]> code.delx.au - gnu-emacs/blob - src/editfns.c
Merge from emacs--devo--0
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985, 1986, 1987, 1989, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include <config.h>
25 #include <sys/types.h>
26 #include <stdio.h>
27
28 #ifdef HAVE_PWD_H
29 #include <pwd.h>
30 #endif
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 #ifdef HAVE_SYS_UTSNAME_H
37 #include <sys/utsname.h>
38 #endif
39
40 #include "lisp.h"
41
42 /* systime.h includes <sys/time.h> which, on some systems, is required
43 for <sys/resource.h>; thus systime.h must be included before
44 <sys/resource.h> */
45 #include "systime.h"
46
47 #if defined HAVE_SYS_RESOURCE_H
48 #include <sys/resource.h>
49 #endif
50
51 #include <ctype.h>
52
53 #include "intervals.h"
54 #include "buffer.h"
55 #include "character.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #ifdef STDC_HEADERS
62 #include <float.h>
63 #define MAX_10_EXP DBL_MAX_10_EXP
64 #else
65 #define MAX_10_EXP 310
66 #endif
67
68 #ifndef NULL
69 #define NULL 0
70 #endif
71
72 #ifndef USE_CRT_DLL
73 extern char **environ;
74 #endif
75
76 #define TM_YEAR_BASE 1900
77
78 /* Nonzero if TM_YEAR is a struct tm's tm_year value that causes
79 asctime to have well-defined behavior. */
80 #ifndef TM_YEAR_IN_ASCTIME_RANGE
81 # define TM_YEAR_IN_ASCTIME_RANGE(tm_year) \
82 (1000 - TM_YEAR_BASE <= (tm_year) && (tm_year) <= 9999 - TM_YEAR_BASE)
83 #endif
84
85 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
86 const struct tm *, int));
87 static int tm_diff P_ ((struct tm *, struct tm *));
88 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
89 static void update_buffer_properties P_ ((int, int));
90 static Lisp_Object region_limit P_ ((int));
91 int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
92 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
93 size_t, const struct tm *, int));
94 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
95 void (*) (Lisp_Object, int, int, int,
96 int, int),
97 int, int, Lisp_Object *));
98 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
99 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
100 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
101
102 #ifdef HAVE_INDEX
103 extern char *index P_ ((const char *, int));
104 #endif
105
106 Lisp_Object Vbuffer_access_fontify_functions;
107 Lisp_Object Qbuffer_access_fontify_functions;
108 Lisp_Object Vbuffer_access_fontified_property;
109
110 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
111
112 /* Non-nil means don't stop at field boundary in text motion commands. */
113
114 Lisp_Object Vinhibit_field_text_motion;
115
116 /* Some static data, and a function to initialize it for each run */
117
118 Lisp_Object Vsystem_name;
119 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
120 Lisp_Object Vuser_full_name; /* full name of current user */
121 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
122 Lisp_Object Voperating_system_release; /* Operating System Release */
123
124 /* Symbol for the text property used to mark fields. */
125
126 Lisp_Object Qfield;
127
128 /* A special value for Qfield properties. */
129
130 Lisp_Object Qboundary;
131
132
133 void
134 init_editfns ()
135 {
136 char *user_name;
137 register unsigned char *p;
138 struct passwd *pw; /* password entry for the current user */
139 Lisp_Object tem;
140
141 /* Set up system_name even when dumping. */
142 init_system_name ();
143
144 #ifndef CANNOT_DUMP
145 /* Don't bother with this on initial start when just dumping out */
146 if (!initialized)
147 return;
148 #endif /* not CANNOT_DUMP */
149
150 pw = (struct passwd *) getpwuid (getuid ());
151 #ifdef MSDOS
152 /* We let the real user name default to "root" because that's quite
153 accurate on MSDOG and because it lets Emacs find the init file.
154 (The DVX libraries override the Djgpp libraries here.) */
155 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
156 #else
157 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
158 #endif
159
160 /* Get the effective user name, by consulting environment variables,
161 or the effective uid if those are unset. */
162 user_name = (char *) getenv ("LOGNAME");
163 if (!user_name)
164 #ifdef WINDOWSNT
165 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
166 #else /* WINDOWSNT */
167 user_name = (char *) getenv ("USER");
168 #endif /* WINDOWSNT */
169 if (!user_name)
170 {
171 pw = (struct passwd *) getpwuid (geteuid ());
172 user_name = (char *) (pw ? pw->pw_name : "unknown");
173 }
174 Vuser_login_name = build_string (user_name);
175
176 /* If the user name claimed in the environment vars differs from
177 the real uid, use the claimed name to find the full name. */
178 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
179 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
180 : Vuser_login_name);
181
182 p = (unsigned char *) getenv ("NAME");
183 if (p)
184 Vuser_full_name = build_string (p);
185 else if (NILP (Vuser_full_name))
186 Vuser_full_name = build_string ("unknown");
187
188 #ifdef HAVE_SYS_UTSNAME_H
189 {
190 struct utsname uts;
191 uname (&uts);
192 Voperating_system_release = build_string (uts.release);
193 }
194 #else
195 Voperating_system_release = Qnil;
196 #endif
197 }
198 \f
199 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
200 doc: /* Convert arg CHAR to a string containing that character.
201 usage: (char-to-string CHAR) */)
202 (character)
203 Lisp_Object character;
204 {
205 int len;
206 unsigned char str[MAX_MULTIBYTE_LENGTH];
207
208 CHECK_NUMBER (character);
209
210 len = CHAR_STRING (XFASTINT (character), str);
211 return make_string_from_bytes (str, 1, len);
212 }
213
214 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
215 doc: /* Convert arg STRING to a character, the first character of that string.
216 A multibyte character is handled correctly. */)
217 (string)
218 register Lisp_Object string;
219 {
220 register Lisp_Object val;
221 CHECK_STRING (string);
222 if (SCHARS (string))
223 {
224 if (STRING_MULTIBYTE (string))
225 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
226 else
227 XSETFASTINT (val, SREF (string, 0));
228 }
229 else
230 XSETFASTINT (val, 0);
231 return val;
232 }
233 \f
234 static Lisp_Object
235 buildmark (charpos, bytepos)
236 int charpos, bytepos;
237 {
238 register Lisp_Object mark;
239 mark = Fmake_marker ();
240 set_marker_both (mark, Qnil, charpos, bytepos);
241 return mark;
242 }
243
244 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
245 doc: /* Return value of point, as an integer.
246 Beginning of buffer is position (point-min). */)
247 ()
248 {
249 Lisp_Object temp;
250 XSETFASTINT (temp, PT);
251 return temp;
252 }
253
254 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
255 doc: /* Return value of point, as a marker object. */)
256 ()
257 {
258 return buildmark (PT, PT_BYTE);
259 }
260
261 int
262 clip_to_bounds (lower, num, upper)
263 int lower, num, upper;
264 {
265 if (num < lower)
266 return lower;
267 else if (num > upper)
268 return upper;
269 else
270 return num;
271 }
272
273 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
274 doc: /* Set point to POSITION, a number or marker.
275 Beginning of buffer is position (point-min), end is (point-max). */)
276 (position)
277 register Lisp_Object position;
278 {
279 int pos;
280
281 if (MARKERP (position)
282 && current_buffer == XMARKER (position)->buffer)
283 {
284 pos = marker_position (position);
285 if (pos < BEGV)
286 SET_PT_BOTH (BEGV, BEGV_BYTE);
287 else if (pos > ZV)
288 SET_PT_BOTH (ZV, ZV_BYTE);
289 else
290 SET_PT_BOTH (pos, marker_byte_position (position));
291
292 return position;
293 }
294
295 CHECK_NUMBER_COERCE_MARKER (position);
296
297 pos = clip_to_bounds (BEGV, XINT (position), ZV);
298 SET_PT (pos);
299 return position;
300 }
301
302
303 /* Return the start or end position of the region.
304 BEGINNINGP non-zero means return the start.
305 If there is no region active, signal an error. */
306
307 static Lisp_Object
308 region_limit (beginningp)
309 int beginningp;
310 {
311 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
312 Lisp_Object m;
313
314 if (!NILP (Vtransient_mark_mode)
315 && NILP (Vmark_even_if_inactive)
316 && NILP (current_buffer->mark_active))
317 xsignal0 (Qmark_inactive);
318
319 m = Fmarker_position (current_buffer->mark);
320 if (NILP (m))
321 error ("The mark is not set now, so there is no region");
322
323 if ((PT < XFASTINT (m)) == (beginningp != 0))
324 m = make_number (PT);
325 return m;
326 }
327
328 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
329 doc: /* Return position of beginning of region, as an integer. */)
330 ()
331 {
332 return region_limit (1);
333 }
334
335 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
336 doc: /* Return position of end of region, as an integer. */)
337 ()
338 {
339 return region_limit (0);
340 }
341
342 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
343 doc: /* Return this buffer's mark, as a marker object.
344 Watch out! Moving this marker changes the mark position.
345 If you set the marker not to point anywhere, the buffer will have no mark. */)
346 ()
347 {
348 return current_buffer->mark;
349 }
350
351 \f
352 /* Find all the overlays in the current buffer that touch position POS.
353 Return the number found, and store them in a vector in VEC
354 of length LEN. */
355
356 static int
357 overlays_around (pos, vec, len)
358 int pos;
359 Lisp_Object *vec;
360 int len;
361 {
362 Lisp_Object overlay, start, end;
363 struct Lisp_Overlay *tail;
364 int startpos, endpos;
365 int idx = 0;
366
367 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
368 {
369 XSETMISC (overlay, tail);
370
371 end = OVERLAY_END (overlay);
372 endpos = OVERLAY_POSITION (end);
373 if (endpos < pos)
374 break;
375 start = OVERLAY_START (overlay);
376 startpos = OVERLAY_POSITION (start);
377 if (startpos <= pos)
378 {
379 if (idx < len)
380 vec[idx] = overlay;
381 /* Keep counting overlays even if we can't return them all. */
382 idx++;
383 }
384 }
385
386 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
387 {
388 XSETMISC (overlay, tail);
389
390 start = OVERLAY_START (overlay);
391 startpos = OVERLAY_POSITION (start);
392 if (pos < startpos)
393 break;
394 end = OVERLAY_END (overlay);
395 endpos = OVERLAY_POSITION (end);
396 if (pos <= endpos)
397 {
398 if (idx < len)
399 vec[idx] = overlay;
400 idx++;
401 }
402 }
403
404 return idx;
405 }
406
407 /* Return the value of property PROP, in OBJECT at POSITION.
408 It's the value of PROP that a char inserted at POSITION would get.
409 OBJECT is optional and defaults to the current buffer.
410 If OBJECT is a buffer, then overlay properties are considered as well as
411 text properties.
412 If OBJECT is a window, then that window's buffer is used, but
413 window-specific overlays are considered only if they are associated
414 with OBJECT. */
415 Lisp_Object
416 get_pos_property (position, prop, object)
417 Lisp_Object position, object;
418 register Lisp_Object prop;
419 {
420 CHECK_NUMBER_COERCE_MARKER (position);
421
422 if (NILP (object))
423 XSETBUFFER (object, current_buffer);
424 else if (WINDOWP (object))
425 object = XWINDOW (object)->buffer;
426
427 if (!BUFFERP (object))
428 /* pos-property only makes sense in buffers right now, since strings
429 have no overlays and no notion of insertion for which stickiness
430 could be obeyed. */
431 return Fget_text_property (position, prop, object);
432 else
433 {
434 int posn = XINT (position);
435 int noverlays;
436 Lisp_Object *overlay_vec, tem;
437 struct buffer *obuf = current_buffer;
438
439 set_buffer_temp (XBUFFER (object));
440
441 /* First try with room for 40 overlays. */
442 noverlays = 40;
443 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
444 noverlays = overlays_around (posn, overlay_vec, noverlays);
445
446 /* If there are more than 40,
447 make enough space for all, and try again. */
448 if (noverlays > 40)
449 {
450 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
451 noverlays = overlays_around (posn, overlay_vec, noverlays);
452 }
453 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
454
455 set_buffer_temp (obuf);
456
457 /* Now check the overlays in order of decreasing priority. */
458 while (--noverlays >= 0)
459 {
460 Lisp_Object ol = overlay_vec[noverlays];
461 tem = Foverlay_get (ol, prop);
462 if (!NILP (tem))
463 {
464 /* Check the overlay is indeed active at point. */
465 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
466 if ((OVERLAY_POSITION (start) == posn
467 && XMARKER (start)->insertion_type == 1)
468 || (OVERLAY_POSITION (finish) == posn
469 && XMARKER (finish)->insertion_type == 0))
470 ; /* The overlay will not cover a char inserted at point. */
471 else
472 {
473 return tem;
474 }
475 }
476 }
477
478 { /* Now check the text-properties. */
479 int stickiness = text_property_stickiness (prop, position, object);
480 if (stickiness > 0)
481 return Fget_text_property (position, prop, object);
482 else if (stickiness < 0
483 && XINT (position) > BUF_BEGV (XBUFFER (object)))
484 return Fget_text_property (make_number (XINT (position) - 1),
485 prop, object);
486 else
487 return Qnil;
488 }
489 }
490 }
491
492 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
493 the value of point is used instead. If BEG or END is null,
494 means don't store the beginning or end of the field.
495
496 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
497 results; they do not effect boundary behavior.
498
499 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
500 position of a field, then the beginning of the previous field is
501 returned instead of the beginning of POS's field (since the end of a
502 field is actually also the beginning of the next input field, this
503 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
504 true case, if two fields are separated by a field with the special
505 value `boundary', and POS lies within it, then the two separated
506 fields are considered to be adjacent, and POS between them, when
507 finding the beginning and ending of the "merged" field.
508
509 Either BEG or END may be 0, in which case the corresponding value
510 is not stored. */
511
512 static void
513 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
514 Lisp_Object pos;
515 Lisp_Object merge_at_boundary;
516 Lisp_Object beg_limit, end_limit;
517 int *beg, *end;
518 {
519 /* Fields right before and after the point. */
520 Lisp_Object before_field, after_field;
521 /* 1 if POS counts as the start of a field. */
522 int at_field_start = 0;
523 /* 1 if POS counts as the end of a field. */
524 int at_field_end = 0;
525
526 if (NILP (pos))
527 XSETFASTINT (pos, PT);
528 else
529 CHECK_NUMBER_COERCE_MARKER (pos);
530
531 after_field
532 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
533 before_field
534 = (XFASTINT (pos) > BEGV
535 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
536 Qfield, Qnil, NULL)
537 /* Using nil here would be a more obvious choice, but it would
538 fail when the buffer starts with a non-sticky field. */
539 : after_field);
540
541 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
542 and POS is at beginning of a field, which can also be interpreted
543 as the end of the previous field. Note that the case where if
544 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
545 more natural one; then we avoid treating the beginning of a field
546 specially. */
547 if (NILP (merge_at_boundary))
548 {
549 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
550 if (!EQ (field, after_field))
551 at_field_end = 1;
552 if (!EQ (field, before_field))
553 at_field_start = 1;
554 if (NILP (field) && at_field_start && at_field_end)
555 /* If an inserted char would have a nil field while the surrounding
556 text is non-nil, we're probably not looking at a
557 zero-length field, but instead at a non-nil field that's
558 not intended for editing (such as comint's prompts). */
559 at_field_end = at_field_start = 0;
560 }
561
562 /* Note about special `boundary' fields:
563
564 Consider the case where the point (`.') is between the fields `x' and `y':
565
566 xxxx.yyyy
567
568 In this situation, if merge_at_boundary is true, we consider the
569 `x' and `y' fields as forming one big merged field, and so the end
570 of the field is the end of `y'.
571
572 However, if `x' and `y' are separated by a special `boundary' field
573 (a field with a `field' char-property of 'boundary), then we ignore
574 this special field when merging adjacent fields. Here's the same
575 situation, but with a `boundary' field between the `x' and `y' fields:
576
577 xxx.BBBByyyy
578
579 Here, if point is at the end of `x', the beginning of `y', or
580 anywhere in-between (within the `boundary' field), we merge all
581 three fields and consider the beginning as being the beginning of
582 the `x' field, and the end as being the end of the `y' field. */
583
584 if (beg)
585 {
586 if (at_field_start)
587 /* POS is at the edge of a field, and we should consider it as
588 the beginning of the following field. */
589 *beg = XFASTINT (pos);
590 else
591 /* Find the previous field boundary. */
592 {
593 Lisp_Object p = pos;
594 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
595 /* Skip a `boundary' field. */
596 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
597 beg_limit);
598
599 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
600 beg_limit);
601 *beg = NILP (p) ? BEGV : XFASTINT (p);
602 }
603 }
604
605 if (end)
606 {
607 if (at_field_end)
608 /* POS is at the edge of a field, and we should consider it as
609 the end of the previous field. */
610 *end = XFASTINT (pos);
611 else
612 /* Find the next field boundary. */
613 {
614 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
615 /* Skip a `boundary' field. */
616 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
617 end_limit);
618
619 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
620 end_limit);
621 *end = NILP (pos) ? ZV : XFASTINT (pos);
622 }
623 }
624 }
625
626 \f
627 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
628 doc: /* Delete the field surrounding POS.
629 A field is a region of text with the same `field' property.
630 If POS is nil, the value of point is used for POS. */)
631 (pos)
632 Lisp_Object pos;
633 {
634 int beg, end;
635 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
636 if (beg != end)
637 del_range (beg, end);
638 return Qnil;
639 }
640
641 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
642 doc: /* Return the contents of the field surrounding POS as a string.
643 A field is a region of text with the same `field' property.
644 If POS is nil, the value of point is used for POS. */)
645 (pos)
646 Lisp_Object pos;
647 {
648 int beg, end;
649 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
650 return make_buffer_string (beg, end, 1);
651 }
652
653 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
654 doc: /* Return the contents of the field around POS, without text-properties.
655 A field is a region of text with the same `field' property.
656 If POS is nil, the value of point is used for POS. */)
657 (pos)
658 Lisp_Object pos;
659 {
660 int beg, end;
661 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
662 return make_buffer_string (beg, end, 0);
663 }
664
665 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
666 doc: /* Return the beginning of the field surrounding POS.
667 A field is a region of text with the same `field' property.
668 If POS is nil, the value of point is used for POS.
669 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
670 field, then the beginning of the *previous* field is returned.
