL:
4809 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4810 XSETSYMBOL (obj, p);
4811 break;
4812
4813 case MEM_TYPE_FLOAT:
4814 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4815 XSETFLOAT (obj, p);
4816 break;
4817
4818 case MEM_TYPE_VECTORLIKE:
4819 case MEM_TYPE_VECTOR_BLOCK:
4820 if (live_vector_p (m, p))
4821 {
4822 Lisp_Object tem;
4823 XSETVECTOR (tem, p);
4824 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4825 obj = tem;
4826 }
4827 break;
4828
4829 default:
4830 emacs_abort ();
4831 }
4832
4833 if (!NILP (obj))
4834 mark_object (obj);
4835 }
4836 }
4837
4838
4839 /* Alignment of pointer values. Use alignof, as it sometimes returns
4840 a smaller alignment than GCC's __alignof__ and mark_memory might
4841 miss objects if __alignof__ were used. */
4842 #define GC_POINTER_ALIGNMENT alignof (void *)
4843
4844 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4845 or END+OFFSET..START. */
4846
4847 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4848 mark_memory (void *start, void *end)
4849 {
4850 char *pp;
4851
4852 /* Make START the pointer to the start of the memory region,
4853 if it isn't already. */
4854 if (end < start)
4855 {
4856 void *tem = start;
4857 start = end;
4858 end = tem;
4859 }
4860
4861 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4862
4863 /* Mark Lisp data pointed to. This is necessary because, in some
4864 situations, the C compiler optimizes Lisp objects away, so that
4865 only a pointer to them remains. Example:
4866
4867 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4868 ()
4869 {
4870 Lisp_Object obj = build_string ("test");
4871 struct Lisp_String *s = XSTRING (obj);
4872 Fgarbage_collect ();
4873 fprintf (stderr, "test '%s'\n", s->data);
4874 return Qnil;
4875 }
4876
4877 Here, `obj' isn't really used, and the compiler optimizes it
4878 away. The only reference to the life string is through the
4879 pointer `s'. */
4880
4881 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4882 {
4883 mark_maybe_pointer (*(void **) pp);
4884 mark_maybe_object (*(Lisp_Object *) pp);
4885 }
4886 }
4887
4888 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4889
4890 static bool setjmp_tested_p;
4891 static int longjmps_done;
4892
4893 #define SETJMP_WILL_LIKELY_WORK "\
4894 \n\
4895 Emacs garbage collector has been changed to use conservative stack\n\
4896 marking. Emacs has determined that the method it uses to do the\n\
4897 marking will likely work on your system, but this isn't sure.\n\
4898 \n\
4899 If you are a system-programmer, or can get the help of a local wizard\n\
4900 who is, please take a look at the function mark_stack in alloc.c, and\n\
4901 verify that the methods used are appropriate for your system.\n\
4902 \n\
4903 Please mail the result to <emacs-devel@gnu.org>.\n\
4904 "
4905
4906 #define SETJMP_WILL_NOT_WORK "\
4907 \n\
4908 Emacs garbage collector has been changed to use conservative stack\n\
4909 marking. Emacs has determined that the default method it uses to do the\n\
4910 marking will not work on your system. We will need a system-dependent\n\
4911 solution for your system.\n\
4912 \n\
4913 Please take a look at the function mark_stack in alloc.c, and\n\
4914 try to find a way to make it work on your system.\n\
4915 \n\
4916 Note that you may get false negatives, depending on the compiler.\n\
4917 In particular, you need to use -O with GCC for this test.\n\
4918 \n\
4919 Please mail the result to <emacs-devel@gnu.org>.\n\
4920 "
4921
4922
4923 /* Perform a quick check if it looks like setjmp saves registers in a
4924 jmp_buf. Print a message to stderr saying so. When this test
4925 succeeds, this is _not_ a proof that setjmp is sufficient for
4926 conservative stack marking. Only the sources or a disassembly
4927 can prove that. */
4928
4929 static void
4930 test_setjmp (void)
4931 {
4932 char buf[10];
4933 register int x;
4934 sys_jmp_buf jbuf;
4935
4936 /* Arrange for X to be put in a register. */
4937 sprintf (buf, "1");
4938 x = strlen (buf);
4939 x = 2 * x - 1;
4940
4941 sys_setjmp (jbuf);
4942 if (longjmps_done == 1)
4943 {
4944 /* Came here after the longjmp at the end of the function.
4945
4946 If x == 1, the longjmp has restored the register to its
4947 value before the setjmp, and we can hope that setjmp
4948 saves all such registers in the jmp_buf, although that
4949 isn't sure.
4950
4951 For other values of X, either something really strange is
4952 taking place, or the setjmp just didn't save the register. */
4953
4954 if (x == 1)
4955 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4956 else
4957 {
4958 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4959 exit (1);
4960 }
4961 }
4962
4963 ++longjmps_done;
4964 x = 2;
4965 if (longjmps_done == 1)
4966 sys_longjmp (jbuf, 1);
4967 }
4968
4969 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4970
4971
4972 /* Mark live Lisp objects on the C stack.
4973
4974 There are several system-dependent problems to consider when
4975 porting this to new architectures:
4976
4977 Processor Registers
4978
4979 We have to mark Lisp objects in CPU registers that can hold local
4980 variables or are used to pass parameters.
4981
4982 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4983 something that either saves relevant registers on the stack, or
4984 calls mark_maybe_object passing it each register's contents.
4985
4986 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4987 implementation assumes that calling setjmp saves registers we need
4988 to see in a jmp_buf which itself lies on the stack. This doesn't
4989 have to be true! It must be verified for each system, possibly
4990 by taking a look at the source code of setjmp.
4991
4992 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4993 can use it as a machine independent method to store all registers
4994 to the stack. In this case the macros described in the previous
4995 two paragraphs are not used.
4996
4997 Stack Layout
4998
4999 Architectures differ in the way their processor stack is organized.
5000 For example, the stack might look like this
5001
5002 +----------------+
5003 | Lisp_Object | size = 4
5004 +----------------+
5005 | something else | size = 2
5006 +----------------+
5007 | Lisp_Object | size = 4
5008 +----------------+
5009 | ... |
5010
5011 In such a case, not every Lisp_Object will be aligned equally. To
5012 find all Lisp_Object on the stack it won't be sufficient to walk
5013 the stack in steps of 4 bytes. Instead, two passes will be
5014 necessary, one starting at the start of the stack, and a second
5015 pass starting at the start of the stack + 2. Likewise, if the
5016 minimal alignment of Lisp_Objects on the stack is 1, four passes
5017 would be necessary, each one starting with one byte more offset
5018 from the stack start. */
5019
5020 static void
5021 mark_stack (void *end)
5022 {
5023
5024 /* This assumes that the stack is a contiguous region in memory. If
5025 that's not the case, something has to be done here to iterate
5026 over the stack segments. */
5027 mark_memory (stack_base, end);
5028
5029 /* Allow for marking a secondary stack, like the register stack on the
5030 ia64. */
5031 #ifdef GC_MARK_SECONDARY_STACK
5032 GC_MARK_SECONDARY_STACK ();
5033 #endif
5034 }
5035
5036 static bool
5037 c_symbol_p (struct Lisp_Symbol *sym)
5038 {
5039 char *lispsym_ptr = (char *) lispsym;
5040 char *sym_ptr = (char *) sym;
5041 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5042 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5043 }
5044
5045 /* Determine whether it is safe to access memory at address P. */
5046 static int
5047 valid_pointer_p (void *p)
5048 {
5049 #ifdef WINDOWSNT
5050 return w32_valid_pointer_p (p, 16);
5051 #else
5052
5053 if (ADDRESS_SANITIZER)
5054 return p ? -1 : 0;
5055
5056 int fd[2];
5057
5058 /* Obviously, we cannot just access it (we would SEGV trying), so we
5059 trick the o/s to tell us whether p is a valid pointer.
