]> code.delx.au - gnu-emacs/blob - src/editfns.c
Improve doc string of 'insert-buffer-substring'
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static struct lisp_time lisp_time_struct (Lisp_Object, int *);
68 static void set_time_zone_rule (char const *);
69 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
70 bool, struct tm *);
71 static long int tm_gmtoff (struct tm *);
72 static int tm_diff (struct tm *, struct tm *);
73 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
74
75 #ifndef HAVE_TM_GMTOFF
76 # define HAVE_TM_GMTOFF false
77 #endif
78
79 /* The startup value of the TZ environment variable; null if unset. */
80 static char const *initial_tz;
81
82 /* A valid but unlikely setting for the TZ environment variable.
83 It is OK (though a bit slower) if the user chooses this value. */
84 static char dump_tz_string[] = "TZ=UtC0";
85
86 /* The cached value of Vsystem_name. This is used only to compare it
87 to Vsystem_name, so it need not be visible to the GC. */
88 static Lisp_Object cached_system_name;
89
90 static void
91 init_and_cache_system_name (void)
92 {
93 init_system_name ();
94 cached_system_name = Vsystem_name;
95 }
96
97 void
98 init_editfns (void)
99 {
100 const char *user_name;
101 register char *p;
102 struct passwd *pw; /* password entry for the current user */
103 Lisp_Object tem;
104
105 /* Set up system_name even when dumping. */
106 init_and_cache_system_name ();
107
108 #ifndef CANNOT_DUMP
109 /* When just dumping out, set the time zone to a known unlikely value
110 and skip the rest of this function. */
111 if (!initialized)
112 {
113 # ifdef HAVE_TZSET
114 xputenv (dump_tz_string);
115 tzset ();
116 # endif
117 return;
118 }
119 #endif
120
121 char *tz = getenv ("TZ");
122 initial_tz = tz;
123
124 #if !defined CANNOT_DUMP && defined HAVE_TZSET
125 /* If the execution TZ happens to be the same as the dump TZ,
126 change it to some other value and then change it back,
127 to force the underlying implementation to reload the TZ info.
128 This is needed on implementations that load TZ info from files,
129 since the TZ file contents may differ between dump and execution. */
130 if (tz && strcmp (tz, &dump_tz_string[sizeof "TZ=" - 1]) == 0)
131 {
132 ++*tz;
133 tzset ();
134 --*tz;
135 }
136 #endif
137
138 /* Call set_time_zone_rule now, so that its call to putenv is done
139 before multiple threads are active. */
140 set_time_zone_rule (tz);
141
142 pw = getpwuid (getuid ());
143 #ifdef MSDOS
144 /* We let the real user name default to "root" because that's quite
145 accurate on MS-DOS and because it lets Emacs find the init file.
146 (The DVX libraries override the Djgpp libraries here.) */
147 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
148 #else
149 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
150 #endif
151
152 /* Get the effective user name, by consulting environment variables,
153 or the effective uid if those are unset. */
154 user_name = getenv ("LOGNAME");
155 if (!user_name)
156 #ifdef WINDOWSNT
157 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
158 #else /* WINDOWSNT */
159 user_name = getenv ("USER");
160 #endif /* WINDOWSNT */
161 if (!user_name)
162 {
163 pw = getpwuid (geteuid ());
164 user_name = pw ? pw->pw_name : "unknown";
165 }
166 Vuser_login_name = build_string (user_name);
167
168 /* If the user name claimed in the environment vars differs from
169 the real uid, use the claimed name to find the full name. */
170 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
171 if (! NILP (tem))
172 tem = Vuser_login_name;
173 else
174 {
175 uid_t euid = geteuid ();
176 tem = make_fixnum_or_float (euid);
177 }
178 Vuser_full_name = Fuser_full_name (tem);
179
180 p = getenv ("NAME");
181 if (p)
182 Vuser_full_name = build_string (p);
183 else if (NILP (Vuser_full_name))
184 Vuser_full_name = build_string ("unknown");
185
186 #ifdef HAVE_SYS_UTSNAME_H
187 {
188 struct utsname uts;
189 uname (&uts);
190 Voperating_system_release = build_string (uts.release);
191 }
192 #else
193 Voperating_system_release = Qnil;
194 #endif
195 }
196 \f
197 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
198 doc: /* Convert arg CHAR to a string containing that character.
199 usage: (char-to-string CHAR) */)
200 (Lisp_Object character)
201 {
202 int c, len;
203 unsigned char str[MAX_MULTIBYTE_LENGTH];
204
205 CHECK_CHARACTER (character);
206 c = XFASTINT (character);
207
208 len = CHAR_STRING (c, str);
209 return make_string_from_bytes ((char *) str, 1, len);
210 }
211
212 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
213 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
214 (Lisp_Object byte)
215 {
216 unsigned char b;
217 CHECK_NUMBER (byte);
218 if (XINT (byte) < 0 || XINT (byte) > 255)
219 error ("Invalid byte");
220 b = XINT (byte);
221 return make_string_from_bytes ((char *) &b, 1, 1);
222 }
223
224 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
225 doc: /* Return the first character in STRING. */)
226 (register Lisp_Object string)
227 {
228 register Lisp_Object val;
229 CHECK_STRING (string);
230 if (SCHARS (string))
231 {
232 if (STRING_MULTIBYTE (string))
233 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
234 else
235 XSETFASTINT (val, SREF (string, 0));
236 }
237 else
238 XSETFASTINT (val, 0);
239 return val;
240 }
241
242 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
243 doc: /* Return value of point, as an integer.
244 Beginning of buffer is position (point-min). */)
245 (void)
246 {
247 Lisp_Object temp;
248 XSETFASTINT (temp, PT);
249 return temp;
250 }
251
252 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
253 doc: /* Return value of point, as a marker object. */)
254 (void)
255 {
256 return build_marker (current_buffer, PT, PT_BYTE);
257 }
258
259 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
260 doc: /* Set point to POSITION, a number or marker.
261 Beginning of buffer is position (point-min), end is (point-max).
262
263 The return value is POSITION. */)
264 (register Lisp_Object position)
265 {
266 if (MARKERP (position))
267 set_point_from_marker (position);
268 else if (INTEGERP (position))
269 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
270 else
271 wrong_type_argument (Qinteger_or_marker_p, position);
272 return position;
273 }
274
275
276 /* Return the start or end position of the region.
277 BEGINNINGP means return the start.
278 If there is no region active, signal an error. */
279
280 static Lisp_Object
281 region_limit (bool beginningp)
282 {
283 Lisp_Object m;
284
285 if (!NILP (Vtransient_mark_mode)
286 && NILP (Vmark_even_if_inactive)
287 && NILP (BVAR (current_buffer, mark_active)))
288 xsignal0 (Qmark_inactive);
289
290 m = Fmarker_position (BVAR (current_buffer, mark));
291 if (NILP (m))
292 error ("The mark is not set now, so there is no region");
293
294 /* Clip to the current narrowing (bug#11770). */
295 return make_number ((PT < XFASTINT (m)) == beginningp
296 ? PT
297 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
298 }
299
300 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
301 doc: /* Return the integer value of point or mark, whichever is smaller. */)
302 (void)
303 {
304 return region_limit (1);
305 }
306
307 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
308 doc: /* Return the integer value of point or mark, whichever is larger. */)
309 (void)
310 {
311 return region_limit (0);
312 }
313
314 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
315 doc: /* Return this buffer's mark, as a marker object.
316 Watch out! Moving this marker changes the mark position.
317 If you set the marker not to point anywhere, the buffer will have no mark. */)
318 (void)
319 {
320 return BVAR (current_buffer, mark);
321 }
322
323 \f
324 /* Find all the overlays in the current buffer that touch position POS.
325 Return the number found, and store them in a vector in VEC
326 of length LEN. */
327
328 static ptrdiff_t
329 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
330 {
331 Lisp_Object overlay, start, end;
332 struct Lisp_Overlay *tail;
333 ptrdiff_t startpos, endpos;
334 ptrdiff_t idx = 0;
335
336 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
337 {
338 XSETMISC (overlay, tail);
339
340 end = OVERLAY_END (overlay);
341 endpos = OVERLAY_POSITION (end);
342 if (endpos < pos)
343 break;
344 start = OVERLAY_START (overlay);
345 startpos = OVERLAY_POSITION (start);
346 if (startpos <= pos)
347 {
348 if (idx < len)
349 vec[idx] = overlay;
350 /* Keep counting overlays even if we can't return them all. */
351 idx++;
352 }
353 }
354
355 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
356 {
357 XSETMISC (overlay, tail);
358
359 start = OVERLAY_START (overlay);
360 startpos = OVERLAY_POSITION (start);
361 if (pos < startpos)
362 break;
363 end = OVERLAY_END (overlay);
364 endpos = OVERLAY_POSITION (end);
365 if (pos <= endpos)
366 {
367 if (idx < len)
368 vec[idx] = overlay;
369 idx++;
370 }
371 }
372
373 return idx;
374 }
375
376 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
377 doc: /* Return the value of POSITION's property PROP, in OBJECT.
378 Almost identical to `get-char-property' except for the following difference:
379 Whereas `get-char-property' returns the property of the char at (i.e. right
380 after) POSITION, this pays attention to properties's stickiness and overlays's
381 advancement settings, in order to find the property of POSITION itself,
382 i.e. the property that a char would inherit if it were inserted
383 at POSITION. */)
384 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
385 {
386 CHECK_NUMBER_COERCE_MARKER (position);
387
388 if (NILP (object))
389 XSETBUFFER (object, current_buffer);
390 else if (WINDOWP (object))
391 object = XWINDOW (object)->contents;
392
393 if (!BUFFERP (object))
394 /* pos-property only makes sense in buffers right now, since strings
395 have no overlays and no notion of insertion for which stickiness
396 could be obeyed. */
397 return Fget_text_property (position, prop, object);
398 else
399 {
400 EMACS_INT posn = XINT (position);
401 ptrdiff_t noverlays;
402 Lisp_Object *overlay_vec, tem;
403 struct buffer *obuf = current_buffer;
404 USE_SAFE_ALLOCA;
405
406 set_buffer_temp (XBUFFER (object));
407
408 /* First try with room for 40 overlays. */
409 Lisp_Object overlay_vecbuf[40];
410 noverlays = ARRAYELTS (overlay_vecbuf);
411 overlay_vec = overlay_vecbuf;
412 noverlays = overlays_around (posn, overlay_vec, noverlays);
413
414 /* If there are more than 40,
415 make enough space for all, and try again. */
416 if (ARRAYELTS (overlay_vecbuf) < noverlays)
417 {
418 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
419 noverlays = overlays_around (posn, overlay_vec, noverlays);
420 }
421 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
422
423 set_buffer_temp (obuf);
424
425 /* Now check the overlays in order of decreasing priority. */
426 while (--noverlays >= 0)
427 {
428 Lisp_Object ol = overlay_vec[noverlays];
429 tem = Foverlay_get (ol, prop);
430 if (!NILP (tem))
431 {
432 /* Check the overlay is indeed active at point. */
433 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
434 if ((OVERLAY_POSITION (start) == posn
435 && XMARKER (start)->insertion_type == 1)
436 || (OVERLAY_POSITION (finish) == posn
437 && XMARKER (finish)->insertion_type == 0))
438 ; /* The overlay will not cover a char inserted at point. */
439 else
440 {
441 SAFE_FREE ();
442 return tem;
443 }
444 }
445 }
446 SAFE_FREE ();
447
448 { /* Now check the text properties. */
449 int stickiness = text_property_stickiness (prop, position, object);
450 if (stickiness > 0)
451 return Fget_text_property (position, prop, object);
452 else if (stickiness < 0
453 && XINT (position) > BUF_BEGV (XBUFFER (object)))
454 return Fget_text_property (make_number (XINT (position) - 1),
455 prop, object);
456 else
457 return Qnil;
458 }
459 }
460 }
461
462 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
463 the value of point is used instead. If BEG or END is null,
464 means don't store the beginning or end of the field.
465
466 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
467 results; they do not effect boundary behavior.
468
469 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
470 position of a field, then the beginning of the previous field is
471 returned instead of the beginning of POS's field (since the end of a
472 field is actually also the beginning of the next input field, this
473 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
474 non-nil case, if two fields are separated by a field with the special
475 value `boundary', and POS lies within it, then the two separated
476 fields are considered to be adjacent, and POS between them, when
477 finding the beginning and ending of the "merged" field.
478
479 Either BEG or END may be 0, in which case the corresponding value
480 is not stored. */
481
482 static void
483 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
484 Lisp_Object beg_limit,
485 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
486 {
487 /* Fields right before and after the point. */
488 Lisp_Object before_field, after_field;
489 /* True if POS counts as the start of a field. */
490 bool at_field_start = 0;
491 /* True if POS counts as the end of a field. */
492 bool at_field_end = 0;
493
494 if (NILP (pos))
495 XSETFASTINT (pos, PT);
496 else
497 CHECK_NUMBER_COERCE_MARKER (pos);
498
499 after_field
500 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
501 before_field
502 = (XFASTINT (pos) > BEGV
503 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
504 Qfield, Qnil, NULL)
505 /* Using nil here would be a more obvious choice, but it would
506 fail when the buffer starts with a non-sticky field. */
507 : after_field);
508
509 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
510 and POS is at beginning of a field, which can also be interpreted
511 as the end of the previous field. Note that the case where if
512 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
513 more natural one; then we avoid treating the beginning of a field
514 specially. */
515 if (NILP (merge_at_boundary))
516 {
517 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
518 if (!EQ (field, after_field))
519 at_field_end = 1;
520 if (!EQ (field, before_field))
521 at_field_start = 1;
522 if (NILP (field) && at_field_start && at_field_end)
523 /* If an inserted char would have a nil field while the surrounding
524 text is non-nil, we're probably not looking at a
525 zero-length field, but instead at a non-nil field that's
526 not intended for editing (such as comint's prompts). */
527 at_field_end = at_field_start = 0;
528 }
529
530 /* Note about special `boundary' fields:
531
532 Consider the case where the point (`.') is between the fields `x' and `y':
533
534 xxxx.yyyy
535
536 In this situation, if merge_at_boundary is non-nil, consider the
537 `x' and `y' fields as forming one big merged field, and so the end
538 of the field is the end of `y'.
539
540 However, if `x' and `y' are separated by a special `boundary' field
541 (a field with a `field' char-property of 'boundary), then ignore
542 this special field when merging adjacent fields. Here's the same
543 situation, but with a `boundary' field between the `x' and `y' fields:
544
545 xxx.BBBByyyy
546
547 Here, if point is at the end of `x', the beginning of `y', or
548 anywhere in-between (within the `boundary' field), merge all
549 three fields and consider the beginning as being the beginning of
550 the `x' field, and the end as being the end of the `y' field. */
551
552 if (beg)
553 {
554 if (at_field_start)
555 /* POS is at the edge of a field, and we should consider it as
556 the beginning of the following field. */
557 *beg = XFASTINT (pos);
558 else
559 /* Find the previous field boundary. */
560 {
561 Lisp_Object p = pos;
562 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
563 /* Skip a `boundary' field. */
564 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
565 beg_limit);
566
567 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
568 beg_limit);
569 *beg = NILP (p) ? BEGV : XFASTINT (p);
570 }
571 }
572
573 if (end)
574 {
575 if (at_field_end)
576 /* POS is at the edge of a field, and we should consider it as
577 the end of the previous field. */
578 *end = XFASTINT (pos);
579 else
580 /* Find the next field boundary. */
581 {
582 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
583 /* Skip a `boundary' field. */
584 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
585 end_limit);
586
587 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
588 end_limit);
589 *end = NILP (pos) ? ZV : XFASTINT (pos);
590 }
591 }
592 }
593
594 \f
595 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
596 doc: /* Delete the field surrounding POS.
597 A field is a region of text with the same `field' property.
598 If POS is nil, the value of point is used for POS. */)
599 (Lisp_Object pos)
600 {
601 ptrdiff_t beg, end;
602 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
603 if (beg != end)
604 del_range (beg, end);
605 return Qnil;
606 }
607
608 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
609 doc: /* Return the contents of the field surrounding POS as a string.
610 A field is a region of text with the same `field' property.
611 If POS is nil, the value of point is used for POS. */)
612 (Lisp_Object pos)
613 {
614 ptrdiff_t beg, end;
615 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
616 return make_buffer_string (beg, end, 1);
617 }
618
619 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
620 doc: /* Return the contents of the field around POS, without text properties.
621 A field is a region of text with the same `field' property.
622 If POS is nil, the value of point is used for POS. */)
623 (Lisp_Object pos)
624 {
625 ptrdiff_t beg, end;
626 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
627 return make_buffer_string (beg, end, 0);
628 }
629
630 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
631 doc: /* Return the beginning of the field surrounding POS.
632 A field is a region of text with the same `field' property.
633 If POS is nil, the value of point is used for POS.
634 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
635 field, then the beginning of the *previous* field is returned.
636 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
637 is before LIMIT, then LIMIT will be returned instead. */)
638 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
639 {
640 ptrdiff_t beg;
641 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
642 return make_number (beg);
643 }
644
645 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
646 doc: /* Return the end of the field surrounding POS.
647 A field is a region of text with the same `field' property.
648 If POS is nil, the value of point is used for POS.
649 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
650 then the end of the *following* field is returned.
651 If LIMIT is non-nil, it is a buffer position; if the end of the field
652 is after LIMIT, then LIMIT will be returned instead. */)
653 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
654 {
655 ptrdiff_t end;
656 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
657 return make_number (end);
658 }
659
660 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
661 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
662 A field is a region of text with the same `field' property.
663
664 If NEW-POS is nil, then use the current point instead, and move point
665 to the resulting constrained position, in addition to returning that
666 position.
667
668 If OLD-POS is at the boundary of two fields, then the allowable
669 positions for NEW-POS depends on the value of the optional argument
670 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
671 constrained to the field that has the same `field' char-property
672 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
673 is non-nil, NEW-POS is constrained to the union of the two adjacent
674 fields. Additionally, if two fields are separated by another field with
675 the special value `boundary', then any point within this special field is
676 also considered to be `on the boundary'.
677
678 If the optional argument ONLY-IN-LINE is non-nil and constraining
679 NEW-POS would move it to a different line, NEW-POS is returned
680 unconstrained. This is useful for commands that move by line, like
681 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
682 only in the case where they can still move to the right line.
683
684 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
685 a non-nil property of that name, then any field boundaries are ignored.
686
687 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
688 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
689 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
690 {
691 /* If non-zero, then the original point, before re-positioning. */
692 ptrdiff_t orig_point = 0;
693 bool fwd;
694 Lisp_Object prev_old, prev_new;
695
696 if (NILP (new_pos))
697 /* Use the current point, and afterwards, set it. */
698 {
699 orig_point = PT;
700 XSETFASTINT (new_pos, PT);
701 }
702
703 CHECK_NUMBER_COERCE_MARKER (new_pos);
704 CHECK_NUMBER_COERCE_MARKER (old_pos);
705
706 fwd = (XINT (new_pos) > XINT (old_pos));
707
708 prev_old = make_number (XINT (old_pos) - 1);
709 prev_new = make_number (XINT (new_pos) - 1);
710
711 if (NILP (Vinhibit_field_text_motion)
712 && !EQ (new_pos, old_pos)
713 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
714 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
715 /* To recognize field boundaries, we must also look at the
716 previous positions; we could use `Fget_pos_property'
717 instead, but in itself that would fail inside non-sticky
718 fields (like comint prompts). */
719 || (XFASTINT (new_pos) > BEGV
720 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
721 || (XFASTINT (old_pos) > BEGV
722 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
723 && (NILP (inhibit_capture_property)
724 /* Field boundaries are again a problem; but now we must
725 decide the case exactly, so we need to call
726 `get_pos_property' as well. */
727 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
728 && (XFASTINT (old_pos) <= BEGV
729 || NILP (Fget_char_property
730 (old_pos, inhibit_capture_property, Qnil))
731 || NILP (Fget_char_property
732 (prev_old, inhibit_capture_property, Qnil))))))
733 /* It is possible that NEW_POS is not within the same field as
734 OLD_POS; try to move NEW_POS so that it is. */
735 {
736 ptrdiff_t shortage;
737 Lisp_Object field_bound;
738
739 if (fwd)
740 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
741 else
742 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
743
744 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
745 other side of NEW_POS, which would mean that NEW_POS is
746 already acceptable, and it's not necessary to constrain it
747 to FIELD_BOUND. */
748 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
749 /* NEW_POS should be constrained, but only if either
750 ONLY_IN_LINE is nil (in which case any constraint is OK),
751 or NEW_POS and FIELD_BOUND are on the same line (in which
752 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
753 && (NILP (only_in_line)
754 /* This is the ONLY_IN_LINE case, check that NEW_POS and
755 FIELD_BOUND are on the same line by seeing whether
756 there's an intervening newline or not. */
757 || (find_newline (XFASTINT (new_pos), -1,
758 XFASTINT (field_bound), -1,
759 fwd ? -1 : 1, &shortage, NULL, 1),
760 shortage != 0)))
761 /* Constrain NEW_POS to FIELD_BOUND. */
762 new_pos = field_bound;
763
764 if (orig_point && XFASTINT (new_pos) != orig_point)
765 /* The NEW_POS argument was originally nil, so automatically set PT. */
766 SET_PT (XFASTINT (new_pos));
767 }
768
769 return new_pos;
770 }
771
772 \f
773 DEFUN ("line-beginning-position",
774 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
775 doc: /* Return the character position of the first character on the current line.
