]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merge from emacs--devo--0
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
29
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
33
34 /* Note that this declares bzero on OSF/1. How dumb. */
35
36 #include <signal.h>
37
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
41
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
45
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "character.h"
57 #include "syssignal.h"
58 #include <setjmp.h>
59
60 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
62
63 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #ifdef HAVE_UNISTD_H
68 #include <unistd.h>
69 #else
70 extern POINTER_TYPE *sbrk ();
71 #endif
72
73 #ifdef HAVE_FCNTL_H
74 #define INCLUDED_FCNTL
75 #include <fcntl.h>
76 #endif
77 #ifndef O_WRONLY
78 #define O_WRONLY 1
79 #endif
80
81 #ifdef WINDOWSNT
82 #include <fcntl.h>
83 #include "w32.h"
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89 /* malloc.h #defines this as size_t, at least in glibc2. */
90 #ifndef __malloc_size_t
91 #define __malloc_size_t int
92 #endif
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #else /* not DOUG_LEA_MALLOC */
100
101 /* The following come from gmalloc.c. */
102
103 #define __malloc_size_t size_t
104 extern __malloc_size_t _bytes_used;
105 extern __malloc_size_t __malloc_extra_blocks;
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110
111 /* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
115
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
119 end up in an inconsistent state. So we have a mutex to prevent that (note
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
122
123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127
128 static pthread_mutex_t alloc_mutex;
129
130 #define BLOCK_INPUT_ALLOC \
131 do \
132 { \
133 if (pthread_equal (pthread_self (), main_thread)) \
134 sigblock (sigmask (SIGIO)); \
135 pthread_mutex_lock (&alloc_mutex); \
136 } \
137 while (0)
138 #define UNBLOCK_INPUT_ALLOC \
139 do \
140 { \
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_equal (pthread_self (), main_thread)) \
143 sigunblock (sigmask (SIGIO)); \
144 } \
145 while (0)
146
147 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148
149 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
150 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151
152 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153
154 /* Value of _bytes_used, when spare_memory was freed. */
155
156 static __malloc_size_t bytes_used_when_full;
157
158 static __malloc_size_t bytes_used_when_reconsidered;
159
160 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
162
163 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
165 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166
167 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
169 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170
171 /* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
175
176 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
177 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178
179 /* Number of bytes of consing done since the last gc. */
180
181 int consing_since_gc;
182
183 /* Count the amount of consing of various sorts of space. */
184
185 EMACS_INT cons_cells_consed;
186 EMACS_INT floats_consed;
187 EMACS_INT vector_cells_consed;
188 EMACS_INT symbols_consed;
189 EMACS_INT string_chars_consed;
190 EMACS_INT misc_objects_consed;
191 EMACS_INT intervals_consed;
192 EMACS_INT strings_consed;
193
194 /* Minimum number of bytes of consing since GC before next GC. */
195
196 EMACS_INT gc_cons_threshold;
197
198 /* Similar minimum, computed from Vgc_cons_percentage. */
199
200 EMACS_INT gc_relative_threshold;
201
202 static Lisp_Object Vgc_cons_percentage;
203
204 /* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
206
207 EMACS_INT memory_full_cons_threshold;
208
209 /* Nonzero during GC. */
210
211 int gc_in_progress;
212
213 /* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
216
217 int abort_on_gc;
218
219 /* Nonzero means display messages at beginning and end of GC. */
220
221 int garbage_collection_messages;
222
223 #ifndef VIRT_ADDR_VARIES
224 extern
225 #endif /* VIRT_ADDR_VARIES */
226 int malloc_sbrk_used;
227
228 #ifndef VIRT_ADDR_VARIES
229 extern
230 #endif /* VIRT_ADDR_VARIES */
231 int malloc_sbrk_unused;
232
233 /* Number of live and free conses etc. */
234
235 static int total_conses, total_markers, total_symbols, total_vector_size;
236 static int total_free_conses, total_free_markers, total_free_symbols;
237 static int total_free_floats, total_floats;
238
239 /* Points to memory space allocated as "spare", to be freed if we run
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
242
243 char *spare_memory[7];
244
245 /* Amount of spare memory to keep in large reserve block. */
246
247 #define SPARE_MEMORY (1 << 14)
248
249 /* Number of extra blocks malloc should get when it needs more core. */
250
251 static int malloc_hysteresis;
252
253 /* Non-nil means defun should do purecopy on the function definition. */
254
255 Lisp_Object Vpurify_flag;
256
257 /* Non-nil means we are handling a memory-full error. */
258
259 Lisp_Object Vmemory_full;
260
261 #ifndef HAVE_SHM
262
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
268
269 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
271
272 #else /* HAVE_SHM */
273
274 #define pure PURE_SEG_BITS /* Use shared memory segment */
275 #define PUREBEG (char *)PURE_SEG_BITS
276
277 #endif /* HAVE_SHM */
278
279 /* Pointer to the pure area, and its size. */
280
281 static char *purebeg;
282 static size_t pure_size;
283
284 /* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
286
287 static size_t pure_bytes_used_before_overflow;
288
289 /* Value is non-zero if P points into pure space. */
290
291 #define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
294 && ((PNTR_COMPARISON_TYPE) (P) \
295 >= (PNTR_COMPARISON_TYPE) purebeg))
296
297 /* Total number of bytes allocated in pure storage. */
298
299 EMACS_INT pure_bytes_used;
300
301 /* Index in pure at which next pure Lisp object will be allocated.. */
302
303 static EMACS_INT pure_bytes_used_lisp;
304
305 /* Number of bytes allocated for non-Lisp objects in pure storage. */
306
307 static EMACS_INT pure_bytes_used_non_lisp;
308
309 /* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
311
312 char *pending_malloc_warning;
313
314 /* Pre-computed signal argument for use when memory is exhausted. */
315
316 Lisp_Object Vmemory_signal_data;
317
318 /* Maximum amount of C stack to save when a GC happens. */
319
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
323
324 /* Buffer in which we save a copy of the C stack at each GC. */
325
326 char *stack_copy;
327 int stack_copy_size;
328
329 /* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
331
332 int ignore_warnings;
333
334 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
335
336 /* Hook run after GC has finished. */
337
338 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339
340 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341 EMACS_INT gcs_done; /* accumulated GCs */
342
343 static void mark_buffer P_ ((Lisp_Object));
344 extern void mark_kboards P_ ((void));
345 extern void mark_backtrace P_ ((void));
346 static void gc_sweep P_ ((void));
347 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
348 static void mark_face_cache P_ ((struct face_cache *));
349
350 #ifdef HAVE_WINDOW_SYSTEM
351 extern void mark_fringe_data P_ ((void));
352 static void mark_image P_ ((struct image *));
353 static void mark_image_cache P_ ((struct frame *));
354 #endif /* HAVE_WINDOW_SYSTEM */
355
356 static struct Lisp_String *allocate_string P_ ((void));
357 static void compact_small_strings P_ ((void));
358 static void free_large_strings P_ ((void));
359 static void sweep_strings P_ ((void));
360
361 extern int message_enable_multibyte;
362
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
366
367 enum mem_type
368 {
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Keep the following vector-like types together, with
377 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
378 first. Or change the code of live_vector_p, for instance. */
379 MEM_TYPE_VECTOR,
380 MEM_TYPE_PROCESS,
381 MEM_TYPE_HASH_TABLE,
382 MEM_TYPE_FRAME,
383 MEM_TYPE_WINDOW
384 };
385
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
389
390
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
392
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
396
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400 Lisp_Object Vdead;
401
402 #ifdef GC_MALLOC_CHECK
403
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
406
407 #endif /* GC_MALLOC_CHECK */
408
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433 struct mem_node
434 {
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
447
448 /* Memory type. */
449 enum mem_type type;
450 };
451
452 /* Base address of stack. Set in main. */
453
454 Lisp_Object *stack_base;
455
456 /* Root of the tree describing allocated Lisp memory. */
457
458 static struct mem_node *mem_root;
459
460 /* Lowest and highest known address in the heap. */
461
462 static void *min_heap_address, *max_heap_address;
463
464 /* Sentinel node of the tree. */
465
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
468
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
490
491
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
495
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
497
498 /* Recording what needs to be marked for gc. */
499
500 struct gcpro *gcprolist;
501
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
504
505 #define NSTATICS 0x600
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
507
508 /* Index of next unused slot in staticvec. */
509
510 int staticidx = 0;
511
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
521
522
523 \f
524 /************************************************************************
525 Malloc
526 ************************************************************************/
527
528 /* Function malloc calls this if it finds we are near exhausting storage. */
529
530 void
531 malloc_warning (str)
532 char *str;
533 {
534 pending_malloc_warning = str;
535 }
536
537
538 /* Display an already-pending malloc warning. */
539
540 void
541 display_malloc_warning ()
542 {
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
548 }
549
550
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
556 \f
557 /* Called if we can't allocate relocatable space for a buffer. */
558
559 void
560 buffer_memory_full ()
561 {
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
568
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
572
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
576 }
577
578
579 #ifdef XMALLOC_OVERRUN_CHECK
580
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590 */
591
592
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
594
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
606 /* Macros to insert and extract the block size in the header. */
607
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
632
633 (time passes).
634
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
639
640 static int check_depth;
641
642 /* Like malloc, but wraps allocated block with header and trailer. */
643
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
647 {
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
659 --check_depth;
660 return (POINTER_TYPE *)val;
661 }
662
663
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671 {
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
674
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
689 }
690
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
692
693 if (val && check_depth == 1)
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
700 --check_depth;
701 return (POINTER_TYPE *)val;
702 }
703
704 /* Like free, but checks block for overrun. */
705
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
709 {
710 unsigned char *val = (unsigned char *)block;
711
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
732 }
733
734 free (val);
735 --check_depth;
736 }
737
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
745
746
747 /* Like malloc but check for no memory and block interrupt input.. */
748
749 POINTER_TYPE *
750 xmalloc (size)
751 size_t size;
752 {
753 register POINTER_TYPE *val;
754
755 BLOCK_INPUT;
756 val = (POINTER_TYPE *) malloc (size);
757 UNBLOCK_INPUT;
758
759 if (!val && size)
760 memory_full ();
761 return val;
762 }
763
764
765 /* Like realloc but check for no memory and block interrupt input.. */
766
767 POINTER_TYPE *
768 xrealloc (block, size)
769 POINTER_TYPE *block;
770 size_t size;
771 {
772 register POINTER_TYPE *val;
773
774 BLOCK_INPUT;
775 /* We must call malloc explicitly when BLOCK is 0, since some
776 reallocs don't do this. */
777 if (! block)
778 val = (POINTER_TYPE *) malloc (size);
779 else
780 val = (POINTER_TYPE *) realloc (block, size);
781 UNBLOCK_INPUT;
782
783 if (!val && size) memory_full ();
784 return val;
785 }
786
787
788 /* Like free but block interrupt input. */
789
790 void
791 xfree (block)
792 POINTER_TYPE *block;
793 {
794 BLOCK_INPUT;
795 free (block);
796 UNBLOCK_INPUT;
797 /* We don't call refill_memory_reserve here
798 because that duplicates doing so in emacs_blocked_free
799 and the criterion should go there. */
800 }
801
802
803 /* Like strdup, but uses xmalloc. */
804
805 char *
806 xstrdup (s)
807 const char *s;
808 {
809 size_t len = strlen (s) + 1;
810 char *p = (char *) xmalloc (len);
811 bcopy (s, p, len);
812 return p;
813 }
814
815
816 /* Unwind for SAFE_ALLOCA */
817
818 Lisp_Object
819 safe_alloca_unwind (arg)
820 Lisp_Object arg;
821 {
822 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
823
824 p->dogc = 0;
825 xfree (p->pointer);
826 p->pointer = 0;
827 free_misc (arg);
828 return Qnil;
829 }
830
831
832 /* Like malloc but used for allocating Lisp data. NBYTES is the
833 number of bytes to allocate, TYPE describes the intended use of the
834 allcated memory block (for strings, for conses, ...). */
835
836 #ifndef USE_LSB_TAG
837 static void *lisp_malloc_loser;
838 #endif
839
840 static POINTER_TYPE *
841 lisp_malloc (nbytes, type)
842 size_t nbytes;
843 enum mem_type type;
844 {
845 register void *val;
846
847 BLOCK_INPUT;
848
849 #ifdef GC_MALLOC_CHECK
850 allocated_mem_type = type;
851 #endif
852
853 val = (void *) malloc (nbytes);
854
855 #ifndef USE_LSB_TAG
856 /* If the memory just allocated cannot be addressed thru a Lisp
857 object's pointer, and it needs to be,
858 that's equivalent to running out of memory. */
859 if (val && type != MEM_TYPE_NON_LISP)
860 {
861 Lisp_Object tem;
862 XSETCONS (tem, (char *) val + nbytes - 1);
863 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
864 {
865 lisp_malloc_loser = val;
866 free (val);
867 val = 0;
868 }
869 }
870 #endif
871
872 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
873 if (val && type != MEM_TYPE_NON_LISP)
874 mem_insert (val, (char *) val + nbytes, type);
875 #endif
876
877 UNBLOCK_INPUT;
878 if (!val && nbytes)
879 memory_full ();
880 return val;
881 }
882
883 /* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
885
886 static void
887 lisp_free (block)
888 POINTER_TYPE *block;
889 {
890 BLOCK_INPUT;
891 free (block);
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 mem_delete (mem_find (block));
894 #endif
895 UNBLOCK_INPUT;
896 }
897
898 /* Allocation of aligned blocks of memory to store Lisp data. */
899 /* The entry point is lisp_align_malloc which returns blocks of at most */
900 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
901
902 /* Use posix_memalloc if the system has it and we're using the system's
903 malloc (because our gmalloc.c routines don't have posix_memalign although
904 its memalloc could be used). */
905 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906 #define USE_POSIX_MEMALIGN 1
907 #endif
908
909 /* BLOCK_ALIGN has to be a power of 2. */
910 #define BLOCK_ALIGN (1 << 10)
911
912 /* Padding to leave at the end of a malloc'd block. This is to give
913 malloc a chance to minimize the amount of memory wasted to alignment.
914 It should be tuned to the particular malloc library used.
915 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916 posix_memalign on the other hand would ideally prefer a value of 4
917 because otherwise, there's 1020 bytes wasted between each ablocks.
918 In Emacs, testing shows that those 1020 can most of the time be
919 efficiently used by malloc to place other objects, so a value of 0 can
920 still preferable unless you have a lot of aligned blocks and virtually
921 nothing else. */
922 #define BLOCK_PADDING 0
923 #define BLOCK_BYTES \
924 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
925
926 /* Internal data structures and constants. */
927
928 #define ABLOCKS_SIZE 16
929
930 /* An aligned block of memory. */
931 struct ablock
932 {
933 union
934 {
935 char payload[BLOCK_BYTES];
936 struct ablock *next_free;
937 } x;
938 /* `abase' is the aligned base of the ablocks. */
939 /* It is overloaded to hold the virtual `busy' field that counts
940 the number of used ablock in the parent ablocks.
941 The first ablock has the `busy' field, the others have the `abase'
942 field. To tell the difference, we assume that pointers will have
943 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
944 is used to tell whether the real base of the parent ablocks is `abase'
945 (if not, the word before the first ablock holds a pointer to the
946 real base). */
947 struct ablocks *abase;
948 /* The padding of all but the last ablock is unused. The padding of
949 the last ablock in an ablocks is not allocated. */
950 #if BLOCK_PADDING
951 char padding[BLOCK_PADDING];
952 #endif
953 };
954
955 /* A bunch of consecutive aligned blocks. */
956 struct ablocks
957 {
958 struct ablock blocks[ABLOCKS_SIZE];
959 };
960
961 /* Size of the block requested from malloc or memalign. */
962 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
963
964 #define ABLOCK_ABASE(block) \
965 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
966 ? (struct ablocks *)(block) \
967 : (block)->abase)
968
969 /* Virtual `busy' field. */
970 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
971
972 /* Pointer to the (not necessarily aligned) malloc block. */
973 #ifdef USE_POSIX_MEMALIGN
974 #define ABLOCKS_BASE(abase) (abase)
975 #else
976 #define ABLOCKS_BASE(abase) \
977 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
978 #endif
979
980 /* The list of free ablock. */
981 static struct ablock *free_ablock;
982
983 /* Allocate an aligned block of nbytes.
984 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985 smaller or equal to BLOCK_BYTES. */
986 static POINTER_TYPE *
987 lisp_align_malloc (nbytes, type)
988 size_t nbytes;
989 enum mem_type type;
990 {
991 void *base, *val;
992 struct ablocks *abase;
993
994 eassert (nbytes <= BLOCK_BYTES);
995
996 BLOCK_INPUT;
997
998 #ifdef GC_MALLOC_CHECK
999 allocated_mem_type = type;
1000 #endif
1001
1002 if (!free_ablock)
1003 {
1004 int i;
1005 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1006
1007 #ifdef DOUG_LEA_MALLOC
1008 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1009 because mapped region contents are not preserved in
1010 a dumped Emacs. */
1011 mallopt (M_MMAP_MAX, 0);
1012 #endif
1013
1014 #ifdef USE_POSIX_MEMALIGN
1015 {
1016 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1017 if (err)
1018 base = NULL;
1019 abase = base;
1020 }
1021 #else
1022 base = malloc (ABLOCKS_BYTES);
1023 abase = ALIGN (base, BLOCK_ALIGN);
1024 #endif
1025
1026 if (base == 0)
1027 {
1028 UNBLOCK_INPUT;
1029 memory_full ();
1030 }
1031
1032 aligned = (base == abase);
1033 if (!aligned)
1034 ((void**)abase)[-1] = base;
1035
1036 #ifdef DOUG_LEA_MALLOC
1037 /* Back to a reasonable maximum of mmap'ed areas. */
1038 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1039 #endif
1040
1041 #ifndef USE_LSB_TAG
1042 /* If the memory just allocated cannot be addressed thru a Lisp
1043 object's pointer, and it needs to be, that's equivalent to
1044 running out of memory. */
1045 if (type != MEM_TYPE_NON_LISP)
1046 {
1047 Lisp_Object tem;
1048 char *end = (char *) base + ABLOCKS_BYTES - 1;
1049 XSETCONS (tem, end);
1050 if ((char *) XCONS (tem) != end)
1051 {
1052 lisp_malloc_loser = base;
1053 free (base);
1054 UNBLOCK_INPUT;
1055 memory_full ();
1056 }
1057 }
1058 #endif
1059
1060 /* Initialize the blocks and put them on the free list.
1061 Is `base' was not properly aligned, we can't use the last block. */
1062 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1063 {
1064 abase->blocks[i].abase = abase;
1065 abase->blocks[i].x.next_free = free_ablock;
1066 free_ablock = &abase->blocks[i];
1067 }
1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1069
1070 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1071 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1072 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1073 eassert (ABLOCKS_BASE (abase) == base);
1074 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1075 }
1076
1077 abase = ABLOCK_ABASE (free_ablock);
1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1079 val = free_ablock;
1080 free_ablock = free_ablock->x.next_free;
1081
1082 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1083 if (val && type != MEM_TYPE_NON_LISP)
1084 mem_insert (val, (char *) val + nbytes, type);
1085 #endif
1086
1087 UNBLOCK_INPUT;
1088 if (!val && nbytes)
1089 memory_full ();
1090
1091 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1092 return val;
1093 }
1094
1095 static void
1096 lisp_align_free (block)
1097 POINTER_TYPE *block;
1098 {
1099 struct ablock *ablock = block;
1100 struct ablocks *abase = ABLOCK_ABASE (ablock);
1101
1102 BLOCK_INPUT;
1103 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1104 mem_delete (mem_find (block));
1105 #endif
1106 /* Put on free list. */
1107 ablock->x.next_free = free_ablock;
1108 free_ablock = ablock;
1109 /* Update busy count. */
1110 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1111
1112 if (2 > (long) ABLOCKS_BUSY (abase))
1113 { /* All the blocks are free. */
1114 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1115 struct ablock **tem = &free_ablock;
1116 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1117
1118 while (*tem)
1119 {
1120 if (*tem >= (struct ablock *) abase && *tem < atop)
1121 {
1122 i++;
1123 *tem = (*tem)->x.next_free;
1124 }
1125 else
1126 tem = &(*tem)->x.next_free;
1127 }
1128 eassert ((aligned & 1) == aligned);
1129 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1130 #ifdef USE_POSIX_MEMALIGN
1131 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1132 #endif
1133 free (ABLOCKS_BASE (abase));
1134 }
1135 UNBLOCK_INPUT;
1136 }
1137
1138 /* Return a new buffer structure allocated from the heap with
1139 a call to lisp_malloc. */
1140
1141 struct buffer *
1142 allocate_buffer ()
1143 {
1144 struct buffer *b
1145 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1146 MEM_TYPE_BUFFER);
1147 return b;
1148 }
1149
1150 \f
1151 #ifndef SYSTEM_MALLOC
1152
1153 /* Arranging to disable input signals while we're in malloc.