5060 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5061 not validate p in that case. */
5062
5063 if (emacs_pipe (fd) == 0)
5064 {
5065 bool valid = emacs_write (fd[1], p, 16) == 16;
5066 emacs_close (fd[1]);
5067 emacs_close (fd[0]);
5068 return valid;
5069 }
5070
5071 return -1;
5072 #endif
5073 }
5074
5075 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5076 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5077 cannot validate OBJ. This function can be quite slow, so its primary
5078 use is the manual debugging. The only exception is print_object, where
5079 we use it to check whether the memory referenced by the pointer of
5080 Lisp_Save_Value object contains valid objects. */
5081
5082 int
5083 valid_lisp_object_p (Lisp_Object obj)
5084 {
5085 if (INTEGERP (obj))
5086 return 1;
5087
5088 void *p = XPNTR (obj);
5089 if (PURE_P (p))
5090 return 1;
5091
5092 if (SYMBOLP (obj) && c_symbol_p (p))
5093 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5094
5095 if (p == &buffer_defaults || p == &buffer_local_symbols)
5096 return 2;
5097
5098 struct mem_node *m = mem_find (p);
5099
5100 if (m == MEM_NIL)
5101 {
5102 int valid = valid_pointer_p (p);
5103 if (valid <= 0)
5104 return valid;
5105
5106 if (SUBRP (obj))
5107 return 1;
5108
5109 return 0;
5110 }
5111
5112 switch (m->type)
5113 {
5114 case MEM_TYPE_NON_LISP:
5115 case MEM_TYPE_SPARE:
5116 return 0;
5117
5118 case MEM_TYPE_BUFFER:
5119 return live_buffer_p (m, p) ? 1 : 2;
5120
5121 case MEM_TYPE_CONS:
5122 return live_cons_p (m, p);
5123
5124 case MEM_TYPE_STRING:
5125 return live_string_p (m, p);
5126
5127 case MEM_TYPE_MISC:
5128 return live_misc_p (m, p);
5129
5130 case MEM_TYPE_SYMBOL:
5131 return live_symbol_p (m, p);
5132
5133 case MEM_TYPE_FLOAT:
5134 return live_float_p (m, p);
5135
5136 case MEM_TYPE_VECTORLIKE:
5137 case MEM_TYPE_VECTOR_BLOCK:
5138 return live_vector_p (m, p);
5139
5140 default:
5141 break;
5142 }
5143
5144 return 0;
5145 }
5146
5147 /***********************************************************************
5148 Pure Storage Management
5149 ***********************************************************************/
5150
5151 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5152 pointer to it. TYPE is the Lisp type for which the memory is
5153 allocated. TYPE < 0 means it's not used for a Lisp object. */
5154
5155 static void *
5156 pure_alloc (size_t size, int type)
5157 {
5158 void *result;
5159
5160 again:
5161 if (type >= 0)
5162 {
5163 /* Allocate space for a Lisp object from the beginning of the free
5164 space with taking account of alignment. */
5165 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5166 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5167 }
5168 else
5169 {
5170 /* Allocate space for a non-Lisp object from the end of the free
5171 space. */
5172 pure_bytes_used_non_lisp += size;
5173 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5174 }
5175 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5176
5177 if (pure_bytes_used <= pure_size)
5178 return result;
5179
5180 /* Don't allocate a large amount here,
5181 because it might get mmap'd and then its address
5182 might not be usable. */
5183 purebeg = xmalloc (10000);
5184 pure_size = 10000;
5185 pure_bytes_used_before_overflow += pure_bytes_used - size;
5186 pure_bytes_used = 0;
5187 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5188 goto again;
5189 }
5190
5191
5192 /* Print a warning if PURESIZE is too small. */
5193
5194 void
5195 check_pure_size (void)
5196 {
5197 if (pure_bytes_used_before_overflow)
5198 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5199 " bytes needed)"),
5200 pure_bytes_used + pure_bytes_used_before_overflow);
5201 }
5202
5203
5204 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5205 the non-Lisp data pool of the pure storage, and return its start
5206 address. Return NULL if not found. */
5207
5208 static char *
5209 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5210 {
5211 int i;
5212 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5213 const unsigned char *p;
5214 char *non_lisp_beg;
5215
5216 if (pure_bytes_used_non_lisp <= nbytes)
5217 return NULL;
5218
5219 /* Set up the Boyer-Moore table. */
5220 skip = nbytes + 1;
5221 for (i = 0; i < 256; i++)
5222 bm_skip[i] = skip;
5223
5224 p = (const unsigned char *) data;
5225 while (--skip > 0)
5226 bm_skip[*p++] = skip;
5227
5228 last_char_skip = bm_skip['\0'];
5229
5230 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5231 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5232
5233 /* See the comments in the function `boyer_moore' (search.c) for the
5234 use of `infinity'. */
5235 infinity = pure_bytes_used_non_lisp + 1;
5236 bm_skip['\0'] = infinity;
5237
5238 p = (const unsigned char *) non_lisp_beg + nbytes;
5239 start = 0;
5240 do
5241 {
5242 /* Check the last character (== '\0'). */
5243 do
5244 {
5245 start += bm_skip[*(p + start)];
5246 }
5247 while (start <= start_max);
5248
5249 if (start < infinity)
5250 /* Couldn't find the last character. */
5251 return NULL;
5252
5253 /* No less than `infinity' means we could find the last
5254 character at `p[start - infinity]'. */
5255 start -= infinity;
5256
5257 /* Check the remaining characters. */
5258 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5259 /* Found. */
5260 return non_lisp_beg + start;
5261
5262 start += last_char_skip;
5263 }
5264 while (start <= start_max);
5265
5266 return NULL;
5267 }
5268
5269
5270 /* Return a string allocated in pure space. DATA is a buffer holding
5271 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5272 means make the result string multibyte.
5273
5274 Must get an error if pure storage is full, since if it cannot hold
5275 a large string it may be able to hold conses that point to that
5276 string; then the string is not protected from gc. */
5277
5278 Lisp_Object
5279 make_pure_string (const char *data,
5280 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5281 {
5282 Lisp_Object string;
5283 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5284 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5285 if (s->data == NULL)
5286 {
5287 s->data = pure_alloc (nbytes + 1, -1);
5288 memcpy (s->data, data, nbytes);
5289 s->data[nbytes] = '\0';
5290 }
5291 s->size = nchars;
5292 s->size_byte = multibyte ? nbytes : -1;
5293 s->intervals = NULL;
5294 XSETSTRING (string, s);
5295 return string;
5296 }
5297
5298 /* Return a string allocated in pure space. Do not
5299 allocate the string data, just point to DATA. */
5300
5301 Lisp_Object
5302 make_pure_c_string (const char *data, ptrdiff_t nchars)
5303 {
5304 Lisp_Object string;
5305 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5306 s->size = nchars;
5307 s->size_byte = -1;
5308 s->data = (unsigned char *) data;
5309 s->intervals = NULL;
5310 XSETSTRING (string, s);
5311 return string;
5312 }
5313
5314 static Lisp_Object purecopy (Lisp_Object obj);
5315
5316 /* Return a cons allocated from pure space. Give it pure copies
5317 of CAR as car and CDR as cdr. */
5318
5319 Lisp_Object
5320 pure_cons (Lisp_Object car, Lisp_Object cdr)
5321 {
5322 Lisp_Object new;
5323 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5324 XSETCONS (new, p);
5325 XSETCAR (new, purecopy (car));
5326 XSETCDR (new, purecopy (cdr));
5327 return new;
5328 }
5329
5330
5331 /* Value is a float object with value NUM allocated from pure space. */
5332
5333 static Lisp_Object
5334 make_pure_float (double num)
5335 {
5336 Lisp_Object new;
5337 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5338 XSETFLOAT (new, p);
5339 XFLOAT_INIT (new, num);
5340 return new;
5341 }
5342
5343
5344 /* Return a vector with room for LEN Lisp_Objects allocated from
5345 pure space. */
5346
5347 static Lisp_Object
5348 make_pure_vector (ptrdiff_t len)
5349 {
5350 Lisp_Object new;
5351 size_t size = header_size + len * word_size;
5352 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5353 XSETVECTOR (new, p);
5354 XVECTOR (new)->header.size = len;
5355 return new;
5356 }
5357
5358 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5359 doc: /* Make a copy of object OBJ in pure storage.
5360 Recursively copies contents of vectors and cons cells.
5361 Does not copy symbols. Copies strings without text properties. */)
5362 (register Lisp_Object obj)
5363 {
5364 if (NILP (Vpurify_flag))
5365 return obj;
5366 else if (MARKERP (obj) || OVERLAYP (obj)
5367 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5368 /* Can't purify those. */
5369 return obj;
5370 else
5371 return purecopy (obj);
5372 }
5373
5374 static Lisp_Object
5375 purecopy (Lisp_Object obj)
5376 {
5377 if (INTEGERP (obj)
5378 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5379 || SUBRP (obj))
5380 return obj; /* Already pure. */
5381
5382 if (STRINGP (obj) && XSTRING (obj)->intervals)
5383 message_with_string ("Dropping text-properties while making string `%s' pure",
5384 obj, true);
5385
5386 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5387 {
5388 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5389 if (!NILP (tmp))
5390 return tmp;
5391 }
5392
5393 if (CONSP (obj))
5394 obj = pure_cons (XCAR (obj), XCDR (obj));
5395 else if (FLOATP (obj))
5396 obj = make_pure_float (XFLOAT_DATA (obj));
5397 else if (STRINGP (obj))
5398 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5399 SBYTES (obj),
5400 STRING_MULTIBYTE (obj));
5401 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5402 {
5403 struct Lisp_Vector *objp = XVECTOR (obj);
5404 ptrdiff_t nbytes = vector_nbytes (objp);
5405 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5406 register ptrdiff_t i;
5407 ptrdiff_t size = ASIZE (obj);
5408 if (size & PSEUDOVECTOR_FLAG)
5409 size &= PSEUDOVECTOR_SIZE_MASK;
5410 memcpy (vec, objp, nbytes);
5411 for (i = 0; i < size; i++)
5412 vec->contents[i] = purecopy (vec->contents[i]);
5413 XSETVECTOR (obj, vec);
5414 }
5415 else if (SYMBOLP (obj))
5416 {
5417 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5418 { /* We can't purify them, but they appear in many pure objects.