776 With optional argument N, scan forward N - 1 lines first.
777 If the scan reaches the end of the buffer, return that position.
778
779 This function ignores text display directionality; it returns the
780 position of the first character in logical order, i.e. the smallest
781 character position on the line.
782
783 This function constrains the returned position to the current field
784 unless that position would be on a different line than the original,
785 unconstrained result. If N is nil or 1, and a front-sticky field
786 starts at point, the scan stops as soon as it starts. To ignore field
787 boundaries, bind `inhibit-field-text-motion' to t.
788
789 This function does not move point. */)
790 (Lisp_Object n)
791 {
792 ptrdiff_t charpos, bytepos;
793
794 if (NILP (n))
795 XSETFASTINT (n, 1);
796 else
797 CHECK_NUMBER (n);
798
799 scan_newline_from_point (XINT (n) - 1, &charpos, &bytepos);
800
801 /* Return END constrained to the current input field. */
802 return Fconstrain_to_field (make_number (charpos), make_number (PT),
803 XINT (n) != 1 ? Qt : Qnil,
804 Qt, Qnil);
805 }
806
807 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
808 doc: /* Return the character position of the last character on the current line.
809 With argument N not nil or 1, move forward N - 1 lines first.
810 If scan reaches end of buffer, return that position.
811
812 This function ignores text display directionality; it returns the
813 position of the last character in logical order, i.e. the largest
814 character position on the line.
815
816 This function constrains the returned position to the current field
817 unless that would be on a different line than the original,
818 unconstrained result. If N is nil or 1, and a rear-sticky field ends
819 at point, the scan stops as soon as it starts. To ignore field
820 boundaries bind `inhibit-field-text-motion' to t.
821
822 This function does not move point. */)
823 (Lisp_Object n)
824 {
825 ptrdiff_t clipped_n;
826 ptrdiff_t end_pos;
827 ptrdiff_t orig = PT;
828
829 if (NILP (n))
830 XSETFASTINT (n, 1);
831 else
832 CHECK_NUMBER (n);
833
834 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
835 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
836 NULL);
837
838 /* Return END_POS constrained to the current input field. */
839 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
840 Qnil, Qt, Qnil);
841 }
842
843 /* Save current buffer state for `save-excursion' special form.
844 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
845 offload some work from GC. */
846
847 Lisp_Object
848 save_excursion_save (void)
849 {
850 return make_save_obj_obj_obj_obj
851 (Fpoint_marker (),
852 Qnil,
853 /* Selected window if current buffer is shown in it, nil otherwise. */
854 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
855 ? selected_window : Qnil),
856 Qnil);
857 }
858
859 /* Restore saved buffer before leaving `save-excursion' special form. */
860
861 void
862 save_excursion_restore (Lisp_Object info)
863 {
864 Lisp_Object tem, tem1;
865 struct gcpro gcpro1;
866
867 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
868 /* If we're unwinding to top level, saved buffer may be deleted. This
869 means that all of its markers are unchained and so tem is nil. */
870 if (NILP (tem))
871 goto out;
872
873 GCPRO1 (info);
874
875 Fset_buffer (tem);
876
877 /* Point marker. */
878 tem = XSAVE_OBJECT (info, 0);
879 Fgoto_char (tem);
880 unchain_marker (XMARKER (tem));
881
882 /* If buffer was visible in a window, and a different window was
883 selected, and the old selected window is still showing this
884 buffer, restore point in that window. */
885 tem = XSAVE_OBJECT (info, 2);
886 if (WINDOWP (tem)
887 && !EQ (tem, selected_window)
888 && (tem1 = XWINDOW (tem)->contents,
889 (/* Window is live... */
890 BUFFERP (tem1)
891 /* ...and it shows the current buffer. */
892 && XBUFFER (tem1) == current_buffer)))
893 Fset_window_point (tem, make_number (PT));
894
895 UNGCPRO;
896
897 out:
898
899 free_misc (info);
900 }
901
902 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
903 doc: /* Save point, and current buffer; execute BODY; restore those things.
904 Executes BODY just like `progn'.
905 The values of point and the current buffer are restored
906 even in case of abnormal exit (throw or error).
907
908 If you only want to save the current buffer but not point,
909 then just use `save-current-buffer', or even `with-current-buffer'.
910
911 usage: (save-excursion &rest BODY) */)
912 (Lisp_Object args)
913 {
914 register Lisp_Object val;
915 ptrdiff_t count = SPECPDL_INDEX ();
916
917 record_unwind_protect (save_excursion_restore, save_excursion_save ());
918
919 val = Fprogn (args);
920 return unbind_to (count, val);
921 }
922
923 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
924 doc: /* Record which buffer is current; execute BODY; make that buffer current.
925 BODY is executed just like `progn'.
926 usage: (save-current-buffer &rest BODY) */)
927 (Lisp_Object args)
928 {
929 ptrdiff_t count = SPECPDL_INDEX ();
930
931 record_unwind_current_buffer ();
932 return unbind_to (count, Fprogn (args));
933 }
934 \f
935 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
936 doc: /* Return the number of characters in the current buffer.
937 If BUFFER, return the number of characters in that buffer instead. */)
938 (Lisp_Object buffer)
939 {
940 if (NILP (buffer))
941 return make_number (Z - BEG);
942 else
943 {
944 CHECK_BUFFER (buffer);
945 return make_number (BUF_Z (XBUFFER (buffer))
946 - BUF_BEG (XBUFFER (buffer)));
947 }
948 }
949
950 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
951 doc: /* Return the minimum permissible value of point in the current buffer.
952 This is 1, unless narrowing (a buffer restriction) is in effect. */)
953 (void)
954 {
955 Lisp_Object temp;
956 XSETFASTINT (temp, BEGV);
957 return temp;
958 }
959
960 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
961 doc: /* Return a marker to the minimum permissible value of point in this buffer.
962 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
963 (void)
964 {
965 return build_marker (current_buffer, BEGV, BEGV_BYTE);
966 }
967
968 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
969 doc: /* Return the maximum permissible value of point in the current buffer.
970 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
971 is in effect, in which case it is less. */)
972 (void)
973 {
974 Lisp_Object temp;
975 XSETFASTINT (temp, ZV);
976 return temp;
977 }
978
979 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
980 doc: /* Return a marker to the maximum permissible value of point in this buffer.
981 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
982 is in effect, in which case it is less. */)
983 (void)
984 {
985 return build_marker (current_buffer, ZV, ZV_BYTE);
986 }
987
988 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
989 doc: /* Return the position of the gap, in the current buffer.
990 See also `gap-size'. */)
991 (void)
992 {
993 Lisp_Object temp;
994 XSETFASTINT (temp, GPT);
995 return temp;
996 }
997
998 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
999 doc: /* Return the size of the current buffer's gap.
1000 See also `gap-position'. */)
1001 (void)
1002 {
1003 Lisp_Object temp;
1004 XSETFASTINT (temp, GAP_SIZE);
1005 return temp;
1006 }
1007
1008 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1009 doc: /* Return the byte position for character position POSITION.
1010 If POSITION is out of range, the value is nil. */)
1011 (Lisp_Object position)
1012 {
1013 CHECK_NUMBER_COERCE_MARKER (position);
1014 if (XINT (position) < BEG || XINT (position) > Z)
1015 return Qnil;
1016 return make_number (CHAR_TO_BYTE (XINT (position)));
1017 }
1018
1019 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1020 doc: /* Return the character position for byte position BYTEPOS.
1021 If BYTEPOS is out of range, the value is nil. */)
1022 (Lisp_Object bytepos)
1023 {
1024 CHECK_NUMBER (bytepos);
1025 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1026 return Qnil;
1027 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1028 }
1029 \f
1030 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1031 doc: /* Return the character following point, as a number.
1032 At the end of the buffer or accessible region, return 0. */)
1033 (void)
1034 {
1035 Lisp_Object temp;
1036 if (PT >= ZV)
1037 XSETFASTINT (temp, 0);
1038 else
1039 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1040 return temp;
1041 }
1042
1043 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1044 doc: /* Return the character preceding point, as a number.
1045 At the beginning of the buffer or accessible region, return 0. */)
1046 (void)
1047 {
1048 Lisp_Object temp;
1049 if (PT <= BEGV)
1050 XSETFASTINT (temp, 0);
1051 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1052 {
1053 ptrdiff_t pos = PT_BYTE;
1054 DEC_POS (pos);
1055 XSETFASTINT (temp, FETCH_CHAR (pos));
1056 }
1057 else
1058 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1059 return temp;
1060 }
1061
1062 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1063 doc: /* Return t if point is at the beginning of the buffer.
1064 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1065 (void)
1066 {
1067 if (PT == BEGV)
1068 return Qt;
1069 return Qnil;
1070 }
1071
1072 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1073 doc: /* Return t if point is at the end of the buffer.
1074 If the buffer is narrowed, this means the end of the narrowed part. */)
1075 (void)
1076 {
1077 if (PT == ZV)
1078 return Qt;
1079 return Qnil;
1080 }
1081
1082 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1083 doc: /* Return t if point is at the beginning of a line. */)
1084 (void)
1085 {
1086 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1087 return Qt;
1088 return Qnil;
1089 }
1090
1091 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1092 doc: /* Return t if point is at the end of a line.
1093 `End of a line' includes point being at the end of the buffer. */)
1094 (void)
1095 {
1096 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1097 return Qt;
1098 return Qnil;
1099 }
1100
1101 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1102 doc: /* Return character in current buffer at position POS.
1103 POS is an integer or a marker and defaults to point.
1104 If POS is out of range, the value is nil. */)
1105 (Lisp_Object pos)
1106 {
1107 register ptrdiff_t pos_byte;
1108
1109 if (NILP (pos))
1110 {
1111 pos_byte = PT_BYTE;
1112 XSETFASTINT (pos, PT);
1113 }
1114
1115 if (MARKERP (pos))
1116 {
1117 pos_byte = marker_byte_position (pos);
1118 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1119 return Qnil;
1120 }
1121 else
1122 {
1123 CHECK_NUMBER_COERCE_MARKER (pos);
1124 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1125 return Qnil;
1126
1127 pos_byte = CHAR_TO_BYTE (XINT (pos));
1128 }
1129
1130 return make_number (FETCH_CHAR (pos_byte));
1131 }
1132
1133 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1134 doc: /* Return character in current buffer preceding position POS.
1135 POS is an integer or a marker and defaults to point.
1136 If POS is out of range, the value is nil. */)
1137 (Lisp_Object pos)
1138 {
1139 register Lisp_Object val;
1140 register ptrdiff_t pos_byte;
1141
1142 if (NILP (pos))
1143 {
1144 pos_byte = PT_BYTE;
1145 XSETFASTINT (pos, PT);
1146 }
1147
1148 if (MARKERP (pos))
1149 {
1150 pos_byte = marker_byte_position (pos);
1151
1152 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1153 return Qnil;
1154 }
1155 else
1156 {
1157 CHECK_NUMBER_COERCE_MARKER (pos);
1158
1159 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1160 return Qnil;
1161
1162 pos_byte = CHAR_TO_BYTE (XINT (pos));
1163 }
1164
1165 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1166 {
1167 DEC_POS (pos_byte);
1168 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1169 }
1170 else
1171 {
1172 pos_byte--;
1173 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1174 }
1175 return val;
1176 }
1177 \f
1178 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1179 doc: /* Return the name under which the user logged in, as a string.
1180 This is based on the effective uid, not the real uid.
1181 Also, if the environment variables LOGNAME or USER are set,
1182 that determines the value of this function.
1183
1184 If optional argument UID is an integer or a float, return the login name
1185 of the user with that uid, or nil if there is no such user. */)
1186 (Lisp_Object uid)
1187 {
1188 struct passwd *pw;
1189 uid_t id;
1190
1191 /* Set up the user name info if we didn't do it before.
1192 (That can happen if Emacs is dumpable
1193 but you decide to run `temacs -l loadup' and not dump. */
1194 if (NILP (Vuser_login_name))
1195 init_editfns ();
1196
1197 if (NILP (uid))
1198 return Vuser_login_name;
1199
1200 CONS_TO_INTEGER (uid, uid_t, id);
1201 block_input ();
1202 pw = getpwuid (id);
1203 unblock_input ();
1204 return (pw ? build_string (pw->pw_name) : Qnil);
1205 }
1206
1207 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1208 0, 0, 0,
1209 doc: /* Return the name of the user's real uid, as a string.
1210 This ignores the environment variables LOGNAME and USER, so it differs from
1211 `user-login-name' when running under `su'. */)
1212 (void)
1213 {
1214 /* Set up the user name info if we didn't do it before.
1215 (That can happen if Emacs is dumpable
1216 but you decide to run `temacs -l loadup' and not dump. */
1217 if (NILP (Vuser_login_name))
1218 init_editfns ();
1219 return Vuser_real_login_name;
1220 }
1221
1222 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1223 doc: /* Return the effective uid of Emacs.
1224 Value is an integer or a float, depending on the value. */)
1225 (void)
1226 {
1227 uid_t euid = geteuid ();
1228 return make_fixnum_or_float (euid);
1229 }
1230
1231 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1232 doc: /* Return the real uid of Emacs.
1233 Value is an integer or a float, depending on the value. */)
1234 (void)
1235 {
1236 uid_t uid = getuid ();
1237 return make_fixnum_or_float (uid);
1238 }
1239
1240 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1241 doc: /* Return the effective gid of Emacs.
1242 Value is an integer or a float, depending on the value. */)
1243 (void)
1244 {
1245 gid_t egid = getegid ();
1246 return make_fixnum_or_float (egid);
1247 }
1248
1249 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1250 doc: /* Return the real gid of Emacs.
1251 Value is an integer or a float, depending on the value. */)
1252 (void)
1253 {
1254 gid_t gid = getgid ();
1255 return make_fixnum_or_float (gid);
1256 }
1257
1258 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1259 doc: /* Return the full name of the user logged in, as a string.
1260 If the full name corresponding to Emacs's userid is not known,
1261 return "unknown".
1262
1263 If optional argument UID is an integer or float, return the full name
1264 of the user with that uid, or nil if there is no such user.
1265 If UID is a string, return the full name of the user with that login
1266 name, or nil if there is no such user. */)
1267 (Lisp_Object uid)
1268 {
1269 struct passwd *pw;
1270 register char *p, *q;
1271 Lisp_Object full;
1272
1273 if (NILP (uid))
1274 return Vuser_full_name;
1275 else if (NUMBERP (uid))
1276 {
1277 uid_t u;
1278 CONS_TO_INTEGER (uid, uid_t, u);
1279 block_input ();
1280 pw = getpwuid (u);
1281 unblock_input ();
1282 }
1283 else if (STRINGP (uid))
1284 {
1285 block_input ();
1286 pw = getpwnam (SSDATA (uid));
1287 unblock_input ();
1288 }
1289 else
1290 error ("Invalid UID specification");
1291
1292 if (!pw)
1293 return Qnil;
1294
1295 p = USER_FULL_NAME;
1296 /* Chop off everything after the first comma. */
1297 q = strchr (p, ',');
1298 full = make_string (p, q ? q - p : strlen (p));
1299
1300 #ifdef AMPERSAND_FULL_NAME
1301 p = SSDATA (full);
1302 q = strchr (p, '&');
1303 /* Substitute the login name for the &, upcasing the first character. */
1304 if (q)
1305 {
1306 Lisp_Object login = Fuser_login_name (make_number (pw->pw_uid));
1307 USE_SAFE_ALLOCA;
1308 char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1);
1309 memcpy (r, p, q - p);
1310 char *s = lispstpcpy (&r[q - p], login);
1311 r[q - p] = upcase ((unsigned char) r[q - p]);
1312 strcpy (s, q + 1);
1313 full = build_string (r);
1314 SAFE_FREE ();
1315 }
1316 #endif /* AMPERSAND_FULL_NAME */
1317
1318 return full;
1319 }
1320
1321 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1322 doc: /* Return the host name of the machine you are running on, as a string. */)
1323 (void)
1324 {
1325 if (EQ (Vsystem_name, cached_system_name))
1326 init_and_cache_system_name ();
1327 return Vsystem_name;
1328 }
1329
1330 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1331 doc: /* Return the process ID of Emacs, as a number. */)
1332 (void)
1333 {
1334 pid_t pid = getpid ();
1335 return make_fixnum_or_float (pid);
1336 }
1337
1338 \f
1339
1340 #ifndef TIME_T_MIN
1341 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1342 #endif
1343 #ifndef TIME_T_MAX
1344 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1345 #endif
1346
1347 /* Report that a time value is out of range for Emacs. */
1348 void
1349 time_overflow (void)
1350 {
1351 error ("Specified time is not representable");
1352 }
1353
1354 static void
1355 invalid_time (void)
1356 {
1357 error ("Invalid time specification");
1358 }
1359
1360 /* Check a return value compatible with that of decode_time_components. */
1361 static void
1362 check_time_validity (int validity)
1363 {
1364 if (validity <= 0)
1365 {
1366 if (validity < 0)
1367 time_overflow ();
1368 else
1369 invalid_time ();
1370 }
1371 }
1372
1373 /* A substitute for mktime_z on platforms that lack it. It's not
1374 thread-safe, but should be good enough for Emacs in typical use. */
1375 #ifndef HAVE_TZALLOC
1376 static time_t
1377 mktime_z (timezone_t tz, struct tm *tm)
1378 {
1379 char *oldtz = getenv ("TZ");
1380 USE_SAFE_ALLOCA;
1381 if (oldtz)
1382 {
1383 size_t oldtzsize = strlen (oldtz) + 1;
1384 char *oldtzcopy = SAFE_ALLOCA (oldtzsize);
1385 oldtz = strcpy (oldtzcopy, oldtz);
1386 }
1387 block_input ();
1388 set_time_zone_rule (tz);
1389 time_t t = mktime (tm);
1390 set_time_zone_rule (oldtz);
1391 unblock_input ();
1392 SAFE_FREE ();
1393 return t;
1394 }
1395 #endif
1396
1397 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1398 static EMACS_INT
1399 hi_time (time_t t)
1400 {
1401 time_t hi = t >> LO_TIME_BITS;
1402
1403 /* Check for overflow, helping the compiler for common cases where
1404 no runtime check is needed, and taking care not to convert
1405 negative numbers to unsigned before comparing them. */
1406 if (! ((! TYPE_SIGNED (time_t)
1407 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> LO_TIME_BITS
1408 || MOST_NEGATIVE_FIXNUM <= hi)
1409 && (TIME_T_MAX >> LO_TIME_BITS <= MOST_POSITIVE_FIXNUM
1410 || hi <= MOST_POSITIVE_FIXNUM)))
1411 time_overflow ();
1412
1413 return hi;
1414 }
1415
1416 /* Return the bottom bits of the time T. */
1417 static int
1418 lo_time (time_t t)
1419 {
1420 return t & ((1 << LO_TIME_BITS) - 1);
1421 }
1422
1423 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1424 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1425 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1426 HIGH has the most significant bits of the seconds, while LOW has the
1427 least significant 16 bits. USEC and PSEC are the microsecond and
1428 picosecond counts. */)
1429 (void)
1430 {
1431 return make_lisp_time (current_timespec ());
1432 }
1433
1434 static struct lisp_time
1435 time_add (struct lisp_time ta, struct lisp_time tb)
1436 {
1437 EMACS_INT hi = ta.hi + tb.hi;
1438 int lo = ta.lo + tb.lo;
1439 int us = ta.us + tb.us;
1440 int ps = ta.ps + tb.ps;
1441 us += (1000000 <= ps);
1442 ps -= (1000000 <= ps) * 1000000;
1443 lo += (1000000 <= us);
1444 us -= (1000000 <= us) * 1000000;
1445 hi += (1 << LO_TIME_BITS <= lo);
1446 lo -= (1 << LO_TIME_BITS <= lo) << LO_TIME_BITS;
1447 return (struct lisp_time) { hi, lo, us, ps };
1448 }
1449
1450 static struct lisp_time
1451 time_subtract (struct lisp_time ta, struct lisp_time tb)
1452 {
1453 EMACS_INT hi = ta.hi - tb.hi;
1454 int lo = ta.lo - tb.lo;
1455 int us = ta.us - tb.us;
1456 int ps = ta.ps - tb.ps;
1457 us -= (ps < 0);
1458 ps += (ps < 0) * 1000000;
1459 lo -= (us < 0);
1460 us += (us < 0) * 1000000;
1461 hi -= (lo < 0);
1462 lo += (lo < 0) << LO_TIME_BITS;
1463 return (struct lisp_time) { hi, lo, us, ps };
1464 }
1465
1466 static Lisp_Object
1467 time_arith (Lisp_Object a, Lisp_Object b,
1468 struct lisp_time (*op) (struct lisp_time, struct lisp_time))
1469 {
1470 int alen, blen;
1471 struct lisp_time ta = lisp_time_struct (a, &alen);
1472 struct lisp_time tb = lisp_time_struct (b, &blen);
1473 struct lisp_time t = op (ta, tb);
1474 if (! (MOST_NEGATIVE_FIXNUM <= t.hi && t.hi <= MOST_POSITIVE_FIXNUM))
1475 time_overflow ();
1476 Lisp_Object val = Qnil;
1477
1478 switch (max (alen, blen))
1479 {
1480 default:
1481 val = Fcons (make_number (t.ps), val);
1482 /* Fall through. */
1483 case 3:
1484 val = Fcons (make_number (t.us), val);
1485 /* Fall through. */
1486 case 2:
1487 val = Fcons (make_number (t.lo), val);
1488 val = Fcons (make_number (t.hi), val);
1489 break;
1490 }
1491
1492 return val;
1493 }
1494
1495 DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0,
1496 doc: /* Return the sum of two time values A and B, as a time value. */)
1497 (Lisp_Object a, Lisp_Object b)
1498 {
1499 return time_arith (a, b, time_add);
1500 }
1501
1502 DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0,
1503 doc: /* Return the difference between two time values A and B, as a time value. */)
1504 (Lisp_Object a, Lisp_Object b)
1505 {
1506 return time_arith (a, b, time_subtract);
1507 }
1508
1509 DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0,
1510 doc: /* Return non-nil if time value T1 is earlier than time value T2. */)
1511 (Lisp_Object t1, Lisp_Object t2)
1512 {
1513 int t1len, t2len;
1514 struct lisp_time a = lisp_time_struct (t1, &t1len);
1515 struct lisp_time b = lisp_time_struct (t2, &t2len);
1516 return ((a.hi != b.hi ? a.hi < b.hi
1517 : a.lo != b.lo ? a.lo < b.lo
1518 : a.us != b.us ? a.us < b.us
1519 : a.ps < b.ps)
1520 ? Qt : Qnil);
1521 }
1522
1523
1524 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1525 0, 0, 0,
1526 doc: /* Return the current run time used by Emacs.