671 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
672 is before LIMIT, then LIMIT will be returned instead. */)
673 (pos, escape_from_edge, limit)
674 Lisp_Object pos, escape_from_edge, limit;
675 {
676 int beg;
677 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
678 return make_number (beg);
679 }
680
681 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
682 doc: /* Return the end of the field surrounding POS.
683 A field is a region of text with the same `field' property.
684 If POS is nil, the value of point is used for POS.
685 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
686 then the end of the *following* field is returned.
687 If LIMIT is non-nil, it is a buffer position; if the end of the field
688 is after LIMIT, then LIMIT will be returned instead. */)
689 (pos, escape_from_edge, limit)
690 Lisp_Object pos, escape_from_edge, limit;
691 {
692 int end;
693 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
694 return make_number (end);
695 }
696
697 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
698 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
699
700 A field is a region of text with the same `field' property.
701 If NEW-POS is nil, then the current point is used instead, and set to the
702 constrained position if that is different.
703
704 If OLD-POS is at the boundary of two fields, then the allowable
705 positions for NEW-POS depends on the value of the optional argument
706 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
707 constrained to the field that has the same `field' char-property
708 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
709 is non-nil, NEW-POS is constrained to the union of the two adjacent
710 fields. Additionally, if two fields are separated by another field with
711 the special value `boundary', then any point within this special field is
712 also considered to be `on the boundary'.
713
714 If the optional argument ONLY-IN-LINE is non-nil and constraining
715 NEW-POS would move it to a different line, NEW-POS is returned
716 unconstrained. This useful for commands that move by line, like
717 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
718 only in the case where they can still move to the right line.
719
720 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
721 a non-nil property of that name, then any field boundaries are ignored.
722
723 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
724 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
725 Lisp_Object new_pos, old_pos;
726 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
727 {
728 /* If non-zero, then the original point, before re-positioning. */
729 int orig_point = 0;
730 int fwd;
731 Lisp_Object prev_old, prev_new;
732
733 if (NILP (new_pos))
734 /* Use the current point, and afterwards, set it. */
735 {
736 orig_point = PT;
737 XSETFASTINT (new_pos, PT);
738 }
739
740 CHECK_NUMBER_COERCE_MARKER (new_pos);
741 CHECK_NUMBER_COERCE_MARKER (old_pos);
742
743 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
744
745 prev_old = make_number (XFASTINT (old_pos) - 1);
746 prev_new = make_number (XFASTINT (new_pos) - 1);
747
748 if (NILP (Vinhibit_field_text_motion)
749 && !EQ (new_pos, old_pos)
750 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
751 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
752 /* To recognize field boundaries, we must also look at the
753 previous positions; we could use `get_pos_property'
754 instead, but in itself that would fail inside non-sticky
755 fields (like comint prompts). */
756 || (XFASTINT (new_pos) > BEGV
757 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
758 || (XFASTINT (old_pos) > BEGV
759 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
760 && (NILP (inhibit_capture_property)
761 /* Field boundaries are again a problem; but now we must
762 decide the case exactly, so we need to call
763 `get_pos_property' as well. */
764 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
765 && (XFASTINT (old_pos) <= BEGV
766 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
767 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
768 /* It is possible that NEW_POS is not within the same field as
769 OLD_POS; try to move NEW_POS so that it is. */
770 {
771 int shortage;
772 Lisp_Object field_bound;
773
774 if (fwd)
775 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
776 else
777 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
778
779 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
780 other side of NEW_POS, which would mean that NEW_POS is
781 already acceptable, and it's not necessary to constrain it
782 to FIELD_BOUND. */
783 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
784 /* NEW_POS should be constrained, but only if either
785 ONLY_IN_LINE is nil (in which case any constraint is OK),
786 or NEW_POS and FIELD_BOUND are on the same line (in which
787 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
788 && (NILP (only_in_line)
789 /* This is the ONLY_IN_LINE case, check that NEW_POS and
790 FIELD_BOUND are on the same line by seeing whether
791 there's an intervening newline or not. */
792 || (scan_buffer ('\n',
793 XFASTINT (new_pos), XFASTINT (field_bound),
794 fwd ? -1 : 1, &shortage, 1),
795 shortage != 0)))
796 /* Constrain NEW_POS to FIELD_BOUND. */
797 new_pos = field_bound;
798
799 if (orig_point && XFASTINT (new_pos) != orig_point)
800 /* The NEW_POS argument was originally nil, so automatically set PT. */
801 SET_PT (XFASTINT (new_pos));
802 }
803
804 return new_pos;
805 }
806
807 \f
808 DEFUN ("line-beginning-position",
809 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
810 doc: /* Return the character position of the first character on the current line.
811 With argument N not nil or 1, move forward N - 1 lines first.
812 If scan reaches end of buffer, return that position.
813
814 This function constrains the returned position to the current field
815 unless that would be on a different line than the original,
816 unconstrained result. If N is nil or 1, and a front-sticky field
817 starts at point, the scan stops as soon as it starts. To ignore field
818 boundaries bind `inhibit-field-text-motion' to t.
819
820 This function does not move point. */)
821 (n)
822 Lisp_Object n;
823 {
824 int orig, orig_byte, end;
825 int count = SPECPDL_INDEX ();
826 specbind (Qinhibit_point_motion_hooks, Qt);
827
828 if (NILP (n))
829 XSETFASTINT (n, 1);
830 else
831 CHECK_NUMBER (n);
832
833 orig = PT;
834 orig_byte = PT_BYTE;
835 Fforward_line (make_number (XINT (n) - 1));
836 end = PT;
837
838 SET_PT_BOTH (orig, orig_byte);
839
840 unbind_to (count, Qnil);
841
842 /* Return END constrained to the current input field. */
843 return Fconstrain_to_field (make_number (end), make_number (orig),
844 XINT (n) != 1 ? Qt : Qnil,
845 Qt, Qnil);
846 }
847
848 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
849 doc: /* Return the character position of the last character on the current line.
850 With argument N not nil or 1, move forward N - 1 lines first.
851 If scan reaches end of buffer, return that position.
852
853 This function constrains the returned position to the current field
854 unless that would be on a different line than the original,
855 unconstrained result. If N is nil or 1, and a rear-sticky field ends
856 at point, the scan stops as soon as it starts. To ignore field
857 boundaries bind `inhibit-field-text-motion' to t.
858
859 This function does not move point. */)
860 (n)
861 Lisp_Object n;
862 {
863 int end_pos;
864 int orig = PT;
865
866 if (NILP (n))
867 XSETFASTINT (n, 1);
868 else
869 CHECK_NUMBER (n);
870
871 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
872
873 /* Return END_POS constrained to the current input field. */
874 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
875 Qnil, Qt, Qnil);
876 }
877
878 \f
879 Lisp_Object
880 save_excursion_save ()
881 {
882 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
883 == current_buffer);
884
885 return Fcons (Fpoint_marker (),
886 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
887 Fcons (visible ? Qt : Qnil,
888 Fcons (current_buffer->mark_active,
889 selected_window))));
890 }
891
892 Lisp_Object
893 save_excursion_restore (info)
894 Lisp_Object info;
895 {
896 Lisp_Object tem, tem1, omark, nmark;
897 struct gcpro gcpro1, gcpro2, gcpro3;
898 int visible_p;
899
900 tem = Fmarker_buffer (XCAR (info));
901 /* If buffer being returned to is now deleted, avoid error */
902 /* Otherwise could get error here while unwinding to top level
903 and crash */
904 /* In that case, Fmarker_buffer returns nil now. */
905 if (NILP (tem))
906 return Qnil;
907
908 omark = nmark = Qnil;
909 GCPRO3 (info, omark, nmark);
910
911 Fset_buffer (tem);
912
913 /* Point marker. */
914 tem = XCAR (info);
915 Fgoto_char (tem);
916 unchain_marker (XMARKER (tem));
917
918 /* Mark marker. */
919 info = XCDR (info);
920 tem = XCAR (info);
921 omark = Fmarker_position (current_buffer->mark);
922 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
923 nmark = Fmarker_position (tem);
924 unchain_marker (XMARKER (tem));
925
926 /* visible */
927 info = XCDR (info);
928 visible_p = !NILP (XCAR (info));
929
930 #if 0 /* We used to make the current buffer visible in the selected window
931 if that was true previously. That avoids some anomalies.
932 But it creates others, and it wasn't documented, and it is simpler
933 and cleaner never to alter the window/buffer connections. */
934 tem1 = Fcar (tem);
935 if (!NILP (tem1)
936 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
937 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
938 #endif /* 0 */
939
940 /* Mark active */
941 info = XCDR (info);
942 tem = XCAR (info);
943 tem1 = current_buffer->mark_active;
944 current_buffer->mark_active = tem;
945
946 if (!NILP (Vrun_hooks))
947 {
948 /* If mark is active now, and either was not active
949 or was at a different place, run the activate hook. */
950 if (! NILP (current_buffer->mark_active))
951 {
952 if (! EQ (omark, nmark))
953 call1 (Vrun_hooks, intern ("activate-mark-hook"));
954 }
955 /* If mark has ceased to be active, run deactivate hook. */
956 else if (! NILP (tem1))
957 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
958 }
959
960 /* If buffer was visible in a window, and a different window was
961 selected, and the old selected window is still showing this
962 buffer, restore point in that window. */
963 tem = XCDR (info);
964 if (visible_p
965 && !EQ (tem, selected_window)
966 && (tem1 = XWINDOW (tem)->buffer,
967 (/* Window is live... */
968 BUFFERP (tem1)
969 /* ...and it shows the current buffer. */
970 && XBUFFER (tem1) == current_buffer)))
971 Fset_window_point (tem, make_number (PT));
972
973 UNGCPRO;
974 return Qnil;
975 }
976
977 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
978 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
979 Executes BODY just like `progn'.
980 The values of point, mark and the current buffer are restored
981 even in case of abnormal exit (throw or error).
982 The state of activation of the mark is also restored.
983
984 This construct does not save `deactivate-mark', and therefore
985 functions that change the buffer will still cause deactivation
986 of the mark at the end of the command. To prevent that, bind
987 `deactivate-mark' with `let'.
988
989 usage: (save-excursion &rest BODY) */)
990 (args)
991 Lisp_Object args;
992 {
993 register Lisp_Object val;
994 int count = SPECPDL_INDEX ();
995
996 record_unwind_protect (save_excursion_restore, save_excursion_save ());
997
998 val = Fprogn (args);
999 return unbind_to (count, val);
1000 }
1001
1002 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1003 doc: /* Save the current buffer; execute BODY; restore the current buffer.
1004 Executes BODY just like `progn'.
1005 usage: (save-current-buffer &rest BODY) */)
1006 (args)
1007 Lisp_Object args;
1008 {
1009 Lisp_Object val;
1010 int count = SPECPDL_INDEX ();
1011
1012 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
1013
1014 val = Fprogn (args);
1015 return unbind_to (count, val);
1016 }
1017 \f
1018 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
1019 doc: /* Return the number of characters in the current buffer.
1020 If BUFFER, return the number of characters in that buffer instead. */)
1021 (buffer)
1022 Lisp_Object buffer;
1023 {
1024 if (NILP (buffer))
1025 return make_number (Z - BEG);
1026 else
1027 {
1028 CHECK_BUFFER (buffer);
1029 return make_number (BUF_Z (XBUFFER (buffer))
1030 - BUF_BEG (XBUFFER (buffer)));
1031 }
1032 }
1033
1034 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1035 doc: /* Return the minimum permissible value of point in the current buffer.
1036 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1037 ()
1038 {
1039 Lisp_Object temp;
1040 XSETFASTINT (temp, BEGV);
1041 return temp;
1042 }
1043
1044 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1045 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1046 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1047 ()
1048 {
1049 return buildmark (BEGV, BEGV_BYTE);
1050 }
1051
1052 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1053 doc: /* Return the maximum permissible value of point in the current buffer.
1054 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1055 is in effect, in which case it is less. */)
1056 ()
1057 {
1058 Lisp_Object temp;
1059 XSETFASTINT (temp, ZV);
1060 return temp;
1061 }
1062
1063 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1064 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1065 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1066 is in effect, in which case it is less. */)
1067 ()
1068 {
1069 return buildmark (ZV, ZV_BYTE);
1070 }
1071
1072 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1073 doc: /* Return the position of the gap, in the current buffer.
1074 See also `gap-size'. */)
1075 ()
1076 {
1077 Lisp_Object temp;
1078 XSETFASTINT (temp, GPT);
1079 return temp;
1080 }
1081
1082 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1083 doc: /* Return the size of the current buffer's gap.
1084 See also `gap-position'. */)
1085 ()
1086 {
1087 Lisp_Object temp;
1088 XSETFASTINT (temp, GAP_SIZE);
1089 return temp;
1090 }
1091
1092 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1093 doc: /* Return the byte position for character position POSITION.
1094 If POSITION is out of range, the value is nil. */)
1095 (position)
1096 Lisp_Object position;
1097 {
1098 CHECK_NUMBER_COERCE_MARKER (position);
1099 if (XINT (position) < BEG || XINT (position) > Z)
1100 return Qnil;
1101 return make_number (CHAR_TO_BYTE (XINT (position)));
1102 }
1103
1104 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1105 doc: /* Return the character position for byte position BYTEPOS.
1106 If BYTEPOS is out of range, the value is nil. */)
1107 (bytepos)
1108 Lisp_Object bytepos;
1109 {
1110 CHECK_NUMBER (bytepos);
1111 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1112 return Qnil;
1113 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1114 }
1115 \f
1116 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1117 doc: /* Return the character following point, as a number.
1118 At the end of the buffer or accessible region, return 0. */)
1119 ()
1120 {
1121 Lisp_Object temp;
1122 if (PT >= ZV)
1123 XSETFASTINT (temp, 0);
1124 else
1125 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1126 return temp;
1127 }
1128
1129 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1130 doc: /* Return the character preceding point, as a number.
1131 At the beginning of the buffer or accessible region, return 0. */)
1132 ()
1133 {
1134 Lisp_Object temp;
1135 if (PT <= BEGV)
1136 XSETFASTINT (temp, 0);
1137 else if (!NILP (current_buffer->enable_multibyte_characters))
1138 {
1139 int pos = PT_BYTE;
1140 DEC_POS (pos);
1141 XSETFASTINT (temp, FETCH_CHAR (pos));
1142 }
1143 else
1144 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1145 return temp;
1146 }
1147
1148 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1149 doc: /* Return t if point is at the beginning of the buffer.
1150 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1151 ()
1152 {
1153 if (PT == BEGV)
1154 return Qt;
1155 return Qnil;
1156 }
1157
1158 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1159 doc: /* Return t if point is at the end of the buffer.
1160 If the buffer is narrowed, this means the end of the narrowed part. */)
1161 ()
1162 {
1163 if (PT == ZV)
1164 return Qt;
1165 return Qnil;
1166 }
1167
1168 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1169 doc: /* Return t if point is at the beginning of a line. */)
1170 ()
1171 {
1172 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1173 return Qt;
1174 return Qnil;
1175 }
1176
1177 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1178 doc: /* Return t if point is at the end of a line.
1179 `End of a line' includes point being at the end of the buffer. */)
1180 ()
1181 {
1182 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1183 return Qt;
1184 return Qnil;
1185 }
1186
1187 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1188 doc: /* Return character in current buffer at position POS.
1189 POS is an integer or a marker and defaults to point.
1190 If POS is out of range, the value is nil. */)
1191 (pos)
1192 Lisp_Object pos;
1193 {
1194 register int pos_byte;
1195
1196 if (NILP (pos))
1197 {
1198 pos_byte = PT_BYTE;
1199 XSETFASTINT (pos, PT);
1200 }
1201
1202 if (MARKERP (pos))
1203 {
1204 pos_byte = marker_byte_position (pos);
1205 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1206 return Qnil;
1207 }
1208 else
1209 {
1210 CHECK_NUMBER_COERCE_MARKER (pos);
1211 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1212 return Qnil;
1213
1214 pos_byte = CHAR_TO_BYTE (XINT (pos));
1215 }
1216
1217 return make_number (FETCH_CHAR (pos_byte));
1218 }
1219
1220 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1221 doc: /* Return character in current buffer preceding position POS.
1222 POS is an integer or a marker and defaults to point.
1223 If POS is out of range, the value is nil. */)
1224 (pos)
1225 Lisp_Object pos;
1226 {
1227 register Lisp_Object val;
1228 register int pos_byte;
1229
1230 if (NILP (pos))
1231 {
1232 pos_byte = PT_BYTE;
1233 XSETFASTINT (pos, PT);
1234 }
1235
1236 if (MARKERP (pos))
1237 {
1238 pos_byte = marker_byte_position (pos);
1239
1240 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1241 return Qnil;
1242 }
1243 else
1244 {
1245 CHECK_NUMBER_COERCE_MARKER (pos);
1246
1247 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1248 return Qnil;
1249
1250 pos_byte = CHAR_TO_BYTE (XINT (pos));
1251 }
1252
1253 if (!NILP (current_buffer->enable_multibyte_characters))
1254 {
1255 DEC_POS (pos_byte);
1256 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1257 }
1258 else
1259 {
1260 pos_byte--;
1261 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1262 }
1263 return val;
1264 }
1265 \f
1266 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1267 doc: /* Return the name under which the user logged in, as a string.
1268 This is based on the effective uid, not the real uid.
1269 Also, if the environment variables LOGNAME or USER are set,
1270 that determines the value of this function.
1271
1272 If optional argument UID is an integer, return the login name of the user
1273 with that uid, or nil if there is no such user. */)
1274 (uid)
1275 Lisp_Object uid;
1276 {
1277 struct passwd *pw;
1278
1279 /* Set up the user name info if we didn't do it before.
1280 (That can happen if Emacs is dumpable
1281 but you decide to run `temacs -l loadup' and not dump. */
1282 if (INTEGERP (Vuser_login_name))
1283 init_editfns ();
1284
1285 if (NILP (uid))
1286 return Vuser_login_name;
1287
1288 CHECK_NUMBER (uid);
1289 BLOCK_INPUT;
1290 pw = (struct passwd *) getpwuid (XINT (uid));
1291 UNBLOCK_INPUT;
1292 return (pw ? build_string (pw->pw_name) : Qnil);
1293 }
1294
1295 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1296 0, 0, 0,
1297 doc: /* Return the name of the user's real uid, as a string.