5419 Mark them as `pinned' so we know to mark them at every GC cycle. */
5420 XSYMBOL (obj)->pinned = true;
5421 symbol_block_pinned = symbol_block;
5422 }
5423 /* Don't hash-cons it. */
5424 return obj;
5425 }
5426 else
5427 {
5428 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5429 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5430 }
5431
5432 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5433 Fputhash (obj, obj, Vpurify_flag);
5434
5435 return obj;
5436 }
5437
5438
5439 \f
5440 /***********************************************************************
5441 Protection from GC
5442 ***********************************************************************/
5443
5444 /* Put an entry in staticvec, pointing at the variable with address
5445 VARADDRESS. */
5446
5447 void
5448 staticpro (Lisp_Object *varaddress)
5449 {
5450 if (staticidx >= NSTATICS)
5451 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5452 staticvec[staticidx++] = varaddress;
5453 }
5454
5455 \f
5456 /***********************************************************************
5457 Protection from GC
5458 ***********************************************************************/
5459
5460 /* Temporarily prevent garbage collection. */
5461
5462 ptrdiff_t
5463 inhibit_garbage_collection (void)
5464 {
5465 ptrdiff_t count = SPECPDL_INDEX ();
5466
5467 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5468 return count;
5469 }
5470
5471 /* Used to avoid possible overflows when
5472 converting from C to Lisp integers. */
5473
5474 static Lisp_Object
5475 bounded_number (EMACS_INT number)
5476 {
5477 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5478 }
5479
5480 /* Calculate total bytes of live objects. */
5481
5482 static size_t
5483 total_bytes_of_live_objects (void)
5484 {
5485 size_t tot = 0;
5486 tot += total_conses * sizeof (struct Lisp_Cons);
5487 tot += total_symbols * sizeof (struct Lisp_Symbol);
5488 tot += total_markers * sizeof (union Lisp_Misc);
5489 tot += total_string_bytes;
5490 tot += total_vector_slots * word_size;
5491 tot += total_floats * sizeof (struct Lisp_Float);
5492 tot += total_intervals * sizeof (struct interval);
5493 tot += total_strings * sizeof (struct Lisp_String);
5494 return tot;
5495 }
5496
5497 #ifdef HAVE_WINDOW_SYSTEM
5498
5499 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5500 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5501
5502 static Lisp_Object
5503 compact_font_cache_entry (Lisp_Object entry)
5504 {
5505 Lisp_Object tail, *prev = &entry;
5506
5507 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5508 {
5509 bool drop = 0;
5510 Lisp_Object obj = XCAR (tail);
5511
5512 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5513 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5514 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5515 /* Don't use VECTORP here, as that calls ASIZE, which could
5516 hit assertion violation during GC. */
5517 && (VECTORLIKEP (XCDR (obj))
5518 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5519 {
5520 ptrdiff_t i, size = gc_asize (XCDR (obj));
5521 Lisp_Object obj_cdr = XCDR (obj);
5522
5523 /* If font-spec is not marked, most likely all font-entities
5524 are not marked too. But we must be sure that nothing is
5525 marked within OBJ before we really drop it. */
5526 for (i = 0; i < size; i++)
5527 {
5528 Lisp_Object objlist;
5529
5530 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5531 break;
5532
5533 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5534 for (; CONSP (objlist); objlist = XCDR (objlist))
5535 {
5536 Lisp_Object val = XCAR (objlist);
5537 struct font *font = GC_XFONT_OBJECT (val);
5538
5539 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5540 && VECTOR_MARKED_P(font))
5541 break;
5542 }
5543 if (CONSP (objlist))
5544 {
5545 /* Found a marked font, bail out. */
5546 break;
5547 }
5548 }
5549
5550 if (i == size)
5551 {
5552 /* No marked fonts were found, so this entire font
5553 entity can be dropped. */
5554 drop = 1;
5555 }
5556 }
5557 if (drop)
5558 *prev = XCDR (tail);
5559 else
5560 prev = xcdr_addr (tail);
5561 }
5562 return entry;
5563 }
5564
5565 /* Compact font caches on all terminals and mark
5566 everything which is still here after compaction. */
5567
5568 static void
5569 compact_font_caches (void)
5570 {
5571 struct terminal *t;
5572
5573 for (t = terminal_list; t; t = t->next_terminal)
5574 {
5575 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5576 if (CONSP (cache))
5577 {
5578 Lisp_Object entry;
5579
5580 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5581 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5582 }
5583 mark_object (cache);
5584 }
5585 }
5586
5587 #else /* not HAVE_WINDOW_SYSTEM */
5588
5589 #define compact_font_caches() (void)(0)
5590
5591 #endif /* HAVE_WINDOW_SYSTEM */
5592
5593 /* Remove (MARKER . DATA) entries with unmarked MARKER
5594 from buffer undo LIST and return changed list. */
5595
5596 static Lisp_Object
5597 compact_undo_list (Lisp_Object list)
5598 {
5599 Lisp_Object tail, *prev = &list;
5600
5601 for (tail = list; CONSP (tail); tail = XCDR (tail))
5602 {
5603 if (CONSP (XCAR (tail))
5604 && MARKERP (XCAR (XCAR (tail)))
5605 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5606 *prev = XCDR (tail);
5607 else
5608 prev = xcdr_addr (tail);
5609 }
5610 return list;
5611 }
5612
5613 static void
5614 mark_pinned_symbols (void)
5615 {
5616 struct symbol_block *sblk;
5617 int lim = (symbol_block_pinned == symbol_block
5618 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5619
5620 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5621 {
5622 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5623 for (; sym < end; ++sym)
5624 if (sym->s.pinned)
5625 mark_object (make_lisp_symbol (&sym->s));
5626
5627 lim = SYMBOL_BLOCK_SIZE;
5628 }
5629 }
5630
5631 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5632 separate function so that we could limit mark_stack in searching
5633 the stack frames below this function, thus avoiding the rare cases
5634 where mark_stack finds values that look like live Lisp objects on
5635 portions of stack that couldn't possibly contain such live objects.
5636 For more details of this, see the discussion at
5637 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5638 static Lisp_Object
5639 garbage_collect_1 (void *end)
5640 {
5641 struct buffer *nextb;
5642 char stack_top_variable;
5643 ptrdiff_t i;
5644 bool message_p;
5645 ptrdiff_t count = SPECPDL_INDEX ();
5646 struct timespec start;
5647 Lisp_Object retval = Qnil;
5648 size_t tot_before = 0;
5649
5650 if (abort_on_gc)
5651 emacs_abort ();
5652
5653 /* Can't GC if pure storage overflowed because we can't determine
5654 if something is a pure object or not. */
5655 if (pure_bytes_used_before_overflow)
5656 return Qnil;
5657
5658 /* Record this function, so it appears on the profiler's backtraces. */
5659 record_in_backtrace (Qautomatic_gc, 0, 0);
5660
5661 check_cons_list ();
5662
5663 /* Don't keep undo information around forever.
5664 Do this early on, so it is no problem if the user quits. */
5665 FOR_EACH_BUFFER (nextb)
5666 compact_buffer (nextb);
5667
5668 if (profiler_memory_running)
5669 tot_before = total_bytes_of_live_objects ();
5670
5671 start = current_timespec ();
5672
5673 /* In case user calls debug_print during GC,
5674 don't let that cause a recursive GC. */
5675 consing_since_gc = 0;
5676
5677 /* Save what's currently displayed in the echo area. Don't do that
5678 if we are GC'ing because we've run out of memory, since
5679 push_message will cons, and we might have no memory for that. */
5680 if (NILP (Vmemory_full))
5681 {
5682 message_p = push_message ();
5683 record_unwind_protect_void (pop_message_unwind);
5684 }
5685 else
5686 message_p = false;
5687
5688 /* Save a copy of the contents of the stack, for debugging. */
5689 #if MAX_SAVE_STACK > 0
5690 if (NILP (Vpurify_flag))
5691 {
5692 char *stack;
5693 ptrdiff_t stack_size;
5694 if (&stack_top_variable < stack_bottom)
5695 {
5696 stack = &stack_top_variable;
5697 stack_size = stack_bottom - &stack_top_variable;
5698 }
5699 else
5700 {
5701 stack = stack_bottom;
5702 stack_size = &stack_top_variable - stack_bottom;
5703 }
5704 if (stack_size <= MAX_SAVE_STACK)
5705 {
5706 if (stack_copy_size < stack_size)
5707 {
5708 stack_copy = xrealloc (stack_copy, stack_size);
5709 stack_copy_size = stack_size;
5710 }
5711 no_sanitize_memcpy (stack_copy, stack, stack_size);
5712 }
5713 }
5714 #endif /* MAX_SAVE_STACK > 0 */
5715
5716 if (garbage_collection_messages)
5717 message1_nolog ("Garbage collecting...");
5718
5719 block_input ();
5720
5721 shrink_regexp_cache ();
5722
5723 gc_in_progress = 1;
5724
5725 /* Mark all the special slots that serve as the roots of accessibility. */
5726
5727 mark_buffer (&buffer_defaults);
5728 mark_buffer (&buffer_local_symbols);
5729
5730 for (i = 0; i < ARRAYELTS (lispsym); i++)
5731 mark_object (builtin_lisp_symbol (i));
5732
5733 for (i = 0; i < staticidx; i++)
5734 mark_object (*staticvec[i]);
5735
5736 mark_pinned_symbols ();
5737 mark_specpdl ();
5738 mark_terminals ();
5739 mark_kboards ();
5740
5741 #ifdef USE_GTK
5742 xg_mark_data ();
5743 #endif
5744
5745 mark_stack (end);
5746
5747 {
5748 struct handler *handler;
5749 for (handler = handlerlist; handler; handler = handler->next)
5750 {
5751 mark_object (handler->tag_or_ch);
5752 mark_object (handler->val);
5753 }
5754 }
5755 #ifdef HAVE_WINDOW_SYSTEM
5756 mark_fringe_data ();
5757 #endif
5758
5759 /* Everything is now marked, except for the data in font caches,
5760 undo lists, and finalizers. The first two are compacted by
5761 removing an items which aren't reachable otherwise. */
5762
5763 compact_font_caches ();
5764
5765 FOR_EACH_BUFFER (nextb)
5766 {
5767 if (!EQ (BVAR (nextb, undo_list), Qt))
5768 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5769 /* Now that we have stripped the elements that need not be
5770 in the undo_list any more, we can finally mark the list. */
5771 mark_object (BVAR (nextb, undo_list));
5772 }
5773
5774 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5775 to doomed_finalizers so we can run their associated functions
5776 after GC. It's important to scan finalizers at this stage so
5777 that we can be sure that unmarked finalizers are really
5778 unreachable except for references from their associated functions
5779 and from other finalizers. */
5780
5781 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5782 mark_finalizer_list (&doomed_finalizers);
5783
5784 gc_sweep ();
5785
5786 relocate_byte_stack ();
5787
5788 /* Clear the mark bits that we set in certain root slots. */
5789 VECTOR_UNMARK (&buffer_defaults);
5790 VECTOR_UNMARK (&buffer_local_symbols);
5791
5792 check_cons_list ();
5793
5794 gc_in_progress = 0;
5795
5796 unblock_input ();
5797
5798 consing_since_gc = 0;
5799 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5800 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5801
5802 gc_relative_threshold = 0;
5803 if (FLOATP (Vgc_cons_percentage))
5804 { /* Set gc_cons_combined_threshold. */
5805 double tot = total_bytes_of_live_objects ();
5806
5807 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5808 if (0 < tot)
5809 {
5810 if (tot < TYPE_MAXIMUM (EMACS_INT))
5811 gc_relative_threshold = tot;
5812 else
5813 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5814 }
5815 }
5816
5817 if (garbage_collection_messages && NILP (Vmemory_full))
5818 {
5819 if (message_p || minibuf_level > 0)
5820 restore_message ();
5821 else
5822 message1_nolog ("Garbage collecting...done");
5823 }
5824
5825 unbind_to (count, Qnil);
5826
5827 Lisp_Object total[] = {
5828 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5829 bounded_number (total_conses),
5830 bounded_number (total_free_conses)),
5831 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5832 bounded_number (total_symbols),
5833 bounded_number (total_free_symbols)),
5834 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5835 bounded_number (total_markers),
5836 bounded_number (total_free_markers)),
5837 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5838 bounded_number (total_strings),
5839 bounded_number (total_free_strings)),
5840 list3 (Qstring_bytes, make_number (1),
5841 bounded_number (total_string_bytes)),
5842 list3 (Qvectors,
5843 make_number (header_size + sizeof (Lisp_Object)),
5844 bounded_number (total_vectors)),
5845 list4 (Qvector_slots, make_number (word_size),
5846 bounded_number (total_vector_slots),
5847 bounded_number (total_free_vector_slots)),
5848 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5849 bounded_number (total_floats),
5850 bounded_number (total_free_floats)),
5851 list4 (Qintervals, make_number (sizeof (struct interval)),
5852 bounded_number (total_intervals),
5853 bounded_number (total_free_intervals)),
5854 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5855 bounded_number (total_buffers)),
5856
5857 #ifdef DOUG_LEA_MALLOC
5858 list4 (Qheap, make_number (1024),
5859 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5860 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5861 #endif
5862 };
5863 retval = CALLMANY (Flist, total);
5864
5865 /* GC is complete: now we can run our finalizer callbacks. */
5866 run_finalizers (&doomed_finalizers);
5867
5868 if (!NILP (Vpost_gc_hook))
5869 {
5870 ptrdiff_t gc_count = inhibit_garbage_collection ();
5871 safe_run_hooks (Qpost_gc_hook);
5872 unbind_to (gc_count, Qnil);
5873 }
5874
5875 /* Accumulate statistics. */
5876 if (FLOATP (Vgc_elapsed))
5877 {
5878 struct timespec since_start = timespec_sub (current_timespec (), start);
5879 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5880 + timespectod (since_start));
5881 }
5882
5883 gcs_done++;
5884
5885 /* Collect profiling data. */
5886 if (profiler_memory_running)
5887 {
5888 size_t swept = 0;
5889 size_t tot_after = total_bytes_of_live_objects ();
5890 if (tot_before > tot_after)
5891 swept = tot_before - tot_after;
5892 malloc_probe (swept);
5893 }
5894
5895 return retval;
5896 }
5897
5898 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5899 doc: /* Reclaim storage for Lisp objects no longer needed.
