]> code.delx.au - gnu-emacs/blob - src/unexmacosx.c
bfb8bd4ea58656cf29afb0b61d82b0d8c5fe0100
[gnu-emacs] / src / unexmacosx.c
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
20
21 /* Documentation note.
22
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on Mac OS X displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
35
36 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
50 it. */
51
52 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
53 (possible causes of future bugs if changed).
54
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
62 remains unchanged.
63
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
72 segments.
73
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
86 */
87
88 /* config.h #define:s malloc/realloc/free and then includes stdlib.h.
89 We want the undefined versions, but if config.h includes stdlib.h
90 with the #define:s in place, the prototypes will be wrong and we get
91 warnings. To prevent that, include stdlib.h before config.h. */
92
93 #include <stdlib.h>
94 #include <config.h>
95 #undef malloc
96 #undef realloc
97 #undef free
98
99 #include "unexec.h"
100 #include "lisp.h"
101
102 #include <errno.h>
103 #include <stdio.h>
104 #include <fcntl.h>
105 #include <stdarg.h>
106 #include <sys/types.h>
107 #include <unistd.h>
108 #include <mach/mach.h>
109 #include <mach-o/loader.h>
110 #include <mach-o/reloc.h>
111 #ifdef HAVE_MALLOC_MALLOC_H
112 #include <malloc/malloc.h>
113 #else
114 #include <objc/malloc.h>
115 #endif
116
117 #include <assert.h>
118
119 /* LC_DATA_IN_CODE is not defined in mach-o/loader.h on OS X 10.7.
120 But it is used if we build with "Command Line Tools for Xcode 4.5
121 (OS X Lion) - September 2012". */
122 #ifndef LC_DATA_IN_CODE
123 #define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */
124 #endif
125
126 #ifdef _LP64
127 #define mach_header mach_header_64
128 #define segment_command segment_command_64
129 #undef VM_REGION_BASIC_INFO_COUNT
130 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
131 #undef VM_REGION_BASIC_INFO
132 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
133 #undef LC_SEGMENT
134 #define LC_SEGMENT LC_SEGMENT_64
135 #define vm_region vm_region_64
136 #define section section_64
137 #undef MH_MAGIC
138 #define MH_MAGIC MH_MAGIC_64
139 #endif
140
141 #define VERBOSE 1
142
143 /* Size of buffer used to copy data from the input file to the output
144 file in function unexec_copy. */
145 #define UNEXEC_COPY_BUFSZ 1024
146
147 /* Regions with memory addresses above this value are assumed to be
148 mapped to dynamically loaded libraries and will not be dumped. */
149 #define VM_DATA_TOP (20 * 1024 * 1024)
150
151 /* Type of an element on the list of regions to be dumped. */
152 struct region_t {
153 vm_address_t address;
154 vm_size_t size;
155 vm_prot_t protection;
156 vm_prot_t max_protection;
157
158 struct region_t *next;
159 };
160
161 /* Head and tail of the list of regions to be dumped. */
162 static struct region_t *region_list_head = 0;
163 static struct region_t *region_list_tail = 0;
164
165 /* Pointer to array of load commands. */
166 static struct load_command **lca;
167
168 /* Number of load commands. */
169 static int nlc;
170
171 /* The highest VM address of segments loaded by the input file.
172 Regions with addresses beyond this are assumed to be allocated
173 dynamically and thus require dumping. */
174 static vm_address_t infile_lc_highest_addr = 0;
175
176 /* The lowest file offset used by the all sections in the __TEXT
177 segments. This leaves room at the beginning of the file to store
178 the Mach-O header. Check this value against header size to ensure
179 the added load commands for the new __DATA segments did not
180 overwrite any of the sections in the __TEXT segment. */
181 static unsigned long text_seg_lowest_offset = 0x10000000;
182
183 /* Mach header. */
184 static struct mach_header mh;
185
186 /* Offset at which the next load command should be written. */
187 static unsigned long curr_header_offset = sizeof (struct mach_header);
188
189 /* Offset at which the next segment should be written. */
190 static unsigned long curr_file_offset = 0;
191
192 static unsigned long pagesize;
193 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
194
195 static int infd, outfd;
196
197 static int in_dumped_exec = 0;
198
199 static malloc_zone_t *emacs_zone;
200
201 /* file offset of input file's data segment */
202 static off_t data_segment_old_fileoff = 0;
203
204 static struct segment_command *data_segment_scp;
205
206 /* Read N bytes from infd into memory starting at address DEST.