1298 This ignores the environment variables LOGNAME and USER, so it differs from
1299 `user-login-name' when running under `su'. */)
1300 ()
1301 {
1302 /* Set up the user name info if we didn't do it before.
1303 (That can happen if Emacs is dumpable
1304 but you decide to run `temacs -l loadup' and not dump. */
1305 if (INTEGERP (Vuser_login_name))
1306 init_editfns ();
1307 return Vuser_real_login_name;
1308 }
1309
1310 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1311 doc: /* Return the effective uid of Emacs.
1312 Value is an integer or float, depending on the value. */)
1313 ()
1314 {
1315 /* Assignment to EMACS_INT stops GCC whining about limited range of
1316 data type. */
1317 EMACS_INT euid = geteuid ();
1318 return make_fixnum_or_float (euid);
1319 }
1320
1321 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1322 doc: /* Return the real uid of Emacs.
1323 Value is an integer or float, depending on the value. */)
1324 ()
1325 {
1326 /* Assignment to EMACS_INT stops GCC whining about limited range of
1327 data type. */
1328 EMACS_INT uid = getuid ();
1329 return make_fixnum_or_float (uid);
1330 }
1331
1332 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1333 doc: /* Return the full name of the user logged in, as a string.
1334 If the full name corresponding to Emacs's userid is not known,
1335 return "unknown".
1336
1337 If optional argument UID is an integer or float, return the full name
1338 of the user with that uid, or nil if there is no such user.
1339 If UID is a string, return the full name of the user with that login
1340 name, or nil if there is no such user. */)
1341 (uid)
1342 Lisp_Object uid;
1343 {
1344 struct passwd *pw;
1345 register unsigned char *p, *q;
1346 Lisp_Object full;
1347
1348 if (NILP (uid))
1349 return Vuser_full_name;
1350 else if (NUMBERP (uid))
1351 {
1352 BLOCK_INPUT;
1353 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1354 UNBLOCK_INPUT;
1355 }
1356 else if (STRINGP (uid))
1357 {
1358 BLOCK_INPUT;
1359 pw = (struct passwd *) getpwnam (SDATA (uid));
1360 UNBLOCK_INPUT;
1361 }
1362 else
1363 error ("Invalid UID specification");
1364
1365 if (!pw)
1366 return Qnil;
1367
1368 p = (unsigned char *) USER_FULL_NAME;
1369 /* Chop off everything after the first comma. */
1370 q = (unsigned char *) index (p, ',');
1371 full = make_string (p, q ? q - p : strlen (p));
1372
1373 #ifdef AMPERSAND_FULL_NAME
1374 p = SDATA (full);
1375 q = (unsigned char *) index (p, '&');
1376 /* Substitute the login name for the &, upcasing the first character. */
1377 if (q)
1378 {
1379 register unsigned char *r;
1380 Lisp_Object login;
1381
1382 login = Fuser_login_name (make_number (pw->pw_uid));
1383 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1384 bcopy (p, r, q - p);
1385 r[q - p] = 0;
1386 strcat (r, SDATA (login));
1387 r[q - p] = UPCASE (r[q - p]);
1388 strcat (r, q + 1);
1389 full = build_string (r);
1390 }
1391 #endif /* AMPERSAND_FULL_NAME */
1392
1393 return full;
1394 }
1395
1396 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1397 doc: /* Return the host name of the machine you are running on, as a string. */)
1398 ()
1399 {
1400 return Vsystem_name;
1401 }
1402
1403 /* For the benefit of callers who don't want to include lisp.h */
1404
1405 char *
1406 get_system_name ()
1407 {
1408 if (STRINGP (Vsystem_name))
1409 return (char *) SDATA (Vsystem_name);
1410 else
1411 return "";
1412 }
1413
1414 char *
1415 get_operating_system_release()
1416 {
1417 if (STRINGP (Voperating_system_release))
1418 return (char *) SDATA (Voperating_system_release);
1419 else
1420 return "";
1421 }
1422
1423 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1424 doc: /* Return the process ID of Emacs, as an integer. */)
1425 ()
1426 {
1427 return make_number (getpid ());
1428 }
1429
1430 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1431 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1432 The time is returned as a list of three integers. The first has the
1433 most significant 16 bits of the seconds, while the second has the
1434 least significant 16 bits. The third integer gives the microsecond
1435 count.
1436
1437 The microsecond count is zero on systems that do not provide
1438 resolution finer than a second. */)
1439 ()
1440 {
1441 EMACS_TIME t;
1442
1443 EMACS_GET_TIME (t);
1444 return list3 (make_number ((EMACS_SECS (t) >> 16) & 0xffff),
1445 make_number ((EMACS_SECS (t) >> 0) & 0xffff),
1446 make_number (EMACS_USECS (t)));
1447 }
1448
1449 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1450 0, 0, 0,
1451 doc: /* Return the current run time used by Emacs.
1452 The time is returned as a list of three integers. The first has the
1453 most significant 16 bits of the seconds, while the second has the
1454 least significant 16 bits. The third integer gives the microsecond
1455 count.
1456
1457 On systems that can't determine the run time, `get-internal-run-time'
1458 does the same thing as `current-time'. The microsecond count is zero
1459 on systems that do not provide resolution finer than a second. */)
1460 ()
1461 {
1462 #ifdef HAVE_GETRUSAGE
1463 struct rusage usage;
1464 int secs, usecs;
1465
1466 if (getrusage (RUSAGE_SELF, &usage) < 0)
1467 /* This shouldn't happen. What action is appropriate? */
1468 xsignal0 (Qerror);
1469
1470 /* Sum up user time and system time. */
1471 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1472 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1473 if (usecs >= 1000000)
1474 {
1475 usecs -= 1000000;
1476 secs++;
1477 }
1478
1479 return list3 (make_number ((secs >> 16) & 0xffff),
1480 make_number ((secs >> 0) & 0xffff),
1481 make_number (usecs));
1482 #else
1483 return Fcurrent_time ();
1484 #endif
1485 }
1486 \f
1487
1488 int
1489 lisp_time_argument (specified_time, result, usec)
1490 Lisp_Object specified_time;
1491 time_t *result;
1492 int *usec;
1493 {
1494 if (NILP (specified_time))
1495 {
1496 if (usec)
1497 {
1498 EMACS_TIME t;
1499
1500 EMACS_GET_TIME (t);
1501 *usec = EMACS_USECS (t);
1502 *result = EMACS_SECS (t);
1503 return 1;
1504 }
1505 else
1506 return time (result) != -1;
1507 }
1508 else
1509 {
1510 Lisp_Object high, low;
1511 high = Fcar (specified_time);
1512 CHECK_NUMBER (high);
1513 low = Fcdr (specified_time);
1514 if (CONSP (low))
1515 {
1516 if (usec)
1517 {
1518 Lisp_Object usec_l = Fcdr (low);
1519 if (CONSP (usec_l))
1520 usec_l = Fcar (usec_l);
1521 if (NILP (usec_l))
1522 *usec = 0;
1523 else
1524 {
1525 CHECK_NUMBER (usec_l);
1526 *usec = XINT (usec_l);
1527 }
1528 }
1529 low = Fcar (low);
1530 }
1531 else if (usec)
1532 *usec = 0;
1533 CHECK_NUMBER (low);
1534 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1535 return *result >> 16 == XINT (high);
1536 }
1537 }
1538
1539 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1540 doc: /* Return the current time, as a float number of seconds since the epoch.
1541 If SPECIFIED-TIME is given, it is the time to convert to float
1542 instead of the current time. The argument should have the form
1543 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1544 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1545 have the form (HIGH . LOW), but this is considered obsolete.
1546
1547 WARNING: Since the result is floating point, it may not be exact.
1548 Do not use this function if precise time stamps are required. */)
1549 (specified_time)
1550 Lisp_Object specified_time;
1551 {
1552 time_t sec;
1553 int usec;
1554
1555 if (! lisp_time_argument (specified_time, &sec, &usec))
1556 error ("Invalid time specification");
1557
1558 return make_float ((sec * 1e6 + usec) / 1e6);
1559 }
1560
1561 /* Write information into buffer S of size MAXSIZE, according to the
1562 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1563 Default to Universal Time if UT is nonzero, local time otherwise.
1564 Return the number of bytes written, not including the terminating
1565 '\0'. If S is NULL, nothing will be written anywhere; so to
1566 determine how many bytes would be written, use NULL for S and
1567 ((size_t) -1) for MAXSIZE.
1568
1569 This function behaves like emacs_strftimeu, except it allows null
1570 bytes in FORMAT. */
1571 static size_t
1572 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1573 char *s;
1574 size_t maxsize;
1575 const char *format;
1576 size_t format_len;
1577 const struct tm *tp;
1578 int ut;
1579 {
1580 size_t total = 0;
1581
1582 /* Loop through all the null-terminated strings in the format
1583 argument. Normally there's just one null-terminated string, but
1584 there can be arbitrarily many, concatenated together, if the
1585 format contains '\0' bytes. emacs_strftimeu stops at the first
1586 '\0' byte so we must invoke it separately for each such string. */
1587 for (;;)
1588 {
1589 size_t len;
1590 size_t result;
1591
1592 if (s)
1593 s[0] = '\1';
1594
1595 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1596
1597 if (s)
1598 {
1599 if (result == 0 && s[0] != '\0')
1600 return 0;
1601 s += result + 1;
1602 }
1603
1604 maxsize -= result + 1;
1605 total += result;
1606 len = strlen (format);
1607 if (len == format_len)
1608 return total;
1609 total++;
1610 format += len + 1;
1611 format_len -= len + 1;
1612 }
1613 }
1614
1615 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1616 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1617 TIME is specified as (HIGH LOW . IGNORED), as returned by
1618 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1619 is also still accepted.
1620 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1621 as Universal Time; nil means describe TIME in the local time zone.
1622 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1623 by text that describes the specified date and time in TIME:
1624
1625 %Y is the year, %y within the century, %C the century.
1626 %G is the year corresponding to the ISO week, %g within the century.
1627 %m is the numeric month.
1628 %b and %h are the locale's abbreviated month name, %B the full name.
1629 %d is the day of the month, zero-padded, %e is blank-padded.
1630 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1631 %a is the locale's abbreviated name of the day of week, %A the full name.
1632 %U is the week number starting on Sunday, %W starting on Monday,
1633 %V according to ISO 8601.
1634 %j is the day of the year.
1635
1636 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1637 only blank-padded, %l is like %I blank-padded.
1638 %p is the locale's equivalent of either AM or PM.
1639 %M is the minute.
1640 %S is the second.
1641 %Z is the time zone name, %z is the numeric form.
1642 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1643
1644 %c is the locale's date and time format.
1645 %x is the locale's "preferred" date format.
1646 %D is like "%m/%d/%y".
1647
1648 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1649 %X is the locale's "preferred" time format.
1650
1651 Finally, %n is a newline, %t is a tab, %% is a literal %.
1652
1653 Certain flags and modifiers are available with some format controls.
1654 The flags are `_', `-', `^' and `#'. For certain characters X,
1655 %_X is like %X, but padded with blanks; %-X is like %X,
1656 but without padding. %^X is like %X, but with all textual
1657 characters up-cased; %#X is like %X, but with letter-case of
1658 all textual characters reversed.
1659 %NX (where N stands for an integer) is like %X,
1660 but takes up at least N (a number) positions.
1661 The modifiers are `E' and `O'. For certain characters X,
1662 %EX is a locale's alternative version of %X;
1663 %OX is like %X, but uses the locale's number symbols.
1664
1665 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1666 (format_string, time, universal)
1667 Lisp_Object format_string, time, universal;
1668 {
1669 time_t value;
1670 int size;
1671 struct tm *tm;
1672 int ut = ! NILP (universal);
1673
1674 CHECK_STRING (format_string);
1675
1676 if (! lisp_time_argument (time, &value, NULL))
1677 error ("Invalid time specification");
1678
1679 format_string = code_convert_string_norecord (format_string,
1680 Vlocale_coding_system, 1);
1681
1682 /* This is probably enough. */
1683 size = SBYTES (format_string) * 6 + 50;
1684
1685 BLOCK_INPUT;
1686 tm = ut ? gmtime (&value) : localtime (&value);
1687 UNBLOCK_INPUT;
1688 if (! tm)
1689 error ("Specified time is not representable");
1690
1691 synchronize_system_time_locale ();
1692
1693 while (1)
1694 {
1695 char *buf = (char *) alloca (size + 1);
1696 int result;
1697
1698 buf[0] = '\1';
1699 BLOCK_INPUT;
1700 result = emacs_memftimeu (buf, size, SDATA (format_string),
1701 SBYTES (format_string),
1702 tm, ut);
1703 UNBLOCK_INPUT;
1704 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1705 return code_convert_string_norecord (make_unibyte_string (buf, result),
1706 Vlocale_coding_system, 0);
1707
1708 /* If buffer was too small, make it bigger and try again. */
1709 BLOCK_INPUT;
1710 result = emacs_memftimeu (NULL, (size_t) -1,
1711 SDATA (format_string),
1712 SBYTES (format_string),
1713 tm, ut);
1714 UNBLOCK_INPUT;
1715 size = result + 1;
1716 }
1717 }
1718
1719 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1720 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1721 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1722 as from `current-time' and `file-attributes', or nil to use the
1723 current time. The obsolete form (HIGH . LOW) is also still accepted.
1724 The list has the following nine members: SEC is an integer between 0
1725 and 60; SEC is 60 for a leap second, which only some operating systems
1726 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1727 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1728 integer between 1 and 12. YEAR is an integer indicating the
1729 four-digit year. DOW is the day of week, an integer between 0 and 6,
1730 where 0 is Sunday. DST is t if daylight savings time is effect,
1731 otherwise nil. ZONE is an integer indicating the number of seconds
1732 east of Greenwich. (Note that Common Lisp has different meanings for
1733 DOW and ZONE.) */)
1734 (specified_time)
1735 Lisp_Object specified_time;
1736 {
1737 time_t time_spec;
1738 struct tm save_tm;
1739 struct tm *decoded_time;
1740 Lisp_Object list_args[9];
1741
1742 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1743 error ("Invalid time specification");
1744
1745 BLOCK_INPUT;
1746 decoded_time = localtime (&time_spec);
1747 UNBLOCK_INPUT;
1748 if (! decoded_time)
1749 error ("Specified time is not representable");
1750 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1751 XSETFASTINT (list_args[1], decoded_time->tm_min);
1752 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1753 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1754 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1755 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1756 cast below avoids overflow in int arithmetics. */
1757 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) decoded_time->tm_year);
1758 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1759 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1760
1761 /* Make a copy, in case gmtime modifies the struct. */
1762 save_tm = *decoded_time;
1763 BLOCK_INPUT;
1764 decoded_time = gmtime (&time_spec);
1765 UNBLOCK_INPUT;
1766 if (decoded_time == 0)
1767 list_args[8] = Qnil;
1768 else
1769 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1770 return Flist (9, list_args);
1771 }
1772
1773 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1774 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1775 This is the reverse operation of `decode-time', which see.
1776 ZONE defaults to the current time zone rule. This can
1777 be a string or t (as from `set-time-zone-rule'), or it can be a list
1778 \(as from `current-time-zone') or an integer (as from `decode-time')
1779 applied without consideration for daylight savings time.
1780
1781 You can pass more than 7 arguments; then the first six arguments
1782 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1783 The intervening arguments are ignored.
1784 This feature lets (apply 'encode-time (decode-time ...)) work.
1785
1786 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1787 for example, a DAY of 0 means the day preceding the given month.
1788 Year numbers less than 100 are treated just like other year numbers.
1789 If you want them to stand for years in this century, you must do that yourself.
1790
1791 Years before 1970 are not guaranteed to work. On some systems,
1792 year values as low as 1901 do work.
1793
1794 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1795 (nargs, args)
1796 int nargs;
1797 register Lisp_Object *args;
1798 {
1799 time_t time;
1800 struct tm tm;
1801 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1802
1803 CHECK_NUMBER (args[0]); /* second */
1804 CHECK_NUMBER (args[1]); /* minute */
1805 CHECK_NUMBER (args[2]); /* hour */
1806 CHECK_NUMBER (args[3]); /* day */
1807 CHECK_NUMBER (args[4]); /* month */
1808 CHECK_NUMBER (args[5]); /* year */
1809
1810 tm.tm_sec = XINT (args[0]);
1811 tm.tm_min = XINT (args[1]);
1812 tm.tm_hour = XINT (args[2]);
1813 tm.tm_mday = XINT (args[3]);
1814 tm.tm_mon = XINT (args[4]) - 1;
1815 tm.tm_year = XINT (args[5]) - TM_YEAR_BASE;
1816 tm.tm_isdst = -1;
1817
1818 if (CONSP (zone))
1819 zone = Fcar (zone);
1820 if (NILP (zone))
1821 {
1822 BLOCK_INPUT;
1823 time = mktime (&tm);
1824 UNBLOCK_INPUT;
1825 }
1826 else
1827 {
1828 char tzbuf[100];
1829 char *tzstring;
1830 char **oldenv = environ, **newenv;
1831
1832 if (EQ (zone, Qt))
1833 tzstring = "UTC0";
1834 else if (STRINGP (zone))
1835 tzstring = (char *) SDATA (zone);
1836 else if (INTEGERP (zone))
1837 {
1838 int abszone = abs (XINT (zone));
1839 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1840 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1841 tzstring = tzbuf;
1842 }
1843 else
1844 error ("Invalid time zone specification");
1845
1846 /* Set TZ before calling mktime; merely adjusting mktime's returned
1847 value doesn't suffice, since that would mishandle leap seconds. */
1848 set_time_zone_rule (tzstring);
1849
1850 BLOCK_INPUT;
1851 time = mktime (&tm);
1852 UNBLOCK_INPUT;
1853
1854 /* Restore TZ to previous value. */
1855 newenv = environ;
1856 environ = oldenv;
1857 xfree (newenv);
1858 #ifdef LOCALTIME_CACHE
1859 tzset ();
1860 #endif
1861 }
1862
1863 if (time == (time_t) -1)
1864 error ("Specified time is not representable");
1865
1866 return make_time (time);
1867 }
1868
1869 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1870 doc: /* Return the current time, as a human-readable string.