1154
1155 This only works with GNU malloc. To help out systems which can't
1156 use GNU malloc, all the calls to malloc, realloc, and free
1157 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1158 pair; unfortunately, we have no idea what C library functions
1159 might call malloc, so we can't really protect them unless you're
1160 using GNU malloc. Fortunately, most of the major operating systems
1161 can use GNU malloc. */
1162
1163 #ifndef SYNC_INPUT
1164
1165 #ifndef DOUG_LEA_MALLOC
1166 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1167 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1168 extern void (*__free_hook) P_ ((void *, const void *));
1169 /* Else declared in malloc.h, perhaps with an extra arg. */
1170 #endif /* DOUG_LEA_MALLOC */
1171 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1172 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1173 static void (*old_free_hook) P_ ((void*, const void*));
1174
1175 /* This function is used as the hook for free to call. */
1176
1177 static void
1178 emacs_blocked_free (ptr, ptr2)
1179 void *ptr;
1180 const void *ptr2;
1181 {
1182 EMACS_INT bytes_used_now;
1183
1184 BLOCK_INPUT_ALLOC;
1185
1186 #ifdef GC_MALLOC_CHECK
1187 if (ptr)
1188 {
1189 struct mem_node *m;
1190
1191 m = mem_find (ptr);
1192 if (m == MEM_NIL || m->start != ptr)
1193 {
1194 fprintf (stderr,
1195 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1196 abort ();
1197 }
1198 else
1199 {
1200 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1201 mem_delete (m);
1202 }
1203 }
1204 #endif /* GC_MALLOC_CHECK */
1205
1206 __free_hook = old_free_hook;
1207 free (ptr);
1208
1209 /* If we released our reserve (due to running out of memory),
1210 and we have a fair amount free once again,
1211 try to set aside another reserve in case we run out once more. */
1212 if (! NILP (Vmemory_full)
1213 /* Verify there is enough space that even with the malloc
1214 hysteresis this call won't run out again.
1215 The code here is correct as long as SPARE_MEMORY
1216 is substantially larger than the block size malloc uses. */
1217 && (bytes_used_when_full
1218 > ((bytes_used_when_reconsidered = BYTES_USED)
1219 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1220 refill_memory_reserve ();
1221
1222 __free_hook = emacs_blocked_free;
1223 UNBLOCK_INPUT_ALLOC;
1224 }
1225
1226
1227 /* This function is the malloc hook that Emacs uses. */
1228
1229 static void *
1230 emacs_blocked_malloc (size, ptr)
1231 size_t size;
1232 const void *ptr;
1233 {
1234 void *value;
1235
1236 BLOCK_INPUT_ALLOC;
1237 __malloc_hook = old_malloc_hook;
1238 #ifdef DOUG_LEA_MALLOC
1239 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1240 #else
1241 __malloc_extra_blocks = malloc_hysteresis;
1242 #endif
1243
1244 value = (void *) malloc (size);
1245
1246 #ifdef GC_MALLOC_CHECK
1247 {
1248 struct mem_node *m = mem_find (value);
1249 if (m != MEM_NIL)
1250 {
1251 fprintf (stderr, "Malloc returned %p which is already in use\n",
1252 value);
1253 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1254 m->start, m->end, (char *) m->end - (char *) m->start,
1255 m->type);
1256 abort ();
1257 }
1258
1259 if (!dont_register_blocks)
1260 {
1261 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1262 allocated_mem_type = MEM_TYPE_NON_LISP;
1263 }
1264 }
1265 #endif /* GC_MALLOC_CHECK */
1266
1267 __malloc_hook = emacs_blocked_malloc;
1268 UNBLOCK_INPUT_ALLOC;
1269
1270 /* fprintf (stderr, "%p malloc\n", value); */
1271 return value;
1272 }
1273
1274
1275 /* This function is the realloc hook that Emacs uses. */
1276
1277 static void *
1278 emacs_blocked_realloc (ptr, size, ptr2)
1279 void *ptr;
1280 size_t size;
1281 const void *ptr2;
1282 {
1283 void *value;
1284
1285 BLOCK_INPUT_ALLOC;
1286 __realloc_hook = old_realloc_hook;
1287
1288 #ifdef GC_MALLOC_CHECK
1289 if (ptr)
1290 {
1291 struct mem_node *m = mem_find (ptr);
1292 if (m == MEM_NIL || m->start != ptr)
1293 {
1294 fprintf (stderr,
1295 "Realloc of %p which wasn't allocated with malloc\n",
1296 ptr);
1297 abort ();
1298 }
1299
1300 mem_delete (m);
1301 }
1302
1303 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1304
1305 /* Prevent malloc from registering blocks. */
1306 dont_register_blocks = 1;
1307 #endif /* GC_MALLOC_CHECK */
1308
1309 value = (void *) realloc (ptr, size);
1310
1311 #ifdef GC_MALLOC_CHECK
1312 dont_register_blocks = 0;
1313
1314 {
1315 struct mem_node *m = mem_find (value);
1316 if (m != MEM_NIL)
1317 {
1318 fprintf (stderr, "Realloc returns memory that is already in use\n");
1319 abort ();
1320 }
1321
1322 /* Can't handle zero size regions in the red-black tree. */
1323 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1324 }
1325
1326 /* fprintf (stderr, "%p <- realloc\n", value); */
1327 #endif /* GC_MALLOC_CHECK */
1328
1329 __realloc_hook = emacs_blocked_realloc;
1330 UNBLOCK_INPUT_ALLOC;
1331
1332 return value;
1333 }
1334
1335
1336 #ifdef HAVE_GTK_AND_PTHREAD
1337 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1338 normal malloc. Some thread implementations need this as they call
1339 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1340 calls malloc because it is the first call, and we have an endless loop. */
1341
1342 void
1343 reset_malloc_hooks ()
1344 {
1345 __free_hook = 0;
1346 __malloc_hook = 0;
1347 __realloc_hook = 0;
1348 }
1349 #endif /* HAVE_GTK_AND_PTHREAD */
1350
1351
1352 /* Called from main to set up malloc to use our hooks. */
1353
1354 void
1355 uninterrupt_malloc ()
1356 {
1357 #ifdef HAVE_GTK_AND_PTHREAD
1358 pthread_mutexattr_t attr;
1359
1360 /* GLIBC has a faster way to do this, but lets keep it portable.
1361 This is according to the Single UNIX Specification. */
1362 pthread_mutexattr_init (&attr);
1363 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1364 pthread_mutex_init (&alloc_mutex, &attr);
1365 #endif /* HAVE_GTK_AND_PTHREAD */
1366
1367 if (__free_hook != emacs_blocked_free)
1368 old_free_hook = __free_hook;
1369 __free_hook = emacs_blocked_free;
1370
1371 if (__malloc_hook != emacs_blocked_malloc)
1372 old_malloc_hook = __malloc_hook;
1373 __malloc_hook = emacs_blocked_malloc;
1374
1375 if (__realloc_hook != emacs_blocked_realloc)
1376 old_realloc_hook = __realloc_hook;
1377 __realloc_hook = emacs_blocked_realloc;
1378 }
1379
1380 #endif /* not SYNC_INPUT */
1381 #endif /* not SYSTEM_MALLOC */
1382
1383
1384 \f
1385 /***********************************************************************
1386 Interval Allocation
1387 ***********************************************************************/
1388
1389 /* Number of intervals allocated in an interval_block structure.
1390 The 1020 is 1024 minus malloc overhead. */
1391
1392 #define INTERVAL_BLOCK_SIZE \
1393 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1394
1395 /* Intervals are allocated in chunks in form of an interval_block
1396 structure. */
1397
1398 struct interval_block
1399 {
1400 /* Place `intervals' first, to preserve alignment. */
1401 struct interval intervals[INTERVAL_BLOCK_SIZE];
1402 struct interval_block *next;
1403 };
1404
1405 /* Current interval block. Its `next' pointer points to older
1406 blocks. */
1407
1408 struct interval_block *interval_block;
1409
1410 /* Index in interval_block above of the next unused interval
1411 structure. */
1412
1413 static int interval_block_index;
1414
1415 /* Number of free and live intervals. */
1416
1417 static int total_free_intervals, total_intervals;
1418
1419 /* List of free intervals. */
1420
1421 INTERVAL interval_free_list;
1422
1423 /* Total number of interval blocks now in use. */
1424
1425 int n_interval_blocks;
1426
1427
1428 /* Initialize interval allocation. */
1429
1430 static void
1431 init_intervals ()
1432 {
1433 interval_block = NULL;
1434 interval_block_index = INTERVAL_BLOCK_SIZE;
1435 interval_free_list = 0;
1436 n_interval_blocks = 0;
1437 }
1438
1439
1440 /* Return a new interval. */
1441
1442 INTERVAL
1443 make_interval ()
1444 {
1445 INTERVAL val;
1446
1447 /* eassert (!handling_signal); */
1448
1449 #ifndef SYNC_INPUT
1450 BLOCK_INPUT;
1451 #endif
1452
1453 if (interval_free_list)
1454 {
1455 val = interval_free_list;
1456 interval_free_list = INTERVAL_PARENT (interval_free_list);
1457 }
1458 else
1459 {
1460 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1461 {
1462 register struct interval_block *newi;
1463
1464 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1465 MEM_TYPE_NON_LISP);
1466
1467 newi->next = interval_block;
1468 interval_block = newi;
1469 interval_block_index = 0;
1470 n_interval_blocks++;
1471 }
1472 val = &interval_block->intervals[interval_block_index++];
1473 }
1474
1475 #ifndef SYNC_INPUT
1476 UNBLOCK_INPUT;
1477 #endif
1478
1479 consing_since_gc += sizeof (struct interval);
1480 intervals_consed++;
1481 RESET_INTERVAL (val);
1482 val->gcmarkbit = 0;
1483 return val;
1484 }
1485
1486
1487 /* Mark Lisp objects in interval I. */
1488
1489 static void
1490 mark_interval (i, dummy)
1491 register INTERVAL i;
1492 Lisp_Object dummy;
1493 {
1494 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1495 i->gcmarkbit = 1;
1496 mark_object (i->plist);
1497 }
1498
1499
1500 /* Mark the interval tree rooted in TREE. Don't call this directly;
1501 use the macro MARK_INTERVAL_TREE instead. */
1502
1503 static void
1504 mark_interval_tree (tree)
1505 register INTERVAL tree;
1506 {
1507 /* No need to test if this tree has been marked already; this
1508 function is always called through the MARK_INTERVAL_TREE macro,
1509 which takes care of that. */
1510
1511 traverse_intervals_noorder (tree, mark_interval, Qnil);
1512 }
1513
1514
1515 /* Mark the interval tree rooted in I. */
1516
1517 #define MARK_INTERVAL_TREE(i) \
1518 do { \
1519 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1520 mark_interval_tree (i); \
1521 } while (0)
1522
1523
1524 #define UNMARK_BALANCE_INTERVALS(i) \
1525 do { \
1526 if (! NULL_INTERVAL_P (i)) \
1527 (i) = balance_intervals (i); \
1528 } while (0)
1529
1530 \f
1531 /* Number support. If NO_UNION_TYPE isn't in effect, we
1532 can't create number objects in macros. */
1533 #ifndef make_number
1534 Lisp_Object
1535 make_number (n)
1536 EMACS_INT n;
1537 {
1538 Lisp_Object obj;
1539 obj.s.val = n;
1540 obj.s.type = Lisp_Int;
1541 return obj;
1542 }
1543 #endif
1544 \f
1545 /***********************************************************************
1546 String Allocation
1547 ***********************************************************************/
1548
1549 /* Lisp_Strings are allocated in string_block structures. When a new
1550 string_block is allocated, all the Lisp_Strings it contains are
1551 added to a free-list string_free_list. When a new Lisp_String is
1552 needed, it is taken from that list. During the sweep phase of GC,
1553 string_blocks that are entirely free are freed, except two which
1554 we keep.
1555
1556 String data is allocated from sblock structures. Strings larger
1557 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1558 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1559
1560 Sblocks consist internally of sdata structures, one for each
1561 Lisp_String. The sdata structure points to the Lisp_String it
1562 belongs to. The Lisp_String points back to the `u.data' member of
1563 its sdata structure.
1564
1565 When a Lisp_String is freed during GC, it is put back on
1566 string_free_list, and its `data' member and its sdata's `string'
1567 pointer is set to null. The size of the string is recorded in the
1568 `u.nbytes' member of the sdata. So, sdata structures that are no
1569 longer used, can be easily recognized, and it's easy to compact the
1570 sblocks of small strings which we do in compact_small_strings. */
1571
1572 /* Size in bytes of an sblock structure used for small strings. This
1573 is 8192 minus malloc overhead. */
1574
1575 #define SBLOCK_SIZE 8188
1576
1577 /* Strings larger than this are considered large strings. String data
1578 for large strings is allocated from individual sblocks. */
1579
1580 #define LARGE_STRING_BYTES 1024
1581
1582 /* Structure describing string memory sub-allocated from an sblock.
1583 This is where the contents of Lisp strings are stored. */
1584
1585 struct sdata
1586 {
1587 /* Back-pointer to the string this sdata belongs to. If null, this
1588 structure is free, and the NBYTES member of the union below
1589 contains the string's byte size (the same value that STRING_BYTES
1590 would return if STRING were non-null). If non-null, STRING_BYTES
1591 (STRING) is the size of the data, and DATA contains the string's
1592 contents. */
1593 struct Lisp_String *string;
1594
1595 #ifdef GC_CHECK_STRING_BYTES
1596
1597 EMACS_INT nbytes;
1598 unsigned char data[1];
1599
1600 #define SDATA_NBYTES(S) (S)->nbytes
1601 #define SDATA_DATA(S) (S)->data
1602
1603 #else /* not GC_CHECK_STRING_BYTES */
1604
1605 union
1606 {
1607 /* When STRING in non-null. */
1608 unsigned char data[1];
1609
1610 /* When STRING is null. */
1611 EMACS_INT nbytes;
1612 } u;
1613
1614
1615 #define SDATA_NBYTES(S) (S)->u.nbytes
1616 #define SDATA_DATA(S) (S)->u.data
1617
1618 #endif /* not GC_CHECK_STRING_BYTES */
1619 };
1620
1621
1622 /* Structure describing a block of memory which is sub-allocated to
1623 obtain string data memory for strings. Blocks for small strings
1624 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1625 as large as needed. */
1626
1627 struct sblock
1628 {
1629 /* Next in list. */
1630 struct sblock *next;
1631
1632 /* Pointer to the next free sdata block. This points past the end
1633 of the sblock if there isn't any space left in this block. */
1634 struct sdata *next_free;
1635
1636 /* Start of data. */
1637 struct sdata first_data;
1638 };
1639
1640 /* Number of Lisp strings in a string_block structure. The 1020 is
1641 1024 minus malloc overhead. */
1642
1643 #define STRING_BLOCK_SIZE \
1644 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1645
1646 /* Structure describing a block from which Lisp_String structures
1647 are allocated. */
1648
1649 struct string_block
1650 {
1651 /* Place `strings' first, to preserve alignment. */
1652 struct Lisp_String strings[STRING_BLOCK_SIZE];
1653 struct string_block *next;
1654 };
1655
1656 /* Head and tail of the list of sblock structures holding Lisp string
1657 data. We always allocate from current_sblock. The NEXT pointers
1658 in the sblock structures go from oldest_sblock to current_sblock. */
1659
1660 static struct sblock *oldest_sblock, *current_sblock;
1661
1662 /* List of sblocks for large strings. */
1663
1664 static struct sblock *large_sblocks;
1665
1666 /* List of string_block structures, and how many there are. */
1667
1668 static struct string_block *string_blocks;
1669 static int n_string_blocks;
1670
1671 /* Free-list of Lisp_Strings. */
1672
1673 static struct Lisp_String *string_free_list;
1674
1675 /* Number of live and free Lisp_Strings. */
1676
1677 static int total_strings, total_free_strings;
1678
1679 /* Number of bytes used by live strings. */
1680
1681 static int total_string_size;
1682
1683 /* Given a pointer to a Lisp_String S which is on the free-list
1684 string_free_list, return a pointer to its successor in the
1685 free-list. */
1686
1687 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1688
1689 /* Return a pointer to the sdata structure belonging to Lisp string S.
1690 S must be live, i.e. S->data must not be null. S->data is actually
1691 a pointer to the `u.data' member of its sdata structure; the
1692 structure starts at a constant offset in front of that. */
1693
1694 #ifdef GC_CHECK_STRING_BYTES
1695
1696 #define SDATA_OF_STRING(S) \
1697 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1698 - sizeof (EMACS_INT)))
1699
1700 #else /* not GC_CHECK_STRING_BYTES */
1701
1702 #define SDATA_OF_STRING(S) \
1703 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1704
1705 #endif /* not GC_CHECK_STRING_BYTES */
1706
1707
1708 #ifdef GC_CHECK_STRING_OVERRUN
1709
1710 /* We check for overrun in string data blocks by appending a small
1711 "cookie" after each allocated string data block, and check for the
1712 presence of this cookie during GC. */
1713
1714 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1715 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1716 { 0xde, 0xad, 0xbe, 0xef };
1717
1718 #else
1719 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1720 #endif
1721
1722 /* Value is the size of an sdata structure large enough to hold NBYTES
1723 bytes of string data. The value returned includes a terminating
1724 NUL byte, the size of the sdata structure, and padding. */
1725
1726 #ifdef GC_CHECK_STRING_BYTES
1727
1728 #define SDATA_SIZE(NBYTES) \
1729 ((sizeof (struct Lisp_String *) \
1730 + (NBYTES) + 1 \
1731 + sizeof (EMACS_INT) \
1732 + sizeof (EMACS_INT) - 1) \
1733 & ~(sizeof (EMACS_INT) - 1))
1734
1735 #else /* not GC_CHECK_STRING_BYTES */
1736
1737 #define SDATA_SIZE(NBYTES) \
1738 ((sizeof (struct Lisp_String *) \
1739 + (NBYTES) + 1 \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1742
1743 #endif /* not GC_CHECK_STRING_BYTES */
1744
1745 /* Extra bytes to allocate for each string. */
1746
1747 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1748
1749 /* Initialize string allocation. Called from init_alloc_once. */
1750
1751 void
1752 init_strings ()
1753 {
1754 total_strings = total_free_strings = total_string_size = 0;
1755 oldest_sblock = current_sblock = large_sblocks = NULL;
1756 string_blocks = NULL;
1757 n_string_blocks = 0;
1758 string_free_list = NULL;
1759 }
1760
1761
1762 #ifdef GC_CHECK_STRING_BYTES
1763
1764 static int check_string_bytes_count;
1765
1766 void check_string_bytes P_ ((int));
1767 void check_sblock P_ ((struct sblock *));
1768
1769 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1770
1771
1772 /* Like GC_STRING_BYTES, but with debugging check. */
1773
1774 int
1775 string_bytes (s)
1776 struct Lisp_String *s;
1777 {
1778 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1779 if (!PURE_POINTER_P (s)
1780 && s->data
1781 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1782 abort ();
1783 return nbytes;
1784 }
1785
1786 /* Check validity of Lisp strings' string_bytes member in B. */
1787
1788 void
1789 check_sblock (b)
1790 struct sblock *b;
1791 {
1792 struct sdata *from, *end, *from_end;
1793
1794 end = b->next_free;
1795
1796 for (from = &b->first_data; from < end; from = from_end)
1797 {
1798 /* Compute the next FROM here because copying below may
1799 overwrite data we need to compute it. */
1800 int nbytes;
1801
1802 /* Check that the string size recorded in the string is the
1803 same as the one recorded in the sdata structure. */
1804 if (from->string)
1805 CHECK_STRING_BYTES (from->string);
1806
1807 if (from->string)
1808 nbytes = GC_STRING_BYTES (from->string);
1809 else
1810 nbytes = SDATA_NBYTES (from);
1811
1812 nbytes = SDATA_SIZE (nbytes);
1813 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1814 }
1815 }
1816
1817
1818 /* Check validity of Lisp strings' string_bytes member. ALL_P
1819 non-zero means check all strings, otherwise check only most
1820 recently allocated strings. Used for hunting a bug. */
1821
1822 void
1823 check_string_bytes (all_p)
1824 int all_p;
1825 {
1826 if (all_p)
1827 {
1828 struct sblock *b;
1829
1830 for (b = large_sblocks; b; b = b->next)
1831 {
1832 struct Lisp_String *s = b->first_data.string;
1833 if (s)
1834 CHECK_STRING_BYTES (s);
1835 }
1836
1837 for (b = oldest_sblock; b; b = b->next)
1838 check_sblock (b);
1839 }
1840 else
1841 check_sblock (current_sblock);
1842 }
1843
1844 #endif /* GC_CHECK_STRING_BYTES */
1845
1846 #ifdef GC_CHECK_STRING_FREE_LIST
1847
1848 /* Walk through the string free list looking for bogus next pointers.