5900 Garbage collection happens automatically if you cons more than
5901 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5902 `garbage-collect' normally returns a list with info on amount of space in use,
5903 where each entry has the form (NAME SIZE USED FREE), where:
5904 - NAME is a symbol describing the kind of objects this entry represents,
5905 - SIZE is the number of bytes used by each one,
5906 - USED is the number of those objects that were found live in the heap,
5907 - FREE is the number of those objects that are not live but that Emacs
5908 keeps around for future allocations (maybe because it does not know how
5909 to return them to the OS).
5910 However, if there was overflow in pure space, `garbage-collect'
5911 returns nil, because real GC can't be done.
5912 See Info node `(elisp)Garbage Collection'. */)
5913 (void)
5914 {
5915 void *end;
5916
5917 #ifdef HAVE___BUILTIN_UNWIND_INIT
5918 /* Force callee-saved registers and register windows onto the stack.
5919 This is the preferred method if available, obviating the need for
5920 machine dependent methods. */
5921 __builtin_unwind_init ();
5922 end = &end;
5923 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5924 #ifndef GC_SAVE_REGISTERS_ON_STACK
5925 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5926 union aligned_jmpbuf {
5927 Lisp_Object o;
5928 sys_jmp_buf j;
5929 } j;
5930 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5931 #endif
5932 /* This trick flushes the register windows so that all the state of
5933 the process is contained in the stack. */
5934 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5935 needed on ia64 too. See mach_dep.c, where it also says inline
5936 assembler doesn't work with relevant proprietary compilers. */
5937 #ifdef __sparc__
5938 #if defined (__sparc64__) && defined (__FreeBSD__)
5939 /* FreeBSD does not have a ta 3 handler. */
5940 asm ("flushw");
5941 #else
5942 asm ("ta 3");
5943 #endif
5944 #endif
5945
5946 /* Save registers that we need to see on the stack. We need to see
5947 registers used to hold register variables and registers used to
5948 pass parameters. */
5949 #ifdef GC_SAVE_REGISTERS_ON_STACK
5950 GC_SAVE_REGISTERS_ON_STACK (end);
5951 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5952
5953 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5954 setjmp will definitely work, test it
5955 and print a message with the result
5956 of the test. */
5957 if (!setjmp_tested_p)
5958 {
5959 setjmp_tested_p = 1;
5960 test_setjmp ();
5961 }
5962 #endif /* GC_SETJMP_WORKS */
5963
5964 sys_setjmp (j.j);
5965 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5966 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5967 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5968 return garbage_collect_1 (end);
5969 }
5970
5971 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5972 only interesting objects referenced from glyphs are strings. */
5973
5974 static void
5975 mark_glyph_matrix (struct glyph_matrix *matrix)
5976 {
5977 struct glyph_row *row = matrix->rows;
5978 struct glyph_row *end = row + matrix->nrows;
5979
5980 for (; row < end; ++row)
5981 if (row->enabled_p)
5982 {
5983 int area;
5984 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5985 {
5986 struct glyph *glyph = row->glyphs[area];
5987 struct glyph *end_glyph = glyph + row->used[area];
5988
5989 for (; glyph < end_glyph; ++glyph)
5990 if (STRINGP (glyph->object)
5991 && !STRING_MARKED_P (XSTRING (glyph->object)))
5992 mark_object (glyph->object);
5993 }
5994 }
5995 }
5996
5997 /* Mark reference to a Lisp_Object.
5998 If the object referred to has not been seen yet, recursively mark
5999 all the references contained in it. */
6000
6001 #define LAST_MARKED_SIZE 500
6002 static Lisp_Object last_marked[LAST_MARKED_SIZE];
6003 static int last_marked_index;
6004
6005 /* For debugging--call abort when we cdr down this many
6006 links of a list, in mark_object. In debugging,
6007 the call to abort will hit a breakpoint.
6008 Normally this is zero and the check never goes off. */
6009 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6010
6011 static void
6012 mark_vectorlike (struct Lisp_Vector *ptr)
6013 {
6014 ptrdiff_t size = ptr->header.size;
6015 ptrdiff_t i;
6016
6017 eassert (!VECTOR_MARKED_P (ptr));
6018 VECTOR_MARK (ptr); /* Else mark it. */
6019 if (size & PSEUDOVECTOR_FLAG)
6020 size &= PSEUDOVECTOR_SIZE_MASK;
6021
6022 /* Note that this size is not the memory-footprint size, but only
6023 the number of Lisp_Object fields that we should trace.
6024 The distinction is used e.g. by Lisp_Process which places extra
6025 non-Lisp_Object fields at the end of the structure... */
6026 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6027 mark_object (ptr->contents[i]);
6028 }
6029
6030 /* Like mark_vectorlike but optimized for char-tables (and
6031 sub-char-tables) assuming that the contents are mostly integers or
6032 symbols. */
6033
6034 static void
6035 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6036 {
6037 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6038 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6039 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6040
6041 eassert (!VECTOR_MARKED_P (ptr));
6042 VECTOR_MARK (ptr);
6043 for (i = idx; i < size; i++)
6044 {
6045 Lisp_Object val = ptr->contents[i];
6046
6047 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6048 continue;
6049 if (SUB_CHAR_TABLE_P (val))
6050 {
6051 if (! VECTOR_MARKED_P (XVECTOR (val)))
6052 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6053 }
6054 else
6055 mark_object (val);
6056 }
6057 }
6058
6059 NO_INLINE /* To reduce stack depth in mark_object. */
6060 static Lisp_Object
6061 mark_compiled (struct Lisp_Vector *ptr)
6062 {
6063 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6064
6065 VECTOR_MARK (ptr);
6066 for (i = 0; i < size; i++)
6067 if (i != COMPILED_CONSTANTS)
6068 mark_object (ptr->contents[i]);
6069 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6070 }
6071
6072 /* Mark the chain of overlays starting at PTR. */
6073
6074 static void
6075 mark_overlay (struct Lisp_Overlay *ptr)
6076 {
6077 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6078 {
6079 ptr->gcmarkbit = 1;
6080 /* These two are always markers and can be marked fast. */
6081 XMARKER (ptr->start)->gcmarkbit = 1;
6082 XMARKER (ptr->end)->gcmarkbit = 1;
6083 mark_object (ptr->plist);
6084 }
6085 }
6086
6087 /* Mark Lisp_Objects and special pointers in BUFFER. */
6088
6089 static void
6090 mark_buffer (struct buffer *buffer)
6091 {
6092 /* This is handled much like other pseudovectors... */
6093 mark_vectorlike ((struct Lisp_Vector *) buffer);
6094
6095 /* ...but there are some buffer-specific things. */
6096
6097 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6098
6099 /* For now, we just don't mark the undo_list. It's done later in
6100 a special way just before the sweep phase, and after stripping
6101 some of its elements that are not needed any more. */
6102
6103 mark_overlay (buffer->overlays_before);
6104 mark_overlay (buffer->overlays_after);
6105
6106 /* If this is an indirect buffer, mark its base buffer. */
6107 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6108 mark_buffer (buffer->base_buffer);
6109 }
6110
6111 /* Mark Lisp faces in the face cache C. */
6112
6113 NO_INLINE /* To reduce stack depth in mark_object. */
6114 static void
6115 mark_face_cache (struct face_cache *c)
6116 {
6117 if (c)
6118 {
6119 int i, j;
6120 for (i = 0; i < c->used; ++i)
6121 {
6122 struct face *face = FACE_FROM_ID (c->f, i);
6123
6124 if (face)
6125 {
6126 if (face->font && !VECTOR_MARKED_P (face->font))
6127 mark_vectorlike ((struct Lisp_Vector *) face->font);
6128
6129 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6130 mark_object (face->lface[j]);
6131 }
6132 }
6133 }
6134 }
6135
6136 NO_INLINE /* To reduce stack depth in mark_object. */
6137 static void
6138 mark_localized_symbol (struct Lisp_Symbol *ptr)
6139 {
6140 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6141 Lisp_Object where = blv->where;
6142 /* If the value is set up for a killed buffer or deleted
6143 frame, restore its global binding. If the value is
6144 forwarded to a C variable, either it's not a Lisp_Object
6145 var, or it's staticpro'd already. */
6146 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6147 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6148 swap_in_global_binding (ptr);
6149 mark_object (blv->where);
6150 mark_object (blv->valcell);
6151 mark_object (blv->defcell);
6152 }
6153
6154 NO_INLINE /* To reduce stack depth in mark_object. */
6155 static void
6156 mark_save_value (struct Lisp_Save_Value *ptr)
6157 {
6158 /* If `save_type' is zero, `data[0].pointer' is the address
6159 of a memory area containing `data[1].integer' potential
6160 Lisp_Objects. */
6161 if (ptr->save_type == SAVE_TYPE_MEMORY)
6162 {
6163 Lisp_Object *p = ptr->data[0].pointer;
6164 ptrdiff_t nelt;
6165 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6166 mark_maybe_object (*p);
6167 }
6168 else
6169 {
6170 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6171 int i;
6172 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6173 if (save_type (ptr, i) == SAVE_OBJECT)
6174 mark_object (ptr->data[i].object);
6175 }
6176 }
6177
6178 /* Remove killed buffers or items whose car is a killed buffer from
6179 LIST, and mark other items. Return changed LIST, which is marked. */
6180
6181 static Lisp_Object
6182 mark_discard_killed_buffers (Lisp_Object list)
6183 {
6184 Lisp_Object tail, *prev = &list;
6185
6186 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6187 tail = XCDR (tail))
6188 {
6189 Lisp_Object tem = XCAR (tail);
6190 if (CONSP (tem))
6191 tem = XCAR (tem);
6192 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6193 *prev = XCDR (tail);
6194 else
6195 {
6196 CONS_MARK (XCONS (tail));
6197 mark_object (XCAR (tail));
6198 prev = xcdr_addr (tail);
6199 }
6200 }
6201 mark_object (tail);
6202 return list;
6203 }
6204
6205 /* Determine type of generic Lisp_Object and mark it accordingly.