207 Return true if successful, false otherwise. */
208 static int
209 unexec_read (void *dest, size_t n)
210 {
211 return n == read (infd, dest, n);
212 }
213
214 /* Write COUNT bytes from memory starting at address SRC to outfd
215 starting at offset DEST. Return true if successful, false
216 otherwise. */
217 static int
218 unexec_write (off_t dest, const void *src, size_t count)
219 {
220 if (lseek (outfd, dest, SEEK_SET) != dest)
221 return 0;
222
223 return write (outfd, src, count) == count;
224 }
225
226 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
227 Return true if successful, false otherwise. */
228 static int
229 unexec_write_zero (off_t dest, size_t count)
230 {
231 char buf[UNEXEC_COPY_BUFSZ];
232 ssize_t bytes;
233
234 memset (buf, 0, UNEXEC_COPY_BUFSZ);
235 if (lseek (outfd, dest, SEEK_SET) != dest)
236 return 0;
237
238 while (count > 0)
239 {
240 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
241 if (write (outfd, buf, bytes) != bytes)
242 return 0;
243 count -= bytes;
244 }
245
246 return 1;
247 }
248
249 /* Copy COUNT bytes from starting offset SRC in infd to starting
250 offset DEST in outfd. Return true if successful, false
251 otherwise. */
252 static int
253 unexec_copy (off_t dest, off_t src, ssize_t count)
254 {
255 ssize_t bytes_read;
256 ssize_t bytes_to_read;
257
258 char buf[UNEXEC_COPY_BUFSZ];
259
260 if (lseek (infd, src, SEEK_SET) != src)
261 return 0;
262
263 if (lseek (outfd, dest, SEEK_SET) != dest)
264 return 0;
265
266 while (count > 0)
267 {
268 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
269 bytes_read = read (infd, buf, bytes_to_read);
270 if (bytes_read <= 0)
271 return 0;
272 if (write (outfd, buf, bytes_read) != bytes_read)
273 return 0;
274 count -= bytes_read;
275 }
276
277 return 1;
278 }
279
280 /* Debugging and informational messages routines. */
281
282 static _Noreturn void
283 unexec_error (const char *format, ...)
284 {
285 va_list ap;
286
287 va_start (ap, format);
288 fprintf (stderr, "unexec: ");
289 vfprintf (stderr, format, ap);
290 fprintf (stderr, "\n");
291 va_end (ap);
292 exit (1);
293 }
294
295 static void
296 print_prot (vm_prot_t prot)
297 {
298 if (prot == VM_PROT_NONE)
299 printf ("none");
300 else
301 {
302 putchar (prot & VM_PROT_READ ? 'r' : ' ');
303 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
304 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
305 putchar (' ');
306 }
307 }
308
309 static void
310 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
311 vm_prot_t max_prot)
312 {
313 printf ("%#10lx %#8lx ", (long) address, (long) size);
314 print_prot (prot);
315 putchar (' ');
316 print_prot (max_prot);
317 putchar ('\n');
318 }
319
320 static void
321 print_region_list (void)
322 {
323 struct region_t *r;
324
325 printf (" address size prot maxp\n");
326
327 for (r = region_list_head; r; r = r->next)
328 print_region (r->address, r->size, r->protection, r->max_protection);
329 }
330
331 static void
332 print_regions (void)
333 {
334 task_t target_task = mach_task_self ();
335 vm_address_t address = (vm_address_t) 0;
336 vm_size_t size;
337 struct vm_region_basic_info info;
338 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
339 mach_port_t object_name;
340
341 printf (" address size prot maxp\n");
342
343 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
344 (vm_region_info_t) &info, &info_count, &object_name)
345 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
346 {
347 print_region (address, size, info.protection, info.max_protection);
348
349 if (object_name != MACH_PORT_NULL)
350 mach_port_deallocate (target_task, object_name);
351
352 address += size;
353 }
354 }
355
356 /* Build the list of regions that need to be dumped. Regions with
357 addresses above VM_DATA_TOP are omitted. Adjacent regions with
358 identical protection are merged. Note that non-writable regions
359 cannot be omitted because they some regions created at run time are
360 read-only. */
361 static void
362 build_region_list (void)
363 {
364 task_t target_task = mach_task_self ();
365 vm_address_t address = (vm_address_t) 0;
366 vm_size_t size;
367 struct vm_region_basic_info info;
368 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
369 mach_port_t object_name;
370 struct region_t *r;
371
372 #if VERBOSE
373 printf ("--- List of All Regions ---\n");
374 printf (" address size prot maxp\n");
375 #endif
376
377 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
378 (vm_region_info_t) &info, &info_count, &object_name)
379 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
380 {
381 /* Done when we reach addresses of shared libraries, which are
382 loaded in high memory. */
383 if (address >= VM_DATA_TOP)
384 break;
385
386 #if VERBOSE
387 print_region (address, size, info.protection, info.max_protection);
388 #endif
389
390 /* If a region immediately follows the previous one (the one
391 most recently added to the list) and has identical
392 protection, merge it with the latter. Otherwise create a