1849 This may catch buffer overrun from a previous string. */
1850
1851 static void
1852 check_string_free_list ()
1853 {
1854 struct Lisp_String *s;
1855
1856 /* Pop a Lisp_String off the free-list. */
1857 s = string_free_list;
1858 while (s != NULL)
1859 {
1860 if ((unsigned)s < 1024)
1861 abort();
1862 s = NEXT_FREE_LISP_STRING (s);
1863 }
1864 }
1865 #else
1866 #define check_string_free_list()
1867 #endif
1868
1869 /* Return a new Lisp_String. */
1870
1871 static struct Lisp_String *
1872 allocate_string ()
1873 {
1874 struct Lisp_String *s;
1875
1876 /* eassert (!handling_signal); */
1877
1878 #ifndef SYNC_INPUT
1879 BLOCK_INPUT;
1880 #endif
1881
1882 /* If the free-list is empty, allocate a new string_block, and
1883 add all the Lisp_Strings in it to the free-list. */
1884 if (string_free_list == NULL)
1885 {
1886 struct string_block *b;
1887 int i;
1888
1889 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1890 bzero (b, sizeof *b);
1891 b->next = string_blocks;
1892 string_blocks = b;
1893 ++n_string_blocks;
1894
1895 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1896 {
1897 s = b->strings + i;
1898 NEXT_FREE_LISP_STRING (s) = string_free_list;
1899 string_free_list = s;
1900 }
1901
1902 total_free_strings += STRING_BLOCK_SIZE;
1903 }
1904
1905 check_string_free_list ();
1906
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 string_free_list = NEXT_FREE_LISP_STRING (s);
1910
1911 #ifndef SYNC_INPUT
1912 UNBLOCK_INPUT;
1913 #endif
1914
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
1917
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
1922
1923 #ifdef GC_CHECK_STRING_BYTES
1924 if (!noninteractive
1925 #ifdef MAC_OS8
1926 && current_sblock
1927 #endif
1928 )
1929 {
1930 if (++check_string_bytes_count == 200)
1931 {
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1934 }
1935 else
1936 check_string_bytes (0);
1937 }
1938 #endif /* GC_CHECK_STRING_BYTES */
1939
1940 return s;
1941 }
1942
1943
1944 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
1949
1950 void
1951 allocate_string_data (s, nchars, nbytes)
1952 struct Lisp_String *s;
1953 int nchars, nbytes;
1954 {
1955 struct sdata *data, *old_data;
1956 struct sblock *b;
1957 int needed, old_nbytes;
1958
1959 /* Determine the number of bytes needed to store NBYTES bytes
1960 of string data. */
1961 needed = SDATA_SIZE (nbytes);
1962 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1963 old_nbytes = GC_STRING_BYTES (s);
1964
1965 #ifndef SYNC_INPUT
1966 BLOCK_INPUT;
1967 #endif
1968
1969 if (nbytes > LARGE_STRING_BYTES)
1970 {
1971 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1972
1973 #ifdef DOUG_LEA_MALLOC
1974 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1975 because mapped region contents are not preserved in
1976 a dumped Emacs.
1977
1978 In case you think of allowing it in a dumped Emacs at the
1979 cost of not being able to re-dump, there's another reason:
1980 mmap'ed data typically have an address towards the top of the
1981 address space, which won't fit into an EMACS_INT (at least on
1982 32-bit systems with the current tagging scheme). --fx */
1983 BLOCK_INPUT;
1984 mallopt (M_MMAP_MAX, 0);
1985 UNBLOCK_INPUT;
1986 #endif
1987
1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1989
1990 #ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1992 BLOCK_INPUT;
1993 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1994 UNBLOCK_INPUT;
1995 #endif
1996
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2006 {
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
2021
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
2025 #ifndef SYNC_INPUT
2026 UNBLOCK_INPUT;
2027 #endif
2028
2029 data->string = s;
2030 s->data = SDATA_DATA (data);
2031 #ifdef GC_CHECK_STRING_BYTES
2032 SDATA_NBYTES (data) = nbytes;
2033 #endif
2034 s->size = nchars;
2035 s->size_byte = nbytes;
2036 s->data[nbytes] = '\0';
2037 #ifdef GC_CHECK_STRING_OVERRUN
2038 bcopy (string_overrun_cookie, (char *) data + needed,
2039 GC_STRING_OVERRUN_COOKIE_SIZE);
2040 #endif
2041
2042 /* If S had already data assigned, mark that as free by setting its
2043 string back-pointer to null, and recording the size of the data
2044 in it. */
2045 if (old_data)
2046 {
2047 SDATA_NBYTES (old_data) = old_nbytes;
2048 old_data->string = NULL;
2049 }
2050
2051 consing_since_gc += needed;
2052 }
2053
2054
2055 /* Sweep and compact strings. */
2056
2057 static void
2058 sweep_strings ()
2059 {
2060 struct string_block *b, *next;
2061 struct string_block *live_blocks = NULL;
2062
2063 string_free_list = NULL;
2064 total_strings = total_free_strings = 0;
2065 total_string_size = 0;
2066
2067 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2068 for (b = string_blocks; b; b = next)
2069 {
2070 int i, nfree = 0;
2071 struct Lisp_String *free_list_before = string_free_list;
2072
2073 next = b->next;
2074
2075 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2076 {
2077 struct Lisp_String *s = b->strings + i;
2078
2079 if (s->data)
2080 {
2081 /* String was not on free-list before. */
2082 if (STRING_MARKED_P (s))
2083 {
2084 /* String is live; unmark it and its intervals. */
2085 UNMARK_STRING (s);
2086
2087 if (!NULL_INTERVAL_P (s->intervals))
2088 UNMARK_BALANCE_INTERVALS (s->intervals);
2089
2090 ++total_strings;
2091 total_string_size += STRING_BYTES (s);
2092 }
2093 else
2094 {
2095 /* String is dead. Put it on the free-list. */
2096 struct sdata *data = SDATA_OF_STRING (s);
2097
2098 /* Save the size of S in its sdata so that we know
2099 how large that is. Reset the sdata's string
2100 back-pointer so that we know it's free. */
2101 #ifdef GC_CHECK_STRING_BYTES
2102 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2103 abort ();
2104 #else
2105 data->u.nbytes = GC_STRING_BYTES (s);
2106 #endif
2107 data->string = NULL;
2108
2109 /* Reset the strings's `data' member so that we
2110 know it's free. */
2111 s->data = NULL;
2112
2113 /* Put the string on the free-list. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2117 }
2118 }
2119 else
2120 {
2121 /* S was on the free-list before. Put it there again. */
2122 NEXT_FREE_LISP_STRING (s) = string_free_list;
2123 string_free_list = s;
2124 ++nfree;
2125 }
2126 }
2127
2128 /* Free blocks that contain free Lisp_Strings only, except
2129 the first two of them. */
2130 if (nfree == STRING_BLOCK_SIZE
2131 && total_free_strings > STRING_BLOCK_SIZE)
2132 {
2133 lisp_free (b);
2134 --n_string_blocks;
2135 string_free_list = free_list_before;
2136 }
2137 else
2138 {
2139 total_free_strings += nfree;
2140 b->next = live_blocks;
2141 live_blocks = b;
2142 }
2143 }
2144
2145 check_string_free_list ();
2146
2147 string_blocks = live_blocks;
2148 free_large_strings ();
2149 compact_small_strings ();
2150
2151 check_string_free_list ();
2152 }
2153
2154
2155 /* Free dead large strings. */
2156
2157 static void
2158 free_large_strings ()
2159 {
2160 struct sblock *b, *next;
2161 struct sblock *live_blocks = NULL;
2162
2163 for (b = large_sblocks; b; b = next)
2164 {
2165 next = b->next;
2166
2167 if (b->first_data.string == NULL)
2168 lisp_free (b);
2169 else
2170 {
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
2176 large_sblocks = live_blocks;
2177 }
2178
2179
2180 /* Compact data of small strings. Free sblocks that don't contain
2181 data of live strings after compaction. */
2182
2183 static void
2184 compact_small_strings ()
2185 {
2186 struct sblock *b, *tb, *next;
2187 struct sdata *from, *to, *end, *tb_end;
2188 struct sdata *to_end, *from_end;
2189
2190 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2191 to, and TB_END is the end of TB. */
2192 tb = oldest_sblock;
2193 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2194 to = &tb->first_data;
2195
2196 /* Step through the blocks from the oldest to the youngest. We
2197 expect that old blocks will stabilize over time, so that less
2198 copying will happen this way. */
2199 for (b = oldest_sblock; b; b = b->next)
2200 {
2201 end = b->next_free;
2202 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2203
2204 for (from = &b->first_data; from < end; from = from_end)
2205 {
2206 /* Compute the next FROM here because copying below may
2207 overwrite data we need to compute it. */
2208 int nbytes;
2209
2210 #ifdef GC_CHECK_STRING_BYTES
2211 /* Check that the string size recorded in the string is the
2212 same as the one recorded in the sdata structure. */
2213 if (from->string
2214 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2215 abort ();
2216 #endif /* GC_CHECK_STRING_BYTES */
2217
2218 if (from->string)
2219 nbytes = GC_STRING_BYTES (from->string);
2220 else
2221 nbytes = SDATA_NBYTES (from);
2222
2223 if (nbytes > LARGE_STRING_BYTES)
2224 abort ();
2225
2226 nbytes = SDATA_SIZE (nbytes);
2227 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2228
2229 #ifdef GC_CHECK_STRING_OVERRUN
2230 if (bcmp (string_overrun_cookie,
2231 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2232 GC_STRING_OVERRUN_COOKIE_SIZE))
2233 abort ();
2234 #endif
2235
2236 /* FROM->string non-null means it's alive. Copy its data. */
2237 if (from->string)
2238 {
2239 /* If TB is full, proceed with the next sblock. */
2240 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2241 if (to_end > tb_end)
2242 {
2243 tb->next_free = to;
2244 tb = tb->next;
2245 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2246 to = &tb->first_data;
2247 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2248 }
2249
2250 /* Copy, and update the string's `data' pointer. */
2251 if (from != to)
2252 {
2253 xassert (tb != b || to <= from);
2254 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2255 to->string->data = SDATA_DATA (to);
2256 }
2257
2258 /* Advance past the sdata we copied to. */
2259 to = to_end;
2260 }
2261 }
2262 }
2263
2264 /* The rest of the sblocks following TB don't contain live data, so
2265 we can free them. */
2266 for (b = tb->next; b; b = next)
2267 {
2268 next = b->next;
2269 lisp_free (b);
2270 }
2271
2272 tb->next_free = to;
2273 tb->next = NULL;
2274 current_sblock = tb;
2275 }
2276
2277
2278 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2279 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2280 LENGTH must be an integer.
2281 INIT must be an integer that represents a character. */)
2282 (length, init)
2283 Lisp_Object length, init;
2284 {
2285 register Lisp_Object val;
2286 register unsigned char *p, *end;
2287 int c, nbytes;
2288
2289 CHECK_NATNUM (length);
2290 CHECK_NUMBER (init);
2291
2292 c = XINT (init);
2293 if (ASCII_CHAR_P (c))
2294 {
2295 nbytes = XINT (length);
2296 val = make_uninit_string (nbytes);
2297 p = SDATA (val);
2298 end = p + SCHARS (val);
2299 while (p != end)
2300 *p++ = c;
2301 }
2302 else
2303 {
2304 unsigned char str[MAX_MULTIBYTE_LENGTH];
2305 int len = CHAR_STRING (c, str);
2306
2307 nbytes = len * XINT (length);
2308 val = make_uninit_multibyte_string (XINT (length), nbytes);
2309 p = SDATA (val);
2310 end = p + nbytes;
2311 while (p != end)
2312 {
2313 bcopy (str, p, len);
2314 p += len;
2315 }
2316 }
2317
2318 *p = 0;
2319 return val;
2320 }
2321
2322
2323 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2324 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2325 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2326 (length, init)
2327 Lisp_Object length, init;
2328 {
2329 register Lisp_Object val;
2330 struct Lisp_Bool_Vector *p;
2331 int real_init, i;
2332 int length_in_chars, length_in_elts, bits_per_value;
2333
2334 CHECK_NATNUM (length);
2335
2336 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2337
2338 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2339 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2340 / BOOL_VECTOR_BITS_PER_CHAR);
2341
2342 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2343 slot `size' of the struct Lisp_Bool_Vector. */
2344 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 p = XBOOL_VECTOR (val);
2346
2347 /* Get rid of any bits that would cause confusion. */
2348 p->vector_size = 0;
2349 XSETBOOL_VECTOR (val, p);
2350 p->size = XFASTINT (length);
2351
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2355
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360
2361 return val;
2362 }
2363
2364
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2373 {
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2385 }
2386
2387
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2394 {
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2400 }
2401
2402
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2410 {
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2415 }
2416
2417
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2425 {
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2432 }
2433
2434
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2439
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2445 {
2446 register Lisp_Object val;
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2460 }
2461
2462
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2469 {
2470 return make_string (str, strlen (str));
2471 }
2472
2473
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2480 {
2481 Lisp_Object val;
2482 val = make_uninit_multibyte_string (length, length);
2483 STRING_SET_UNIBYTE (val);
2484 return val;
2485 }
2486
2487
2488 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2489 which occupy NBYTES bytes. */
2490
2491 Lisp_Object
2492 make_uninit_multibyte_string (nchars, nbytes)
2493 int nchars, nbytes;
2494 {
2495 Lisp_Object string;
2496 struct Lisp_String *s;
2497
2498 if (nchars < 0)
2499 abort ();
2500
2501 s = allocate_string ();
2502 allocate_string_data (s, nchars, nbytes);
2503 XSETSTRING (string, s);
2504 string_chars_consed += nbytes;
2505 return string;
2506 }
2507
2508
2509 \f
2510 /***********************************************************************
2511 Float Allocation
2512 ***********************************************************************/
2513
2514 /* We store float cells inside of float_blocks, allocating a new
2515 float_block with malloc whenever necessary. Float cells reclaimed
2516 by GC are put on a free list to be reallocated before allocating
2517 any new float cells from the latest float_block. */
2518
2519 #define FLOAT_BLOCK_SIZE \
2520 (((BLOCK_BYTES - sizeof (struct float_block *) \
2521 /* The compiler might add padding at the end. */ \
2522 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2523 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2524
2525 #define GETMARKBIT(block,n) \
2526 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2527 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2528 & 1)
2529
2530 #define SETMARKBIT(block,n) \
2531 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2533
2534 #define UNSETMARKBIT(block,n) \
2535 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2536 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2537
2538 #define FLOAT_BLOCK(fptr) \
2539 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2540
2541 #define FLOAT_INDEX(fptr) \
2542 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2543
2544 struct float_block
2545 {
2546 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2547 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2548 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2549 struct float_block *next;
2550 };
2551
2552 #define FLOAT_MARKED_P(fptr) \
2553 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2554
2555 #define FLOAT_MARK(fptr) \
2556 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2557
2558 #define FLOAT_UNMARK(fptr) \
2559 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
2561 /* Current float_block. */
2562
2563 struct float_block *float_block;
2564
2565 /* Index of first unused Lisp_Float in the current float_block. */
2566
2567 int float_block_index;
2568
2569 /* Total number of float blocks now in use. */
2570
2571 int n_float_blocks;
2572
2573 /* Free-list of Lisp_Floats. */
2574
2575 struct Lisp_Float *float_free_list;
2576
2577
2578 /* Initialize float allocation. */
2579
2580 void
2581 init_float ()
2582 {
2583 float_block = NULL;
2584 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2585 float_free_list = 0;
2586 n_float_blocks = 0;
2587 }
2588
2589
2590 /* Explicitly free a float cell by putting it on the free-list. */
2591
2592 void
2593 free_float (ptr)
2594 struct Lisp_Float *ptr;
2595 {
2596 ptr->u.chain = float_free_list;
2597 float_free_list = ptr;
2598 }
2599
2600
2601 /* Return a new float object with value FLOAT_VALUE. */
2602
2603 Lisp_Object
2604 make_float (float_value)
2605 double float_value;
2606 {
2607 register Lisp_Object val;
2608
2609 /* eassert (!handling_signal); */
2610
2611 #ifndef SYNC_INPUT
2612 BLOCK_INPUT;
2613 #endif
2614
2615 if (float_free_list)
2616 {
2617 /* We use the data field for chaining the free list
2618 so that we won't use the same field that has the mark bit. */
2619 XSETFLOAT (val, float_free_list);
2620 float_free_list = float_free_list->u.chain;
2621 }
2622 else
2623 {
2624 if (float_block_index == FLOAT_BLOCK_SIZE)
2625 {
2626 register struct float_block *new;
2627
2628 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_FLOAT);
2630 new->next = float_block;
2631 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2632 float_block = new;
2633 float_block_index = 0;
2634 n_float_blocks++;
2635 }
2636 XSETFLOAT (val, &float_block->floats[float_block_index]);
2637 float_block_index++;
2638 }
2639
2640 #ifndef SYNC_INPUT
2641 UNBLOCK_INPUT;
2642 #endif
2643
2644 XFLOAT_DATA (val) = float_value;
2645 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2646 consing_since_gc += sizeof (struct Lisp_Float);
2647 floats_consed++;
2648 return val;
2649 }
2650
2651
2652 \f
2653 /***********************************************************************
2654 Cons Allocation
2655 ***********************************************************************/
2656
2657 /* We store cons cells inside of cons_blocks, allocating a new
2658 cons_block with malloc whenever necessary. Cons cells reclaimed by
2659 GC are put on a free list to be reallocated before allocating
2660 any new cons cells from the latest cons_block. */
2661
2662 #define CONS_BLOCK_SIZE \
2663 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2664 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2665
2666 #define CONS_BLOCK(fptr) \
2667 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2668
2669 #define CONS_INDEX(fptr) \
2670 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2671
2672 struct cons_block
2673 {
2674 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2675 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2676 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2677 struct cons_block *next;
2678 };
2679
2680 #define CONS_MARKED_P(fptr) \
2681 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2682
2683 #define CONS_MARK(fptr) \
2684 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2685
2686 #define CONS_UNMARK(fptr) \
2687 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2688
2689 /* Current cons_block. */
2690
2691 struct cons_block *cons_block;
2692
2693 /* Index of first unused Lisp_Cons in the current block. */
2694
2695 int cons_block_index;
2696
2697 /* Free-list of Lisp_Cons structures. */
2698
2699 struct Lisp_Cons *cons_free_list;
2700
2701 /* Total number of cons blocks now in use. */
2702
2703 int n_cons_blocks;
2704
2705
2706 /* Initialize cons allocation. */
2707
2708 void
2709 init_cons ()
2710 {
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2714 n_cons_blocks = 0;
2715 }
2716
2717
2718 /* Explicitly free a cons cell by putting it on the free-list. */
2719
2720 void
2721 free_cons (ptr)
2722 struct Lisp_Cons *ptr;
2723 {
2724 ptr->u.chain = cons_free_list;
2725 #if GC_MARK_STACK
2726 ptr->car = Vdead;
2727 #endif
2728 cons_free_list = ptr;
2729 }
2730
2731 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2732 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2733 (car, cdr)
2734 Lisp_Object car, cdr;
2735 {
2736 register Lisp_Object val;
2737
2738 /* eassert (!handling_signal); */
2739
2740 #ifndef SYNC_INPUT
2741 BLOCK_INPUT;
2742 #endif
2743
2744 if (cons_free_list)
2745 {
2746 /* We use the cdr for chaining the free list
2747 so that we won't use the same field that has the mark bit. */
2748 XSETCONS (val, cons_free_list);
2749 cons_free_list = cons_free_list->u.chain;
2750 }
2751 else
2752 {
2753 if (cons_block_index == CONS_BLOCK_SIZE)
2754 {
2755 register struct cons_block *new;
2756 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757 MEM_TYPE_CONS);
2758 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2759 new->next = cons_block;
2760 cons_block = new;
2761 cons_block_index = 0;
2762 n_cons_blocks++;
2763 }
2764 XSETCONS (val, &cons_block->conses[cons_block_index]);
2765 cons_block_index++;
2766 }
2767
2768 #ifndef SYNC_INPUT
2769 UNBLOCK_INPUT;
2770 #endif
2771
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
2774 eassert (!CONS_MARKED_P (XCONS (val)));
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 cons_cells_consed++;
2777 return val;
2778 }
2779
2780 /* Get an error now if there's any junk in the cons free list. */
2781 void
2782 check_cons_list ()
2783 {
2784 #ifdef GC_CHECK_CONS_LIST
2785 struct Lisp_Cons *tail = cons_free_list;
2786
2787 while (tail)
2788 tail = tail->u.chain;
2789 #endif
2790 }
2791
2792 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2793
2794 Lisp_Object
2795 list1 (arg1)
2796 Lisp_Object arg1;
2797 {
2798 return Fcons (arg1, Qnil);
2799 }
2800
2801 Lisp_Object
2802 list2 (arg1, arg2)
2803 Lisp_Object arg1, arg2;
2804 {
2805 return Fcons (arg1, Fcons (arg2, Qnil));
2806 }
2807
2808
2809 Lisp_Object
2810 list3 (arg1, arg2, arg3)
2811 Lisp_Object arg1, arg2, arg3;
2812 {
2813 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2814 }
2815
2816
2817 Lisp_Object
2818 list4 (arg1, arg2, arg3, arg4)
2819 Lisp_Object arg1, arg2, arg3, arg4;
2820 {
2821 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2822 }
2823
2824
2825 Lisp_Object
2826 list5 (arg1, arg2, arg3, arg4, arg5)
2827 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2828 {
2829 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2830 Fcons (arg5, Qnil)))));
2831 }
2832
2833
2834 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2835 doc: /* Return a newly created list with specified arguments as elements.