1527 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1528 style as (current-time).
1529
1530 On systems that can't determine the run time, `get-internal-run-time'
1531 does the same thing as `current-time'. */)
1532 (void)
1533 {
1534 #ifdef HAVE_GETRUSAGE
1535 struct rusage usage;
1536 time_t secs;
1537 int usecs;
1538
1539 if (getrusage (RUSAGE_SELF, &usage) < 0)
1540 /* This shouldn't happen. What action is appropriate? */
1541 xsignal0 (Qerror);
1542
1543 /* Sum up user time and system time. */
1544 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1545 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1546 if (usecs >= 1000000)
1547 {
1548 usecs -= 1000000;
1549 secs++;
1550 }
1551 return make_lisp_time (make_timespec (secs, usecs * 1000));
1552 #else /* ! HAVE_GETRUSAGE */
1553 #ifdef WINDOWSNT
1554 return w32_get_internal_run_time ();
1555 #else /* ! WINDOWSNT */
1556 return Fcurrent_time ();
1557 #endif /* WINDOWSNT */
1558 #endif /* HAVE_GETRUSAGE */
1559 }
1560 \f
1561
1562 /* Make a Lisp list that represents the Emacs time T. T may be an
1563 invalid time, with a slightly negative tv_nsec value such as
1564 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1565 correspondingly negative picosecond count. */
1566 Lisp_Object
1567 make_lisp_time (struct timespec t)
1568 {
1569 time_t s = t.tv_sec;
1570 int ns = t.tv_nsec;
1571 return list4i (hi_time (s), lo_time (s), ns / 1000, ns % 1000 * 1000);
1572 }
1573
1574 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1575 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1576 Return 2, 3, or 4 to indicate the effective length of SPECIFIED_TIME
1577 if successful, 0 if unsuccessful. */
1578 static int
1579 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1580 Lisp_Object *plow, Lisp_Object *pusec,
1581 Lisp_Object *ppsec)
1582 {
1583 Lisp_Object high = make_number (0);
1584 Lisp_Object low = specified_time;
1585 Lisp_Object usec = make_number (0);
1586 Lisp_Object psec = make_number (0);
1587 int len = 4;
1588
1589 if (CONSP (specified_time))
1590 {
1591 high = XCAR (specified_time);
1592 low = XCDR (specified_time);
1593 if (CONSP (low))
1594 {
1595 Lisp_Object low_tail = XCDR (low);
1596 low = XCAR (low);
1597 if (CONSP (low_tail))
1598 {
1599 usec = XCAR (low_tail);
1600 low_tail = XCDR (low_tail);
1601 if (CONSP (low_tail))
1602 psec = XCAR (low_tail);
1603 else
1604 len = 3;
1605 }
1606 else if (!NILP (low_tail))
1607 {
1608 usec = low_tail;
1609 len = 3;
1610 }
1611 else
1612 len = 2;
1613 }
1614 else
1615 len = 2;
1616
1617 /* When combining components, require LOW to be an integer,
1618 as otherwise it would be a pain to add up times. */
1619 if (! INTEGERP (low))
1620 return 0;
1621 }
1622 else if (INTEGERP (specified_time))
1623 len = 2;
1624
1625 *phigh = high;
1626 *plow = low;
1627 *pusec = usec;
1628 *ppsec = psec;
1629 return len;
1630 }
1631
1632 /* Convert T into an Emacs time *RESULT, truncating toward minus infinity.
1633 Return true if T is in range, false otherwise. */
1634 static bool
1635 decode_float_time (double t, struct lisp_time *result)
1636 {
1637 double lo_multiplier = 1 << LO_TIME_BITS;
1638 double emacs_time_min = MOST_NEGATIVE_FIXNUM * lo_multiplier;
1639 if (! (emacs_time_min <= t && t < -emacs_time_min))
1640 return false;
1641
1642 double small_t = t / lo_multiplier;
1643 EMACS_INT hi = small_t;
1644 double t_sans_hi = t - hi * lo_multiplier;
1645 int lo = t_sans_hi;
1646 long double fracps = (t_sans_hi - lo) * 1e12L;
1647 #ifdef INT_FAST64_MAX
1648 int_fast64_t ifracps = fracps;
1649 int us = ifracps / 1000000;
1650 int ps = ifracps % 1000000;
1651 #else
1652 int us = fracps / 1e6L;
1653 int ps = fracps - us * 1e6L;
1654 #endif
1655 us -= (ps < 0);
1656 ps += (ps < 0) * 1000000;
1657 lo -= (us < 0);
1658 us += (us < 0) * 1000000;
1659 hi -= (lo < 0);
1660 lo += (lo < 0) << LO_TIME_BITS;
1661 result->hi = hi;
1662 result->lo = lo;
1663 result->us = us;
1664 result->ps = ps;
1665 return true;
1666 }
1667
1668 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1669 list, generate the corresponding time value.
1670 If LOW is floating point, the other components should be zero.
1671
1672 If RESULT is not null, store into *RESULT the converted time.
1673 If *DRESULT is not null, store into *DRESULT the number of
1674 seconds since the start of the POSIX Epoch.
1675
1676 Return 1 if successful, 0 if the components are of the
1677 wrong type, and -1 if the time is out of range. */
1678 int
1679 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1680 Lisp_Object psec,
1681 struct lisp_time *result, double *dresult)
1682 {
1683 EMACS_INT hi, lo, us, ps;
1684 if (! (INTEGERP (high)
1685 && INTEGERP (usec) && INTEGERP (psec)))
1686 return 0;
1687 if (! INTEGERP (low))
1688 {
1689 if (FLOATP (low))
1690 {
1691 double t = XFLOAT_DATA (low);
1692 if (result && ! decode_float_time (t, result))
1693 return -1;
1694 if (dresult)
1695 *dresult = t;
1696 return 1;
1697 }
1698 else if (NILP (low))
1699 {
1700 struct timespec now = current_timespec ();
1701 if (result)
1702 {
1703 result->hi = hi_time (now.tv_sec);
1704 result->lo = lo_time (now.tv_sec);
1705 result->us = now.tv_nsec / 1000;
1706 result->ps = now.tv_nsec % 1000 * 1000;
1707 }
1708 if (dresult)
1709 *dresult = now.tv_sec + now.tv_nsec / 1e9;
1710 return 1;
1711 }
1712 else
1713 return 0;
1714 }
1715
1716 hi = XINT (high);
1717 lo = XINT (low);
1718 us = XINT (usec);
1719 ps = XINT (psec);
1720
1721 /* Normalize out-of-range lower-order components by carrying
1722 each overflow into the next higher-order component. */
1723 us += ps / 1000000 - (ps % 1000000 < 0);
1724 lo += us / 1000000 - (us % 1000000 < 0);
1725 hi += lo >> LO_TIME_BITS;
1726 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1727 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1728 lo &= (1 << LO_TIME_BITS) - 1;
1729
1730 if (result)
1731 {
1732 if (! (MOST_NEGATIVE_FIXNUM <= hi && hi <= MOST_POSITIVE_FIXNUM))
1733 return -1;
1734 result->hi = hi;
1735 result->lo = lo;
1736 result->us = us;
1737 result->ps = ps;
1738 }
1739
1740 if (dresult)
1741 {
1742 double dhi = hi;
1743 *dresult = (us * 1e6 + ps) / 1e12 + lo + dhi * (1 << LO_TIME_BITS);
1744 }
1745
1746 return 1;
1747 }
1748
1749 struct timespec
1750 lisp_to_timespec (struct lisp_time t)
1751 {
1752 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1753 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1754 return invalid_timespec ();
1755 time_t s = (t.hi << LO_TIME_BITS) + t.lo;
1756 int ns = t.us * 1000 + t.ps / 1000;
1757 return make_timespec (s, ns);
1758 }
1759
1760 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1761 Store its effective length into *PLEN.
1762 If SPECIFIED_TIME is nil, use the current time.
1763 Signal an error if SPECIFIED_TIME does not represent a time. */
1764 static struct lisp_time
1765 lisp_time_struct (Lisp_Object specified_time, int *plen)
1766 {
1767 Lisp_Object high, low, usec, psec;
1768 struct lisp_time t;
1769 int len = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1770 int val = len ? decode_time_components (high, low, usec, psec, &t, 0) : 0;
1771 check_time_validity (val);
1772 *plen = len;
1773 return t;
1774 }
1775
1776 /* Like lisp_time_struct, except return a struct timespec.
1777 Discard any low-order digits. */
1778 struct timespec
1779 lisp_time_argument (Lisp_Object specified_time)
1780 {
1781 int len;
1782 struct lisp_time lt = lisp_time_struct (specified_time, &len);
1783 struct timespec t = lisp_to_timespec (lt);
1784 if (! timespec_valid_p (t))
1785 time_overflow ();
1786 return t;
1787 }
1788
1789 /* Like lisp_time_argument, except decode only the seconds part,
1790 and do not check the subseconds part. */
1791 static time_t
1792 lisp_seconds_argument (Lisp_Object specified_time)
1793 {
1794 Lisp_Object high, low, usec, psec;
1795 struct lisp_time t;
1796
1797 int val = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1798 if (val != 0)
1799 {
1800 val = decode_time_components (high, low, make_number (0),
1801 make_number (0), &t, 0);
1802 if (0 < val
1803 && ! ((TYPE_SIGNED (time_t)
1804 ? TIME_T_MIN >> LO_TIME_BITS <= t.hi
1805 : 0 <= t.hi)
1806 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1807 val = -1;
1808 }
1809 check_time_validity (val);
1810 return (t.hi << LO_TIME_BITS) + t.lo;
1811 }
1812
1813 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1814 doc: /* Return the current time, as a float number of seconds since the epoch.
1815 If SPECIFIED-TIME is given, it is the time to convert to float
1816 instead of the current time. The argument should have the form
1817 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1818 you can use times from `current-time' and from `file-attributes'.
1819 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1820 considered obsolete.
1821
1822 WARNING: Since the result is floating point, it may not be exact.
1823 If precise time stamps are required, use either `current-time',
1824 or (if you need time as a string) `format-time-string'. */)
1825 (Lisp_Object specified_time)
1826 {
1827 double t;
1828 Lisp_Object high, low, usec, psec;
1829 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1830 && decode_time_components (high, low, usec, psec, 0, &t)))
1831 invalid_time ();
1832 return make_float (t);
1833 }
1834
1835 /* Write information into buffer S of size MAXSIZE, according to the
1836 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1837 Default to Universal Time if UT, local time otherwise.
1838 Use NS as the number of nanoseconds in the %N directive.
1839 Return the number of bytes written, not including the terminating
1840 '\0'. If S is NULL, nothing will be written anywhere; so to
1841 determine how many bytes would be written, use NULL for S and
1842 ((size_t) -1) for MAXSIZE.
1843
1844 This function behaves like nstrftime, except it allows null
1845 bytes in FORMAT and it does not support nanoseconds. */
1846 static size_t
1847 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1848 size_t format_len, const struct tm *tp, bool ut, int ns)
1849 {
1850 size_t total = 0;
1851
1852 /* Loop through all the null-terminated strings in the format
1853 argument. Normally there's just one null-terminated string, but
1854 there can be arbitrarily many, concatenated together, if the
1855 format contains '\0' bytes. nstrftime stops at the first
1856 '\0' byte so we must invoke it separately for each such string. */
1857 for (;;)
1858 {
1859 size_t len;
1860 size_t result;
1861
1862 if (s)
1863 s[0] = '\1';
1864
1865 result = nstrftime (s, maxsize, format, tp, ut, ns);
1866
1867 if (s)
1868 {
1869 if (result == 0 && s[0] != '\0')
1870 return 0;
1871 s += result + 1;
1872 }
1873
1874 maxsize -= result + 1;
1875 total += result;
1876 len = strlen (format);
1877 if (len == format_len)
1878 return total;
1879 total++;
1880 format += len + 1;
1881 format_len -= len + 1;
1882 }
1883 }
1884
1885 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1886 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1887 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1888 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1889 is also still accepted.
1890 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1891 as Universal Time; nil means describe TIME in the local time zone.
1892 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1893 by text that describes the specified date and time in TIME:
1894
1895 %Y is the year, %y within the century, %C the century.
1896 %G is the year corresponding to the ISO week, %g within the century.
1897 %m is the numeric month.
1898 %b and %h are the locale's abbreviated month name, %B the full name.
1899 (%h is not supported on MS-Windows.)
1900 %d is the day of the month, zero-padded, %e is blank-padded.
1901 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1902 %a is the locale's abbreviated name of the day of week, %A the full name.
1903 %U is the week number starting on Sunday, %W starting on Monday,
1904 %V according to ISO 8601.
1905 %j is the day of the year.
1906
1907 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1908 only blank-padded, %l is like %I blank-padded.
1909 %p is the locale's equivalent of either AM or PM.
1910 %M is the minute.
1911 %S is the second.
1912 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1913 %Z is the time zone name, %z is the numeric form.
1914 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1915
1916 %c is the locale's date and time format.
1917 %x is the locale's "preferred" date format.
1918 %D is like "%m/%d/%y".
1919 %F is the ISO 8601 date format (like "%Y-%m-%d").
1920
1921 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1922 %X is the locale's "preferred" time format.
1923
1924 Finally, %n is a newline, %t is a tab, %% is a literal %.
1925
1926 Certain flags and modifiers are available with some format controls.
1927 The flags are `_', `-', `^' and `#'. For certain characters X,
1928 %_X is like %X, but padded with blanks; %-X is like %X,
1929 but without padding. %^X is like %X, but with all textual
1930 characters up-cased; %#X is like %X, but with letter-case of
1931 all textual characters reversed.
1932 %NX (where N stands for an integer) is like %X,
1933 but takes up at least N (a number) positions.
1934 The modifiers are `E' and `O'. For certain characters X,
1935 %EX is a locale's alternative version of %X;
1936 %OX is like %X, but uses the locale's number symbols.
1937
1938 For example, to produce full ISO 8601 format, use "%FT%T%z".
1939
1940 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1941 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1942 {
1943 struct timespec t = lisp_time_argument (timeval);
1944 struct tm tm;
1945
1946 CHECK_STRING (format_string);
1947 format_string = code_convert_string_norecord (format_string,
1948 Vlocale_coding_system, 1);
1949 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1950 t, ! NILP (universal), &tm);
1951 }
1952
1953 static Lisp_Object
1954 format_time_string (char const *format, ptrdiff_t formatlen,
1955 struct timespec t, bool ut, struct tm *tmp)
1956 {
1957 char buffer[4000];
1958 char *buf = buffer;
1959 ptrdiff_t size = sizeof buffer;
1960 size_t len;
1961 Lisp_Object bufstring;
1962 int ns = t.tv_nsec;
1963 USE_SAFE_ALLOCA;
1964
1965 tmp = ut ? gmtime_r (&t.tv_sec, tmp) : localtime_r (&t.tv_sec, tmp);
1966 if (! tmp)
1967 time_overflow ();
1968 synchronize_system_time_locale ();
1969
1970 while (true)
1971 {
1972 buf[0] = '\1';
1973 len = emacs_nmemftime (buf, size, format, formatlen, tmp, ut, ns);
1974 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1975 break;
1976
1977 /* Buffer was too small, so make it bigger and try again. */
1978 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, ut, ns);
1979 if (STRING_BYTES_BOUND <= len)
1980 string_overflow ();
1981 size = len + 1;
1982 buf = SAFE_ALLOCA (size);
1983 }
1984
1985 bufstring = make_unibyte_string (buf, len);
1986 SAFE_FREE ();
1987 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1988 }
1989
1990 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1991 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1992 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1993 as from `current-time' and `file-attributes', or nil to use the
1994 current time. The obsolete form (HIGH . LOW) is also still accepted.