393 new list element for it. */
394 if (region_list_tail
395 && info.protection == region_list_tail->protection
396 && info.max_protection == region_list_tail->max_protection
397 && region_list_tail->address + region_list_tail->size == address)
398 {
399 region_list_tail->size += size;
400 }
401 else
402 {
403 r = malloc (sizeof *r);
404
405 if (!r)
406 unexec_error ("cannot allocate region structure");
407
408 r->address = address;
409 r->size = size;
410 r->protection = info.protection;
411 r->max_protection = info.max_protection;
412
413 r->next = 0;
414 if (region_list_head == 0)
415 {
416 region_list_head = r;
417 region_list_tail = r;
418 }
419 else
420 {
421 region_list_tail->next = r;
422 region_list_tail = r;
423 }
424
425 /* Deallocate (unused) object name returned by
426 vm_region. */
427 if (object_name != MACH_PORT_NULL)
428 mach_port_deallocate (target_task, object_name);
429 }
430
431 address += size;
432 }
433
434 printf ("--- List of Regions to be Dumped ---\n");
435 print_region_list ();
436 }
437
438
439 #define MAX_UNEXEC_REGIONS 400
440
441 static int num_unexec_regions;
442 typedef struct {
443 vm_range_t range;
444 vm_size_t filesize;
445 } unexec_region_info;
446 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
447
448 static void
449 unexec_regions_recorder (task_t task, void *rr, unsigned type,
450 vm_range_t *ranges, unsigned num)
451 {
452 vm_address_t p;
453 vm_size_t filesize;
454
455 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
456 {
457 /* Subtract the size of trailing null bytes from filesize. It
458 can be smaller than vmsize in segment commands. In such a
459 case, trailing bytes are initialized with zeros. */
460 for (p = ranges->address + ranges->size; p > ranges->address; p--)
461 if (*(((char *) p)-1))
462 break;
463 filesize = p - ranges->address;
464
465 unexec_regions[num_unexec_regions].filesize = filesize;
466 unexec_regions[num_unexec_regions++].range = *ranges;
467 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
468 (long) filesize, (long) (ranges->size));
469 ranges++; num--;
470 }
471 }
472
473 static kern_return_t
474 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
475 {
476 *ptr = (void *) address;
477 return KERN_SUCCESS;
478 }
479
480 static void
481 find_emacs_zone_regions (void)
482 {
483 num_unexec_regions = 0;
484
485 emacs_zone->introspect->enumerator (mach_task_self (), 0,
486 MALLOC_PTR_REGION_RANGE_TYPE
487 | MALLOC_ADMIN_REGION_RANGE_TYPE,
488 (vm_address_t) emacs_zone,
489 unexec_reader,
490 unexec_regions_recorder);
491
492 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
493 unexec_error ("find_emacs_zone_regions: too many regions");
494 }
495
496 static int
497 unexec_regions_sort_compare (const void *a, const void *b)
498 {
499 vm_address_t aa = ((unexec_region_info *) a)->range.address;
500 vm_address_t bb = ((unexec_region_info *) b)->range.address;
501
502 if (aa < bb)
503 return -1;
504 else if (aa > bb)
505 return 1;
506 else
507 return 0;
508 }
509
510 static void
511 unexec_regions_merge (void)
512 {
513 int i, n;
514 unexec_region_info r;
515 vm_size_t padsize;
516
517 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
518 &unexec_regions_sort_compare);
519 n = 0;
520 r = unexec_regions[0];
521 padsize = r.range.address & (pagesize - 1);
522 if (padsize)
523 {
524 r.range.address -= padsize;
525 r.range.size += padsize;
526 r.filesize += padsize;
527 }
528 for (i = 1; i < num_unexec_regions; i++)
529 {
530 if (r.range.address + r.range.size == unexec_regions[i].range.address
531 && r.range.size - r.filesize < 2 * pagesize)
532 {
533 r.filesize = r.range.size + unexec_regions[i].filesize;
534 r.range.size += unexec_regions[i].range.size;
535 }
536 else
537 {
538 unexec_regions[n++] = r;
539 r = unexec_regions[i];
540 padsize = r.range.address & (pagesize - 1);
541 if (padsize)
542 {
543 if ((unexec_regions[n-1].range.address
544 + unexec_regions[n-1].range.size) == r.range.address)
545 unexec_regions[n-1].range.size -= padsize;
546
547 r.range.address -= padsize;
548 r.range.size += padsize;
549 r.filesize += padsize;
550 }
551 }
552 }
553 unexec_regions[n++] = r;
554 num_unexec_regions = n;
555 }
556
557
558 /* More informational messages routines. */
559
560 static void
561 print_load_command_name (int lc)
562 {
563 switch (lc)
564 {
565 case LC_SEGMENT:
566 #ifndef _LP64
567 printf ("LC_SEGMENT ");
568 #else
569 printf ("LC_SEGMENT_64 ");
570 #endif
571 break;
572 case LC_LOAD_DYLINKER:
573 printf ("LC_LOAD_DYLINKER ");
574 break;
575 case LC_LOAD_DYLIB:
576 printf ("LC_LOAD_DYLIB ");
577 break;
578 case LC_SYMTAB:
579 printf ("LC_SYMTAB ");
580 break;
581 case LC_DYSYMTAB:
582 printf ("LC_DYSYMTAB ");
583 break;
584 case LC_UNIXTHREAD:
585 printf ("LC_UNIXTHREAD ");
586 break;
587 case LC_PREBOUND_DYLIB:
588 printf ("LC_PREBOUND_DYLIB");
589 break;
590 case LC_TWOLEVEL_HINTS:
591 printf ("LC_TWOLEVEL_HINTS");
592 break;
593 #ifdef LC_UUID
594 case LC_UUID:
595 printf ("LC_UUID ");
596 break;
597 #endif
598 #ifdef LC_DYLD_INFO