1871 Programs can use this function to decode a time,
1872 since the number of columns in each field is fixed
1873 if the year is in the range 1000-9999.
1874 The format is `Sun Sep 16 01:03:52 1973'.
1875 However, see also the functions `decode-time' and `format-time-string'
1876 which provide a much more powerful and general facility.
1877
1878 If SPECIFIED-TIME is given, it is a time to format instead of the
1879 current time. The argument should have the form (HIGH LOW . IGNORED).
1880 Thus, you can use times obtained from `current-time' and from
1881 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1882 but this is considered obsolete. */)
1883 (specified_time)
1884 Lisp_Object specified_time;
1885 {
1886 time_t value;
1887 struct tm *tm;
1888 register char *tem;
1889
1890 if (! lisp_time_argument (specified_time, &value, NULL))
1891 error ("Invalid time specification");
1892
1893 /* Convert to a string, checking for out-of-range time stamps.
1894 Don't use 'ctime', as that might dump core if VALUE is out of
1895 range. */
1896 BLOCK_INPUT;
1897 tm = localtime (&value);
1898 UNBLOCK_INPUT;
1899 if (! (tm && TM_YEAR_IN_ASCTIME_RANGE (tm->tm_year) && (tem = asctime (tm))))
1900 error ("Specified time is not representable");
1901
1902 /* Remove the trailing newline. */
1903 tem[strlen (tem) - 1] = '\0';
1904
1905 return build_string (tem);
1906 }
1907
1908 /* Yield A - B, measured in seconds.
1909 This function is copied from the GNU C Library. */
1910 static int
1911 tm_diff (a, b)
1912 struct tm *a, *b;
1913 {
1914 /* Compute intervening leap days correctly even if year is negative.
1915 Take care to avoid int overflow in leap day calculations,
1916 but it's OK to assume that A and B are close to each other. */
1917 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1918 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1919 int a100 = a4 / 25 - (a4 % 25 < 0);
1920 int b100 = b4 / 25 - (b4 % 25 < 0);
1921 int a400 = a100 >> 2;
1922 int b400 = b100 >> 2;
1923 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1924 int years = a->tm_year - b->tm_year;
1925 int days = (365 * years + intervening_leap_days
1926 + (a->tm_yday - b->tm_yday));
1927 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1928 + (a->tm_min - b->tm_min))
1929 + (a->tm_sec - b->tm_sec));
1930 }
1931
1932 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1933 doc: /* Return the offset and name for the local time zone.
1934 This returns a list of the form (OFFSET NAME).
1935 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1936 A negative value means west of Greenwich.
1937 NAME is a string giving the name of the time zone.
1938 If SPECIFIED-TIME is given, the time zone offset is determined from it
1939 instead of using the current time. The argument should have the form
1940 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1941 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1942 have the form (HIGH . LOW), but this is considered obsolete.
1943
1944 Some operating systems cannot provide all this information to Emacs;
1945 in this case, `current-time-zone' returns a list containing nil for
1946 the data it can't find. */)
1947 (specified_time)
1948 Lisp_Object specified_time;
1949 {
1950 time_t value;
1951 struct tm *t;
1952 struct tm gmt;
1953
1954 if (!lisp_time_argument (specified_time, &value, NULL))
1955 t = NULL;
1956 else
1957 {
1958 BLOCK_INPUT;
1959 t = gmtime (&value);
1960 if (t)
1961 {
1962 gmt = *t;
1963 t = localtime (&value);
1964 }
1965 UNBLOCK_INPUT;
1966 }
1967
1968 if (t)
1969 {
1970 int offset = tm_diff (t, &gmt);
1971 char *s = 0;
1972 char buf[6];
1973 #ifdef HAVE_TM_ZONE
1974 if (t->tm_zone)
1975 s = (char *)t->tm_zone;
1976 #else /* not HAVE_TM_ZONE */
1977 #ifdef HAVE_TZNAME
1978 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1979 s = tzname[t->tm_isdst];
1980 #endif
1981 #endif /* not HAVE_TM_ZONE */
1982
1983 #if defined HAVE_TM_ZONE || defined HAVE_TZNAME
1984 if (s)
1985 {
1986 /* On Japanese w32, we can get a Japanese string as time
1987 zone name. Don't accept that. */
1988 char *p;
1989 for (p = s; *p && (isalnum ((unsigned char)*p) || *p == ' '); ++p)
1990 ;
1991 if (p == s || *p)
1992 s = NULL;
1993 }
1994 #endif
1995
1996 if (!s)
1997 {
1998 /* No local time zone name is available; use "+-NNNN" instead. */
1999 int am = (offset < 0 ? -offset : offset) / 60;
2000 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
2001 s = buf;
2002 }
2003 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
2004 }
2005 else
2006 return Fmake_list (make_number (2), Qnil);
2007 }
2008
2009 /* This holds the value of `environ' produced by the previous
2010 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
2011 has never been called. */
2012 static char **environbuf;
2013
2014 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2015 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2016 If TZ is nil, use implementation-defined default time zone information.
2017 If TZ is t, use Universal Time. */)
2018 (tz)
2019 Lisp_Object tz;
2020 {
2021 char *tzstring;
2022
2023 if (NILP (tz))
2024 tzstring = 0;
2025 else if (EQ (tz, Qt))
2026 tzstring = "UTC0";
2027 else
2028 {
2029 CHECK_STRING (tz);
2030 tzstring = (char *) SDATA (tz);
2031 }
2032
2033 set_time_zone_rule (tzstring);
2034 if (environbuf)
2035 free (environbuf);
2036 environbuf = environ;
2037
2038 return Qnil;
2039 }
2040
2041 #ifdef LOCALTIME_CACHE
2042
2043 /* These two values are known to load tz files in buggy implementations,
2044 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2045 Their values shouldn't matter in non-buggy implementations.
2046 We don't use string literals for these strings,
2047 since if a string in the environment is in readonly
2048 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2049 See Sun bugs 1113095 and 1114114, ``Timezone routines
2050 improperly modify environment''. */
2051
2052 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2053 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2054
2055 #endif
2056
2057 /* Set the local time zone rule to TZSTRING.
2058 This allocates memory into `environ', which it is the caller's
2059 responsibility to free. */
2060
2061 void
2062 set_time_zone_rule (tzstring)
2063 char *tzstring;
2064 {
2065 int envptrs;
2066 char **from, **to, **newenv;
2067
2068 /* Make the ENVIRON vector longer with room for TZSTRING. */
2069 for (from = environ; *from; from++)
2070 continue;
2071 envptrs = from - environ + 2;
2072 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
2073 + (tzstring ? strlen (tzstring) + 4 : 0));
2074
2075 /* Add TZSTRING to the end of environ, as a value for TZ. */
2076 if (tzstring)
2077 {
2078 char *t = (char *) (to + envptrs);
2079 strcpy (t, "TZ=");
2080 strcat (t, tzstring);
2081 *to++ = t;
2082 }
2083
2084 /* Copy the old environ vector elements into NEWENV,
2085 but don't copy the TZ variable.
2086 So we have only one definition of TZ, which came from TZSTRING. */
2087 for (from = environ; *from; from++)
2088 if (strncmp (*from, "TZ=", 3) != 0)
2089 *to++ = *from;
2090 *to = 0;
2091
2092 environ = newenv;
2093
2094 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2095 the TZ variable is stored. If we do not have a TZSTRING,
2096 TO points to the vector slot which has the terminating null. */
2097
2098 #ifdef LOCALTIME_CACHE
2099 {
2100 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2101 "US/Pacific" that loads a tz file, then changes to a value like
2102 "XXX0" that does not load a tz file, and then changes back to
2103 its original value, the last change is (incorrectly) ignored.
2104 Also, if TZ changes twice in succession to values that do
2105 not load a tz file, tzset can dump core (see Sun bug#1225179).
2106 The following code works around these bugs. */
2107
2108 if (tzstring)
2109 {
2110 /* Temporarily set TZ to a value that loads a tz file
2111 and that differs from tzstring. */
2112 char *tz = *newenv;
2113 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2114 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2115 tzset ();
2116 *newenv = tz;
2117 }
2118 else
2119 {
2120 /* The implied tzstring is unknown, so temporarily set TZ to
2121 two different values that each load a tz file. */
2122 *to = set_time_zone_rule_tz1;
2123 to[1] = 0;
2124 tzset ();
2125 *to = set_time_zone_rule_tz2;
2126 tzset ();
2127 *to = 0;
2128 }
2129
2130 /* Now TZ has the desired value, and tzset can be invoked safely. */
2131 }
2132
2133 tzset ();
2134 #endif
2135 }
2136 \f
2137 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2138 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2139 type of object is Lisp_String). INHERIT is passed to
2140 INSERT_FROM_STRING_FUNC as the last argument. */
2141
2142 static void
2143 general_insert_function (insert_func, insert_from_string_func,
2144 inherit, nargs, args)
2145 void (*insert_func) P_ ((const unsigned char *, int));
2146 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
2147 int inherit, nargs;
2148 register Lisp_Object *args;
2149 {
2150 register int argnum;
2151 register Lisp_Object val;
2152
2153 for (argnum = 0; argnum < nargs; argnum++)
2154 {
2155 val = args[argnum];
2156 if (INTEGERP (val))
2157 {
2158 unsigned char str[MAX_MULTIBYTE_LENGTH];
2159 int len;
2160
2161 if (!NILP (current_buffer->enable_multibyte_characters))
2162 len = CHAR_STRING (XFASTINT (val), str);
2163 else
2164 {
2165 str[0] = (ASCII_CHAR_P (XINT (val))
2166 ? XINT (val)
2167 : multibyte_char_to_unibyte (XINT (val), Qnil));
2168 len = 1;
2169 }
2170 (*insert_func) (str, len);
2171 }
2172 else if (STRINGP (val))
2173 {
2174 (*insert_from_string_func) (val, 0, 0,
2175 SCHARS (val),
2176 SBYTES (val),
2177 inherit);
2178 }
2179 else
2180 wrong_type_argument (Qchar_or_string_p, val);
2181 }
2182 }
2183
2184 void
2185 insert1 (arg)
2186 Lisp_Object arg;
2187 {
2188 Finsert (1, &arg);
2189 }
2190
2191
2192 /* Callers passing one argument to Finsert need not gcpro the
2193 argument "array", since the only element of the array will
2194 not be used after calling insert or insert_from_string, so
2195 we don't care if it gets trashed. */
2196
2197 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2198 doc: /* Insert the arguments, either strings or characters, at point.
2199 Point and before-insertion markers move forward to end up
2200 after the inserted text.
2201 Any other markers at the point of insertion remain before the text.
2202
2203 If the current buffer is multibyte, unibyte strings are converted
2204 to multibyte for insertion (see `string-make-multibyte').
2205 If the current buffer is unibyte, multibyte strings are converted
2206 to unibyte for insertion (see `string-make-unibyte').
2207
2208 When operating on binary data, it may be necessary to preserve the
2209 original bytes of a unibyte string when inserting it into a multibyte
2210 buffer; to accomplish this, apply `string-as-multibyte' to the string
2211 and insert the result.
2212
2213 usage: (insert &rest ARGS) */)
2214 (nargs, args)
2215 int nargs;
2216 register Lisp_Object *args;
2217 {
2218 general_insert_function (insert, insert_from_string, 0, nargs, args);
2219 return Qnil;
2220 }
2221
2222 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2223 0, MANY, 0,
2224 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2225 Point and before-insertion markers move forward to end up
2226 after the inserted text.
2227 Any other markers at the point of insertion remain before the text.
2228
2229 If the current buffer is multibyte, unibyte strings are converted
2230 to multibyte for insertion (see `unibyte-char-to-multibyte').
2231 If the current buffer is unibyte, multibyte strings are converted
2232 to unibyte for insertion.
2233
2234 usage: (insert-and-inherit &rest ARGS) */)
2235 (nargs, args)
2236 int nargs;
2237 register Lisp_Object *args;
2238 {
2239 general_insert_function (insert_and_inherit, insert_from_string, 1,
2240 nargs, args);
2241 return Qnil;
2242 }
2243
2244 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2245 doc: /* Insert strings or characters at point, relocating markers after the text.
2246 Point and markers move forward to end up after the inserted text.
2247
2248 If the current buffer is multibyte, unibyte strings are converted
2249 to multibyte for insertion (see `unibyte-char-to-multibyte').
2250 If the current buffer is unibyte, multibyte strings are converted
2251 to unibyte for insertion.
2252
2253 usage: (insert-before-markers &rest ARGS) */)
2254 (nargs, args)
2255 int nargs;
2256 register Lisp_Object *args;
2257 {
2258 general_insert_function (insert_before_markers,
2259 insert_from_string_before_markers, 0,
2260 nargs, args);
2261 return Qnil;
2262 }
2263
2264 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2265 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2266 doc: /* Insert text at point, relocating markers and inheriting properties.
2267 Point and markers move forward to end up after the inserted text.
2268
2269 If the current buffer is multibyte, unibyte strings are converted
2270 to multibyte for insertion (see `unibyte-char-to-multibyte').
2271 If the current buffer is unibyte, multibyte strings are converted
2272 to unibyte for insertion.
2273
2274 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2275 (nargs, args)
2276 int nargs;
2277 register Lisp_Object *args;
2278 {
2279 general_insert_function (insert_before_markers_and_inherit,
2280 insert_from_string_before_markers, 1,
2281 nargs, args);
2282 return Qnil;
2283 }
2284 \f
2285 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2286 doc: /* Insert COUNT copies of CHARACTER.
2287 Point, and before-insertion markers, are relocated as in the function `insert'.
2288 The optional third arg INHERIT, if non-nil, says to inherit text properties
2289 from adjoining text, if those properties are sticky. */)
2290 (character, count, inherit)
2291 Lisp_Object character, count, inherit;
2292 {
2293 register unsigned char *string;
2294 register int strlen;
2295 register int i, n;
2296 int len;
2297 unsigned char str[MAX_MULTIBYTE_LENGTH];
2298
2299 CHECK_NUMBER (character);
2300 CHECK_NUMBER (count);
2301
2302 if (!NILP (current_buffer->enable_multibyte_characters))
2303 len = CHAR_STRING (XFASTINT (character), str);
2304 else
2305 str[0] = XFASTINT (character), len = 1;
2306 n = XINT (count) * len;
2307 if (n <= 0)
2308 return Qnil;
2309 strlen = min (n, 256 * len);
2310 string = (unsigned char *) alloca (strlen);
2311 for (i = 0; i < strlen; i++)
2312 string[i] = str[i % len];
2313 while (n >= strlen)
2314 {
2315 QUIT;
2316 if (!NILP (inherit))
2317 insert_and_inherit (string, strlen);
2318 else
2319 insert (string, strlen);
2320 n -= strlen;
2321 }
2322 if (n > 0)
2323 {
2324 if (!NILP (inherit))
2325 insert_and_inherit (string, n);
2326 else
2327 insert (string, n);
2328 }
2329 return Qnil;
2330 }
2331
2332 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2333 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2334 Both arguments are required.
2335 BYTE is a number of the range 0..255.
2336
2337 If BYTE is 128..255 and the current buffer is multibyte, the
2338 corresponding eight-bit character is inserted.
2339
2340 Point, and before-insertion markers, are relocated as in the function `insert'.
2341 The optional third arg INHERIT, if non-nil, says to inherit text properties
2342 from adjoining text, if those properties are sticky. */)
2343 (byte, count, inherit)
2344 Lisp_Object byte, count, inherit;
2345 {
2346 CHECK_NUMBER (byte);
2347 if (XINT (byte) < 0 || XINT (byte) > 255)
2348 args_out_of_range_3 (byte, make_number (0), make_number (255));
2349 if (XINT (byte) >= 128
2350 && ! NILP (current_buffer->enable_multibyte_characters))
2351 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2352 return Finsert_char (byte, count, inherit);
2353 }
2354
2355 \f
2356 /* Making strings from buffer contents. */
2357
2358 /* Return a Lisp_String containing the text of the current buffer from
2359 START to END. If text properties are in use and the current buffer
2360 has properties in the range specified, the resulting string will also
2361 have them, if PROPS is nonzero.
2362
2363 We don't want to use plain old make_string here, because it calls
2364 make_uninit_string, which can cause the buffer arena to be
2365 compacted. make_string has no way of knowing that the data has
2366 been moved, and thus copies the wrong data into the string. This
2367 doesn't effect most of the other users of make_string, so it should
2368 be left as is. But we should use this function when conjuring
2369 buffer substrings. */
2370
2371 Lisp_Object
2372 make_buffer_string (start, end, props)
2373 int start, end;
2374 int props;
2375 {
2376 int start_byte = CHAR_TO_BYTE (start);
2377 int end_byte = CHAR_TO_BYTE (end);
2378
2379 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2380 }
2381
2382 /* Return a Lisp_String containing the text of the current buffer from
2383 START / START_BYTE to END / END_BYTE.
2384
2385 If text properties are in use and the current buffer
2386 has properties in the range specified, the resulting string will also
2387 have them, if PROPS is nonzero.