6206
6207 This function implements a straightforward depth-first marking
6208 algorithm and so the recursion depth may be very high (a few
6209 tens of thousands is not uncommon). To minimize stack usage,
6210 a few cold paths are moved out to NO_INLINE functions above.
6211 In general, inlining them doesn't help you to gain more speed. */
6212
6213 void
6214 mark_object (Lisp_Object arg)
6215 {
6216 register Lisp_Object obj;
6217 void *po;
6218 #ifdef GC_CHECK_MARKED_OBJECTS
6219 struct mem_node *m;
6220 #endif
6221 ptrdiff_t cdr_count = 0;
6222
6223 obj = arg;
6224 loop:
6225
6226 po = XPNTR (obj);
6227 if (PURE_P (po))
6228 return;
6229
6230 last_marked[last_marked_index++] = obj;
6231 if (last_marked_index == LAST_MARKED_SIZE)
6232 last_marked_index = 0;
6233
6234 /* Perform some sanity checks on the objects marked here. Abort if
6235 we encounter an object we know is bogus. This increases GC time
6236 by ~80%. */
6237 #ifdef GC_CHECK_MARKED_OBJECTS
6238
6239 /* Check that the object pointed to by PO is known to be a Lisp
6240 structure allocated from the heap. */
6241 #define CHECK_ALLOCATED() \
6242 do { \
6243 m = mem_find (po); \
6244 if (m == MEM_NIL) \
6245 emacs_abort (); \
6246 } while (0)
6247
6248 /* Check that the object pointed to by PO is live, using predicate
6249 function LIVEP. */
6250 #define CHECK_LIVE(LIVEP) \
6251 do { \
6252 if (!LIVEP (m, po)) \
6253 emacs_abort (); \
6254 } while (0)
6255
6256 /* Check both of the above conditions, for non-symbols. */
6257 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6258 do { \
6259 CHECK_ALLOCATED (); \
6260 CHECK_LIVE (LIVEP); \
6261 } while (0) \
6262
6263 /* Check both of the above conditions, for symbols. */
6264 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6265 do { \
6266 if (!c_symbol_p (ptr)) \
6267 { \
6268 CHECK_ALLOCATED (); \
6269 CHECK_LIVE (live_symbol_p); \
6270 } \
6271 } while (0) \
6272
6273 #else /* not GC_CHECK_MARKED_OBJECTS */
6274
6275 #define CHECK_LIVE(LIVEP) ((void) 0)
6276 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6277 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6278
6279 #endif /* not GC_CHECK_MARKED_OBJECTS */
6280
6281 switch (XTYPE (obj))
6282 {
6283 case Lisp_String:
6284 {
6285 register struct Lisp_String *ptr = XSTRING (obj);
6286 if (STRING_MARKED_P (ptr))
6287 break;
6288 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6289 MARK_STRING (ptr);
6290 MARK_INTERVAL_TREE (ptr->intervals);
6291 #ifdef GC_CHECK_STRING_BYTES
6292 /* Check that the string size recorded in the string is the
6293 same as the one recorded in the sdata structure. */
6294 string_bytes (ptr);
6295 #endif /* GC_CHECK_STRING_BYTES */
6296 }
6297 break;
6298
6299 case Lisp_Vectorlike:
6300 {
6301 register struct Lisp_Vector *ptr = XVECTOR (obj);
6302 register ptrdiff_t pvectype;
6303
6304 if (VECTOR_MARKED_P (ptr))
6305 break;
6306
6307 #ifdef GC_CHECK_MARKED_OBJECTS
6308 m = mem_find (po);
6309 if (m == MEM_NIL && !SUBRP (obj))
6310 emacs_abort ();
6311 #endif /* GC_CHECK_MARKED_OBJECTS */
6312
6313 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6314 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6315 >> PSEUDOVECTOR_AREA_BITS);
6316 else
6317 pvectype = PVEC_NORMAL_VECTOR;
6318
6319 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6320 CHECK_LIVE (live_vector_p);
6321
6322 switch (pvectype)
6323 {
6324 case PVEC_BUFFER:
6325 #ifdef GC_CHECK_MARKED_OBJECTS
6326 {
6327 struct buffer *b;
6328 FOR_EACH_BUFFER (b)
6329 if (b == po)
6330 break;
6331 if (b == NULL)
6332 emacs_abort ();
6333 }
6334 #endif /* GC_CHECK_MARKED_OBJECTS */
6335 mark_buffer ((struct buffer *) ptr);
6336 break;
6337
6338 case PVEC_COMPILED:
6339 /* Although we could treat this just like a vector, mark_compiled
6340 returns the COMPILED_CONSTANTS element, which is marked at the
6341 next iteration of goto-loop here. This is done to avoid a few
6342 recursive calls to mark_object. */
6343 obj = mark_compiled (ptr);
6344 if (!NILP (obj))
6345 goto loop;
6346 break;
6347
6348 case PVEC_FRAME:
6349 {
6350 struct frame *f = (struct frame *) ptr;
6351
6352 mark_vectorlike (ptr);
6353 mark_face_cache (f->face_cache);
6354 #ifdef HAVE_WINDOW_SYSTEM
6355 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6356 {
6357 struct font *font = FRAME_FONT (f);
6358
6359 if (font && !VECTOR_MARKED_P (font))
6360 mark_vectorlike ((struct Lisp_Vector *) font);
6361 }
6362 #endif
6363 }
6364 break;
6365
6366 case PVEC_WINDOW:
6367 {
6368 struct window *w = (struct window *) ptr;
6369
6370 mark_vectorlike (ptr);
6371
6372 /* Mark glyph matrices, if any. Marking window
6373 matrices is sufficient because frame matrices
6374 use the same glyph memory. */
6375 if (w->current_matrix)
6376 {
6377 mark_glyph_matrix (w->current_matrix);
6378 mark_glyph_matrix (w->desired_matrix);
6379 }
6380
6381 /* Filter out killed buffers from both buffer lists
6382 in attempt to help GC to reclaim killed buffers faster.
6383 We can do it elsewhere for live windows, but this is the
6384 best place to do it for dead windows. */
6385 wset_prev_buffers
6386 (w, mark_discard_killed_buffers (w->prev_buffers));
6387 wset_next_buffers
6388 (w, mark_discard_killed_buffers (w->next_buffers));
6389 }
6390 break;
6391
6392 case PVEC_HASH_TABLE:
6393 {
6394 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6395
6396 mark_vectorlike (ptr);
6397 mark_object (h->test.name);
6398 mark_object (h->test.user_hash_function);
6399 mark_object (h->test.user_cmp_function);
6400 /* If hash table is not weak, mark all keys and values.
6401 For weak tables, mark only the vector. */
6402 if (NILP (h->weak))
6403 mark_object (h->key_and_value);
6404 else
6405 VECTOR_MARK (XVECTOR (h->key_and_value));
6406 }
6407 break;
6408
6409 case PVEC_CHAR_TABLE:
6410 case PVEC_SUB_CHAR_TABLE:
6411 mark_char_table (ptr, (enum pvec_type) pvectype);
6412 break;
6413
6414 case PVEC_BOOL_VECTOR:
6415 /* No Lisp_Objects to mark in a bool vector. */
6416 VECTOR_MARK (ptr);
6417 break;
6418
6419 case PVEC_SUBR:
6420 break;
6421
6422 case PVEC_FREE:
6423 emacs_abort ();
6424
6425 default:
6426 mark_vectorlike (ptr);
6427 }
6428 }
6429 break;
6430
6431 case Lisp_Symbol:
6432 {
6433 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6434 nextsym:
6435 if (ptr->gcmarkbit)
6436 break;
6437 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6438 ptr->gcmarkbit = 1;
6439 /* Attempt to catch bogus objects. */
6440 eassert (valid_lisp_object_p (ptr->function));
6441 mark_object (ptr->function);
6442 mark_object (ptr->plist);
6443 switch (ptr->redirect)
6444 {
6445 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6446 case SYMBOL_VARALIAS:
6447 {
6448 Lisp_Object tem;
6449 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6450 mark_object (tem);
6451 break;
6452 }
6453 case SYMBOL_LOCALIZED:
6454 mark_localized_symbol (ptr);
6455 break;
6456 case SYMBOL_FORWARDED:
6457 /* If the value is forwarded to a buffer or keyboard field,
6458 these are marked when we see the corresponding object.