599 case LC_DYLD_INFO:
600 printf ("LC_DYLD_INFO ");
601 break;
602 case LC_DYLD_INFO_ONLY:
603 printf ("LC_DYLD_INFO_ONLY");
604 break;
605 #endif
606 #ifdef LC_VERSION_MIN_MACOSX
607 case LC_VERSION_MIN_MACOSX:
608 printf ("LC_VERSION_MIN_MACOSX");
609 break;
610 #endif
611 #ifdef LC_FUNCTION_STARTS
612 case LC_FUNCTION_STARTS:
613 printf ("LC_FUNCTION_STARTS");
614 break;
615 #endif
616 #ifdef LC_MAIN
617 case LC_MAIN:
618 printf ("LC_MAIN ");
619 break;
620 #endif
621 #ifdef LC_DATA_IN_CODE
622 case LC_DATA_IN_CODE:
623 printf ("LC_DATA_IN_CODE ");
624 break;
625 #endif
626 #ifdef LC_SOURCE_VERSION
627 case LC_SOURCE_VERSION:
628 printf ("LC_SOURCE_VERSION");
629 break;
630 #endif
631 #ifdef LC_DYLIB_CODE_SIGN_DRS
632 case LC_DYLIB_CODE_SIGN_DRS:
633 printf ("LC_DYLIB_CODE_SIGN_DRS");
634 break;
635 #endif
636 default:
637 printf ("unknown ");
638 }
639 }
640
641 static void
642 print_load_command (struct load_command *lc)
643 {
644 print_load_command_name (lc->cmd);
645 printf ("%8d", lc->cmdsize);
646
647 if (lc->cmd == LC_SEGMENT)
648 {
649 struct segment_command *scp;
650 struct section *sectp;
651 int j;
652
653 scp = (struct segment_command *) lc;
654 printf (" %-16.16s %#10lx %#8lx\n",
655 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
656
657 sectp = (struct section *) (scp + 1);
658 for (j = 0; j < scp->nsects; j++)
659 {
660 printf (" %-16.16s %#10lx %#8lx\n",
661 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
662 sectp++;
663 }
664 }
665 else
666 printf ("\n");
667 }
668
669 /* Read header and load commands from input file. Store the latter in
670 the global array lca. Store the total number of load commands in
671 global variable nlc. */
672 static void
673 read_load_commands (void)
674 {
675 int i;
676
677 if (!unexec_read (&mh, sizeof (struct mach_header)))
678 unexec_error ("cannot read mach-o header");
679
680 if (mh.magic != MH_MAGIC)
681 unexec_error ("input file not in Mach-O format");
682
683 if (mh.filetype != MH_EXECUTE)
684 unexec_error ("input Mach-O file is not an executable object file");
685
686 #if VERBOSE
687 printf ("--- Header Information ---\n");
688 printf ("Magic = 0x%08x\n", mh.magic);
689 printf ("CPUType = %d\n", mh.cputype);
690 printf ("CPUSubType = %d\n", mh.cpusubtype);
691 printf ("FileType = 0x%x\n", mh.filetype);
692 printf ("NCmds = %d\n", mh.ncmds);
693 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
694 printf ("Flags = 0x%08x\n", mh.flags);
695 #endif
696
697 nlc = mh.ncmds;
698 lca = malloc (nlc * sizeof *lca);
699
700 for (i = 0; i < nlc; i++)
701 {
702 struct load_command lc;
703 /* Load commands are variable-size: so read the command type and
704 size first and then read the rest. */
705 if (!unexec_read (&lc, sizeof (struct load_command)))
706 unexec_error ("cannot read load command");
707 lca[i] = malloc (lc.cmdsize);
708 memcpy (lca[i], &lc, sizeof (struct load_command));
709 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
710 unexec_error ("cannot read content of load command");
711 if (lc.cmd == LC_SEGMENT)
712 {
713 struct segment_command *scp = (struct segment_command *) lca[i];
714
715 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
716 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
717
718 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
719 {
720 struct section *sectp = (struct section *) (scp + 1);
721 int j;
722
723 for (j = 0; j < scp->nsects; j++)
724 if (sectp->offset < text_seg_lowest_offset)
725 text_seg_lowest_offset = sectp->offset;
726 }
727 }
728 }
729
730 printf ("Highest address of load commands in input file: %#8lx\n",
731 (unsigned long)infile_lc_highest_addr);
732
733 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
734 text_seg_lowest_offset);
735
736 printf ("--- List of Load Commands in Input File ---\n");
737 printf ("# cmd cmdsize name address size\n");
738
739 for (i = 0; i < nlc; i++)
740 {
741 printf ("%1d ", i);
742 print_load_command (lca[i]);
743 }
744 }
745
746 /* Copy a LC_SEGMENT load command other than the __DATA segment from
747 the input file to the output file, adjusting the file offset of the
748 segment and the file offsets of sections contained in it. */
749 static void
750 copy_segment (struct load_command *lc)
751 {
752 struct segment_command *scp = (struct segment_command *) lc;
753 unsigned long old_fileoff = scp->fileoff;
754 struct section *sectp;
755 int j;
756
757 scp->fileoff = curr_file_offset;
758
759 sectp = (struct section *) (scp + 1);
760 for (j = 0; j < scp->nsects; j++)
761 {
762 sectp->offset += curr_file_offset - old_fileoff;
763 sectp++;
764 }
765
766 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
767 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
768 (long) (scp->vmsize), (long) (scp->vmaddr));
769
770 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
771 unexec_error ("cannot copy segment from input to output file");
772 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
773
774 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