2836 Any number of arguments, even zero arguments, are allowed.
2837 usage: (list &rest OBJECTS) */)
2838 (nargs, args)
2839 int nargs;
2840 register Lisp_Object *args;
2841 {
2842 register Lisp_Object val;
2843 val = Qnil;
2844
2845 while (nargs > 0)
2846 {
2847 nargs--;
2848 val = Fcons (args[nargs], val);
2849 }
2850 return val;
2851 }
2852
2853
2854 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2855 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2856 (length, init)
2857 register Lisp_Object length, init;
2858 {
2859 register Lisp_Object val;
2860 register int size;
2861
2862 CHECK_NATNUM (length);
2863 size = XFASTINT (length);
2864
2865 val = Qnil;
2866 while (size > 0)
2867 {
2868 val = Fcons (init, val);
2869 --size;
2870
2871 if (size > 0)
2872 {
2873 val = Fcons (init, val);
2874 --size;
2875
2876 if (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
2880
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
2885
2886 if (size > 0)
2887 {
2888 val = Fcons (init, val);
2889 --size;
2890 }
2891 }
2892 }
2893 }
2894
2895 QUIT;
2896 }
2897
2898 return val;
2899 }
2900
2901
2902 \f
2903 /***********************************************************************
2904 Vector Allocation
2905 ***********************************************************************/
2906
2907 /* Singly-linked list of all vectors. */
2908
2909 struct Lisp_Vector *all_vectors;
2910
2911 /* Total number of vector-like objects now in use. */
2912
2913 int n_vectors;
2914
2915
2916 /* Value is a pointer to a newly allocated Lisp_Vector structure
2917 with room for LEN Lisp_Objects. */
2918
2919 static struct Lisp_Vector *
2920 allocate_vectorlike (len, type)
2921 EMACS_INT len;
2922 enum mem_type type;
2923 {
2924 struct Lisp_Vector *p;
2925 size_t nbytes;
2926
2927 #ifdef DOUG_LEA_MALLOC
2928 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2929 because mapped region contents are not preserved in
2930 a dumped Emacs. */
2931 BLOCK_INPUT;
2932 mallopt (M_MMAP_MAX, 0);
2933 UNBLOCK_INPUT;
2934 #endif
2935
2936 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2937 /* eassert (!handling_signal); */
2938
2939 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2940 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2941
2942 #ifdef DOUG_LEA_MALLOC
2943 /* Back to a reasonable maximum of mmap'ed areas. */
2944 BLOCK_INPUT;
2945 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2946 UNBLOCK_INPUT;
2947 #endif
2948
2949 consing_since_gc += nbytes;
2950 vector_cells_consed += len;
2951
2952 #ifndef SYNC_INPUT
2953 BLOCK_INPUT;
2954 #endif
2955
2956 p->next = all_vectors;
2957 all_vectors = p;
2958
2959 #ifndef SYNC_INPUT
2960 UNBLOCK_INPUT;
2961 #endif
2962
2963 ++n_vectors;
2964 return p;
2965 }
2966
2967
2968 /* Allocate a vector with NSLOTS slots. */
2969
2970 struct Lisp_Vector *
2971 allocate_vector (nslots)
2972 EMACS_INT nslots;
2973 {
2974 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2975 v->size = nslots;
2976 return v;
2977 }
2978
2979
2980 /* Allocate other vector-like structures. */
2981
2982 struct Lisp_Hash_Table *
2983 allocate_hash_table ()
2984 {
2985 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2986 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2987 EMACS_INT i;
2988
2989 v->size = len;
2990 for (i = 0; i < len; ++i)
2991 v->contents[i] = Qnil;
2992
2993 return (struct Lisp_Hash_Table *) v;
2994 }
2995
2996
2997 struct window *
2998 allocate_window ()
2999 {
3000 EMACS_INT len = VECSIZE (struct window);
3001 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
3002 EMACS_INT i;
3003
3004 for (i = 0; i < len; ++i)
3005 v->contents[i] = Qnil;
3006 v->size = len;
3007
3008 return (struct window *) v;
3009 }
3010
3011
3012 struct frame *
3013 allocate_frame ()
3014 {
3015 EMACS_INT len = VECSIZE (struct frame);
3016 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
3017 EMACS_INT i;
3018
3019 for (i = 0; i < len; ++i)
3020 v->contents[i] = make_number (0);
3021 v->size = len;
3022 return (struct frame *) v;
3023 }
3024
3025
3026 struct Lisp_Process *
3027 allocate_process ()
3028 {
3029 /* Memory-footprint of the object in nb of Lisp_Object fields. */
3030 EMACS_INT memlen = VECSIZE (struct Lisp_Process);
3031 /* Size if we only count the actual Lisp_Object fields (which need to be
3032 traced by the GC). */
3033 EMACS_INT lisplen = PSEUDOVECSIZE (struct Lisp_Process, pid);
3034 struct Lisp_Vector *v = allocate_vectorlike (memlen, MEM_TYPE_PROCESS);
3035 EMACS_INT i;
3036
3037 for (i = 0; i < lisplen; ++i)
3038 v->contents[i] = Qnil;
3039 v->size = lisplen;
3040
3041 return (struct Lisp_Process *) v;
3042 }
3043
3044
3045 struct Lisp_Vector *
3046 allocate_other_vector (len)
3047 EMACS_INT len;
3048 {
3049 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3050 EMACS_INT i;
3051
3052 for (i = 0; i < len; ++i)
3053 v->contents[i] = Qnil;
3054 v->size = len;
3055
3056 return v;
3057 }
3058
3059
3060 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3061 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3062 See also the function `vector'. */)
3063 (length, init)
3064 register Lisp_Object length, init;
3065 {
3066 Lisp_Object vector;
3067 register EMACS_INT sizei;
3068 register int index;
3069 register struct Lisp_Vector *p;
3070
3071 CHECK_NATNUM (length);
3072 sizei = XFASTINT (length);
3073
3074 p = allocate_vector (sizei);
3075 for (index = 0; index < sizei; index++)
3076 p->contents[index] = init;
3077
3078 XSETVECTOR (vector, p);
3079 return vector;
3080 }
3081
3082
3083 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3084 doc: /* Return a newly created vector with specified arguments as elements.
3085 Any number of arguments, even zero arguments, are allowed.
3086 usage: (vector &rest OBJECTS) */)
3087 (nargs, args)
3088 register int nargs;
3089 Lisp_Object *args;
3090 {
3091 register Lisp_Object len, val;
3092 register int index;
3093 register struct Lisp_Vector *p;
3094
3095 XSETFASTINT (len, nargs);
3096 val = Fmake_vector (len, Qnil);
3097 p = XVECTOR (val);
3098 for (index = 0; index < nargs; index++)
3099 p->contents[index] = args[index];
3100 return val;
3101 }
3102
3103
3104 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3105 doc: /* Create a byte-code object with specified arguments as elements.
3106 The arguments should be the arglist, bytecode-string, constant vector,
3107 stack size, (optional) doc string, and (optional) interactive spec.
3108 The first four arguments are required; at most six have any
3109 significance.
3110 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3111 (nargs, args)
3112 register int nargs;
3113 Lisp_Object *args;
3114 {
3115 register Lisp_Object len, val;
3116 register int index;
3117 register struct Lisp_Vector *p;
3118
3119 XSETFASTINT (len, nargs);
3120 if (!NILP (Vpurify_flag))
3121 val = make_pure_vector ((EMACS_INT) nargs);
3122 else
3123 val = Fmake_vector (len, Qnil);
3124
3125 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3126 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3127 earlier because they produced a raw 8-bit string for byte-code
3128 and now such a byte-code string is loaded as multibyte while
3129 raw 8-bit characters converted to multibyte form. Thus, now we
3130 must convert them back to the original unibyte form. */
3131 args[1] = Fstring_as_unibyte (args[1]);
3132
3133 p = XVECTOR (val);
3134 for (index = 0; index < nargs; index++)
3135 {
3136 if (!NILP (Vpurify_flag))
3137 args[index] = Fpurecopy (args[index]);
3138 p->contents[index] = args[index];
3139 }
3140 XSETCOMPILED (val, p);
3141 return val;
3142 }
3143
3144
3145 \f
3146 /***********************************************************************
3147 Symbol Allocation
3148 ***********************************************************************/
3149
3150 /* Each symbol_block is just under 1020 bytes long, since malloc
3151 really allocates in units of powers of two and uses 4 bytes for its
3152 own overhead. */
3153
3154 #define SYMBOL_BLOCK_SIZE \
3155 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3156
3157 struct symbol_block
3158 {
3159 /* Place `symbols' first, to preserve alignment. */
3160 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3161 struct symbol_block *next;
3162 };
3163
3164 /* Current symbol block and index of first unused Lisp_Symbol
3165 structure in it. */
3166
3167 struct symbol_block *symbol_block;
3168 int symbol_block_index;
3169
3170 /* List of free symbols. */
3171
3172 struct Lisp_Symbol *symbol_free_list;
3173
3174 /* Total number of symbol blocks now in use. */
3175
3176 int n_symbol_blocks;
3177
3178
3179 /* Initialize symbol allocation. */
3180
3181 void
3182 init_symbol ()
3183 {
3184 symbol_block = NULL;
3185 symbol_block_index = SYMBOL_BLOCK_SIZE;
3186 symbol_free_list = 0;
3187 n_symbol_blocks = 0;
3188 }
3189
3190
3191 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3192 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3193 Its value and function definition are void, and its property list is nil. */)
3194 (name)
3195 Lisp_Object name;
3196 {
3197 register Lisp_Object val;
3198 register struct Lisp_Symbol *p;
3199
3200 CHECK_STRING (name);
3201
3202 /* eassert (!handling_signal); */
3203
3204 #ifndef SYNC_INPUT
3205 BLOCK_INPUT;
3206 #endif
3207
3208 if (symbol_free_list)
3209 {
3210 XSETSYMBOL (val, symbol_free_list);
3211 symbol_free_list = symbol_free_list->next;
3212 }
3213 else
3214 {
3215 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3216 {
3217 struct symbol_block *new;
3218 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3219 MEM_TYPE_SYMBOL);
3220 new->next = symbol_block;
3221 symbol_block = new;
3222 symbol_block_index = 0;
3223 n_symbol_blocks++;
3224 }
3225 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3226 symbol_block_index++;
3227 }
3228
3229 #ifndef SYNC_INPUT
3230 UNBLOCK_INPUT;
3231 #endif
3232
3233 p = XSYMBOL (val);
3234 p->xname = name;
3235 p->plist = Qnil;
3236 p->value = Qunbound;
3237 p->function = Qunbound;
3238 p->next = NULL;
3239 p->gcmarkbit = 0;
3240 p->interned = SYMBOL_UNINTERNED;
3241 p->constant = 0;
3242 p->indirect_variable = 0;
3243 consing_since_gc += sizeof (struct Lisp_Symbol);
3244 symbols_consed++;
3245 return val;
3246 }
3247
3248
3249 \f
3250 /***********************************************************************
3251 Marker (Misc) Allocation
3252 ***********************************************************************/
3253
3254 /* Allocation of markers and other objects that share that structure.
3255 Works like allocation of conses. */
3256
3257 #define MARKER_BLOCK_SIZE \
3258 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3259
3260 struct marker_block
3261 {
3262 /* Place `markers' first, to preserve alignment. */
3263 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3264 struct marker_block *next;
3265 };
3266
3267 struct marker_block *marker_block;
3268 int marker_block_index;
3269
3270 union Lisp_Misc *marker_free_list;
3271
3272 /* Total number of marker blocks now in use. */
3273
3274 int n_marker_blocks;
3275
3276 void
3277 init_marker ()
3278 {
3279 marker_block = NULL;
3280 marker_block_index = MARKER_BLOCK_SIZE;
3281 marker_free_list = 0;
3282 n_marker_blocks = 0;
3283 }
3284
3285 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3286
3287 Lisp_Object
3288 allocate_misc ()
3289 {
3290 Lisp_Object val;
3291
3292 /* eassert (!handling_signal); */
3293
3294 #ifndef SYNC_INPUT
3295 BLOCK_INPUT;
3296 #endif
3297
3298 if (marker_free_list)
3299 {
3300 XSETMISC (val, marker_free_list);
3301 marker_free_list = marker_free_list->u_free.chain;
3302 }
3303 else
3304 {
3305 if (marker_block_index == MARKER_BLOCK_SIZE)
3306 {
3307 struct marker_block *new;
3308 new = (struct marker_block *) lisp_malloc (sizeof *new,
3309 MEM_TYPE_MISC);
3310 new->next = marker_block;
3311 marker_block = new;
3312 marker_block_index = 0;
3313 n_marker_blocks++;
3314 total_free_markers += MARKER_BLOCK_SIZE;
3315 }
3316 XSETMISC (val, &marker_block->markers[marker_block_index]);
3317 marker_block_index++;
3318 }
3319
3320 #ifndef SYNC_INPUT
3321 UNBLOCK_INPUT;
3322 #endif
3323
3324 --total_free_markers;
3325 consing_since_gc += sizeof (union Lisp_Misc);
3326 misc_objects_consed++;
3327 XMARKER (val)->gcmarkbit = 0;
3328 return val;
3329 }
3330
3331 /* Free a Lisp_Misc object */
3332
3333 void
3334 free_misc (misc)
3335 Lisp_Object misc;
3336 {
3337 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3338 XMISC (misc)->u_free.chain = marker_free_list;
3339 marker_free_list = XMISC (misc);
3340
3341 total_free_markers++;
3342 }
3343
3344 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3345 INTEGER. This is used to package C values to call record_unwind_protect.
3346 The unwind function can get the C values back using XSAVE_VALUE. */
3347
3348 Lisp_Object
3349 make_save_value (pointer, integer)
3350 void *pointer;
3351 int integer;
3352 {
3353 register Lisp_Object val;
3354 register struct Lisp_Save_Value *p;
3355
3356 val = allocate_misc ();
3357 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3358 p = XSAVE_VALUE (val);
3359 p->pointer = pointer;
3360 p->integer = integer;
3361 p->dogc = 0;
3362 return val;
3363 }
3364
3365 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3366 doc: /* Return a newly allocated marker which does not point at any place. */)
3367 ()
3368 {
3369 register Lisp_Object val;
3370 register struct Lisp_Marker *p;
3371
3372 val = allocate_misc ();
3373 XMISCTYPE (val) = Lisp_Misc_Marker;
3374 p = XMARKER (val);
3375 p->buffer = 0;
3376 p->bytepos = 0;
3377 p->charpos = 0;
3378 p->next = NULL;
3379 p->insertion_type = 0;
3380 return val;
3381 }
3382
3383 /* Put MARKER back on the free list after using it temporarily. */
3384
3385 void
3386 free_marker (marker)
3387 Lisp_Object marker;
3388 {
3389 unchain_marker (XMARKER (marker));
3390 free_misc (marker);
3391 }
3392
3393 \f
3394 /* Return a newly created vector or string with specified arguments as
3395 elements. If all the arguments are characters that can fit
3396 in a string of events, make a string; otherwise, make a vector.
3397
3398 Any number of arguments, even zero arguments, are allowed. */
3399
3400 Lisp_Object
3401 make_event_array (nargs, args)
3402 register int nargs;
3403 Lisp_Object *args;
3404 {
3405 int i;
3406
3407 for (i = 0; i < nargs; i++)
3408 /* The things that fit in a string
3409 are characters that are in 0...127,
3410 after discarding the meta bit and all the bits above it. */
3411 if (!INTEGERP (args[i])
3412 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3413 return Fvector (nargs, args);
3414
3415 /* Since the loop exited, we know that all the things in it are
3416 characters, so we can make a string. */
3417 {
3418 Lisp_Object result;
3419
3420 result = Fmake_string (make_number (nargs), make_number (0));
3421 for (i = 0; i < nargs; i++)
3422 {
3423 SSET (result, i, XINT (args[i]));
3424 /* Move the meta bit to the right place for a string char. */
3425 if (XINT (args[i]) & CHAR_META)
3426 SSET (result, i, SREF (result, i) | 0x80);
3427 }
3428
3429 return result;
3430 }
3431 }
3432
3433
3434 \f
3435 /************************************************************************
3436 Memory Full Handling
3437 ************************************************************************/
3438
3439
3440 /* Called if malloc returns zero. */
3441
3442 void
3443 memory_full ()
3444 {
3445 int i;
3446
3447 Vmemory_full = Qt;
3448
3449 memory_full_cons_threshold = sizeof (struct cons_block);
3450
3451 /* The first time we get here, free the spare memory. */
3452 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3453 if (spare_memory[i])
3454 {
3455 if (i == 0)
3456 free (spare_memory[i]);
3457 else if (i >= 1 && i <= 4)
3458 lisp_align_free (spare_memory[i]);
3459 else
3460 lisp_free (spare_memory[i]);
3461 spare_memory[i] = 0;
3462 }
3463
3464 /* Record the space now used. When it decreases substantially,
3465 we can refill the memory reserve. */
3466 #ifndef SYSTEM_MALLOC
3467 bytes_used_when_full = BYTES_USED;
3468 #endif
3469
3470 /* This used to call error, but if we've run out of memory, we could
3471 get infinite recursion trying to build the string. */
3472 xsignal (Qnil, Vmemory_signal_data);
3473 }
3474
3475 /* If we released our reserve (due to running out of memory),
3476 and we have a fair amount free once again,
3477 try to set aside another reserve in case we run out once more.