1995 The list has the following nine members: SEC is an integer between 0
1996 and 60; SEC is 60 for a leap second, which only some operating systems
1997 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1998 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1999 integer between 1 and 12. YEAR is an integer indicating the
2000 four-digit year. DOW is the day of week, an integer between 0 and 6,
2001 where 0 is Sunday. DST is t if daylight saving time is in effect,
2002 otherwise nil. ZONE is an integer indicating the number of seconds
2003 east of Greenwich. (Note that Common Lisp has different meanings for
2004 DOW and ZONE.) */)
2005 (Lisp_Object specified_time)
2006 {
2007 time_t time_spec = lisp_seconds_argument (specified_time);
2008 struct tm local_tm, gmt_tm;
2009
2010 if (! (localtime_r (&time_spec, &local_tm)
2011 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year
2012 && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
2013 time_overflow ();
2014
2015 /* Avoid overflow when INT_MAX < EMACS_INT_MAX. */
2016 EMACS_INT tm_year_base = TM_YEAR_BASE;
2017
2018 return CALLN (Flist,
2019 make_number (local_tm.tm_sec),
2020 make_number (local_tm.tm_min),
2021 make_number (local_tm.tm_hour),
2022 make_number (local_tm.tm_mday),
2023 make_number (local_tm.tm_mon + 1),
2024 make_number (local_tm.tm_year + tm_year_base),
2025 make_number (local_tm.tm_wday),
2026 local_tm.tm_isdst ? Qt : Qnil,
2027 (HAVE_TM_GMTOFF
2028 ? make_number (tm_gmtoff (&local_tm))
2029 : gmtime_r (&time_spec, &gmt_tm)
2030 ? make_number (tm_diff (&local_tm, &gmt_tm))
2031 : Qnil));
2032 }
2033
2034 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
2035 the result is representable as an int. Assume OFFSET is small and
2036 nonnegative. */
2037 static int
2038 check_tm_member (Lisp_Object obj, int offset)
2039 {
2040 EMACS_INT n;
2041 CHECK_NUMBER (obj);
2042 n = XINT (obj);
2043 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
2044 time_overflow ();
2045 return n - offset;
2046 }
2047
2048 /* Decode ZONE as a time zone specification. */
2049
2050 static Lisp_Object
2051 decode_time_zone (Lisp_Object zone)
2052 {
2053 if (EQ (zone, Qt))
2054 return build_string ("UTC0");
2055 else if (STRINGP (zone))
2056 return zone;
2057 else if (INTEGERP (zone))
2058 {
2059 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
2060 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
2061 EMACS_INT abszone = eabs (XINT (zone)), zone_hr = abszone / (60 * 60);
2062 int zone_min = (abszone / 60) % 60, zone_sec = abszone % 60;
2063
2064 return make_formatted_string (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
2065 zone_hr, zone_min, zone_sec);
2066 }
2067 else
2068 xsignal2 (Qerror, build_string ("Invalid time zone specification"), zone);
2069 }
2070
2071 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
2072 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
2073 This is the reverse operation of `decode-time', which see.
2074 ZONE defaults to the current time zone rule. This can
2075 be a string or t (as from `set-time-zone-rule'), or it can be a list
2076 \(as from `current-time-zone') or an integer (as from `decode-time')
2077 applied without consideration for daylight saving time.
2078
2079 You can pass more than 7 arguments; then the first six arguments
2080 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
2081 The intervening arguments are ignored.
2082 This feature lets (apply 'encode-time (decode-time ...)) work.
2083
2084 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
2085 for example, a DAY of 0 means the day preceding the given month.
2086 Year numbers less than 100 are treated just like other year numbers.
2087 If you want them to stand for years in this century, you must do that yourself.
2088
2089 Years before 1970 are not guaranteed to work. On some systems,
2090 year values as low as 1901 do work.
2091
2092 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
2093 (ptrdiff_t nargs, Lisp_Object *args)
2094 {
2095 time_t value;
2096 struct tm tm;
2097 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
2098
2099 tm.tm_sec = check_tm_member (args[0], 0);
2100 tm.tm_min = check_tm_member (args[1], 0);
2101 tm.tm_hour = check_tm_member (args[2], 0);
2102 tm.tm_mday = check_tm_member (args[3], 0);
2103 tm.tm_mon = check_tm_member (args[4], 1);
2104 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
2105 tm.tm_isdst = -1;
2106
2107 if (CONSP (zone))
2108 zone = XCAR (zone);
2109 if (NILP (zone))
2110 value = mktime (&tm);
2111 else
2112 {
2113 timezone_t tz = tzalloc (SSDATA (decode_time_zone (zone)));
2114 value = mktime_z (tz, &tm);
2115 tzfree (tz);
2116 }
2117
2118 if (value == (time_t) -1)
2119 time_overflow ();
2120
2121 return list2i (hi_time (value), lo_time (value));
2122 }
2123
2124 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
2125 doc: /* Return the current local time, as a human-readable string.
2126 Programs can use this function to decode a time,
2127 since the number of columns in each field is fixed
2128 if the year is in the range 1000-9999.
2129 The format is `Sun Sep 16 01:03:52 1973'.
2130 However, see also the functions `decode-time' and `format-time-string'
2131 which provide a much more powerful and general facility.
2132
2133 If SPECIFIED-TIME is given, it is a time to format instead of the
2134 current time. The argument should have the form (HIGH LOW . IGNORED).
2135 Thus, you can use times obtained from `current-time' and from
2136 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
2137 but this is considered obsolete. */)
2138 (Lisp_Object specified_time)
2139 {
2140 time_t value = lisp_seconds_argument (specified_time);
2141
2142 /* Convert to a string in ctime format, except without the trailing
2143 newline, and without the 4-digit year limit. Don't use asctime
2144 or ctime, as they might dump core if the year is outside the
2145 range -999 .. 9999. */
2146 struct tm tm;
2147 if (! localtime_r (&value, &tm))
2148 time_overflow ();
2149
2150 static char const wday_name[][4] =
2151 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2152 static char const mon_name[][4] =
2153 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2154 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2155 printmax_t year_base = TM_YEAR_BASE;
2156 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2157 int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2158 wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday,
2159 tm.tm_hour, tm.tm_min, tm.tm_sec,
2160 tm.tm_year + year_base);
2161
2162 return make_unibyte_string (buf, len);
2163 }
2164
2165 /* Yield A - B, measured in seconds.
2166 This function is copied from the GNU C Library. */
2167 static int
2168 tm_diff (struct tm *a, struct tm *b)
2169 {
2170 /* Compute intervening leap days correctly even if year is negative.
2171 Take care to avoid int overflow in leap day calculations,
2172 but it's OK to assume that A and B are close to each other. */
2173 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2174 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2175 int a100 = a4 / 25 - (a4 % 25 < 0);
2176 int b100 = b4 / 25 - (b4 % 25 < 0);
2177 int a400 = a100 >> 2;
2178 int b400 = b100 >> 2;
2179 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2180 int years = a->tm_year - b->tm_year;
2181 int days = (365 * years + intervening_leap_days
2182 + (a->tm_yday - b->tm_yday));
2183 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2184 + (a->tm_min - b->tm_min))
2185 + (a->tm_sec - b->tm_sec));
2186 }
2187
2188 /* Yield A's UTC offset, or an unspecified value if unknown. */
2189 static long int
2190 tm_gmtoff (struct tm *a)
2191 {
2192 #if HAVE_TM_GMTOFF
2193 return a->tm_gmtoff;
2194 #else
2195 return 0;
2196 #endif
2197 }
2198
2199 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2200 doc: /* Return the offset and name for the local time zone.
2201 This returns a list of the form (OFFSET NAME).
2202 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2203 A negative value means west of Greenwich.
2204 NAME is a string giving the name of the time zone.
2205 If SPECIFIED-TIME is given, the time zone offset is determined from it
2206 instead of using the current time. The argument should have the form
2207 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2208 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2209 have the form (HIGH . LOW), but this is considered obsolete.
2210
2211 Some operating systems cannot provide all this information to Emacs;
2212 in this case, `current-time-zone' returns a list containing nil for
2213 the data it can't find. */)
2214 (Lisp_Object specified_time)
2215 {
2216 struct timespec value;
2217 struct tm local_tm, gmt_tm;
2218 Lisp_Object zone_offset, zone_name;
2219
2220 zone_offset = Qnil;
2221 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2222 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &local_tm);
2223
2224 if (HAVE_TM_GMTOFF || gmtime_r (&value.tv_sec, &gmt_tm))
2225 {
2226 long int offset = (HAVE_TM_GMTOFF
2227 ? tm_gmtoff (&local_tm)
2228 : tm_diff (&local_tm, &gmt_tm));
2229 zone_offset = make_number (offset);
2230 if (SCHARS (zone_name) == 0)
2231 {
2232 /* No local time zone name is available; use "+-NNNN" instead. */
2233 long int m = offset / 60;
2234 long int am = offset < 0 ? - m : m;
2235 long int hour = am / 60;
2236 int min = am % 60;
2237 char buf[sizeof "+00" + INT_STRLEN_BOUND (long int)];
2238 zone_name = make_formatted_string (buf, "%c%02ld%02d",
2239 (offset < 0 ? '-' : '+'),
2240 hour, min);
2241 }
2242 }
2243
2244 return list2 (zone_offset, zone_name);
2245 }
2246
2247 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2248 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2249 If TZ is nil, use implementation-defined default time zone information.
2250 If TZ is t, use Universal Time. If TZ is an integer, it is treated as in
2251 `encode-time'.
2252
2253 Instead of calling this function, you typically want (setenv "TZ" TZ).
2254 That changes both the environment of the Emacs process and the
2255 variable `process-environment', whereas `set-time-zone-rule' affects
2256 only the former. */)
2257 (Lisp_Object tz)
2258 {
2259 const char *tzstring = NILP (tz) ? initial_tz : SSDATA (decode_time_zone (tz));
2260
2261 block_input ();
2262 set_time_zone_rule (tzstring);
2263 unblock_input ();
2264
2265 return Qnil;
2266 }
2267
2268 /* Set the local time zone rule to TZSTRING.
2269
2270 This function is not thread-safe, in theory because putenv is not,
2271 but mostly because of the static storage it updates. Other threads
2272 that invoke localtime etc. may be adversely affected while this
2273 function is executing. */
2274
2275 static void
2276 set_time_zone_rule (const char *tzstring)
2277 {
2278 /* A buffer holding a string of the form "TZ=value", intended
2279 to be part of the environment. */
2280 static char *tzvalbuf;
2281 static ptrdiff_t tzvalbufsize;
2282
2283 int tzeqlen = sizeof "TZ=" - 1;
2284 ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0;
2285 char *tzval = tzvalbuf;
2286 bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen;
2287
2288 if (new_tzvalbuf)
2289 {
2290 /* Do not attempt to free the old tzvalbuf, since another thread
2291 may be using it. In practice, the first allocation is large
2292 enough and memory does not leak. */
2293 tzval = xpalloc (NULL, &tzvalbufsize,
2294 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2295 tzvalbuf = tzval;
2296 tzval[1] = 'Z';
2297 tzval[2] = '=';
2298 }
2299
2300 if (tzstring)
2301 {
2302 /* Modify TZVAL in place. Although this is dicey in a
2303 multithreaded environment, we know of no portable alternative.
2304 Calling putenv or setenv could crash some other thread. */
2305 tzval[0] = 'T';
2306 strcpy (tzval + tzeqlen, tzstring);
2307 }
2308 else
2309 {
2310 /* Turn 'TZ=whatever' into an empty environment variable 'tZ='.
2311 Although this is also dicey, calling unsetenv here can crash Emacs.
2312 See Bug#8705. */
2313 tzval[0] = 't';
2314 tzval[tzeqlen] = 0;
2315 }
2316
2317 if (new_tzvalbuf)
2318 {
2319 /* Although this is not thread-safe, in practice this runs only
2320 on startup when there is only one thread. */
2321 xputenv (tzval);
2322 }
2323
2324 #ifdef HAVE_TZSET
2325 tzset ();
2326 #endif
2327 }
2328 \f
2329 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2330 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2331 type of object is Lisp_String). INHERIT is passed to
2332 INSERT_FROM_STRING_FUNC as the last argument. */
2333
2334 static void
2335 general_insert_function (void (*insert_func)
2336 (const char *, ptrdiff_t),
2337 void (*insert_from_string_func)
2338 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2339 ptrdiff_t, ptrdiff_t, bool),
2340 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2341 {
2342 ptrdiff_t argnum;
2343 Lisp_Object val;
2344
2345 for (argnum = 0; argnum < nargs; argnum++)
2346 {
2347 val = args[argnum];
2348 if (CHARACTERP (val))
2349 {
2350 int c = XFASTINT (val);
2351 unsigned char str[MAX_MULTIBYTE_LENGTH];
2352 int len;
2353
2354 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2355 len = CHAR_STRING (c, str);
2356 else
2357 {
2358 str[0] = CHAR_TO_BYTE8 (c);
2359 len = 1;
2360 }
2361 (*insert_func) ((char *) str, len);
2362 }
2363 else if (STRINGP (val))
2364 {
2365 (*insert_from_string_func) (val, 0, 0,
2366 SCHARS (val),
2367 SBYTES (val),
2368 inherit);
2369 }
2370 else
2371 wrong_type_argument (Qchar_or_string_p, val);
2372 }
2373 }
2374
2375 void
2376 insert1 (Lisp_Object arg)
2377 {
2378 Finsert (1, &arg);
2379 }
2380
2381
2382 /* Callers passing one argument to Finsert need not gcpro the
2383 argument "array", since the only element of the array will
2384 not be used after calling insert or insert_from_string, so
2385 we don't care if it gets trashed. */
2386
2387 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2388 doc: /* Insert the arguments, either strings or characters, at point.
2389 Point and before-insertion markers move forward to end up
2390 after the inserted text.
2391 Any other markers at the point of insertion remain before the text.
2392
2393 If the current buffer is multibyte, unibyte strings are converted
2394 to multibyte for insertion (see `string-make-multibyte').
2395 If the current buffer is unibyte, multibyte strings are converted
2396 to unibyte for insertion (see `string-make-unibyte').
2397
2398 When operating on binary data, it may be necessary to preserve the
2399 original bytes of a unibyte string when inserting it into a multibyte
2400 buffer; to accomplish this, apply `string-as-multibyte' to the string
2401 and insert the result.
2402
2403 usage: (insert &rest ARGS) */)
2404 (ptrdiff_t nargs, Lisp_Object *args)
2405 {
2406 general_insert_function (insert, insert_from_string, 0, nargs, args);
2407 return Qnil;
2408 }
2409
2410 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2411 0, MANY, 0,
2412 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2413 Point and before-insertion markers move forward to end up
2414 after the inserted text.
2415 Any other markers at the point of insertion remain before the text.
2416
2417 If the current buffer is multibyte, unibyte strings are converted
2418 to multibyte for insertion (see `unibyte-char-to-multibyte').
2419 If the current buffer is unibyte, multibyte strings are converted
2420 to unibyte for insertion.
2421
2422 usage: (insert-and-inherit &rest ARGS) */)
2423 (ptrdiff_t nargs, Lisp_Object *args)
2424 {
2425 general_insert_function (insert_and_inherit, insert_from_string, 1,
2426 nargs, args);
2427 return Qnil;
2428 }
2429
2430 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2431 doc: /* Insert strings or characters at point, relocating markers after the text.
2432 Point and markers move forward to end up after the inserted text.
2433
2434 If the current buffer is multibyte, unibyte strings are converted
2435 to multibyte for insertion (see `unibyte-char-to-multibyte').
2436 If the current buffer is unibyte, multibyte strings are converted
2437 to unibyte for insertion.
2438
2439 If an overlay begins at the insertion point, the inserted text falls
2440 outside the overlay; if a nonempty overlay ends at the insertion
2441 point, the inserted text falls inside that overlay.
2442
2443 usage: (insert-before-markers &rest ARGS) */)
2444 (ptrdiff_t nargs, Lisp_Object *args)
2445 {
2446 general_insert_function (insert_before_markers,
2447 insert_from_string_before_markers, 0,
2448 nargs, args);
2449 return Qnil;
2450 }
2451
2452 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2453 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2454 doc: /* Insert text at point, relocating markers and inheriting properties.
2455 Point and markers move forward to end up after the inserted text.
2456
2457 If the current buffer is multibyte, unibyte strings are converted
2458 to multibyte for insertion (see `unibyte-char-to-multibyte').
2459 If the current buffer is unibyte, multibyte strings are converted
2460 to unibyte for insertion.
2461
2462 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2463 (ptrdiff_t nargs, Lisp_Object *args)
2464 {
2465 general_insert_function (insert_before_markers_and_inherit,
2466 insert_from_string_before_markers, 1,
2467 nargs, args);
2468 return Qnil;
2469 }
2470 \f
2471 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2472 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2473 (prefix-numeric-value current-prefix-arg)\
2474 t))",
2475 doc: /* Insert COUNT copies of CHARACTER.
2476 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2477 of these ways:
2478
2479 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2480 Completion is available; if you type a substring of the name
2481 preceded by an asterisk `*', Emacs shows all names which include
2482 that substring, not necessarily at the beginning of the name.
2483
2484 - As a hexadecimal code point, e.g. 263A. Note that code points in
2485 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2486 the Unicode code space).
2487
2488 - As a code point with a radix specified with #, e.g. #o21430
2489 (octal), #x2318 (hex), or #10r8984 (decimal).
2490
2491 If called interactively, COUNT is given by the prefix argument. If
2492 omitted or nil, it defaults to 1.
2493
2494 Inserting the character(s) relocates point and before-insertion
2495 markers in the same ways as the function `insert'.
2496
2497 The optional third argument INHERIT, if non-nil, says to inherit text
2498 properties from adjoining text, if those properties are sticky. If
2499 called interactively, INHERIT is t. */)
2500 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2501 {
2502 int i, stringlen;
2503 register ptrdiff_t n;
2504 int c, len;
2505 unsigned char str[MAX_MULTIBYTE_LENGTH];
2506 char string[4000];
2507
2508 CHECK_CHARACTER (character);
2509 if (NILP (count))
2510 XSETFASTINT (count, 1);
2511 CHECK_NUMBER (count);
2512 c = XFASTINT (character);
2513
2514 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2515 len = CHAR_STRING (c, str);
2516 else
2517 str[0] = c, len = 1;
2518 if (XINT (count) <= 0)
2519 return Qnil;
2520 if (BUF_BYTES_MAX / len < XINT (count))
2521 buffer_overflow ();
2522 n = XINT (count) * len;
2523 stringlen = min (n, sizeof string - sizeof string % len);
2524 for (i = 0; i < stringlen; i++)
2525 string[i] = str[i % len];
2526 while (n > stringlen)
2527 {
2528 QUIT;
2529 if (!NILP (inherit))
2530 insert_and_inherit (string, stringlen);
2531 else
2532 insert (string, stringlen);
2533 n -= stringlen;
2534 }
2535 if (!NILP (inherit))
2536 insert_and_inherit (string, n);
2537 else
2538 insert (string, n);
2539 return Qnil;
2540 }
2541
2542 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2543 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2544 Both arguments are required.
2545 BYTE is a number of the range 0..255.
2546
2547 If BYTE is 128..255 and the current buffer is multibyte, the
2548 corresponding eight-bit character is inserted.
2549
2550 Point, and before-insertion markers, are relocated as in the function `insert'.
2551 The optional third arg INHERIT, if non-nil, says to inherit text properties
2552 from adjoining text, if those properties are sticky. */)
2553 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2554 {
2555 CHECK_NUMBER (byte);
2556 if (XINT (byte) < 0 || XINT (byte) > 255)
2557 args_out_of_range_3 (byte, make_number (0), make_number (255));
2558 if (XINT (byte) >= 128
2559 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2560 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2561 return Finsert_char (byte, count, inherit);
2562 }
2563
2564 \f
2565 /* Making strings from buffer contents. */
2566
2567 /* Return a Lisp_String containing the text of the current buffer from
2568 START to END. If text properties are in use and the current buffer
2569 has properties in the range specified, the resulting string will also
2570 have them, if PROPS is true.