775 unexec_error ("cannot write load command to header");
776
777 curr_header_offset += lc->cmdsize;
778 }
779
780 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
781 file to the output file. We assume that only one such segment load
782 command exists in the input file and it contains the sections
783 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
784 __dyld. The first three of these should be dumped from memory and
785 the rest should be copied from the input file. Note that the
786 sections __bss and __common contain no data in the input file
787 because their flag fields have the value S_ZEROFILL. Dumping these
788 from memory makes it necessary to adjust file offset fields in
789 subsequently dumped load commands. Then, create new __DATA segment
790 load commands for regions on the region list other than the one
791 corresponding to the __DATA segment in the input file. */
792 static void
793 copy_data_segment (struct load_command *lc)
794 {
795 struct segment_command *scp = (struct segment_command *) lc;
796 struct section *sectp;
797 int j;
798 unsigned long header_offset, old_file_offset;
799
800 /* The new filesize of the segment is set to its vmsize because data
801 blocks for segments must start at region boundaries. Note that
802 this may leave unused locations at the end of the segment data
803 block because the total of the sizes of all sections in the
804 segment is generally smaller than vmsize. */
805 scp->filesize = scp->vmsize;
806
807 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
808 scp->segname, curr_file_offset, (long)(scp->filesize),
809 (long)(scp->vmsize), (long) (scp->vmaddr));
810
811 /* Offsets in the output file for writing the next section structure
812 and segment data block, respectively. */
813 header_offset = curr_header_offset + sizeof (struct segment_command);
814
815 sectp = (struct section *) (scp + 1);
816 for (j = 0; j < scp->nsects; j++)
817 {
818 old_file_offset = sectp->offset;
819 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
820 /* The __data section is dumped from memory. The __bss and
821 __common sections are also dumped from memory but their flag
822 fields require changing (from S_ZEROFILL to S_REGULAR). The
823 other three kinds of sections are just copied from the input
824 file. */
825 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
826 {
827 unsigned long my_size;
828
829 /* The __data section is basically dumped from memory. But
830 initialized data in statically linked libraries are
831 copied from the input file. In particular,
832 add_image_hook.names and add_image_hook.pointers stored
833 by libarclite_macosx.a, are restored so that they will be
834 reinitialized when the dumped binary is executed. */
835 my_size = (unsigned long)my_edata - sectp->addr;
836 if (!(sectp->addr <= (unsigned long)my_edata
837 && my_size <= sectp->size))
838 unexec_error ("my_edata is not in section %s", SECT_DATA);
839 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
840 unexec_error ("cannot write section %s", SECT_DATA);
841 if (!unexec_copy (sectp->offset + my_size, old_file_offset + my_size,
842 sectp->size - my_size))
843 unexec_error ("cannot copy section %s", SECT_DATA);
844 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
845 unexec_error ("cannot write section %s's header", SECT_DATA);
846 }
847 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
848 {
849 sectp->flags = S_REGULAR;
850 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
851 unexec_error ("cannot write section %.16s", sectp->sectname);
852 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
853 unexec_error ("cannot write section %.16s's header", sectp->sectname);
854 }
855 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
856 {
857 unsigned long my_size;
858
859 sectp->flags = S_REGULAR;
860
861 /* Clear uninitialized local variables in statically linked
862 libraries. In particular, function pointers stored by
863 libSystemStub.a, which is introduced in Mac OS X 10.4 for
864 binary compatibility with respect to long double, are
865 cleared so that they will be reinitialized when the
866 dumped binary is executed on other versions of OS. */
867 my_size = (unsigned long)my_endbss_static - sectp->addr;
868 if (!(sectp->addr <= (unsigned long)my_endbss_static
869 && my_size <= sectp->size))
870 unexec_error ("my_endbss_static is not in section %.16s",
871 sectp->sectname);
872 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
873 unexec_error ("cannot write section %.16s", sectp->sectname);
874 if (!unexec_write_zero (sectp->offset + my_size,
875 sectp->size - my_size))
876 unexec_error ("cannot write section %.16s", sectp->sectname);
877 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
878 unexec_error ("cannot write section %.16s's header", sectp->sectname);
879 }
880 else if (strncmp (sectp->sectname, "__bss", 5) == 0
881 || strncmp (sectp->sectname, "__pu_bss", 8) == 0)
882 {
883 sectp->flags = S_REGULAR;
884
885 /* These sections are produced by GCC 4.6+.