3478
3479 This is called when a relocatable block is freed in ralloc.c,
3480 and also directly from this file, in case we're not using ralloc.c. */
3481
3482 void
3483 refill_memory_reserve ()
3484 {
3485 #ifndef SYSTEM_MALLOC
3486 if (spare_memory[0] == 0)
3487 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3488 if (spare_memory[1] == 0)
3489 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3490 MEM_TYPE_CONS);
3491 if (spare_memory[2] == 0)
3492 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3493 MEM_TYPE_CONS);
3494 if (spare_memory[3] == 0)
3495 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3496 MEM_TYPE_CONS);
3497 if (spare_memory[4] == 0)
3498 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3499 MEM_TYPE_CONS);
3500 if (spare_memory[5] == 0)
3501 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3502 MEM_TYPE_STRING);
3503 if (spare_memory[6] == 0)
3504 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3505 MEM_TYPE_STRING);
3506 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3507 Vmemory_full = Qnil;
3508 #endif
3509 }
3510 \f
3511 /************************************************************************
3512 C Stack Marking
3513 ************************************************************************/
3514
3515 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3516
3517 /* Conservative C stack marking requires a method to identify possibly
3518 live Lisp objects given a pointer value. We do this by keeping
3519 track of blocks of Lisp data that are allocated in a red-black tree
3520 (see also the comment of mem_node which is the type of nodes in
3521 that tree). Function lisp_malloc adds information for an allocated
3522 block to the red-black tree with calls to mem_insert, and function
3523 lisp_free removes it with mem_delete. Functions live_string_p etc
3524 call mem_find to lookup information about a given pointer in the
3525 tree, and use that to determine if the pointer points to a Lisp
3526 object or not. */
3527
3528 /* Initialize this part of alloc.c. */
3529
3530 static void
3531 mem_init ()
3532 {
3533 mem_z.left = mem_z.right = MEM_NIL;
3534 mem_z.parent = NULL;
3535 mem_z.color = MEM_BLACK;
3536 mem_z.start = mem_z.end = NULL;
3537 mem_root = MEM_NIL;
3538 }
3539
3540
3541 /* Value is a pointer to the mem_node containing START. Value is
3542 MEM_NIL if there is no node in the tree containing START. */
3543
3544 static INLINE struct mem_node *
3545 mem_find (start)
3546 void *start;
3547 {
3548 struct mem_node *p;
3549
3550 if (start < min_heap_address || start > max_heap_address)
3551 return MEM_NIL;
3552
3553 /* Make the search always successful to speed up the loop below. */
3554 mem_z.start = start;
3555 mem_z.end = (char *) start + 1;
3556
3557 p = mem_root;
3558 while (start < p->start || start >= p->end)
3559 p = start < p->start ? p->left : p->right;
3560 return p;
3561 }
3562
3563
3564 /* Insert a new node into the tree for a block of memory with start
3565 address START, end address END, and type TYPE. Value is a
3566 pointer to the node that was inserted. */
3567
3568 static struct mem_node *
3569 mem_insert (start, end, type)
3570 void *start, *end;
3571 enum mem_type type;
3572 {
3573 struct mem_node *c, *parent, *x;
3574
3575 if (start < min_heap_address)
3576 min_heap_address = start;
3577 if (end > max_heap_address)
3578 max_heap_address = end;
3579
3580 /* See where in the tree a node for START belongs. In this
3581 particular application, it shouldn't happen that a node is already
3582 present. For debugging purposes, let's check that. */
3583 c = mem_root;
3584 parent = NULL;
3585
3586 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3587
3588 while (c != MEM_NIL)
3589 {
3590 if (start >= c->start && start < c->end)
3591 abort ();
3592 parent = c;
3593 c = start < c->start ? c->left : c->right;
3594 }
3595
3596 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3597
3598 while (c != MEM_NIL)
3599 {
3600 parent = c;
3601 c = start < c->start ? c->left : c->right;
3602 }
3603
3604 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3605
3606 /* Create a new node. */
3607 #ifdef GC_MALLOC_CHECK
3608 x = (struct mem_node *) _malloc_internal (sizeof *x);
3609 if (x == NULL)
3610 abort ();
3611 #else
3612 x = (struct mem_node *) xmalloc (sizeof *x);
3613 #endif
3614 x->start = start;
3615 x->end = end;
3616 x->type = type;
3617 x->parent = parent;
3618 x->left = x->right = MEM_NIL;
3619 x->color = MEM_RED;
3620
3621 /* Insert it as child of PARENT or install it as root. */
3622 if (parent)
3623 {
3624 if (start < parent->start)
3625 parent->left = x;
3626 else
3627 parent->right = x;
3628 }
3629 else
3630 mem_root = x;
3631
3632 /* Re-establish red-black tree properties. */
3633 mem_insert_fixup (x);
3634
3635 return x;
3636 }
3637
3638
3639 /* Re-establish the red-black properties of the tree, and thereby
3640 balance the tree, after node X has been inserted; X is always red. */
3641
3642 static void
3643 mem_insert_fixup (x)
3644 struct mem_node *x;
3645 {
3646 while (x != mem_root && x->parent->color == MEM_RED)
3647 {
3648 /* X is red and its parent is red. This is a violation of
3649 red-black tree property #3. */
3650
3651 if (x->parent == x->parent->parent->left)
3652 {
3653 /* We're on the left side of our grandparent, and Y is our
3654 "uncle". */
3655 struct mem_node *y = x->parent->parent->right;
3656
3657 if (y->color == MEM_RED)
3658 {
3659 /* Uncle and parent are red but should be black because
3660 X is red. Change the colors accordingly and proceed
3661 with the grandparent. */
3662 x->parent->color = MEM_BLACK;
3663 y->color = MEM_BLACK;
3664 x->parent->parent->color = MEM_RED;
3665 x = x->parent->parent;
3666 }
3667 else
3668 {
3669 /* Parent and uncle have different colors; parent is
3670 red, uncle is black. */
3671 if (x == x->parent->right)
3672 {
3673 x = x->parent;
3674 mem_rotate_left (x);
3675 }
3676
3677 x->parent->color = MEM_BLACK;
3678 x->parent->parent->color = MEM_RED;
3679 mem_rotate_right (x->parent->parent);
3680 }
3681 }
3682 else
3683 {
3684 /* This is the symmetrical case of above. */
3685 struct mem_node *y = x->parent->parent->left;
3686
3687 if (y->color == MEM_RED)
3688 {
3689 x->parent->color = MEM_BLACK;
3690 y->color = MEM_BLACK;
3691 x->parent->parent->color = MEM_RED;
3692 x = x->parent->parent;
3693 }
3694 else
3695 {
3696 if (x == x->parent->left)
3697 {
3698 x = x->parent;
3699 mem_rotate_right (x);
3700 }
3701
3702 x->parent->color = MEM_BLACK;
3703 x->parent->parent->color = MEM_RED;
3704 mem_rotate_left (x->parent->parent);
3705 }
3706 }
3707 }
3708
3709 /* The root may have been changed to red due to the algorithm. Set
3710 it to black so that property #5 is satisfied. */
3711 mem_root->color = MEM_BLACK;
3712 }
3713
3714
3715 /* (x) (y)
3716 / \ / \
3717 a (y) ===> (x) c
3718 / \ / \
3719 b c a b */
3720
3721 static void
3722 mem_rotate_left (x)
3723 struct mem_node *x;
3724 {
3725 struct mem_node *y;
3726
3727 /* Turn y's left sub-tree into x's right sub-tree. */
3728 y = x->right;
3729 x->right = y->left;
3730 if (y->left != MEM_NIL)
3731 y->left->parent = x;
3732
3733 /* Y's parent was x's parent. */
3734 if (y != MEM_NIL)
3735 y->parent = x->parent;
3736
3737 /* Get the parent to point to y instead of x. */
3738 if (x->parent)
3739 {
3740 if (x == x->parent->left)
3741 x->parent->left = y;
3742 else
3743 x->parent->right = y;
3744 }
3745 else
3746 mem_root = y;
3747
3748 /* Put x on y's left. */
3749 y->left = x;
3750 if (x != MEM_NIL)
3751 x->parent = y;
3752 }
3753
3754
3755 /* (x) (Y)
3756 / \ / \
3757 (y) c ===> a (x)
3758 / \ / \
3759 a b b c */
3760
3761 static void
3762 mem_rotate_right (x)
3763 struct mem_node *x;
3764 {
3765 struct mem_node *y = x->left;
3766
3767 x->left = y->right;
3768 if (y->right != MEM_NIL)
3769 y->right->parent = x;
3770
3771 if (y != MEM_NIL)
3772 y->parent = x->parent;
3773 if (x->parent)
3774 {
3775 if (x == x->parent->right)
3776 x->parent->right = y;
3777 else
3778 x->parent->left = y;
3779 }
3780 else
3781 mem_root = y;
3782
3783 y->right = x;
3784 if (x != MEM_NIL)
3785 x->parent = y;
3786 }
3787
3788
3789 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3790
3791 static void
3792 mem_delete (z)
3793 struct mem_node *z;
3794 {
3795 struct mem_node *x, *y;
3796
3797 if (!z || z == MEM_NIL)
3798 return;
3799
3800 if (z->left == MEM_NIL || z->right == MEM_NIL)
3801 y = z;
3802 else
3803 {
3804 y = z->right;
3805 while (y->left != MEM_NIL)
3806 y = y->left;
3807 }
3808
3809 if (y->left != MEM_NIL)
3810 x = y->left;
3811 else
3812 x = y->right;
3813
3814 x->parent = y->parent;
3815 if (y->parent)
3816 {
3817 if (y == y->parent->left)
3818 y->parent->left = x;
3819 else
3820 y->parent->right = x;
3821 }
3822 else
3823 mem_root = x;
3824
3825 if (y != z)
3826 {
3827 z->start = y->start;
3828 z->end = y->end;
3829 z->type = y->type;
3830 }
3831
3832 if (y->color == MEM_BLACK)
3833 mem_delete_fixup (x);
3834
3835 #ifdef GC_MALLOC_CHECK
3836 _free_internal (y);
3837 #else
3838 xfree (y);
3839 #endif
3840 }
3841
3842
3843 /* Re-establish the red-black properties of the tree, after a
3844 deletion. */
3845
3846 static void
3847 mem_delete_fixup (x)
3848 struct mem_node *x;
3849 {
3850 while (x != mem_root && x->color == MEM_BLACK)
3851 {
3852 if (x == x->parent->left)
3853 {
3854 struct mem_node *w = x->parent->right;
3855
3856 if (w->color == MEM_RED)
3857 {
3858 w->color = MEM_BLACK;
3859 x->parent->color = MEM_RED;
3860 mem_rotate_left (x->parent);
3861 w = x->parent->right;
3862 }
3863
3864 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3865 {
3866 w->color = MEM_RED;
3867 x = x->parent;
3868 }
3869 else
3870 {
3871 if (w->right->color == MEM_BLACK)
3872 {
3873 w->left->color = MEM_BLACK;
3874 w->color = MEM_RED;
3875 mem_rotate_right (w);
3876 w = x->parent->right;
3877 }
3878 w->color = x->parent->color;
3879 x->parent->color = MEM_BLACK;
3880 w->right->color = MEM_BLACK;
3881 mem_rotate_left (x->parent);
3882 x = mem_root;
3883 }
3884 }
3885 else
3886 {
3887 struct mem_node *w = x->parent->left;
3888
3889 if (w->color == MEM_RED)
3890 {
3891 w->color = MEM_BLACK;
3892 x->parent->color = MEM_RED;
3893 mem_rotate_right (x->parent);
3894 w = x->parent->left;
3895 }
3896
3897 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3898 {
3899 w->color = MEM_RED;
3900 x = x->parent;
3901 }
3902 else
3903 {
3904 if (w->left->color == MEM_BLACK)
3905 {
3906 w->right->color = MEM_BLACK;
3907 w->color = MEM_RED;
3908 mem_rotate_left (w);
3909 w = x->parent->left;
3910 }
3911
3912 w->color = x->parent->color;
3913 x->parent->color = MEM_BLACK;
3914 w->left->color = MEM_BLACK;
3915 mem_rotate_right (x->parent);
3916 x = mem_root;
3917 }
3918 }
3919 }
3920
3921 x->color = MEM_BLACK;
3922 }
3923
3924
3925 /* Value is non-zero if P is a pointer to a live Lisp string on
3926 the heap. M is a pointer to the mem_block for P. */
3927
3928 static INLINE int
3929 live_string_p (m, p)
3930 struct mem_node *m;
3931 void *p;
3932 {
3933 if (m->type == MEM_TYPE_STRING)
3934 {
3935 struct string_block *b = (struct string_block *) m->start;
3936 int offset = (char *) p - (char *) &b->strings[0];
3937
3938 /* P must point to the start of a Lisp_String structure, and it
3939 must not be on the free-list. */
3940 return (offset >= 0
3941 && offset % sizeof b->strings[0] == 0
3942 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3943 && ((struct Lisp_String *) p)->data != NULL);
3944 }
3945 else
3946 return 0;
3947 }
3948
3949
3950 /* Value is non-zero if P is a pointer to a live Lisp cons on
3951 the heap. M is a pointer to the mem_block for P. */
3952
3953 static INLINE int
3954 live_cons_p (m, p)
3955 struct mem_node *m;
3956 void *p;
3957 {
3958 if (m->type == MEM_TYPE_CONS)
3959 {
3960 struct cons_block *b = (struct cons_block *) m->start;
3961 int offset = (char *) p - (char *) &b->conses[0];
3962
3963 /* P must point to the start of a Lisp_Cons, not be
3964 one of the unused cells in the current cons block,
3965 and not be on the free-list. */
3966 return (offset >= 0
3967 && offset % sizeof b->conses[0] == 0
3968 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3969 && (b != cons_block
3970 || offset / sizeof b->conses[0] < cons_block_index)
3971 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3972 }
3973 else
3974 return 0;
3975 }
3976
3977
3978 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3979 the heap. M is a pointer to the mem_block for P. */
3980
3981 static INLINE int
3982 live_symbol_p (m, p)
3983 struct mem_node *m;
3984 void *p;
3985 {
3986 if (m->type == MEM_TYPE_SYMBOL)
3987 {
3988 struct symbol_block *b = (struct symbol_block *) m->start;
3989 int offset = (char *) p - (char *) &b->symbols[0];
3990
3991 /* P must point to the start of a Lisp_Symbol, not be
3992 one of the unused cells in the current symbol block,
3993 and not be on the free-list. */
3994 return (offset >= 0
3995 && offset % sizeof b->symbols[0] == 0
3996 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3997 && (b != symbol_block
3998 || offset / sizeof b->symbols[0] < symbol_block_index)
3999 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4000 }
4001 else
4002 return 0;
4003 }
4004
4005
4006 /* Value is non-zero if P is a pointer to a live Lisp float on
4007 the heap. M is a pointer to the mem_block for P. */
4008
4009 static INLINE int
4010 live_float_p (m, p)
4011 struct mem_node *m;
4012 void *p;
4013 {
4014 if (m->type == MEM_TYPE_FLOAT)
4015 {
4016 struct float_block *b = (struct float_block *) m->start;
4017 int offset = (char *) p - (char *) &b->floats[0];
4018
4019 /* P must point to the start of a Lisp_Float and not be
4020 one of the unused cells in the current float block. */
4021 return (offset >= 0
4022 && offset % sizeof b->floats[0] == 0
4023 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4024 && (b != float_block
4025 || offset / sizeof b->floats[0] < float_block_index));
4026 }
4027 else
4028 return 0;
4029 }
4030
4031
4032 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4033 the heap. M is a pointer to the mem_block for P. */
4034
4035 static INLINE int
4036 live_misc_p (m, p)
4037 struct mem_node *m;
4038 void *p;
4039 {
4040 if (m->type == MEM_TYPE_MISC)
4041 {
4042 struct marker_block *b = (struct marker_block *) m->start;
4043 int offset = (char *) p - (char *) &b->markers[0];
4044
4045 /* P must point to the start of a Lisp_Misc, not be
4046 one of the unused cells in the current misc block,
4047 and not be on the free-list. */
4048 return (offset >= 0
4049 && offset % sizeof b->markers[0] == 0
4050 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4051 && (b != marker_block
4052 || offset / sizeof b->markers[0] < marker_block_index)
4053 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4054 }
4055 else
4056 return 0;
4057 }
4058
4059
4060 /* Value is non-zero if P is a pointer to a live vector-like object.
4061 M is a pointer to the mem_block for P. */
4062
4063 static INLINE int
4064 live_vector_p (m, p)
4065 struct mem_node *m;
4066 void *p;
4067 {
4068 return (p == m->start
4069 && m->type >= MEM_TYPE_VECTOR
4070 && m->type <= MEM_TYPE_WINDOW);
4071 }
4072
4073
4074 /* Value is non-zero if P is a pointer to a live buffer. M is a
4075 pointer to the mem_block for P. */
4076
4077 static INLINE int
4078 live_buffer_p (m, p)
4079 struct mem_node *m;
4080 void *p;
4081 {
4082 /* P must point to the start of the block, and the buffer
4083 must not have been killed. */
4084 return (m->type == MEM_TYPE_BUFFER
4085 && p == m->start
4086 && !NILP (((struct buffer *) p)->name));
4087 }
4088
4089 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4090
4091 #if GC_MARK_STACK
4092
4093 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4094
4095 /* Array of objects that are kept alive because the C stack contains
4096 a pattern that looks like a reference to them . */
4097
4098 #define MAX_ZOMBIES 10
4099 static Lisp_Object zombies[MAX_ZOMBIES];
4100
4101 /* Number of zombie objects. */
4102
4103 static int nzombies;
4104
4105 /* Number of garbage collections. */
4106
4107 static int ngcs;
4108
4109 /* Average percentage of zombies per collection. */
4110
4111 static double avg_zombies;
4112
4113 /* Max. number of live and zombie objects. */
4114
4115 static int max_live, max_zombies;
4116
4117 /* Average number of live objects per GC. */
4118
4119 static double avg_live;
4120
4121 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4122 doc: /* Show information about live and zombie objects. */)
4123 ()
4124 {
4125 Lisp_Object args[8], zombie_list = Qnil;
4126 int i;
4127 for (i = 0; i < nzombies; i++)
4128 zombie_list = Fcons (zombies[i], zombie_list);
4129 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4130 args[1] = make_number (ngcs);
4131 args[2] = make_float (avg_live);
4132 args[3] = make_float (avg_zombies);
4133 args[4] = make_float (avg_zombies / avg_live / 100);
4134 args[5] = make_number (max_live);
4135 args[6] = make_number (max_zombies);
4136 args[7] = zombie_list;
4137 return Fmessage (8, args);
4138 }
4139
4140 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4141
4142
4143 /* Mark OBJ if we can prove it's a Lisp_Object. */
4144
4145 static INLINE void
4146 mark_maybe_object (obj)
4147 Lisp_Object obj;
4148 {
4149 void *po = (void *) XPNTR (obj);
4150 struct mem_node *m = mem_find (po);
4151
4152 if (m != MEM_NIL)
4153 {
4154 int mark_p = 0;
4155
4156 switch (XGCTYPE (obj))
4157 {
4158 case Lisp_String:
4159 mark_p = (live_string_p (m, po)
4160 && !STRING_MARKED_P ((struct Lisp_String *) po));
4161 break;
4162
4163 case Lisp_Cons:
4164 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4165 break;
4166
4167 case Lisp_Symbol:
4168 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4169 break;
4170
4171 case Lisp_Float:
4172 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4173 break;
4174
4175 case Lisp_Vectorlike:
4176 /* Note: can't check GC_BUFFERP before we know it's a
4177 buffer because checking that dereferences the pointer
4178 PO which might point anywhere. */
4179 if (live_vector_p (m, po))
4180 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4181 else if (live_buffer_p (m, po))
4182 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4183 break;
4184
4185 case Lisp_Misc:
4186 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4187 break;
4188
4189 case Lisp_Int:
4190 case Lisp_Type_Limit:
4191 break;
4192 }
4193
4194 if (mark_p)
4195 {
4196 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4197 if (nzombies < MAX_ZOMBIES)
4198 zombies[nzombies] = obj;
4199 ++nzombies;
4200 #endif
4201 mark_object (obj);
4202 }
4203 }
4204 }
4205
4206
4207 /* If P points to Lisp data, mark that as live if it isn't already
4208 marked. */
4209
4210 static INLINE void
4211 mark_maybe_pointer (p)
4212 void *p;
4213 {
4214 struct mem_node *m;
4215
4216 /* Quickly rule out some values which can't point to Lisp data. We
4217 assume that Lisp data is aligned on even addresses. */
4218 if ((EMACS_INT) p & 1)
4219 return;
4220
4221 m = mem_find (p);
4222 if (m != MEM_NIL)
4223 {
4224 Lisp_Object obj = Qnil;
4225
4226 switch (m->type)
4227 {
4228 case MEM_TYPE_NON_LISP:
4229 /* Nothing to do; not a pointer to Lisp memory. */
4230 break;
4231
4232 case MEM_TYPE_BUFFER:
4233 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4234 XSETVECTOR (obj, p);
4235 break;
4236
4237 case MEM_TYPE_CONS:
4238 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4239 XSETCONS (obj, p);
4240 break;
4241
4242 case MEM_TYPE_STRING:
4243 if (live_string_p (m, p)
4244 && !STRING_MARKED_P ((struct Lisp_String *) p))
4245 XSETSTRING (obj, p);
4246 break;
4247
4248 case MEM_TYPE_MISC:
4249 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4250 XSETMISC (obj, p);
4251 break;
4252
4253 case MEM_TYPE_SYMBOL:
4254 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4255 XSETSYMBOL (obj, p);
4256 break;
4257
4258 case MEM_TYPE_FLOAT:
4259 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4260 XSETFLOAT (obj, p);
4261 break;
4262
4263 case MEM_TYPE_VECTOR:
4264 case MEM_TYPE_PROCESS:
4265 case MEM_TYPE_HASH_TABLE:
4266 case MEM_TYPE_FRAME:
4267 case MEM_TYPE_WINDOW:
4268 if (live_vector_p (m, p))
4269 {
4270 Lisp_Object tem;
4271 XSETVECTOR (tem, p);
4272 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4273 obj = tem;
4274 }
4275 break;
4276
4277 default:
4278 abort ();
4279 }
4280
4281 if (!GC_NILP (obj))
4282 mark_object (obj);
4283 }
4284 }
4285
4286
4287 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4288 or END+OFFSET..START. */
4289
4290 static void
4291 mark_memory (start, end, offset)
4292 void *start, *end;
4293 int offset;
4294 {
4295 Lisp_Object *p;
4296 void **pp;
4297
4298 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4299 nzombies = 0;
4300 #endif
4301
4302 /* Make START the pointer to the start of the memory region,
4303 if it isn't already. */
4304 if (end < start)
4305 {
4306 void *tem = start;
4307 start = end;
4308 end = tem;
4309 }
4310
4311 /* Mark Lisp_Objects. */
4312 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4313 mark_maybe_object (*p);
4314
4315 /* Mark Lisp data pointed to. This is necessary because, in some
4316 situations, the C compiler optimizes Lisp objects away, so that
4317 only a pointer to them remains. Example:
4318
4319 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4320 ()
4321 {
4322 Lisp_Object obj = build_string ("test");
4323 struct Lisp_String *s = XSTRING (obj);
4324 Fgarbage_collect ();
4325 fprintf (stderr, "test `%s'\n", s->data);
4326 return Qnil;
4327 }
4328
4329 Here, `obj' isn't really used, and the compiler optimizes it
4330 away. The only reference to the life string is through the
4331 pointer `s'. */
4332
4333 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4334 mark_maybe_pointer (*pp);
4335 }
4336
4337 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4338 the GCC system configuration. In gcc 3.2, the only systems for
4339 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4340 by others?) and ns32k-pc532-min. */
4341
4342 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4343
4344 static int setjmp_tested_p, longjmps_done;
4345
4346 #define SETJMP_WILL_LIKELY_WORK "\
4347 \n\
4348 Emacs garbage collector has been changed to use conservative stack\n\
4349 marking. Emacs has determined that the method it uses to do the\n\
4350 marking will likely work on your system, but this isn't sure.\n\
4351 \n\
4352 If you are a system-programmer, or can get the help of a local wizard\n\
4353 who is, please take a look at the function mark_stack in alloc.c, and\n\
4354 verify that the methods used are appropriate for your system.\n\
4355 \n\
4356 Please mail the result to <emacs-devel@gnu.org>.\n\
4357 "
4358
4359 #define SETJMP_WILL_NOT_WORK "\
4360 \n\
4361 Emacs garbage collector has been changed to use conservative stack\n\
4362 marking. Emacs has determined that the default method it uses to do the\n\
4363 marking will not work on your system. We will need a system-dependent\n\
4364 solution for your system.\n\
4365 \n\
4366 Please take a look at the function mark_stack in alloc.c, and\n\
4367 try to find a way to make it work on your system.\n\
4368 \n\
4369 Note that you may get false negatives, depending on the compiler.\n\
4370 In particular, you need to use -O with GCC for this test.\n\
4371 \n\
4372 Please mail the result to <emacs-devel@gnu.org>.\n\
4373 "
4374
4375
4376 /* Perform a quick check if it looks like setjmp saves registers in a
4377 jmp_buf. Print a message to stderr saying so. When this test
4378 succeeds, this is _not_ a proof that setjmp is sufficient for
4379 conservative stack marking. Only the sources or a disassembly
4380 can prove that. */
4381
4382 static void
4383 test_setjmp ()
4384 {
4385 char buf[10];
4386 register int x;
4387 jmp_buf jbuf;
4388 int result = 0;
4389
4390 /* Arrange for X to be put in a register. */
4391 sprintf (buf, "1");
4392 x = strlen (buf);
4393 x = 2 * x - 1;
4394
4395 setjmp (jbuf);
4396 if (longjmps_done == 1)
4397 {
4398 /* Came here after the longjmp at the end of the function.