6459 And if it's forwarded to a C variable, either it's not
6460 a Lisp_Object var, or it's staticpro'd already. */
6461 break;
6462 default: emacs_abort ();
6463 }
6464 if (!PURE_P (XSTRING (ptr->name)))
6465 MARK_STRING (XSTRING (ptr->name));
6466 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6467 /* Inner loop to mark next symbol in this bucket, if any. */
6468 po = ptr = ptr->next;
6469 if (ptr)
6470 goto nextsym;
6471 }
6472 break;
6473
6474 case Lisp_Misc:
6475 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6476
6477 if (XMISCANY (obj)->gcmarkbit)
6478 break;
6479
6480 switch (XMISCTYPE (obj))
6481 {
6482 case Lisp_Misc_Marker:
6483 /* DO NOT mark thru the marker's chain.
6484 The buffer's markers chain does not preserve markers from gc;
6485 instead, markers are removed from the chain when freed by gc. */
6486 XMISCANY (obj)->gcmarkbit = 1;
6487 break;
6488
6489 case Lisp_Misc_Save_Value:
6490 XMISCANY (obj)->gcmarkbit = 1;
6491 mark_save_value (XSAVE_VALUE (obj));
6492 break;
6493
6494 case Lisp_Misc_Overlay:
6495 mark_overlay (XOVERLAY (obj));
6496 break;
6497
6498 case Lisp_Misc_Finalizer:
6499 XMISCANY (obj)->gcmarkbit = true;
6500 mark_object (XFINALIZER (obj)->function);
6501 break;
6502
6503 #ifdef HAVE_MODULES
6504 case Lisp_Misc_User_Ptr:
6505 XMISCANY (obj)->gcmarkbit = true;
6506 break;
6507 #endif
6508
6509 default:
6510 emacs_abort ();
6511 }
6512 break;
6513
6514 case Lisp_Cons:
6515 {
6516 register struct Lisp_Cons *ptr = XCONS (obj);
6517 if (CONS_MARKED_P (ptr))
6518 break;
6519 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6520 CONS_MARK (ptr);
6521 /* If the cdr is nil, avoid recursion for the car. */
6522 if (EQ (ptr->u.cdr, Qnil))
6523 {
6524 obj = ptr->car;
6525 cdr_count = 0;
6526 goto loop;
6527 }
6528 mark_object (ptr->car);
6529 obj = ptr->u.cdr;
6530 cdr_count++;
6531 if (cdr_count == mark_object_loop_halt)
6532 emacs_abort ();
6533 goto loop;
6534 }
6535
6536 case Lisp_Float:
6537 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6538 FLOAT_MARK (XFLOAT (obj));
6539 break;
6540
6541 case_Lisp_Int:
6542 break;
6543
6544 default:
6545 emacs_abort ();
6546 }
6547
6548 #undef CHECK_LIVE
6549 #undef CHECK_ALLOCATED
6550 #undef CHECK_ALLOCATED_AND_LIVE
6551 }
6552 /* Mark the Lisp pointers in the terminal objects.
6553 Called by Fgarbage_collect. */
6554
6555 static void
6556 mark_terminals (void)
6557 {
6558 struct terminal *t;
6559 for (t = terminal_list; t; t = t->next_terminal)
6560 {
6561 eassert (t->name != NULL);
6562 #ifdef HAVE_WINDOW_SYSTEM
6563 /* If a terminal object is reachable from a stacpro'ed object,
6564 it might have been marked already. Make sure the image cache
6565 gets marked. */
6566 mark_image_cache (t->image_cache);
6567 #endif /* HAVE_WINDOW_SYSTEM */
6568 if (!VECTOR_MARKED_P (t))
6569 mark_vectorlike ((struct Lisp_Vector *)t);
6570 }
6571 }
6572
6573
6574
6575 /* Value is non-zero if OBJ will survive the current GC because it's
6576 either marked or does not need to be marked to survive. */
6577
6578 bool
6579 survives_gc_p (Lisp_Object obj)
6580 {
6581 bool survives_p;
6582
6583 switch (XTYPE (obj))
6584 {
6585 case_Lisp_Int:
6586 survives_p = 1;
6587 break;
6588
6589 case Lisp_Symbol:
6590 survives_p = XSYMBOL (obj)->gcmarkbit;
6591 break;
6592
6593 case Lisp_Misc:
6594 survives_p = XMISCANY (obj)->gcmarkbit;
6595 break;
6596
6597 case Lisp_String:
6598 survives_p = STRING_MARKED_P (XSTRING (obj));
6599 break;
6600
6601 case Lisp_Vectorlike:
6602 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6603 break;
6604
6605 case Lisp_Cons:
6606 survives_p = CONS_MARKED_P (XCONS (obj));
6607 break;
6608
6609 case Lisp_Float:
6610 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6611 break;
6612
6613 default:
6614 emacs_abort ();
6615 }
6616
6617 return survives_p || PURE_P (XPNTR (obj));
6618 }
6619
6620
6621 \f
6622
6623 NO_INLINE /* For better stack traces */
6624 static void
6625 sweep_conses (void)
6626 {
6627 struct cons_block *cblk;
6628 struct cons_block **cprev = &cons_block;
6629 int lim = cons_block_index;
6630 EMACS_INT num_free = 0, num_used = 0;
6631
6632 cons_free_list = 0;
6633
6634 for (cblk = cons_block; cblk; cblk = *cprev)
6635 {
6636 int i = 0;
6637 int this_free = 0;
6638 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6639
6640 /* Scan the mark bits an int at a time. */
6641 for (i = 0; i < ilim; i++)
6642 {
6643 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6644 {
6645 /* Fast path - all cons cells for this int are marked. */
6646 cblk->gcmarkbits[i] = 0;
6647 num_used += BITS_PER_BITS_WORD;
6648 }
6649 else
6650 {
6651 /* Some cons cells for this int are not marked.
6652 Find which ones, and free them. */
6653 int start, pos, stop;
6654
6655 start = i * BITS_PER_BITS_WORD;
6656 stop = lim - start;
6657 if (stop > BITS_PER_BITS_WORD)
6658 stop = BITS_PER_BITS_WORD;
6659 stop += start;
6660
6661 for (pos = start; pos < stop; pos++)
6662 {
6663 if (!CONS_MARKED_P (&cblk->conses[pos]))
6664 {
6665 this_free++;
6666 cblk->conses[pos].u.chain = cons_free_list;
6667 cons_free_list = &cblk->conses[pos];
6668 cons_free_list->car = Vdead;
6669 }
6670 else
6671 {
6672 num_used++;
6673 CONS_UNMARK (&cblk->conses[pos]);
6674 }
6675 }
6676 }
6677 }
6678
6679 lim = CONS_BLOCK_SIZE;
6680 /* If this block contains only free conses and we have already
6681 seen more than two blocks worth of free conses then deallocate
6682 this block. */
6683 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6684 {
6685 *cprev = cblk->next;
6686 /* Unhook from the free list. */
6687 cons_free_list = cblk->conses[0].u.chain;
6688 lisp_align_free (cblk);
6689 }
6690 else
6691 {
6692 num_free += this_free;
6693 cprev = &cblk->next;
6694 }
6695 }
6696 total_conses = num_used;
6697 total_free_conses = num_free;
6698 }
6699
6700 NO_INLINE /* For better stack traces */
6701 static void
6702 sweep_floats (void)
6703 {
6704 register struct float_block *fblk;
6705 struct float_block **fprev = &float_block;
6706 register int lim = float_block_index;
6707 EMACS_INT num_free = 0, num_used = 0;
6708
6709 float_free_list = 0;
6710
6711 for (fblk = float_block; fblk; fblk = *fprev)
6712 {
6713 register int i;
6714 int this_free = 0;
6715 for (i = 0; i < lim; i++)
6716 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6717 {
6718 this_free++;
6719 fblk->floats[i].u.chain = float_free_list;
6720 float_free_list = &fblk->floats[i];
6721 }
6722 else
6723 {
6724 num_used++;
6725 FLOAT_UNMARK (&fblk->floats[i]);
6726 }
6727 lim = FLOAT_BLOCK_SIZE;
6728 /* If this block contains only free floats and we have already
6729 seen more than two blocks worth of free floats then deallocate
6730 this block. */
6731 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6732 {
6733 *fprev = fblk->next;
6734 /* Unhook from the free list. */
6735 float_free_list = fblk->floats[0].u.chain;
6736 lisp_align_free (fblk);
6737 }
6738 else
6739 {
6740 num_free += this_free;
6741 fprev = &fblk->next;
6742 }
6743 }
6744 total_floats = num_used;
6745 total_free_floats = num_free;
6746 }
6747
6748 NO_INLINE /* For better stack traces */
6749 static void
6750 sweep_intervals (void)
6751 {
6752 register struct interval_block *iblk;
6753 struct interval_block **iprev = &interval_block;
6754 register int lim = interval_block_index;
6755 EMACS_INT num_free = 0, num_used = 0;
6756
6757 interval_free_list = 0;
6758
6759 for (iblk = interval_block; iblk; iblk = *iprev)
6760 {
6761 register int i;
6762 int this_free = 0;
6763
6764 for (i = 0; i < lim; i++)
6765 {
6766 if (!iblk->intervals[i].gcmarkbit)
6767 {
6768 set_interval_parent (&iblk->intervals[i], interval_free_list);
6769 interval_free_list = &iblk->intervals[i];
6770 this_free++;
6771 }
6772 else
6773 {
6774 num_used++;
6775 iblk->intervals[i].gcmarkbit = 0;
6776 }
6777 }
6778 lim = INTERVAL_BLOCK_SIZE;
6779 /* If this block contains only free intervals and we have already