886
887 FIXME: We possibly ought to clear uninitialized local
888 variables in statically linked libraries like for
889 SECT_BSS (__bss) above, but setting up the markers we
890 need in lastfile.c would be rather messy. See
891 darwin_output_aligned_bss () in gcc/config/darwin.c for
892 the root of the problem, keeping in mind that the
893 sections are numbered by their alignment in GCC 4.6, but
894 by log2(alignment) in GCC 4.7. */
895
896 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
897 unexec_error ("cannot copy section %.16s", sectp->sectname);
898 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
899 unexec_error ("cannot write section %.16s's header", sectp->sectname);
900 }
901 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
902 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
903 || strncmp (sectp->sectname, "__got", 16) == 0
904 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
905 || strncmp (sectp->sectname, "__dyld", 16) == 0
906 || strncmp (sectp->sectname, "__const", 16) == 0
907 || strncmp (sectp->sectname, "__cfstring", 16) == 0
908 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
909 || strncmp (sectp->sectname, "__program_vars", 16) == 0
910 || strncmp (sectp->sectname, "__mod_init_func", 16) == 0
911 || strncmp (sectp->sectname, "__mod_term_func", 16) == 0
912 || strncmp (sectp->sectname, "__static_data", 16) == 0
913 || strncmp (sectp->sectname, "__objc_", 7) == 0)
914 {
915 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
916 unexec_error ("cannot copy section %.16s", sectp->sectname);
917 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
918 unexec_error ("cannot write section %.16s's header", sectp->sectname);
919 }
920 else
921 unexec_error ("unrecognized section %.16s in __DATA segment",
922 sectp->sectname);
923
924 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
925 sectp->sectname, (long) (sectp->offset),
926 (long) (sectp->offset + sectp->size), (long) (sectp->size));
927
928 header_offset += sizeof (struct section);
929 sectp++;
930 }
931
932 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
933
934 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
935 unexec_error ("cannot write header of __DATA segment");
936 curr_header_offset += lc->cmdsize;
937
938 /* Create new __DATA segment load commands for regions on the region
939 list that do not corresponding to any segment load commands in
940 the input file.
941 */
942 for (j = 0; j < num_unexec_regions; j++)
943 {
944 struct segment_command sc;
945
946 sc.cmd = LC_SEGMENT;
947 sc.cmdsize = sizeof (struct segment_command);
948 strncpy (sc.segname, SEG_DATA, 16);
949 sc.vmaddr = unexec_regions[j].range.address;
950 sc.vmsize = unexec_regions[j].range.size;
951 sc.fileoff = curr_file_offset;
952 sc.filesize = unexec_regions[j].filesize;
953 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
954 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
955 sc.nsects = 0;
956 sc.flags = 0;
957
958 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
959 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
960 (long) (sc.vmsize), (long) (sc.vmaddr));
961
962 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
963 unexec_error ("cannot write new __DATA segment");
964 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
965
966 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
967 unexec_error ("cannot write new __DATA segment's header");
968 curr_header_offset += sc.cmdsize;
969 mh.ncmds++;
970 }
971 }
972
973 /* Copy a LC_SYMTAB load command from the input file to the output
974 file, adjusting the file offset fields. */
975 static void
976 copy_symtab (struct load_command *lc, long delta)
977 {
978 struct symtab_command *stp = (struct symtab_command *) lc;
979
980 stp->symoff += delta;
981 stp->stroff += delta;
982
983 printf ("Writing LC_SYMTAB command\n");
984
985 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
986 unexec_error ("cannot write symtab command to header");
987
988 curr_header_offset += lc->cmdsize;
989 }
990
991 /* Fix up relocation entries. */
992 static void
993 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
994 {
995 int i, unreloc_count;
996 struct relocation_info reloc_info;
997 struct scattered_relocation_info *sc_reloc_info
998 = (struct scattered_relocation_info *) &reloc_info;
999 vm_address_t location;
1000
1001 for (unreloc_count = 0, i = 0; i < nrel; i++)
1002 {
1003 if (lseek (infd, reloff, L_SET) != reloff)
1004 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
1005 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
1006 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
1007 reloff += sizeof (reloc_info);
1008
1009 if (sc_reloc_info->r_scattered == 0)
1010 switch (reloc_info.r_type)
1011 {
1012 case GENERIC_RELOC_VANILLA:
1013 location = base + reloc_info.r_address;
1014 if (location >= data_segment_scp->vmaddr
1015 && location < (data_segment_scp->vmaddr
1016 + data_segment_scp->vmsize))
1017 {
1018 off_t src_off = data_segment_old_fileoff
1019 + (location - data_segment_scp->vmaddr);
1020 off_t dst_off = data_segment_scp->fileoff