2571
2572 We don't want to use plain old make_string here, because it calls
2573 make_uninit_string, which can cause the buffer arena to be
2574 compacted. make_string has no way of knowing that the data has
2575 been moved, and thus copies the wrong data into the string. This
2576 doesn't effect most of the other users of make_string, so it should
2577 be left as is. But we should use this function when conjuring
2578 buffer substrings. */
2579
2580 Lisp_Object
2581 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2582 {
2583 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2584 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2585
2586 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2587 }
2588
2589 /* Return a Lisp_String containing the text of the current buffer from
2590 START / START_BYTE to END / END_BYTE.
2591
2592 If text properties are in use and the current buffer
2593 has properties in the range specified, the resulting string will also
2594 have them, if PROPS is true.
2595
2596 We don't want to use plain old make_string here, because it calls
2597 make_uninit_string, which can cause the buffer arena to be
2598 compacted. make_string has no way of knowing that the data has
2599 been moved, and thus copies the wrong data into the string. This
2600 doesn't effect most of the other users of make_string, so it should
2601 be left as is. But we should use this function when conjuring
2602 buffer substrings. */
2603
2604 Lisp_Object
2605 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2606 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2607 {
2608 Lisp_Object result, tem, tem1;
2609 ptrdiff_t beg0, end0, beg1, end1, size;
2610
2611 if (start_byte < GPT_BYTE && GPT_BYTE < end_byte)
2612 {
2613 /* Two regions, before and after the gap. */
2614 beg0 = start_byte;
2615 end0 = GPT_BYTE;
2616 beg1 = GPT_BYTE + GAP_SIZE - BEG_BYTE;
2617 end1 = end_byte + GAP_SIZE - BEG_BYTE;
2618 }
2619 else
2620 {
2621 /* The only region. */
2622 beg0 = start_byte;
2623 end0 = end_byte;
2624 beg1 = -1;
2625 end1 = -1;
2626 }
2627
2628 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2629 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2630 else
2631 result = make_uninit_string (end - start);
2632
2633 size = end0 - beg0;
2634 memcpy (SDATA (result), BYTE_POS_ADDR (beg0), size);
2635 if (beg1 != -1)
2636 memcpy (SDATA (result) + size, BEG_ADDR + beg1, end1 - beg1);
2637
2638 /* If desired, update and copy the text properties. */
2639 if (props)
2640 {
2641 update_buffer_properties (start, end);
2642
2643 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2644 tem1 = Ftext_properties_at (make_number (start), Qnil);
2645
2646 if (XINT (tem) != end || !NILP (tem1))
2647 copy_intervals_to_string (result, current_buffer, start,
2648 end - start);
2649 }
2650
2651 return result;
2652 }
2653
2654 /* Call Vbuffer_access_fontify_functions for the range START ... END
2655 in the current buffer, if necessary. */
2656
2657 static void
2658 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2659 {
2660 /* If this buffer has some access functions,
2661 call them, specifying the range of the buffer being accessed. */
2662 if (!NILP (Vbuffer_access_fontify_functions))
2663 {
2664 /* But don't call them if we can tell that the work
2665 has already been done. */
2666 if (!NILP (Vbuffer_access_fontified_property))
2667 {
2668 Lisp_Object tem
2669 = Ftext_property_any (make_number (start), make_number (end),
2670 Vbuffer_access_fontified_property,
2671 Qnil, Qnil);
2672 if (NILP (tem))
2673 return;
2674 }
2675
2676 CALLN (Frun_hook_with_args, Qbuffer_access_fontify_functions,
2677 make_number (start), make_number (end));
2678 }
2679 }
2680
2681 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2682 doc: /* Return the contents of part of the current buffer as a string.
2683 The two arguments START and END are character positions;
2684 they can be in either order.
2685 The string returned is multibyte if the buffer is multibyte.
2686
2687 This function copies the text properties of that part of the buffer
2688 into the result string; if you don't want the text properties,
2689 use `buffer-substring-no-properties' instead. */)
2690 (Lisp_Object start, Lisp_Object end)
2691 {
2692 register ptrdiff_t b, e;
2693
2694 validate_region (&start, &end);
2695 b = XINT (start);
2696 e = XINT (end);
2697
2698 return make_buffer_string (b, e, 1);
2699 }
2700
2701 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2702 Sbuffer_substring_no_properties, 2, 2, 0,
2703 doc: /* Return the characters of part of the buffer, without the text properties.
2704 The two arguments START and END are character positions;
2705 they can be in either order. */)
2706 (Lisp_Object start, Lisp_Object end)
2707 {
2708 register ptrdiff_t b, e;
2709
2710 validate_region (&start, &end);
2711 b = XINT (start);
2712 e = XINT (end);
2713
2714 return make_buffer_string (b, e, 0);
2715 }
2716
2717 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2718 doc: /* Return the contents of the current buffer as a string.
2719 If narrowing is in effect, this function returns only the visible part
2720 of the buffer. */)
2721 (void)
2722 {
2723 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2724 }
2725
2726 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2727 1, 3, 0,
2728 doc: /* Insert before point a substring of the contents of BUFFER.
2729 BUFFER may be a buffer or a buffer name.
2730 Arguments START and END are character positions specifying the substring.
2731 They default to the values of (point-min) and (point-max) in BUFFER.
2732
2733 Point and before-insertion markers move forward to end up after the
2734 inserted text.
2735 Any other markers at the point of insertion remain before the text.
2736
2737 If the current buffer is multibyte and BUFFER is unibyte, or vice
2738 versa, strings are converted from unibyte to multibyte or vice versa
2739 using `string-make-multibyte' or `string-make-unibyte', which see. */)
2740 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2741 {
2742 register EMACS_INT b, e, temp;
2743 register struct buffer *bp, *obuf;
2744 Lisp_Object buf;
2745
2746 buf = Fget_buffer (buffer);
2747 if (NILP (buf))
2748 nsberror (buffer);
2749 bp = XBUFFER (buf);
2750 if (!BUFFER_LIVE_P (bp))
2751 error ("Selecting deleted buffer");
2752
2753 if (NILP (start))
2754 b = BUF_BEGV (bp);
2755 else
2756 {
2757 CHECK_NUMBER_COERCE_MARKER (start);
2758 b = XINT (start);
2759 }
2760 if (NILP (end))
2761 e = BUF_ZV (bp);
2762 else
2763 {
2764 CHECK_NUMBER_COERCE_MARKER (end);
2765 e = XINT (end);
2766 }
2767
2768 if (b > e)
2769 temp = b, b = e, e = temp;
2770
2771 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2772 args_out_of_range (start, end);
2773
2774 obuf = current_buffer;
2775 set_buffer_internal_1 (bp);
2776 update_buffer_properties (b, e);
2777 set_buffer_internal_1 (obuf);
2778
2779 insert_from_buffer (bp, b, e - b, 0);
2780 return Qnil;
2781 }
2782
2783 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2784 6, 6, 0,
2785 doc: /* Compare two substrings of two buffers; return result as number.
2786 Return -N if first string is less after N-1 chars, +N if first string is
2787 greater after N-1 chars, or 0 if strings match. Each substring is
2788 represented as three arguments: BUFFER, START and END. That makes six
2789 args in all, three for each substring.
2790
2791 The value of `case-fold-search' in the current buffer
2792 determines whether case is significant or ignored. */)
2793 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2794 {
2795 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2796 register struct buffer *bp1, *bp2;
2797 register Lisp_Object trt
2798 = (!NILP (BVAR (current_buffer, case_fold_search))
2799 ? BVAR (current_buffer, case_canon_table) : Qnil);
2800 ptrdiff_t chars = 0;
2801 ptrdiff_t i1, i2, i1_byte, i2_byte;
2802
2803 /* Find the first buffer and its substring. */
2804
2805 if (NILP (buffer1))
2806 bp1 = current_buffer;
2807 else
2808 {
2809 Lisp_Object buf1;
2810 buf1 = Fget_buffer (buffer1);
2811 if (NILP (buf1))
2812 nsberror (buffer1);
2813 bp1 = XBUFFER (buf1);
2814 if (!BUFFER_LIVE_P (bp1))
2815 error ("Selecting deleted buffer");
2816 }
2817
2818 if (NILP (start1))
2819 begp1 = BUF_BEGV (bp1);
2820 else
2821 {
2822 CHECK_NUMBER_COERCE_MARKER (start1);
2823 begp1 = XINT (start1);
2824 }
2825 if (NILP (end1))
2826 endp1 = BUF_ZV (bp1);
2827 else
2828 {
2829 CHECK_NUMBER_COERCE_MARKER (end1);
2830 endp1 = XINT (end1);
2831 }
2832
2833 if (begp1 > endp1)
2834 temp = begp1, begp1 = endp1, endp1 = temp;
2835
2836 if (!(BUF_BEGV (bp1) <= begp1
2837 && begp1 <= endp1
2838 && endp1 <= BUF_ZV (bp1)))
2839 args_out_of_range (start1, end1);
2840
2841 /* Likewise for second substring. */
2842
2843 if (NILP (buffer2))
2844 bp2 = current_buffer;
2845 else
2846 {
2847 Lisp_Object buf2;
2848 buf2 = Fget_buffer (buffer2);
2849 if (NILP (buf2))
2850 nsberror (buffer2);
2851 bp2 = XBUFFER (buf2);
2852 if (!BUFFER_LIVE_P (bp2))
2853 error ("Selecting deleted buffer");
2854 }
2855
2856 if (NILP (start2))
2857 begp2 = BUF_BEGV (bp2);
2858 else
2859 {
2860 CHECK_NUMBER_COERCE_MARKER (start2);
2861 begp2 = XINT (start2);
2862 }
2863 if (NILP (end2))
2864 endp2 = BUF_ZV (bp2);
2865 else
2866 {
2867 CHECK_NUMBER_COERCE_MARKER (end2);
2868 endp2 = XINT (end2);
2869 }
2870
2871 if (begp2 > endp2)
2872 temp = begp2, begp2 = endp2, endp2 = temp;
2873
2874 if (!(BUF_BEGV (bp2) <= begp2
2875 && begp2 <= endp2
2876 && endp2 <= BUF_ZV (bp2)))
2877 args_out_of_range (start2, end2);
2878
2879 i1 = begp1;
2880 i2 = begp2;
2881 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2882 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2883
2884 while (i1 < endp1 && i2 < endp2)
2885 {
2886 /* When we find a mismatch, we must compare the
2887 characters, not just the bytes. */
2888 int c1, c2;
2889
2890 QUIT;
2891
2892 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2893 {
2894 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2895 BUF_INC_POS (bp1, i1_byte);
2896 i1++;
2897 }
2898 else
2899 {
2900 c1 = BUF_FETCH_BYTE (bp1, i1);
2901 MAKE_CHAR_MULTIBYTE (c1);
2902 i1++;
2903 }
2904
2905 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2906 {
2907 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2908 BUF_INC_POS (bp2, i2_byte);
2909 i2++;
2910 }
2911 else
2912 {
2913 c2 = BUF_FETCH_BYTE (bp2, i2);
2914 MAKE_CHAR_MULTIBYTE (c2);
2915 i2++;
2916 }
2917
2918 if (!NILP (trt))
2919 {
2920 c1 = char_table_translate (trt, c1);
2921 c2 = char_table_translate (trt, c2);
2922 }
2923 if (c1 < c2)
2924 return make_number (- 1 - chars);
2925 if (c1 > c2)
2926 return make_number (chars + 1);
2927
2928 chars++;
2929 }
2930
2931 /* The strings match as far as they go.
2932 If one is shorter, that one is less. */
2933 if (chars < endp1 - begp1)
2934 return make_number (chars + 1);
2935 else if (chars < endp2 - begp2)
2936 return make_number (- chars - 1);
2937
2938 /* Same length too => they are equal. */
2939 return make_number (0);
2940 }
2941 \f
2942 static void
2943 subst_char_in_region_unwind (Lisp_Object arg)
2944 {
2945 bset_undo_list (current_buffer, arg);
2946 }
2947
2948 static void
2949 subst_char_in_region_unwind_1 (Lisp_Object arg)
2950 {
2951 bset_filename (current_buffer, arg);
2952 }
2953
2954 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2955 Ssubst_char_in_region, 4, 5, 0,
2956 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2957 If optional arg NOUNDO is non-nil, don't record this change for undo
2958 and don't mark the buffer as really changed.
2959 Both characters must have the same length of multi-byte form. */)
2960 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2961 {
2962 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2963 /* Keep track of the first change in the buffer:
2964 if 0 we haven't found it yet.
2965 if < 0 we've found it and we've run the before-change-function.
2966 if > 0 we've actually performed it and the value is its position. */
2967 ptrdiff_t changed = 0;
2968 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2969 unsigned char *p;
2970 ptrdiff_t count = SPECPDL_INDEX ();
2971 #define COMBINING_NO 0
2972 #define COMBINING_BEFORE 1
2973 #define COMBINING_AFTER 2
2974 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2975 int maybe_byte_combining = COMBINING_NO;
2976 ptrdiff_t last_changed = 0;
2977 bool multibyte_p
2978 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2979 int fromc, toc;
2980
2981 restart:
2982
2983 validate_region (&start, &end);
2984 CHECK_CHARACTER (fromchar);
2985 CHECK_CHARACTER (tochar);
2986 fromc = XFASTINT (fromchar);
2987 toc = XFASTINT (tochar);
2988
2989 if (multibyte_p)
2990 {
2991 len = CHAR_STRING (fromc, fromstr);
2992 if (CHAR_STRING (toc, tostr) != len)
2993 error ("Characters in `subst-char-in-region' have different byte-lengths");
2994 if (!ASCII_CHAR_P (*tostr))
2995 {
2996 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2997 complete multibyte character, it may be combined with the
2998 after bytes. If it is in the range 0xA0..0xFF, it may be
2999 combined with the before and after bytes. */
3000 if (!CHAR_HEAD_P (*tostr))
3001 maybe_byte_combining = COMBINING_BOTH;
3002 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
3003 maybe_byte_combining = COMBINING_AFTER;
3004 }
3005 }
3006 else
3007 {
3008 len = 1;
3009 fromstr[0] = fromc;
3010 tostr[0] = toc;
3011 }
3012
3013 pos = XINT (start);
3014 pos_byte = CHAR_TO_BYTE (pos);
3015 stop = CHAR_TO_BYTE (XINT (end));
3016 end_byte = stop;
3017
3018 /* If we don't want undo, turn off putting stuff on the list.
3019 That's faster than getting rid of things,
3020 and it prevents even the entry for a first change.
3021 Also inhibit locking the file. */
3022 if (!changed && !NILP (noundo))
3023 {
3024 record_unwind_protect (subst_char_in_region_unwind,
3025 BVAR (current_buffer, undo_list));
3026 bset_undo_list (current_buffer, Qt);
3027 /* Don't do file-locking. */
3028 record_unwind_protect (subst_char_in_region_unwind_1,
3029 BVAR (current_buffer, filename));
3030 bset_filename (current_buffer, Qnil);
3031 }
3032
3033 if (pos_byte < GPT_BYTE)
3034 stop = min (stop, GPT_BYTE);
3035 while (1)
3036 {
3037 ptrdiff_t pos_byte_next = pos_byte;
3038
3039 if (pos_byte >= stop)
3040 {
3041 if (pos_byte >= end_byte) break;
3042 stop = end_byte;
3043 }
3044 p = BYTE_POS_ADDR (pos_byte);
3045 if (multibyte_p)
3046 INC_POS (pos_byte_next);
3047 else
3048 ++pos_byte_next;
3049 if (pos_byte_next - pos_byte == len
3050 && p[0] == fromstr[0]
3051 && (len == 1
3052 || (p[1] == fromstr[1]
3053 && (len == 2 || (p[2] == fromstr[2]
3054 && (len == 3 || p[3] == fromstr[3]))))))
3055 {
3056 if (changed < 0)
3057 /* We've already seen this and run the before-change-function;
3058 this time we only need to record the actual position. */
3059 changed = pos;
3060 else if (!changed)
3061 {
3062 changed = -1;
3063 modify_text (pos, XINT (end));
3064
3065 if (! NILP (noundo))
3066 {
3067 if (MODIFF - 1 == SAVE_MODIFF)
3068 SAVE_MODIFF++;
3069 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
3070 BUF_AUTOSAVE_MODIFF (current_buffer)++;
3071 }
3072
3073 /* The before-change-function may have moved the gap
3074 or even modified the buffer so we should start over. */
3075 goto restart;
3076 }
3077
3078 /* Take care of the case where the new character
3079 combines with neighboring bytes. */
3080 if (maybe_byte_combining
3081 && (maybe_byte_combining == COMBINING_AFTER
3082 ? (pos_byte_next < Z_BYTE
3083 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3084 : ((pos_byte_next < Z_BYTE
3085 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3086 || (pos_byte > BEG_BYTE
3087 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
3088 {
3089 Lisp_Object tem, string;
3090
3091 struct gcpro gcpro1;
3092
3093 tem = BVAR (current_buffer, undo_list);
3094 GCPRO1 (tem);
3095
3096 /* Make a multibyte string containing this single character. */
3097 string = make_multibyte_string ((char *) tostr, 1, len);
3098 /* replace_range is less efficient, because it moves the gap,
3099 but it handles combining correctly. */
3100 replace_range (pos, pos + 1, string,
3101 0, 0, 1);
3102 pos_byte_next = CHAR_TO_BYTE (pos);
3103 if (pos_byte_next > pos_byte)
3104 /* Before combining happened. We should not increment
3105 POS. So, to cancel the later increment of POS,
3106 decrease it now. */
3107 pos--;
3108 else
3109 INC_POS (pos_byte_next);
3110
3111 if (! NILP (noundo))
3112 bset_undo_list (current_buffer, tem);
3113
3114 UNGCPRO;
3115 }
3116 else
3117 {
3118 if (NILP (noundo))
3119 record_change (pos, 1);
3120 for (i = 0; i < len; i++) *p++ = tostr[i];
3121 }
3122 last_changed = pos + 1;
3123 }
3124 pos_byte = pos_byte_next;
3125 pos++;
3126 }
3127
3128 if (changed > 0)
3129 {
3130 signal_after_change (changed,
3131 last_changed - changed, last_changed - changed);
3132 update_compositions (changed, last_changed, CHECK_ALL);
3133 }
3134
3135 unbind_to (count, Qnil);
3136 return Qnil;
3137 }
3138
3139
3140 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3141 Lisp_Object);
3142
3143 /* Helper function for Ftranslate_region_internal.
3144
3145 Check if a character sequence at POS (POS_BYTE) matches an element
3146 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3147 element is found, return it. Otherwise return Qnil. */
3148
3149 static Lisp_Object
3150 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3151 Lisp_Object val)
3152 {
3153 int initial_buf[16];
3154 int *buf = initial_buf;
3155 ptrdiff_t buf_size = ARRAYELTS (initial_buf);
3156 int *bufalloc = 0;
3157 ptrdiff_t buf_used = 0;
3158 Lisp_Object result = Qnil;
3159
3160 for (; CONSP (val); val = XCDR (val))
3161 {
3162 Lisp_Object elt;
3163 ptrdiff_t len, i;
3164
3165 elt = XCAR (val);
3166 if (! CONSP (elt))
3167 continue;
3168 elt = XCAR (elt);
3169 if (! VECTORP (elt))
3170 continue;
3171 len = ASIZE (elt);
3172 if (len <= end - pos)
3173 {
3174 for (i = 0; i < len; i++)
3175 {
3176 if (buf_used <= i)
3177 {
3178 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3179 int len1;
3180
3181 if (buf_used == buf_size)
3182 {
3183 bufalloc = xpalloc (bufalloc, &buf_size, 1, -1,
3184 sizeof *bufalloc);
3185 if (buf == initial_buf)
3186 memcpy (bufalloc, buf, sizeof initial_buf);
3187 buf = bufalloc;
3188 }
3189 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3190 pos_byte += len1;
3191 }
3192 if (XINT (AREF (elt, i)) != buf[i])
3193 break;
3194 }
3195 if (i == len)
3196 {
3197 result = XCAR (val);
3198 break;
3199 }
3200 }
3201 }
3202
3203 xfree (bufalloc);
3204 return result;
3205 }
3206
3207
3208 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3209 Stranslate_region_internal, 3, 3, 0,
3210 doc: /* Internal use only.