6780 seen more than two blocks worth of free intervals then
6781 deallocate this block. */
6782 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6783 {
6784 *iprev = iblk->next;
6785 /* Unhook from the free list. */
6786 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6787 lisp_free (iblk);
6788 }
6789 else
6790 {
6791 num_free += this_free;
6792 iprev = &iblk->next;
6793 }
6794 }
6795 total_intervals = num_used;
6796 total_free_intervals = num_free;
6797 }
6798
6799 NO_INLINE /* For better stack traces */
6800 static void
6801 sweep_symbols (void)
6802 {
6803 struct symbol_block *sblk;
6804 struct symbol_block **sprev = &symbol_block;
6805 int lim = symbol_block_index;
6806 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6807
6808 symbol_free_list = NULL;
6809
6810 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6811 lispsym[i].gcmarkbit = 0;
6812
6813 for (sblk = symbol_block; sblk; sblk = *sprev)
6814 {
6815 int this_free = 0;
6816 union aligned_Lisp_Symbol *sym = sblk->symbols;
6817 union aligned_Lisp_Symbol *end = sym + lim;
6818
6819 for (; sym < end; ++sym)
6820 {
6821 if (!sym->s.gcmarkbit)
6822 {
6823 if (sym->s.redirect == SYMBOL_LOCALIZED)
6824 xfree (SYMBOL_BLV (&sym->s));
6825 sym->s.next = symbol_free_list;
6826 symbol_free_list = &sym->s;
6827 symbol_free_list->function = Vdead;
6828 ++this_free;
6829 }
6830 else
6831 {
6832 ++num_used;
6833 sym->s.gcmarkbit = 0;
6834 /* Attempt to catch bogus objects. */
6835 eassert (valid_lisp_object_p (sym->s.function));
6836 }
6837 }
6838
6839 lim = SYMBOL_BLOCK_SIZE;
6840 /* If this block contains only free symbols and we have already
6841 seen more than two blocks worth of free symbols then deallocate
6842 this block. */
6843 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6844 {
6845 *sprev = sblk->next;
6846 /* Unhook from the free list. */
6847 symbol_free_list = sblk->symbols[0].s.next;
6848 lisp_free (sblk);
6849 }
6850 else
6851 {
6852 num_free += this_free;
6853 sprev = &sblk->next;
6854 }
6855 }
6856 total_symbols = num_used;
6857 total_free_symbols = num_free;
6858 }
6859
6860 NO_INLINE /* For better stack traces. */
6861 static void
6862 sweep_misc (void)
6863 {
6864 register struct marker_block *mblk;
6865 struct marker_block **mprev = &marker_block;
6866 register int lim = marker_block_index;
6867 EMACS_INT num_free = 0, num_used = 0;
6868
6869 /* Put all unmarked misc's on free list. For a marker, first
6870 unchain it from the buffer it points into. */
6871
6872 marker_free_list = 0;
6873
6874 for (mblk = marker_block; mblk; mblk = *mprev)
6875 {
6876 register int i;
6877 int this_free = 0;
6878
6879 for (i = 0; i < lim; i++)
6880 {
6881 if (!mblk->markers[i].m.u_any.gcmarkbit)
6882 {
6883 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6884 unchain_marker (&mblk->markers[i].m.u_marker);
6885 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6886 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6887 #ifdef HAVE_MODULES
6888 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6889 {
6890 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6891 uptr->finalizer (uptr->p);
6892 }
6893 #endif
6894 /* Set the type of the freed object to Lisp_Misc_Free.
6895 We could leave the type alone, since nobody checks it,
6896 but this might catch bugs faster. */
6897 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6898 mblk->markers[i].m.u_free.chain = marker_free_list;
6899 marker_free_list = &mblk->markers[i].m;
6900 this_free++;
6901 }
6902 else
6903 {
6904 num_used++;
6905 mblk->markers[i].m.u_any.gcmarkbit = 0;
6906 }
6907 }
6908 lim = MARKER_BLOCK_SIZE;
6909 /* If this block contains only free markers and we have already
6910 seen more than two blocks worth of free markers then deallocate
6911 this block. */
6912 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6913 {
6914 *mprev = mblk->next;
6915 /* Unhook from the free list. */
6916 marker_free_list = mblk->markers[0].m.u_free.chain;
6917 lisp_free (mblk);
6918 }
6919 else
6920 {
6921 num_free += this_free;
6922 mprev = &mblk->next;
6923 }
6924 }
6925
6926 total_markers = num_used;
6927 total_free_markers = num_free;
6928 }
6929
6930 NO_INLINE /* For better stack traces */
6931 static void
6932 sweep_buffers (void)
6933 {
6934 register struct buffer *buffer, **bprev = &all_buffers;
6935
6936 total_buffers = 0;
6937 for (buffer = all_buffers; buffer; buffer = *bprev)
6938 if (!VECTOR_MARKED_P (buffer))
6939 {
6940 *bprev = buffer->next;
6941 lisp_free (buffer);
6942 }
6943 else
6944 {
6945 VECTOR_UNMARK (buffer);
6946 /* Do not use buffer_(set|get)_intervals here. */
6947 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6948 total_buffers++;
6949 bprev = &buffer->next;
6950 }
6951 }
6952
6953 /* Sweep: find all structures not marked, and free them. */
6954 static void
6955 gc_sweep (void)
6956 {
6957 /* Remove or mark entries in weak hash tables.
6958 This must be done before any object is unmarked. */
6959 sweep_weak_hash_tables ();
6960
6961 sweep_strings ();
6962 check_string_bytes (!noninteractive);
6963 sweep_conses ();
6964 sweep_floats ();
6965 sweep_intervals ();
6966 sweep_symbols ();
6967 sweep_misc ();
6968 sweep_buffers ();
6969 sweep_vectors ();
6970 check_string_bytes (!noninteractive);
6971 }
6972
6973 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6974 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6975 All values are in Kbytes. If there is no swap space,
6976 last two values are zero. If the system is not supported
6977 or memory information can't be obtained, return nil. */)
6978 (void)
6979 {
6980 #if defined HAVE_LINUX_SYSINFO
6981 struct sysinfo si;
6982 uintmax_t units;
6983
6984 if (sysinfo (&si))
6985 return Qnil;
6986 #ifdef LINUX_SYSINFO_UNIT
6987 units = si.mem_unit;
6988 #else
6989 units = 1;
6990 #endif
6991 return list4i ((uintmax_t) si.totalram * units / 1024,
6992 (uintmax_t) si.freeram * units / 1024,
6993 (uintmax_t) si.totalswap * units / 1024,
6994 (uintmax_t) si.freeswap * units / 1024);
6995 #elif defined WINDOWSNT
6996 unsigned long long totalram, freeram, totalswap, freeswap;
6997
6998 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6999 return list4i ((uintmax_t) totalram / 1024,
7000 (uintmax_t) freeram / 1024,
7001 (uintmax_t) totalswap / 1024,
7002 (uintmax_t) freeswap / 1024);
7003 else
7004 return Qnil;
7005 #elif defined MSDOS
7006 unsigned long totalram, freeram, totalswap, freeswap;
7007
7008 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7009 return list4i ((uintmax_t) totalram / 1024,
7010 (uintmax_t) freeram / 1024,
7011 (uintmax_t) totalswap / 1024,
7012 (uintmax_t) freeswap / 1024);
7013 else
7014 return Qnil;
7015 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7016 /* FIXME: add more systems. */
7017 return Qnil;
7018 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7019 }
7020
7021 /* Debugging aids. */
7022
7023 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7024 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7025 This may be helpful in debugging Emacs's memory usage.
7026 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7027 (void)
7028 {
7029 Lisp_Object end;
7030
7031 #ifdef HAVE_NS
7032 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7033 XSETINT (end, 0);
7034 #else
7035 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7036 #endif
7037
7038 return end;
7039 }
7040
7041 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7042 doc: /* Return a list of counters that measure how much consing there has been.
7043 Each of these counters increments for a certain kind of object.
7044 The counters wrap around from the largest positive integer to zero.
7045 Garbage collection does not decrease them.
7046 The elements of the value are as follows:
7047 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7048 All are in units of 1 = one object consed
7049 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7050 objects consed.