2388
2389 We don't want to use plain old make_string here, because it calls
2390 make_uninit_string, which can cause the buffer arena to be
2391 compacted. make_string has no way of knowing that the data has
2392 been moved, and thus copies the wrong data into the string. This
2393 doesn't effect most of the other users of make_string, so it should
2394 be left as is. But we should use this function when conjuring
2395 buffer substrings. */
2396
2397 Lisp_Object
2398 make_buffer_string_both (start, start_byte, end, end_byte, props)
2399 int start, start_byte, end, end_byte;
2400 int props;
2401 {
2402 Lisp_Object result, tem, tem1;
2403
2404 if (start < GPT && GPT < end)
2405 move_gap (start);
2406
2407 if (! NILP (current_buffer->enable_multibyte_characters))
2408 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2409 else
2410 result = make_uninit_string (end - start);
2411 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2412 end_byte - start_byte);
2413
2414 /* If desired, update and copy the text properties. */
2415 if (props)
2416 {
2417 update_buffer_properties (start, end);
2418
2419 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2420 tem1 = Ftext_properties_at (make_number (start), Qnil);
2421
2422 if (XINT (tem) != end || !NILP (tem1))
2423 copy_intervals_to_string (result, current_buffer, start,
2424 end - start);
2425 }
2426
2427 return result;
2428 }
2429
2430 /* Call Vbuffer_access_fontify_functions for the range START ... END
2431 in the current buffer, if necessary. */
2432
2433 static void
2434 update_buffer_properties (start, end)
2435 int start, end;
2436 {
2437 /* If this buffer has some access functions,
2438 call them, specifying the range of the buffer being accessed. */
2439 if (!NILP (Vbuffer_access_fontify_functions))
2440 {
2441 Lisp_Object args[3];
2442 Lisp_Object tem;
2443
2444 args[0] = Qbuffer_access_fontify_functions;
2445 XSETINT (args[1], start);
2446 XSETINT (args[2], end);
2447
2448 /* But don't call them if we can tell that the work
2449 has already been done. */
2450 if (!NILP (Vbuffer_access_fontified_property))
2451 {
2452 tem = Ftext_property_any (args[1], args[2],
2453 Vbuffer_access_fontified_property,
2454 Qnil, Qnil);
2455 if (! NILP (tem))
2456 Frun_hook_with_args (3, args);
2457 }
2458 else
2459 Frun_hook_with_args (3, args);
2460 }
2461 }
2462
2463 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2464 doc: /* Return the contents of part of the current buffer as a string.
2465 The two arguments START and END are character positions;
2466 they can be in either order.
2467 The string returned is multibyte if the buffer is multibyte.
2468
2469 This function copies the text properties of that part of the buffer
2470 into the result string; if you don't want the text properties,
2471 use `buffer-substring-no-properties' instead. */)
2472 (start, end)
2473 Lisp_Object start, end;
2474 {
2475 register int b, e;
2476
2477 validate_region (&start, &end);
2478 b = XINT (start);
2479 e = XINT (end);
2480
2481 return make_buffer_string (b, e, 1);
2482 }
2483
2484 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2485 Sbuffer_substring_no_properties, 2, 2, 0,
2486 doc: /* Return the characters of part of the buffer, without the text properties.
2487 The two arguments START and END are character positions;
2488 they can be in either order. */)
2489 (start, end)
2490 Lisp_Object start, end;
2491 {
2492 register int b, e;
2493
2494 validate_region (&start, &end);
2495 b = XINT (start);
2496 e = XINT (end);
2497
2498 return make_buffer_string (b, e, 0);
2499 }
2500
2501 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2502 doc: /* Return the contents of the current buffer as a string.
2503 If narrowing is in effect, this function returns only the visible part
2504 of the buffer. */)
2505 ()
2506 {
2507 return make_buffer_string (BEGV, ZV, 1);
2508 }
2509
2510 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2511 1, 3, 0,
2512 doc: /* Insert before point a substring of the contents of BUFFER.
2513 BUFFER may be a buffer or a buffer name.
2514 Arguments START and END are character positions specifying the substring.
2515 They default to the values of (point-min) and (point-max) in BUFFER. */)
2516 (buffer, start, end)
2517 Lisp_Object buffer, start, end;
2518 {
2519 register int b, e, temp;
2520 register struct buffer *bp, *obuf;
2521 Lisp_Object buf;
2522
2523 buf = Fget_buffer (buffer);
2524 if (NILP (buf))
2525 nsberror (buffer);
2526 bp = XBUFFER (buf);
2527 if (NILP (bp->name))
2528 error ("Selecting deleted buffer");
2529
2530 if (NILP (start))
2531 b = BUF_BEGV (bp);
2532 else
2533 {
2534 CHECK_NUMBER_COERCE_MARKER (start);
2535 b = XINT (start);
2536 }
2537 if (NILP (end))
2538 e = BUF_ZV (bp);
2539 else
2540 {
2541 CHECK_NUMBER_COERCE_MARKER (end);
2542 e = XINT (end);
2543 }
2544
2545 if (b > e)
2546 temp = b, b = e, e = temp;
2547
2548 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2549 args_out_of_range (start, end);
2550
2551 obuf = current_buffer;
2552 set_buffer_internal_1 (bp);
2553 update_buffer_properties (b, e);
2554 set_buffer_internal_1 (obuf);
2555
2556 insert_from_buffer (bp, b, e - b, 0);
2557 return Qnil;
2558 }
2559
2560 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2561 6, 6, 0,
2562 doc: /* Compare two substrings of two buffers; return result as number.
2563 the value is -N if first string is less after N-1 chars,
2564 +N if first string is greater after N-1 chars, or 0 if strings match.
2565 Each substring is represented as three arguments: BUFFER, START and END.
2566 That makes six args in all, three for each substring.
2567
2568 The value of `case-fold-search' in the current buffer
2569 determines whether case is significant or ignored. */)
2570 (buffer1, start1, end1, buffer2, start2, end2)
2571 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2572 {
2573 register int begp1, endp1, begp2, endp2, temp;
2574 register struct buffer *bp1, *bp2;
2575 register Lisp_Object trt
2576 = (!NILP (current_buffer->case_fold_search)
2577 ? current_buffer->case_canon_table : Qnil);
2578 int chars = 0;
2579 int i1, i2, i1_byte, i2_byte;
2580
2581 /* Find the first buffer and its substring. */
2582
2583 if (NILP (buffer1))
2584 bp1 = current_buffer;
2585 else
2586 {
2587 Lisp_Object buf1;
2588 buf1 = Fget_buffer (buffer1);
2589 if (NILP (buf1))
2590 nsberror (buffer1);
2591 bp1 = XBUFFER (buf1);
2592 if (NILP (bp1->name))
2593 error ("Selecting deleted buffer");
2594 }
2595
2596 if (NILP (start1))
2597 begp1 = BUF_BEGV (bp1);
2598 else
2599 {
2600 CHECK_NUMBER_COERCE_MARKER (start1);
2601 begp1 = XINT (start1);
2602 }
2603 if (NILP (end1))
2604 endp1 = BUF_ZV (bp1);
2605 else
2606 {
2607 CHECK_NUMBER_COERCE_MARKER (end1);
2608 endp1 = XINT (end1);
2609 }
2610
2611 if (begp1 > endp1)
2612 temp = begp1, begp1 = endp1, endp1 = temp;
2613
2614 if (!(BUF_BEGV (bp1) <= begp1
2615 && begp1 <= endp1
2616 && endp1 <= BUF_ZV (bp1)))
2617 args_out_of_range (start1, end1);
2618
2619 /* Likewise for second substring. */
2620
2621 if (NILP (buffer2))
2622 bp2 = current_buffer;
2623 else
2624 {
2625 Lisp_Object buf2;
2626 buf2 = Fget_buffer (buffer2);
2627 if (NILP (buf2))
2628 nsberror (buffer2);
2629 bp2 = XBUFFER (buf2);
2630 if (NILP (bp2->name))
2631 error ("Selecting deleted buffer");
2632 }
2633
2634 if (NILP (start2))
2635 begp2 = BUF_BEGV (bp2);
2636 else
2637 {
2638 CHECK_NUMBER_COERCE_MARKER (start2);
2639 begp2 = XINT (start2);
2640 }
2641 if (NILP (end2))
2642 endp2 = BUF_ZV (bp2);
2643 else
2644 {
2645 CHECK_NUMBER_COERCE_MARKER (end2);
2646 endp2 = XINT (end2);
2647 }
2648
2649 if (begp2 > endp2)
2650 temp = begp2, begp2 = endp2, endp2 = temp;
2651
2652 if (!(BUF_BEGV (bp2) <= begp2
2653 && begp2 <= endp2
2654 && endp2 <= BUF_ZV (bp2)))
2655 args_out_of_range (start2, end2);
2656
2657 i1 = begp1;
2658 i2 = begp2;
2659 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2660 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2661
2662 while (i1 < endp1 && i2 < endp2)
2663 {
2664 /* When we find a mismatch, we must compare the
2665 characters, not just the bytes. */
2666 int c1, c2;
2667
2668 QUIT;
2669
2670 if (! NILP (bp1->enable_multibyte_characters))
2671 {
2672 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2673 BUF_INC_POS (bp1, i1_byte);
2674 i1++;
2675 }
2676 else
2677 {
2678 c1 = BUF_FETCH_BYTE (bp1, i1);
2679 c1 = unibyte_char_to_multibyte (c1);
2680 i1++;
2681 }
2682
2683 if (! NILP (bp2->enable_multibyte_characters))
2684 {
2685 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2686 BUF_INC_POS (bp2, i2_byte);
2687 i2++;
2688 }
2689 else
2690 {
2691 c2 = BUF_FETCH_BYTE (bp2, i2);
2692 c2 = unibyte_char_to_multibyte (c2);
2693 i2++;
2694 }
2695
2696 if (!NILP (trt))
2697 {
2698 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2699 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2700 }
2701 if (c1 < c2)
2702 return make_number (- 1 - chars);
2703 if (c1 > c2)
2704 return make_number (chars + 1);
2705
2706 chars++;
2707 }
2708
2709 /* The strings match as far as they go.
2710 If one is shorter, that one is less. */
2711 if (chars < endp1 - begp1)
2712 return make_number (chars + 1);
2713 else if (chars < endp2 - begp2)
2714 return make_number (- chars - 1);
2715
2716 /* Same length too => they are equal. */
2717 return make_number (0);
2718 }
2719 \f
2720 static Lisp_Object
2721 subst_char_in_region_unwind (arg)
2722 Lisp_Object arg;
2723 {
2724 return current_buffer->undo_list = arg;
2725 }
2726
2727 static Lisp_Object
2728 subst_char_in_region_unwind_1 (arg)
2729 Lisp_Object arg;
2730 {
2731 return current_buffer->filename = arg;
2732 }
2733
2734 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2735 Ssubst_char_in_region, 4, 5, 0,
2736 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2737 If optional arg NOUNDO is non-nil, don't record this change for undo
2738 and don't mark the buffer as really changed.
2739 Both characters must have the same length of multi-byte form. */)
2740 (start, end, fromchar, tochar, noundo)
2741 Lisp_Object start, end, fromchar, tochar, noundo;
2742 {
2743 register int pos, pos_byte, stop, i, len, end_byte;
2744 /* Keep track of the first change in the buffer:
2745 if 0 we haven't found it yet.
2746 if < 0 we've found it and we've run the before-change-function.
2747 if > 0 we've actually performed it and the value is its position. */
2748 int changed = 0;
2749 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2750 unsigned char *p;
2751 int count = SPECPDL_INDEX ();
2752 #define COMBINING_NO 0
2753 #define COMBINING_BEFORE 1
2754 #define COMBINING_AFTER 2
2755 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2756 int maybe_byte_combining = COMBINING_NO;
2757 int last_changed = 0;
2758 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2759
2760 restart:
2761
2762 validate_region (&start, &end);
2763 CHECK_NUMBER (fromchar);
2764 CHECK_NUMBER (tochar);
2765
2766 if (multibyte_p)
2767 {
2768 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2769 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2770 error ("Characters in `subst-char-in-region' have different byte-lengths");
2771 if (!ASCII_BYTE_P (*tostr))
2772 {
2773 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2774 complete multibyte character, it may be combined with the
2775 after bytes. If it is in the range 0xA0..0xFF, it may be
2776 combined with the before and after bytes. */
2777 if (!CHAR_HEAD_P (*tostr))
2778 maybe_byte_combining = COMBINING_BOTH;
2779 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2780 maybe_byte_combining = COMBINING_AFTER;
2781 }
2782 }
2783 else
2784 {
2785 len = 1;
2786 fromstr[0] = XFASTINT (fromchar);
2787 tostr[0] = XFASTINT (tochar);
2788 }
2789
2790 pos = XINT (start);
2791 pos_byte = CHAR_TO_BYTE (pos);
2792 stop = CHAR_TO_BYTE (XINT (end));
2793 end_byte = stop;
2794
2795 /* If we don't want undo, turn off putting stuff on the list.
2796 That's faster than getting rid of things,
2797 and it prevents even the entry for a first change.
2798 Also inhibit locking the file. */
2799 if (!changed && !NILP (noundo))
2800 {
2801 record_unwind_protect (subst_char_in_region_unwind,
2802 current_buffer->undo_list);
2803 current_buffer->undo_list = Qt;
2804 /* Don't do file-locking. */
2805 record_unwind_protect (subst_char_in_region_unwind_1,
2806 current_buffer->filename);
2807 current_buffer->filename = Qnil;
2808 }
2809
2810 if (pos_byte < GPT_BYTE)
2811 stop = min (stop, GPT_BYTE);
2812 while (1)
2813 {
2814 int pos_byte_next = pos_byte;
2815
2816 if (pos_byte >= stop)
2817 {
2818 if (pos_byte >= end_byte) break;
2819 stop = end_byte;
2820 }
2821 p = BYTE_POS_ADDR (pos_byte);
2822 if (multibyte_p)
2823 INC_POS (pos_byte_next);
2824 else
2825 ++pos_byte_next;
2826 if (pos_byte_next - pos_byte == len
2827 && p[0] == fromstr[0]
2828 && (len == 1
2829 || (p[1] == fromstr[1]
2830 && (len == 2 || (p[2] == fromstr[2]
2831 && (len == 3 || p[3] == fromstr[3]))))))
2832 {
2833 if (changed < 0)
2834 /* We've already seen this and run the before-change-function;
2835 this time we only need to record the actual position. */
2836 changed = pos;
2837 else if (!changed)
2838 {
2839 changed = -1;
2840 modify_region (current_buffer, pos, XINT (end), 0);
2841
2842 if (! NILP (noundo))
2843 {
2844 if (MODIFF - 1 == SAVE_MODIFF)
2845 SAVE_MODIFF++;
2846 if (MODIFF - 1 == current_buffer->auto_save_modified)
2847 current_buffer->auto_save_modified++;
2848 }
2849
2850 /* The before-change-function may have moved the gap
2851 or even modified the buffer so we should start over. */
2852 goto restart;
2853 }
2854
2855 /* Take care of the case where the new character
2856 combines with neighboring bytes. */
2857 if (maybe_byte_combining
2858 && (maybe_byte_combining == COMBINING_AFTER
2859 ? (pos_byte_next < Z_BYTE
2860 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2861 : ((pos_byte_next < Z_BYTE
2862 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2863 || (pos_byte > BEG_BYTE
2864 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2865 {
2866 Lisp_Object tem, string;
2867
2868 struct gcpro gcpro1;
2869
2870 tem = current_buffer->undo_list;
2871 GCPRO1 (tem);
2872
2873 /* Make a multibyte string containing this single character. */
2874 string = make_multibyte_string (tostr, 1, len);
2875 /* replace_range is less efficient, because it moves the gap,
2876 but it handles combining correctly. */
2877 replace_range (pos, pos + 1, string,
2878 0, 0, 1);
2879 pos_byte_next = CHAR_TO_BYTE (pos);
2880 if (pos_byte_next > pos_byte)
2881 /* Before combining happened. We should not increment
2882 POS. So, to cancel the later increment of POS,
2883 decrease it now. */
2884 pos--;
2885 else
2886 INC_POS (pos_byte_next);
2887
2888 if (! NILP (noundo))
2889 current_buffer->undo_list = tem;
2890
2891 UNGCPRO;
2892 }
2893 else
2894 {
2895 if (NILP (noundo))
2896 record_change (pos, 1);
2897 for (i = 0; i < len; i++) *p++ = tostr[i];
2898 }
2899 last_changed = pos + 1;
2900 }
2901 pos_byte = pos_byte_next;
2902 pos++;
2903 }
2904
2905 if (changed > 0)
2906 {
2907 signal_after_change (changed,
2908 last_changed - changed, last_changed - changed);
2909 update_compositions (changed, last_changed, CHECK_ALL);
2910 }
2911
2912 unbind_to (count, Qnil);
2913 return Qnil;
2914 }
2915
2916
2917 static Lisp_Object check_translation P_ ((int, int, int, Lisp_Object));
2918
2919 /* Helper function for Ftranslate_region_internal.
2920
2921 Check if a character sequence at POS (POS_BYTE) matches an element
2922 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
2923 element is found, return it. Otherwise return Qnil. */
2924
2925 static Lisp_Object
2926 check_translation (pos, pos_byte, end, val)
2927 int pos, pos_byte, end;
2928 Lisp_Object val;
2929 {
2930 int buf_size = 16, buf_used = 0;
2931 int *buf = alloca (sizeof (int) * buf_size);
2932
2933 for (; CONSP (val); val = XCDR (val))
2934 {
2935 Lisp_Object elt;
2936 int len, i;
2937
2938 elt = XCAR (val);
2939 if (! CONSP (elt))
2940 continue;
2941 elt = XCAR (elt);
2942 if (! VECTORP (elt))
2943 continue;
2944 len = ASIZE (elt);
2945 if (len <= end - pos)
2946 {
2947 for (i = 0; i < len; i++)
2948 {
2949 if (buf_used <= i)
2950 {
2951 unsigned char *p = BYTE_POS_ADDR (pos_byte);
2952 int len;
2953
2954 if (buf_used == buf_size)
2955 {
2956 int *newbuf;
2957
2958 buf_size += 16;
2959 newbuf = alloca (sizeof (int) * buf_size);
2960 memcpy (newbuf, buf, sizeof (int) * buf_used);
2961 buf = newbuf;
2962 }
2963 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, 0, len);
2964 pos_byte += len;
2965 }
2966 if (XINT (AREF (elt, i)) != buf[i])
2967 break;
2968 }
2969 if (i == len)
2970 return XCAR (val);
2971 }
2972 }
2973 return Qnil;
2974 }
2975
2976
2977 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2978 Stranslate_region_internal, 3, 3, 0,
2979 doc: /* Internal use only.
2980 From START to END, translate characters according to TABLE.
2981 TABLE is a string or a char-table; the Nth character in it is the
2982 mapping for the character with code N.