3211 From START to END, translate characters according to TABLE.
3212 TABLE is a string or a char-table; the Nth character in it is the
3213 mapping for the character with code N.
3214 It returns the number of characters changed. */)
3215 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3216 {
3217 register unsigned char *tt; /* Trans table. */
3218 register int nc; /* New character. */
3219 int cnt; /* Number of changes made. */
3220 ptrdiff_t size; /* Size of translate table. */
3221 ptrdiff_t pos, pos_byte, end_pos;
3222 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3223 bool string_multibyte IF_LINT (= 0);
3224
3225 validate_region (&start, &end);
3226 if (CHAR_TABLE_P (table))
3227 {
3228 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3229 error ("Not a translation table");
3230 size = MAX_CHAR;
3231 tt = NULL;
3232 }
3233 else
3234 {
3235 CHECK_STRING (table);
3236
3237 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3238 table = string_make_unibyte (table);
3239 string_multibyte = SCHARS (table) < SBYTES (table);
3240 size = SBYTES (table);
3241 tt = SDATA (table);
3242 }
3243
3244 pos = XINT (start);
3245 pos_byte = CHAR_TO_BYTE (pos);
3246 end_pos = XINT (end);
3247 modify_text (pos, end_pos);
3248
3249 cnt = 0;
3250 for (; pos < end_pos; )
3251 {
3252 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3253 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3254 int len, str_len;
3255 int oc;
3256 Lisp_Object val;
3257
3258 if (multibyte)
3259 oc = STRING_CHAR_AND_LENGTH (p, len);
3260 else
3261 oc = *p, len = 1;
3262 if (oc < size)
3263 {
3264 if (tt)
3265 {
3266 /* Reload as signal_after_change in last iteration may GC. */
3267 tt = SDATA (table);
3268 if (string_multibyte)
3269 {
3270 str = tt + string_char_to_byte (table, oc);
3271 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3272 }
3273 else
3274 {
3275 nc = tt[oc];
3276 if (! ASCII_CHAR_P (nc) && multibyte)
3277 {
3278 str_len = BYTE8_STRING (nc, buf);
3279 str = buf;
3280 }
3281 else
3282 {
3283 str_len = 1;
3284 str = tt + oc;
3285 }
3286 }
3287 }
3288 else
3289 {
3290 nc = oc;
3291 val = CHAR_TABLE_REF (table, oc);
3292 if (CHARACTERP (val))
3293 {
3294 nc = XFASTINT (val);
3295 str_len = CHAR_STRING (nc, buf);
3296 str = buf;
3297 }
3298 else if (VECTORP (val) || (CONSP (val)))
3299 {
3300 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3301 where TO is TO-CHAR or [TO-CHAR ...]. */
3302 nc = -1;
3303 }
3304 }
3305
3306 if (nc != oc && nc >= 0)
3307 {
3308 /* Simple one char to one char translation. */
3309 if (len != str_len)
3310 {
3311 Lisp_Object string;
3312
3313 /* This is less efficient, because it moves the gap,
3314 but it should handle multibyte characters correctly. */
3315 string = make_multibyte_string ((char *) str, 1, str_len);
3316 replace_range (pos, pos + 1, string, 1, 0, 1);
3317 len = str_len;
3318 }
3319 else
3320 {
3321 record_change (pos, 1);
3322 while (str_len-- > 0)
3323 *p++ = *str++;
3324 signal_after_change (pos, 1, 1);
3325 update_compositions (pos, pos + 1, CHECK_BORDER);
3326 }
3327 ++cnt;
3328 }
3329 else if (nc < 0)
3330 {
3331 Lisp_Object string;
3332
3333 if (CONSP (val))
3334 {
3335 val = check_translation (pos, pos_byte, end_pos, val);
3336 if (NILP (val))
3337 {
3338 pos_byte += len;
3339 pos++;
3340 continue;
3341 }
3342 /* VAL is ([FROM-CHAR ...] . TO). */
3343 len = ASIZE (XCAR (val));
3344 val = XCDR (val);
3345 }
3346 else
3347 len = 1;
3348
3349 if (VECTORP (val))
3350 {
3351 string = Fconcat (1, &val);
3352 }
3353 else
3354 {
3355 string = Fmake_string (make_number (1), val);
3356 }
3357 replace_range (pos, pos + len, string, 1, 0, 1);
3358 pos_byte += SBYTES (string);
3359 pos += SCHARS (string);
3360 cnt += SCHARS (string);
3361 end_pos += SCHARS (string) - len;
3362 continue;
3363 }
3364 }
3365 pos_byte += len;
3366 pos++;
3367 }
3368
3369 return make_number (cnt);
3370 }
3371
3372 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3373 doc: /* Delete the text between START and END.
3374 If called interactively, delete the region between point and mark.
3375 This command deletes buffer text without modifying the kill ring. */)
3376 (Lisp_Object start, Lisp_Object end)
3377 {
3378 validate_region (&start, &end);
3379 del_range (XINT (start), XINT (end));
3380 return Qnil;
3381 }
3382
3383 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3384 Sdelete_and_extract_region, 2, 2, 0,
3385 doc: /* Delete the text between START and END and return it. */)
3386 (Lisp_Object start, Lisp_Object end)
3387 {
3388 validate_region (&start, &end);
3389 if (XINT (start) == XINT (end))
3390 return empty_unibyte_string;
3391 return del_range_1 (XINT (start), XINT (end), 1, 1);
3392 }
3393 \f
3394 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3395 doc: /* Remove restrictions (narrowing) from current buffer.
3396 This allows the buffer's full text to be seen and edited. */)
3397 (void)
3398 {
3399 if (BEG != BEGV || Z != ZV)
3400 current_buffer->clip_changed = 1;
3401 BEGV = BEG;
3402 BEGV_BYTE = BEG_BYTE;
3403 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3404 /* Changing the buffer bounds invalidates any recorded current column. */
3405 invalidate_current_column ();
3406 return Qnil;
3407 }
3408
3409 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3410 doc: /* Restrict editing in this buffer to the current region.
3411 The rest of the text becomes temporarily invisible and untouchable
3412 but is not deleted; if you save the buffer in a file, the invisible
3413 text is included in the file. \\[widen] makes all visible again.
3414 See also `save-restriction'.
3415
3416 When calling from a program, pass two arguments; positions (integers
3417 or markers) bounding the text that should remain visible. */)
3418 (register Lisp_Object start, Lisp_Object end)
3419 {
3420 CHECK_NUMBER_COERCE_MARKER (start);
3421 CHECK_NUMBER_COERCE_MARKER (end);
3422
3423 if (XINT (start) > XINT (end))
3424 {
3425 Lisp_Object tem;
3426 tem = start; start = end; end = tem;
3427 }
3428
3429 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3430 args_out_of_range (start, end);
3431
3432 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3433 current_buffer->clip_changed = 1;
3434
3435 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3436 SET_BUF_ZV (current_buffer, XFASTINT (end));
3437 if (PT < XFASTINT (start))
3438 SET_PT (XFASTINT (start));
3439 if (PT > XFASTINT (end))
3440 SET_PT (XFASTINT (end));
3441 /* Changing the buffer bounds invalidates any recorded current column. */
3442 invalidate_current_column ();
3443 return Qnil;
3444 }
3445
3446 Lisp_Object
3447 save_restriction_save (void)
3448 {
3449 if (BEGV == BEG && ZV == Z)
3450 /* The common case that the buffer isn't narrowed.
3451 We return just the buffer object, which save_restriction_restore
3452 recognizes as meaning `no restriction'. */
3453 return Fcurrent_buffer ();
3454 else
3455 /* We have to save a restriction, so return a pair of markers, one
3456 for the beginning and one for the end. */
3457 {
3458 Lisp_Object beg, end;
3459
3460 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3461 end = build_marker (current_buffer, ZV, ZV_BYTE);
3462
3463 /* END must move forward if text is inserted at its exact location. */
3464 XMARKER (end)->insertion_type = 1;
3465
3466 return Fcons (beg, end);
3467 }
3468 }
3469
3470 void
3471 save_restriction_restore (Lisp_Object data)
3472 {
3473 struct buffer *cur = NULL;
3474 struct buffer *buf = (CONSP (data)
3475 ? XMARKER (XCAR (data))->buffer
3476 : XBUFFER (data));
3477
3478 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3479 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3480 is the case if it is or has an indirect buffer), then make
3481 sure it is current before we update BEGV, so
3482 set_buffer_internal takes care of managing those markers. */
3483 cur = current_buffer;
3484 set_buffer_internal (buf);
3485 }
3486
3487 if (CONSP (data))
3488 /* A pair of marks bounding a saved restriction. */
3489 {
3490 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3491 struct Lisp_Marker *end = XMARKER (XCDR (data));
3492 eassert (buf == end->buffer);
3493
3494 if (buf /* Verify marker still points to a buffer. */
3495 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3496 /* The restriction has changed from the saved one, so restore
3497 the saved restriction. */
3498 {
3499 ptrdiff_t pt = BUF_PT (buf);
3500
3501 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3502 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3503
3504 if (pt < beg->charpos || pt > end->charpos)
3505 /* The point is outside the new visible range, move it inside. */
3506 SET_BUF_PT_BOTH (buf,
3507 clip_to_bounds (beg->charpos, pt, end->charpos),
3508 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3509 end->bytepos));
3510
3511 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3512 }
3513 /* These aren't needed anymore, so don't wait for GC. */
3514 free_marker (XCAR (data));
3515 free_marker (XCDR (data));
3516 free_cons (XCONS (data));
3517 }
3518 else
3519 /* A buffer, which means that there was no old restriction. */
3520 {
3521 if (buf /* Verify marker still points to a buffer. */
3522 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3523 /* The buffer has been narrowed, get rid of the narrowing. */
3524 {
3525 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3526 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3527
3528 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3529 }
3530 }
3531
3532 /* Changing the buffer bounds invalidates any recorded current column. */
3533 invalidate_current_column ();
3534
3535 if (cur)
3536 set_buffer_internal (cur);
3537 }
3538
3539 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3540 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3541 The buffer's restrictions make parts of the beginning and end invisible.
3542 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3543 This special form, `save-restriction', saves the current buffer's restrictions
3544 when it is entered, and restores them when it is exited.
3545 So any `narrow-to-region' within BODY lasts only until the end of the form.
3546 The old restrictions settings are restored
3547 even in case of abnormal exit (throw or error).
3548
3549 The value returned is the value of the last form in BODY.
3550
3551 Note: if you are using both `save-excursion' and `save-restriction',
3552 use `save-excursion' outermost:
3553 (save-excursion (save-restriction ...))
3554
3555 usage: (save-restriction &rest BODY) */)
3556 (Lisp_Object body)
3557 {
3558 register Lisp_Object val;
3559 ptrdiff_t count = SPECPDL_INDEX ();
3560
3561 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3562 val = Fprogn (body);
3563 return unbind_to (count, val);
3564 }
3565 \f
3566 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3567 doc: /* Display a message at the bottom of the screen.
3568 The message also goes into the `*Messages*' buffer, if `message-log-max'
3569 is non-nil. (In keyboard macros, that's all it does.)
3570 Return the message.
3571
3572 In batch mode, the message is printed to the standard error stream,
3573 followed by a newline.
3574
3575 The first argument is a format control string, and the rest are data
3576 to be formatted under control of the string. See `format' for details.
3577
3578 Note: Use (message "%s" VALUE) to print the value of expressions and
3579 variables to avoid accidentally interpreting `%' as format specifiers.
3580
3581 If the first argument is nil or the empty string, the function clears
3582 any existing message; this lets the minibuffer contents show. See
3583 also `current-message'.
3584
3585 usage: (message FORMAT-STRING &rest ARGS) */)
3586 (ptrdiff_t nargs, Lisp_Object *args)
3587 {
3588 if (NILP (args[0])
3589 || (STRINGP (args[0])
3590 && SBYTES (args[0]) == 0))
3591 {
3592 message1 (0);
3593 return args[0];
3594 }
3595 else
3596 {
3597 register Lisp_Object val;
3598 val = Fformat (nargs, args);
3599 message3 (val);
3600 return val;
3601 }
3602 }
3603
3604 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3605 doc: /* Display a message, in a dialog box if possible.
3606 If a dialog box is not available, use the echo area.
3607 The first argument is a format control string, and the rest are data
3608 to be formatted under control of the string. See `format' for details.
3609
3610 If the first argument is nil or the empty string, clear any existing
3611 message; let the minibuffer contents show.
3612
3613 usage: (message-box FORMAT-STRING &rest ARGS) */)
3614 (ptrdiff_t nargs, Lisp_Object *args)
3615 {
3616 if (NILP (args[0]))
3617 {
3618 message1 (0);
3619 return Qnil;
3620 }
3621 else
3622 {
3623 Lisp_Object val = Fformat (nargs, args);
3624 Lisp_Object pane, menu;
3625 struct gcpro gcpro1;
3626
3627 pane = list1 (Fcons (build_string ("OK"), Qt));
3628 GCPRO1 (pane);
3629 menu = Fcons (val, pane);
3630 Fx_popup_dialog (Qt, menu, Qt);
3631 UNGCPRO;
3632 return val;
3633 }
3634 }
3635
3636 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3637 doc: /* Display a message in a dialog box or in the echo area.
3638 If this command was invoked with the mouse, use a dialog box if
3639 `use-dialog-box' is non-nil.
3640 Otherwise, use the echo area.
3641 The first argument is a format control string, and the rest are data
3642 to be formatted under control of the string. See `format' for details.
3643
3644 If the first argument is nil or the empty string, clear any existing
3645 message; let the minibuffer contents show.
3646
3647 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3648 (ptrdiff_t nargs, Lisp_Object *args)
3649 {
3650 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3651 && use_dialog_box)
3652 return Fmessage_box (nargs, args);
3653 return Fmessage (nargs, args);
3654 }
3655
3656 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3657 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3658 (void)
3659 {
3660 return current_message ();
3661 }
3662
3663
3664 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3665 doc: /* Return a copy of STRING with text properties added.
3666 First argument is the string to copy.
3667 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3668 properties to add to the result.
3669 usage: (propertize STRING &rest PROPERTIES) */)
3670 (ptrdiff_t nargs, Lisp_Object *args)
3671 {
3672 Lisp_Object properties, string;
3673 struct gcpro gcpro1, gcpro2;
3674 ptrdiff_t i;
3675
3676 /* Number of args must be odd. */
3677 if ((nargs & 1) == 0)
3678 error ("Wrong number of arguments");
3679
3680 properties = string = Qnil;
3681 GCPRO2 (properties, string);
3682
3683 /* First argument must be a string. */
3684 CHECK_STRING (args[0]);
3685 string = Fcopy_sequence (args[0]);
3686
3687 for (i = 1; i < nargs; i += 2)
3688 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3689
3690 Fadd_text_properties (make_number (0),
3691 make_number (SCHARS (string)),
3692 properties, string);
3693 RETURN_UNGCPRO (string);
3694 }
3695
3696 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3697 doc: /* Format a string out of a format-string and arguments.
3698 The first argument is a format control string.
3699 The other arguments are substituted into it to make the result, a string.
3700
3701 The format control string may contain %-sequences meaning to substitute
3702 the next available argument:
3703
3704 %s means print a string argument. Actually, prints any object, with `princ'.
3705 %d means print as number in decimal (%o octal, %x hex).
3706 %X is like %x, but uses upper case.
3707 %e means print a number in exponential notation.
3708 %f means print a number in decimal-point notation.
3709 %g means print a number in exponential notation
3710 or decimal-point notation, whichever uses fewer characters.
3711 %c means print a number as a single character.
3712 %S means print any object as an s-expression (using `prin1').
3713
3714 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3715 Use %% to put a single % into the output.
3716
3717 A %-sequence may contain optional flag, width, and precision
3718 specifiers, as follows:
3719
3720 %<flags><width><precision>character
3721
3722 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3723
3724 The + flag character inserts a + before any positive number, while a
3725 space inserts a space before any positive number; these flags only
3726 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3727 The - and 0 flags affect the width specifier, as described below.
3728
3729 The # flag means to use an alternate display form for %o, %x, %X, %e,
3730 %f, and %g sequences: for %o, it ensures that the result begins with
3731 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3732 for %e, %f, and %g, it causes a decimal point to be included even if
3733 the precision is zero.
3734
3735 The width specifier supplies a lower limit for the length of the
3736 printed representation. The padding, if any, normally goes on the
3737 left, but it goes on the right if the - flag is present. The padding
3738 character is normally a space, but it is 0 if the 0 flag is present.
3739 The 0 flag is ignored if the - flag is present, or the format sequence
3740 is something other than %d, %e, %f, and %g.
3741
3742 For %e, %f, and %g sequences, the number after the "." in the
3743 precision specifier says how many decimal places to show; if zero, the
3744 decimal point itself is omitted. For %s and %S, the precision
3745 specifier truncates the string to the given width.
3746
3747 usage: (format STRING &rest OBJECTS) */)
3748 (ptrdiff_t nargs, Lisp_Object *args)
3749 {
3750 ptrdiff_t n; /* The number of the next arg to substitute. */
3751 char initial_buffer[4000];
3752 char *buf = initial_buffer;
3753 ptrdiff_t bufsize = sizeof initial_buffer;
3754 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3755 char *p;
3756 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3757 char *format, *end, *format_start;
3758 ptrdiff_t formatlen, nchars;
3759 /* True if the format is multibyte. */
3760 bool multibyte_format = 0;
3761 /* True if the output should be a multibyte string,
3762 which is true if any of the inputs is one. */
3763 bool multibyte = 0;
3764 /* When we make a multibyte string, we must pay attention to the
3765 byte combining problem, i.e., a byte may be combined with a
3766 multibyte character of the previous string. This flag tells if we
3767 must consider such a situation or not. */
3768 bool maybe_combine_byte;
3769 Lisp_Object val;
3770 bool arg_intervals = 0;
3771 USE_SAFE_ALLOCA;
3772
3773 /* discarded[I] is 1 if byte I of the format
3774 string was not copied into the output.
3775 It is 2 if byte I was not the first byte of its character. */
3776 char *discarded;
3777
3778 /* Each element records, for one argument,
3779 the start and end bytepos in the output string,
3780 whether the argument has been converted to string (e.g., due to "%S"),
3781 and whether the argument is a string with intervals.
3782 info[0] is unused. Unused elements have -1 for start. */
3783 struct info
3784 {
3785 ptrdiff_t start, end;
3786 bool_bf converted_to_string : 1;
3787 bool_bf intervals : 1;
3788 } *info = 0;
3789
3790 /* It should not be necessary to GCPRO ARGS, because
3791 the caller in the interpreter should take care of that. */
3792
3793 CHECK_STRING (args[0]);
3794 format_start = SSDATA (args[0]);
3795 formatlen = SBYTES (args[0]);
3796
3797 /* Allocate the info and discarded tables. */
3798 {
3799 ptrdiff_t i;
3800 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3801 memory_full (SIZE_MAX);
3802 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3803 discarded = (char *) &info[nargs + 1];
3804 for (i = 0; i < nargs + 1; i++)
3805 {
3806 info[i].start = -1;
3807 info[i].intervals = info[i].converted_to_string = 0;
3808 }
3809 memset (discarded, 0, formatlen);
3810 }
3811
3812 /* Try to determine whether the result should be multibyte.