4399
4400 If x == 1, the longjmp has restored the register to its
4401 value before the setjmp, and we can hope that setjmp
4402 saves all such registers in the jmp_buf, although that
4403 isn't sure.
4404
4405 For other values of X, either something really strange is
4406 taking place, or the setjmp just didn't save the register. */
4407
4408 if (x == 1)
4409 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4410 else
4411 {
4412 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4413 exit (1);
4414 }
4415 }
4416
4417 ++longjmps_done;
4418 x = 2;
4419 if (longjmps_done == 1)
4420 longjmp (jbuf, 1);
4421 }
4422
4423 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4424
4425
4426 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4427
4428 /* Abort if anything GCPRO'd doesn't survive the GC. */
4429
4430 static void
4431 check_gcpros ()
4432 {
4433 struct gcpro *p;
4434 int i;
4435
4436 for (p = gcprolist; p; p = p->next)
4437 for (i = 0; i < p->nvars; ++i)
4438 if (!survives_gc_p (p->var[i]))
4439 /* FIXME: It's not necessarily a bug. It might just be that the
4440 GCPRO is unnecessary or should release the object sooner. */
4441 abort ();
4442 }
4443
4444 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4445
4446 static void
4447 dump_zombies ()
4448 {
4449 int i;
4450
4451 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4452 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4453 {
4454 fprintf (stderr, " %d = ", i);
4455 debug_print (zombies[i]);
4456 }
4457 }
4458
4459 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4460
4461
4462 /* Mark live Lisp objects on the C stack.
4463
4464 There are several system-dependent problems to consider when
4465 porting this to new architectures:
4466
4467 Processor Registers
4468
4469 We have to mark Lisp objects in CPU registers that can hold local
4470 variables or are used to pass parameters.
4471
4472 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4473 something that either saves relevant registers on the stack, or
4474 calls mark_maybe_object passing it each register's contents.
4475
4476 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4477 implementation assumes that calling setjmp saves registers we need
4478 to see in a jmp_buf which itself lies on the stack. This doesn't
4479 have to be true! It must be verified for each system, possibly
4480 by taking a look at the source code of setjmp.
4481
4482 Stack Layout
4483
4484 Architectures differ in the way their processor stack is organized.
4485 For example, the stack might look like this
4486
4487 +----------------+
4488 | Lisp_Object | size = 4
4489 +----------------+
4490 | something else | size = 2
4491 +----------------+
4492 | Lisp_Object | size = 4
4493 +----------------+
4494 | ... |
4495
4496 In such a case, not every Lisp_Object will be aligned equally. To
4497 find all Lisp_Object on the stack it won't be sufficient to walk
4498 the stack in steps of 4 bytes. Instead, two passes will be
4499 necessary, one starting at the start of the stack, and a second
4500 pass starting at the start of the stack + 2. Likewise, if the
4501 minimal alignment of Lisp_Objects on the stack is 1, four passes
4502 would be necessary, each one starting with one byte more offset
4503 from the stack start.
4504
4505 The current code assumes by default that Lisp_Objects are aligned
4506 equally on the stack. */
4507
4508 static void
4509 mark_stack ()
4510 {
4511 int i;
4512 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4513 union aligned_jmpbuf {
4514 Lisp_Object o;
4515 jmp_buf j;
4516 } j;
4517 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4518 void *end;
4519
4520 /* This trick flushes the register windows so that all the state of
4521 the process is contained in the stack. */
4522 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4523 needed on ia64 too. See mach_dep.c, where it also says inline
4524 assembler doesn't work with relevant proprietary compilers. */
4525 #ifdef sparc
4526 asm ("ta 3");
4527 #endif
4528
4529 /* Save registers that we need to see on the stack. We need to see
4530 registers used to hold register variables and registers used to
4531 pass parameters. */
4532 #ifdef GC_SAVE_REGISTERS_ON_STACK
4533 GC_SAVE_REGISTERS_ON_STACK (end);
4534 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4535
4536 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4537 setjmp will definitely work, test it
4538 and print a message with the result
4539 of the test. */
4540 if (!setjmp_tested_p)
4541 {
4542 setjmp_tested_p = 1;
4543 test_setjmp ();
4544 }
4545 #endif /* GC_SETJMP_WORKS */
4546
4547 setjmp (j.j);
4548 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4549 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4550
4551 /* This assumes that the stack is a contiguous region in memory. If
4552 that's not the case, something has to be done here to iterate
4553 over the stack segments. */
4554 #ifndef GC_LISP_OBJECT_ALIGNMENT
4555 #ifdef __GNUC__
4556 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4557 #else
4558 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4559 #endif
4560 #endif
4561 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4562 mark_memory (stack_base, end, i);
4563 /* Allow for marking a secondary stack, like the register stack on the
4564 ia64. */
4565 #ifdef GC_MARK_SECONDARY_STACK
4566 GC_MARK_SECONDARY_STACK ();
4567 #endif
4568
4569 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4570 check_gcpros ();
4571 #endif
4572 }
4573
4574 #endif /* GC_MARK_STACK != 0 */
4575
4576
4577 /* Determine whether it is safe to access memory at address P. */
4578 int
4579 valid_pointer_p (p)
4580 void *p;
4581 {
4582 #ifdef WINDOWSNT
4583 return w32_valid_pointer_p (p, 16);
4584 #else
4585 int fd;
4586
4587 /* Obviously, we cannot just access it (we would SEGV trying), so we
4588 trick the o/s to tell us whether p is a valid pointer.
4589 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4590 not validate p in that case. */
4591
4592 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4593 {
4594 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4595 emacs_close (fd);
4596 unlink ("__Valid__Lisp__Object__");
4597 return valid;
4598 }
4599
4600 return -1;
4601 #endif
4602 }
4603
4604 /* Return 1 if OBJ is a valid lisp object.
4605 Return 0 if OBJ is NOT a valid lisp object.
4606 Return -1 if we cannot validate OBJ.
4607 This function can be quite slow,
4608 so it should only be used in code for manual debugging. */
4609
4610 int
4611 valid_lisp_object_p (obj)
4612 Lisp_Object obj;
4613 {
4614 void *p;
4615 #if GC_MARK_STACK
4616 struct mem_node *m;
4617 #endif
4618
4619 if (INTEGERP (obj))
4620 return 1;
4621
4622 p = (void *) XPNTR (obj);
4623 if (PURE_POINTER_P (p))
4624 return 1;
4625
4626 #if !GC_MARK_STACK
4627 return valid_pointer_p (p);
4628 #else
4629
4630 m = mem_find (p);
4631
4632 if (m == MEM_NIL)
4633 {
4634 int valid = valid_pointer_p (p);
4635 if (valid <= 0)
4636 return valid;
4637
4638 if (SUBRP (obj))
4639 return 1;
4640
4641 return 0;
4642 }
4643
4644 switch (m->type)
4645 {
4646 case MEM_TYPE_NON_LISP:
4647 return 0;
4648
4649 case MEM_TYPE_BUFFER:
4650 return live_buffer_p (m, p);
4651
4652 case MEM_TYPE_CONS:
4653 return live_cons_p (m, p);
4654
4655 case MEM_TYPE_STRING:
4656 return live_string_p (m, p);
4657
4658 case MEM_TYPE_MISC:
4659 return live_misc_p (m, p);
4660
4661 case MEM_TYPE_SYMBOL:
4662 return live_symbol_p (m, p);
4663
4664 case MEM_TYPE_FLOAT:
4665 return live_float_p (m, p);
4666
4667 case MEM_TYPE_VECTOR:
4668 case MEM_TYPE_PROCESS:
4669 case MEM_TYPE_HASH_TABLE:
4670 case MEM_TYPE_FRAME:
4671 case MEM_TYPE_WINDOW:
4672 return live_vector_p (m, p);
4673
4674 default:
4675 break;
4676 }
4677
4678 return 0;
4679 #endif
4680 }
4681
4682
4683
4684 \f
4685 /***********************************************************************
4686 Pure Storage Management
4687 ***********************************************************************/
4688
4689 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4690 pointer to it. TYPE is the Lisp type for which the memory is
4691 allocated. TYPE < 0 means it's not used for a Lisp object. */
4692
4693 static POINTER_TYPE *
4694 pure_alloc (size, type)
4695 size_t size;
4696 int type;
4697 {
4698 POINTER_TYPE *result;
4699 #ifdef USE_LSB_TAG
4700 size_t alignment = (1 << GCTYPEBITS);
4701 #else
4702 size_t alignment = sizeof (EMACS_INT);
4703
4704 /* Give Lisp_Floats an extra alignment. */
4705 if (type == Lisp_Float)
4706 {
4707 #if defined __GNUC__ && __GNUC__ >= 2
4708 alignment = __alignof (struct Lisp_Float);
4709 #else
4710 alignment = sizeof (struct Lisp_Float);
4711 #endif
4712 }
4713 #endif
4714
4715 again:
4716 if (type >= 0)
4717 {
4718 /* Allocate space for a Lisp object from the beginning of the free
4719 space with taking account of alignment. */
4720 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4721 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4722 }
4723 else
4724 {
4725 /* Allocate space for a non-Lisp object from the end of the free
4726 space. */
4727 pure_bytes_used_non_lisp += size;
4728 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4729 }
4730 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4731
4732 if (pure_bytes_used <= pure_size)
4733 return result;
4734
4735 /* Don't allocate a large amount here,
4736 because it might get mmap'd and then its address
4737 might not be usable. */
4738 purebeg = (char *) xmalloc (10000);
4739 pure_size = 10000;
4740 pure_bytes_used_before_overflow += pure_bytes_used - size;
4741 pure_bytes_used = 0;
4742 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4743 goto again;
4744 }
4745
4746
4747 /* Print a warning if PURESIZE is too small. */
4748
4749 void
4750 check_pure_size ()
4751 {
4752 if (pure_bytes_used_before_overflow)
4753 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4754 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4755 }
4756
4757
4758 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4759 the non-Lisp data pool of the pure storage, and return its start
4760 address. Return NULL if not found. */
4761
4762 static char *
4763 find_string_data_in_pure (data, nbytes)
4764 char *data;
4765 int nbytes;
4766 {
4767 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4768 unsigned char *p;
4769 char *non_lisp_beg;
4770
4771 if (pure_bytes_used_non_lisp < nbytes + 1)
4772 return NULL;
4773
4774 /* Set up the Boyer-Moore table. */
4775 skip = nbytes + 1;
4776 for (i = 0; i < 256; i++)
4777 bm_skip[i] = skip;
4778
4779 p = (unsigned char *) data;
4780 while (--skip > 0)
4781 bm_skip[*p++] = skip;
4782
4783 last_char_skip = bm_skip['\0'];
4784
4785 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4786 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4787
4788 /* See the comments in the function `boyer_moore' (search.c) for the
4789 use of `infinity'. */
4790 infinity = pure_bytes_used_non_lisp + 1;
4791 bm_skip['\0'] = infinity;
4792
4793 p = (unsigned char *) non_lisp_beg + nbytes;
4794 start = 0;
4795 do
4796 {
4797 /* Check the last character (== '\0'). */
4798 do
4799 {
4800 start += bm_skip[*(p + start)];
4801 }
4802 while (start <= start_max);
4803
4804 if (start < infinity)
4805 /* Couldn't find the last character. */
4806 return NULL;
4807
4808 /* No less than `infinity' means we could find the last
4809 character at `p[start - infinity]'. */
4810 start -= infinity;
4811
4812 /* Check the remaining characters. */
4813 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4814 /* Found. */
4815 return non_lisp_beg + start;
4816
4817 start += last_char_skip;
4818 }
4819 while (start <= start_max);
4820
4821 return NULL;
4822 }
4823
4824
4825 /* Return a string allocated in pure space. DATA is a buffer holding
4826 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4827 non-zero means make the result string multibyte.
4828
4829 Must get an error if pure storage is full, since if it cannot hold
4830 a large string it may be able to hold conses that point to that
4831 string; then the string is not protected from gc. */
4832
4833 Lisp_Object
4834 make_pure_string (data, nchars, nbytes, multibyte)
4835 char *data;
4836 int nchars, nbytes;
4837 int multibyte;
4838 {
4839 Lisp_Object string;
4840 struct Lisp_String *s;
4841
4842 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4843 s->data = find_string_data_in_pure (data, nbytes);
4844 if (s->data == NULL)
4845 {
4846 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4847 bcopy (data, s->data, nbytes);
4848 s->data[nbytes] = '\0';
4849 }
4850 s->size = nchars;
4851 s->size_byte = multibyte ? nbytes : -1;
4852 s->intervals = NULL_INTERVAL;
4853 XSETSTRING (string, s);
4854 return string;
4855 }
4856
4857
4858 /* Return a cons allocated from pure space. Give it pure copies
4859 of CAR as car and CDR as cdr. */
4860
4861 Lisp_Object
4862 pure_cons (car, cdr)
4863 Lisp_Object car, cdr;
4864 {
4865 register Lisp_Object new;
4866 struct Lisp_Cons *p;
4867
4868 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4869 XSETCONS (new, p);
4870 XSETCAR (new, Fpurecopy (car));
4871 XSETCDR (new, Fpurecopy (cdr));
4872 return new;
4873 }
4874
4875
4876 /* Value is a float object with value NUM allocated from pure space. */
4877
4878 Lisp_Object
4879 make_pure_float (num)
4880 double num;
4881 {
4882 register Lisp_Object new;
4883 struct Lisp_Float *p;
4884
4885 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4886 XSETFLOAT (new, p);
4887 XFLOAT_DATA (new) = num;
4888 return new;
4889 }
4890
4891
4892 /* Return a vector with room for LEN Lisp_Objects allocated from
4893 pure space. */
4894
4895 Lisp_Object
4896 make_pure_vector (len)
4897 EMACS_INT len;
4898 {
4899 Lisp_Object new;
4900 struct Lisp_Vector *p;
4901 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4902
4903 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4904 XSETVECTOR (new, p);
4905 XVECTOR (new)->size = len;
4906 return new;
4907 }
4908
4909
4910 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4911 doc: /* Make a copy of object OBJ in pure storage.
4912 Recursively copies contents of vectors and cons cells.
4913 Does not copy symbols. Copies strings without text properties. */)
4914 (obj)
4915 register Lisp_Object obj;
4916 {
4917 if (NILP (Vpurify_flag))
4918 return obj;
4919
4920 if (PURE_POINTER_P (XPNTR (obj)))
4921 return obj;
4922
4923 if (CONSP (obj))
4924 return pure_cons (XCAR (obj), XCDR (obj));
4925 else if (FLOATP (obj))
4926 return make_pure_float (XFLOAT_DATA (obj));
4927 else if (STRINGP (obj))
4928 return make_pure_string (SDATA (obj), SCHARS (obj),
4929 SBYTES (obj),
4930 STRING_MULTIBYTE (obj));
4931 else if (COMPILEDP (obj) || VECTORP (obj))
4932 {
4933 register struct Lisp_Vector *vec;
4934 register int i;
4935 EMACS_INT size;
4936
4937 size = XVECTOR (obj)->size;
4938 if (size & PSEUDOVECTOR_FLAG)
4939 size &= PSEUDOVECTOR_SIZE_MASK;
4940 vec = XVECTOR (make_pure_vector (size));
4941 for (i = 0; i < size; i++)
4942 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4943 if (COMPILEDP (obj))
4944 XSETCOMPILED (obj, vec);
4945 else
4946 XSETVECTOR (obj, vec);
4947 return obj;
4948 }
4949 else if (MARKERP (obj))
4950 error ("Attempt to copy a marker to pure storage");
4951
4952 return obj;
4953 }
4954
4955
4956 \f
4957 /***********************************************************************
4958 Protection from GC
4959 ***********************************************************************/
4960
4961 /* Put an entry in staticvec, pointing at the variable with address
4962 VARADDRESS. */
4963
4964 void
4965 staticpro (varaddress)
4966 Lisp_Object *varaddress;
4967 {
4968 staticvec[staticidx++] = varaddress;
4969 if (staticidx >= NSTATICS)
4970 abort ();
4971 }
4972
4973 struct catchtag
4974 {
4975 Lisp_Object tag;
4976 Lisp_Object val;
4977 struct catchtag *next;
4978 };
4979
4980 \f
4981 /***********************************************************************
4982 Protection from GC
4983 ***********************************************************************/
4984
4985 /* Temporarily prevent garbage collection. */
4986
4987 int
4988 inhibit_garbage_collection ()
4989 {
4990 int count = SPECPDL_INDEX ();
4991 int nbits = min (VALBITS, BITS_PER_INT);
4992
4993 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4994 return count;
4995 }
4996
4997
4998 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4999 doc: /* Reclaim storage for Lisp objects no longer needed.
5000 Garbage collection happens automatically if you cons more than
5001 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5002 `garbage-collect' normally returns a list with info on amount of space in use:
5003 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5004 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5005 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5006 (USED-STRINGS . FREE-STRINGS))
5007 However, if there was overflow in pure space, `garbage-collect'
5008 returns nil, because real GC can't be done. */)
5009 ()
5010 {
5011 register struct specbinding *bind;
5012 struct catchtag *catch;
5013 struct handler *handler;
5014 char stack_top_variable;
5015 register int i;
5016 int message_p;
5017 Lisp_Object total[8];
5018 int count = SPECPDL_INDEX ();
5019 EMACS_TIME t1, t2, t3;
5020
5021 if (abort_on_gc)
5022 abort ();
5023
5024 /* Can't GC if pure storage overflowed because we can't determine
5025 if something is a pure object or not. */
5026 if (pure_bytes_used_before_overflow)
5027 return Qnil;
5028
5029 CHECK_CONS_LIST ();
5030
5031 /* Don't keep undo information around forever.