2983 It returns the number of characters changed. */)
2984 (start, end, table)
2985 Lisp_Object start;
2986 Lisp_Object end;
2987 register Lisp_Object table;
2988 {
2989 register unsigned char *tt; /* Trans table. */
2990 register int nc; /* New character. */
2991 int cnt; /* Number of changes made. */
2992 int size; /* Size of translate table. */
2993 int pos, pos_byte, end_pos;
2994 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2995 int string_multibyte;
2996 Lisp_Object val;
2997
2998 validate_region (&start, &end);
2999 if (CHAR_TABLE_P (table))
3000 {
3001 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3002 error ("Not a translation table");
3003 size = MAX_CHAR;
3004 tt = NULL;
3005 }
3006 else
3007 {
3008 CHECK_STRING (table);
3009
3010 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3011 table = string_make_unibyte (table);
3012 string_multibyte = SCHARS (table) < SBYTES (table);
3013 size = SBYTES (table);
3014 tt = SDATA (table);
3015 }
3016
3017 pos = XINT (start);
3018 pos_byte = CHAR_TO_BYTE (pos);
3019 end_pos = XINT (end);
3020 modify_region (current_buffer, pos, end_pos, 0);
3021
3022 cnt = 0;
3023 for (; pos < end_pos; )
3024 {
3025 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3026 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3027 int len, str_len;
3028 int oc;
3029 Lisp_Object val;
3030
3031 if (multibyte)
3032 oc = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
3033 else
3034 oc = *p, len = 1;
3035 if (oc < size)
3036 {
3037 if (tt)
3038 {
3039 /* Reload as signal_after_change in last iteration may GC. */
3040 tt = SDATA (table);
3041 if (string_multibyte)
3042 {
3043 str = tt + string_char_to_byte (table, oc);
3044 nc = STRING_CHAR_AND_LENGTH (str, MAX_MULTIBYTE_LENGTH,
3045 str_len);
3046 }
3047 else
3048 {
3049 nc = tt[oc];
3050 if (! ASCII_BYTE_P (nc) && multibyte)
3051 {
3052 str_len = BYTE8_STRING (nc, buf);
3053 str = buf;
3054 }
3055 else
3056 {
3057 str_len = 1;
3058 str = tt + oc;
3059 }
3060 }
3061 }
3062 else
3063 {
3064 int c;
3065
3066 nc = oc;
3067 val = CHAR_TABLE_REF (table, oc);
3068 if (CHARACTERP (val)
3069 && (c = XINT (val), CHAR_VALID_P (c, 0)))
3070 {
3071 nc = c;
3072 str_len = CHAR_STRING (nc, buf);
3073 str = buf;
3074 }
3075 else if (VECTORP (val) || (CONSP (val)))
3076 {
3077 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3078 where TO is TO-CHAR or [TO-CHAR ...]. */
3079 nc = -1;
3080 }
3081 }
3082
3083 if (nc != oc && nc >= 0)
3084 {
3085 /* Simple one char to one char translation. */
3086 if (len != str_len)
3087 {
3088 Lisp_Object string;
3089
3090 /* This is less efficient, because it moves the gap,
3091 but it should handle multibyte characters correctly. */
3092 string = make_multibyte_string (str, 1, str_len);
3093 replace_range (pos, pos + 1, string, 1, 0, 1);
3094 len = str_len;
3095 }
3096 else
3097 {
3098 record_change (pos, 1);
3099 while (str_len-- > 0)
3100 *p++ = *str++;
3101 signal_after_change (pos, 1, 1);
3102 update_compositions (pos, pos + 1, CHECK_BORDER);
3103 }
3104 ++cnt;
3105 }
3106 else if (nc < 0)
3107 {
3108 Lisp_Object string;
3109
3110 if (CONSP (val))
3111 {
3112 val = check_translation (pos, pos_byte, end_pos, val);
3113 if (NILP (val))
3114 {
3115 pos_byte += len;
3116 pos++;
3117 continue;
3118 }
3119 /* VAL is ([FROM-CHAR ...] . TO). */
3120 len = ASIZE (XCAR (val));
3121 val = XCDR (val);
3122 }
3123 else
3124 len = 1;
3125
3126 if (VECTORP (val))
3127 {
3128 int i;
3129
3130 string = Fmake_string (make_number (ASIZE (val)),
3131 AREF (val, 0));
3132 for (i = 1; i < ASIZE (val); i++)
3133 Faset (string, make_number (i), AREF (val, i));
3134 }
3135 else
3136 {
3137 string = Fmake_string (make_number (1), val);
3138 }
3139 replace_range (pos, pos + len, string, 1, 0, 1);
3140 pos_byte += SBYTES (string);
3141 pos += SCHARS (string);
3142 cnt += SCHARS (string);
3143 end_pos += SCHARS (string) - len;
3144 continue;
3145 }
3146 }
3147 pos_byte += len;
3148 pos++;
3149 }
3150
3151 return make_number (cnt);
3152 }
3153
3154 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3155 doc: /* Delete the text between point and mark.
3156
3157 When called from a program, expects two arguments,
3158 positions (integers or markers) specifying the stretch to be deleted. */)
3159 (start, end)
3160 Lisp_Object start, end;
3161 {
3162 validate_region (&start, &end);
3163 del_range (XINT (start), XINT (end));
3164 return Qnil;
3165 }
3166
3167 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3168 Sdelete_and_extract_region, 2, 2, 0,
3169 doc: /* Delete the text between START and END and return it. */)
3170 (start, end)
3171 Lisp_Object start, end;
3172 {
3173 validate_region (&start, &end);
3174 if (XINT (start) == XINT (end))
3175 return build_string ("");
3176 return del_range_1 (XINT (start), XINT (end), 1, 1);
3177 }
3178 \f
3179 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3180 doc: /* Remove restrictions (narrowing) from current buffer.
3181 This allows the buffer's full text to be seen and edited. */)
3182 ()
3183 {
3184 if (BEG != BEGV || Z != ZV)
3185 current_buffer->clip_changed = 1;
3186 BEGV = BEG;
3187 BEGV_BYTE = BEG_BYTE;
3188 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3189 /* Changing the buffer bounds invalidates any recorded current column. */
3190 invalidate_current_column ();
3191 return Qnil;
3192 }
3193
3194 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3195 doc: /* Restrict editing in this buffer to the current region.
3196 The rest of the text becomes temporarily invisible and untouchable
3197 but is not deleted; if you save the buffer in a file, the invisible
3198 text is included in the file. \\[widen] makes all visible again.
3199 See also `save-restriction'.
3200
3201 When calling from a program, pass two arguments; positions (integers
3202 or markers) bounding the text that should remain visible. */)
3203 (start, end)
3204 register Lisp_Object start, end;
3205 {
3206 CHECK_NUMBER_COERCE_MARKER (start);
3207 CHECK_NUMBER_COERCE_MARKER (end);
3208
3209 if (XINT (start) > XINT (end))
3210 {
3211 Lisp_Object tem;
3212 tem = start; start = end; end = tem;
3213 }
3214
3215 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3216 args_out_of_range (start, end);
3217
3218 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3219 current_buffer->clip_changed = 1;
3220
3221 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3222 SET_BUF_ZV (current_buffer, XFASTINT (end));
3223 if (PT < XFASTINT (start))
3224 SET_PT (XFASTINT (start));
3225 if (PT > XFASTINT (end))
3226 SET_PT (XFASTINT (end));
3227 /* Changing the buffer bounds invalidates any recorded current column. */
3228 invalidate_current_column ();
3229 return Qnil;
3230 }
3231
3232 Lisp_Object
3233 save_restriction_save ()
3234 {
3235 if (BEGV == BEG && ZV == Z)
3236 /* The common case that the buffer isn't narrowed.
3237 We return just the buffer object, which save_restriction_restore
3238 recognizes as meaning `no restriction'. */
3239 return Fcurrent_buffer ();
3240 else
3241 /* We have to save a restriction, so return a pair of markers, one
3242 for the beginning and one for the end. */
3243 {
3244 Lisp_Object beg, end;
3245
3246 beg = buildmark (BEGV, BEGV_BYTE);
3247 end = buildmark (ZV, ZV_BYTE);
3248
3249 /* END must move forward if text is inserted at its exact location. */
3250 XMARKER(end)->insertion_type = 1;
3251
3252 return Fcons (beg, end);
3253 }
3254 }
3255
3256 Lisp_Object
3257 save_restriction_restore (data)
3258 Lisp_Object data;
3259 {
3260 if (CONSP (data))
3261 /* A pair of marks bounding a saved restriction. */
3262 {
3263 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3264 struct Lisp_Marker *end = XMARKER (XCDR (data));
3265 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
3266
3267 if (buf /* Verify marker still points to a buffer. */
3268 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3269 /* The restriction has changed from the saved one, so restore
3270 the saved restriction. */
3271 {
3272 int pt = BUF_PT (buf);
3273
3274 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3275 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3276
3277 if (pt < beg->charpos || pt > end->charpos)
3278 /* The point is outside the new visible range, move it inside. */
3279 SET_BUF_PT_BOTH (buf,
3280 clip_to_bounds (beg->charpos, pt, end->charpos),
3281 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3282 end->bytepos));
3283
3284 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3285 }
3286 }
3287 else
3288 /* A buffer, which means that there was no old restriction. */
3289 {
3290 struct buffer *buf = XBUFFER (data);
3291
3292 if (buf /* Verify marker still points to a buffer. */
3293 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3294 /* The buffer has been narrowed, get rid of the narrowing. */
3295 {
3296 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3297 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3298
3299 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3300 }
3301 }
3302
3303 return Qnil;
3304 }
3305
3306 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3307 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3308 The buffer's restrictions make parts of the beginning and end invisible.
3309 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3310 This special form, `save-restriction', saves the current buffer's restrictions
3311 when it is entered, and restores them when it is exited.
3312 So any `narrow-to-region' within BODY lasts only until the end of the form.
3313 The old restrictions settings are restored
3314 even in case of abnormal exit (throw or error).
3315
3316 The value returned is the value of the last form in BODY.
3317
3318 Note: if you are using both `save-excursion' and `save-restriction',
3319 use `save-excursion' outermost:
3320 (save-excursion (save-restriction ...))
3321
3322 usage: (save-restriction &rest BODY) */)
3323 (body)
3324 Lisp_Object body;
3325 {
3326 register Lisp_Object val;
3327 int count = SPECPDL_INDEX ();
3328
3329 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3330 val = Fprogn (body);
3331 return unbind_to (count, val);
3332 }
3333 \f
3334 /* Buffer for the most recent text displayed by Fmessage_box. */
3335 static char *message_text;
3336
3337 /* Allocated length of that buffer. */
3338 static int message_length;
3339
3340 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3341 doc: /* Display a message at the bottom of the screen.
3342 The message also goes into the `*Messages*' buffer.
3343 \(In keyboard macros, that's all it does.)
3344 Return the message.
3345
3346 The first argument is a format control string, and the rest are data
3347 to be formatted under control of the string. See `format' for details.
3348
3349 Note: Use (message "%s" VALUE) to print the value of expressions and
3350 variables to avoid accidentally interpreting `%' as format specifiers.
3351
3352 If the first argument is nil or the empty string, the function clears
3353 any existing message; this lets the minibuffer contents show. See
3354 also `current-message'.
3355
3356 usage: (message FORMAT-STRING &rest ARGS) */)
3357 (nargs, args)
3358 int nargs;
3359 Lisp_Object *args;
3360 {
3361 if (NILP (args[0])
3362 || (STRINGP (args[0])
3363 && SBYTES (args[0]) == 0))
3364 {
3365 message (0);
3366 return args[0];
3367 }
3368 else
3369 {
3370 register Lisp_Object val;
3371 val = Fformat (nargs, args);
3372 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3373 return val;
3374 }
3375 }
3376
3377 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3378 doc: /* Display a message, in a dialog box if possible.
3379 If a dialog box is not available, use the echo area.
3380 The first argument is a format control string, and the rest are data
3381 to be formatted under control of the string. See `format' for details.
3382
3383 If the first argument is nil or the empty string, clear any existing
3384 message; let the minibuffer contents show.
3385
3386 usage: (message-box FORMAT-STRING &rest ARGS) */)
3387 (nargs, args)
3388 int nargs;
3389 Lisp_Object *args;
3390 {
3391 if (NILP (args[0]))
3392 {
3393 message (0);
3394 return Qnil;
3395 }
3396 else
3397 {
3398 register Lisp_Object val;
3399 val = Fformat (nargs, args);
3400 #ifdef HAVE_MENUS
3401 /* The MS-DOS frames support popup menus even though they are
3402 not FRAME_WINDOW_P. */
3403 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3404 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3405 {
3406 Lisp_Object pane, menu, obj;
3407 struct gcpro gcpro1;
3408 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3409 GCPRO1 (pane);
3410 menu = Fcons (val, pane);
3411 obj = Fx_popup_dialog (Qt, menu, Qt);
3412 UNGCPRO;
3413 return val;
3414 }
3415 #endif /* HAVE_MENUS */
3416 /* Copy the data so that it won't move when we GC. */
3417 if (! message_text)
3418 {
3419 message_text = (char *)xmalloc (80);
3420 message_length = 80;
3421 }
3422 if (SBYTES (val) > message_length)
3423 {
3424 message_length = SBYTES (val);
3425 message_text = (char *)xrealloc (message_text, message_length);
3426 }
3427 bcopy (SDATA (val), message_text, SBYTES (val));
3428 message2 (message_text, SBYTES (val),
3429 STRING_MULTIBYTE (val));
3430 return val;
3431 }
3432 }
3433 #ifdef HAVE_MENUS
3434 extern Lisp_Object last_nonmenu_event;
3435 #endif
3436
3437 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3438 doc: /* Display a message in a dialog box or in the echo area.
3439 If this command was invoked with the mouse, use a dialog box if
3440 `use-dialog-box' is non-nil.
3441 Otherwise, use the echo area.
3442 The first argument is a format control string, and the rest are data
3443 to be formatted under control of the string. See `format' for details.
3444
3445 If the first argument is nil or the empty string, clear any existing
3446 message; let the minibuffer contents show.
3447
3448 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3449 (nargs, args)
3450 int nargs;
3451 Lisp_Object *args;
3452 {
3453 #ifdef HAVE_MENUS
3454 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3455 && use_dialog_box)
3456 return Fmessage_box (nargs, args);
3457 #endif
3458 return Fmessage (nargs, args);
3459 }
3460
3461 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3462 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3463 ()
3464 {
3465 return current_message ();
3466 }
3467
3468
3469 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3470 doc: /* Return a copy of STRING with text properties added.
3471 First argument is the string to copy.
3472 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3473 properties to add to the result.
3474 usage: (propertize STRING &rest PROPERTIES) */)
3475 (nargs, args)
3476 int nargs;
3477 Lisp_Object *args;
3478 {
3479 Lisp_Object properties, string;
3480 struct gcpro gcpro1, gcpro2;
3481 int i;
3482
3483 /* Number of args must be odd. */
3484 if ((nargs & 1) == 0 || nargs < 1)
3485 error ("Wrong number of arguments");
3486
3487 properties = string = Qnil;
3488 GCPRO2 (properties, string);
3489
3490 /* First argument must be a string. */
3491 CHECK_STRING (args[0]);
3492 string = Fcopy_sequence (args[0]);
3493
3494 for (i = 1; i < nargs; i += 2)
3495 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3496
3497 Fadd_text_properties (make_number (0),
3498 make_number (SCHARS (string)),
3499 properties, string);
3500 RETURN_UNGCPRO (string);
3501 }
3502
3503
3504 /* Number of bytes that STRING will occupy when put into the result.
3505 MULTIBYTE is nonzero if the result should be multibyte. */
3506
3507 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3508 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3509 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3510 : SBYTES (STRING))
3511
3512 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3513 doc: /* Format a string out of a format-string and arguments.
3514 The first argument is a format control string.
3515 The other arguments are substituted into it to make the result, a string.
3516 It may contain %-sequences meaning to substitute the next argument.
3517 %s means print a string argument. Actually, prints any object, with `princ'.
3518 %d means print as number in decimal (%o octal, %x hex).
3519 %X is like %x, but uses upper case.
3520 %e means print a number in exponential notation.
3521 %f means print a number in decimal-point notation.
3522 %g means print a number in exponential notation
3523 or decimal-point notation, whichever uses fewer characters.
3524 %c means print a number as a single character.
3525 %S means print any object as an s-expression (using `prin1').
3526 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3527 Use %% to put a single % into the output.
3528
3529 The basic structure of a %-sequence is
3530 % <flags> <width> <precision> character
3531 where flags is [- #0]+, width is [0-9]+, and precision is .[0-9]+
3532
3533 usage: (format STRING &rest OBJECTS) */)
3534 (nargs, args)
3535 int nargs;
3536 register Lisp_Object *args;
3537 {
3538 register int n; /* The number of the next arg to substitute */
3539 register int total; /* An estimate of the final length */
3540 char *buf, *p;
3541 register unsigned char *format, *end, *format_start;
3542 int nchars;
3543 /* Nonzero if the output should be a multibyte string,
3544 which is true if any of the inputs is one. */
3545 int multibyte = 0;
3546 /* When we make a multibyte string, we must pay attention to the
3547 byte combining problem, i.e., a byte may be combined with a
3548 multibyte charcter of the previous string. This flag tells if we
3549 must consider such a situation or not. */
3550 int maybe_combine_byte;
3551 unsigned char *this_format;
3552 /* Precision for each spec, or -1, a flag value meaning no precision
3553 was given in that spec. Element 0, corresonding to the format
3554 string itself, will not be used. Element NARGS, corresponding to
3555 no argument, *will* be assigned to in the case that a `%' and `.'
3556 occur after the final format specifier. */
3557 int *precision = (int *) (alloca((nargs + 1) * sizeof (int)));
3558 int longest_format;
3559 Lisp_Object val;
3560 int arg_intervals = 0;
3561 USE_SAFE_ALLOCA;
3562
3563 /* discarded[I] is 1 if byte I of the format
3564 string was not copied into the output.
3565 It is 2 if byte I was not the first byte of its character. */
3566 char *discarded = 0;
3567
3568 /* Each element records, for one argument,
3569 the start and end bytepos in the output string,
3570 and whether the argument is a string with intervals.
3571 info[0] is unused. Unused elements have -1 for start. */
3572 struct info
3573 {
3574 int start, end, intervals;
3575 } *info = 0;
3576
3577 /* It should not be necessary to GCPRO ARGS, because
3578 the caller in the interpreter should take care of that. */
3579
3580 /* Try to determine whether the result should be multibyte.