3813 This is not always right; sometimes the result needs to be multibyte
3814 because of an object that we will pass through prin1,
3815 and in that case, we won't know it here. */
3816 multibyte_format = STRING_MULTIBYTE (args[0]);
3817 multibyte = multibyte_format;
3818 for (n = 1; !multibyte && n < nargs; n++)
3819 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3820 multibyte = 1;
3821
3822 /* If we start out planning a unibyte result,
3823 then discover it has to be multibyte, we jump back to retry. */
3824 retry:
3825
3826 p = buf;
3827 nchars = 0;
3828 n = 0;
3829
3830 /* Scan the format and store result in BUF. */
3831 format = format_start;
3832 end = format + formatlen;
3833 maybe_combine_byte = 0;
3834
3835 while (format != end)
3836 {
3837 /* The values of N and FORMAT when the loop body is entered. */
3838 ptrdiff_t n0 = n;
3839 char *format0 = format;
3840
3841 /* Bytes needed to represent the output of this conversion. */
3842 ptrdiff_t convbytes;
3843
3844 if (*format == '%')
3845 {
3846 /* General format specifications look like
3847
3848 '%' [flags] [field-width] [precision] format
3849
3850 where
3851
3852 flags ::= [-+0# ]+
3853 field-width ::= [0-9]+
3854 precision ::= '.' [0-9]*
3855
3856 If a field-width is specified, it specifies to which width
3857 the output should be padded with blanks, if the output
3858 string is shorter than field-width.
3859
3860 If precision is specified, it specifies the number of
3861 digits to print after the '.' for floats, or the max.
3862 number of chars to print from a string. */
3863
3864 bool minus_flag = 0;
3865 bool plus_flag = 0;
3866 bool space_flag = 0;
3867 bool sharp_flag = 0;
3868 bool zero_flag = 0;
3869 ptrdiff_t field_width;
3870 bool precision_given;
3871 uintmax_t precision = UINTMAX_MAX;
3872 char *num_end;
3873 char conversion;
3874
3875 while (1)
3876 {
3877 switch (*++format)
3878 {
3879 case '-': minus_flag = 1; continue;
3880 case '+': plus_flag = 1; continue;
3881 case ' ': space_flag = 1; continue;
3882 case '#': sharp_flag = 1; continue;
3883 case '0': zero_flag = 1; continue;
3884 }
3885 break;
3886 }
3887
3888 /* Ignore flags when sprintf ignores them. */
3889 space_flag &= ~ plus_flag;
3890 zero_flag &= ~ minus_flag;
3891
3892 {
3893 uintmax_t w = strtoumax (format, &num_end, 10);
3894 if (max_bufsize <= w)
3895 string_overflow ();
3896 field_width = w;
3897 }
3898 precision_given = *num_end == '.';
3899 if (precision_given)
3900 precision = strtoumax (num_end + 1, &num_end, 10);
3901 format = num_end;
3902
3903 if (format == end)
3904 error ("Format string ends in middle of format specifier");
3905
3906 memset (&discarded[format0 - format_start], 1, format - format0);
3907 conversion = *format;
3908 if (conversion == '%')
3909 goto copy_char;
3910 discarded[format - format_start] = 1;
3911 format++;
3912
3913 ++n;
3914 if (! (n < nargs))
3915 error ("Not enough arguments for format string");
3916
3917 /* For 'S', prin1 the argument, and then treat like 's'.
3918 For 's', princ any argument that is not a string or
3919 symbol. But don't do this conversion twice, which might
3920 happen after retrying. */
3921 if ((conversion == 'S'
3922 || (conversion == 's'
3923 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3924 {
3925 if (! info[n].converted_to_string)
3926 {
3927 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3928 args[n] = Fprin1_to_string (args[n], noescape);
3929 info[n].converted_to_string = 1;
3930 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3931 {
3932 multibyte = 1;
3933 goto retry;
3934 }
3935 }
3936 conversion = 's';
3937 }
3938 else if (conversion == 'c')
3939 {
3940 if (FLOATP (args[n]))
3941 {
3942 double d = XFLOAT_DATA (args[n]);
3943 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3944 }
3945
3946 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3947 {
3948 if (!multibyte)
3949 {
3950 multibyte = 1;
3951 goto retry;
3952 }
3953 args[n] = Fchar_to_string (args[n]);
3954 info[n].converted_to_string = 1;
3955 }
3956
3957 if (info[n].converted_to_string)
3958 conversion = 's';
3959 zero_flag = 0;
3960 }
3961
3962 if (SYMBOLP (args[n]))
3963 {
3964 args[n] = SYMBOL_NAME (args[n]);
3965 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3966 {
3967 multibyte = 1;
3968 goto retry;
3969 }
3970 }
3971
3972 if (conversion == 's')
3973 {
3974 /* handle case (precision[n] >= 0) */
3975
3976 ptrdiff_t width, padding, nbytes;
3977 ptrdiff_t nchars_string;
3978
3979 ptrdiff_t prec = -1;
3980 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3981 prec = precision;
3982
3983 /* lisp_string_width ignores a precision of 0, but GNU
3984 libc functions print 0 characters when the precision
3985 is 0. Imitate libc behavior here. Changing
3986 lisp_string_width is the right thing, and will be
3987 done, but meanwhile we work with it. */
3988
3989 if (prec == 0)
3990 width = nchars_string = nbytes = 0;
3991 else
3992 {
3993 ptrdiff_t nch, nby;
3994 width = lisp_string_width (args[n], prec, &nch, &nby);
3995 if (prec < 0)
3996 {
3997 nchars_string = SCHARS (args[n]);
3998 nbytes = SBYTES (args[n]);
3999 }
4000 else
4001 {
4002 nchars_string = nch;
4003 nbytes = nby;
4004 }
4005 }
4006
4007 convbytes = nbytes;
4008 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
4009 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
4010
4011 padding = width < field_width ? field_width - width : 0;
4012
4013 if (max_bufsize - padding <= convbytes)
4014 string_overflow ();
4015 convbytes += padding;
4016 if (convbytes <= buf + bufsize - p)
4017 {
4018 if (! minus_flag)
4019 {
4020 memset (p, ' ', padding);
4021 p += padding;
4022 nchars += padding;
4023 }
4024
4025 if (p > buf
4026 && multibyte
4027 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4028 && STRING_MULTIBYTE (args[n])
4029 && !CHAR_HEAD_P (SREF (args[n], 0)))
4030 maybe_combine_byte = 1;
4031
4032 p += copy_text (SDATA (args[n]), (unsigned char *) p,
4033 nbytes,
4034 STRING_MULTIBYTE (args[n]), multibyte);
4035
4036 info[n].start = nchars;
4037 nchars += nchars_string;
4038 info[n].end = nchars;
4039
4040 if (minus_flag)
4041 {
4042 memset (p, ' ', padding);
4043 p += padding;
4044 nchars += padding;
4045 }
4046
4047 /* If this argument has text properties, record where
4048 in the result string it appears. */
4049 if (string_intervals (args[n]))
4050 info[n].intervals = arg_intervals = 1;
4051
4052 continue;
4053 }
4054 }
4055 else if (! (conversion == 'c' || conversion == 'd'
4056 || conversion == 'e' || conversion == 'f'
4057 || conversion == 'g' || conversion == 'i'
4058 || conversion == 'o' || conversion == 'x'
4059 || conversion == 'X'))
4060 error ("Invalid format operation %%%c",
4061 STRING_CHAR ((unsigned char *) format - 1));
4062 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
4063 error ("Format specifier doesn't match argument type");
4064 else
4065 {
4066 enum
4067 {
4068 /* Maximum precision for a %f conversion such that the
4069 trailing output digit might be nonzero. Any precision
4070 larger than this will not yield useful information. */
4071 USEFUL_PRECISION_MAX =
4072 ((1 - DBL_MIN_EXP)
4073 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
4074 : FLT_RADIX == 16 ? 4
4075 : -1)),
4076
4077 /* Maximum number of bytes generated by any format, if
4078 precision is no more than USEFUL_PRECISION_MAX.
4079 On all practical hosts, %f is the worst case. */
4080 SPRINTF_BUFSIZE =
4081 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
4082
4083 /* Length of pM (that is, of pMd without the
4084 trailing "d"). */
4085 pMlen = sizeof pMd - 2
4086 };
4087 verify (USEFUL_PRECISION_MAX > 0);
4088
4089 int prec;
4090 ptrdiff_t padding, sprintf_bytes;
4091 uintmax_t excess_precision, numwidth;
4092 uintmax_t leading_zeros = 0, trailing_zeros = 0;
4093
4094 char sprintf_buf[SPRINTF_BUFSIZE];
4095
4096 /* Copy of conversion specification, modified somewhat.
4097 At most three flags F can be specified at once. */
4098 char convspec[sizeof "%FFF.*d" + pMlen];
4099
4100 /* Avoid undefined behavior in underlying sprintf. */
4101 if (conversion == 'd' || conversion == 'i')
4102 sharp_flag = 0;
4103
4104 /* Create the copy of the conversion specification, with
4105 any width and precision removed, with ".*" inserted,
4106 and with pM inserted for integer formats. */
4107 {
4108 char *f = convspec;
4109 *f++ = '%';
4110 *f = '-'; f += minus_flag;
4111 *f = '+'; f += plus_flag;
4112 *f = ' '; f += space_flag;
4113 *f = '#'; f += sharp_flag;
4114 *f = '0'; f += zero_flag;
4115 *f++ = '.';
4116 *f++ = '*';
4117 if (conversion == 'd' || conversion == 'i'
4118 || conversion == 'o' || conversion == 'x'
4119 || conversion == 'X')
4120 {
4121 memcpy (f, pMd, pMlen);
4122 f += pMlen;
4123 zero_flag &= ~ precision_given;
4124 }
4125 *f++ = conversion;
4126 *f = '\0';
4127 }
4128
4129 prec = -1;
4130 if (precision_given)
4131 prec = min (precision, USEFUL_PRECISION_MAX);
4132
4133 /* Use sprintf to format this number into sprintf_buf. Omit
4134 padding and excess precision, though, because sprintf limits
4135 output length to INT_MAX.
4136
4137 There are four types of conversion: double, unsigned
4138 char (passed as int), wide signed int, and wide
4139 unsigned int. Treat them separately because the
4140 sprintf ABI is sensitive to which type is passed. Be
4141 careful about integer overflow, NaNs, infinities, and
4142 conversions; for example, the min and max macros are
4143 not suitable here. */
4144 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4145 {
4146 double x = (INTEGERP (args[n])
4147 ? XINT (args[n])
4148 : XFLOAT_DATA (args[n]));
4149 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4150 }
4151 else if (conversion == 'c')
4152 {
4153 /* Don't use sprintf here, as it might mishandle prec. */
4154 sprintf_buf[0] = XINT (args[n]);
4155 sprintf_bytes = prec != 0;
4156 }
4157 else if (conversion == 'd')
4158 {
4159 /* For float, maybe we should use "%1.0f"
4160 instead so it also works for values outside
4161 the integer range. */
4162 printmax_t x;
4163 if (INTEGERP (args[n]))
4164 x = XINT (args[n]);
4165 else
4166 {
4167 double d = XFLOAT_DATA (args[n]);
4168 if (d < 0)
4169 {
4170 x = TYPE_MINIMUM (printmax_t);
4171 if (x < d)
4172 x = d;
4173 }
4174 else
4175 {
4176 x = TYPE_MAXIMUM (printmax_t);
4177 if (d < x)
4178 x = d;
4179 }
4180 }
4181 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4182 }
4183 else
4184 {
4185 /* Don't sign-extend for octal or hex printing. */
4186 uprintmax_t x;
4187 if (INTEGERP (args[n]))
4188 x = XUINT (args[n]);
4189 else
4190 {
4191 double d = XFLOAT_DATA (args[n]);
4192 if (d < 0)
4193 x = 0;
4194 else
4195 {
4196 x = TYPE_MAXIMUM (uprintmax_t);
4197 if (d < x)
4198 x = d;
4199 }
4200 }
4201 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4202 }
4203
4204 /* Now the length of the formatted item is known, except it omits
4205 padding and excess precision. Deal with excess precision
4206 first. This happens only when the format specifies
4207 ridiculously large precision. */
4208 excess_precision = precision - prec;
4209 if (excess_precision)
4210 {
4211 if (conversion == 'e' || conversion == 'f'
4212 || conversion == 'g')
4213 {
4214 if ((conversion == 'g' && ! sharp_flag)
4215 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4216 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4217 excess_precision = 0;
4218 else
4219 {
4220 if (conversion == 'g')
4221 {
4222 char *dot = strchr (sprintf_buf, '.');
4223 if (!dot)
4224 excess_precision = 0;
4225 }
4226 }
4227 trailing_zeros = excess_precision;
4228 }
4229 else
4230 leading_zeros = excess_precision;
4231 }
4232
4233 /* Compute the total bytes needed for this item, including
4234 excess precision and padding. */
4235 numwidth = sprintf_bytes + excess_precision;
4236 padding = numwidth < field_width ? field_width - numwidth : 0;
4237 if (max_bufsize - sprintf_bytes <= excess_precision
4238 || max_bufsize - padding <= numwidth)
4239 string_overflow ();
4240 convbytes = numwidth + padding;
4241
4242 if (convbytes <= buf + bufsize - p)
4243 {
4244 /* Copy the formatted item from sprintf_buf into buf,
4245 inserting padding and excess-precision zeros. */
4246
4247 char *src = sprintf_buf;
4248 char src0 = src[0];
4249 int exponent_bytes = 0;
4250 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4251 int significand_bytes;
4252 if (zero_flag
4253 && ((src[signedp] >= '0' && src[signedp] <= '9')
4254 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4255 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4256 {
4257 leading_zeros += padding;
4258 padding = 0;
4259 }
4260
4261 if (excess_precision
4262 && (conversion == 'e' || conversion == 'g'))
4263 {
4264 char *e = strchr (src, 'e');
4265 if (e)
4266 exponent_bytes = src + sprintf_bytes - e;
4267 }
4268
4269 if (! minus_flag)
4270 {
4271 memset (p, ' ', padding);
4272 p += padding;
4273 nchars += padding;
4274 }
4275
4276 *p = src0;
4277 src += signedp;
4278 p += signedp;
4279 memset (p, '0', leading_zeros);
4280 p += leading_zeros;
4281 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4282 memcpy (p, src, significand_bytes);
4283 p += significand_bytes;
4284 src += significand_bytes;
4285 memset (p, '0', trailing_zeros);
4286 p += trailing_zeros;
4287 memcpy (p, src, exponent_bytes);
4288 p += exponent_bytes;
4289
4290 info[n].start = nchars;
4291 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4292 info[n].end = nchars;
4293
4294 if (minus_flag)
4295 {
4296 memset (p, ' ', padding);
4297 p += padding;
4298 nchars += padding;
4299 }
4300
4301 continue;
4302 }
4303 }
4304 }
4305 else
4306 copy_char:
4307 {
4308 /* Copy a single character from format to buf. */
4309
4310 char *src = format;
4311 unsigned char str[MAX_MULTIBYTE_LENGTH];
4312
4313 if (multibyte_format)
4314 {
4315 /* Copy a whole multibyte character. */
4316 if (p > buf
4317 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4318 && !CHAR_HEAD_P (*format))
4319 maybe_combine_byte = 1;
4320
4321 do
4322 format++;
4323 while (! CHAR_HEAD_P (*format));
4324
4325 convbytes = format - src;
4326 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4327 }
4328 else
4329 {
4330 unsigned char uc = *format++;
4331 if (! multibyte || ASCII_CHAR_P (uc))
4332 convbytes = 1;
4333 else
4334 {
4335 int c = BYTE8_TO_CHAR (uc);
4336 convbytes = CHAR_STRING (c, str);
4337 src = (char *) str;
4338 }
4339 }
4340
4341 if (convbytes <= buf + bufsize - p)
4342 {
4343 memcpy (p, src, convbytes);
4344 p += convbytes;
4345 nchars++;
4346 continue;
4347 }
4348 }
4349
4350 /* There wasn't enough room to store this conversion or single
4351 character. CONVBYTES says how much room is needed. Allocate
4352 enough room (and then some) and do it again. */
4353 {
4354 ptrdiff_t used = p - buf;
4355
4356 if (max_bufsize - used < convbytes)
4357 string_overflow ();
4358 bufsize = used + convbytes;
4359 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4360
4361 if (buf == initial_buffer)
4362 {
4363 buf = xmalloc (bufsize);
4364 sa_must_free = true;
4365 buf_save_value_index = SPECPDL_INDEX ();
4366 record_unwind_protect_ptr (xfree, buf);
4367 memcpy (buf, initial_buffer, used);
4368 }
4369 else
4370 {
4371 buf = xrealloc (buf, bufsize);
4372 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4373 }
4374
4375 p = buf + used;
4376 }
4377
4378 format = format0;
4379 n = n0;
4380 }
4381
4382 if (bufsize < p - buf)
4383 emacs_abort ();
4384
4385 if (maybe_combine_byte)
4386 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4387 val = make_specified_string (buf, nchars, p - buf, multibyte);
4388
4389 /* If we allocated BUF with malloc, free it too. */
4390 SAFE_FREE ();
4391
4392 /* If the format string has text properties, or any of the string
4393 arguments has text properties, set up text properties of the
4394 result string. */
4395
4396 if (string_intervals (args[0]) || arg_intervals)
4397 {
4398 Lisp_Object len, new_len, props;
4399 struct gcpro gcpro1;
4400
4401 /* Add text properties from the format string. */
4402 len = make_number (SCHARS (args[0]));
4403 props = text_property_list (args[0], make_number (0), len, Qnil);
4404 GCPRO1 (props);
4405
4406 if (CONSP (props))
4407 {
4408 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4409 ptrdiff_t argn = 1;
4410 Lisp_Object list;
4411
4412 /* Adjust the bounds of each text property
4413 to the proper start and end in the output string. */
4414
4415 /* Put the positions in PROPS in increasing order, so that
4416 we can do (effectively) one scan through the position
4417 space of the format string. */
4418 props = Fnreverse (props);
4419
4420 /* BYTEPOS is the byte position in the format string,
4421 POSITION is the untranslated char position in it,
4422 TRANSLATED is the translated char position in BUF,
4423 and ARGN is the number of the next arg we will come to. */
4424 for (list = props; CONSP (list); list = XCDR (list))
4425 {
4426 Lisp_Object item;
4427 ptrdiff_t pos;
4428
4429 item = XCAR (list);
4430
4431 /* First adjust the property start position. */
4432 pos = XINT (XCAR (item));
4433
4434 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4435 up to this position. */
4436 for (; position < pos; bytepos++)
4437 {
4438 if (! discarded[bytepos])
4439 position++, translated++;
4440 else if (discarded[bytepos] == 1)
4441 {
4442 position++;
4443 if (translated == info[argn].start)
4444 {
4445 translated += info[argn].end - info[argn].start;
4446 argn++;
4447 }
4448 }
4449 }
4450
4451 XSETCAR (item, make_number (translated));
4452
4453 /* Likewise adjust the property end position. */
4454 pos = XINT (XCAR (XCDR (item)));
4455
4456 for (; position < pos; bytepos++)
4457 {
4458 if (! discarded[bytepos])
4459 position++, translated++;
4460 else if (discarded[bytepos] == 1)
4461 {
4462 position++;
4463 if (translated == info[argn].start)
4464 {
4465 translated += info[argn].end - info[argn].start;
4466 argn++;
4467 }
4468 }
4469 }
4470
4471 XSETCAR (XCDR (item), make_number (translated));
4472 }
4473
4474 add_text_properties_from_list (val, props, make_number (0));
4475 }
4476
4477 /* Add text properties from arguments. */
4478 if (arg_intervals)
4479 for (n = 1; n < nargs; ++n)
4480 if (info[n].intervals)
4481 {
4482 len = make_number (SCHARS (args[n]));
4483 new_len = make_number (info[n].end - info[n].start);
4484 props = text_property_list (args[n], make_number (0), len, Qnil);
4485 props = extend_property_ranges (props, new_len);
4486 /* If successive arguments have properties, be sure that
4487 the value of `composition' property be the copy. */
4488 if (n > 1 && info[n - 1].end)
4489 make_composition_value_copy (props);
4490 add_text_properties_from_list (val, props,
4491 make_number (info[n].start));
4492 }
4493
4494 UNGCPRO;
4495 }
4496
4497 return val;
4498 }
4499
4500 Lisp_Object
4501 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4502 {
4503 AUTO_STRING (format, string1);
4504 return CALLN (Fformat, format, arg0, arg1);
4505 }
4506 \f
4507 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4508 doc: /* Return t if two characters match, optionally ignoring case.