1021 + (location - data_segment_scp->vmaddr);
1022
1023 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
1024 unexec_error ("unrelocate: %s:%d cannot copy original value",
1025 name, i);
1026 unreloc_count++;
1027 }
1028 break;
1029 default:
1030 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
1031 name, i, reloc_info.r_type);
1032 }
1033 else
1034 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
1035 name, i, sc_reloc_info->r_type);
1036 }
1037
1038 if (nrel > 0)
1039 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
1040 unreloc_count, nrel, name);
1041 }
1042
1043 /* Copy a LC_DYSYMTAB load command from the input file to the output
1044 file, adjusting the file offset fields. */
1045 static void
1046 copy_dysymtab (struct load_command *lc, long delta)
1047 {
1048 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1049 vm_address_t base;
1050
1051 #ifdef _LP64
1052 /* First writable segment address. */
1053 base = data_segment_scp->vmaddr;
1054 #else
1055 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1056 base = 0;
1057 #endif
1058
1059 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1060 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1061
1062 if (dstp->nextrel > 0) {
1063 dstp->extreloff += delta;
1064 }
1065
1066 if (dstp->nlocrel > 0) {
1067 dstp->locreloff += delta;
1068 }
1069
1070 if (dstp->nindirectsyms > 0)
1071 dstp->indirectsymoff += delta;
1072
1073 printf ("Writing LC_DYSYMTAB command\n");
1074
1075 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1076 unexec_error ("cannot write symtab command to header");
1077
1078 curr_header_offset += lc->cmdsize;
1079 }
1080
1081 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1082 file, adjusting the file offset fields. */
1083 static void
1084 copy_twolevelhints (struct load_command *lc, long delta)
1085 {
1086 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1087
1088 if (tlhp->nhints > 0) {
1089 tlhp->offset += delta;
1090 }
1091
1092 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1093
1094 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1095 unexec_error ("cannot write two level hint command to header");
1096
1097 curr_header_offset += lc->cmdsize;
1098 }
1099
1100 #ifdef LC_DYLD_INFO
1101 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1102 file, adjusting the file offset fields. */
1103 static void
1104 copy_dyld_info (struct load_command *lc, long delta)
1105 {
1106 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1107
1108 if (dip->rebase_off > 0)
1109 dip->rebase_off += delta;
1110 if (dip->bind_off > 0)
1111 dip->bind_off += delta;
1112 if (dip->weak_bind_off > 0)
1113 dip->weak_bind_off += delta;
1114 if (dip->lazy_bind_off > 0)
1115 dip->lazy_bind_off += delta;
1116 if (dip->export_off > 0)
1117 dip->export_off += delta;
1118
1119 printf ("Writing ");
1120 print_load_command_name (lc->cmd);
1121 printf (" command\n");
1122
1123 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1124 unexec_error ("cannot write dyld info command to header");
1125
1126 curr_header_offset += lc->cmdsize;
1127 }
1128 #endif
1129
1130 #ifdef LC_FUNCTION_STARTS
1131 /* Copy a LC_FUNCTION_STARTS/LC_DATA_IN_CODE/LC_DYLIB_CODE_SIGN_DRS
1132 load command from the input file to the output file, adjusting the
1133 data offset field. */
1134 static void
1135 copy_linkedit_data (struct load_command *lc, long delta)
1136 {
1137 struct linkedit_data_command *ldp = (struct linkedit_data_command *) lc;
1138
1139 if (ldp->dataoff > 0)
1140 ldp->dataoff += delta;
1141
1142 printf ("Writing ");
1143 print_load_command_name (lc->cmd);
1144 printf (" command\n");
1145
1146 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1147 unexec_error ("cannot write linkedit data command to header");
1148
1149 curr_header_offset += lc->cmdsize;
1150 }
1151 #endif
1152
1153 /* Copy other kinds of load commands from the input file to the output
1154 file, ones that do not require adjustments of file offsets. */
1155 static void
1156 copy_other (struct load_command *lc)
1157 {
1158 printf ("Writing ");
1159 print_load_command_name (lc->cmd);
1160 printf (" command\n");
1161
1162 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1163 unexec_error ("cannot write symtab command to header");
1164
1165 curr_header_offset += lc->cmdsize;
1166 }
1167
1168 /* Loop through all load commands and dump them. Then write the Mach
1169 header. */
1170 static void
1171 dump_it (void)
1172 {
1173 int i;
1174 long linkedit_delta = 0;
1175
1176 printf ("--- Load Commands written to Output File ---\n");
1177
1178 for (i = 0; i < nlc; i++)
1179 switch (lca[i]->cmd)
1180 {
1181 case LC_SEGMENT:
1182 {
1183 struct segment_command *scp = (struct segment_command *) lca[i];
1184 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1185 {
1186 /* save data segment file offset and segment_command for
1187 unrelocate */
1188 if (data_segment_old_fileoff)
1189 unexec_error ("cannot handle multiple DATA segments"
1190 " in input file");
1191 data_segment_old_fileoff = scp->fileoff;
1192 data_segment_scp = scp;
1193
1194 copy_data_segment (lca[i]);
1195 }
1196 else