3581 This is not always right; sometimes the result needs to be multibyte
3582 because of an object that we will pass through prin1,
3583 and in that case, we won't know it here. */
3584 for (n = 0; n < nargs; n++)
3585 {
3586 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3587 multibyte = 1;
3588 /* Piggyback on this loop to initialize precision[N]. */
3589 precision[n] = -1;
3590 }
3591 precision[nargs] = -1;
3592
3593 CHECK_STRING (args[0]);
3594 /* We may have to change "%S" to "%s". */
3595 args[0] = Fcopy_sequence (args[0]);
3596
3597 /* GC should never happen here, so abort if it does. */
3598 abort_on_gc++;
3599
3600 /* If we start out planning a unibyte result,
3601 then discover it has to be multibyte, we jump back to retry.
3602 That can only happen from the first large while loop below. */
3603 retry:
3604
3605 format = SDATA (args[0]);
3606 format_start = format;
3607 end = format + SBYTES (args[0]);
3608 longest_format = 0;
3609
3610 /* Make room in result for all the non-%-codes in the control string. */
3611 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]) + 1;
3612
3613 /* Allocate the info and discarded tables. */
3614 {
3615 int nbytes = (nargs+1) * sizeof *info;
3616 int i;
3617 if (!info)
3618 info = (struct info *) alloca (nbytes);
3619 bzero (info, nbytes);
3620 for (i = 0; i <= nargs; i++)
3621 info[i].start = -1;
3622 if (!discarded)
3623 SAFE_ALLOCA (discarded, char *, SBYTES (args[0]));
3624 bzero (discarded, SBYTES (args[0]));
3625 }
3626
3627 /* Add to TOTAL enough space to hold the converted arguments. */
3628
3629 n = 0;
3630 while (format != end)
3631 if (*format++ == '%')
3632 {
3633 int thissize = 0;
3634 int actual_width = 0;
3635 unsigned char *this_format_start = format - 1;
3636 int field_width = 0;
3637
3638 /* General format specifications look like
3639
3640 '%' [flags] [field-width] [precision] format
3641
3642 where
3643
3644 flags ::= [- #0]+
3645 field-width ::= [0-9]+
3646 precision ::= '.' [0-9]*
3647
3648 If a field-width is specified, it specifies to which width
3649 the output should be padded with blanks, iff the output
3650 string is shorter than field-width.
3651
3652 If precision is specified, it specifies the number of
3653 digits to print after the '.' for floats, or the max.
3654 number of chars to print from a string. */
3655
3656 while (format != end
3657 && (*format == '-' || *format == '0' || *format == '#'
3658 || * format == ' '))
3659 ++format;
3660
3661 if (*format >= '0' && *format <= '9')
3662 {
3663 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3664 field_width = 10 * field_width + *format - '0';
3665 }
3666
3667 /* N is not incremented for another few lines below, so refer to
3668 element N+1 (which might be precision[NARGS]). */
3669 if (*format == '.')
3670 {
3671 ++format;
3672 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3673 precision[n+1] = 10 * precision[n+1] + *format - '0';
3674 }
3675
3676 if (format - this_format_start + 1 > longest_format)
3677 longest_format = format - this_format_start + 1;
3678
3679 if (format == end)
3680 error ("Format string ends in middle of format specifier");
3681 if (*format == '%')
3682 format++;
3683 else if (++n >= nargs)
3684 error ("Not enough arguments for format string");
3685 else if (*format == 'S')
3686 {
3687 /* For `S', prin1 the argument and then treat like a string. */
3688 register Lisp_Object tem;
3689 tem = Fprin1_to_string (args[n], Qnil);
3690 if (STRING_MULTIBYTE (tem) && ! multibyte)
3691 {
3692 multibyte = 1;
3693 goto retry;
3694 }
3695 args[n] = tem;
3696 /* If we restart the loop, we should not come here again
3697 because args[n] is now a string and calling
3698 Fprin1_to_string on it produces superflous double
3699 quotes. So, change "%S" to "%s" now. */
3700 *format = 's';
3701 goto string;
3702 }
3703 else if (SYMBOLP (args[n]))
3704 {
3705 args[n] = SYMBOL_NAME (args[n]);
3706 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3707 {
3708 multibyte = 1;
3709 goto retry;
3710 }
3711 goto string;
3712 }
3713 else if (STRINGP (args[n]))
3714 {
3715 string:
3716 if (*format != 's' && *format != 'S')
3717 error ("Format specifier doesn't match argument type");
3718 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3719 to be as large as is calculated here. Easy check for
3720 the case PRECISION = 0. */
3721 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3722 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3723 }
3724 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3725 else if (INTEGERP (args[n]) && *format != 's')
3726 {
3727 /* The following loop assumes the Lisp type indicates
3728 the proper way to pass the argument.
3729 So make sure we have a flonum if the argument should
3730 be a double. */
3731 if (*format == 'e' || *format == 'f' || *format == 'g')
3732 args[n] = Ffloat (args[n]);
3733 else
3734 if (*format != 'd' && *format != 'o' && *format != 'x'
3735 && *format != 'i' && *format != 'X' && *format != 'c')
3736 error ("Invalid format operation %%%c", *format);
3737
3738 thissize = 30;
3739 if (*format == 'c')
3740 {
3741 if (! ASCII_CHAR_P (XINT (args[n]))
3742 /* Note: No one can remeber why we have to treat
3743 the character 0 as a multibyte character here.
3744 But, until it causes a real problem, let's
3745 don't change it. */
3746 || XINT (args[n]) == 0)
3747 {
3748 if (! multibyte)
3749 {
3750 multibyte = 1;
3751 goto retry;
3752 }
3753 args[n] = Fchar_to_string (args[n]);
3754 thissize = SBYTES (args[n]);
3755 }
3756 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3757 {
3758 args[n]
3759 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3760 thissize = SBYTES (args[n]);
3761 }
3762 }
3763 }
3764 else if (FLOATP (args[n]) && *format != 's')
3765 {
3766 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3767 {
3768 if (*format != 'd' && *format != 'o' && *format != 'x'
3769 && *format != 'i' && *format != 'X' && *format != 'c')
3770 error ("Invalid format operation %%%c", *format);
3771 /* This fails unnecessarily if args[n] is bigger than
3772 most-positive-fixnum but smaller than MAXINT.
3773 These cases are important because we sometimes use floats
3774 to represent such integer values (typically such values
3775 come from UIDs or PIDs). */
3776 /* args[n] = Ftruncate (args[n], Qnil); */
3777 }
3778
3779 /* Note that we're using sprintf to print floats,
3780 so we have to take into account what that function
3781 prints. */
3782 /* Filter out flag value of -1. */
3783 thissize = (MAX_10_EXP + 100
3784 + (precision[n] > 0 ? precision[n] : 0));
3785 }
3786 else
3787 {
3788 /* Anything but a string, convert to a string using princ. */
3789 register Lisp_Object tem;
3790 tem = Fprin1_to_string (args[n], Qt);
3791 if (STRING_MULTIBYTE (tem) && ! multibyte)
3792 {
3793 multibyte = 1;
3794 goto retry;
3795 }
3796 args[n] = tem;
3797 goto string;
3798 }
3799
3800 thissize += max (0, field_width - actual_width);
3801 total += thissize + 4;
3802 }
3803
3804 abort_on_gc--;
3805
3806 /* Now we can no longer jump to retry.
3807 TOTAL and LONGEST_FORMAT are known for certain. */
3808
3809 this_format = (unsigned char *) alloca (longest_format + 1);
3810
3811 /* Allocate the space for the result.
3812 Note that TOTAL is an overestimate. */
3813 SAFE_ALLOCA (buf, char *, total);
3814
3815 p = buf;
3816 nchars = 0;
3817 n = 0;
3818
3819 /* Scan the format and store result in BUF. */
3820 format = SDATA (args[0]);
3821 format_start = format;
3822 end = format + SBYTES (args[0]);
3823 maybe_combine_byte = 0;
3824 while (format != end)
3825 {
3826 if (*format == '%')
3827 {
3828 int minlen;
3829 int negative = 0;
3830 unsigned char *this_format_start = format;
3831
3832 discarded[format - format_start] = 1;
3833 format++;
3834
3835 while (index("-0# ", *format))
3836 {
3837 if (*format == '-')
3838 {
3839 negative = 1;
3840 }
3841 discarded[format - format_start] = 1;
3842 ++format;
3843 }
3844
3845 minlen = atoi (format);
3846
3847 while ((*format >= '0' && *format <= '9') || *format == '.')
3848 {
3849 discarded[format - format_start] = 1;
3850 format++;
3851 }
3852
3853 if (*format++ == '%')
3854 {
3855 *p++ = '%';
3856 nchars++;
3857 continue;
3858 }
3859
3860 ++n;
3861
3862 discarded[format - format_start - 1] = 1;
3863 info[n].start = nchars;
3864
3865 if (STRINGP (args[n]))
3866 {
3867 /* handle case (precision[n] >= 0) */
3868
3869 int width, padding;
3870 int nbytes, start, end;
3871 int nchars_string;
3872
3873 /* lisp_string_width ignores a precision of 0, but GNU
3874 libc functions print 0 characters when the precision
3875 is 0. Imitate libc behavior here. Changing
3876 lisp_string_width is the right thing, and will be
3877 done, but meanwhile we work with it. */
3878
3879 if (precision[n] == 0)
3880 width = nchars_string = nbytes = 0;
3881 else if (precision[n] > 0)
3882 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3883 else
3884 { /* no precision spec given for this argument */
3885 width = lisp_string_width (args[n], -1, NULL, NULL);
3886 nbytes = SBYTES (args[n]);
3887 nchars_string = SCHARS (args[n]);
3888 }
3889
3890 /* If spec requires it, pad on right with spaces. */
3891 padding = minlen - width;
3892 if (! negative)
3893 while (padding-- > 0)
3894 {
3895 *p++ = ' ';
3896 ++nchars;
3897 }
3898
3899 info[n].start = start = nchars;
3900 nchars += nchars_string;
3901 end = nchars;
3902
3903 if (p > buf
3904 && multibyte
3905 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3906 && STRING_MULTIBYTE (args[n])
3907 && !CHAR_HEAD_P (SREF (args[n], 0)))
3908 maybe_combine_byte = 1;
3909
3910 p += copy_text (SDATA (args[n]), p,
3911 nbytes,
3912 STRING_MULTIBYTE (args[n]), multibyte);
3913
3914 info[n].end = nchars;
3915
3916 if (negative)
3917 while (padding-- > 0)
3918 {
3919 *p++ = ' ';
3920 nchars++;
3921 }
3922
3923 /* If this argument has text properties, record where
3924 in the result string it appears. */
3925 if (STRING_INTERVALS (args[n]))
3926 info[n].intervals = arg_intervals = 1;
3927 }
3928 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3929 {
3930 int this_nchars;
3931
3932 bcopy (this_format_start, this_format,
3933 format - this_format_start);
3934 this_format[format - this_format_start] = 0;
3935
3936 if (INTEGERP (args[n]))
3937 {
3938 if (format[-1] == 'd')
3939 sprintf (p, this_format, XINT (args[n]));
3940 /* Don't sign-extend for octal or hex printing. */
3941 else
3942 sprintf (p, this_format, XUINT (args[n]));
3943 }
3944 else if (format[-1] == 'e' || format[-1] == 'f' || format[-1] == 'g')
3945 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3946 else if (format[-1] == 'd')
3947 /* Maybe we should use "%1.0f" instead so it also works
3948 for values larger than MAXINT. */
3949 sprintf (p, this_format, (EMACS_INT) XFLOAT_DATA (args[n]));
3950 else
3951 /* Don't sign-extend for octal or hex printing. */
3952 sprintf (p, this_format, (EMACS_UINT) XFLOAT_DATA (args[n]));
3953
3954 if (p > buf
3955 && multibyte
3956 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3957 && !CHAR_HEAD_P (*((unsigned char *) p)))
3958 maybe_combine_byte = 1;
3959 this_nchars = strlen (p);
3960 if (multibyte)
3961 p += str_to_multibyte (p, buf + total - 1 - p, this_nchars);
3962 else
3963 p += this_nchars;
3964 nchars += this_nchars;
3965 info[n].end = nchars;
3966 }
3967
3968 }
3969 else if (STRING_MULTIBYTE (args[0]))
3970 {
3971 /* Copy a whole multibyte character. */
3972 if (p > buf
3973 && multibyte
3974 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3975 && !CHAR_HEAD_P (*format))
3976 maybe_combine_byte = 1;
3977 *p++ = *format++;
3978 while (! CHAR_HEAD_P (*format))
3979 {
3980 discarded[format - format_start] = 2;
3981 *p++ = *format++;
3982 }
3983 nchars++;
3984 }
3985 else if (multibyte)
3986 {
3987 /* Convert a single-byte character to multibyte. */
3988 int len = copy_text (format, p, 1, 0, 1);
3989
3990 p += len;
3991 format++;
3992 nchars++;
3993 }
3994 else
3995 *p++ = *format++, nchars++;
3996 }
3997
3998 if (p > buf + total)
3999 abort ();
4000
4001 if (maybe_combine_byte)
4002 nchars = multibyte_chars_in_text (buf, p - buf);
4003 val = make_specified_string (buf, nchars, p - buf, multibyte);
4004
4005 /* If we allocated BUF with malloc, free it too. */
4006 SAFE_FREE ();
4007
4008 /* If the format string has text properties, or any of the string
4009 arguments has text properties, set up text properties of the
4010 result string. */
4011
4012 if (STRING_INTERVALS (args[0]) || arg_intervals)
4013 {
4014 Lisp_Object len, new_len, props;
4015 struct gcpro gcpro1;
4016
4017 /* Add text properties from the format string. */
4018 len = make_number (SCHARS (args[0]));
4019 props = text_property_list (args[0], make_number (0), len, Qnil);
4020 GCPRO1 (props);
4021
4022 if (CONSP (props))
4023 {
4024 int bytepos = 0, position = 0, translated = 0, argn = 1;
4025 Lisp_Object list;
4026
4027 /* Adjust the bounds of each text property
4028 to the proper start and end in the output string. */
4029
4030 /* Put the positions in PROPS in increasing order, so that
4031 we can do (effectively) one scan through the position
4032 space of the format string. */
4033 props = Fnreverse (props);
4034
4035 /* BYTEPOS is the byte position in the format string,
4036 POSITION is the untranslated char position in it,
4037 TRANSLATED is the translated char position in BUF,
4038 and ARGN is the number of the next arg we will come to. */
4039 for (list = props; CONSP (list); list = XCDR (list))
4040 {
4041 Lisp_Object item;
4042 int pos;
4043
4044 item = XCAR (list);
4045
4046 /* First adjust the property start position. */
4047 pos = XINT (XCAR (item));
4048
4049 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4050 up to this position. */
4051 for (; position < pos; bytepos++)
4052 {
4053 if (! discarded[bytepos])
4054 position++, translated++;
4055 else if (discarded[bytepos] == 1)
4056 {
4057 position++;
4058 if (translated == info[argn].start)
4059 {
4060 translated += info[argn].end - info[argn].start;
4061 argn++;
4062 }
4063 }
4064 }
4065
4066 XSETCAR (item, make_number (translated));
4067
4068 /* Likewise adjust the property end position. */
4069 pos = XINT (XCAR (XCDR (item)));
4070
4071 for (; position < pos; bytepos++)
4072 {
4073 if (! discarded[bytepos])
4074 position++, translated++;
4075 else if (discarded[bytepos] == 1)
4076 {
4077 position++;
4078 if (translated == info[argn].start)
4079 {
4080 translated += info[argn].end - info[argn].start;
4081 argn++;
4082 }
4083 }
4084 }
4085
4086 XSETCAR (XCDR (item), make_number (translated));
4087 }
4088
4089 add_text_properties_from_list (val, props, make_number (0));
4090 }
4091
4092 /* Add text properties from arguments. */
4093 if (arg_intervals)
4094 for (n = 1; n < nargs; ++n)
4095 if (info[n].intervals)
4096 {
4097 len = make_number (SCHARS (args[n]));
4098 new_len = make_number (info[n].end - info[n].start);
4099 props = text_property_list (args[n], make_number (0), len, Qnil);
4100 extend_property_ranges (props, len, new_len);
4101 /* If successive arguments have properites, be sure that
4102 the value of `composition' property be the copy. */
4103 if (n > 1 && info[n - 1].end)
4104 make_composition_value_copy (props);
4105 add_text_properties_from_list (val, props,
4106 make_number (info[n].start));
4107 }
4108
4109 UNGCPRO;
4110 }
4111
4112 return val;
4113 }
4114
4115 Lisp_Object
4116 format2 (string1, arg0, arg1)
4117 char *string1;
4118 Lisp_Object arg0, arg1;
4119 {
4120 Lisp_Object args[3];
4121 args[0] = build_string (string1);
4122 args[1] = arg0;
4123 args[2] = arg1;
4124 return Fformat (3, args);
4125 }
4126 \f
4127 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4128 doc: /* Return t if two characters match, optionally ignoring case.
4129 Both arguments must be characters (i.e. integers).
4130 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4131 (c1, c2)
4132 register Lisp_Object c1, c2;
4133 {
4134 int i1, i2;
4135 CHECK_NUMBER (c1);
4136 CHECK_NUMBER (c2);
4137
4138 if (XINT (c1) == XINT (c2))
4139 return Qt;
4140 if (NILP (current_buffer->case_fold_search))
4141 return Qnil;
4142
4143 /* Do these in separate statements,
4144 then compare the variables.
4145 because of the way DOWNCASE uses temp variables. */
4146 i1 = XFASTINT (c1);
4147 if (NILP (current_buffer->enable_multibyte_characters)
4148 && ! ASCII_CHAR_P (i1))
4149 {
4150 MAKE_CHAR_MULTIBYTE (i1);
4151 }
4152 i2 = XFASTINT (c2);
4153 if (NILP (current_buffer->enable_multibyte_characters)
4154 && ! ASCII_CHAR_P (i2))
4155 {
4156 MAKE_CHAR_MULTIBYTE (i2);
4157 }
4158 i1 = DOWNCASE (i1);
4159 i2 = DOWNCASE (i2);
4160 return (i1 == i2 ? Qt : Qnil);
4161 }
4162 \f
4163 /* Transpose the markers in two regions of the current buffer, and
4164 adjust the ones between them if necessary (i.e.: if the regions
4165 differ in size).