4509 Both arguments must be characters (i.e. integers).
4510 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4511 (register Lisp_Object c1, Lisp_Object c2)
4512 {
4513 int i1, i2;
4514 /* Check they're chars, not just integers, otherwise we could get array
4515 bounds violations in downcase. */
4516 CHECK_CHARACTER (c1);
4517 CHECK_CHARACTER (c2);
4518
4519 if (XINT (c1) == XINT (c2))
4520 return Qt;
4521 if (NILP (BVAR (current_buffer, case_fold_search)))
4522 return Qnil;
4523
4524 i1 = XFASTINT (c1);
4525 i2 = XFASTINT (c2);
4526
4527 /* FIXME: It is possible to compare multibyte characters even when
4528 the current buffer is unibyte. Unfortunately this is ambiguous
4529 for characters between 128 and 255, as they could be either
4530 eight-bit raw bytes or Latin-1 characters. Assume the former for
4531 now. See Bug#17011, and also see casefiddle.c's casify_object,
4532 which has a similar problem. */
4533 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4534 {
4535 if (SINGLE_BYTE_CHAR_P (i1))
4536 i1 = UNIBYTE_TO_CHAR (i1);
4537 if (SINGLE_BYTE_CHAR_P (i2))
4538 i2 = UNIBYTE_TO_CHAR (i2);
4539 }
4540
4541 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4542 }
4543 \f
4544 /* Transpose the markers in two regions of the current buffer, and
4545 adjust the ones between them if necessary (i.e.: if the regions
4546 differ in size).
4547
4548 START1, END1 are the character positions of the first region.
4549 START1_BYTE, END1_BYTE are the byte positions.
4550 START2, END2 are the character positions of the second region.
4551 START2_BYTE, END2_BYTE are the byte positions.
4552
4553 Traverses the entire marker list of the buffer to do so, adding an
4554 appropriate amount to some, subtracting from some, and leaving the
4555 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4556
4557 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4558
4559 static void
4560 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4561 ptrdiff_t start2, ptrdiff_t end2,
4562 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4563 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4564 {
4565 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4566 register struct Lisp_Marker *marker;
4567
4568 /* Update point as if it were a marker. */
4569 if (PT < start1)
4570 ;
4571 else if (PT < end1)
4572 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4573 PT_BYTE + (end2_byte - end1_byte));
4574 else if (PT < start2)
4575 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4576 (PT_BYTE + (end2_byte - start2_byte)
4577 - (end1_byte - start1_byte)));
4578 else if (PT < end2)
4579 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4580 PT_BYTE - (start2_byte - start1_byte));
4581
4582 /* We used to adjust the endpoints here to account for the gap, but that
4583 isn't good enough. Even if we assume the caller has tried to move the
4584 gap out of our way, it might still be at start1 exactly, for example;
4585 and that places it `inside' the interval, for our purposes. The amount
4586 of adjustment is nontrivial if there's a `denormalized' marker whose
4587 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4588 the dirty work to Fmarker_position, below. */
4589
4590 /* The difference between the region's lengths */
4591 diff = (end2 - start2) - (end1 - start1);
4592 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4593
4594 /* For shifting each marker in a region by the length of the other
4595 region plus the distance between the regions. */
4596 amt1 = (end2 - start2) + (start2 - end1);
4597 amt2 = (end1 - start1) + (start2 - end1);
4598 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4599 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4600
4601 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4602 {
4603 mpos = marker->bytepos;
4604 if (mpos >= start1_byte && mpos < end2_byte)
4605 {
4606 if (mpos < end1_byte)
4607 mpos += amt1_byte;
4608 else if (mpos < start2_byte)
4609 mpos += diff_byte;
4610 else
4611 mpos -= amt2_byte;
4612 marker->bytepos = mpos;
4613 }
4614 mpos = marker->charpos;
4615 if (mpos >= start1 && mpos < end2)
4616 {
4617 if (mpos < end1)
4618 mpos += amt1;
4619 else if (mpos < start2)
4620 mpos += diff;
4621 else
4622 mpos -= amt2;
4623 }
4624 marker->charpos = mpos;
4625 }
4626 }
4627
4628 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4629 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4630 The regions should not be overlapping, because the size of the buffer is
4631 never changed in a transposition.
4632
4633 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4634 any markers that happen to be located in the regions.
4635
4636 Transposing beyond buffer boundaries is an error. */)
4637 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4638 {
4639 register ptrdiff_t start1, end1, start2, end2;
4640 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4641 ptrdiff_t gap, len1, len_mid, len2;
4642 unsigned char *start1_addr, *start2_addr, *temp;
4643
4644 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4645 Lisp_Object buf;
4646
4647 XSETBUFFER (buf, current_buffer);
4648 cur_intv = buffer_intervals (current_buffer);
4649
4650 validate_region (&startr1, &endr1);
4651 validate_region (&startr2, &endr2);
4652
4653 start1 = XFASTINT (startr1);
4654 end1 = XFASTINT (endr1);
4655 start2 = XFASTINT (startr2);
4656 end2 = XFASTINT (endr2);
4657 gap = GPT;
4658
4659 /* Swap the regions if they're reversed. */
4660 if (start2 < end1)
4661 {
4662 register ptrdiff_t glumph = start1;
4663 start1 = start2;
4664 start2 = glumph;
4665 glumph = end1;
4666 end1 = end2;
4667 end2 = glumph;
4668 }
4669
4670 len1 = end1 - start1;
4671 len2 = end2 - start2;
4672
4673 if (start2 < end1)
4674 error ("Transposed regions overlap");
4675 /* Nothing to change for adjacent regions with one being empty */
4676 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4677 return Qnil;
4678
4679 /* The possibilities are:
4680 1. Adjacent (contiguous) regions, or separate but equal regions
4681 (no, really equal, in this case!), or
4682 2. Separate regions of unequal size.
4683
4684 The worst case is usually No. 2. It means that (aside from
4685 potential need for getting the gap out of the way), there also
4686 needs to be a shifting of the text between the two regions. So
4687 if they are spread far apart, we are that much slower... sigh. */
4688
4689 /* It must be pointed out that the really studly thing to do would
4690 be not to move the gap at all, but to leave it in place and work
4691 around it if necessary. This would be extremely efficient,
4692 especially considering that people are likely to do
4693 transpositions near where they are working interactively, which
4694 is exactly where the gap would be found. However, such code
4695 would be much harder to write and to read. So, if you are
4696 reading this comment and are feeling squirrely, by all means have
4697 a go! I just didn't feel like doing it, so I will simply move
4698 the gap the minimum distance to get it out of the way, and then
4699 deal with an unbroken array. */
4700
4701 start1_byte = CHAR_TO_BYTE (start1);
4702 end2_byte = CHAR_TO_BYTE (end2);
4703
4704 /* Make sure the gap won't interfere, by moving it out of the text
4705 we will operate on. */
4706 if (start1 < gap && gap < end2)
4707 {
4708 if (gap - start1 < end2 - gap)
4709 move_gap_both (start1, start1_byte);
4710 else
4711 move_gap_both (end2, end2_byte);
4712 }
4713
4714 start2_byte = CHAR_TO_BYTE (start2);
4715 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4716 len2_byte = end2_byte - start2_byte;
4717
4718 #ifdef BYTE_COMBINING_DEBUG
4719 if (end1 == start2)
4720 {
4721 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4722 len2_byte, start1, start1_byte)
4723 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4724 len1_byte, end2, start2_byte + len2_byte)
4725 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4726 len1_byte, end2, start2_byte + len2_byte))
4727 emacs_abort ();
4728 }
4729 else
4730 {
4731 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4732 len2_byte, start1, start1_byte)
4733 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4734 len1_byte, start2, start2_byte)
4735 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4736 len2_byte, end1, start1_byte + len1_byte)
4737 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4738 len1_byte, end2, start2_byte + len2_byte))
4739 emacs_abort ();
4740 }
4741 #endif
4742
4743 /* Hmmm... how about checking to see if the gap is large
4744 enough to use as the temporary storage? That would avoid an
4745 allocation... interesting. Later, don't fool with it now. */
4746
4747 /* Working without memmove, for portability (sigh), so must be
4748 careful of overlapping subsections of the array... */
4749
4750 if (end1 == start2) /* adjacent regions */
4751 {
4752 modify_text (start1, end2);
4753 record_change (start1, len1 + len2);
4754
4755 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4756 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4757 /* Don't use Fset_text_properties: that can cause GC, which can
4758 clobber objects stored in the tmp_intervals. */
4759 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4760 if (tmp_interval3)
4761 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4762
4763 USE_SAFE_ALLOCA;
4764
4765 /* First region smaller than second. */
4766 if (len1_byte < len2_byte)
4767 {
4768 temp = SAFE_ALLOCA (len2_byte);
4769
4770 /* Don't precompute these addresses. We have to compute them
4771 at the last minute, because the relocating allocator might
4772 have moved the buffer around during the xmalloc. */
4773 start1_addr = BYTE_POS_ADDR (start1_byte);
4774 start2_addr = BYTE_POS_ADDR (start2_byte);
4775
4776 memcpy (temp, start2_addr, len2_byte);
4777 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4778 memcpy (start1_addr, temp, len2_byte);
4779 }
4780 else
4781 /* First region not smaller than second. */
4782 {
4783 temp = SAFE_ALLOCA (len1_byte);
4784 start1_addr = BYTE_POS_ADDR (start1_byte);
4785 start2_addr = BYTE_POS_ADDR (start2_byte);
4786 memcpy (temp, start1_addr, len1_byte);
4787 memcpy (start1_addr, start2_addr, len2_byte);
4788 memcpy (start1_addr + len2_byte, temp, len1_byte);
4789 }
4790
4791 SAFE_FREE ();
4792 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4793 len1, current_buffer, 0);
4794 graft_intervals_into_buffer (tmp_interval2, start1,
4795 len2, current_buffer, 0);
4796 update_compositions (start1, start1 + len2, CHECK_BORDER);
4797 update_compositions (start1 + len2, end2, CHECK_TAIL);
4798 }
4799 /* Non-adjacent regions, because end1 != start2, bleagh... */
4800 else
4801 {
4802 len_mid = start2_byte - (start1_byte + len1_byte);
4803
4804 if (len1_byte == len2_byte)
4805 /* Regions are same size, though, how nice. */
4806 {
4807 USE_SAFE_ALLOCA;
4808
4809 modify_text (start1, end1);
4810 modify_text (start2, end2);
4811 record_change (start1, len1);
4812 record_change (start2, len2);
4813 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4814 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4815
4816 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4817 if (tmp_interval3)
4818 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4819
4820 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4821 if (tmp_interval3)
4822 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4823
4824 temp = SAFE_ALLOCA (len1_byte);
4825 start1_addr = BYTE_POS_ADDR (start1_byte);
4826 start2_addr = BYTE_POS_ADDR (start2_byte);
4827 memcpy (temp, start1_addr, len1_byte);
4828 memcpy (start1_addr, start2_addr, len2_byte);
4829 memcpy (start2_addr, temp, len1_byte);
4830 SAFE_FREE ();
4831
4832 graft_intervals_into_buffer (tmp_interval1, start2,
4833 len1, current_buffer, 0);
4834 graft_intervals_into_buffer (tmp_interval2, start1,
4835 len2, current_buffer, 0);
4836 }
4837
4838 else if (len1_byte < len2_byte) /* Second region larger than first */
4839 /* Non-adjacent & unequal size, area between must also be shifted. */
4840 {
4841 USE_SAFE_ALLOCA;
4842
4843 modify_text (start1, end2);
4844 record_change (start1, (end2 - start1));
4845 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4846 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4847 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4848
4849 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4850 if (tmp_interval3)
4851 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4852
4853 /* holds region 2 */
4854 temp = SAFE_ALLOCA (len2_byte);
4855 start1_addr = BYTE_POS_ADDR (start1_byte);
4856 start2_addr = BYTE_POS_ADDR (start2_byte);
4857 memcpy (temp, start2_addr, len2_byte);
4858 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4859 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4860 memcpy (start1_addr, temp, len2_byte);
4861 SAFE_FREE ();
4862
4863 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4864 len1, current_buffer, 0);
4865 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4866 len_mid, current_buffer, 0);
4867 graft_intervals_into_buffer (tmp_interval2, start1,
4868 len2, current_buffer, 0);
4869 }
4870 else
4871 /* Second region smaller than first. */
4872 {
4873 USE_SAFE_ALLOCA;
4874
4875 record_change (start1, (end2 - start1));
4876 modify_text (start1, end2);
4877
4878 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4879 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4880 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4881
4882 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4883 if (tmp_interval3)
4884 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4885
4886 /* holds region 1 */
4887 temp = SAFE_ALLOCA (len1_byte);
4888 start1_addr = BYTE_POS_ADDR (start1_byte);
4889 start2_addr = BYTE_POS_ADDR (start2_byte);
4890 memcpy (temp, start1_addr, len1_byte);
4891 memcpy (start1_addr, start2_addr, len2_byte);
4892 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4893 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4894 SAFE_FREE ();
4895
4896 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4897 len1, current_buffer, 0);
4898 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4899 len_mid, current_buffer, 0);
4900 graft_intervals_into_buffer (tmp_interval2, start1,
4901 len2, current_buffer, 0);
4902 }
4903
4904 update_compositions (start1, start1 + len2, CHECK_BORDER);
4905 update_compositions (end2 - len1, end2, CHECK_BORDER);
4906 }
4907
4908 /* When doing multiple transpositions, it might be nice
4909 to optimize this. Perhaps the markers in any one buffer
4910 should be organized in some sorted data tree. */
4911 if (NILP (leave_markers))
4912 {
4913 transpose_markers (start1, end1, start2, end2,
4914 start1_byte, start1_byte + len1_byte,
4915 start2_byte, start2_byte + len2_byte);
4916 fix_start_end_in_overlays (start1, end2);
4917 }
4918
4919 signal_after_change (start1, end2 - start1, end2 - start1);
4920 return Qnil;
4921 }
4922
4923 \f
4924 void
4925 syms_of_editfns (void)
4926 {
4927 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4928
4929 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4930 doc: /* Non-nil means text motion commands don't notice fields. */);
4931 Vinhibit_field_text_motion = Qnil;
4932
4933 DEFVAR_LISP ("buffer-access-fontify-functions",
4934 Vbuffer_access_fontify_functions,
4935 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4936 Each function is called with two arguments which specify the range
4937 of the buffer being accessed. */);
4938 Vbuffer_access_fontify_functions = Qnil;
4939
4940 {
4941 Lisp_Object obuf;
4942 obuf = Fcurrent_buffer ();
4943 /* Do this here, because init_buffer_once is too early--it won't work. */
4944 Fset_buffer (Vprin1_to_string_buffer);
4945 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4946 Fset (Fmake_local_variable (Qbuffer_access_fontify_functions), Qnil);
4947 Fset_buffer (obuf);
4948 }
4949
4950 DEFVAR_LISP ("buffer-access-fontified-property",
4951 Vbuffer_access_fontified_property,
4952 doc: /* Property which (if non-nil) indicates text has been fontified.
4953 `buffer-substring' need not call the `buffer-access-fontify-functions'
4954 functions if all the text being accessed has this property. */);
4955 Vbuffer_access_fontified_property = Qnil;
4956
4957 DEFVAR_LISP ("system-name", Vsystem_name,
4958 doc: /* The host name of the machine Emacs is running on. */);
4959 Vsystem_name = cached_system_name = Qnil;
4960
4961 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4962 doc: /* The full name of the user logged in. */);
4963
4964 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4965 doc: /* The user's name, taken from environment variables if possible. */);
4966 Vuser_login_name = Qnil;
4967
4968 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4969 doc: /* The user's name, based upon the real uid only. */);
4970
4971 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4972 doc: /* The release of the operating system Emacs is running on. */);
4973
4974 defsubr (&Spropertize);
4975 defsubr (&Schar_equal);
4976 defsubr (&Sgoto_char);
4977 defsubr (&Sstring_to_char);
4978 defsubr (&Schar_to_string);
4979 defsubr (&Sbyte_to_string);
4980 defsubr (&Sbuffer_substring);
4981 defsubr (&Sbuffer_substring_no_properties);
4982 defsubr (&Sbuffer_string);
4983 defsubr (&Sget_pos_property);
4984
4985 defsubr (&Spoint_marker);
4986 defsubr (&Smark_marker);
4987 defsubr (&Spoint);
4988 defsubr (&Sregion_beginning);
4989 defsubr (&Sregion_end);
4990
4991 /* Symbol for the text property used to mark fields. */
4992 DEFSYM (Qfield, "field");
4993
4994 /* A special value for Qfield properties. */
4995 DEFSYM (Qboundary, "boundary");
4996
4997 defsubr (&Sfield_beginning);
4998 defsubr (&Sfield_end);
4999 defsubr (&Sfield_string);
5000 defsubr (&Sfield_string_no_properties);
5001 defsubr (&Sdelete_field);
5002 defsubr (&Sconstrain_to_field);
5003
5004 defsubr (&Sline_beginning_position);
5005 defsubr (&Sline_end_position);
5006
5007 defsubr (&Ssave_excursion);
5008 defsubr (&Ssave_current_buffer);
5009
5010 defsubr (&Sbuffer_size);
5011 defsubr (&Spoint_max);
5012 defsubr (&Spoint_min);
5013 defsubr (&Spoint_min_marker);
5014 defsubr (&Spoint_max_marker);
5015 defsubr (&Sgap_position);
5016 defsubr (&Sgap_size);
5017 defsubr (&Sposition_bytes);
5018 defsubr (&Sbyte_to_position);
5019
5020 defsubr (&Sbobp);
5021 defsubr (&Seobp);
5022 defsubr (&Sbolp);
5023 defsubr (&Seolp);
5024 defsubr (&Sfollowing_char);
5025 defsubr (&Sprevious_char);
5026 defsubr (&Schar_after);
5027 defsubr (&Schar_before);
5028 defsubr (&Sinsert);
5029 defsubr (&Sinsert_before_markers);
5030 defsubr (&Sinsert_and_inherit);
5031 defsubr (&Sinsert_and_inherit_before_markers);
5032 defsubr (&Sinsert_char);
5033 defsubr (&Sinsert_byte);
5034
5035 defsubr (&Suser_login_name);
5036 defsubr (&Suser_real_login_name);
5037 defsubr (&Suser_uid);
5038 defsubr (&Suser_real_uid);
5039 defsubr (&Sgroup_gid);
5040 defsubr (&Sgroup_real_gid);
5041 defsubr (&Suser_full_name);
5042 defsubr (&Semacs_pid);
5043 defsubr (&Scurrent_time);
5044 defsubr (&Stime_add);
5045 defsubr (&Stime_subtract);
5046 defsubr (&Stime_less_p);
5047 defsubr (&Sget_internal_run_time);
5048 defsubr (&Sformat_time_string);
5049 defsubr (&Sfloat_time);
5050 defsubr (&Sdecode_time);
5051 defsubr (&Sencode_time);
5052 defsubr (&Scurrent_time_string);
5053 defsubr (&Scurrent_time_zone);
5054 defsubr (&Sset_time_zone_rule);
5055 defsubr (&Ssystem_name);
5056 defsubr (&Smessage);
5057 defsubr (&Smessage_box);
5058 defsubr (&Smessage_or_box);
5059 defsubr (&Scurrent_message);
5060 defsubr (&Sformat);
5061
5062 defsubr (&Sinsert_buffer_substring);
5063 defsubr (&Scompare_buffer_substrings);
5064 defsubr (&Ssubst_char_in_region);
5065 defsubr (&Stranslate_region_internal);
5066 defsubr (&Sdelete_region);
5067 defsubr (&Sdelete_and_extract_region);
5068 defsubr (&Swiden);
5069 defsubr (&Snarrow_to_region);
5070 defsubr (&Ssave_restriction);
5071 defsubr (&Stranspose_regions);
5072 }