1197 {
1198 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1199 {
1200 if (linkedit_delta)
1201 unexec_error ("cannot handle multiple LINKEDIT segments"
1202 " in input file");
1203 linkedit_delta = curr_file_offset - scp->fileoff;
1204 }
1205
1206 copy_segment (lca[i]);
1207 }
1208 }
1209 break;
1210 case LC_SYMTAB:
1211 copy_symtab (lca[i], linkedit_delta);
1212 break;
1213 case LC_DYSYMTAB:
1214 copy_dysymtab (lca[i], linkedit_delta);
1215 break;
1216 case LC_TWOLEVEL_HINTS:
1217 copy_twolevelhints (lca[i], linkedit_delta);
1218 break;
1219 #ifdef LC_DYLD_INFO
1220 case LC_DYLD_INFO:
1221 case LC_DYLD_INFO_ONLY:
1222 copy_dyld_info (lca[i], linkedit_delta);
1223 break;
1224 #endif
1225 #ifdef LC_FUNCTION_STARTS
1226 case LC_FUNCTION_STARTS:
1227 #ifdef LC_DATA_IN_CODE
1228 case LC_DATA_IN_CODE:
1229 #endif
1230 #ifdef LC_DYLIB_CODE_SIGN_DRS
1231 case LC_DYLIB_CODE_SIGN_DRS:
1232 #endif
1233 copy_linkedit_data (lca[i], linkedit_delta);
1234 break;
1235 #endif
1236 default:
1237 copy_other (lca[i]);
1238 break;
1239 }
1240
1241 if (curr_header_offset > text_seg_lowest_offset)
1242 unexec_error ("not enough room for load commands for new __DATA segments"
1243 " (increase headerpad_extra in configure.in to at least %lX)",
1244 num_unexec_regions * sizeof (struct segment_command));
1245
1246 printf ("%ld unused bytes follow Mach-O header\n",
1247 text_seg_lowest_offset - curr_header_offset);
1248
1249 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1250 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1251 unexec_error ("cannot write final header contents");
1252 }
1253
1254 /* Take a snapshot of Emacs and make a Mach-O format executable file
1255 from it. The file names of the output and input files are outfile
1256 and infile, respectively. The three other parameters are
1257 ignored. */
1258 void
1259 unexec (const char *outfile, const char *infile)
1260 {
1261 if (in_dumped_exec)
1262 unexec_error ("Unexec from a dumped executable is not supported.");
1263
1264 pagesize = getpagesize ();
1265 infd = emacs_open (infile, O_RDONLY, 0);
1266 if (infd < 0)
1267 {
1268 unexec_error ("%s: %s", infile, strerror (errno));
1269 }
1270
1271 outfd = emacs_open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0777);
1272 if (outfd < 0)
1273 {
1274 emacs_close (infd);
1275 unexec_error ("%s: %s", outfile, strerror (errno));
1276 }
1277
1278 build_region_list ();
1279 read_load_commands ();
1280
1281 find_emacs_zone_regions ();
1282 unexec_regions_merge ();
1283
1284 in_dumped_exec = 1;
1285
1286 dump_it ();
1287
1288 emacs_close (outfd);
1289 }
1290
1291
1292 void
1293 unexec_init_emacs_zone (void)
1294 {
1295 emacs_zone = malloc_create_zone (0, 0);
1296 malloc_set_zone_name (emacs_zone, "EmacsZone");
1297 }
1298
1299 #ifndef MACOSX_MALLOC_MULT16
1300 #define MACOSX_MALLOC_MULT16 1
1301 #endif
1302
1303 typedef struct unexec_malloc_header {
1304 union {
1305 char c[8];
1306 size_t size;
1307 } u;
1308 } unexec_malloc_header_t;
1309
1310 #if MACOSX_MALLOC_MULT16
1311
1312 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1313
1314 #else
1315
1316 int
1317 ptr_in_unexec_regions (void *ptr)
1318 {
1319 int i;
1320
1321 for (i = 0; i < num_unexec_regions; i++)
1322 if ((vm_address_t) ptr - unexec_regions[i].range.address
1323 < unexec_regions[i].range.size)
1324 return 1;
1325
1326 return 0;
1327 }
1328
1329 #endif
1330
1331 void *
1332 unexec_malloc (size_t size)
1333 {
1334 if (in_dumped_exec)
1335 {
1336 void *p;
1337
1338 p = malloc (size);
1339 #if MACOSX_MALLOC_MULT16
1340 assert (((vm_address_t) p % 16) == 0);
1341 #endif
1342 return p;
1343 }
1344 else
1345 {
1346 unexec_malloc_header_t *ptr;
1347
1348 ptr = (unexec_malloc_header_t *)
1349 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1350 ptr->u.size = size;
1351 ptr++;
1352 #if MACOSX_MALLOC_MULT16
1353 assert (((vm_address_t) ptr % 16) == 8);
1354 #endif
1355 return (void *) ptr;
1356 }
1357 }
1358
1359 void *
1360 unexec_realloc (void *old_ptr, size_t new_size)
1361 {
1362 if (in_dumped_exec)
1363 {
1364 void *p;
1365
1366 if (ptr_in_unexec_regions (old_ptr))
1367 {
1368 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1369 size_t size = new_size > old_size ? old_size : new_size;
1370
1371 p = malloc (new_size);
1372 if (size)
1373 memcpy (p, old_ptr, size);
1374 }
1375 else
1376 {
1377 p = realloc (old_ptr, new_size);
1378 }
1379 #if MACOSX_MALLOC_MULT16
1380 assert (((vm_address_t) p % 16) == 0);
1381 #endif
1382 return p;
1383 }
1384 else
1385 {
1386 unexec_malloc_header_t *ptr;
1387
1388 ptr = (unexec_malloc_header_t *)
1389 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1390 new_size + sizeof (unexec_malloc_header_t));
1391 ptr->u.size = new_size;
1392 ptr++;
1393 #if MACOSX_MALLOC_MULT16
1394 assert (((vm_address_t) ptr % 16) == 8);
1395 #endif
1396 return (void *) ptr;
1397 }
1398 }
1399
1400 void
1401 unexec_free (void *ptr)
1402 {
1403 if (ptr == NULL)
1404 return;
1405 if (in_dumped_exec)
1406 {
1407 if (!ptr_in_unexec_regions (ptr))
1408 free (ptr);
1409 }
1410 else
1411 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1412 }