4166
4167 START1, END1 are the character positions of the first region.
4168 START1_BYTE, END1_BYTE are the byte positions.
4169 START2, END2 are the character positions of the second region.
4170 START2_BYTE, END2_BYTE are the byte positions.
4171
4172 Traverses the entire marker list of the buffer to do so, adding an
4173 appropriate amount to some, subtracting from some, and leaving the
4174 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4175
4176 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4177
4178 static void
4179 transpose_markers (start1, end1, start2, end2,
4180 start1_byte, end1_byte, start2_byte, end2_byte)
4181 register int start1, end1, start2, end2;
4182 register int start1_byte, end1_byte, start2_byte, end2_byte;
4183 {
4184 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4185 register struct Lisp_Marker *marker;
4186
4187 /* Update point as if it were a marker. */
4188 if (PT < start1)
4189 ;
4190 else if (PT < end1)
4191 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4192 PT_BYTE + (end2_byte - end1_byte));
4193 else if (PT < start2)
4194 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4195 (PT_BYTE + (end2_byte - start2_byte)
4196 - (end1_byte - start1_byte)));
4197 else if (PT < end2)
4198 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4199 PT_BYTE - (start2_byte - start1_byte));
4200
4201 /* We used to adjust the endpoints here to account for the gap, but that
4202 isn't good enough. Even if we assume the caller has tried to move the
4203 gap out of our way, it might still be at start1 exactly, for example;
4204 and that places it `inside' the interval, for our purposes. The amount
4205 of adjustment is nontrivial if there's a `denormalized' marker whose
4206 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4207 the dirty work to Fmarker_position, below. */
4208
4209 /* The difference between the region's lengths */
4210 diff = (end2 - start2) - (end1 - start1);
4211 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4212
4213 /* For shifting each marker in a region by the length of the other
4214 region plus the distance between the regions. */
4215 amt1 = (end2 - start2) + (start2 - end1);
4216 amt2 = (end1 - start1) + (start2 - end1);
4217 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4218 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4219
4220 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4221 {
4222 mpos = marker->bytepos;
4223 if (mpos >= start1_byte && mpos < end2_byte)
4224 {
4225 if (mpos < end1_byte)
4226 mpos += amt1_byte;
4227 else if (mpos < start2_byte)
4228 mpos += diff_byte;
4229 else
4230 mpos -= amt2_byte;
4231 marker->bytepos = mpos;
4232 }
4233 mpos = marker->charpos;
4234 if (mpos >= start1 && mpos < end2)
4235 {
4236 if (mpos < end1)
4237 mpos += amt1;
4238 else if (mpos < start2)
4239 mpos += diff;
4240 else
4241 mpos -= amt2;
4242 }
4243 marker->charpos = mpos;
4244 }
4245 }
4246
4247 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4248 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4249 The regions may not be overlapping, because the size of the buffer is
4250 never changed in a transposition.
4251
4252 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4253 any markers that happen to be located in the regions.
4254
4255 Transposing beyond buffer boundaries is an error. */)
4256 (startr1, endr1, startr2, endr2, leave_markers)
4257 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
4258 {
4259 register int start1, end1, start2, end2;
4260 int start1_byte, start2_byte, len1_byte, len2_byte;
4261 int gap, len1, len_mid, len2;
4262 unsigned char *start1_addr, *start2_addr, *temp;
4263
4264 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2;
4265 cur_intv = BUF_INTERVALS (current_buffer);
4266
4267 validate_region (&startr1, &endr1);
4268 validate_region (&startr2, &endr2);
4269
4270 start1 = XFASTINT (startr1);
4271 end1 = XFASTINT (endr1);
4272 start2 = XFASTINT (startr2);
4273 end2 = XFASTINT (endr2);
4274 gap = GPT;
4275
4276 /* Swap the regions if they're reversed. */
4277 if (start2 < end1)
4278 {
4279 register int glumph = start1;
4280 start1 = start2;
4281 start2 = glumph;
4282 glumph = end1;
4283 end1 = end2;
4284 end2 = glumph;
4285 }
4286
4287 len1 = end1 - start1;
4288 len2 = end2 - start2;
4289
4290 if (start2 < end1)
4291 error ("Transposed regions overlap");
4292 else if (start1 == end1 || start2 == end2)
4293 error ("Transposed region has length 0");
4294
4295 /* The possibilities are:
4296 1. Adjacent (contiguous) regions, or separate but equal regions
4297 (no, really equal, in this case!), or
4298 2. Separate regions of unequal size.
4299
4300 The worst case is usually No. 2. It means that (aside from
4301 potential need for getting the gap out of the way), there also
4302 needs to be a shifting of the text between the two regions. So
4303 if they are spread far apart, we are that much slower... sigh. */
4304
4305 /* It must be pointed out that the really studly thing to do would
4306 be not to move the gap at all, but to leave it in place and work
4307 around it if necessary. This would be extremely efficient,
4308 especially considering that people are likely to do
4309 transpositions near where they are working interactively, which
4310 is exactly where the gap would be found. However, such code
4311 would be much harder to write and to read. So, if you are
4312 reading this comment and are feeling squirrely, by all means have
4313 a go! I just didn't feel like doing it, so I will simply move
4314 the gap the minimum distance to get it out of the way, and then
4315 deal with an unbroken array. */
4316
4317 /* Make sure the gap won't interfere, by moving it out of the text
4318 we will operate on. */
4319 if (start1 < gap && gap < end2)
4320 {
4321 if (gap - start1 < end2 - gap)
4322 move_gap (start1);
4323 else
4324 move_gap (end2);
4325 }
4326
4327 start1_byte = CHAR_TO_BYTE (start1);
4328 start2_byte = CHAR_TO_BYTE (start2);
4329 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4330 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4331
4332 #ifdef BYTE_COMBINING_DEBUG
4333 if (end1 == start2)
4334 {
4335 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4336 len2_byte, start1, start1_byte)
4337 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4338 len1_byte, end2, start2_byte + len2_byte)
4339 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4340 len1_byte, end2, start2_byte + len2_byte))
4341 abort ();
4342 }
4343 else
4344 {
4345 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4346 len2_byte, start1, start1_byte)
4347 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4348 len1_byte, start2, start2_byte)
4349 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4350 len2_byte, end1, start1_byte + len1_byte)
4351 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4352 len1_byte, end2, start2_byte + len2_byte))
4353 abort ();
4354 }
4355 #endif
4356
4357 /* Hmmm... how about checking to see if the gap is large
4358 enough to use as the temporary storage? That would avoid an
4359 allocation... interesting. Later, don't fool with it now. */
4360
4361 /* Working without memmove, for portability (sigh), so must be
4362 careful of overlapping subsections of the array... */
4363
4364 if (end1 == start2) /* adjacent regions */
4365 {
4366 modify_region (current_buffer, start1, end2, 0);
4367 record_change (start1, len1 + len2);
4368
4369 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4370 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4371 Fset_text_properties (make_number (start1), make_number (end2),
4372 Qnil, Qnil);
4373
4374 /* First region smaller than second. */
4375 if (len1_byte < len2_byte)
4376 {
4377 USE_SAFE_ALLOCA;
4378
4379 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4380
4381 /* Don't precompute these addresses. We have to compute them
4382 at the last minute, because the relocating allocator might
4383 have moved the buffer around during the xmalloc. */
4384 start1_addr = BYTE_POS_ADDR (start1_byte);
4385 start2_addr = BYTE_POS_ADDR (start2_byte);
4386
4387 bcopy (start2_addr, temp, len2_byte);
4388 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4389 bcopy (temp, start1_addr, len2_byte);
4390 SAFE_FREE ();
4391 }
4392 else
4393 /* First region not smaller than second. */
4394 {
4395 USE_SAFE_ALLOCA;
4396
4397 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4398 start1_addr = BYTE_POS_ADDR (start1_byte);
4399 start2_addr = BYTE_POS_ADDR (start2_byte);
4400 bcopy (start1_addr, temp, len1_byte);
4401 bcopy (start2_addr, start1_addr, len2_byte);
4402 bcopy (temp, start1_addr + len2_byte, len1_byte);
4403 SAFE_FREE ();
4404 }
4405 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4406 len1, current_buffer, 0);
4407 graft_intervals_into_buffer (tmp_interval2, start1,
4408 len2, current_buffer, 0);
4409 update_compositions (start1, start1 + len2, CHECK_BORDER);
4410 update_compositions (start1 + len2, end2, CHECK_TAIL);
4411 }
4412 /* Non-adjacent regions, because end1 != start2, bleagh... */
4413 else
4414 {
4415 len_mid = start2_byte - (start1_byte + len1_byte);
4416
4417 if (len1_byte == len2_byte)
4418 /* Regions are same size, though, how nice. */
4419 {
4420 USE_SAFE_ALLOCA;
4421
4422 modify_region (current_buffer, start1, end1, 0);
4423 modify_region (current_buffer, start2, end2, 0);
4424 record_change (start1, len1);
4425 record_change (start2, len2);
4426 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4427 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4428 Fset_text_properties (make_number (start1), make_number (end1),
4429 Qnil, Qnil);
4430 Fset_text_properties (make_number (start2), make_number (end2),
4431 Qnil, Qnil);
4432
4433 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4434 start1_addr = BYTE_POS_ADDR (start1_byte);
4435 start2_addr = BYTE_POS_ADDR (start2_byte);
4436 bcopy (start1_addr, temp, len1_byte);
4437 bcopy (start2_addr, start1_addr, len2_byte);
4438 bcopy (temp, start2_addr, len1_byte);
4439 SAFE_FREE ();
4440
4441 graft_intervals_into_buffer (tmp_interval1, start2,
4442 len1, current_buffer, 0);
4443 graft_intervals_into_buffer (tmp_interval2, start1,
4444 len2, current_buffer, 0);
4445 }
4446
4447 else if (len1_byte < len2_byte) /* Second region larger than first */
4448 /* Non-adjacent & unequal size, area between must also be shifted. */
4449 {
4450 USE_SAFE_ALLOCA;
4451
4452 modify_region (current_buffer, start1, end2, 0);
4453 record_change (start1, (end2 - start1));
4454 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4455 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4456 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4457 Fset_text_properties (make_number (start1), make_number (end2),
4458 Qnil, Qnil);
4459
4460 /* holds region 2 */
4461 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4462 start1_addr = BYTE_POS_ADDR (start1_byte);
4463 start2_addr = BYTE_POS_ADDR (start2_byte);
4464 bcopy (start2_addr, temp, len2_byte);
4465 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4466 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4467 bcopy (temp, start1_addr, len2_byte);
4468 SAFE_FREE ();
4469
4470 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4471 len1, current_buffer, 0);
4472 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4473 len_mid, current_buffer, 0);
4474 graft_intervals_into_buffer (tmp_interval2, start1,
4475 len2, current_buffer, 0);
4476 }
4477 else
4478 /* Second region smaller than first. */
4479 {
4480 USE_SAFE_ALLOCA;
4481
4482 record_change (start1, (end2 - start1));
4483 modify_region (current_buffer, start1, end2, 0);
4484
4485 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4486 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4487 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4488 Fset_text_properties (make_number (start1), make_number (end2),
4489 Qnil, Qnil);
4490
4491 /* holds region 1 */
4492 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4493 start1_addr = BYTE_POS_ADDR (start1_byte);
4494 start2_addr = BYTE_POS_ADDR (start2_byte);
4495 bcopy (start1_addr, temp, len1_byte);
4496 bcopy (start2_addr, start1_addr, len2_byte);
4497 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4498 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4499 SAFE_FREE ();
4500
4501 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4502 len1, current_buffer, 0);
4503 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4504 len_mid, current_buffer, 0);
4505 graft_intervals_into_buffer (tmp_interval2, start1,
4506 len2, current_buffer, 0);
4507 }
4508
4509 update_compositions (start1, start1 + len2, CHECK_BORDER);
4510 update_compositions (end2 - len1, end2, CHECK_BORDER);
4511 }
4512
4513 /* When doing multiple transpositions, it might be nice
4514 to optimize this. Perhaps the markers in any one buffer
4515 should be organized in some sorted data tree. */
4516 if (NILP (leave_markers))
4517 {
4518 transpose_markers (start1, end1, start2, end2,
4519 start1_byte, start1_byte + len1_byte,
4520 start2_byte, start2_byte + len2_byte);
4521 fix_start_end_in_overlays (start1, end2);
4522 }
4523
4524 return Qnil;
4525 }
4526
4527 \f
4528 void
4529 syms_of_editfns ()
4530 {
4531 environbuf = 0;
4532
4533 Qbuffer_access_fontify_functions
4534 = intern ("buffer-access-fontify-functions");
4535 staticpro (&Qbuffer_access_fontify_functions);
4536
4537 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4538 doc: /* Non-nil means text motion commands don't notice fields. */);
4539 Vinhibit_field_text_motion = Qnil;
4540
4541 DEFVAR_LISP ("buffer-access-fontify-functions",
4542 &Vbuffer_access_fontify_functions,
4543 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4544 Each function is called with two arguments which specify the range
4545 of the buffer being accessed. */);
4546 Vbuffer_access_fontify_functions = Qnil;
4547
4548 {
4549 Lisp_Object obuf;
4550 extern Lisp_Object Vprin1_to_string_buffer;
4551 obuf = Fcurrent_buffer ();
4552 /* Do this here, because init_buffer_once is too early--it won't work. */
4553 Fset_buffer (Vprin1_to_string_buffer);
4554 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4555 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4556 Qnil);
4557 Fset_buffer (obuf);
4558 }
4559
4560 DEFVAR_LISP ("buffer-access-fontified-property",
4561 &Vbuffer_access_fontified_property,
4562 doc: /* Property which (if non-nil) indicates text has been fontified.
4563 `buffer-substring' need not call the `buffer-access-fontify-functions'
4564 functions if all the text being accessed has this property. */);
4565 Vbuffer_access_fontified_property = Qnil;
4566
4567 DEFVAR_LISP ("system-name", &Vsystem_name,
4568 doc: /* The host name of the machine Emacs is running on. */);
4569
4570 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4571 doc: /* The full name of the user logged in. */);
4572
4573 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4574 doc: /* The user's name, taken from environment variables if possible. */);
4575
4576 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4577 doc: /* The user's name, based upon the real uid only. */);
4578
4579 DEFVAR_LISP ("operating-system-release", &Voperating_system_release,
4580 doc: /* The release of the operating system Emacs is running on. */);
4581
4582 defsubr (&Spropertize);
4583 defsubr (&Schar_equal);
4584 defsubr (&Sgoto_char);
4585 defsubr (&Sstring_to_char);
4586 defsubr (&Schar_to_string);
4587 defsubr (&Sbuffer_substring);
4588 defsubr (&Sbuffer_substring_no_properties);
4589 defsubr (&Sbuffer_string);
4590
4591 defsubr (&Spoint_marker);
4592 defsubr (&Smark_marker);
4593 defsubr (&Spoint);
4594 defsubr (&Sregion_beginning);
4595 defsubr (&Sregion_end);
4596
4597 staticpro (&Qfield);
4598 Qfield = intern ("field");
4599 staticpro (&Qboundary);
4600 Qboundary = intern ("boundary");
4601 defsubr (&Sfield_beginning);
4602 defsubr (&Sfield_end);
4603 defsubr (&Sfield_string);
4604 defsubr (&Sfield_string_no_properties);
4605 defsubr (&Sdelete_field);
4606 defsubr (&Sconstrain_to_field);
4607
4608 defsubr (&Sline_beginning_position);
4609 defsubr (&Sline_end_position);
4610
4611 /* defsubr (&Smark); */
4612 /* defsubr (&Sset_mark); */
4613 defsubr (&Ssave_excursion);
4614 defsubr (&Ssave_current_buffer);
4615
4616 defsubr (&Sbufsize);
4617 defsubr (&Spoint_max);
4618 defsubr (&Spoint_min);
4619 defsubr (&Spoint_min_marker);
4620 defsubr (&Spoint_max_marker);
4621 defsubr (&Sgap_position);
4622 defsubr (&Sgap_size);
4623 defsubr (&Sposition_bytes);
4624 defsubr (&Sbyte_to_position);
4625
4626 defsubr (&Sbobp);
4627 defsubr (&Seobp);
4628 defsubr (&Sbolp);
4629 defsubr (&Seolp);
4630 defsubr (&Sfollowing_char);
4631 defsubr (&Sprevious_char);
4632 defsubr (&Schar_after);
4633 defsubr (&Schar_before);
4634 defsubr (&Sinsert);
4635 defsubr (&Sinsert_before_markers);
4636 defsubr (&Sinsert_and_inherit);
4637 defsubr (&Sinsert_and_inherit_before_markers);
4638 defsubr (&Sinsert_char);
4639 defsubr (&Sinsert_byte);
4640
4641 defsubr (&Suser_login_name);
4642 defsubr (&Suser_real_login_name);
4643 defsubr (&Suser_uid);
4644 defsubr (&Suser_real_uid);
4645 defsubr (&Suser_full_name);
4646 defsubr (&Semacs_pid);
4647 defsubr (&Scurrent_time);
4648 defsubr (&Sget_internal_run_time);
4649 defsubr (&Sformat_time_string);
4650 defsubr (&Sfloat_time);
4651 defsubr (&Sdecode_time);
4652 defsubr (&Sencode_time);
4653 defsubr (&Scurrent_time_string);
4654 defsubr (&Scurrent_time_zone);
4655 defsubr (&Sset_time_zone_rule);
4656 defsubr (&Ssystem_name);
4657 defsubr (&Smessage);
4658 defsubr (&Smessage_box);
4659 defsubr (&Smessage_or_box);
4660 defsubr (&Scurrent_message);
4661 defsubr (&Sformat);
4662
4663 defsubr (&Sinsert_buffer_substring);
4664 defsubr (&Scompare_buffer_substrings);
4665 defsubr (&Ssubst_char_in_region);
4666 defsubr (&Stranslate_region_internal);
4667 defsubr (&Sdelete_region);
4668 defsubr (&Sdelete_and_extract_region);
4669 defsubr (&Swiden);
4670 defsubr (&Snarrow_to_region);
4671 defsubr (&Ssave_restriction);
4672 defsubr (&Stranspose_regions);
4673 }
4674
4675 /* arch-tag: fc3827d8-6f60-4067-b11e-c3218031b018
4676 (do not change this comment) */