5032 Do this early on, so it is no problem if the user quits. */
5033 {
5034 register struct buffer *nextb = all_buffers;
5035
5036 while (nextb)
5037 {
5038 /* If a buffer's undo list is Qt, that means that undo is
5039 turned off in that buffer. Calling truncate_undo_list on
5040 Qt tends to return NULL, which effectively turns undo back on.
5041 So don't call truncate_undo_list if undo_list is Qt. */
5042 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5043 truncate_undo_list (nextb);
5044
5045 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5046 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5047 {
5048 /* If a buffer's gap size is more than 10% of the buffer
5049 size, or larger than 2000 bytes, then shrink it
5050 accordingly. Keep a minimum size of 20 bytes. */
5051 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5052
5053 if (nextb->text->gap_size > size)
5054 {
5055 struct buffer *save_current = current_buffer;
5056 current_buffer = nextb;
5057 make_gap (-(nextb->text->gap_size - size));
5058 current_buffer = save_current;
5059 }
5060 }
5061
5062 nextb = nextb->next;
5063 }
5064 }
5065
5066 EMACS_GET_TIME (t1);
5067
5068 /* In case user calls debug_print during GC,
5069 don't let that cause a recursive GC. */
5070 consing_since_gc = 0;
5071
5072 /* Save what's currently displayed in the echo area. */
5073 message_p = push_message ();
5074 record_unwind_protect (pop_message_unwind, Qnil);
5075
5076 /* Save a copy of the contents of the stack, for debugging. */
5077 #if MAX_SAVE_STACK > 0
5078 if (NILP (Vpurify_flag))
5079 {
5080 i = &stack_top_variable - stack_bottom;
5081 if (i < 0) i = -i;
5082 if (i < MAX_SAVE_STACK)
5083 {
5084 if (stack_copy == 0)
5085 stack_copy = (char *) xmalloc (stack_copy_size = i);
5086 else if (stack_copy_size < i)
5087 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5088 if (stack_copy)
5089 {
5090 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5091 bcopy (stack_bottom, stack_copy, i);
5092 else
5093 bcopy (&stack_top_variable, stack_copy, i);
5094 }
5095 }
5096 }
5097 #endif /* MAX_SAVE_STACK > 0 */
5098
5099 if (garbage_collection_messages)
5100 message1_nolog ("Garbage collecting...");
5101
5102 BLOCK_INPUT;
5103
5104 shrink_regexp_cache ();
5105
5106 gc_in_progress = 1;
5107
5108 /* clear_marks (); */
5109
5110 /* Mark all the special slots that serve as the roots of accessibility. */
5111
5112 for (i = 0; i < staticidx; i++)
5113 mark_object (*staticvec[i]);
5114
5115 for (bind = specpdl; bind != specpdl_ptr; bind++)
5116 {
5117 mark_object (bind->symbol);
5118 mark_object (bind->old_value);
5119 }
5120 mark_kboards ();
5121
5122 #ifdef USE_GTK
5123 {
5124 extern void xg_mark_data ();
5125 xg_mark_data ();
5126 }
5127 #endif
5128
5129 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5130 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5131 mark_stack ();
5132 #else
5133 {
5134 register struct gcpro *tail;
5135 for (tail = gcprolist; tail; tail = tail->next)
5136 for (i = 0; i < tail->nvars; i++)
5137 mark_object (tail->var[i]);
5138 }
5139 #endif
5140
5141 mark_byte_stack ();
5142 for (catch = catchlist; catch; catch = catch->next)
5143 {
5144 mark_object (catch->tag);
5145 mark_object (catch->val);
5146 }
5147 for (handler = handlerlist; handler; handler = handler->next)
5148 {
5149 mark_object (handler->handler);
5150 mark_object (handler->var);
5151 }
5152 mark_backtrace ();
5153
5154 #ifdef HAVE_WINDOW_SYSTEM
5155 mark_fringe_data ();
5156 #endif
5157
5158 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5159 mark_stack ();
5160 #endif
5161
5162 /* Everything is now marked, except for the things that require special
5163 finalization, i.e. the undo_list.
5164 Look thru every buffer's undo list
5165 for elements that update markers that were not marked,
5166 and delete them. */
5167 {
5168 register struct buffer *nextb = all_buffers;
5169
5170 while (nextb)
5171 {
5172 /* If a buffer's undo list is Qt, that means that undo is
5173 turned off in that buffer. Calling truncate_undo_list on
5174 Qt tends to return NULL, which effectively turns undo back on.
5175 So don't call truncate_undo_list if undo_list is Qt. */
5176 if (! EQ (nextb->undo_list, Qt))
5177 {
5178 Lisp_Object tail, prev;
5179 tail = nextb->undo_list;
5180 prev = Qnil;
5181 while (CONSP (tail))
5182 {
5183 if (GC_CONSP (XCAR (tail))
5184 && GC_MARKERP (XCAR (XCAR (tail)))
5185 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5186 {
5187 if (NILP (prev))
5188 nextb->undo_list = tail = XCDR (tail);
5189 else
5190 {
5191 tail = XCDR (tail);
5192 XSETCDR (prev, tail);
5193 }
5194 }
5195 else
5196 {
5197 prev = tail;
5198 tail = XCDR (tail);
5199 }
5200 }
5201 }
5202 /* Now that we have stripped the elements that need not be in the
5203 undo_list any more, we can finally mark the list. */
5204 mark_object (nextb->undo_list);
5205
5206 nextb = nextb->next;
5207 }
5208 }
5209
5210 gc_sweep ();
5211
5212 /* Clear the mark bits that we set in certain root slots. */
5213
5214 unmark_byte_stack ();
5215 VECTOR_UNMARK (&buffer_defaults);
5216 VECTOR_UNMARK (&buffer_local_symbols);
5217
5218 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5219 dump_zombies ();
5220 #endif
5221
5222 UNBLOCK_INPUT;
5223
5224 CHECK_CONS_LIST ();
5225
5226 /* clear_marks (); */
5227 gc_in_progress = 0;
5228
5229 consing_since_gc = 0;
5230 if (gc_cons_threshold < 10000)
5231 gc_cons_threshold = 10000;
5232
5233 if (FLOATP (Vgc_cons_percentage))
5234 { /* Set gc_cons_combined_threshold. */
5235 EMACS_INT total = 0;
5236
5237 total += total_conses * sizeof (struct Lisp_Cons);
5238 total += total_symbols * sizeof (struct Lisp_Symbol);
5239 total += total_markers * sizeof (union Lisp_Misc);
5240 total += total_string_size;
5241 total += total_vector_size * sizeof (Lisp_Object);
5242 total += total_floats * sizeof (struct Lisp_Float);
5243 total += total_intervals * sizeof (struct interval);
5244 total += total_strings * sizeof (struct Lisp_String);
5245
5246 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5247 }
5248 else
5249 gc_relative_threshold = 0;
5250
5251 if (garbage_collection_messages)
5252 {
5253 if (message_p || minibuf_level > 0)
5254 restore_message ();
5255 else
5256 message1_nolog ("Garbage collecting...done");
5257 }
5258
5259 unbind_to (count, Qnil);
5260
5261 total[0] = Fcons (make_number (total_conses),
5262 make_number (total_free_conses));
5263 total[1] = Fcons (make_number (total_symbols),
5264 make_number (total_free_symbols));
5265 total[2] = Fcons (make_number (total_markers),
5266 make_number (total_free_markers));
5267 total[3] = make_number (total_string_size);
5268 total[4] = make_number (total_vector_size);
5269 total[5] = Fcons (make_number (total_floats),
5270 make_number (total_free_floats));
5271 total[6] = Fcons (make_number (total_intervals),
5272 make_number (total_free_intervals));
5273 total[7] = Fcons (make_number (total_strings),
5274 make_number (total_free_strings));
5275
5276 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5277 {
5278 /* Compute average percentage of zombies. */
5279 double nlive = 0;
5280
5281 for (i = 0; i < 7; ++i)
5282 if (CONSP (total[i]))
5283 nlive += XFASTINT (XCAR (total[i]));
5284
5285 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5286 max_live = max (nlive, max_live);
5287 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5288 max_zombies = max (nzombies, max_zombies);
5289 ++ngcs;
5290 }
5291 #endif
5292
5293 if (!NILP (Vpost_gc_hook))
5294 {
5295 int count = inhibit_garbage_collection ();
5296 safe_run_hooks (Qpost_gc_hook);
5297 unbind_to (count, Qnil);
5298 }
5299
5300 /* Accumulate statistics. */
5301 EMACS_GET_TIME (t2);
5302 EMACS_SUB_TIME (t3, t2, t1);
5303 if (FLOATP (Vgc_elapsed))
5304 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5305 EMACS_SECS (t3) +
5306 EMACS_USECS (t3) * 1.0e-6);
5307 gcs_done++;
5308
5309 return Flist (sizeof total / sizeof *total, total);
5310 }
5311
5312
5313 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5314 only interesting objects referenced from glyphs are strings. */
5315
5316 static void
5317 mark_glyph_matrix (matrix)
5318 struct glyph_matrix *matrix;
5319 {
5320 struct glyph_row *row = matrix->rows;
5321 struct glyph_row *end = row + matrix->nrows;
5322
5323 for (; row < end; ++row)
5324 if (row->enabled_p)
5325 {
5326 int area;
5327 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5328 {
5329 struct glyph *glyph = row->glyphs[area];
5330 struct glyph *end_glyph = glyph + row->used[area];
5331
5332 for (; glyph < end_glyph; ++glyph)
5333 if (GC_STRINGP (glyph->object)
5334 && !STRING_MARKED_P (XSTRING (glyph->object)))
5335 mark_object (glyph->object);
5336 }
5337 }
5338 }
5339
5340
5341 /* Mark Lisp faces in the face cache C. */
5342
5343 static void
5344 mark_face_cache (c)
5345 struct face_cache *c;
5346 {
5347 if (c)
5348 {
5349 int i, j;
5350 for (i = 0; i < c->used; ++i)
5351 {
5352 struct face *face = FACE_FROM_ID (c->f, i);
5353
5354 if (face)
5355 {
5356 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5357 mark_object (face->lface[j]);
5358 }
5359 }
5360 }
5361 }
5362
5363
5364 #ifdef HAVE_WINDOW_SYSTEM
5365
5366 /* Mark Lisp objects in image IMG. */
5367
5368 static void
5369 mark_image (img)
5370 struct image *img;
5371 {
5372 mark_object (img->spec);
5373
5374 if (!NILP (img->data.lisp_val))
5375 mark_object (img->data.lisp_val);
5376 }
5377
5378
5379 /* Mark Lisp objects in image cache of frame F. It's done this way so
5380 that we don't have to include xterm.h here. */
5381
5382 static void
5383 mark_image_cache (f)
5384 struct frame *f;
5385 {
5386 forall_images_in_image_cache (f, mark_image);
5387 }
5388
5389 #endif /* HAVE_X_WINDOWS */
5390
5391
5392 \f
5393 /* Mark reference to a Lisp_Object.
5394 If the object referred to has not been seen yet, recursively mark
5395 all the references contained in it. */
5396
5397 #define LAST_MARKED_SIZE 500
5398 Lisp_Object last_marked[LAST_MARKED_SIZE];
5399 int last_marked_index;
5400
5401 /* For debugging--call abort when we cdr down this many
5402 links of a list, in mark_object. In debugging,
5403 the call to abort will hit a breakpoint.
5404 Normally this is zero and the check never goes off. */
5405 int mark_object_loop_halt;
5406
5407 void
5408 mark_object (arg)
5409 Lisp_Object arg;
5410 {
5411 register Lisp_Object obj = arg;
5412 #ifdef GC_CHECK_MARKED_OBJECTS
5413 void *po;
5414 struct mem_node *m;
5415 #endif
5416 int cdr_count = 0;
5417
5418 loop:
5419
5420 if (PURE_POINTER_P (XPNTR (obj)))
5421 return;
5422
5423 last_marked[last_marked_index++] = obj;
5424 if (last_marked_index == LAST_MARKED_SIZE)
5425 last_marked_index = 0;
5426
5427 /* Perform some sanity checks on the objects marked here. Abort if
5428 we encounter an object we know is bogus. This increases GC time
5429 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5430 #ifdef GC_CHECK_MARKED_OBJECTS
5431
5432 po = (void *) XPNTR (obj);
5433
5434 /* Check that the object pointed to by PO is known to be a Lisp
5435 structure allocated from the heap. */
5436 #define CHECK_ALLOCATED() \
5437 do { \
5438 m = mem_find (po); \
5439 if (m == MEM_NIL) \
5440 abort (); \
5441 } while (0)
5442
5443 /* Check that the object pointed to by PO is live, using predicate
5444 function LIVEP. */
5445 #define CHECK_LIVE(LIVEP) \
5446 do { \
5447 if (!LIVEP (m, po)) \
5448 abort (); \
5449 } while (0)
5450
5451 /* Check both of the above conditions. */
5452 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5453 do { \
5454 CHECK_ALLOCATED (); \
5455 CHECK_LIVE (LIVEP); \
5456 } while (0) \
5457
5458 #else /* not GC_CHECK_MARKED_OBJECTS */
5459
5460 #define CHECK_ALLOCATED() (void) 0
5461 #define CHECK_LIVE(LIVEP) (void) 0
5462 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5463
5464 #endif /* not GC_CHECK_MARKED_OBJECTS */
5465
5466 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5467 {
5468 case Lisp_String:
5469 {
5470 register struct Lisp_String *ptr = XSTRING (obj);
5471 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5472 MARK_INTERVAL_TREE (ptr->intervals);
5473 MARK_STRING (ptr);
5474 #ifdef GC_CHECK_STRING_BYTES
5475 /* Check that the string size recorded in the string is the
5476 same as the one recorded in the sdata structure. */
5477 CHECK_STRING_BYTES (ptr);
5478 #endif /* GC_CHECK_STRING_BYTES */
5479 }
5480 break;
5481
5482 case Lisp_Vectorlike:
5483 #ifdef GC_CHECK_MARKED_OBJECTS
5484 m = mem_find (po);
5485 if (m == MEM_NIL && !GC_SUBRP (obj)
5486 && po != &buffer_defaults
5487 && po != &buffer_local_symbols)
5488 abort ();
5489 #endif /* GC_CHECK_MARKED_OBJECTS */
5490
5491 if (GC_BUFFERP (obj))
5492 {
5493 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5494 {
5495 #ifdef GC_CHECK_MARKED_OBJECTS
5496 if (po != &buffer_defaults && po != &buffer_local_symbols)
5497 {
5498 struct buffer *b;
5499 for (b = all_buffers; b && b != po; b = b->next)
5500 ;
5501 if (b == NULL)
5502 abort ();
5503 }
5504 #endif /* GC_CHECK_MARKED_OBJECTS */
5505 mark_buffer (obj);
5506 }
5507 }
5508 else if (GC_SUBRP (obj))
5509 break;
5510 else if (GC_COMPILEDP (obj))
5511 /* We could treat this just like a vector, but it is better to
5512 save the COMPILED_CONSTANTS element for last and avoid
5513 recursion there. */
5514 {
5515 register struct Lisp_Vector *ptr = XVECTOR (obj);
5516 register EMACS_INT size = ptr->size;
5517 register int i;
5518
5519 if (VECTOR_MARKED_P (ptr))
5520 break; /* Already marked */
5521
5522 CHECK_LIVE (live_vector_p);
5523 VECTOR_MARK (ptr); /* Else mark it */
5524 size &= PSEUDOVECTOR_SIZE_MASK;
5525 for (i = 0; i < size; i++) /* and then mark its elements */
5526 {
5527 if (i != COMPILED_CONSTANTS)
5528 mark_object (ptr->contents[i]);
5529 }
5530 obj = ptr->contents[COMPILED_CONSTANTS];
5531 goto loop;
5532 }
5533 else if (GC_FRAMEP (obj))
5534 {
5535 register struct frame *ptr = XFRAME (obj);
5536
5537 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5538 VECTOR_MARK (ptr); /* Else mark it */
5539
5540 CHECK_LIVE (live_vector_p);
5541 mark_object (ptr->name);
5542 mark_object (ptr->icon_name);
5543 mark_object (ptr->title);
5544 mark_object (ptr->focus_frame);
5545 mark_object (ptr->selected_window);
5546 mark_object (ptr->minibuffer_window);
5547 mark_object (ptr->param_alist);
5548 mark_object (ptr->scroll_bars);
5549 mark_object (ptr->condemned_scroll_bars);
5550 mark_object (ptr->menu_bar_items);
5551 mark_object (ptr->face_alist);
5552 mark_object (ptr->menu_bar_vector);
5553 mark_object (ptr->buffer_predicate);
5554 mark_object (ptr->buffer_list);
5555 mark_object (ptr->menu_bar_window);
5556 mark_object (ptr->tool_bar_window);
5557 mark_face_cache (ptr->face_cache);
5558 #ifdef HAVE_WINDOW_SYSTEM
5559 mark_image_cache (ptr);
5560 mark_object (ptr->tool_bar_items);
5561 mark_object (ptr->desired_tool_bar_string);
5562 mark_object (ptr->current_tool_bar_string);
5563 #endif /* HAVE_WINDOW_SYSTEM */
5564 }
5565 else if (GC_BOOL_VECTOR_P (obj))
5566 {
5567 register struct Lisp_Vector *ptr = XVECTOR (obj);
5568
5569 if (VECTOR_MARKED_P (ptr))
5570 break; /* Already marked */
5571 CHECK_LIVE (live_vector_p);
5572 VECTOR_MARK (ptr); /* Else mark it */
5573 }
5574 else if (GC_WINDOWP (obj))
5575 {
5576 register struct Lisp_Vector *ptr = XVECTOR (obj);
5577 struct window *w = XWINDOW (obj);
5578 register int i;
5579
5580 /* Stop if already marked. */
5581 if (VECTOR_MARKED_P (ptr))
5582 break;
5583
5584 /* Mark it. */
5585 CHECK_LIVE (live_vector_p);
5586 VECTOR_MARK (ptr);
5587
5588 /* There is no Lisp data above The member CURRENT_MATRIX in
5589 struct WINDOW. Stop marking when that slot is reached. */
5590 for (i = 0;
5591 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5592 i++)
5593 mark_object (ptr->contents[i]);
5594
5595 /* Mark glyphs for leaf windows. Marking window matrices is
5596 sufficient because frame matrices use the same glyph
5597 memory. */
5598 if (NILP (w->hchild)
5599 && NILP (w->vchild)
5600 && w->current_matrix)
5601 {
5602 mark_glyph_matrix (w->current_matrix);
5603 mark_glyph_matrix (w->desired_matrix);
5604 }
5605 }
5606 else if (GC_HASH_TABLE_P (obj))
5607 {
5608 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5609
5610 /* Stop if already marked. */
5611 if (VECTOR_MARKED_P (h))
5612 break;
5613
5614 /* Mark it. */
5615 CHECK_LIVE (live_vector_p);
5616 VECTOR_MARK (h);
5617
5618 /* Mark contents. */
5619 /* Do not mark next_free or next_weak.
5620 Being in the next_weak chain
5621 should not keep the hash table alive.
5622 No need to mark `count' since it is an integer. */
5623 mark_object (h->test);
5624 mark_object (h->weak);
5625 mark_object (h->rehash_size);
5626 mark_object (h->rehash_threshold);
5627 mark_object (h->hash);
5628 mark_object (h->next);
5629 mark_object (h->index);
5630 mark_object (h->user_hash_function);
5631 mark_object (h->user_cmp_function);
5632
5633 /* If hash table is not weak, mark all keys and values.
5634 For weak tables, mark only the vector. */
5635 if (GC_NILP (h->weak))
5636 mark_object (h->key_and_value);
5637 else
5638 VECTOR_MARK (XVECTOR (h->key_and_value));
5639 }
5640 else
5641 {
5642 register struct Lisp_Vector *ptr = XVECTOR (obj);
5643 register EMACS_INT size = ptr->size;
5644 register int i;
5645
5646 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5647 CHECK_LIVE (live_vector_p);
5648 VECTOR_MARK (ptr); /* Else mark it */
5649 if (size & PSEUDOVECTOR_FLAG)
5650 size &= PSEUDOVECTOR_SIZE_MASK;
5651
5652 /* Note that this size is not the memory-footprint size, but only
5653 the number of Lisp_Object fields that we should trace.
5654 The distinction is used e.g. by Lisp_Process which places extra
5655 non-Lisp_Object fields at the end of the structure. */
5656 for (i = 0; i < size; i++) /* and then mark its elements */
5657 mark_object (ptr->contents[i]);
5658 }
5659 break;
5660
5661 case Lisp_Symbol:
5662 {
5663 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5664 struct Lisp_Symbol *ptrx;
5665
5666 if (ptr->gcmarkbit) break;
5667 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5668 ptr->gcmarkbit = 1;
5669 mark_object (ptr->value);
5670 mark_object (ptr->function);
5671 mark_object (ptr->plist);
5672
5673 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5674 MARK_STRING (XSTRING (ptr->xname));
5675 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5676
5677 /* Note that we do not mark the obarray of the symbol.
5678 It is safe not to do so because nothing accesses that
5679 slot except to check whether it is nil. */
5680 ptr = ptr->next;
5681 if (ptr)
5682 {
5683 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5684 XSETSYMBOL (obj, ptrx);
5685 goto loop;
5686 }
5687 }
5688 break;
5689
5690 case Lisp_Misc:
5691 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5692 if (XMARKER (obj)->gcmarkbit)
5693 break;
5694 XMARKER (obj)->gcmarkbit = 1;
5695
5696 switch (XMISCTYPE (obj))
5697 {
5698 case Lisp_Misc_Buffer_Local_Value:
5699 case Lisp_Misc_Some_Buffer_Local_Value:
5700 {
5701 register struct Lisp_Buffer_Local_Value *ptr
5702 = XBUFFER_LOCAL_VALUE (obj);
5703 /* If the cdr is nil, avoid recursion for the car. */
5704 if (EQ (ptr->cdr, Qnil))
5705 {
5706 obj = ptr->realvalue;
5707 goto loop;
5708 }
5709 mark_object (ptr->realvalue);
5710 mark_object (ptr->buffer);
5711 mark_object (ptr->frame);
5712 obj = ptr->cdr;
5713 goto loop;
5714 }
5715
5716 case Lisp_Misc_Marker:
5717 /* DO NOT mark thru the marker's chain.