7051 MISCS include overlays, markers, and some internal types.
7052 Frames, windows, buffers, and subprocesses count as vectors
7053 (but the contents of a buffer's text do not count here). */)
7054 (void)
7055 {
7056 return listn (CONSTYPE_HEAP, 8,
7057 bounded_number (cons_cells_consed),
7058 bounded_number (floats_consed),
7059 bounded_number (vector_cells_consed),
7060 bounded_number (symbols_consed),
7061 bounded_number (string_chars_consed),
7062 bounded_number (misc_objects_consed),
7063 bounded_number (intervals_consed),
7064 bounded_number (strings_consed));
7065 }
7066
7067 static bool
7068 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7069 {
7070 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7071 Lisp_Object val = find_symbol_value (symbol);
7072 return (EQ (val, obj)
7073 || EQ (sym->function, obj)
7074 || (!NILP (sym->function)
7075 && COMPILEDP (sym->function)
7076 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7077 || (!NILP (val)
7078 && COMPILEDP (val)
7079 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7080 }
7081
7082 /* Find at most FIND_MAX symbols which have OBJ as their value or
7083 function. This is used in gdbinit's `xwhichsymbols' command. */
7084
7085 Lisp_Object
7086 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7087 {
7088 struct symbol_block *sblk;
7089 ptrdiff_t gc_count = inhibit_garbage_collection ();
7090 Lisp_Object found = Qnil;
7091
7092 if (! DEADP (obj))
7093 {
7094 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7095 {
7096 Lisp_Object sym = builtin_lisp_symbol (i);
7097 if (symbol_uses_obj (sym, obj))
7098 {
7099 found = Fcons (sym, found);
7100 if (--find_max == 0)
7101 goto out;
7102 }
7103 }
7104
7105 for (sblk = symbol_block; sblk; sblk = sblk->next)
7106 {
7107 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7108 int bn;
7109
7110 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7111 {
7112 if (sblk == symbol_block && bn >= symbol_block_index)
7113 break;
7114
7115 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7116 if (symbol_uses_obj (sym, obj))
7117 {
7118 found = Fcons (sym, found);
7119 if (--find_max == 0)
7120 goto out;
7121 }
7122 }
7123 }
7124 }
7125
7126 out:
7127 unbind_to (gc_count, Qnil);
7128 return found;
7129 }
7130
7131 #ifdef SUSPICIOUS_OBJECT_CHECKING
7132
7133 static void *
7134 find_suspicious_object_in_range (void *begin, void *end)
7135 {
7136 char *begin_a = begin;
7137 char *end_a = end;
7138 int i;
7139
7140 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7141 {
7142 char *suspicious_object = suspicious_objects[i];
7143 if (begin_a <= suspicious_object && suspicious_object < end_a)
7144 return suspicious_object;
7145 }
7146
7147 return NULL;
7148 }
7149
7150 static void
7151 note_suspicious_free (void* ptr)
7152 {
7153 struct suspicious_free_record* rec;
7154
7155 rec = &suspicious_free_history[suspicious_free_history_index++];
7156 if (suspicious_free_history_index ==
7157 ARRAYELTS (suspicious_free_history))
7158 {
7159 suspicious_free_history_index = 0;
7160 }
7161
7162 memset (rec, 0, sizeof (*rec));
7163 rec->suspicious_object = ptr;
7164 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7165 }
7166
7167 static void
7168 detect_suspicious_free (void* ptr)
7169 {
7170 int i;
7171
7172 eassert (ptr != NULL);
7173
7174 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7175 if (suspicious_objects[i] == ptr)
7176 {
7177 note_suspicious_free (ptr);
7178 suspicious_objects[i] = NULL;
7179 }
7180 }
7181
7182 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7183
7184 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7185 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7186 If Emacs is compiled with suspicious object checking, capture
7187 a stack trace when OBJ is freed in order to help track down
7188 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7189 (Lisp_Object obj)
7190 {
7191 #ifdef SUSPICIOUS_OBJECT_CHECKING
7192 /* Right now, we care only about vectors. */
7193 if (VECTORLIKEP (obj))
7194 {
7195 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7196 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7197 suspicious_object_index = 0;
7198 }
7199 #endif
7200 return obj;
7201 }
7202
7203 #ifdef ENABLE_CHECKING
7204
7205 bool suppress_checking;
7206
7207 void
7208 die (const char *msg, const char *file, int line)
7209 {
7210 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7211 file, line, msg);
7212 terminate_due_to_signal (SIGABRT, INT_MAX);
7213 }
7214
7215 #endif /* ENABLE_CHECKING */
7216
7217 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7218
7219 /* Debugging check whether STR is ASCII-only. */
7220
7221 const char *
7222 verify_ascii (const char *str)
7223 {
7224 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7225 while (ptr < end)
7226 {
7227 int c = STRING_CHAR_ADVANCE (ptr);
7228 if (!ASCII_CHAR_P (c))
7229 emacs_abort ();
7230 }
7231 return str;
7232 }
7233
7234 /* Stress alloca with inconveniently sized requests and check
7235 whether all allocated areas may be used for Lisp_Object. */
7236
7237 NO_INLINE static void
7238 verify_alloca (void)
7239 {
7240 int i;
7241 enum { ALLOCA_CHECK_MAX = 256 };
7242 /* Start from size of the smallest Lisp object. */
7243 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7244 {
7245 void *ptr = alloca (i);
7246 make_lisp_ptr (ptr, Lisp_Cons);
7247 }
7248 }
7249
7250 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7251
7252 #define verify_alloca() ((void) 0)
7253
7254 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7255
7256 /* Initialization. */
7257
7258 void
7259 init_alloc_once (void)
7260 {
7261 /* Even though Qt's contents are not set up, its address is known. */
7262 Vpurify_flag = Qt;
7263
7264 purebeg = PUREBEG;
7265 pure_size = PURESIZE;
7266
7267 verify_alloca ();
7268 init_finalizer_list (&finalizers);
7269 init_finalizer_list (&doomed_finalizers);
7270
7271 mem_init ();
7272 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7273
7274 #ifdef DOUG_LEA_MALLOC
7275 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7276 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7277 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7278 #endif
7279 init_strings ();
7280 init_vectors ();
7281
7282 refill_memory_reserve ();
7283 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7284 }
7285
7286 void
7287 init_alloc (void)
7288 {
7289 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7290 setjmp_tested_p = longjmps_done = 0;
7291 #endif
7292 Vgc_elapsed = make_float (0.0);
7293 gcs_done = 0;
7294
7295 #if USE_VALGRIND
7296 valgrind_p = RUNNING_ON_VALGRIND != 0;
7297 #endif
7298 }
7299
7300 void
7301 syms_of_alloc (void)
7302 {
7303 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7304 doc: /* Number of bytes of consing between garbage collections.
7305 Garbage collection can happen automatically once this many bytes have been
7306 allocated since the last garbage collection. All data types count.
7307
7308 Garbage collection happens automatically only when `eval' is called.
7309
7310 By binding this temporarily to a large number, you can effectively
7311 prevent garbage collection during a part of the program.
7312 See also `gc-cons-percentage'. */);
7313
7314 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7315 doc: /* Portion of the heap used for allocation.
7316 Garbage collection can happen automatically once this portion of the heap
7317 has been allocated since the last garbage collection.
7318 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7319 Vgc_cons_percentage = make_float (0.1);
7320
7321 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7322 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7323
7324 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7325 doc: /* Number of cons cells that have been consed so far. */);
7326
7327 DEFVAR_INT ("floats-consed", floats_consed,
7328 doc: /* Number of floats that have been consed so far. */);
7329
7330 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7331 doc: /* Number of vector cells that have been consed so far. */);
7332
7333 DEFVAR_INT ("symbols-consed", symbols_consed,
7334 doc: /* Number of symbols that have been consed so far. */);
7335 symbols_consed += ARRAYELTS (lispsym);
7336
7337 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7338 doc: /* Number of string characters that have been consed so far. */);
7339
7340 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7341 doc: /* Number of miscellaneous objects that have been consed so far.
7342 These include markers and overlays, plus certain objects not visible
7343 to users. */);
7344
7345 DEFVAR_INT ("intervals-consed", intervals_consed,
7346 doc: /* Number of intervals that have been consed so far. */);
7347
7348 DEFVAR_INT ("strings-consed", strings_consed,
7349 doc: /* Number of strings that have been consed so far. */);
7350
7351 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7352 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7353 This means that certain objects should be allocated in shared (pure) space.
7354 It can also be set to a hash-table, in which case this table is used to
7355 do hash-consing of the objects allocated to pure space. */);
7356
7357 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7358 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7359 garbage_collection_messages = 0;
7360
7361 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7362 doc: /* Hook run after garbage collection has finished. */);
7363 Vpost_gc_hook = Qnil;
7364 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7365
7366 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7367 doc: /* Precomputed `signal' argument for memory-full error. */);
7368 /* We build this in advance because if we wait until we need it, we might
7369 not be able to allocate the memory to hold it. */
7370 Vmemory_signal_data
7371 = listn (CONSTYPE_PURE, 2, Qerror,
7372 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7373
7374 DEFVAR_LISP ("memory-full", Vmemory_full,
7375 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7376 Vmemory_full = Qnil;
7377
7378 DEFSYM (Qconses, "conses");
7379 DEFSYM (Qsymbols, "symbols");
7380 DEFSYM (Qmiscs, "miscs");
7381 DEFSYM (Qstrings, "strings");
7382 DEFSYM (Qvectors, "vectors");
7383 DEFSYM (Qfloats, "floats");
7384 DEFSYM (Qintervals, "intervals");
7385 DEFSYM (Qbuffers, "buffers");
7386 DEFSYM (Qstring_bytes, "string-bytes");
7387 DEFSYM (Qvector_slots, "vector-slots");
7388 DEFSYM (Qheap, "heap");
7389 DEFSYM (Qautomatic_gc, "Automatic GC");
7390
7391 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7392 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7393
7394 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7395 doc: /* Accumulated time elapsed in garbage collections.
7396 The time is in seconds as a floating point value. */);
7397 DEFVAR_INT ("gcs-done", gcs_done,
7398 doc: /* Accumulated number of garbage collections done. */);
7399
7400 defsubr (&Scons);
7401 defsubr (&Slist);
7402 defsubr (&Svector);
7403 defsubr (&Sbool_vector);
7404 defsubr (&Smake_byte_code);
7405 defsubr (&Smake_list);
7406 defsubr (&Smake_vector);
7407 defsubr (&Smake_string);
7408 defsubr (&Smake_bool_vector);
7409 defsubr (&Smake_symbol);
7410 defsubr (&Smake_marker);
7411 defsubr (&Smake_finalizer);
7412 defsubr (&Spurecopy);
7413 defsubr (&Sgarbage_collect);
7414 defsubr (&Smemory_limit);
7415 defsubr (&Smemory_info);
7416 defsubr (&Smemory_use_counts);
7417 defsubr (&Ssuspicious_object);
7418 }
7419
7420 /* When compiled with GCC, GDB might say "No enum type named
7421 pvec_type" if we don't have at least one symbol with that type, and
7422 then xbacktrace could fail. Similarly for the other enums and
7423 their values. Some non-GCC compilers don't like these constructs. */
7424 #ifdef __GNUC__
7425 union
7426 {
7427 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7428 enum char_table_specials char_table_specials;
7429 enum char_bits char_bits;
7430 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7431 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7432 enum Lisp_Bits Lisp_Bits;
7433 enum Lisp_Compiled Lisp_Compiled;
7434 enum maxargs maxargs;
7435 enum MAX_ALLOCA MAX_ALLOCA;
7436 enum More_Lisp_Bits More_Lisp_Bits;
7437 enum pvec_type pvec_type;
7438 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7439 #endif /* __GNUC__ */