5718 The buffer's markers chain does not preserve markers from gc;
5719 instead, markers are removed from the chain when freed by gc. */
5720 break;
5721
5722 case Lisp_Misc_Intfwd:
5723 case Lisp_Misc_Boolfwd:
5724 case Lisp_Misc_Objfwd:
5725 case Lisp_Misc_Buffer_Objfwd:
5726 case Lisp_Misc_Kboard_Objfwd:
5727 /* Don't bother with Lisp_Buffer_Objfwd,
5728 since all markable slots in current buffer marked anyway. */
5729 /* Don't need to do Lisp_Objfwd, since the places they point
5730 are protected with staticpro. */
5731 break;
5732
5733 case Lisp_Misc_Save_Value:
5734 #if GC_MARK_STACK
5735 {
5736 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5737 /* If DOGC is set, POINTER is the address of a memory
5738 area containing INTEGER potential Lisp_Objects. */
5739 if (ptr->dogc)
5740 {
5741 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5742 int nelt;
5743 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5744 mark_maybe_object (*p);
5745 }
5746 }
5747 #endif
5748 break;
5749
5750 case Lisp_Misc_Overlay:
5751 {
5752 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5753 mark_object (ptr->start);
5754 mark_object (ptr->end);
5755 mark_object (ptr->plist);
5756 if (ptr->next)
5757 {
5758 XSETMISC (obj, ptr->next);
5759 goto loop;
5760 }
5761 }
5762 break;
5763
5764 default:
5765 abort ();
5766 }
5767 break;
5768
5769 case Lisp_Cons:
5770 {
5771 register struct Lisp_Cons *ptr = XCONS (obj);
5772 if (CONS_MARKED_P (ptr)) break;
5773 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5774 CONS_MARK (ptr);
5775 /* If the cdr is nil, avoid recursion for the car. */
5776 if (EQ (ptr->u.cdr, Qnil))
5777 {
5778 obj = ptr->car;
5779 cdr_count = 0;
5780 goto loop;
5781 }
5782 mark_object (ptr->car);
5783 obj = ptr->u.cdr;
5784 cdr_count++;
5785 if (cdr_count == mark_object_loop_halt)
5786 abort ();
5787 goto loop;
5788 }
5789
5790 case Lisp_Float:
5791 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5792 FLOAT_MARK (XFLOAT (obj));
5793 break;
5794
5795 case Lisp_Int:
5796 break;
5797
5798 default:
5799 abort ();
5800 }
5801
5802 #undef CHECK_LIVE
5803 #undef CHECK_ALLOCATED
5804 #undef CHECK_ALLOCATED_AND_LIVE
5805 }
5806
5807 /* Mark the pointers in a buffer structure. */
5808
5809 static void
5810 mark_buffer (buf)
5811 Lisp_Object buf;
5812 {
5813 register struct buffer *buffer = XBUFFER (buf);
5814 register Lisp_Object *ptr, tmp;
5815 Lisp_Object base_buffer;
5816
5817 VECTOR_MARK (buffer);
5818
5819 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5820
5821 /* For now, we just don't mark the undo_list. It's done later in
5822 a special way just before the sweep phase, and after stripping
5823 some of its elements that are not needed any more. */
5824
5825 if (buffer->overlays_before)
5826 {
5827 XSETMISC (tmp, buffer->overlays_before);
5828 mark_object (tmp);
5829 }
5830 if (buffer->overlays_after)
5831 {
5832 XSETMISC (tmp, buffer->overlays_after);
5833 mark_object (tmp);
5834 }
5835
5836 for (ptr = &buffer->name;
5837 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5838 ptr++)
5839 mark_object (*ptr);
5840
5841 /* If this is an indirect buffer, mark its base buffer. */
5842 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5843 {
5844 XSETBUFFER (base_buffer, buffer->base_buffer);
5845 mark_buffer (base_buffer);
5846 }
5847 }
5848
5849
5850 /* Value is non-zero if OBJ will survive the current GC because it's
5851 either marked or does not need to be marked to survive. */
5852
5853 int
5854 survives_gc_p (obj)
5855 Lisp_Object obj;
5856 {
5857 int survives_p;
5858
5859 switch (XGCTYPE (obj))
5860 {
5861 case Lisp_Int:
5862 survives_p = 1;
5863 break;
5864
5865 case Lisp_Symbol:
5866 survives_p = XSYMBOL (obj)->gcmarkbit;
5867 break;
5868
5869 case Lisp_Misc:
5870 survives_p = XMARKER (obj)->gcmarkbit;
5871 break;
5872
5873 case Lisp_String:
5874 survives_p = STRING_MARKED_P (XSTRING (obj));
5875 break;
5876
5877 case Lisp_Vectorlike:
5878 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5879 break;
5880
5881 case Lisp_Cons:
5882 survives_p = CONS_MARKED_P (XCONS (obj));
5883 break;
5884
5885 case Lisp_Float:
5886 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5887 break;
5888
5889 default:
5890 abort ();
5891 }
5892
5893 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5894 }
5895
5896
5897 \f
5898 /* Sweep: find all structures not marked, and free them. */
5899
5900 static void
5901 gc_sweep ()
5902 {
5903 /* Remove or mark entries in weak hash tables.
5904 This must be done before any object is unmarked. */
5905 sweep_weak_hash_tables ();
5906
5907 sweep_strings ();
5908 #ifdef GC_CHECK_STRING_BYTES
5909 if (!noninteractive)
5910 check_string_bytes (1);
5911 #endif
5912
5913 /* Put all unmarked conses on free list */
5914 {
5915 register struct cons_block *cblk;
5916 struct cons_block **cprev = &cons_block;
5917 register int lim = cons_block_index;
5918 register int num_free = 0, num_used = 0;
5919
5920 cons_free_list = 0;
5921
5922 for (cblk = cons_block; cblk; cblk = *cprev)
5923 {
5924 register int i;
5925 int this_free = 0;
5926 for (i = 0; i < lim; i++)
5927 if (!CONS_MARKED_P (&cblk->conses[i]))
5928 {
5929 this_free++;
5930 cblk->conses[i].u.chain = cons_free_list;
5931 cons_free_list = &cblk->conses[i];
5932 #if GC_MARK_STACK
5933 cons_free_list->car = Vdead;
5934 #endif
5935 }
5936 else
5937 {
5938 num_used++;
5939 CONS_UNMARK (&cblk->conses[i]);
5940 }
5941 lim = CONS_BLOCK_SIZE;
5942 /* If this block contains only free conses and we have already
5943 seen more than two blocks worth of free conses then deallocate
5944 this block. */
5945 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5946 {
5947 *cprev = cblk->next;
5948 /* Unhook from the free list. */
5949 cons_free_list = cblk->conses[0].u.chain;
5950 lisp_align_free (cblk);
5951 n_cons_blocks--;
5952 }
5953 else
5954 {
5955 num_free += this_free;
5956 cprev = &cblk->next;
5957 }
5958 }
5959 total_conses = num_used;
5960 total_free_conses = num_free;
5961 }
5962
5963 /* Put all unmarked floats on free list */
5964 {
5965 register struct float_block *fblk;
5966 struct float_block **fprev = &float_block;
5967 register int lim = float_block_index;
5968 register int num_free = 0, num_used = 0;
5969
5970 float_free_list = 0;
5971
5972 for (fblk = float_block; fblk; fblk = *fprev)
5973 {
5974 register int i;
5975 int this_free = 0;
5976 for (i = 0; i < lim; i++)
5977 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5978 {
5979 this_free++;
5980 fblk->floats[i].u.chain = float_free_list;
5981 float_free_list = &fblk->floats[i];
5982 }
5983 else
5984 {
5985 num_used++;
5986 FLOAT_UNMARK (&fblk->floats[i]);
5987 }
5988 lim = FLOAT_BLOCK_SIZE;
5989 /* If this block contains only free floats and we have already
5990 seen more than two blocks worth of free floats then deallocate
5991 this block. */
5992 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5993 {
5994 *fprev = fblk->next;
5995 /* Unhook from the free list. */
5996 float_free_list = fblk->floats[0].u.chain;
5997 lisp_align_free (fblk);
5998 n_float_blocks--;
5999 }
6000 else
6001 {
6002 num_free += this_free;
6003 fprev = &fblk->next;
6004 }
6005 }
6006 total_floats = num_used;
6007 total_free_floats = num_free;
6008 }
6009
6010 /* Put all unmarked intervals on free list */
6011 {
6012 register struct interval_block *iblk;
6013 struct interval_block **iprev = &interval_block;
6014 register int lim = interval_block_index;
6015 register int num_free = 0, num_used = 0;
6016
6017 interval_free_list = 0;
6018
6019 for (iblk = interval_block; iblk; iblk = *iprev)
6020 {
6021 register int i;
6022 int this_free = 0;
6023
6024 for (i = 0; i < lim; i++)
6025 {
6026 if (!iblk->intervals[i].gcmarkbit)
6027 {
6028 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6029 interval_free_list = &iblk->intervals[i];
6030 this_free++;
6031 }
6032 else
6033 {
6034 num_used++;
6035 iblk->intervals[i].gcmarkbit = 0;
6036 }
6037 }
6038 lim = INTERVAL_BLOCK_SIZE;
6039 /* If this block contains only free intervals and we have already
6040 seen more than two blocks worth of free intervals then
6041 deallocate this block. */
6042 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6043 {
6044 *iprev = iblk->next;
6045 /* Unhook from the free list. */
6046 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6047 lisp_free (iblk);
6048 n_interval_blocks--;
6049 }
6050 else
6051 {
6052 num_free += this_free;
6053 iprev = &iblk->next;
6054 }
6055 }
6056 total_intervals = num_used;
6057 total_free_intervals = num_free;
6058 }
6059
6060 /* Put all unmarked symbols on free list */
6061 {
6062 register struct symbol_block *sblk;
6063 struct symbol_block **sprev = &symbol_block;
6064 register int lim = symbol_block_index;
6065 register int num_free = 0, num_used = 0;
6066
6067 symbol_free_list = NULL;
6068
6069 for (sblk = symbol_block; sblk; sblk = *sprev)
6070 {
6071 int this_free = 0;
6072 struct Lisp_Symbol *sym = sblk->symbols;
6073 struct Lisp_Symbol *end = sym + lim;
6074
6075 for (; sym < end; ++sym)
6076 {
6077 /* Check if the symbol was created during loadup. In such a case
6078 it might be pointed to by pure bytecode which we don't trace,
6079 so we conservatively assume that it is live. */
6080 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6081
6082 if (!sym->gcmarkbit && !pure_p)
6083 {
6084 sym->next = symbol_free_list;
6085 symbol_free_list = sym;
6086 #if GC_MARK_STACK
6087 symbol_free_list->function = Vdead;
6088 #endif
6089 ++this_free;
6090 }
6091 else
6092 {
6093 ++num_used;
6094 if (!pure_p)
6095 UNMARK_STRING (XSTRING (sym->xname));
6096 sym->gcmarkbit = 0;
6097 }
6098 }
6099
6100 lim = SYMBOL_BLOCK_SIZE;
6101 /* If this block contains only free symbols and we have already
6102 seen more than two blocks worth of free symbols then deallocate
6103 this block. */
6104 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6105 {
6106 *sprev = sblk->next;
6107 /* Unhook from the free list. */
6108 symbol_free_list = sblk->symbols[0].next;
6109 lisp_free (sblk);
6110 n_symbol_blocks--;
6111 }
6112 else
6113 {
6114 num_free += this_free;
6115 sprev = &sblk->next;
6116 }
6117 }
6118 total_symbols = num_used;
6119 total_free_symbols = num_free;
6120 }
6121
6122 /* Put all unmarked misc's on free list.
6123 For a marker, first unchain it from the buffer it points into. */
6124 {
6125 register struct marker_block *mblk;
6126 struct marker_block **mprev = &marker_block;
6127 register int lim = marker_block_index;
6128 register int num_free = 0, num_used = 0;
6129
6130 marker_free_list = 0;
6131
6132 for (mblk = marker_block; mblk; mblk = *mprev)
6133 {
6134 register int i;
6135 int this_free = 0;
6136
6137 for (i = 0; i < lim; i++)
6138 {
6139 if (!mblk->markers[i].u_marker.gcmarkbit)
6140 {
6141 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6142 unchain_marker (&mblk->markers[i].u_marker);
6143 /* Set the type of the freed object to Lisp_Misc_Free.
6144 We could leave the type alone, since nobody checks it,
6145 but this might catch bugs faster. */
6146 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6147 mblk->markers[i].u_free.chain = marker_free_list;
6148 marker_free_list = &mblk->markers[i];
6149 this_free++;
6150 }
6151 else
6152 {
6153 num_used++;
6154 mblk->markers[i].u_marker.gcmarkbit = 0;
6155 }
6156 }
6157 lim = MARKER_BLOCK_SIZE;
6158 /* If this block contains only free markers and we have already
6159 seen more than two blocks worth of free markers then deallocate
6160 this block. */
6161 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6162 {
6163 *mprev = mblk->next;
6164 /* Unhook from the free list. */
6165 marker_free_list = mblk->markers[0].u_free.chain;
6166 lisp_free (mblk);
6167 n_marker_blocks--;
6168 }
6169 else
6170 {
6171 num_free += this_free;
6172 mprev = &mblk->next;
6173 }
6174 }
6175
6176 total_markers = num_used;
6177 total_free_markers = num_free;
6178 }
6179
6180 /* Free all unmarked buffers */
6181 {
6182 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6183
6184 while (buffer)
6185 if (!VECTOR_MARKED_P (buffer))
6186 {
6187 if (prev)
6188 prev->next = buffer->next;
6189 else
6190 all_buffers = buffer->next;
6191 next = buffer->next;
6192 lisp_free (buffer);
6193 buffer = next;
6194 }
6195 else
6196 {
6197 VECTOR_UNMARK (buffer);
6198 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6199 prev = buffer, buffer = buffer->next;
6200 }
6201 }
6202
6203 /* Free all unmarked vectors */
6204 {
6205 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6206 total_vector_size = 0;
6207
6208 while (vector)
6209 if (!VECTOR_MARKED_P (vector))
6210 {
6211 if (prev)
6212 prev->next = vector->next;
6213 else
6214 all_vectors = vector->next;
6215 next = vector->next;
6216 lisp_free (vector);
6217 n_vectors--;
6218 vector = next;
6219
6220 }
6221 else
6222 {
6223 VECTOR_UNMARK (vector);
6224 if (vector->size & PSEUDOVECTOR_FLAG)
6225 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6226 else
6227 total_vector_size += vector->size;
6228 prev = vector, vector = vector->next;
6229 }
6230 }
6231
6232 #ifdef GC_CHECK_STRING_BYTES
6233 if (!noninteractive)
6234 check_string_bytes (1);
6235 #endif
6236 }
6237
6238
6239
6240 \f
6241 /* Debugging aids. */
6242
6243 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6244 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6245 This may be helpful in debugging Emacs's memory usage.
6246 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6247 ()
6248 {
6249 Lisp_Object end;
6250
6251 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6252
6253 return end;
6254 }
6255
6256 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6257 doc: /* Return a list of counters that measure how much consing there has been.
6258 Each of these counters increments for a certain kind of object.
6259 The counters wrap around from the largest positive integer to zero.
6260 Garbage collection does not decrease them.
6261 The elements of the value are as follows:
6262 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6263 All are in units of 1 = one object consed
6264 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6265 objects consed.
6266 MISCS include overlays, markers, and some internal types.
6267 Frames, windows, buffers, and subprocesses count as vectors
6268 (but the contents of a buffer's text do not count here). */)
6269 ()
6270 {
6271 Lisp_Object consed[8];
6272
6273 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6274 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6275 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6276 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6277 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6278 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6279 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6280 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6281
6282 return Flist (8, consed);
6283 }
6284
6285 int suppress_checking;
6286 void
6287 die (msg, file, line)
6288 const char *msg;
6289 const char *file;
6290 int line;
6291 {
6292 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6293 file, line, msg);
6294 abort ();
6295 }
6296 \f
6297 /* Initialization */
6298
6299 void
6300 init_alloc_once ()
6301 {
6302 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6303 purebeg = PUREBEG;
6304 pure_size = PURESIZE;
6305 pure_bytes_used = 0;
6306 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6307 pure_bytes_used_before_overflow = 0;
6308
6309 /* Initialize the list of free aligned blocks. */
6310 free_ablock = NULL;
6311
6312 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6313 mem_init ();
6314 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6315 #endif
6316
6317 all_vectors = 0;
6318 ignore_warnings = 1;
6319 #ifdef DOUG_LEA_MALLOC
6320 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6321 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6322 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6323 #endif
6324 init_strings ();
6325 init_cons ();
6326 init_symbol ();
6327 init_marker ();
6328 init_float ();
6329 init_intervals ();
6330
6331 #ifdef REL_ALLOC
6332 malloc_hysteresis = 32;
6333 #else
6334 malloc_hysteresis = 0;
6335 #endif
6336
6337 refill_memory_reserve ();
6338
6339 ignore_warnings = 0;
6340 gcprolist = 0;
6341 byte_stack_list = 0;
6342 staticidx = 0;
6343 consing_since_gc = 0;
6344 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6345 gc_relative_threshold = 0;
6346
6347 #ifdef VIRT_ADDR_VARIES
6348 malloc_sbrk_unused = 1<<22; /* A large number */
6349 malloc_sbrk_used = 100000; /* as reasonable as any number */
6350 #endif /* VIRT_ADDR_VARIES */
6351 }
6352
6353 void
6354 init_alloc ()
6355 {
6356 gcprolist = 0;
6357 byte_stack_list = 0;
6358 #if GC_MARK_STACK
6359 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6360 setjmp_tested_p = longjmps_done = 0;
6361 #endif
6362 #endif
6363 Vgc_elapsed = make_float (0.0);
6364 gcs_done = 0;
6365 }
6366
6367 void
6368 syms_of_alloc ()
6369 {
6370 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6371 doc: /* *Number of bytes of consing between garbage collections.
6372 Garbage collection can happen automatically once this many bytes have been
6373 allocated since the last garbage collection. All data types count.
6374
6375 Garbage collection happens automatically only when `eval' is called.
6376
6377 By binding this temporarily to a large number, you can effectively
6378 prevent garbage collection during a part of the program.
6379 See also `gc-cons-percentage'. */);
6380
6381 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6382 doc: /* *Portion of the heap used for allocation.
6383 Garbage collection can happen automatically once this portion of the heap
6384 has been allocated since the last garbage collection.
6385 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6386 Vgc_cons_percentage = make_float (0.1);
6387
6388 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6389 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6390
6391 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6392 doc: /* Number of cons cells that have been consed so far. */);
6393
6394 DEFVAR_INT ("floats-consed", &floats_consed,
6395 doc: /* Number of floats that have been consed so far. */);
6396
6397 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6398 doc: /* Number of vector cells that have been consed so far. */);
6399
6400 DEFVAR_INT ("symbols-consed", &symbols_consed,
6401 doc: /* Number of symbols that have been consed so far. */);
6402
6403 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6404 doc: /* Number of string characters that have been consed so far. */);
6405
6406 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6407 doc: /* Number of miscellaneous objects that have been consed so far. */);
6408
6409 DEFVAR_INT ("intervals-consed", &intervals_consed,
6410 doc: /* Number of intervals that have been consed so far. */);
6411
6412 DEFVAR_INT ("strings-consed", &strings_consed,
6413 doc: /* Number of strings that have been consed so far. */);
6414
6415 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6416 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6417 This means that certain objects should be allocated in shared (pure) space. */);
6418
6419 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6420 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6421 garbage_collection_messages = 0;
6422
6423 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6424 doc: /* Hook run after garbage collection has finished. */);
6425 Vpost_gc_hook = Qnil;
6426 Qpost_gc_hook = intern ("post-gc-hook");
6427 staticpro (&Qpost_gc_hook);
6428
6429 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6430 doc: /* Precomputed `signal' argument for memory-full error. */);
6431 /* We build this in advance because if we wait until we need it, we might
6432 not be able to allocate the memory to hold it. */
6433 Vmemory_signal_data
6434 = list2 (Qerror,
6435 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6436
6437 DEFVAR_LISP ("memory-full", &Vmemory_full,
6438 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6439 Vmemory_full = Qnil;
6440
6441 staticpro (&Qgc_cons_threshold);
6442 Qgc_cons_threshold = intern ("gc-cons-threshold");
6443
6444 staticpro (&Qchar_table_extra_slots);
6445 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6446
6447 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6448 doc: /* Accumulated time elapsed in garbage collections.
6449 The time is in seconds as a floating point value. */);
6450 DEFVAR_INT ("gcs-done", &gcs_done,
6451 doc: /* Accumulated number of garbage collections done. */);
6452
6453 defsubr (&Scons);
6454 defsubr (&Slist);
6455 defsubr (&Svector);
6456 defsubr (&Smake_byte_code);
6457 defsubr (&Smake_list);
6458 defsubr (&Smake_vector);
6459 defsubr (&Smake_string);
6460 defsubr (&Smake_bool_vector);
6461 defsubr (&Smake_symbol);
6462 defsubr (&Smake_marker);
6463 defsubr (&Spurecopy);
6464 defsubr (&Sgarbage_collect);
6465 defsubr (&Smemory_limit);
6466 defsubr (&Smemory_use_counts);
6467
6468 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6469 defsubr (&Sgc_status);
6470 #endif
6471 }
6472
6473 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6474 (do not change this comment) */